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ABSTRACT

The public spending multiplier has long been a subject of analysis with central discussion
on how its size varies under different economic contexts. The article that integrates
this dissertation introduces a causal machine learning technique as a tool to estimate
the public spending multiplier and make individual predictions based on each country’s
economic context. We propose to model the multiplier with a causal random forest,
developed by Wager e Athey (2018), uncovering possible heterogeneous treatment effects.
We apply this methodology to a dataset provided by the International Monetary Fund,
including data from 35 developed countries for the years from 2000 to 2020. The multiplier
estimates obtained with this methodology are between 1.7 and 2.7. In addition, we use
this methodology as a tool to uncover which features are important to the multiplier
heterogeneity.

Keywords: Causal Random Forest. Public spending multiplier. Unconfoundedness.
Heterogeneous treatment effect.



RESUMO

O multiplicador do gasto público é objeto de análise há muito tempo, com a discussão
centrada em como seu tamanho varia em diferentes contextos econômicos. No artigo que
integra esta dissertação, apresentamos uma técnica de aprendizado de máquina causal
como uma ferramenta para estimar o multiplicador do gasto público e fazer previsões
individualizadas com base no contexto econômico de cada país. Propomos modelar o
multiplicador com uma floresta aleatória causal, desenvolvida por Wager e Athey (2018),
descobrindo possíveis efeitos de tratamento heterogêneos. Aplicamos essa metodologia em
um conjunto de dados fornecido pelo Fundo Monetário Internacional, incluindo dados de 35
países desenvolvidos ao longo dos anos de 2000 a 2020. As estimativas dos multiplicadores
obtidas com esta metodologia estão entre 1,7 e 2,7. Além disso, usamos essa metodologia
como uma ferramenta para descobrir quais recursos são importantes para a heterogeneidade
do multiplicador.

Palavras-chave: Causal Random Forest. Multiplicador do gasto público. Unconfounded-
ness. Efeito de tratamento heterogêneo.
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1 INTRODUCTION

The relationship between public spending and the economic growth output has long
been a subject of analysis and debate. The analysis bears upon the question of the
government’s role in economic growth. If changes in the share of government spending can
affect the output growth rate, the size of the government can be a potentially important
factor explaining the observed disparity in growth rates among different countries.

During the last several years, the literature has centered the discussion about this topic
in the public spending multiplier, that is, the change in output caused by a $1 change
in government spending. An important part of this literature explores the fact that the
government multiplier might vary depending on the circumstances.

One strand of the literature, such as Coenen et al. (2012), explores New Keynesian
DSGE models to show that the multiplier can be higher when the interest rates are close
to the zero lower bound, and monetary policy is less effective. Cloyne, Jordà e Taylor
(2020) also explores how the multiplier might be radically different depending on the
monetary factors.

Another trend inside this literature explores how the multiplier might be different
during economic recessions, such as Auerbach e Gorodnichenko (2012) and Riera-Crichton,
Vegh e Vuletin (2015) or even if the multiplier differs according to the amount of slack in
the economy, as in Ramey e Zubairy (2018).

There are also some articles that argue that an important determinant of the govern-
ment spending multiplier is the direction of the fiscal intervention, such as Barnichon e
Matthes (2017), that uses a theoretical model to show that the multiplier associated with
a positive fiscal shock is smaller than the one associated with a negative change in public
spending. Alesina et al. (2018) also explores this point, indicating that a fiscal contraction
might have smaller costs than tax-based reforms, with multipliers typically below one
during fiscal adjustments.

Most of the studies about this topic estimate the multiplier based on averages for
a particular period of time and some specific country, or develop theoretical models or
empirical strategies to estimate how the multiplier varies depending on the specific context
(ALESINA et al., 2018; RAMEY; ZUBAIRY, 2018; AUERBACH; GORODNICHENKO,
2012; RIERA-CRICHTON; VEGH; VULETIN, 2015; COENEN et al., 2012; CLOYNE;
JORDÀ; TAYLOR, 2020).

Theory tells us that the economic context can significantly impact the magnitude of
the multiplier, including factors like how the spending is financed, how monetary policy
reacts, the persistence of spending changes or the direction of the fiscal policy change.
However, the fact that we cannot perform controlled, randomized trials on countries or
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economies implies that the majority of the empirical analysis in economics is dependent on
historical happenstance and historical data (ATHEY; IMBENS, 2017). This is also valid
for empirical estimates of the multiplier, but unfortunately the data does not offer us clean
natural experiments to explore the way the multiplier varies under different scenarios.

In cases like these, where an average treatment effect of a policy (in this case the public
spending) is not informative enough to develop optimal policy, we may be interested in
estimating the heterogeneous treatment effect (HTE). HTE is observed when exposure to
the same policy results in different effects on individuals, based on their characteristics.
Methods to estimate HTE are gaining much interest in clinical research, corporate world
and in economic research, as a source of knowledge to define optimal policy strategy
(POWERS et al., 2018).

The literature already explores the way that the multiplier varies depending on
economic characteristics, but the exploration of the heterogeneity is made mainly with the
researcher’s expertise, focusing on some specific features. On the one hand, the dimension
of the data in this problem results in too many potential candidate groups for heterogeneity
and makes it nearly impossible to analyze properly without a data driven estimation tool.
On the other hand, the process of searching for groups with different effects invalidates
the statistical inference. To infer properly, we need to avoid cases where the researcher or
policymaker mines through the data to find sub-groups where the multiplier is maximized
and overstates the average treatment effect by testing on those specific sub-groups only
(COOK; GEBSKI; KEECH, 2004).

This paper contributes to the literature by introducing the causal forest, developed in
Wager e Athey (2018), as a tool to uncover heterogeneity in the public spending impact,
using high dimensional data to make individual predictions of the causal effect of marginal
public spending on the short term growth.1

The results we obtain include confidence intervals for the public spending impact on
short-term GDP, centered between 1.7 and 2.7 for 2019 and 2020 for different countries,
and a ranking of feature importance for determining the heterogeneity in the effects. We
find that one really important feature for the multiplier is the amount of revenue obtained
by the government as a percentage of GDP.

The rest of the paper is organized as follows. Section 2 introduces the traditional
causality framework and the nascent literature about causal machine learning, presenting
the causal tree and causal forest that we use in this paper. Empirical estimates for the
multiplier are presented in Section 3. The dataset description and the tables with all the
results are available in the Appendix.

1The data we use in the work is from a database provided by the International Monetary Fund, named
World Economic Outlook. It has a wide variety of data from different countries. As the causal forest is
a data mining strategy, we include in the analysis data on fiscal, financial, foreign trade, among other
aspects.
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2 METHODOLOGY

2.1 Treatment Estimation
One of the main references in causality is the so-called Rubin causal model, first named

like that by Holland (1986), or also called the “potential outcome" approach, which has
been widely used in the field of econometrics since the early 1990s.

In this approach, for each unit i and each treatment level represented by ω, there is a
potential result, represented by Yi(ω), which describes the value of the response variable,
according to the level of treatment. In this model, the causal effect τi(ω) would be the
difference between the results with the treatment and without the treatment, for each
unit i:

τi(ω) = E[y(1)
i − y

(0)
i ].

Our goal is to estimate this function τ(x). However, in practice, it is only possible
to observe one of the results for each unit, a problem that has been defined as the
“fundamental problem of causal inference" (HOLLAND, 1986). For this reason, estimates
of causal effects are made based on comparisons between different units with different
levels of treatment. For example, one of the main quantities we seek to estimate is the
average treatment effect for a given population, defined as the difference in outcomes
between treated and non-treated individuals.

The best way to make inferences about the causal effect of a given policy or treatment
is through a randomized controlled trial. However, it is not always possible to implement
this type of experiment, for financial, political, ethical reasons or because it is simply
impossible. Particularly for economic matters, most of the time we cannot perform
experiments in the real world. For example, it would be impossible to randomly decide
the level of interest for each country to study its effects on the economy. Thus, a large
part of the empirical study in economics is based on observational data, that is, data
where the treatment was decided in a non-random way (ATHEY; IMBENS, 2017).

Making inferences about a treatment from observational data is significantly more
complex than from data obtained from a random experiment. When study a phenomenon
with observational data, the policy can be implemented at different levels for a group of
units that have a naturally different result on the response variable, creating a difficulty
in finding the causal effect.

In general, it is not possible to estimate τ(x) simply from the observed data without
some restrictions on the data generating mechanism. The majority of the identification
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strategies assume unconfoundedness (ROSENBAUM; RUBIN, 1983), that is, the treatment
ωi is independent of the potential outcomes Yi, conditional in Xi (controls or confounders):

{Y
(0)

i , Y
(1)

i } ⊥⊥ ωi | Xi.

Under unconfoundedness, and given continuity assumptions, we can treat nearby
observations in the x-space as having come from a randomized experiment. This is a
strong assumption that implies we are controlling for all the possible features that affect
the treatment assumption and the outcome at the same time.

In economics, researchers often use a series of strategies to find causal effects with
observational data, defined by Angrist e Krueger (1999) as “identification strategies". These
identification strategies are attempts to control for factors that are called “confounders",
factors that lead to a correlation between treatment assignment and the response variable.
In this way, a causal effect is said to be identifiable if the available dataset is large enough
to allow for identification (ATHEY; IMBENS, 2017).

Among the most traditional strategies in the econometric literature for identifying
causal effects is the use of Instrumental Variables, which seeks to use an exogenous
instrument to represent an endogenous variable in the model. Another well-known
approach is the propensity score matching (ROSENBAUM; RUBIN, 1983) approach,
which seeks to join groups with a similar probability of receiving treatment and thus allow
the inference of the causal effect.

Another very useful method is the discontinuity regression, which enables us to explore
the existence of any discontinuity in a relevant variable to assign the treatment or not to
each unit. For this strategy to be useful, there must be some factor that causes that, from
a certain threshold on some variable, individuals start to have the treatment assigned, for
example by laws or rules. The intuition behind this strategy is that individuals close to
the threshold on both sides are similar, and therefore can be compared as a function of
treatment (LEE; LEMIEUX, 2010).

Another very common strategy is to use difference-in-difference-based control methods.
These methods are typically used when one group of the sample receives treatment and
another does not. In this situation, the choice of who received treatment is not necessarily
random, and the challenge of causal inference is to find plausible estimates of what the
outcome of the treated group would be without treatment. For this strategy, the researcher
assumes that the group that did not receive the treatment is informative about what the
outcome of the treated group without the treatment would be. Among these strategies,
the synthetic control method is considered by some to be the most important advance
in the impact assessment literature in recent years (ATHEY; IMBENS, 2017). This
method consists of using the units that were not treated to create a synthetic version as
close as possible to the treated version, and based on the comparison of the synthetic



Chapter 2. METHODOLOGY 13

version, a value is estimated for the causal effect of the treatment (ABADIE; DIAMOND;
HAINMUELLER, 2015).

All these methods require a great a priori structuring of the problem to be studied
so that the theoretical foundation is fundamental in the construction of causal effects
estimation strategies. The flexibility of machine learning methods has contributed to the
growth of this literature, enabling the estimation of very flexible non-linear models, that
help to uncover heterogeneity on the treatment effects, in a way that the construction
of theoretical arguments about which variables are important as controls and how the
relationship structures between the variables is not so fundamental. Machine learning
techniques are data-adaptive methods and adapt to low-dimensional latent structures of
the data generating process. Moreover, with these methods, we can mine the data to find
the important features to the problem.

2.2 Machine Learning In Causality
The machine learning field of study is traditionally divided into supervised, unsuper-

vised, and reinforcement learning. The essence of supervised machine learning is the
design of an experiment to gauge how well a model trained in a database will be able to
predict new response data. This approach fundamentally focuses on forecasting, dividing
the sample into “training sample" and “test sample". In this way, we use data from the
predictors xi and the variable of interest yi from the training sample part to estimate a
model. The model is then evaluated using the test sample portion, to see how well it can
predict the values of the variable of interest yi. This approach differs from many (but
not all) econometric approaches because the model choice is based on the data. Some
different models are tested and compared from the point of view of predictive quality in
the part of the test sample, to choose the model that will be used.

A second class of machine learning problems consists of finding patterns in data where
there is no response variable, such as grouping images or text in the same subject groups,
is addressed with unsupervised machine learning. This approach tries to find similarities
in important factors in the data to group the units of interest together and can be very
useful for high-dimensional data. However, it has not been used in many applications to
economic data to date.

Kleinberg et al. (2015) introduces the idea that most policy evaluation problems are
fundamentally a prediction problem, so supervised machine learning can be quite useful
in helping to address these issues. The popularity of machine learning techniques comes
from their ability to find complex relationships between variables that were not previously
specified. Particularly for economic issues, this can be very useful, since the relationships
are complex and everything is interconnected and, therefore, we are not always able to
specify a model of a specific economic relationship. For example, if we are interested



Chapter 2. METHODOLOGY 14

in studying the relationship between public spending and growth, specifying an a priori
model properly is a very difficult task, as we have many variables that can impact both
the spending decision and the outcome of economic growth.

Machine learning has features that contribute to solving this problem, such as the
ability to handle efficiently a large number of potential independent variables, identifying
relationships, thresholds, and interactions that are informative about the phenomenon
we are studying. Because of this ability, a new strand of literature has emerged using
machine learning capabilities to help study causal relationships and policy evaluation.

The first attempts to use machine learning in this area to deal with many covariates
consisted of adaptations of the methods used to handle few covariates. For example
McCaffrey, Ridgeway e Morral (2004) used the random forest as a way to estimate the
propensity score, which is the probability of the unit receiving the treatment given the
observed covariates, traditionally used to match units with similar probability of receiving
the treatment and infer causal effects. This method has the advantage of taking into
account a large number of possibly relevant covariates, for which we do not know which
ones are relevant a priori, and we cannot use them all with traditional methods because of
the risk of overfitting when adding too many irrelevant variables. However, this method has
the disadvantage of not jointly using the covariates that are related to both the treatment
and the observed result, and other better strategies were proposed later. Another approach
taken to address this problem of many possible relevant covariates was done by Wyss et
al. (2014), which uses a LASSO-type regression in a procedure to estimate the propensity
score.

A problem that was addressed with machine learning by Belloni et al. (2012), is the
case where we want to use instrumental variables to estimate the impact of an endogenous
treatment X on a variable of interest Y , and there are a large number of potential
instruments (potentially even more than the number of observations). Typically, in this
case, a small number of instruments would be chosen and the choice would be justified
by prior knowledge. For this problem, the authors proposed a procedure for choosing
the instruments based on a LASSO regression, which allows choosing the appropriate
instruments based on the data.

Belloni, Chernozhukov e Hansen (2014) noted that the covariates (confounders) for
causal inference problems, should be chosen based on their relationship with both the
treatment and the response variable (outcome). For this they proposed a double-LASSO
procedure, first using a LASSO-type regression to look for the covariates related to the
response variable and then repeating the procedure to select the variables related to the
measurement of the treatment. Then they join the two sets of selected covariates and add
them as controls in a standard least squares regression.

An addition strand of machine learning literature has emerged with the aim of finding
HTE, where the particularities of each treated unit lead to a different treatment effect.
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For example, a minimum wage policy may have different effects in each region, depending
on the region’s income level, formality level, or other relevant characteristics. Obtaining
information about where a policy or treatment is most useful and most cost-effective is
important for evaluating and making decisions about optimal policy.

When machine learning methods are applied to find heterogeneity in treatment effects,
one looks for the best fit among many covariates and subgroups of the covariate space,
which can lead to spurious differences in treatment effects (ATHEY; IMBENS, 2017). To
tackle this problem, one possibility is to use a strategy proposed by List, Shaikh e Xu (2019)
to deal with the problems arising from testing multiple null hypotheses simultaneously.
Actively looking for heterogeneity in effects with a large number of covariates leads to the
problems associated with testing many null hypotheses as a single one, since we expect
some to be considered true even if they are false. The strategy proposed by the authors is
to use a bootstrap-based procedure to test these null hypotheses simultaneously, where
random data sampling is used to assign treatments. The problem of this approach is that
the researcher needs to specify in advance the hypotheses that will be tested, and not
always all possibilities can be tested.

Another approach is to look for subgroups that have different levels of treatment.
In machine learning literature, dividing data into subgroups is traditionally done with
tree-based methods. Athey e Imbens (2016) developed a method called causal tree, which
is based on a regression tree but uses the mean square error criterion of the treatment effect
for the subdivisions of the variables, instead of the mean square error of the predictions
(MSE). MSE of the treatment effects are unobservable, but Athey e Imbens (2016) showed
that minimizing the MSE for a tree is equivalent to maximizing the variance of the
prediction, between the two sides of the split. The method is based on dividing the sample
into two parts, where one part is used to estimate the structure of the tree and the other
part is used to estimate the average treatment effect for each group on each leaf of the
tree. This sample split structure allows the tree to be “honest" and lead to estimates with
interesting properties, such as the fact that confidence intervals are valid for any number
of covariates. The “outputs" of the method are values for the mean treatment effect and a
confidence interval for each subgroup.

Some problems with the causal tree are that it gives estimates by subgroup rather
than by individual, and furthermore it “loses" half of the sample information to build the
tree in an honest way. Another method was developed in Wager e Athey (2018), which is
based on a Random Forest of causal trees, where many different trees are generated and
the average of the trees is the model output. Since each tree is generated with a random
part of the sample, the “loss of information" of each tree is recovered by averaging them.
Furthermore, the predictions are smoother and each unit has an individual prediction for
its treatment effect. This algorithm was also extended to other estimation strategies, such
as instrumental variables, and was called Generalized Random Forest by Athey, Tibshirani
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e Wager (2019), allowing its use in other situations.
In this work, we introduce the causal forest as a method to estimate the impact of

public spending on growth, using a large set of covariates. As far as we know, the only
work so far that applied the causal forest method to a set of macroeconomic data was
Tiffin (2019), which makes a case study on the vulnerability of each country to a possible
financial crisis. Other works have applied this methodology to microeconomic issues such
as impact of house pricing (LEONI; NILSSON, 2021), educational issues such as the
impact of summer jobs for students (DAVIS; HELLER, 2017) and problems in other areas
of knowledge such as medical treatments.

2.3 Model and Estimation
Tree-based methods can be seen as nearest neighbors methods with some different

neighborhood metric. The classical methods, such as k-nearest neighbors seek the k

closest points to a test point x, given some distant measure, e.g. the Euclidean distance.
Tree-based methods also seek training examples that are close to x, but the metric is
defined in a decision tree and the closer points are the points that fall in the same leaf as
x (WAGER; ATHEY, 2018).

Tree-based methods estimate very flexible non-linear models for the heterogeneous
treatment effect. Moreover, they are data-adaptive methods and adapt to low dimensional
latent structures of the data generating process. Hence, they can work well even with
many features, even though they perform non-parametric estimation (which typically
requires a small number of features compared to the number of samples). Finally, these
methods use recent ideas from the literature to provide valid confidence intervals, despite
being data-adaptive and non-parametric. Thus, we could use these methods if we had
many features, had no good idea on how the effect heterogeneity looks like, and wanted
confidence intervals.

Based on this idea, Athey e Imbens (2016) developed the causal tree, a method to
estimate HTE with recursive partitioning that is inspired in regression trees. Later Wager
e Athey (2018) extended this method to the causal forest. The traditional classification
and regression tree (CART) for a set of independent samples (Xi, Yi) would be built by
recursively splitting the feature space until we have a set of leaves L, where we believe
the leaf to be small enough so that the responses Yi inside each leaf are nearly identically
distributed. Then we determine the prediction û(x) by the leaf containing x and setting

û(x) = 1
|i:Xi∈L(x)|

∑
|i:Xi(x)|

Yi.

The standard criterion for splitting CART regression trees is based on minimizing
the MSE of predictions, but there are several different procedures to place the split in a
decision tree.
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Analogously, the causal tree would succeed if we found leaves small enough such
that the pairs (Yi, Wi) inside the same leaf act as they had come from a randomized
experiment. This will only be true under the assumption of unconfoundedness, which
requires independence of the treatment assignment and potential outcomes conditional on
the covariates. In this way, we can estimate the treatment effect for every x ∈ L by the
average treatment effect inside each leaf

τ̂(x) = 1
{i:wi=1,Xi∈L}

∑
{i:Wi=1,Xi∈L}

Yi − 1
{i:wi=0,Xi∈L}

∑
{i:Wi=0,Xi∈L}

Yi.

In our case, the public spending is a continuous variable, so following Wager e Athey
(2018) we adapt this function to the covariance between the treatment and the outcome
for each leaf.

In the traditional CART, we make the splitting by minimizing the MSE, but we cannot
minimize the MSE here, because the error would be the difference between τ̂(x) and the
true τ , which is unobservable. Athey e Imbens (2016) show that maximizing the variance
of τ̂(x) is analogous to minimizing the mean squared error in a CART regression tree.
The splitting rule for a causal tree is to choose the split value that maximizes the variance
of τ̂(x) between both sides of the split.

Regression trees are intuitively appealing, but they are liable to overfitting, generating
biased estimates as a result. Athey e Imbens (2016) address these weaknesses by creating
trees that are constructed with a particular property, which they call honesty. Honesty
is a key property to estimate unbiased treatment effects. In the estimation of an honest
tree, the tree structure or splitting is estimated with a subset of the data, different from
the data used to estimate the treatment effects. The model is fitted to one subsample,
the training data (Str) (honesty fractions), and the treatment effects are estimated using
the other subsample, the validation data (Sest). This procedure prevents overfitting, but
it implies an increase in the variance of the treatment estimators, as the estimates are
obtained with a smaller sample.

Given this procedure to generate a causal tree, Wager e Athey (2018) proposes the
causal forest, which generates a set of B causal trees, where each of them generates an
estimate τ̂b(x). The forest then uses the average of the estimates τ̂(x) = B−1 ∑B

b=1 τ̂b(x).
This aggregation reduces the variance of the estimators, compensating for the effect of
honest splitting. Given that each tree will use a different random subsample of the data to
estimate the treatment effects, we end up using all the data for the causal forest treatment
effect estimates.

This procedure holds on two fundamental assumptions. The first one is unconfounded-
ness, i.e. we are controlling for all the variables that impact the treatment distribution
and the outcome at the same time. The second one is continuity, which means that we
have observations that vary smoothly with the covariates. Under these two assumptions,
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we can properly divide the sample into subgroups with different treatment effects and
estimate the average treatment effect for each subgroup.

To establish confidence intervals and test hypotheses, an estimator should, ideally,
be consistent with a clear asymptotic sampling distribution. For this purpose, Wager
e Athey (2018) developed consistency and asymptotic normality results for regression
forests. Under the continuity assumption, they show that causal forests are consistent for
the true treatment effect τ(x). Using the potential nearest neighbors construction, they
also show that:

τ̂(x)−τ(x)√
V ar[τ̂(x)]

→ N(0, 1).

Finally, they show that the asymptotic variance of causal forests can be accurately
estimated, assuming that the number of trees B is large enough. With these results,
we can use the set of B causal tree estimates to obtain confidence intervals for the true
underlying treatment effect that are centered at the causal forest estimates.

The last attribute of the causal forest estimation we have yet to present is the
randomized splitting rule derived from the classical random forest (BREIMAN, 2001).
If a tree is grown with a randomized splitting rule, the algorithm does not use all the
covariates at each node to select a split. Rather, a random subset of covariates is selected
at each node, and the algorithm selects only in this subset which covariate is the most
relevant to the split. Randomized splitting is important because it counteracts bias.
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3 EMPIRICAL ANALYSIS

In the vast literature about the public spending multiplier, economists developed a
voluminous amount of research measuring which features could imply a different size
for the multiplier. The theoretical search for these features is a hard task, and this is a
promising problem to the usage of data driven methods to select features and search for
heterogeneous treatment effects.

The main idea of this work is to use a large set of covariates, and use a data driven
technique to decide which covariates are important as controls to estimate the impact of
public spending on GDP, therefore we do not need to make a lot of theoretical assumptions
about the problem whereas still being able to discover important covariates to determine
the heterogeneity of the causal effect. For this purpose, we use a database provided by the
International Monetary Fund(IMF), selecting data from 35 countries classified as developed
by the IMF and 27 variables listed in the appendix. This data annual observations from
2000 to 2020 for each year, and therefore our sample has 735 observations.

We are interested in estimating the impact of a continuous treatment W (general
government total expenditure US dollars) on a variable of interest Y (gross domestic
product, current prices in dollars). In this case, the function τ that we want to estimate is
the impact on GDP of the variation of 1 dollar in the total general government expenditure.
Thus, if we assume “unconfoundedness" (ROSENBAUM; RUBIN, 1983), i.e. we control
for all relevant covariates, we could perform a regression of Y against W and the relevant
covariates X, so that, conditionally on X, we could analyze the treatment as random.

In practice, it is not possible to test the “unconfoundedness" hypothesis, so the set of
control variables must be defended theoretically or based on the researcher’s knowledge.
In many situations, the relevant variables to control are not obvious a priori, and the
influence of the variables can be non-linear, with possible threshold effects or even
interaction between variables, so that there is always a chance of an omitted variable bias.
One could try to add all the possible variations in a linear regression, but it would be
necessary to describe all the possibilities in advance, and by doing this the researcher
would be exposed to overfitting. Additionally, one may be interested in how the costs and
benefits of each policy or treatment vary depending on the circumstances under which
it is applied. With a traditional regression model, the researcher would have to specify
in advance all possible interaction scenarios among variables, which again may not be
obvious and imply the same difficulties.

The use of the causal forest for a problem with these characteristics is promising,
due to the flexibility that machine learning methods have to uncover relationships and
related subgroups. We performed our analysis based on uncounfoundedness, as our
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dataset contains 25 control variables and does not contain some features explored by the
literature about the public spending multiplier, such as the direction of the fiscal policy
change explored by Barnichon e Matthes (2017) or the composition of the public spending
explored by Bouakez, Rachedi e Santoro (2020). Further research might replicate this
methodology with a larger dataset, given that the main limitation to use control variables
is the availability of data, and the model can handle higher dimension data.

The treatment variable that we use is the general government spending in the year in
US dollars, and the output variable is the total GDP of each country in the same year.
This approach focuses on estimating the impact only in the same year and does not make
any kind of inference about longer-term costs or benefits of expending.

By establishing that in some countries public spending has a different effect than
others, we can also ask ourselves what factors are important in determining this impact.
To try to get insights into these factors, we use some strategies studied in the machine
learning literature to interpret “black-box" models. These strategies are dispersed in small
contributions in many works, but a review of these strategies was done by Molnar (2020).
One of the most common ways to search for this information is through the “Shapley-value"
(COHEN; RUPPIN; DROR, 2005), which is a measure about the importance of each
variable on the model. In this work we use a simple version that computes the number
of splits each variable cause, weighted by how deep in the tree was this split, and then
normalize these measures.

Thus, the result we intend to find is what is the variation in each country’s GDP for a
certain variation in public spending, as well as which factors are important to determine
this effect.

3.1 Observations In The Sample
Since each country appears multiple times in the sample, this composition could lead

to autocorrelation between the observations because we are dealing with consecutive years
for the same countries. To overcome this problem, we need to assume unconfoundedness.

Under unconfoundedness, we assume that all the variables that impact the GDP and
the spending decision at the same time are being controlled. With this assumption, the
difference in spending is purely a decision and not a consequence of the macroeconomic
context. It also implies that all the effect the spending in one year would have on the
spending decision and on the GDP output for the next year are reflected in the covariates.

Therefore the treatment distribution can be considered as random across different
countries and even between the same country in different years. The fact that we have
the same country multiple times in different years might be even positive to discover
the heterogeneity, given that having similar cases with different levels of treatment is a



Chapter 3. EMPIRICAL ANALYSIS 21

must to obtain the treatment effect for this particular group, expressed by the continuity
assumption.

We divide the sample into two parts. The first one containing the treatment level, the
outcome, and all the covariates corresponding to the 2000-2018 period; and the second
one containing only the covariates observed in the years of 2019 and 2020. We then use
the first part to train the model and the second part to make predictions for the public
spending multiplier.

3.2 Fitting The Model To Our Data
We used the honesty splitting defined in Wager e Athey (2018) in our causal forest to

estimate the public spending impact on GDP. For that we need to determine the honesty
fraction, that usually is half of the data for each tree. We also need to set a minimum node
size, i.e. the minimum amount of data that must be in each node after each partition is
made and also the number of covariates that can be used to make each split. We estimate
5,000 trees for our forest and use the default 50% honest fraction. This number of trees is
large enough that the randomized tree growing process should not left any variance in the
estimates and the randomness in τ̂(x) is a consequence of the data sample.

Our estimation includes twenty tree economic covariates, and we define the number
of covariates available at each node for splitting to twelve, selected randomly. For that,
our algorithm selects the partition among this subset of covariates at each node. We set
this parameter to twelve because parameters less than twelve might result in trees being
dropped from our estimation. A covariate must be sufficiently relevant to the estimation
for a split to be made. If a randomly selected set of features does not include enough
relevant covariates, the tree will not have splits and it get dropped from the sample. In our
causal forest estimation, we find that a small number of covariates dominate in importance,
in particular the government revenue, the unemployment rate, and the product per capita.

We use a tuning function that estimate a group of small forests with different parameter
sets and estimate a set of parameters that minimize the error in the estimation to determine
the minimum fraction of the sample that must be contained in each leaf after a split. This
approach was defined by Nie e Wager (2017). For our estimation, this number was set to
53 observations. This minimum is important to ensure that each tree does not grow too
deep, with really small leafs and overfit the data. We use the EconML Python package
(BATTOCCHI et al., 2019) for our causal forest estimation.

3.3 Results
Using the model trained with yearly data from 2000 to 2018, we estimate the causal

effect of government spending in the years of 2019 and 2020 on each country’s GDP in
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the corresponding year. Using the Wager e Athey (2018) framework to obtain confidence
intervals, our 95% confidence intervals for these two years are between 1.7 and 2.7 for
different countries. These numbers must be interpreted carefully, because the unconfound-
edness assumption might not be true, given that our dataset does not contain all possible
important variables, such as the composition of public spending explored by Bouakez,
Rachedi e Santoro (2020).

Figures 1 and 2 show the confidence interval for the selected countries (Tables 2 and 3
with all the confidence intervals are available in the Appendix). The size of the interval is
dependent on how many times each country falls in leaves with similar estimates to the
effect, resulting in less uncertainty. On the other hand, countries that, in a large number
of trees, fall in leaves with very different effect estimates, end up having larger confidence
intervals.

Another interesting result is obtained comparing the estimates for 2019 and 2020.
Despite the fact that the estimates vary a little between 2019 and 2020, the average and
the confidence intervals for both years are relatively similar for each country, suggesting
that the variables that impact the size of the effect did not change so much in 2020, during
the covid-19 pandemic, as could be expected. Again, these results should be interpreted
carefully, given that our dataset is not so large, and there might be important features
that we do not use as controls in our estimates.

Figure 1 – 2019 confidence intervals for the treatment effect

Source: Own elaboration.
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Figure 2 – 2020 confidence intervals for the treatment effect

Source: Own elaboration.

3.4 Feature Importance
The causal forest method that we use in this paper is also a good method to uncover

which features are important to find heterogeneity. To estimate the importance of each
feature for the heterogeneity, we compute, for each spit this variable caused, the size of
the heterogeneity obtained in the split, measured by the difference in the effect in each
side of the split, weighted by how deep this split is in the tree. Splits deeper in the tree
split a smaller amount of data, and represent a smaller impact. In the end, we normalize
the importance of each feature, so that they sum to one.

We find that just a few features represent the majority of the effect heterogeneity, and
the main features are shown in Figure 3. The most important feature in this list is the
government revenue as a percentage of GDP. This result is intuitively appealing, given
that the taxes might reduce the multiplier effect of public spending.

We also find an important source of heterogeneity from the unemployment rate and
the product per capita. These variables are probably related to the marginal propensity
to consume, implying a different impact from the public spending.

Although we cannot clearly understand the way that different features interact with
each other, this approach gives us a good overview about which variables are the most
important to determine the HTE. Understanding how each feature impacts the effect is
an important source of information to determine optimal policy strategy.
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Figure 3 – Normalized feature importance

Source: Own elaboration.
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4 CONCLUSION

In this work, we propose to estimate the public spending multiplier with the causal
forest developed by Wager e Athey (2018). The main idea is that we can use a large
dataset of controls without specifying a priori which variables are important and how they
interact with each other.

The causal forest is a way to estimate very flexible non-linear models of the HTE,
which can perform well even with many features. Causal forests provide asymptotically
valid confidence intervals, despite being data-adaptive and non-parametric. Thus we could
use it if we have a large dataset with many features and no good idea of how the effect
heterogeneity looks like.

In our results, the average of the confidence intervals for the multiplier is between
1.7 and 2.7 for different countries for 2019 and 2020. Our results also indicate that the
variables that determine the heterogeneity of the multiplier did not change much in 2020
for each country, in spite of the covid-19 pandemic.

Furthermore, we find that the public spending multiplier depends heavily on the
government revenue as a percentage of GDP. This dependency has already been explored
by other authors and is intuitively intuitively reasonable because the multiplier effect can
be reduced by taxes. In other words, the way the spending is financed strongly affects the
multiplier effect.

As the dataset available for this study has limitations, it is possible that the uncoun-
foundedness (ROSENBAUM; RUBIN, 1983) assumption fails, so our results must be
interpreted carefully, and further research might include other control variables replicat-
ing this methodology. The methodology we use in our work is also a good strategy to
understand how the effect varies over some features, and could potentially be a source of
information for optimal policy development.



26

REFERENCES

ABADIE, A.; DIAMOND, A.; HAINMUELLER, J. Comparative politics and the
synthetic control method. American Journal of Political Science, Wiley Online Library,
v. 59, n. 2, p. 495–510, 2015.

ALESINA, A. et al. Is it the “how” or the “when” that matters in fiscal adjustments?
IMF Economic Review, Springer, v. 66, n. 1, p. 144–188, 2018.

ANGRIST, J. D.; KRUEGER, A. B. Empirical strategies in labor economics. In:
Handbook of labor economics. [S.l.]: Elsevier, 1999. v. 3, p. 1277–1366.

ATHEY, S.; IMBENS, G. Recursive partitioning for heterogeneous causal effects.
Proceedings of the National Academy of Sciences, National Acad Sciences, v. 113, n. 27, p.
7353–7360, 2016.

ATHEY, S.; IMBENS, G. W. The state of applied econometrics: Causality and policy
evaluation. Journal of Economic Perspectives, v. 31, n. 2, p. 3–32, 2017.

ATHEY, S.; TIBSHIRANI, J.; WAGER, S. Generalized random forests. The Annals of
Statistics, Institute of Mathematical Statistics, v. 47, n. 2, p. 1148–1178, 2019.

AUERBACH, A. J.; GORODNICHENKO, Y. Measuring the output responses to fiscal
policy. American Economic Journal: Economic Policy, v. 4, n. 2, p. 1–27, 2012.

BARNICHON, R.; MATTHES, C. Understanding the size of the government spending mul-
tiplier: it’s in the sign. disponível: https://papers.ssrn.com/sol3/papers.cfm?abstractid =
3000623, Acesso : 15/12/2021, 2017.

BATTOCCHI, K. et al. EconML: A Python Package for ML-Based Heterogeneous
Treatment Effects Estimation. Disponível em: https://github.com/microsoft/EconML,
Acesso em: 15/12/2021: [s.n.], 2019.

BELLONI, A. et al. Sparse models and methods for optimal instruments with an
application to eminent domain. Econometrica, Wiley Online Library, v. 80, n. 6, p.
2369–2429, 2012.

BELLONI, A.; CHERNOZHUKOV, V.; HANSEN, C. Inference on treatment effects after
selection among high-dimensional controls. The Review of Economic Studies, Oxford
University Press, v. 81, n. 2, p. 608–650, 2014.

BOUAKEZ, H.; RACHEDI, O.; SANTORO, E. The Sectoral Origins of the Spending
Multiplier. [S.l.], 2020.

BREIMAN, L. Random forests. Machine learning, Springer, v. 45, n. 1, p. 5–32, 2001.

CLOYNE, J. S.; JORDÀ, Ò.; TAYLOR, A. M. Decomposing the Fiscal Multiplier. [S.l.],
2020.

COENEN, G. et al. Effects of fiscal stimulus in structural models. American Economic
Journal: Macroeconomics, v. 4, n. 1, p. 22–68, 2012.



REFERENCES 27

COHEN, S.; RUPPIN, E.; DROR, G. Feature selection based on the shapley value. In
other words, v. 1, p. 98Eqr, 2005.

COOK, D. I.; GEBSKI, V. J.; KEECH, A. C. Subgroup analysis in clinical trials. Medical
Journal of Australia, Australasian Medical Publishing Company Proprietary, Ltd., v. 180,
n. 6, p. 289, 2004.

DAVIS, J.; HELLER, S. B. Using causal forests to predict treatment heterogeneity: An
application to summer jobs. American Economic Review, v. 107, n. 5, p. 546–50, 2017.

HOLLAND, P. W. Statistics and causal inference. Journal of the American statistical
Association, Taylor & Francis, v. 81, n. 396, p. 945–960, 1986.

KLEINBERG, J. et al. Prediction policy problems. American Economic Review, v. 105,
n. 5, p. 491–95, 2015.

LEE, D. S.; LEMIEUX, T. Regression discontinuity designs in economics. Journal of
economic literature, v. 48, n. 2, p. 281–355, 2010.

LEONI, V.; NILSSON, W. Dynamic pricing and revenues of airbnb listings: estimating
heterogeneous causal effects. International Journal of Hospitality Management, Elsevier,
v. 95, p. 102914, 2021.

LIST, J. A.; SHAIKH, A. M.; XU, Y. Multiple hypothesis testing in experimental
economics. Experimental Economics, Springer, v. 22, n. 4, p. 773–793, 2019.

MCCAFFREY, D. F.; RIDGEWAY, G.; MORRAL, A. R. Propensity score estimation
with boosted regression for evaluating causal effects in observational studies. Psychological
methods, American Psychological Association, v. 9, n. 4, p. 403, 2004.

MOLNAR, C. Interpretable machine learning. [S.l.]: Lulu Press, 2020.

NIE, X.; WAGER, S. Learning objectives for treatment effect estimation. arXiv preprint
arXiv:1712.04912, 2017.

POWERS, S. et al. Some methods for heterogeneous treatment effect estimation in high
dimensions. Statistics in medicine, Wiley Online Library, v. 37, n. 11, p. 1767–1787, 2018.

RAMEY, V. A.; ZUBAIRY, S. Government spending multipliers in good times and
in bad: evidence from us historical data. Journal of Political Economy, University of
Chicago Press Chicago, IL, v. 126, n. 2, p. 850–901, 2018.

RIERA-CRICHTON, D.; VEGH, C. A.; VULETIN, G. Procyclical and countercyclical
fiscal multipliers: Evidence from oecd countries. Journal of International Money and
Finance, Elsevier, v. 52, p. 15–31, 2015.

ROSENBAUM, P. R.; RUBIN, D. B. The central role of the propensity score in
observational studies for causal effects. Biometrika, Oxford University Press, v. 70, n. 1,
p. 41–55, 1983.

TIFFIN, M. A. J. Machine Learning and Causality: The Impact of Financial Crises on
Growth. [S.l.]: International Monetary Fund, 2019.



REFERENCES 28

WAGER, S.; ATHEY, S. Estimation and inference of heterogeneous treatment effects
using random forests. Journal of the American Statistical Association, Taylor & Francis,
v. 113, n. 523, p. 1228–1242, 2018.

WYSS, R. et al. The role of prediction modeling in propensity score estimation: an
evaluation of logistic regression, bcart, and the covariate-balancing propensity score.
American journal of epidemiology, Oxford University Press, v. 180, n. 6, p. 645–655, 2014.



29

A APPENDIX - TABLES



Appendix A. APPENDIX - TABLES 30

Su
bj

ec
t

D
es

cr
ip

to
r

U
ni

ts
Sc

al
e

To
ta

lg
ov

er
nm

en
t

sp
en

di
ng

(t
re

at
m

en
t)

U
.S

.d
ol

la
rs

Bi
lli

on
s

G
ro

ss
do

m
es

tic
pr

od
uc

t,
cu

rr
en

t
pr

ic
es

(o
ut

co
m

e)
U

.S
.d

ol
la

rs
Bi

lli
on

s
G

ro
ss

do
m

es
tic

pr
od

uc
t,

cu
rr

en
t

pr
ic

es
Pu

rc
ha

sin
g

po
we

r
pa

rit
y;

in
te

rn
at

io
na

ld
ol

la
rs

Bi
lli

on
s

G
ro

ss
do

m
es

tic
pr

od
uc

t
pe

r
ca

pi
ta

,c
on

st
an

t
pr

ic
es

Pu
rc

ha
sin

g
po

we
r

pa
rit

y;
20

17
in

te
rn

at
io

na
ld

ol
la

r
U

ni
ts

G
ro

ss
do

m
es

tic
pr

od
uc

t
pe

r
ca

pi
ta

,c
ur

re
nt

pr
ic

es
U

.S
.d

ol
la

rs
U

ni
ts

G
ro

ss
do

m
es

tic
pr

od
uc

t
pe

r
ca

pi
ta

,c
ur

re
nt

pr
ic

es
Pu

rc
ha

sin
g

po
we

r
pa

rit
y;

in
te

rn
at

io
na

ld
ol

la
rs

U
ni

ts
G

ro
ss

do
m

es
tic

pr
od

uc
t

ba
se

d(
PP

P)
sh

ar
e

of
wo

rld
to

ta
l

Pe
rc

en
t

Im
pl

ie
d

PP
P

co
nv

er
sio

n
ra

te
N

at
io

na
lc

ur
re

nc
y

pe
r

cu
rr

en
t

in
te

rn
at

io
na

ld
ol

la
r

To
ta

li
nv

es
tm

en
t

Pe
rc

en
t

of
G

D
P

G
ro

ss
na

tio
na

ls
av

in
gs

Pe
rc

en
t

of
G

D
P

In
fla

tio
n,

av
er

ag
e

co
ns

um
er

pr
ic

es
Pe

rc
en

t
ch

an
ge

In
fla

tio
n,

en
d

of
pe

rio
d

co
ns

um
er

pr
ic

es
Pe

rc
en

t
ch

an
ge

Vo
lu

m
e

of
im

po
rt

s
of

go
od

s
an

d
se

rv
ic

es
Pe

rc
en

t
ch

an
ge

Vo
lu

m
e

of
Im

po
rt

s
of

go
od

s
Pe

rc
en

t
ch

an
ge

Vo
lu

m
e

of
ex

po
rt

s
of

go
od

s
an

d
se

rv
ic

es
Pe

rc
en

t
ch

an
ge

Vo
lu

m
e

of
ex

po
rt

s
of

go
od

s
Pe

rc
en

t
ch

an
ge

U
ne

m
pl

oy
m

en
t

ra
te

Pe
rc

en
t

of
to

ta
ll

ab
or

fo
rc

e
Em

pl
oy

m
en

t
Pe

rs
on

s
M

ill
io

ns
Po

pu
la

tio
n

Pe
rs

on
s

M
ill

io
ns

G
en

er
al

go
ve

rn
m

en
t

re
ve

nu
e

Pe
rc

en
t

of
G

D
P

G
en

er
al

go
ve

rn
m

en
t

ne
t

le
nd

in
g/

bo
rr

ow
in

g
Pe

rc
en

t
of

G
D

P
G

en
er

al
go

ve
rn

m
en

t
st

ru
ct

ur
al

ba
la

nc
e

Pe
rc

en
t

of
po

te
nt

ia
lG

D
P

G
en

er
al

go
ve

rn
m

en
t

gr
os

s
de

bt
Pe

rc
en

t
of

G
D

P
C

ur
re

nt
ac

co
un

t
ba

la
nc

e
U

.S
.d

ol
la

rs
Bi

lli
on

s
C

ur
re

nt
ac

co
un

t
ba

la
nc

e
Pe

rc
en

t
of

G
D

P

Ta
bl

e
1

–
D

at
as

et
de

sc
rip

tio
n



Appendix A. APPENDIX - TABLES 31

Country CI lower bound prediction CI upper bound
Australia 2.7160 2.7755 2.8350
Austria 1.4728 2.3792 3.2856
Belgium 1.7056 1.9485 2.1914
Canada 2.3968 2.5310 2.6653
Cyprus 2.2618 2.4473 2.6327

Czech Republic 2.1922 2.4312 2.6701
Denmark 1.7218 2.3653 3.0089
Estonia 2.2358 2.5388 2.8419
Finland 1.6667 1.8638 2.0609
France 1.7008 1.8763 2.0518

Germany 1.9731 2.2500 2.5269
Greece 1.7641 1.9042 2.0442

Hong Kong SAR 2.6210 2.7018 2.7826
Iceland 2.2701 2.5585 2.8470
Ireland 2.6374 2.7172 2.7970
Israel 2.7044 2.7611 2.8177
Italy 1.8654 2.0226 2.1798
Japan 2.6843 2.7494 2.8144
Korea 2.5048 2.6352 2.7656
Latvia 2.3538 2.5253 2.6968

Luxembourg 1.9378 2.4176 2.8973
Malta 2.4039 2.5974 2.7909

Netherlands 1.9214 2.3957 2.8699
New Zealand 2.5725 2.7143 2.8561

Norway 1.1583 2.3894 3.6204
Portugal 2.0142 2.3474 2.6806
Singapore 2.6175 2.7089 2.8003

Slovak Republic 2.1078 2.4050 2.7023
Slovenia 2.1429 2.2996 2.4563
Spain 2.4047 2.5412 2.6776

Sweden 1.8454 2.1028 2.3603
Switzerland 2.7288 2.7901 2.8514

Taiwan Province of China 2.6023 2.6850 2.7677
United Kingdom 2.5160 2.6768 2.8376

United States 2.6468 2.7310 2.8152

Table 2 – Confidence intervals for public spending multiplier by country in 2019
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Country CI lower bound prediction CI upper bound
Australia 2.6233 2.6996 2.7758
Austria 1.6757 2.0039 2.3321
Belgium 1.6781 1.9440 2.2099
Canada 2.2923 2.5190 2.7457
Cyprus 2.2194 2.4483 2.6773

Czech Republic 2.1150 2.3505 2.5860
Denmark 1.1005 2.1549 3.2093
Estonia 2.2368 2.5136 2.7905
Finland 1.7213 1.8236 1.9259
France 1.6817 1.9398 2.1980

Germany 1.9056 2.2147 2.5237
Greece 1.6532 1.8889 2.1246

Hong Kong SAR 2.5921 2.6681 2.7440
Iceland 2.2714 2.5029 2.7343
Ireland 2.6010 2.6842 2.7674
Israel 2.6060 2.7118 2.8177
Italy 1.7384 1.9528 2.1672
Japan 2.6122 2.7029 2.7935
Korea 2.5138 2.6318 2.7498
Latvia 2.2303 2.4951 2.7599

Luxembourg 1.9115 2.4411 2.9707
Malta 2.4053 2.5993 2.7933

Netherlands 2.2653 2.4862 2.7071
New Zealand 2.5902 2.6795 2.7688

Norway 1.2657 2.2675 3.2692
Portugal 2.1485 2.3855 2.6224
Singapore 2.5854 2.6803 2.7752

Slovak Republic 2.0518 2.2787 2.5056
Slovenia 2.1123 2.3186 2.5250
Spain 2.2542 2.4834 2.7126

Sweden 1.6999 1.9285 2.1570
Switzerland 2.7273 2.7929 2.8584

Taiwan Province of China 2.5506 2.6618 2.7730
United Kingdom 2.5384 2.6470 2.7557

United States 2.6291 2.7200 2.8109

Table 3 – Confidence intervals for public spending multiplier by country in 2020
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Feature importance
general government revenue percent of gdp 0.3580

unemployment rate percent of total work force 0.1412
gross domestic product per capita current prices US 0.0971

gross domestic product per capita constant prices ppp US 0.0752
general government gross debt percent of gdp 0.0712

general government net lending borrowing percent of gdp 0.0780
employment M persons 0.0692

implied ppp conversion rate 0.0532
gross national savings percent gdp 0.0071

general government structural balance percent of gdp 0.0068
total investment percent gdp 0.0057
current account balance US 0.0050

population M persons 0.0049
gross domestic product current prices ppp US 0.0044

gross domestic product based on ppp share of world total percent 0.0037
current account balance Percent of gdp 0.0036

gross domestic product per capita curren prices ppp US 0.0032
inflation end of period consumer prices percent change 0.0024

inflation average consumer prices percent 0.0024
volume of imports of goods and services percent change 0.0020
volume of exports of goods and services percent change 0.0020

volume of Imports of goods percent change 0.0019
volume of exports of goods percent change 0.0018

Table 4 – Feature importance
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