
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

JESSICA IMLAU DAGOSTINI

Performance Improvements Applied in an
Electromagnetic Inversion Application

Focused on Homogeneous and
Heterogeneous Computational

Environments

Thesis presented in partial fulfillment of the
requirements for the degree of Master of
Computer Science

Advisor: Prof. Dr. Lucas Mello Schnorr

Porto Alegre
March 2022

CIP — CATALOGING-IN-PUBLICATION

Imlau Dagostini, Jessica

Performance Improvements Applied in an Electromagnetic
Inversion Application Focused on Homogeneous and Heteroge-
neous Computational Environments / Jessica Imlau Dagostini. –
Porto Alegre: PPGC da UFRGS, 2022.

78 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2022. Advisor: Lucas Mello Schnorr.

1. HPC, mCSEM, MPI, Load Balancing, Oil/Gas. I. Mello
Schnorr, Lucas. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Claudio Rosito Jung
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Success is to be measured not so much by the position that one has reached in

life, as by the obstacles which he has overcome while trying to succeed.”

— BOOKER T. WASHINGTON

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Prof. Lucas Mello Schnorr, for the oppor-

tunity of working together and all guidance during these past two years. It was not two

ordinary years for all of us, where we faced challenges that we never expected to have to

do. Even though, we adapt our work to this “new normal” and execute it with our best.

I am really glad for all support and knowledge you shared with me during this period of

my life.

I would also like to express my gratitude to the Federal University of Rio Grande

do Sul (UFRGS) and the Institute of Informatics (INF) for the opportunity of conducting

my research within its infrastructure (even no being in person due to the restrictions im-

posed by the pandemic). It was amazing to have the opportunity to be part of and interact

with this scientific community.

I want to express my warm thanks to my parents, Adelar and Elaine, for their

support and patience. It was not two regular years for them as well, but they supported

me and were my strength in moments where I did not believe in myself. Without them,

I wouldn’t be what I am today, and because of them, I’m here. I also want to thank my

boyfriend, Jean, for adding to my life during this important period. You were my friend,

advisor, and support, and I am really grateful for having you in my life.

I also want to thank my colleagues Ana Solórzano, Valéria Girelli, and Jessica

Muller for the fantastic support network we build. I am sure that these two past years

would not be the same without our group. Thanks for all meetings where we planned

activities to bring more women to our community and for all chatting regarding any other

topic. Thanks for also presenting me to the Supercomputing community, where I could

learn a lot and discover opportunities that I never even imagined. I can not forget to

also thank Vinicius Garcia, that was not only a colleague but an unofficial advisor. All

our discussions, your support of my ideas, and all your help were really decisive to the

execution of my research.

This research was financed by Petrobras (2018/00263-5) and in part by the Coor-

denacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance

Code 001. The experiments were executed in INF/UFRGS’s PCAD, <http://gppd-hpc.

inf.ufrgs.br>.

http://gppd-hpc.inf.ufrgs.br
http://gppd-hpc.inf.ufrgs.br

ABSTRACT

Physical oil exploration executed by the oil and gas industry usually requires amounts

of money in the order of millions. This industry resorts to numerical and computational

methods that help correctly map areas in the ocean with a higher probability of oil and

gas incidence and avoid unnecessary drilling operations. One of such methods is the ma-

rine Controlled Source Electromagnetic (mCSEM), which uses maritime receivers fixed

in a specific region on the seafloor to gather electromagnetic data from such region. An

electromagnetic emitter linked to a ship emanates a low-frequency signal and move over

this predetermined area. After the electromagnetic waves traverse the subsurface under

the seabed and reflect, the receivers measure the field and store this data. We then need

an inversion process to recover the resistivity imprinted by the underground materials.

Once that oil and gas have known resistivity values, we can better estimate if the region

has oil reservoirs and where they are placed. All these processes are computationally

expansive, requiring that the application be as optimized as possible to deliver results as

fast as possible. This work studies an inversion application that uses finite direct equa-

tions and the common mid-point technique to deal with data collected from the mCSEM

method. This application has three main steps: forward, linear system solution, and cor-

rection, where the first is parallelized to deliver better performance. We found space for

computational improvements in our application with a load imbalance analysis once we

identified an issue from the original workload scheduling policy. We implement and eval-

uate load balancing heuristics to improve the scalability in different cluster configurations

in homogeneous and heterogeneous environments. We improved 44% in homogeneous

environments and 78% in heterogeneous environments with our implemented solutions

compared against the original. Furthermore, we develop a capacity planning for this ap-

plication. We designed a tool that uses traces from previous controlled executions with

a specific study case and predicts the application’s behavior to a set of given machine

combinations. Such a tool helps in this planning by allowing users to manipulate this

simulated data using interactive visualization.

Keywords: HPC, mCSEM, MPI, Load Balancing, Oil/Gas.

Melhorias de Desempenho com Foco em Ambientes Computacionais Homogêneos e

Heterogêneos Aplicadas em uma Aplicação de Inversão Eletromagnética

RESUMO

A exploração física de petróleo executada pela indústria de petróleo e gás costuma deman-

dar valores da ordem de milhões de dólares. Esta indústria então recorre a métodos numé-

ricos e computacionais para ajudar a mapear corretamente as áreas oceânicas com maior

probabilidade de incidência de petróleo e gás e evitar operações de perfuração desneces-

sárias. Um desses métodos é o marine Controlled Source Electromagnetic (mCSEM),

em Português, Método Eletromagnético Marinho de Fonte Controlada. Este método uti-

liza receptores marítimos fixados em uma região específica do fundo do mar para coletar

dados eletromagnéticos dessa região. Um emissor eletromagnético ligado a um navio se

move sob esses receptores e emana um sinal eletromagnético de baixa frequência. Depois

que as ondas eletromagnéticas atravessam a subsuperfície sob o fundo do mar e refletem,

os receptores medem o campo em questão e armazenam esses dados. Precisamos então de

um processo de inversão de dados para recuperar a resistividade impressa pelos materiais

subterrâneos. Uma vez que o petróleo e o gás possuem valores de resistividade conheci-

dos, podemos estimar melhor se a região possui reservatórios deste materiais e onde eles

estão localizados. Todos esses processos são computacionalmente caros, exigindo que a

aplicação seja o mais otimizada possível para entregar resultados o mais rápido possível.

Este trabalho estuda uma aplicação de inversão de dados que utiliza equações diretas fi-

nitas e a técnica do ponto médio comum, do inglês Common Mid-Point, para lidar com

dados coletados a partir do método mCSEM. Esta aplicação possui três etapas principais:

modelagem direta, resolução do sistema linear e correção, onde a primeira é paralelizada

para oferecer melhor desempenho. Encontramos espaço para melhorias computacionais

em nossa aplicação com uma análise de desequilíbrio de carga, uma vez que identificamos

um problema na política original de distribuição de carga. Implementamos e avaliamos

heurísticas de balanceamento de carga para melhorar a escalabilidade em clusters ho-

mogêneos e heterogêneos. Melhoramos o tempo de execução da aplicação em 44% em

ambientes homogêneos e em 78% em ambientes heterogêneos. Além disso, desenvol-

vemos um planejamento de capacidade de execução, do inglês capacity planning, para

esta aplicação. Projetamos uma ferramenta que utiliza rastros de execuções controladas

anteriores com um caso de estudo específico para prever o comportamento da aplicação

para um conjunto determinado de combinações de máquinas. Tal ferramenta auxilia neste

planejamento ao permitir que os usuários manipulem esses dados simulados utilizando

uma visualização interativa.

Palavras-chave: HPC, mCSEM, MPI, Balanceamento de Carga, Petróleo.

LIST OF ABBREVIATIONS AND ACRONYMS

ABE Area-Bound Estimation

ANOVA Analysis Of Variance

CMP Commom Mid-Point

CPU Computing Process Unit

CSV Comma-separated values

EM Electromagnetic

FDFD Finite-Difference Frequency-Domain

GPU Graphic Process Unit

HEFT Heterogeneous Earliest Finish Time

HPC High Performance Computing

mCSEM marine Controlled Source Electromagnetic

MPI Message Passing Interface

ODE Ordinary Differential Equations

PCAD Parque Computational de Alto Desempenho

PCAM Partitioning, Communication, Agglomerations, and Mapping

PDE Partial Differential Equations

PSNR Peak Signal-To-Noise Ratio

S-R Source-Receiver Pairs

LIST OF FIGURES

Figure 1.1 Example of an imbalanced execution with traces collected from our ex-
periments with the application studied in this work. ..15

Figure 2.1 A synthetic load characterizing number partitioning.21
Figure 2.2 A synthetic distribution with the Round Robin heuristic.21
Figure 2.3 An homogeneous load distributed with the Round Robin heuristic.22
Figure 2.4 Synthetic distribution with Sorted-Greedy approach.22
Figure 2.5 A synthetic distribution with HEFT approach...24

Figure 3.1 The mCSEM exploration. ..26
Figure 3.2 3D synthetic model with 1.5 kilometer of water layer. Target regions

are in red. ..27
Figure 3.3 Survey data (red triangles are receivers, small blue squares are emitters),

combined with the 2D grid of CMPs (circles). ...28
Figure 3.4 Example of an output model after the inversion process. It is an slice at

the depth of 1614 meters collected from iteration 99 of the application.29
Figure 3.5 Data inversion with mCSEM...29
Figure 3.6 Workflow diagram of the application in study...30
Figure 3.7 A synthetic load characterizing the behavior of the original distribution

process...31

Figure 5.1 Methodology steps executed in this contribution. ...38
Figure 5.2 Number of S-R pairs associated for each CMP of the studied model.40
Figure 5.3 Temporal data collected in one execution with three iterations. Colors

represent different operations detected during execution.40
Figure 5.4 Execution behavior of the application executing only with MPI, pre-

senting the timespace of the three main regions of the inversion algorithm...........41
Figure 5.5 Behavior of the original distribution – it divide the cells among workers,

disregarding its own heterogeneous weight. ...42
Figure 5.6 The number of S-R combinations explains processing time.42

Figure 6.1 Methodology applied to this contribution. We used the intrumentation
made previously to analyze the results provided from our distribution algorithms.45

Figure 6.2 Theoretical distribution of load with 1 up to the number of CMP cells
of the study case, presenting the distance from ideal mean from these settings
(top) and the maximum load allocated to some worker (bottom)...........................47

Figure 6.3 The distance from ideal load balance for every worker considering five
total number of workers (columns) and the CMP scheduling policies (rows)........48

Figure 6.4 Space/time view of the forward step of 100 iterations for the Original,
Round-robin, and Greedy allocation policies. ..50

Figure 6.5 Speedup of 1 up to 112 MPI processes. We run three iterations of the
application. The baseline is Original with one process. The dashed black line
represents the ideal speedup..51

Figure 6.6 Speedup of many MPI processes from 1 up to 212 using two different
partitions with the same processor’s frequency. We also run the application
with three iterations, and the baseline is Original with one process. Dashed
black line represents the ideal speedup...52

Figure 6.7 Average time of execution of one iteration in each scheduler running on
different heterogeneous configurations...55

Figure 6.8 The distance from ideal load balance for every worker considering the
three different heterogeneous scenarios (columns) and the new scheduling
policies (rows)...56

Figure 6.9 Average makespan with execution of 100 iterations for each scheduler
in two different heterogeneous scenarios..57

Figure 6.10 Model output from all schedulers. ...58

Figure 7.1 Figure with methodology...60
Figure 7.2 Workflow diagram of the simulator developed for the capacity planning.....61
Figure 7.3 Screen capture of the interactive plot with all possible scenarios of ma-

chine’s combination. The colors of the plot represent the different algorithms,
and the different size of points indicates how many cores each scenario is
composed of. ...62

Figure 7.4 Validation of results from our R simulator code. We validate our sim-
ulation with HEFT algorithm. The blue points represent the average runtime
of real executions. ...63

Figure 7.5 Makespan with combination scenarios involving different quantities of
Optimizer machines running HEFT distribution heuristic......................................64

Figure 7.6 Examples of CMP allocation in two scenarios, one using two Optimizer
machines and other using four new machines. We can identify that, when
using four machines, some workers did not receive any load to compute..............65

Figura A.1 Exemplo de execução com distribuição desbalanceada, gerado a partir
de dados coletados da execução da aplicação em estudo..75

LIST OF TABLES

Table 6.1 Specification of machines used in the executions. ..46
Table 6.2 Setting of the three different case studies for algorithms comparison.55

CONTENTS

1 INTRODUCTION...13
1.1 Motivation..14
1.2 Contributions...16
1.3 Document Structure..17
2 BACKGROUND..18
2.1 Parallel Environments ..18
2.2 Load Balancing ...19
2.2.1 Round Robin ..21
2.2.2 Sorted-Greedy ..22
2.2.3 Area Bound Estimation - Guided Approach..23
2.2.4 Heterogeneous Earliest Finish Time ..23
3 THE MCSEM INVERSION APPLICATION ...25
3.1 mCSEM Method ...25
3.2 The model ..26
3.3 Inversion Process...28
3.4 Parallelization..30
4 RELATED WORK ...33
4.1 Algorithm and Numerical Improvements Focus..33
4.2 Computational Improvements Focus ..35
4.3 Discussion ..36
5 CONTRIBUTION: FINDING THE IMBALANCE..38
5.1 Methodology ..38
5.2 Mapping Data to the Model ...39
5.3 Problem Identification ..40
5.4 Final Remarks ...43
6 CONTRIBUTION: APPLYING HEURISTICS TO THE PROBLEM.................44
6.1 Materials and Methods...44
6.2 Theoretical Analysis on a Homogeneous Environment.......................................46
6.3 Heuristics in Homogeneous Environments...47
6.4 Heuristics in Heterogeneous Environments..51
6.5 Numerical Accuracy ...57
7 CONTRIBUTION: CAPACITY PLANNING..59
7.1 Materials and Methods...59
7.2 Simulating Real Executions ...60
7.3 Simulation Validation ...62
7.4 Hypothetical Test...63
7.5 Final Remarks ...64
8 CONCLUSION ...66
8.1 Publications ...67
REFERENCES...68
APÊNDICE A — RESUMO EXPANDIDO EM PORTUGUÊS73
A.1 Motivação..73
A.2 Contribuições..76
A.3 Conclusões...77

13

1 INTRODUCTION

One of the main challenges in the oil and gas industry is to correctly map areas in

the ocean where there is a higher probability of oil and gas incidence. Physical oil explo-

ration usually requires amounts of money in the order of millions of dollars. To help on

this task, scientists and companies recur to computational simulations to reduce the inci-

dence of unsuccessful drilling operations, thus saving time and money. Various numerical

and computational methods can be applied to this exploration involving electromagnetic

and seismic data.

One of the electromagnetic surveys to simulate and computationally investigate

ocean lands is the marine Controlled Source Electromagnetic (mCSEM) (SOUZA, 2007).

This method uses maritime receivers fixed in a specific region of the ocean floor to gather

electromagnetic data from such regions. A ship carrying an electromagnetic emitter

moves in this predetermined area, and the receivers measure the field after the electro-

magnetic waves traverse the subsurface under the seabed and reflect. This electromagnetic

surveying is applied to recognize the seafloor’s aspects, thus giving relevant information

about the resistivity of the explored region.

To interpret this electromagnetic data, we need to use numerical methods to apply

a mathematical inversion to approximate a matching subsurface model quickly and, this

way, have a better comprehension of it. Such subsurface model is referenced here as the

resistivity model and has an initial guess of the resistivities of the region in analysis. The

data inversion technique is commonly used in oil/gas computational applications since oil

and gas have known signatures compared to other materials (KEY, 2009).

We studied an inversion application that uses direct equations and the common

mid-point technique to deal with data collected from the mCSEM method. This applica-

tion maps data from the survey to the initial resistivity model’s points in the initialization.

Then, in a forward phase, the application runs numerical equations based on Maxwell

and Levenberg-Marquardt methods to evolve the model iteratively. These equations are

the most expensive step of the inversion process once it performs most of all numerical

equations of the method. To run such an application in a reasonable time, we need to split

the load of the most expensive steps of it among parallel workers.

High-performance clusters are crucial to the processing speeds required from these

significant volumes of data and processes. In these environments, we use machines that

have a powerful process to run expensive applications. However, only using these envi-

14

ronments is not enough to mitigate computational costs. We need to use cluster machines

as best as possible, guaranteeing that all resources are being used at their maximum and

balanced. Each resource must receive enough load to compute in a similar duration. This

distribution gave the application a load balance characteristic, one key point to its speed.

We found space for improvements in our application with a load imbalance anal-

ysis. We identify that the issue comes from the original workload scheduling policy,

directly impacting the parallelized forward phase. We then implement and evaluate load

balancing heuristics to improve the application, considering the necessity of distributing

such data according to the resistivity map given. We aim to enhance the application speed

by better using the available resources and improving its scalability in different cluster

configurations in homogeneous and heterogeneous environments. Furthermore, we de-

velop capacity planning for this application. We designed a tool that uses traces from

previous controlled executions with a specific study case and predicts the application’s

behavior to a set of given machine combinations. Such a tool helps in this planning by

allowing users to manipulate this simulated data using interactive visualization.

1.1 Motivation

A computational perspective in any scientific application is always essential. There

is no complex area of science that does not use computers for modeling (GOLUB; OR-

TEGA, 1993). This way, it is essential that not only mathematicians correctly model the

numerical equations – needed to solve each specific problem – but also that computer

scientists model the application according to their knowledge regarding performance and

computability. We aim to bring a computational perspective by proposing and executing

a practical performance evaluation using state-of-the-art tools for the mCSEM inversion

application studied.

Load balance techniques guarantee the efficient resource usage on high perfor-

mance applications and increase applications’ speed and scalability to mitigate this issue.

Guarantee such efficiency is critical for today’s parallel applications, once it can mean

that thousands of cores are allocated to executions but can be idle (PEARCE et al., 2012).

There are a considerable number of load balancing strategies studied in the literature.

Applying such load balancing solutions to real-world problems can contribute to the evo-

lution of this research area.

Search for a load imbalance on an application requires instrumentation of the code

15

and place time marks to know how long each parallel worker is taken to execute a task.

When the application’s traces show that some workers take more time to complete a task

than others, we have a load imbalance. Figure 1.1 demonstrates this concept with our

application scenario. We depict the results of the first three iterations out of a run with

100 iterations, presenting the execution time in seconds on the X-axis and the parallel

workers on the Y-axis. In these traces, the first worker finishes their tasks 2.3× faster than

the nineteenth worker. These results motivate us to apply computational improvements to

our investigated application.

Figure 1.1 – Example of an imbalanced execution with traces collected from our experiments
with the application studied in this work.

0

20

40

60

0 100 200 300 400

Time [sec]

P
ar

al
le

l W
or

ke
rs

Source: Author

Improvements on mCSEM applications have some other reports in the literature.

(ZHAO; YU; QIN, 2018) and (SILVA et al., 2012) presented works regarding numeri-

cal improvements on the inversion process. The first applied a total-field algorithm to

the inversion process, using a 3D layered model and the METIS library for the domain

partitioning. The second divided the inversion application into two components and used

a multilevel partitioning method, applying the MUMPS library for parallelization and a

hybrid MPI+OpenMP code. Otherwise, (LONG et al., 2020) and (da Piedade et al., 2021)

discuss the benefits of using the Pardiso library to achieve computational speed gains.

Paradiso is a software for solving large sparse linear systems on shared and distributed-

memory (ALAPPAT et al., 2020). However, no work focused on load balancing strategies

for improving performance. We applied state-of-the-art load balancing heuristics in our

work and proposed a capacity planning with such strategies.

16

1.2 Contributions

This research proposes and executes performance analysis and improvement of

a real-world mCSEM inversion application. We search for possible computational bot-

tlenecks that originate an imbalanced execution in the forward step. We found out that

the strategy initially used to distribute the load among workers disregards the actual load

of the grain to distribute. We demonstrate that this load is static and irregular, present-

ing a similar duration throughout iterations and not showing load difference across the

application’s execution.

We then proposed load balance improvements regarding homogeneous and het-

erogeneous environments and applied state-of-the-art solutions to mitigate it with minor

changes to existing code. We find four heuristics that we applied to our problem: a Round

Robin, Sorted-Greedy, Area Bound Estimation based solution, and Heterogeneous Earli-

est Finish Time approaches. We adapted such heuristics to our needs and execute tests to

validate the performance benefits.

Furthermore, due to the static characteristic of the input load in each environment

where it was executed, we also propose a capacity planning to help in the execution’s

plan in larger clusters. We developed a feature that helps determine how much time the

application will take to execute in a diverse set of resource combinations. Such a feature

brings a versatile and decisive step in the application’s running, allowing us to anticipate

how our execution will behave in a determined setup. Such predictions support a better

scheduling of resources.

In summary, these are the main contributions:

• Proposal of a practical performance analysis, with a deeper investigation of the

application’s code and its instrumentation and the identification of the main regions

of the application according to the numerical method that led us to identify a load

imbalance in such application and its reasons (Chapter 5).

• Study and implementation of load balance heuristics to homogeneous and heteroge-

neous environments, expanding execution possibilities in different scenarios. where

we achieved a performance improvement of 44% in homogeneous clusters and 78%

in heterogeneous clusters (Chapter 6).

• Development of a capacity planning to such application, based on the input data

and the target platform where it can be executed (Chapter 7).

17

1.3 Document Structure

This document is organized as follows. Chapter 2 introduces some important con-

cepts regarding parallel programming and load balancing, and presenting the five heuris-

tics applied in this work. Chapter 3 presents the marine Controlled-Source application,

discussing its numerical method, the characteristics of its input data, how the inversion

process occurs, and how this application is parallelized. Chapter 4 discusses related work

regarding improvements on other existing mCSEM applications and their characteristics.

We then start talking about our contributions in Chapter 5, demonstrating how our practi-

cal performance analysis led us to find the imbalance in the application. We then follow

to present the results of the load balance heuristics in homogeneous and heterogeneous

environments in Chapter 6. We present our capacity planning as our last contribution in

Chapter 7. Finally, in Chapter 8 we conclude this work and discuss future work.

18

2 BACKGROUND

Parallel programming is a crucial approach nowadays. We have improved artifacts

that collect much more data to be correctly synthesized to give information. We need as

much processing power as possible to deal with all this data and use multiple resources

to achieve it. Many applications use parallel processes to achieve better performance,

mainly those that perform a considerable quantity of numerical computation.

However, we do not need to only care about using parallel mechanisms on appli-

cations, but it is also essential to guarantee that such parallelization efficiently uses all

available resources. The application’s strategy to distribute the load among the parallel

workers is vital in achieving this efficient resource usage. It directly determines if all

resources will take similar times to execute each task and deliver a faster application.

In this chapter, we present a background of parallelism and load balancing, high-

lighting some important concepts, such as parallel programming levels and different par-

allel environments. Section 2.1 presents fundamental concepts regarding parallelism, fol-

lowed by Section 2.2 where we discuss concepts regarding load balancing. Section 2.2

will also present the five load balancing heuristics applied in this work.

2.1 Parallel Environments

Parallelism can be achieved at the programming level as also as hardware level.

We can exploit different models on parallel programming, such as in a thread-level and

a process-level (RAUBER; RÜNGER, 2013). When working with parallel applications,

we aim to break its execution into small pieces that different cores can execute. One

famous methodology to parallelize an application is the PCAM, acronym for Partition-

ing, Communication, Agglomerations, and Mapping (FOSTER; FOSTER, 1995). In an

ideal scenario, we hope that a parallelized application with PCAM uses an undetermined

quantity of process units efficiently.

There are two main programming models that we can use to run applications in

parallel. The first is the Shared-Memory model, where we assume that the parallel re-

sources are using the same memory device, i.e., using a single node. It must provide ways

for starting up threads, assigning work to them, and coordinating their accesses to shared

data, including ensuring that certain operations are executed by only one thread at a time,

without racing conditions (TROBEC et al., 2018). OpenMP and Pthreads are parallel

19

programming interfaces that implement the Shared-Memory model.

The second model uses distributed memory machines, where we need to use a

message-passing interface to communicate among the processes. This model assumes

that the program runs in resources that have their own private memory space, thus not

accessing the information in a shared space. Message-passing approaches must provide a

mechanism to initiate and manage all procedures and send and receive messages and data

among the different processes. The community developed the MPI standard, which offers

a set of more than 120 operations for parallel programming (TROBEC et al., 2018). Open-

MPI and MPICH are examples of interfaces that implement this programming model.

Alongside these models, we have different machine clusters to execute applica-

tions in parallel. In homogeneous environments, every machine on a cluster has the same

settings and speed. They are all built with the same processor unity, memory, and com-

munication settings. On the other hand, a heterogeneous system is composed of machines

with different characteristics. Nowadays, most Top500 supercomputers employ an intra-

node heterogeneity in their configurations, once each cluster node contains at least one

type of accelerator (DONGARRA et al., 2017). We can also have a cluster with system-

level heterogeneity, where different computational node types can exist. Typically, we

characterize such heterogeneity by differences in the design of the machines, where they

have different process units, memory size, and speed and communications buses (NESI;

LEGRAND; SCHNORR, 2021).

However, none of these parallel paradigms or types of clusters are enough to guar-

antee that an application will be improved when parallelized. We must pay attention to

how efficient is the usage of our resources by our parallel applications, mainly when split-

ting an application’s load. The correct load distribution ensures that all workers are taking

a similar time to compute without any resource slowing down the application. Determine

the efficiency of this distribution is a crucial metric to consider in parallel applications.

2.2 Load Balancing

The capability of a parallel program to compute equally in all resources is what

we call load balance (ALAKEEL; ALAKEEL, 2010). A load of an application can be

classified as static or dynamic and as regular or irregular. A static load does not change

during the application’s execution, while dynamic load means changing on execution.

When an application’s load present both static and irregular characteristics, we say that

20

the application has a spatial load imbalance. In this scenario, we can use static solutions

executed prior to the actual execution of the application. Otherwise, when the application

is dynamic and irregular, we say that it suffers from temporal load imbalance and that it

is necessary to apply adaptative solutions to mitigate it (TESSER, 2018).

There are many details to take care of when trying to achieve a balanced applica-

tion. We need to understand if the workload characteristics will be a complex or straight-

forward load grain (composed of different structures that can dictate its weight). We also

need to know the environment characteristics where we aim to execute the application

– i.e. if the machines have the same or different settings or speeds. We have different

approaches to achieve load balance according to this set of configurations.

To know how much we could improve an application by running it in parallel,

we need to gather metrics and analyze its results. Instrumentation of code is a technique

to get this information. We define regions on the program to capture the time it starts

and ends to execute. This data can then be analyzed and determine some application’s

metrics, such as its makespan and speedup, alongside the load balance. The former mea-

sure indicates how much time an application takes to execute from its beginning until its

end. The second determines a factor by which the parallel program’s execution time is

faster than the sequential program. It is based on Amdahl’s Law, which states that the

overall application’s performance improvement is limited by the fraction of the code that

can be parallelized (CASANOVA; LEGRAND; ROBERT, 2008). The following formula

formally describes the speedup:

Sp(n) =
Tseq(n)

Tpar(p, n)
(2.1)

where n is the size of the problem, and Tseq(n) and Tpar(p, n) are the makespan in se-

quential and parallel environments, respectively.

In the context of this work, we will focus on load balancing strategies to spatial

load imbalances. We will use the synthetic load depicted by Figure 2.1 to help with the

explanations. Here we have a heterogeneous load, composed of eighteen tasks with dif-

ferent sizes, from 320 to 1200 units. Our goal is to distribute this load among different

workers without splitting each task. This problem can increase when we consider dis-

tributing the tasks among heterogeneous workers. For this, we need to consider the tasks

heterogeneity and the different worker’s capability. Both heterogeneous characteristics

increase the complexity of the balancing algorithms once we have two heterogeneous lev-

els to take care of. To solve these scenarios, we need to use different strategies. With all

21

the former reasons, we will better describe four distribution heuristics that we applied in

this work: Round Robin, Sorted-Greedy, Area-Bound Estimation (ABE), and the Hetero-

geneous Earliest Finish Time (HEFT).

Figure 2.1 – A synthetic load characterizing number partitioning.

Source: Author

2.2.1 Round Robin

Round Robin is a well-known scheduler algorithm that considers the load as ho-

mogeneous to distribute in an offline mode. The algorithm’s behavior consists of assign-

ing load among the workers in circular order, from the first to the last worker, disregarding

the load already assigned to them. The time complexity of this algorithm is O(n). Figure

2.2 depicts the distribution of our synthetic load with Round-robin. The X-axis represents

the workers involved in the simulation, and the Y-axis presents the accumulated load for

each worker.

Figure 2.2 – A synthetic distribution with the Round Robin heuristic.

Source: Author

Even presenting a more balanced distribution among workers, we can still iden-

tify load imbalance in this algorithm to heterogeneous load such as the one we simulate.

Round-robin is well effective with a homogeneous load, as a second example depicted by

Figure 2.3 demonstrates.

22

Figure 2.3 – An homogeneous load distributed with the Round Robin heuristic.

Source: Author

2.2.2 Sorted-Greedy

Sorted-Greedy algorithm is a heuristic used to solve problems of independent

tasks that derive from number partitioning problems (MERTENS, 2006; GAREY; JOHN-

SON, 1979). It considers that every worker has the same capacity and speed but considers

the load already assigned to a worker before assigning a new task. For such characteris-

tics, this heuristic delivers a better distribution of heterogeneous load.

This algorithm schedules, at each step, the current task/load to the least-loaded

worker, where tasks are sorted in decreasing weight. To perform this approach, we need

to know all tasks/loads to schedule before starting the execution. For this reason, Sorted-

Greedy is called an offline algorithm. If we have five tasks, three of weight two and two

of weight three to be divided between two workers, Sorted-Greedy has a makespan of 7,

while optimal is 6, thus given a 7
6

approximation (CASANOVA; LEGRAND; ROBERT,

2008). Figure 2.4 demonstrates the behavior of this algorithm using the synthetical load

previously described. The algorithm will first distribute the load among all free workers

(first blocks in each worker). With no more free workers, the algorithm will select the

one with less load assigned, which will be worker 8 in this example. It will assign the

Figure 2.4 – Synthetic distribution with Sorted-Greedy approach.

Source: Author

23

task/load to this worker and go to the next, repeating it until having no more tasks to

distribute. This algorithm runs in O(n log n) time.

2.2.3 Area Bound Estimation - Guided Approach

The Area Bound Estimation (ABE) is a linear programming applied by (PINTO,

2018) to estimate the makespan for task-based applications in heterogeneous applications

(that uses CPU and GPUs). It does not consider dependencies among tasks/load. The

following equations define our linear programming

Minimize: (2.2)

makespan

subject to:

∀t ∈ T :
∑
r

nt,r = Nt (2.3)

∀r ∈ R :
∑
t

nt,r ∗ wt,r ≤ makespan ∗Nr (2.4)

∀t ∈ T, r ∈ R : nt,r ≥ 0 (2.5)

where t is a determined group of tasks T with the same size, r is the type of resource R

(that are the different machines where we are executing the code), and wt,r is the meantime

which the determined group of tasks t takes to execute in a determined resource. Such

linear programming provides the best makespan for each heterogeneous scenario and the

ideal allocation of each different task size to each resource that generates the makespan.

2.2.4 Heterogeneous Earliest Finish Time

The Heterogeneous Earliest Finish Time (HEFT) is also an algorithm applied to

the task scheduling problem. Its original implementation consists of a task prioritizing

phase, using a previous application benchmark in each available resource, and a processor

selection phase to schedule the tasks on its best processor (TOPCUOGLU; HARIRI; WU,

2002). This benchmark consists of executing the application in a way that we can gather

traces to use as a baseline of the application’s behavior in a specific resource. On the task

24

prioritizing phase, this priority is based on each task’s average computation and average

communication costs and its precedence constraints. The HEFT algorithm applies an

insertion-based policy that considers the earliest idle time slot available to schedule a task

to a processor in the selection phase. This heuristic iterates throughout all tasks, testing

the task insertion in all available resources, which gives us O(t× r) time complexity.

Considering its description, Figure 2.5 presents results of applying HEFT heuris-

tic in our synthetic example, using the same synthetic data former presented. The two

first workers present a speed factor of 1, workers 3, 4, and 5, a speed factor of 1.725,

and workers 6, 7, and 8 a speed factor of 1.783. The first workers received less load to

compute due to its low-speed factor, while the last workers had the most load due to its

best characteristics.

Figure 2.5 – A synthetic distribution with HEFT approach.

Speed Factor 0.783Speed Factor 0.725Speed Factor 1

Load 1566 Load 1566 Load 1566 Load 1691.28 Load 1722.6 Load 1722.6Load 1880 Load 1640 Load 1566 Load 1566 Load 1566 Load 1691.28 Load 1722.6 Load 1722.6Load 1640Load 1880 Load 1722.6 Load 1722.6

1200 1200 1200 1200 1200 12001200
960

960 960 960 960

680 680
680

680

320 320

0

500

1000

1500

2000

1 2 3 4 5 6 7 8
Worker

A
cc

um
ul

at
ed

 L
oa

d

Source: Author

25

3 THE MCSEM INVERSION APPLICATION

Electromagnetic surveying is employed in both land and maritime contexts –

though these have developed almost independently, either actively or passively (CON-

STABLE; SRNKA, 2007). This survey generates a collection of electromagnetic data

used to identify different materials according to their known resistivities. The under-

ground materials imprinted their different conductivities onto the now-read electromag-

netic field values. Therefore, mCSEM applications aim to model back the resistivities of

these materials from the read values through an inversion method, matching the readings

to the most probable model of the subsurface substances that generated such readings.

In the next sections, we introduce how this inversion process happens in the stud-

ied application at this work. We start giving an overview of the marine Controlled Source

Electromagnetic (mCSEM) method in Section 3.1. We follow by understanding the model

that determines all the inversion processes in Section 3.2. Section 3.3 details the inversion

process and how the application executes the numerical processes. Finally, Section 3.4

reports the application’s organization and parallelization.

3.1 mCSEM Method

In the marine controlled source electromagnetism (mCSEM) method, an electro-

magnetic emitter source emanates a difusive electromagnetic field that traverses water

surface and deep into the seabed (CASTILLO-REYES; PUENTE; CELA, 2018) before

being captured by an array of receivers. Such receivers can be either placed on the seafloor

or also towed along with the source (WILT; ALUMBAUGH, 1998). Figure 3.1 depicts

the process using static receivers. These approaches aim to collect the electromagnetic

signal readings after they crossed the underlying salt and rock sequences, altering it and,

ultimately, imprinting its distinct characteristic onto the signal (CONSTABLE; SRNKA,

2007).

At each moment in time, the electromagnetic emitter is located in a different po-

sition underwater, thus defining a collection of virtual electromagnetic sources (one for

each emitter’s position). When crossing different substances with different resistivity, the

wave’s amplitude varies. The materials imprint their conductivities, and the receivers cap-

ture them, and its information is used as input data to understand the region. Since many

receivers capture the same electromagnetic field, it is necessary to establish how multiple

26

Figure 3.1 – The mCSEM exploration.

Source: Author

receivers’ information is combined.

Throughout this data, we can get the model updated with resistivities of the region

in analysis through an inverse method, matching the readings to the most probable model

of the subsurface substances that generated such readings. This process can use an input

to help on the fast numerical convergence. Such model can be composed in two different

ways: the first consist of an a priori geographic knowledge of the underlying substrate in

analysis, and the second can be an initial guess that does not use any a priori information.

The recovered information is then analyzed to search for known resistivity values of oil

and gas.

3.2 The model

To get back the information collected through the mCSEM process, the applica-

tion studied in this work uses a representation of real-life as a model. This model has a

reasonable approximation of the resistivity in the region in analysis, which benefits the

inversion process to converge faster (CORRÊA; RÉGIS, 2017). This model consists of a

3D grid of cells, with its size modeling different regions according to the test case.

A synthetic example is shown by Figure 3.2, in a 3D fashion. The model maps

two target regions where specific resistivities are expected (i.e., the regions expected to

find petroleum reservoirs). The first target is a T shaped body placed at 1, 500m below the

sea bed; the second is a slab at a depth of 2, 500m below the sea bed. The model cover a

total area of 160km2 and also maps regions of water that need to be considered (because

they have different resistivities). According to other collected information, each region is

27

set up with a priori resistivity information (i.e., seismic).

Figure 3.2 – 3D synthetic model with 1.5 kilometer of water layer. Target regions are in red.

(a) 3D model view

(b) Top view

Source: Corrêa and Régis (2017)

The studied application uses the Common Mid-Point technique (MITTET, 2010)

to map the mCSEM data to its model. This is a 1D inversion scheme able to recover

2D structures. In this approach, the data from the 1D inversion is composed of measure-

ments from all source-receivers offsets in the 2D survey that share the same geographical

common mid-point. The mapping considers the geographical mid-point between the con-

trolled source and the fixed receivers on the seabed in a determined period of time. It

then perform the geographical approximation from all these mid-points with cells of the

model, which will be called as the Common Mid-Point cells (CMP cells). This data map

contains CMP cell with different quantities of S-R pairs allocated to each and is our vir-

tual model. Such method was improved with analytical derivates and lateral constraints to

invert data from 2D surveys by (Silva Crepaldi; Pereira Buonora; FIGUEIREDO, 2011)

and is used here to invert data from 3D surveys (CORRÊA; RÉGIS, 2017).

Figure 3.3 depicts a small subset of the resistivity model used in this work, using

gray circles with diverse sizes. Each gray circle represents a virtual column in the survey

region. The survey data’s fixed receivers and the multiple source coordinates are depicted

as red triangles (in five horizontal lines) and small blue squares (in four horizontal dashed

28

Figure 3.3 – Survey data (red triangles are receivers, small blue squares are emitters), combined
with the 2D grid of CMPs (circles).

Source: Author

lines), respectively. The data collected by mCSEM can be mapped in multiple CMP cells,

where each S-R pair is assigned to different CMPs. Two cells of the 2D grid (circles

with numbers 93 and 399) are highlighted in green, representing the diverse quantity of

assigned pairs to each CMP cell.

After running the inversion process and recovering data, we have a 3D model to

help interpret data or to apply as a first guess in an actual 3D inversion process. Along-

side other collected data, such as seismic, geophysics can better map regions where oil

and gas can be found. Such an output model will have a more shaped region with specific

resistivities (that can be represented from different colors) that indicate where we can find

reservoirs in the surveyed region. Figure 3.4 presents an example of a slice of an out-

put model after the inversion process. The inversion successfully delimitates a potential

region with high resistivity.

3.3 Inversion Process

With the model and data defined, we go to the inversion process. Such a process

is a collection of different equations that are solved iteratively. This process executes an

algorithm based on three phases: forward, linear system solution, and correction (Silva

Crepaldi; Pereira Buonora; FIGUEIREDO, 2011). Figure 3.5 provides a general overview

of the numerical algorithm, starting from an initial resistivity model m0 describing the

resistivity of each grid point of the 3D inversion volume.

29

Figure 3.4 – Example of an output model after the inversion process. It is an slice at the depth of
1614 meters collected from iteration 99 of the application.

Source: Author

Figure 3.5 – Data inversion with mCSEM.

Initial resistivity model

Forward Step

 m₀

Evaluate error
functional

 F(.)

Inversion Step

Updated
resistivity (m)

Survey data

d

Misfit still
too large

Final subsurface resistivity model (m)

Misfit within tolerance

Source: Author

In the first phase, we initialize the process by reading the model and the survey

data. We then proceed to the mapping of this data to the model using the CMP technique

previously described. It generates the heterogeneous distribution, where each CMP cell

can have different quantities of S-R pairs allocated to each. Figure 3.3 previously depicted

an example of this heterogeneity, with two examples of CMP cells with different sizes.

After mapping data, we go to the numerical equations. We have a Forward phase

where we analytically execute derivatives to calculate the field using Maxwell equations.

This is the region of the code that is most computationally expensive. The application also

uses the Levenberg-Marquardt (L-M) method (LEVENBERG, 1944; MARQUARDT,

1963; NOCEDAL; WRIGHT, 2006) and it requires solving a linear system at each it-

eration k, where evaluations of Jacobian functions are applied. This method compares

30

the numerical field with the observed field and finds changes that need to be made, based

on the initial measures, to achieve the correct way of the results. On (DAGOSTINI et

al., 2021) more details regarding the specifications and the mathematical formalization of

such numerical functions are discussed.

The solution of the linear system itself is the next step of the process, where the

application run a Cholesky decomposition to solve it. The stopping criteria are the mini-

mum variation of a data misfit and minimum misfit after a specified number of iterations

(CORRÊA; RÉGIS, 2017). Finally, a correction phase is executed for the next iteration.

3.4 Parallelization

The application studied in this work performs a 1D inversion process using the

CMP domain for 3D data. It uses a coordinator/workers pattern and focuses on paralleliz-

ing two phases: the forward and the suavization – in the Cholesky step. Figure 3.6 helps

to understand each step of the process, where we have the top of the figure representing

the coordinator process and the bottom representing the workers. In the coordinator pro-

cesss, the application starts by reading all the data collected with the receivers, alongside

a configuration file containing execution parameters.

Figure 3.6 – Workflow diagram of the application in study.

Read
project’s

data

Broadcast
project’s

data

Receive
project’s

data

Master Thread

Worker Thread

Mapping
data to

the model

Build
Structures

Distribution
of load

Forward
phase

Get
forward
output

Build and
Solve Linear

System

Distribute
Rho

adjustment

MPI_Reduce
of forward

output

Receive Rho
adjustment

Mapping
data to

the model

Build
Structures

Distribution
of load

Forward
phase

Suavization

C
o

rr
ec

ti
o

n

Source: Author

After this reading, the coordinator broadcasts all its data to the workers. Inside

each worker (including the coordinator process), the application receive all data broad-

casted and executes the mapping according to the model and the parameters provided by

the template, using the Common Mid-Point technique. Once this mapping is done, the

application prepares the data structures to execute the forward phase and follow to the

load distribution. Each worker is responsible for setting their load. i.e., the distribution

31

strategy is executed in each parallel worker.

After finishing the distribution step, the application goes through the forward

phase. Now the application will execute the for loop that passes through each CMP

cell assigned to the worker and each S-R pair allocated to it. The Maxwell equations

are applied to each S-R point at this loop independently. Finishing this computation, all

workers apply a MPI_Reduce option to deliver the output of the forward phase back to

the coordinator process.

With the forward result, we go to the inversion step, where the application builds

and solves the linear equations system. This application uses a parallel version of the

Cholesky calculation from the SuiteSparse library (DAVIS; HU, 2011) for doing the

suavization. After that, the application verifies if it needs another iteration. All this is

done uniquely by the coordinator.

The main parallel region of this application is forward. Its parallelization origi-

nally applies a hybrid combination of MPI and OpenMP libraries. The load ditribution

originally applied in the application consists by the division of the total quantity of CMP

cells of the model by the total number of workers. The result of this division is the num-

ber of cells that each worker will be responsible to execute. As each of these cells is

independent (Silva Crepaldi; Pereira Buonora; FIGUEIREDO, 2011), we can run this

phase in parallel without many constraints. Figure 3.7 depicts, with a synthetic load, such

distribution strategy. We have 18 “cells” to distribute among eight workers. The X-axis

represents the parallel workers, and the Y-axis represents each worker’s accumulated load

using the original distribution policy.

Figure 3.7 – A synthetic load characterizing the behavior of the original distribution process.

Source: Author

Then, inside the forward loop, the application will parallelize its process using

the OpenMP strategy. As previously explained, the forward loop iterates through each

source-receiver pair associated with the cell. This way, each OpenMP thread will deal

with the forward math for each S-R pair.

32

In this work, we focused our attention on the parallelization of the forward step.

Due to the way that the application outperforms the distribution of tasks, we find space

for improvements in this step related to the distribution of load among the MPI workers.

Figure 3.7 help us understand the problem we faced. We can see that, with the original

strategy of distribution, the actual load assigned to different workers present significant

differences.

33

4 RELATED WORK

In the last few decades, marine 3D CSEM modeling has been gaining attention

inside the Petroleum and Gas market due to the possibility of conducting a sensitive anal-

ysis of subsurface resistivity models. Most mCSEM models require a high computational

cluster to execute. Therefore, a significant quantity of work has been made to improve the

numerical accuracy of inversion applications and achieve a faster convergence to improve

its speed. However, few works focus on improving the application’s makespan and scal-

ability on a computational science focus, disregarding numerical changes. The next two

Sections focus on reported works that aim to improve EM inversion applications. Section

4.1 presents works that apply a combination of algorithms and numerical process changes

to achieve better scalability and makespan. In contrast, Section 4.2 present works that

only apply computational efforts in existing well-prooved numerical algorithms. Addi-

tionally, in Section 4.3, we justify our work’s fit scenario and explain its motivation.

4.1 Algorithm and Numerical Improvements Focus

Significant effort was made to focus on different numerical solutions to the CSEM

inversion problem. This effort was motivated due to the rapid industrial adoption of this

offshore exploration method worldwide (KEY, 2012). The mCSEM method became an

essential technique in geophysics exploration (CONSTABLE, 2010). A diverse set of

numerical solutions was proposed, decreasing its high computational cost.

There are two main approaches that most of the inversion applications apply to

their algorithms: Finite Difference and Finite Elements. Both methods convert Ordinary

Differential Equations (ODE) or Partial Differential Equations (PDE) into a system of

linear equations that matrix algebra techniques can solve. The Finite Element method

minimizes an extremum principle over a family of functions defined by each piece. In

contrast, the Finite Difference uses a discrete approximation to integrals and derivates

occurring in balance equations (KEY; KRIEG, 1973).

Most works in this topic propose new implementations of such numerical algo-

rithms and changes on the numerical process that brings quality and time reduction to the

inversion processes. On (STREICH, 2009), it is implemented a marine CSEM modeling

based on a finite-difference frequency-domain (FDFD) approach. Her code relies on the

MUMPS direct-matrix solver (AMESTOY et al., 2000) to solve the system of equations

34

using up to 12 MPI processes on a small cluster platform. This solution applies some

geographical considerations to use 1D background models to generate 3D outputs. The

results present speedup, but the scaling behavior is not good due to memory usage.

The usage of the MUMPS library is not an exclusive characteristic of the previous

work. In (WANG; MORTEN; SPITZER, 2018), and (SILVA et al., 2012), the usage of the

MUMPS library for solving the linear systems on such applications is reported. The first

applies a direct solver with a Gauss-Newton inversion process, using an unstructured mesh

to model the seafloor. The second uses Hankel transformations in its inversion process

and multilevel partitioning method. In the last, the authors used OpenMP to calculate the

primary field. They could achieve a 7.40 speedup using eight threads OpenMP.

Other works implement a 2.5D inversion algorithm using a 3D model based on a

direct solver to interpret CSEM data (GRAYVER; STREICH; RITTER, 2013). Its inver-

sion process implements a fully distributed application that relies on the PETSc library

(BALAY et al., 2019) for distributed memory linear algebra operations and to access the

MUMPS solver to the forward phase. The problem is also parallelized over the primary

electric field and frequencies. Even being a more numerical-focused work, this was one

of only ones works that take care of load balancing once the workload is statically simi-

larly partitioned to all processes. They do not make explicit which strategy was used for

such load distribution. According to reports, the application achieved a performance from

2000s in sequential to ≈ 750s parallel with ≈ 250 cores, using 64 cores for 4 frequencies

of a given study case, presenting a 2.6 speedup.

On (ZHAO; YU; QIN, 2018) work, they formulate their forward problem employ-

ing the goal-oriented adaptive finite element method based on the unstructured hexahedral

mesh (REN et al., 2013; GRAYVER; BüRG, 2014). They implemented the code using

L-BFGS techniques, a numerical quasi-Newton method. They used the library METIS to

partition the mesh among the workers. The focus is on improving the math equations to

gain performance, not in terms of a computational approach.

A more complete end-user application is presented by (KEY, 2016), which is

called MARE2DEM. It is a 2D inversion application that uses a grid of arbitrarily shaped

polygons composed of unstructured triangular or quadrilateral grids. The inversion method

used in this application also has a forward phase, implemented with an adaptive finite-

element method that automatically generates and refines unstructured triangular grids

throughout the iterations, ensuring accurate responses as the model conductivity changes.

The MARE2DEM is an application of the adaptive mesh refinement (AMR) technique

35

which seeks to minimize the relative error in the EM responses (KEY, 2016). They pro-

pose a new Occam inversion approach that they improved numerically and the ScaLA-

PACK library for linear programming. This work is one of only that presents a load distri-

bution solution that takes care of balancing. The manager processor of the MARE2DEM

code keeps a queue with all ready-to-run tasks and assigns the next available task to the

next available worker. This dynamic distribution offers a better load balancing to the ap-

plication once it guarantees that no worker will be idle. This work is a more complete

solution from related work found. They present a more robust numerical solution that

converges with fewer iterations and takes care of computational characteristics, such as

correct parallelization and load distribution.

All of the works mentioned above focus their efforts on combining numerical

process changes to achieve a better makespan. Most use simple models to execute the

inversion process, scoped to grid and cells models. On the other hand, some works apply

unstructured meshes to achieve better numerical results. However, only one work brings

a discrete discussion regarding load balancing or the study of computational concepts that

could benefit their works. Even discussing it, its primary goal is to discuss and present

the numerical improvements applied to the application. It is the main characteristic of all

related works presented in this section.

4.2 Computational Improvements Focus

From another point of view, some works aim to improve the time spent in the mC-

SEM inversion process taking care of computational improvements. Most of them already

have verified numerical methods but cannot correctly use the computational resources or

extend them to new devices and accelerators.

Two recent works relate the parallelization of the forward step of the inversion

process into GPUs. In (SOMMER et al., 2013), they present an implementation of a 3D

marine CSEM modeling on GPUs, focusing on the parallelization of the forward step

from a finite difference method. The original application was executed on one standard

CPU kernel and could take up to 1 hour to run complex models. Their approach achieves

significant speedups using standard libraries such as CUBLAS and CULA, where the

latter provides an optimized GPU QR algorithm. They could achieve a speedup of 9 to

SLDM and 35+ in Eigensolver in GPU. CULA-library presented an improvement from

the parallelized CPU version of the LAPACK eigensolver by a factor of 10.

36

The second GPU-related work is (YANG, 2021). Using the Finite Differences

Time Domain method, they implemented this new solver with CUDA, designing the ap-

plication to precompute every detail before porting the code to the GPU step. They used a

shared memory with a tiled algorithm to improve the usage of the L1 cache. Their solution

did not scale well using OpenMP. They used a GTX860M to conduct experiments. Using

a 1D model data, they compared their work with (KEY, 2009) and against a version of

their application implemented with CPU/OpenMP. They achieved a makespan from 723s

on a single thread to 18.1s on GPU, representing a 40× speedup.

Some works rely on applying a mix of computational efforts to improve the appli-

cation’s performance. They use existing and well-known parallelized libraries and tools

and change other parts of the algorithms to run in parallel. This is the case of (LONG et

al., 2020) and (da Piedade et al., 2021). Both works used different versions of the Pardiso

library (ALAPPAT et al., 2020), a parallel direct solver to perform linear system execu-

tions. The second work compared the behavior of two finite methods, one using Nodal

and the other using Vector FEs. With deeper analysis, they concluded that the Vector

solution brings the advantage of avoiding difficulties when there are discontinuities in the

EM field found with nodal.

A more similar solution to the proposed contributions from this work was done

by (PETHICK; HARRIS, 2016). They developed a Java software that did not interfere

with source mCSEM codes. The application englobe an mCSEM algorithm and dis-

tribute the load among the workers in execution that can also scale in a grid of computers.

The key point of their work is that it considers inversion applications only composed by

forward and inversion steps, without any other step further. They also applied this macro-

parallelization with other electromagnetic surveys similar to mCSEM. They focus their

efforts on distribution strategies implemented in a macro-parallelization method.

4.3 Discussion

The previously presented works bring us the idea from two perspectives: mixing

improvements on numerical methods to achieve performance and focusing on computa-

tional efforts. The first scenario presents works that their typical strategy relies on stan-

dard parallel linear algebra solvers like MUMPS. Meanwhile, no one presents a discussion

about the impact of the workload partition on parallelization.

Our work fits the second scenario, where we aim to apply load balancing tech-

37

niques to improve application performance. The present work focuses on computational

science improvements, disregarding numerical changes in the inversion process. We could

achieve significant results by applying minor changes to an existing code and partition-

ing the load among homogeneous and heterogeneous workers, alongside applying correct

heuristics to do such distributions.

So far, no work focused on applying load balancing techniques exclusively to

an mCSEM application was found. The closer work presented was the one done by

(PETHICK; HARRIS, 2016), discussed in Section 4.2. However, they did not pay specific

attention to this distribution’s possible load imbalance issues or report any specific study

related to load balance solutions once they considered it as an embarrassingly parallel

problem. Our work identifies severe load imbalance issues in the studied application,

resulting from the problem domain’s intrinsic unbalanced partition. Our contributions

aim to show how well-known load balancing techniques from literature can impact this

real-life application.

38

5 CONTRIBUTION: FINDING THE IMBALANCE

Our first contribution presents the origin of the application’s load imbalance. To

find this lack of performance, we apply a performance evaluation with code instrumen-

tation and statistical analysis. We generated traces that allow us to precisely define what

composes the load of the application and the reason for the load imbalance. The results

presented here are the baseline for the following two contributions, that are the chosen

load balance heuristics described on Chapter 6, and the capacity planning proposal on

Chapter 7, due to these definitions.

We present how we perform this investigation in Section 5.1. Next, we discuss

how the mapping method impacts applications execution in Section 5.2. We then show

how we identify the problem in Section 5.3. We finish this chapter presenting final re-

marks regarding this contribution on Section 5.4.

5.1 Methodology

To execute our investigation, we applied the following methodology shown by

Figure 5.1. We instrument the application’s code to capture traces of the application’s

execution and implemented user regions instrumentations to get the duration of each in-

version step described in Chapter 3. We use Score-P (KNüPFER et al., 2012), an open-

source library for code instrumentation in C, C++, Fortran, and Python languages. Our

goal is to find the origins of the application’s bottlenecks.

Figure 5.1 – Methodology steps executed in this contribution.

Execution

Score-P

Instrumentation

Application Application
Experimental

Script

otf22csv

read

clean

organize

Execution

Application’s
output

Traces AnalysisTraces

Pre-Execution Post-Execution

Source: Author

With the code regions identified, we create an experimental script to execute. We

use machines present in the Parque Computational de Alto Desempenho, PCAD, from the

39

Institute of Informatics at UFRGS. We utilize four nodes of the Draco cluster, composed

of two Intel Xeon E5-2640 v2 2.00GHz per node, with eight cores per processor. Each

node has 64GB DDR3 RAM, connected by a 1Gbit/s network. All nodes run the Debian

10 operating system, with Linux kernel version 4.19.0-10-amd64. The application was

compiled using OpenMPI 3.1.4 and GCC 8.3.0 with the following compiler flags -c -O3

-g -funroll-loops -static.

As input data, we exploit one synthetic study case, which consists of a resistivity

model with 41×11×89 (width, length, depth) cells, for a total of 451 CMPs, approxi-

mating a volume of 20×7.5×4.2 cubic kilometers. The survey data consists of 1,061,046

data points from 189 fixed receivers and 176,841 controlled-source positions and contains

values associated with three frequencies for each S-R pair.

After running the application, we collect OTF2 traces generated by Score-P and

convert them to CSV using the otf22csv converter (SCHNORR, 2019). We then read

and sanitize the data, generating output data ready for analysis. We use a science workflow

implemented with the R language (R Core Team, 2020) with the tidyverse (WICKHAM

et al., 2019), and ggplot2 (WICKHAM, 2016) packages to analyze the results.

5.2 Mapping Data to the Model

As previously stated, the studied application executes a nonlinear function with

the electromagnetic field in an independent fashion for each CMP cell. To be considered

in some aggregation to be allocated in a CMP cell, each geographical common mid-point

of each S-R pair must match a cell in a resistivity model. With this strategy, we have the

mapping setup as previously depicted by Figure 3.3.

The application executes such a combination in the initialization phase. For each

S-R pair, the application computes the mid-point and then finds the closest cell of the

resistivity model by relying on their geographical coordinates. This combination of the

application parameters and the survey data results in an imbalanced number of S-R pairs

allocated for each model cell.

To better understand this unbalancing matching process, we instrumented the code

to gather information regarding the organization of the cells. We generate outputs that

extract the quantity of S-R pairs allocated to each CMP cell for the studied model. Figure

5.2 depicts this unbalancing, with the number of pairs on the Y-axis associated with each

cell of the resistivity model in the X-axis. We can see a four-time difference between cells

40

with more pairs allocated to those with fewer in this model.

Figure 5.2 – Number of S-R pairs associated for each CMP of the studied model.

Source: Author

5.3 Problem Identification

The temporal traces gathered from the application introduced the load imbalance

among machines. Figure 5.3 shows the results, where the X-axis is the time in seconds,

and the Y-axis represents the parallel workers involved in this execution. We run the

application with 14 MPI workers with 8 OpenMP threads per worker, having 112 parallel

threads. The colors of the plot represent the different operations being executed in each

second of execution. We can see that the regions identified as OpenMP operations take

different durations to execute throughout the workers. This difference is what we consider

as load imbalance.

Figure 5.3 – Temporal data collected in one execution with three iterations. Colors represent
different operations detected during execution.

0

2

4

6

8

10

12

0 50 100 150
Time [sec]

P
ar

al
le

l W
or

ke
rs

Operation Forward/OpenMP MPI

Source: Author

Investigating the code deeper, we noticed that the OpenMP region corresponds to

the forward phase of the inversion algorithm. We also observed that it is a loop, and it

41

iterates among the S-R pairs of each CMP cell assigned to the worker. We then identify the

other phases in code, taking the numerical inversion process as the baseline, previously

described in Chapter 3. We could correctly identify where the application executes the

solution of the linear system and the correction after that.

For the next execution, we disabled OpenMP threads and ran the application with

112 MPI workers, capturing the regions of the code based on the algorithm steps. Our

goal here was to check if the load imbalance observed in Figure 5.3 comes from the for-

ward phase indeed. Figure 5.4 depicts the observed behavior. The X-axis still represents

the time in seconds, while Y-axis represents the parallel workers involved in the execu-

tion. The colors in this plot represent the three main regions of our application: forward,

smoothing/Cholesky, and correction, alongside communication regions identified as MPI.

Figure 5.4 – Execution behavior of the application executing only with MPI, presenting the
timespace of the three main regions of the inversion algorithm.

0

16

32

48

64

80

96

112

0 50 100 150 200 250
Time [sec]

P
ar

al
le

l W
or

ke
rs

Operation cholesky correction forward MPI

Source: Author

This new visualization made it more evident that the imbalance comes from the

forward phase (blue region) and the different time duration among the parallel workers.

Such difference, as previously explained, indicates the load imbalance of the application.

As also previously discussed, we know that the application divides the total quantity of

CMP cells in the study case among the number of MPI workers in the execution. More-

over, the main loop of the forward region iterates throughout all the S-R pairs aggregated

to each CMP cell allocated to the worker. This way, the actual load of the forward loop is

given by the quantity of S-R pairs aggregated into a cell, not by the cells themselves. We

can also conclude that the application’s load is static due that each iteration presents the

same distribution and similar duration.

Figure 5.5 helps to identify the unbalanced distribution among the workers. It

depicts all 451 CMPs in the X-axis and the number of S-R pairs in the Y-axis. The

42

red lines represent eight different MPI workers and the region of load that each one of

them will be responsible for. The red labels indicate the MPI rank/worker, and the white

labels how many S-R pairs this rank has to compute. We can observe that Rank zero, for

example, will have considerably less work than Rank one because the first cells of the

model have fewer S-R pairs aggregated to it than those that will be assigned to Rank one

to compute.

Figure 5.5 – Behavior of the original distribution – it divide the cells among workers,
disregarding its own heterogeneous weight.

Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7

55962 Pairs 125523 Pairs 120168 Pairs 136530 Pairs 132615 Pairs 118494 Pairs 131112 Pairs 59769 Pairs

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

0 50 100 150 200 250 300 350 400 450

CMP Index

N
um

be
r

of
 S

−
R

 P
ai

rs

Source: Author

We confirm that the number of S-R pairs is directly related to the time spent by

the application. We update our instrumentation to also collect the duration of each CMP

cell to execute. We ran it several times and concluded that the execution time has low

variability across iterations. Figure 5.6 shows the direct relationship between the pro-

cessing time (Y-axis) and the quantity of S-R pairs (X-axis). The numbers presented in

Figure 5.6 – The number of S-R combinations explains processing time.

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

0

25

50

75

100

125

0 800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800
Number of S−R Pairs

D
ur

at
io

n
[s

ec
on

ds
]

Source: Author

43

X-axis represent the total amount of S-R pairs that different parallel workers received to

compute. We can see that, as the number of S-R pairs increases, the duration increases

linearly. This way, the worker who received 8800 pairs to compute will take double the

time to execute the forward phase than the worker who received 4400 pairs. We apply

ANOVA (ANalysis Of VAriance) (GEORGE et al., 2005) to confirm the direct associa-

tion between the number of combinations allocated among MPI ranks and their execution

time. The ANOVA results confirm our hypothesis, with a statistical confidence of 99.7%.

5.4 Final Remarks

With all this data, we accurately identified the application’s load imbalance. The

original strategy to distribute the load among workers disregards the actual load of the

application, which are the S-R pairs aggregated to each CMP cell. This load is static

throughout the iterations and presents a linear behavior with the duration of the appli-

cation’s execution. These characteristics will be relevant for further contributions once

they allow us to search for complete solutions that can be applied to this kind of problem.

Finding this imbalance – and going deeper into its characteristics and the origin of the

problem – make all the rest of this work possible.

We aim to apply a solution that minimally interferes with the existing code and

strategy to solve this load imbalance. For this reason, we do not want to split the CMP

cells to parallelize the process, as some other works do (PETHICK; HARRIS, 2016).

Such conditions led us to a number-partitioning problem with existing solutions to apply.

Our next goal is to apply and study the application’s behavior with heuristic solutions, as

we will see in the next Chapter.

44

6 CONTRIBUTION: APPLYING HEURISTICS TO THE PROBLEM

From the problem identification in Chapter 5, we seek to find solutions. Our goal

is to deliver an improved real-world application by applying existing and well-known load

balancing strategies in the literature. Such an approach match with the main objectives

of the applied computational field, where we aim to increase computational solutions in

real-world scenarios.

We found two solutions well suited for homogeneous resources: Round Robin and

Sorted-Greedy. These two solutions are referenced and well studied to solve scheduling

problems with static load. The last one correlates to number-partitioning problems, the

category of the problem we faced in this work. As previously discussed in Chapter 2,

Sorted-Greedy is the best solution for partitioning problems with one multi-way variable.

Furthermore, we aim to explore other possible solutions as we were not limited

to homogeneous environments. We seek to investigate schedulers for heterogeneous sce-

narios and propose the application of Area Bound Estimation Guided (ABE-Guided) and

the Heterogeneous Earliest Finish Time (HEFT). The first algorithm is an adaption from

the original ABE linear program, once we use the output that this existing method already

provides adapted to our needs. For the last, HEFT fits our problem once we have the

challenge to exactly achieve what the algorithm’s name proposes.

This chapter aims to present the results and analyze our best solutions for homoge-

neous and heterogeneous computing resources. Section 6.1 starts presenting the materials

and methods applied to this contribution and how we executed our experiments. We then

follow to Section 6.2 that brings a theoretical analysis of the behavior of homogeneous

algorithms and some important insights this analysis led us to have. Sections 6.3 and 6.4

focus on presenting and discussing results obtained with real executions of all four sched-

ulers. We close this Chapter presenting that our schedulers did not affect our application’s

numerical accuracy on Section 4.1.

6.1 Materials and Methods

For this contribution, we apply the following methodology depicted in Figure 6.1.

According to the already described method in Chapter 5, we gather data from instru-

mentation. We code and execute our load-balancing solutions from this data out of the

application. We use this methodology due to the benefit of doing minor changes to the

45

original code to test all the different proposed algorithms. We add two lines responsible

for reading the files with the distribution previously made on the application’s code.

Figure 6.1 – Methodology applied to this contribution. We used the intrumentation made
previously to analyze the results provided from our distribution algorithms.

Source: Author

The scheduler algorithms were initially coded in Python and R, receiving as input

the mapped data to the model gathered in a previous execution of the application for each

model. This previous instrumented execution resulted in three collected information: the

id of each CMP cell, the quantity of S-R pairs allocated to each cell, and the time spent

on each execution. All this data was cleaned and used as the input for the algorithms for

distribution. The output of these solutions was two files containing the total load assigned

to each parallel worker (in the quantity of CMP cells) and the mapping for CMP and

worker to execute. The application, in its execution, read these two files. After running

validations to the efficiency of the methods, we implement them in C language as new

modules for the application.

We use the synthetic study case already presented in Chapter 5 to test the heuris-

tics. To execute our homogeneous and heterogeneous solutions, we use four different

groups of machines – which we called here as partitions – from the Parque Computa-

cional de Alto Desempenho (PCAD). Table 6.1 summarizes its characteristics. We have

a total of 15 machines and 304 physical cores. They run the Debian 10 operating system

with Linux kernel version 4.19.0-18-amd64. We compile the application using OpenMPI

3.1.4 and GCC 8.3.0 with the following compiler flags -c -O3 -g -funroll-loops -static.

We execute the application with our study case and follow the practical evaluation

framework used in the imbalance investigation to have comparable data. For this reason,

we analyze the data with R and ggplot. We were also able to do simulations with data

using the R language to better understand it, as we shall see in what follows.

46

7x Draco
Architecture x86_64

Model Xeon E5-2640 v2
Frequency 2.0GHz

Cores Per Socket 16
Threads Per Core 32

Socket(s) 2

RAM 64GB(1-6) DDR3
128GB(7) DDR3

(a)

5x Hype
Architecture x86_64

Model Xeon E5-2640 v3
Frequency 2.3GHz

Cores Per Socket 10
Threads Per Core 20

Socket(s) 2
RAM 128GB DDR3

(b)

2x Cei
Architecture x86_64

Model Xeon Silver 4116
Frequency 2.1GHz

Cores Per Socket 12
Threads Per Core 24

Socket(s) 2
RAM 96GB DDR4

(c)

1x Blaise
Architecture x86_64

Model Xeon E5-2699 v4
Frequency 2.2GHz

Cores Per Socket 22
Threads Per Core 44

Socket(s) 2
RAM 256GB DDR4

(d)
Table 6.1 – Specification of machines used in the executions.

6.2 Theoretical Analysis on a Homogeneous Environment

As the application’s load is linear and static, we perform a theoretical analysis on

an homogeneous environment. We implement computational simulations for the homo-

geneous scheduling policies (Round Robin and Sorted-Greedy) before executing them on

the real scenario. Our goal is to compare their behavior and theoretical gains against the

Original distribution. We carry out a strong scalability analysis by computing, for each

policy, the total distance from the ideal load balance and the maximum load obtained for

a given number of workers. The analysis presented a good starting point using a repre-

sentative workload and was essential for us to learn what to expect on the real executions.

Figure 6.2 (top) depicts the total distance from the ideal load balance (on the Y-

axis) for each approach (colors) as a function of the number of workers (X-axis), from

1 to 451 (the number of CMP cells in the resistivity model). We simulate the CMP

load distribution to verify which approaches have better behavior by achieving the lowest

variability in the workload distribution. Round Robin improves the scenario against the

Original heuristic, and Sorted-Greedy improves against both previous heuristics. The

three algorithms present the same maximum load with a single worker since only one can

process all CMPs. Meanwhile, when the number of workers equals the number of CMP

47

cells, the maximum load equals the largest CMP cell size. Sorted-Greedy delivers the

best solution allocating the S-R pairs taking into account the least-loaded worker to do

the distribution, which explains the smoother reduction in the maximum load. When the

number of workers exceeds half the number of CMP cells, all three approaches increase

the total distance from ideal.

Figure 6.2 – Theoretical distribution of load with 1 up to the number of CMP cells of the study
case, presenting the distance from ideal mean from these settings (top) and the maximum load

allocated to some worker (bottom).

●

●

●

●●●●
●

●
●
●

●●

●
●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●
●
●
●

●

●

●●●●●
●

●

●

●●●●●●●●●

●

●

●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●
●

●
●
●
●
●
●●●

●●●●●●●●●●●
●●●●●●●

●
●●●●●●

●●
●

●
●

●
●
●●●

●
●●

●●
●

●
●
●
●
●
●●

●
●
●
●
●
●
●
●●

●
●
●●●●●●

●
●
●
●●

●
●
●
●
●●

●
●
●
●
●●●●●●●●●●

●
●
●
●
●
●●●●●●●

●
●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●●●

●●●●●●●●●●●
●●●●●●

●
●●●●●●

●
●●

●
●
●

●
●
●●

●
●
●●

●●

●

●●
●

●
●
●●

●
●
●
●
●●

●
●●

●
●●●

●
●
●●

●
●●●●●●

●
●●●

●
●
●●●●●

●●●●●●●●●
●
●
●●

●
●●●●●●●●●●

●
●
●●●●●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●●

0

50000

100000

150000

D
is

ta
nc

e
fr

om
 th

e
id

ea
l

 lo
ad

 b
al

an
ce

 (
S

−
R

 p
ai

rs
)

Allocation Policy ● ● ●Original Round−robin Greedy

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●●

●
●●

●●
●●

●●
●●●

●●●●

●●●●

●●●●●
●

●●●●●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●●

●
●
●

●

●

●

●

●

●

●

●●●●●

●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●●●●●

●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●
●●●●●

●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●●●●●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●
●●

●●
●●

●●
●●●

●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●
●●

●●
●●

●●
●●●

●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

1e+03

1e+04

1e+05

0 50 100 150 200 250 300 350 400 451
Number of Workers

M
ax

im
um

 L
oa

d
in

Lo
g

S
ca

le
 (

S
−

R
 p

ai
rs

)

Source: Author

This analysis gives us an insight into the application’s behavior according to the

input data in execution. Due to its static characteristics, knowing the time spent in each

executable resource allows us to accurately predict the application’s behavior and how

much time each iteration of the inversion process will cost. This conclusion was a valuable

insight for the capacity planning that we will focus on in Chapter 7. We started the

real executions with this initial idea of what to expect from the selected algorithms for

homogeneous environments.

6.3 Heuristics in Homogeneous Environments

We first observe the distance from the ideal load balance, in seconds, running three

iterations of the code from 16 up to 112 physical cores with one worker per core. Figure

6.3 depicts, along the Y-axis, the distance (points, in seconds) from the ideal load balance

48

(the blue line) for each worker (X-axis). We compute the ideal load balance by dividing

the total time spent on computation for those three iterations divided by the number of

workers of that experiment. We depict the results using facets: the cases with 16, 32, 48,

64, and 112 workers are the columns, while rows represent the three schedulers (Origi-

nal, Round Robin, and Sorted-Greedy) from top to bottom, each one with their Y-scales

to reflect the deviation from the mean. We observe in Figure 6.3 similar results to the

theoretical analysis made previously, where Sorted-Greedy and Round Robin solutions

present smaller distances from the ideal mean.

Figure 6.3 – The distance from ideal load balance for every worker considering five total number
of workers (columns) and the CMP scheduling policies (rows).

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●
●

● ●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

● ●
●

●

●

●

●
●

●

●

●
●

●

● ●
●

● ●

●

● ●
●

●
●

● ● ●
●

● ●

●

● ●

●

● ●
●

● ● ● ● ●
● ●

● ●
● ●

● ●

● ● ● ● ● ● ● ●
● ●

●
●

●

● ●
●

●
●

●
● ●

●

●
●

●
●

● ●

●
●

●
● ●

●

●

●

●

● ●
●

●
●

●

●

●
●●

●
●

●
●●

●

●

●
●

●

●●

●●

●
●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●●
●●

●

●●

●

●
●●

●
●

●

●

●

●●●
●●

●●
●●

●●
●●●●●●

●

●

●●●●
●●●●

●●●●●●●●
●●

●●●●
●●●●

●●

●

●

●

●

●
●

●●

●

●●
●

●●

●

●

●●

●
●

●
●

●●
●

●●

●

●

●●●
●

●

●

●

●

●

●

●●●●●

●

●●●

●●●●●●●
●●●●●

●

●
●●

●

●●
●●●

●●

●

●●●

●

●●●●●
●

●

●
●●

●

●

●
●

●●
●

●

●

●
●●

●

●

●
●●●●●●

●●●●

●

●●

●
●●●●●●●●●●●●●●●●

●●●
●●●●●●●

●●●●●
●

●●
●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●

●●
●

●●●●
●

●
●

●●●
●●●●●●●

●●●●
●

●
●●

●●
●●

●

●
●

●

●●●
●●●

●
●●●

●●

●
●

●●

●

●
●

●

●
●

●

●●

●●

●●●●●
●●●●●●●●

●●●●●●●
●
●
●
●●●●●●

●
●●●

●●●●●●●●
●
●
●●

●●●●
●
●

●●●●●●●●●●
●
●
●
●●●●●●

●
●●●

●●●●●●●●
●
●
●
●●●●●

●
●
●●●●●●●●●●●●●

●●●●●●●

●

●●

●
●●

●
●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●

●●●●
●
●
●
●●

●●●●●●●●●●
●●●

●
●●●●

●●●●

●●

●●●
●●●●

●
●●●●

●
●
●●

●●

●●
●●●

●
●

●

●
●
●●

●

●
●●

●●●
●●

●●●
●●●●●●●●●●

●●●●●●
●
●●●

●●●●●
●
●
●
●

●
●●●●●●

16 32 48 64 112

O
riginal

R
ound−

robin
S

orted−
G

reedy

0 3 6 9 12 15 0 6 12 18 24 31 0 9 18 27 36 47 0 12 24 36 48 63 0 22 44 66 88 111

−600

−300

0

300

600

−40

−20

0

20

40

−10

−5

0

5

10

Number of the worker

D
is

ta
nc

es
 fr

om
 th

e
m

ea
n

tim
e

[s
]

Source: Author

The Original scheduling policy (top row of Figure 6.3) presents the most diverse

distribution, having considerable differences from the ideal time, especially with 16 work-

ers. As the number of workers increases, the distances diminish but follow the same

ups-and-down pattern due to combination of S-R pairs from the input data to the resistiv-

ity model. The Round Robin scheduler (middle row) attributes higher load for the first

workers, presenting a positive distance from the ideal time when compared with the last

workers. We expect such behavior because the algorithm distributes the computation of

CMPs in ascending worker’s number order from the most to the least costly CMP. Fi-

nally, the Sorted-Greedy policy (bottom row) presents the best fit, showing the smallest

distances from the ideal load balance and a more even distribution.

The most extensive scenario with 112 workers in Figure 6.3 has some workers

far from the ideal distribution in the Sorted-Greedy policy. That is the case of worker

0, for instance. These discrepancies in the load imbalance appear because of CMPs’

different computational load. An alternative design of splitting a CMP’s computing across

many workers would probably make a perfect load balance, but that would require more

profound changes in the application’s code. With minor changes, we observe that both

49

Round Robin and Sorted-Greedy policies improve dramatically against the Original one,

presenting a reduction of the distance time from more than 100 seconds with the Original

strategy to less than five seconds with Sorted-Greedy in the 112 workers scenario.

Our next goal was to check makespan reduction with the new schedulers. We

changed the application to run with specific pre-defined quantity of iterations (even if we

already achieved the goal-misfit) to get improved data. We executed the application with

the three different distribution algorithms using 112 workers (the maximum number of

physical cores available for this experiment with a unique partition). Using Score-P and

our manual instrumentation of the application, we collected trace data to track down the

most costly operation (the forward step). All other parts of the application code have a

non-significant time footprint to appear in the plot with such scale. Figure 6.4 presents

a space/time view with colored rectangles to represent the forward step for every worker

(on the Y-axis) during 100 data inversion iterations along the execution time (X-axis).

We facilitate the comparison among policies (facet rows) by aligning the time on the X-

axis. We augment the view with the makespan (the rightmost number) and the percentage

reduction for the Round-robin and the Sorted-Greedy policies against Original (marked

as Gain in the rightmost white area).

The core result is the reduction in execution time of 32% for the Round Robin, and

of 41% for the Sorted-Greedy policy, when compared to the Original policy. Reduction

is from ≈7761s in the Original policy to ≈4603s with Sorted-Greedy. Another observa-

tion is the amount of time spent doing other non-compute operations. We show, on the

leftmost part of each facet in Figure 6.4, the average of non-compute time considering

all workers. With the Original policy distribution, most of the execution time is spent on

non-computing operations (53%). As expected, the ratio considerably decreases with the

Round Robin (31%) and the Sorted-Greedy policies (21%) because of better load balance.

This better use of resources implies on the Sorted-Greedy’s best performance among the

studied policies. While results are impressive, there is still room for improvement in the

Sorted-Greedy scheduling policy.

Moreover, we seek to investigate the speedup of the application comparing sched-

ulers. We compare the two proposed heuristics against the Original using 1, 2, 4, 8, 16,

32, 64, and 112 MPI processes with the Original model. We compute the mean speedup

50

Figure 6.4 – Space/time view of the forward step of 100 iterations for the Original, Round-robin,
and Greedy allocation policies.

78
39

.4
6

N
on

−
co

m
pu

te
: 5

3.
11

%

53
37

.5
5

N
on

−
co

m
pu

te
: 3

1.
74

%

Gain: 32 %

46
49

.3

N
on

−
co

m
pu

te
: 2

1.
62

%

Gain: 41 %

Greedy

Round−robin

Original

0 2000 4000 6000 8000

0

16

32

48

64

80

96

112

0

16

32

48

64

80

96

112

0

16

32

48

64

80

96

112

Time [sec]

N
um

be
r

of
 th

e
w

or
ke

r

Source: Author

and its variance applying the following equations:

[!htb]

E(speedup) = E(Original 1 proc)× E(1
new_distribution n proc); and

Var(speedup) = E(Original 1 proc2)× E(1

new_distribution n proc2)

− E2(original 1 proc)× E2(1
new_distribution n proc).

where E(speedup) denotes the sample mean of the speedup. We multiply the speedup of

our new distribution heuristics by the sample mean of the Original to achieve a compa-

rable speedup with it. Our speedup goal here is present the gains obtained with our new

distributions against the original one.

Figure 6.5 presents the speedup curves for each approach with error bars repre-

senting 99.7% confidence interval. Both Round Robin (green) and Sorted-Greedy (blue)

clearly outperform the Original (red) approach with any number of MPI processes. Setups

using from 1 to 16 processes can execute on a single node since each node has 16 cores.

We can first observe that, while the Original approach already presents scalability issues

in this single-node scenario, the two new strategies perform closer to the ideal speedup.

51

Figure 6.5 – Speedup of 1 up to 112 MPI processes. We run three iterations of the application.
The baseline is Original with one process. The dashed black line represents the ideal speedup.

0

30

60

90

0 4 8 16 32 64 112
Number of MPI processes

S
pe

ed
up

Approach Original Round−robin Greedy

Source: Author

The speedup increase from both new scheduling policies became more evident

as the number of workers increased. With 112 processes, i.e., using all available Draco

nodes, we observe speedups of ≈80× for Sorted-Greedy, ≈70× for Round Robin, and

≈47× for Original. With this setup, the Round-robin approach reduces the execution time

compared with the Original distribution by 32% to≈163s, while Sorted-Greedy decreases

it by 40.3% to ≈143s. These results can prove that such well-known algorithms from the

literature proved adequate for this real-world problem.

6.4 Heuristics in Heterogeneous Environments

We seek to compare the theoretical strong scaling study with real executions. For

this, we need to run the speedup executions in another partition from PCAD once the

Draco cluster does not have more than 112 MPI workers. We then run the application

in both Draco and Hype partitions. Once our measurements have indicated that the pro-

cessor frequency explains 97.4% of the compute capability difference between the two

partitions, we change the frequency of Hype processors to be equal to Dracos’, reducing

it to 2.0Ghz, to have more accurate results. For each combination of scheduling policy

and MPI processes. This way, we could scale the speedup to use 128 and 212 MPI pro-

cesses. Figure 6.6 depicts new results. The results presented before the vertical dotted

pink line represent executions made only at the Draco partition. After that, we add the

Hype partition to extend the scalability test.

In Figure 6.6, we can observe that our theoretical analysis for maximum load for

52

Figure 6.6 – Speedup of many MPI processes from 1 up to 212 using two different partitions with
the same processor’s frequency. We also run the application with three iterations, and the

baseline is Original with one process. Dashed black line represents the ideal speedup.

●●● ● ●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

0

50

100

150

200

048 16 32 64 112 128 212
Number of MPI processes

S
pe

ed
up

Approach ● ● ●Original Round−robin Sorted−Greedy

Source: Author

the Original policy is correct in real executions. When the number of workers comes

closer to 120, the Original behavior decreases significantly, presenting a speedup simi-

lar to when using eight workers. As explained previously, the Original distribution can

present such unbalanced and irregular behavior as the number of workers changes be-

cause it neglects the load linked to each CMP. The performance of Round Robin and

Sorted-Greedy are very similar when using from 1 up to 32 processes (2 nodes). The gap

between them becomes clearer when using 64 processes (4 nodes) and increases with 212

processes (12 nodes, using two partitions). This gap is somehow expected since the dis-

tribution implemented with the Sorted-Greedy strategy is more concentrated around the

mean, favoring scalability.

When we increase the number of MPI processes to 128 (now using all Dracos plus

one node of Hype partition), we still see improvements with Round Robin and Sorted-

Greedy, with speedups of≈81× and≈89×, respectively. The highest values are presented

with 212 MPI processes for both Sorted-Greedy (≈120.7×) and Round-robin (≈100.7×),

while the Original approach has substantially deteriorated from 128 or more processes.

In other words, both new distribution policies enable application scaling with a higher

number of workers, which is not possible with the Original code. Even if the observed

speedup values are getting farther from the ideal speedup, this is common in a strong

scalability test. Increasing the number of processes reduces the workload processed by

each one, then highlights the impact of communications and synchronization steps. De-

spite that, we can see that these two new schedulers significantly improve the application

53

scalability.

All these observations made with these real strong scaling experiments motivated

us to extend our solution for heterogeneous environments, considering real heterogeneous

settings. Our main goal is to achieve load balancing using machines with different com-

pute capacities without changing its processor’s frequency, exploiting the system-level

heterogeneity to our problem.

Heterogeneous environments are gaining attention in the scientific community,

mainly on the intra-node approach. Mixing computations on different hardware allow

applications to achieve better time performances. Due to the heterogeneous characteristics

of our local cluster, which is composed of a large set of different machines, we saw an

opportunity to explore further improvements to our application. This solution can also

validate the theoretical analysis with more workers (to check the behavior when we have

more workers than half of the total quantity of CMP cells to compute).

We seek to find new load balancing heuristics that concern different machines’

capabilities alongside the heterogeneous characteristics of the load. We found two possi-

ble solutions to our problem, all depending on previous benchmark data in each involved

resource: a solution based on the results from ABE linear programming and another from

HEFT. We adapt the HEFT algorithm to predict the minimum makespan with the max-

imum usage of the resources disregarding communication times and task dependencies.

The simplified HEFT algorithm predicts the duration of each task inside each worker, and

it will attribute the task to the worker where it presents the best total makespan.

For the ABE-guided solution, we change the input of the ABE linear program in

the way that the tasks T represent our group of cells C, where the quantity of S-R pairs

linked to them determine these groups. For example, using as a base the CMP distribution

of Figure 5.2, we have a group of cells with 1200 pairs, others with 460 pairs, and others.

We have updated the formal definition of ABE to the following equations:

54

minimize: (6.1)

makespan

subject to:

∀c ∈ C :
∑
r

nc,r = Nc (6.2)

∀r ∈ R :
∑
c

nc,r ∗ wc,r ≤ makespan ∗Nr (6.3)

∀c ∈ C, r ∈ R : nc,r ≥ 0 (6.4)

Where we changed the t tasks for c determined group of cells C with the same

quantity of S-R pairs linked to it, r is the type of resource R (that are the different ma-

chines where we are executing the code), and wc,r is the meantime which the determined

group of cells c takes to execute in a determined resource. We implement our ABE linear

program to get as output the final makespan and the array with the distribution set that the

linear program uses to achieve this mark. Once that such distribution set only determines

the number of cells of each group to each resource, we then use this distribution array as

input for a Sorted-Greedy phase, which will allocate each specific task to each resource.

We follow the same test approach presented with homogeneous solutions to val-

idate our new heuristics. We first executed the three new heterogeneous approaches and

compared them to the behavior of our best homogeneous solutions (Sorted-Greedy) run-

ning in a heterogeneous environment. We selected three different machine combinations

scenarios to execute this test. They are summarized by Table 6.2. The first use all of our

available resources, using all available machines from our five partitions Draco, Hype,

Cei, and Blaise, giving a total of 304 workers (A). The second uses three partitions and

112 workers (B), and the third also combines three partitions and 112 workers but uses

a different combination (C). Scenario A aims to observe the behavior of each algorithm

when using more than half of the CMP quantity of the model in study. The B and C

scenarios aim to compare our homogeneous scenario (composed of 112 workers). We

want to demonstrate possible improvements that these heterogeneous solutions can bring

to the application even using the same quantity of the maximum available number of

homogeneous workers.

Figure 6.7 depicts the average time of one iteration, calculated from an execution

with 10 repetitions of 10 iterations each. The X-axis indicates the load balancing heuris-

55

Study case draco hype cei blaise Total Cores
A 7 5 2 1 304
B 3 2 1 0 111
C 0 1 2 1 112

Table 6.2 – Setting of the three different case studies for algorithms comparison.

tics, and the Y-axis is the average time, in seconds, that each heuristic presents. Averages

are represented by points, while lines represent the error bars for each heuristic. Facets

distinguish each different scenario selected to run. We have HEFT as the best average time

in all scenarios, presenting an average of ≈8.67 seconds on scenario A, ≈20.9 seconds

on scenario B, and ≈17.4 seconds on Scenario C. These averages have as their standard

errors ≈0.0268 seconds, ≈0.0684 seconds, and ≈0.0128 seconds, respectively. HEFT

solution also presents smaller standard errors when compared with the other heuristics.

Moreover, an interesting observation is in the time difference between B and C

scenarios. Even using the same quantity of workers, the third scenario presents a gain of

≈16% compared with the second. This difference confirms the influence of the proces-

sor’s frequency in the makespan of our application, showing that the machine’s combina-

tion is another important variable to consider when setting up the environment to run (a

characteristic that will be further explored in the next chapter).

Figure 6.7 – Average time of execution of one iteration in each scheduler running on different
heterogeneous configurations.

A B C

Sorted−Greedy ABE−guided HEFT Sorted−Greedy ABE−guided HEFT Sorted−Greedy ABE−guided HEFT

0

5

10

15

20

25

Algorithm

A
ve

ra
ge

 T
im

e
[s

ec
]

Source: Author

We also analyze the ideal load balance distance for these solutions. Figure 6.8 de-

picts the results from the same three previous scenarios of execution (horizontal columns)

for the three tested heuristics (vertical columns). The X-axis depicts the number of work-

ers while the Y-axis represents the distance from the ideal meantime, in seconds, with

different scales. The blue line on the plot represents the ideal mean time for each sce-

56

nario. We compute it using a weighted average where we multiply the time spent in each

computational resource for its weight and divide the total sum by the sum of weights for

each scenario.

Figure 6.8 – The distance from ideal load balance for every worker considering the three different
heterogeneous scenarios (columns) and the new scheduling policies (rows).

Source: Author

As expected, the Sorted-Greedy heuristic is far from the ideal mean time in these

executions. Meanwhile, the results presented by the ABE-guided heuristic were unex-

pected. Even presenting the best distribution on B scenario, on the C scenario, we can

see a distance of almost 60 seconds to the ideal meantime on at least 26 workers. Since

ABE should distribute the load focusing on achieving the best makespan, we expected

better results from its usage. These results led us to observe that the ABE solution is not

exploiting heterogeneous scenarios satisfactorily. We achieve the most stable and best

distribution with the HEFT algorithm, where in scenario B, we have more than half of the

workers presenting a distance slower than 10 seconds of the ideal mean.

Next, we seek to understand the makespan reduction with this heterogeneous so-

lution. Figure 6.9 depicts the makespan for execution with 100 iterations on A and B

scenarios (columns of the plot) previously described, running five repetitions of each

heuristic. The X-axis identifies each heuristic, and Y-axis is the average makespan in

seconds. In scenario A, using 304 workers, we achieved performances of ≈1930 seconds

with ABE-guided and ≈1685 seconds with HEFT. We have more workers than half of

CMP cells on the executed model in this scenario. Even with this characteristic, we still

present better results than scenario B, with 112 workers. On this second configuration,

we have ≈2906 and ≈2912 seconds of average makespan for ABE and HEFT, respec-

57

tively. When comparing the homogeneous scenario with this same quantity of workers

using Sorted-Greedy (average time ≈4649 seconds), we achieved a performance gain of

37% using heterogeneous workers and the HEFT heuristic.

Figure 6.9 – Average makespan with execution of 100 iterations for each scheduler in two
different heterogeneous scenarios.

A B

Sorted−Greedy ABE−guided HEFT Sorted−Greedy ABE−guided HEFT

0

1000

2000

3000

Algorithm

A
ve

ra
ge

 M
ak

es
pa

n
[s

ec
]

Source: Author

We could achieve a performance gain of 78% by comparing our best heteroge-

neous case against the Original scheduler. Also, we observed that we achieved a consid-

erable makespan reduction with a different scenario, including those where we do not use

all involved resources. This observation, alongside the possibility to have further infor-

mation to perform a previous scenario of what to expect in real executions, motivated us

to develop our next contribution.

6.5 Numerical Accuracy

After all of our changes on the load distribution, we need to guarantee that such

modifications did not affect the numerical results. We compare how similar the results

from our new scheduling policies are from the Original scheduler. We first carry out

a qualitative comparison by visualizing the results. Figure 6.10 depicts the resistivity

values (gradient color) for different iterations (columns) of the five scheduling policies

(rows).

We center the slice around the body with higher resistivity, using the North-South

and East-West direction for a fixed depth that crosses the middle of the body. Visually,

numerical results for the scheduling policies are identical. Most of the 3D volume of the

resistivity model have similar values because of the homogeneous rock layers with low

58

Figure 6.10 – Model output from all schedulers.

Source: Author

electrical resistance. Proportionally, the body that geophysicists look for (i.e., petroleum)

has a volume much smaller than the whole volume below the prospected seabed area. The

known electrical resistance of this body is significantly larger than the surrounding rock

layers.

We collect the relative error of the misfit from the execution logs. We repeat the

data gathering and the analysis for every iteration and for each scheduling policy. Then,

we compute the Peak Signal-To-Noise Ratio (PSNR) (Korhonen; You, 2012) of these

differences for each application iteration. Based on the resistivity data, we compute the

absolute difference between the numerical results of all our four implemented heuristics

against Original. We obtain an infinite PSNR across all iterations for scheduling policies,

implying identical numerical results.

59

7 CONTRIBUTION: CAPACITY PLANNING

As discussed in Chapter 5, we concluded that the application’s load remains stable

during all its iterations. Each Source-Receiver pair consumes the same processing in

the forward region, showing differences only when running on different machines. This

conclusion was beneficial for all load balancing solutions, once we consider it as the

primary information for choosing the applied load balancing heuristics.

We can also predict application behavior in different settings before real execu-

tions with this information regarding time-consuming. To make such a prediction, we

need to have a feature that, given a determined quantity of resources and a benchmark,

delivers a simulated application behavior in each possible scenario. Such a feature is the

primary goal of this contribution. We propose a capacity planning tool that allows users

to effectively predict one iteration’s behavior with four proposed load balancing strategies

without limiting it to one possible scenario.

We start this chapter by giving an overview of the methodology implemented to

execute this contribution in Section 7.1. We then follow to describe the behavior of our

simulation code in Section 7.2. With the code behavior defined, we present the simulation

validation on Section 7.3 with real-world executions and statistical evidence. We finish

this chapter by presenting how this contribution can be used in different scenarios with a

hypothetical test case in Section 7.4.

7.1 Materials and Methods

The methodology applied to this contribution is depicted by Figure 7.1, presenting

the steps on the same template previously presented. The first step was focused on under-

standing the characteristics of the model in the study. Understanding how the application

maps the data to the model and how many CMP cells and Source-Receiver pairs we have

is essential due to its direct impact on the distribution. We changed our application to en-

able a flag to gather traces for one execution iteration of each CMP cell. We collected the

execution time of each of our three main steps (forward, cholesky and correction) for each

cell of the model. This information we will refer as the benchmark of the application. We

executed this benchmark in each available resource to be considered in the simulation.

We then developed an R-based solution that applies all studied schedulers for the

data collected. The input is composed of a CSV CMP mapping with its respective quan-

60

tity of S-R pairs and other CSVs containing the forward execution time of each cell in

the different resources. We also input which resources are involved in the simulation,

informing the quantities of machines and cores. As output, this R code generates the pre-

dicted time spent in each algorithm to all possible resource combinations. We can then

perform an analytical analysis and generate an interactive plot to gather information from

this output.

Figure 7.1 – Figure with methodology

Source: Author

To validate and run the proposed simulator, we used as resource four partitions

from the Parque Computacional de Alto Desempenho (PCAD) with the characteristics

already presented in Table 6.1. We use the same resistivity model and data from the study

case presented in Chapter 6.

7.2 Simulating Real Executions

Our simulator comprises three main steps: initialization, building combinations,

and simulation. Figure 7.2 helps on explanation by presenting these steps visually. On

initialization, we first read the CSV with the CMP mapping of the resistivity model that we

aim to simulate. This file is composed of the number identification of the CMP cell and the

total amount of S-R pairs linked to it. The application then follows to read the benchmarks

of each CMP cell on each different machine. At last, we define the environment being

studied, informing how many machines are involved, which partition they are linked to,

and how many cores they have.

With this data, the simulator goes through the combination step, where we use a

full factorial design to combine machines. It will build different scenarios mixing different

quantities of each available resource to run. We go through the simulation step with this all

61

Figure 7.2 – Workflow diagram of the simulator developed for the capacity planning

Simulation
Building

ScenariosInitialization

CMP Mapping

Traces by machine

Time results

Environments

Build Scenarios
Combining Data

Run Balancing
Strategies

Interactive Plot

Workload
Distribution

Source: Author

set, where our R application runs the load balancing strategies for each detected scenario.

Due to the high number of combinations that we can simulate – which will depend on how

many machines we have to combine – we used the doParallel R library (THEUSSL;

ZEILEIS, 2009) to parallelize the main loop. We can run this simulator using Rscript.

The simulator output two files: the workload distribution (i.e., a CSV mapping

file defining which CMP runs in which worker and machine) and the makespan for one

iteration with each combination. From these collected makespans, we can build an inter-

active plot using the Plotly tool (INC., 2015). An example of this output can be found at

https://jessicadagostini.gitlab.io/master-degree/interactive-capacity-planning.html.

Figure 7.3 depicts a screenshot from this interactive application. We can extract

many information from this tool. First, the executions on the plot are sorted according

to its makespan, going from the faster to the slowest (X-axis). Each point in the graph

represents a different simulation scenario with its makespan in seconds (Y-axis). Hovering

each point will inform us which partitions are involved in that result, how many nodes of

each resource it was used, and the makespan of this one iteration simulated. The different

colors in the graph identify the four load balancing heuristics executed, and the size of

each point indicates how many cores were involved in each scenario. In the example of

the Figure 7.3, we have a scenario where we used seven machines from Draco partition,

five from Hype, one from Tupi, two from Cei, and one from Blaise. This machine’s

combination resulted in a makespan of ≈7.46 seconds for one iteration, which is one of

the best results we can achieve.

https://jessicadagostini.gitlab.io/master-degree/interactive-capacity-planning.html

62

Figure 7.3 – Screen capture of the interactive plot with all possible scenarios of machine’s
combination. The colors of the plot represent the different algorithms, and the different size of

points indicates how many cores each scenario is composed of.

Source: Author

7.3 Simulation Validation

To present accurate simulation results, we aim to validate our simulation code.

First, we run our simulator giving as input the environment characteristics as we found

on PCAD. We define our environment containing seven Dracos, five Hypes, two Ceis,

one Tupi, and one Blaise machine. From the simulation output, we organize from the

fastest to the slowest scenarios and choose seven scenarios to perform real executions.

We run ten repetitions of each chosen setting, with five iterations each. Figure 7.4 depicts

the output for the HEFT algorithm. We have the test order on the X-axis, from 1 to the

total number of executions ordered as previously described. On the Y-axis, we have the

iteration simulated runtime in seconds. The pink color represents the simulated makespan,

and the blue dots are the average runtime of 50 iterations for each of the chosen validation

scenarios.

The plot of Figure 7.4 depicts that the simulator’s predicted time is accurate with

the real executions. Analyzing closer two scenarios, represented by Test Order 0 and Test

Order 1500, we have a simulated time equal to 7.47s and an average makespan of 7.74s

for the former, and the same 14.2 seconds for simulated time and average makespan for

63

Figure 7.4 – Validation of results from our R simulator code. We validate our simulation with
HEFT algorithm. The blue points represent the average runtime of real executions.

0

10

20

30

40

50

0 500 1000 1500 2000 2500
Test Order

Ite
ra

tio
n

R
un

tim
e

[s
ec

]

Type Capacity Planning Real Execution

Source: Author

the second.

7.4 Hypothetical Test

Alongside helping to choose the best combination of existing resources to run the

application, our tool can model a hypothetic case with non-existing machines. Suppose

that the system administrators of our cluster received an offer to buy new powerful ma-

chines, which we will call here Optimizer. These machines are two times faster than our

best machines nowadays and are composed of 64 cores each. The administrator asked us

how many machines we need to achieve a better performance in our application. Using

our simulator code, we can give a more accurate answer to this question. We used real

traces from our existing machines and generated a synthetic trace for the new one based

on our best existing machine, Blaise. We know that administrators have a budget to buy

up to four new machines. We ran our simulator and collected the results. Figure 7.5 de-

picts the iterations makespan in seconds (Y-axis) achieved with the simulation of HEFT

to each possible scenario (points) varying the quantity of Optimizer nodes (X-axis).

With four Optimizer machines, all 1375 scenarios presented the same makespan

(3.76 seconds). This can be explained due to the high quantity of cores that these combi-

nations have, which is equal or bigger the half of total quantity of CMP cells in the test

case. Considering only the cores from Optimizer machines, we have 256 cores, which

led us to be limited in time to the bigger CMP of the test case (as previously discussed on

Chapter 6). Using three Optimizer machines we still have scenarios where we have high

64

Figure 7.5 – Makespan with combination scenarios involving different quantities of Optimizer
machines running HEFT distribution heuristic.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

4 3 2 1 0

Quantity of Optimizer Machines

C
om

bi
na

tio
n

M
ak

es
pa

n
[s

ec
]

Source: Author

quantities of cores. The scenarios with two Optimizer present significant results, with an

median makespan of 5.20 seconds. We can observe an expressive speed difference when

comparing no usage of Optimizer machines from those using at least two nodes.

Figure 7.6 helps visualize the resource usage with a scenario using two Optimizer

machines and the other with four. The time spent on each worker is depicted on Y-axis,

being X-axis responsible for identifying each different worker. Each column represents

different CMP cells allocated to each worker, while the colors of the plot indicate which

partition each worker represents. We present the distribution result of the HEFT algo-

rithm. In the four-machines scenario, we identify 59 idle workers, even some workers

received more than one cell to compute. This behavior happens because, when estimat-

ing the time spent on these idle workers, the HEFT algorithm concluded that assigning

the tasks to other workers performed better results than those who do not have any load

to compute. Once workers who did not receive the load to compute are from machines

already present on the cluster, this solution did not make the best use of resources. In the

two-machines scenario, we do not see any idle workers. With all these analyses, we can

conclude that we can improve the application’s speed by having at least two Optimizer

machines added to our existing cluster.

7.5 Final Remarks

From all above discussed, we presented a tool that allows different conclusions

from the presented data. First, we can detect which of the three heterogeneous distribu-

65

Figure 7.6 – Examples of CMP allocation in two scenarios, one using two Optimizer machines
and other using four new machines. We can identify that, when using four machines, some

workers did not receive any load to compute.

4 Optimizer

2 Optimizer

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 352 368 384 400 416 432 448 464 480

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320

0

1

2

3

4

0

1

2

3

4

MPI Workers

P
re

di
ct

ed
 ti

m
e

to
 c

om
pu

te
 th

e
C

M
P

 c
el

l [
se

c]

Cluster blaise cei draco hype optimizer

Source: Author

tions better fit each specific scenario. Second, we can identify which machines combi-

nation best fits our ready-to-use resources. Commonly, HPC clusters are used for many

users simultaneously, making some machines already allocated to other jobs when we

need them. With this tool, we can choose the scenario that delivers the best makespan

with the resources available at that moment. Once the cluster characteristics are set up

before running the code, we can apply this solution to any cluster scenario. The only re-

quirement is to execute a previous benchmark from the application in the target resources.

This feature allows application users to plan executions with precise information

regarding how much time they will spend to have results. It is important to notice that the

application is iterative and, for each study case, it takes different quantities of iterations

to converge. However, previously knowing the time spent by one iteration allows users

to better view its execution and better use their resources. Moreover, this solution can

also help system administrators with cluster acquisitions plans. If we know an expected

behavior of a new desired machine, we can use this simulator to help decide how many

new machines we need to have a reasonable makespan from this problem.

66

8 CONCLUSION

The industrial investment in electromagnetic surveying to recognize seafloor as-

pects and help find oil and gas reservoirs has driven innovations in the data acquisition of

these methods. Consequently, it generates a large amount of data that presents a signifi-

cant computational challenge to recover the resistivity of the regions in analysis through-

out inversion processes, once that 2D or 3D inversion methods require high computational

usage. Thus, a modern inversion code should apply parallel strategies to run such applica-

tions in a reasonable time, taking care of all aspects that compose these parallel execution.

This work investigates the computing performance of an MPI-based parallel appli-

cation that carries out the data inversion of the marine Controlled Source Electromagnetic

method. Such an application apply a Common Mid-Point (CMP) technique, which con-

sists of a mapping combination based on the common geographical mid-point of Source-

Receivers pairs in a collection of CMP cells given by a resistivity model. We perform

analysis with a synthectic workload to understand the application’s behavior, the compos-

ing of its load, and the load distribution strategy used.

We identify an issue regarding load balancing on the application. The original

strategy used to distribute the load across the parallel workers considered the total number

of CMP cells to divide throughout the workers. However, our analysis presented that the

actual load of the application is the amount of S-R pairs linked to each CMP cell. The

original distribution strategy divided the wrong load grain, generating the load imbalance.

From these conclusions, we implement four load balancing strategies to mitigate

the problem, two of them focusing on homogeneous platforms and the other two fo-

cused on heterogeneous platforms. On homogeneous scenarios, we apply Round Robin

and Sorted-Greedy heuristics. We achieved a performance gain of 41% with the Sorted-

Greedy heuristic. Regarding heterogeneous solutions, we implemented an Area Bound

Estimation Guided and Heterogeneous Earliest Finish Time (HEFT) approaches, where

we adapted both solutions to our needs. For the ABE-guided solution, we implemented

the linear programming in such a format that we could also extract the vector of distribu-

tion used to achieve the best theoretical makespan. We also changed the HEFT algorithm

to only consider the time spent in each heterogeneous environment to allocate new tasks

to a worker. We tested these two strategies in three heterogeneous scenarios, where we

achieved a performance gain of 78% compared to the original scheduler.

Moreover, due to the static characteristic of our load, we propose a tool that helps

67

in capacity planning for this application. We implemented our four load balancing heuris-

tics in an R-based code which simulates, from a given input containing the benchmark of

any study case and the number of machines involved, a diverse set of possible machine

combinations, and its makespan for one iteration of the method. Our tool delivers an ac-

curate simulation, which enables us to perform such simulation before real executions of

the inversion application. By this simulation, we can further predict the best execution

scenario with the available resources we have at that moment.

As future work, we aim to port part of the application’s code to GPU accelerators.

Once this method applies many matrix operations, we can gain even more performance

on executing these operations on GPUs. To make such improvement is necessary a better

understanding of the numerical methods applied by the inversion process to apply modi-

fications in a correct way.

8.1 Publications

• DAGOSTINI, J.I.;DA SILVA, H. C. P.; PINTO, V. G.;VELHO, R. M.; GASTAL,

E. S. L.;SCHNORR, L. M.. "Improving Workload Balance of a Marine CSEM In-

version Application," 2021 IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW), 2021, pp. 704-713. DOI: <https://doi.org/10.

1109/IPDPSW52791.2021.00107>.

• DAGOSTINI, Jessica; PINTO, Vinicius; SCHNORR, Lucas. Aplicação de Método

Guloso para Balanceamento de Carga em uma Aplicação de Exploração Eletro-

magnética. In: ESCOLA REGIONAL DE ALTO DESEMPENHO DA REGIÃO

SUL (ERAD-RS), 21., 2021, Evento Online. Anais [. . .]. Porto Alegre: So-

ciedade Brasileira de Computação, 2021 . p. 87-88. ISSN 2595-4164. DOI:

<https://doi.org/10.5753/eradrs.2021.14782>.

https://doi.org/10.1109/IPDPSW52791.2021.00107
https://doi.org/10.1109/IPDPSW52791.2021.00107
https://doi.org/10.5753/eradrs.2021.14782

68

REFERENCES

ALAKEEL, A.; ALAKEEL, A. M. A guide to dynamic load balancing in distributed com-
puter systems. IJCSNS International Journal of Computer Science and Network Se-
curity, v. 10, 2010. Available from Internet: <https://www.researchgate.net/publication/
268200851>.

ALAPPAT, C. et al. A recursive algebraic coloring technique for hardware-efficient sym-
metric sparse matrix-vector multiplication. ACM Trans. Parallel Comput., Association
for Computing Machinery, New York, NY, USA, v. 7, n. 3, jun 2020. ISSN 2329-4949.
Available from Internet: <https://doi.org/10.1145/3399732>.

AMESTOY, P. R. et al. Mumps: a general purpose distributed memory sparse solver. In:
SPRINGER. International Workshop on Applied Parallel Computing. [S.l.], 2000. p.
121–130.

BALAY, S. et al. PETSc Web page. 2019. <https://www.mcs.anl.gov/petsc>.

CASANOVA, H.; LEGRAND, A.; ROBERT, Y. Parallel Algorithms. [S.l.: s.n.], 2008.
ISBN 9780429148484.

CASTILLO-REYES, O.; PUENTE, J. de la; CELA, J. M. Petgem: A parallel code for
3d csem forward modeling using edge finite elements. Computers and Geosciences,
Elsevier Ltd, v. 119, p. 123–136, 10 2018. ISSN 00983004.

CONSTABLE, S. Ten years of marine csem for hydrocarbon exploration. GEO-
PHYSICS, v. 75, n. 5, p. 75A67–75A81, 2010.

CONSTABLE, S.; SRNKA, L. J. An introduction to marine controlled-source electro-
magnetic methods for hydrocarbon exploration. GEOPHYSICS, v. 72, n. 2, p. WA3–
WA12, 2007. Available from Internet: <https://doi.org/10.1190/1.2432483>.

CORRÊA, J.; RÉGIS, C. T. 1d CMP inversion of MCSEM data to create a 3d geoelec-
trical model. In: SEG Technical Program Expanded Abstracts 2017. [S.l.]: Society of
Exploration Geophysicists, 2017.

da Piedade, A. A. et al. Computational cost comparison between nodal and vector finite
elements in the modeling of controlled source electromagnetic data using a direct solver.
Computers and Geosciences, v. 156, p. 104901, 2021. ISSN 0098-3004.

DAGOSTINI, J. I. et al. Improving workload balance of a marine csem inversion appli-
cation. In: 2021 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). [S.l.: s.n.], 2021. p. 704–713.

DAVIS, T. A.; HU, Y. The university of florida sparse matrix collection. ACM Trans.
Math. Softw., Association for Computing Machinery, New York, NY, USA, v. 38, n. 1,
dec 2011. ISSN 0098-3500. Available from Internet: <https://doi.org/10.1145/2049662.
2049663>.

DONGARRA, J. et al. With extreme computing, the rules have changed. Computing in
Science Engineering, v. 19, n. 3, p. 52–62, 2017.

https://www.researchgate.net/publication/268200851
https://www.researchgate.net/publication/268200851
https://doi.org/10.1145/3399732
https://www.mcs.anl.gov/petsc
https://doi.org/10.1190/1.2432483
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663

69

FOSTER, I.; FOSTER, J. Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering. Addison-Wesley, 1995. (Literature and Phi-
losophy). ISBN 9780201575941. Available from Internet: <https://books.google.com.br/
books?id=r5JsQgAACAAJ>.

GAREY, M. R.; JOHNSON, D. S. Computers and intractability. [S.l.]: freeman San
Francisco, 1979.

GEORGE, E. et al. Statistics for experimenters: design, innovation, and discovery.
[S.l.]: Wiley New York, 2005.

GOLUB, G.; ORTEGA, J. M. Chapter 1 - the world of scientific computing. In: GOLUB,
G.; ORTEGA, J. M. (Ed.). Scientific Computing. San Diego: Academic Press, 1993.
p. 1–14. ISBN 978-0-12-289253-0. Available from Internet: <https://www.sciencedirect.
com/science/article/pii/B9780122892530500051>.

GRAYVER, A. V.; BüRG, M. Robust and scalable 3-D geo-electromagnetic modelling
approach using the finite element method. Geophysical Journal International, v. 198,
n. 1, p. 110–125, 04 2014. ISSN 0956-540X. Available from Internet: <https://doi.org/
10.1093/gji/ggu119>.

GRAYVER, A. V.; STREICH, R.; RITTER, O. Three-dimensional parallel distributed in-
version of CSEM data using a direct forward solver. Geophysical Journal International,
Oxford Academic, v. 193, n. 3, p. 1432–1446, 2013. ISSN 0956540X.

INC., P. T. Plotly: Collaborative data science. Montreal, QC: Plotly Technologies Inc.,
2015. Available from Internet: <https://plot.ly>.

KEY, K. 1D inversion of multicomponent, multifrequency marine CSEM data: Method-
ology and synthetic studies for resolving thin resistive layers. Geophysics, v. 74, n. 2, p.
F9–F20, 02 2009. ISSN 0016-8033.

KEY, K. Marine em inversion using unstructured grids: A 2d parallel adaptive finite el-
ement algorithm. In: . [S.l.]: Society of Exploration Geophysicists, 2012. p. 574–578.
ISBN 9781622769452.

KEY, K. Mare2dem: A 2-d inversion code for controlled-source electromagnetic and
magnetotelluric data. Geophysical Journal International, Oxford University Press,
v. 207, p. 571–588, 10 2016. ISSN 1365246X.

KEY, S. W.; KRIEG, R. D. Comparison of finite-element and finite-difference meth-
ods**this work was supported by the united states atomic energy commission. In:
FENVES, S. J. et al. (Ed.). Numerical and Computer Methods in Structural Me-
chanics. Academic Press, 1973. p. 337–352. ISBN 978-0-12-253250-4. Available from
Internet: <https://www.sciencedirect.com/science/article/pii/B9780122532504500191>.

KNüPFER, A. et al. Score-p: A joint performance measurement run-time infrastructure
for periscope, scalasca, tau, and vampir. Tools for High Performance Computing 2011,
Springer Berlin Heidelberg, p. 79–91, 2012. Available from Internet: <http://dx.doi.org/
10.1007/978-3-642-31476-6_7>.

Korhonen, J.; You, J. Peak signal-to-noise ratio revisited: Is simple beautiful? In: Int.
WS on Quality of Multimedia Exp. [S.l.: s.n.], 2012. p. 37–38.

https://books.google.com.br/books?id=r5JsQgAACAAJ
https://books.google.com.br/books?id=r5JsQgAACAAJ
https://www.sciencedirect.com/science/article/pii/B9780122892530500051
https://www.sciencedirect.com/science/article/pii/B9780122892530500051
https://doi.org/10.1093/gji/ggu119
https://doi.org/10.1093/gji/ggu119
https://plot.ly
https://www.sciencedirect.com/science/article/pii/B9780122532504500191
http://dx.doi.org/10.1007/978-3-642-31476-6_7
http://dx.doi.org/10.1007/978-3-642-31476-6_7

70

LEVENBERG, K. A method for the solution of certain non-linear problems in least
squares. Quarterly of Appl. Math., v. 2, n. 2, p. 164, 1944.

LONG, Z. et al. Parallelized 3-D CSEM Inversion With Secondary Field Formulation
and Hexahedral Mesh. IEEE Trans. on Geo. and Rem. Sens., Institute of Electrical and
Electronics Engineers (IEEE), v. 58, n. 10, p. 6812, 2020. ISSN 0196-2892.

MARQUARDT, D. W. An algorithm for least-squares estimation of nonlinear parameters.
Journal of the society for Industrial and Applied Mathematics, SIAM, v. 11, n. 2, p.
431–441, 1963.

MERTENS, S. Number partitioning. Computational Complexity and Statistical
Physics, Oxford University Press on Demand, p. 125, 2006.

MITTET, R. High-order finite-difference simulations of marine csem surveys using a cor-
respondence principle for wave and diffusion fields. Geophysics, Society of Exploration
Geophysicists, v. 75, n. 1, p. F33–F50, 2010.

NESI, L. L.; LEGRAND, A.; SCHNORR, L. M. Exploiting system level heterogeneity to
improve the performance of a geostatistics multi-phase task-based application. In: 50th
International Conference on Parallel Processing. New York, NY, USA: Association
for Computing Machinery, 2021. (ICPP 2021). ISBN 9781450390682. Available from
Internet: <https://doi.org/10.1145/3472456.3472516>.

NOCEDAL, J.; WRIGHT, S. J. Numerical Optimization. [S.l.: s.n.], 2006.

PEARCE, O. et al. Quantifying the effectiveness of load balance algorithms. In: Proceed-
ings of the 26th ACM international conference on Supercomputing. [S.l.: s.n.], 2012.
p. 185–194.

PETHICK, A.; HARRIS, B. Macro-parallelisation for controlled source electromag-
netic applications. Journal of Applied Geophysics, v. 124, p. 91–105, 2016. ISSN
0926-9851. Available from Internet: <https://www.sciencedirect.com/science/article/pii/
S0926985115300641>.

PINTO, V. G. Performance Analysis Strategies for Task-based Applications on Hy-
brid Platforms. Thesis (PhD) — Université Grenoble Alpes; Universidade Federal do
Rio Grande do Sul (Brésil), 2018.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna,
Austria, 2020. Available from Internet: <https://www.R-project.org/>.

RAUBER, T.; RÜNGER, G. Parallel programming models. In: . Parallel Program-
ming: for Multicore and Cluster Systems. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2013. p. 105–167. ISBN 978-3-642-37801-0. Available from Internet: <https:
//doi.org/10.1007/978-3-642-37801-0_3>.

REN, Z. et al. A goal-oriented adaptive finite-element approach for plane wave 3-D elec-
tromagnetic modelling. Geophysical Journal International, v. 194, n. 2, p. 700–718, 05
2013. ISSN 0956-540X. Available from Internet: <https://doi.org/10.1093/gji/ggt154>.

SCHNORR, L. M. OTF2Utils. Rio Grande do Sul, BR: [s.n.], 2019. Available from In-
ternet: <https://github.com/schnorr/otf2utils>.

https://doi.org/10.1145/3472456.3472516
https://www.sciencedirect.com/science/article/pii/S0926985115300641
https://www.sciencedirect.com/science/article/pii/S0926985115300641
https://www.R-project.org/
https://doi.org/10.1007/978-3-642-37801-0_3
https://doi.org/10.1007/978-3-642-37801-0_3
https://doi.org/10.1093/gji/ggt154
https://github.com/schnorr/otf2utils

71

Silva Crepaldi, J. L.; Pereira Buonora, M. P.; FIGUEIREDO, I. Fast marine CSEM inver-
sion in the CMP domain using analytical derivatives. Geophysics, Society of Exploration
Geophysicists, v. 76, n. 5, p. F303–F313, sep. 2011. ISSN 168033. Available from Inter-
net: <https://doi.org/10.1190/geo2010-0237.1>.

SILVA, N. V. da et al. A finite element multifrontal method for 3d csem modeling in the
frequency domain. GEOPHYSICS, v. 77, n. 2, p. E101–E115, 2012.

SOMMER, M. et al. GPU parallelization of a three dimensional marine CSEM code.
Computers & Geosciences, Elsevier BV, v. 58, p. 91–99, aug. 2013.

SOUZA, V. C. T. de. Modelagem Numérica de Dados mCSEM 3D Usando Com-
putação Paralela. 110 p. Thesis (PhD) — Universidade Federal do Pará, 2007. Available
from Internet: <http://repositorio.ufpa.br:8080/jspui/handle/2011/5673>.

STREICH, R. 3D finite-difference frequency-domain modeling of controlled-source elec-
tromagnetic data: Direct solution and optimization for high accuracy. GEOPHYSICS,
Society of Exploration Geophysicists, v. 74, n. 5, p. F95–F105, 2009. ISSN 0016-8033.

TESSER, R. K. A Simulation Workflow to Evaluate the Performance of Dynamic
Load Balancing with Over-decomposition for Iterative Parallel Applications. Thesis
(PhD) — Universidade Federal Do Rio Grande Do Sul, 2018.

THEUSSL, S.; ZEILEIS, A. Collaborative software development using r-forge. special
invited paper on" the future of r". The R Journal, The R Foundation for Statistical Com-
puting, v. 1, n. 1, p. 9–14, 2009.

TOPCUOGLU, H.; HARIRI, S.; WU, M.-Y. Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and Dis-
tributed Systems, v. 13, n. 3, p. 260–274, 2002.

TROBEC, R. et al. Introduction to Parallel Computing: From Algorithms to Pro-
gramming on State-of-Art Platforms. [S.l.]: Springer, 2018.

WANG, F.; MORTEN, J. P.; SPITZER, K. Anisotropic three-dimensional inversion of
CSEM data using finite-element techniques on unstructured grids. Geophysical Journal
International, Oxford University Press (OUP), v. 213, n. 2, p. 1056, 2018.

WICKHAM, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York, 2016. ISBN 978-3-319-24277-4. Available from Internet: <https://ggplot2.
tidyverse.org>.

WICKHAM, H. et al. Welcome to the tidyverse. Journal of Open Source Software, v. 4,
n. 43, p. 1686, 2019.

WILT, M.; ALUMBAUGH, D. Electromagnetic methods for development and produc-
tion: State of the art. The Leading Edge, v. 17, n. 4, p. 487–487, 1998. Available from
Internet: <https://doi.org/10.1190/1.1437997>.

YANG, P. Boost the efficiency of 3d csem modelling using graphics processing units.
In: EUROPEAN ASSOCIATION OF GEOSCIENTISTS & ENGINEERS. 82nd EAGE
Annual Conference & Exhibition. [S.l.], 2021. v. 2021, n. 1, p. 1–5.

https://doi.org/10.1190/geo2010-0237.1
http://repositorio.ufpa.br:8080/jspui/handle/2011/5673
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://doi.org/10.1190/1.1437997

72

ZHAO, N.; YU, G.; QIN, C. Three-dimensional mcsem inversion based on parallel goal-
oriented adaptive finite element method for large scale problem. In: 24th EM Induction
Workshop. [S.l.: s.n.], 2018. v. 2018, n. 1, p. 1–4.

73

APÊNDICE A — RESUMO EXPANDIDO EM PORTUGUÊS

In this appendix, we present a summary of this Master Dissertation, in Portuguese, as

required by the PPGC Graduate Program in Computing at UFRGS.

Neste apêndice, apresentamos um resumo desta Dissertação de Mestrado, em

Português, conforme determinado pelo Programa de Pós-Graduação em Computação da

UFRGS.

A.1 Motivação

Um dos principais desafios da indústria de petróleo e gás é mapear corretamente

as áreas no oceano onde há maior probabilidade de ocorrência de petróleo e gás. A explo-

ração física de petróleo geralmente requer quantias de dinheiro na ordem de milhões de

dólares. Para ajudar nessa tarefa, cientistas e empresas recorrem a simulações computaci-

onais para reduzir a incidência de operações de perfuração malsucedidas, economizando

tempo e dinheiro. Vários métodos numéricos e computacionais podem ser aplicados a

esta exploração envolvendo dados eletromagnéticos e sísmicos.

Um dos levantamentos eletromagnéticos para simular e investigar computacio-

nalmente as terras oceânicas é o marine Controlled Source Electromagnetic (mCSEM)

(SOUZA, 2007), Método Eletromagnético Marinho de Fonte Controlada, em Português.

Este método utiliza receptores marítimos fixados em uma região específica do fundo oceâ-

nico para coletar dados eletromagnéticos dessas regiões. Um navio carregando um emis-

sor eletromagnético se move nesta área predeterminada e os receptores medem o campo

eletromagnético da região depois que as ondas eletromagnéticas atravessam a subsuper-

fície sob o fundo do mar e refletem. Este levantamento é aplicado para reconhecer os

aspectos do fundo do mar, fornecendo assim informações relevantes sobre a resistividade

da região explorada.

Para interpretar esses dados, precisamos usar métodos numéricos que aplicam uma

inversão matemática para aproximar rapidamente um modelo correspondente da subsu-

perfície em análise e, assim, ter uma melhor compreensão dos elementos que compõem a

região. Tal modelo de subsuperfície é referenciado aqui como o modelo de resistividade e

tem uma estimativa inicial das resistividades da região em análise. A técnica de inversão

de dados é comumente usada em aplicações computacionais de petróleo/gás, pois estes

materiais possuem assinaturas eletromagnéticas bem conhecidas em comparação com ou-

74

tros materiais (KEY, 2009).

Somado aos esforços relacionados aos métodos numéricos, uma perspectiva com-

putacional em qualquer aplicação científica é sempre essencial. Não há área complexa da

ciência que não use computadores para modelagem (GOLUB; ORTEGA, 1993). Dessa

forma, é essencial que não apenas os matemáticos modelem corretamente as equações

numéricas - necessárias para resolver cada problema específico -, mas também que os

cientistas da computação modelem a aplicação de acordo com seus conhecimentos so-

bre desempenho e computabilidade. Buscamos trazer uma perspectiva computacional

propondo e executando uma avaliação prática de desempenho utilizando ferramentas de

última geração para a aplicação de inversão mCSEM estudada.

Neste trabalho, nós estudamos uma aplicação de inversão de dados que usa equa-

ções diretas finitas e a técnica de ponto médio comum, do inglês common mid-point para

lidar com dados coletados do método mCSEM. Essa aplicação mapeia os dados do levan-

tamento eletromagnético para os pontos do modelo de resistividade inicial na inicializa-

ção. Em seguida, em uma fase que chamamos de forward, a aplicação executa equações

numéricas baseadas nos métodos de Maxwell e Levenberg-Marquardt para evoluir o mo-

delo de forma iterativa. Essas equações são a etapa mais computacionalmente cara do

processo de inversão, uma vez que é nela em que se executa a maioria das equações nu-

méricas do método. Para executar essa fase um tempo razoável, precisamos dividir a

carga de trabalho da aplicação entre trabalhadores paralelos.

Clusters de alto desempenho são cruciais para as velocidades de processamento

exigidas desses volumes significativos de dados e processos. Nesses ambientes, usamos

máquinas que possuem um processo poderoso para executar aplicações caras. No entanto,

apenas utilizar esses ambientes não é suficiente para mitigar os custos computacionais.

Precisamos usar as máquinas de cluster da melhor forma possível, garantindo que todos

os recursos estejam e equilibrados. Cada recurso deve receber carga suficiente para com-

putar em uma duração semelhante. Essa distribuição dá a aplicação uma característica de

balanceamento de carga, um ponto chave para sua velocidade.

As técnicas de balanceamento de carga garantem o uso eficiente de recursos em

aplicações de alto desempenho, que aumentam a velocidade e a escalabilidade destes

e combatem o problema de desbalanceamento. Garantir essa eficiência é fundamental

para as aplicações paralelas de hoje, pois pode significar que milhares de núcleos são

alocados para execuções, mas podem ficar ociosos (PEARCE et al., 2012). Há um número

considerável de estratégias de balanceamento de carga estudadas na literatura. Aplicar tais

75

soluções de balanceamento de carga a problemas do mundo real pode contribuir para a

evolução desta área de pesquisa.

Procurar um desequilíbrio de carga em um aplicação requer instrumentação do

código e adição de marcas de tempo para saber quanto tempo cada trabalhador paralelo

leva para executar uma tarefa. Quando os rastros de execução mostram que alguns traba-

lhadores demoram mais para concluir uma tarefa do que outros, temos um desequilíbrio

de carga. A Figura A.1 demonstra esse conceito com nossa aplicação. Descrevemos os

resultados das três primeiras iterações de uma execução com 100 iterações, apresentando

o tempo de execução em segundos no eixo X e os trabalhadores paralelos no eixo Y. Nes-

ses rastros, o primeiro trabalhador termina suas tarefas 2, 3× mais rápido que o décimo

nono trabalhador. Esses resultados nos motivam a aplicar melhorias computacionais em

nossa aplicação investigada.

Figura A.1 – Exemplo de execução com distribuição desbalanceada, gerado a partir de dados
coletados da execução da aplicação em estudo.

0

20

40

60

0 100 200 300 400
Tempo [seg]

Tr
ab

al
ha

do
re

s
P

ar
al

el
os

Fonte: Autor

Melhorias nas aplicações mCSEM têm alguns outros relatos na literatura. (ZHAO;

YU; QIN, 2018) e (SILVA et al., 2012) apresentaram trabalhos sobre melhorias numéricas

no processo de inversão. O primeiro aplicou um algoritmo de campo total ao processo

de inversão, usando um modelo em camadas 3D e a biblioteca METIS para o particio-

namento do domínio. A segunda dividiu a aplicação de inversão em dois componentes e

utilizou um método de particionamento multinível, aplicando a biblioteca MUMPS para

paralelização e um código MPI+OpenMP híbrido. Caso contrário, (LONG et al., 2020) e

(da Piedade et al., 2021) discutem os benefícios de usar a biblioteca Pardiso para obter ga-

nhos de velocidade computacional. Paradiso é um software para resolver grandes sistemas

lineares esparsos em memória compartilhada e distribuída (ALAPPAT et al., 2020). No

entanto, nenhum trabalho focou em estratégias de balanceamento de carga para melhorar

76

o desempenho. Aplicamos heurísticas de balanceamento de carga de última geração em

nosso trabalho e propusemos um planejamento de capacidade com tais estratégias.

A.2 Contribuições

Encontramos espaço para melhorias em nossa aplicação com uma análise de dese-

quilíbrio de carga. Identificamos que o problema provinha na política de distribuição de

carga de trabalho original, impactando diretamente na fase de forward paralela. A partir

disso, implementamos e avaliamos heurísticas de balanceamento de carga para melhorar

a aplicação, considerando a necessidade de distribuir tais dados de acordo com o mapa de

resistividade fornecido. Nosso objetivo foi de aumentar a velocidade da aplicação usando

melhor os recursos computacionais disponíveis e melhorando sua escalabilidade em clus-

ters homogêneos e heterogêneos. Além disso, devido à característica estática da carga

em cada ambiente onde foi executada, também propomos um planejamento de capaci-

dade, do inglês capacity planning, para auxiliar no planejamento de execução em clusters

maiores e heterogêneos. Desenvolvemos uma ferramenta interativa que ajuda a determi-

nar quanto tempo o programa levará para ser executado em um conjunto diversificado

de combinações de máquinas. Tal recurso traz um passo versátil e decisivo na execu-

ção dessa aplicação de inversão de dados, permitindo-nos antecipar como nossa execução

se comportará em uma determinada configuração. Tais previsões suportam um melhor

escalonamento de recursos.

Em resumo, estas são as principais contribuições:

• Propomos uma análise de desempenho, com foco na compreensão do código da

aplicação e sua instrumentação, além da identificação das suas principais regiões

de execução de acordo com o método numérico aplicado. Essa análise nos levou a

identificar um desequilíbrio de carga na aplicação.

• Estudamos e implementamos heurísticas de balanceamento de carga para ambientes

homogêneos e heterogêneos, ampliando as possibilidades de execução em diferen-

tes cenários. Em cenários homogêneos, aplicamos as heurísticas Round Robin e

Sorted-Greedy, onde alcançamos um ganho de desempenho de 41% com a heurís-

tica Sorted-Greedy. No que diz respeito às soluções heterogêneas, implementamos

as abordagens Area Bound Estimation (ABE) Guided e Heterogeneous Earliest Fi-

nish Time (HEFT), e alcançamos 78% de melhoria de desempenho com o algoritmo

77

HEFT.

• Desenvolvemos um planejamento de capacidade para a aplicação, baseado em da-

dos de tempo de execução da mesma em diferentes máquinas e na plataforma de

destino onde ela pode ser executada.

A.3 Conclusões

Neste trabalho investigamos o desempenho computacional de uma aplicação para-

lela baseada em MPI que realiza a inversão de dados do método marine Controlled Source

Electromagnetic. Realizamos análises com uma carga de trabalho sintética para entender

o comportamento da aplicação, a composição de sua carga e a estratégia de distribuição

de carga utilizada. A partir disso, identificamos um problema relacionado ao balancea-

mento de carga, onde a estratégia originalmente usada considerou o grão de carga errado,

gerando o desequilíbrio de carga.

A partir dessas conclusões, implementamos quatro estratégias de balanceamento

de carga para mitigar o problema, duas delas com foco em plataformas homogêneas e as

outras duas com foco em plataformas heterogêneas. Em cenários homogêneos, aplica-

mos as heurísticas Round Robin e Sorted-Greedy. Alcançamos um ganho de desempenho

de 41% com a heurística Sorted-Greedy. No que diz respeito às soluções heterogêneas,

implementamos as abordagens Area Bound Estimation (ABE) Guided e Heterogeneous

Earliest Finish Time (HEFT), onde adaptamos ambas as soluções às nossas necessidades.

Para a solução guiada por ABE, implementamos a programação linear em tal formato

que também pudéssemos extrair o vetor de distribuição utilizado para alcançar o melhor

makespan teórico. Também alteramos o algoritmo HEFT para considerar apenas o tempo

gasto em cada ambiente heterogêneo para alocar novas tarefas a um trabalhador. Testa-

mos essas duas estratégias em três cenários heterogêneos, onde obtivemos um ganho de

desempenho de 78% em relação ao escalonador original.

Além disso, devido à característica estática de nossa carga, propomos uma ferra-

menta que auxilia no planejamento de capacidade para esta aplicação. Implementamos

nossas quatro heurísticas de balanceamento de carga em um código baseado em R que

simula, a partir de uma determinada entrada contendo o benchmark de qualquer caso de

estudo e o número de máquinas envolvidas, um conjunto diversificado de combinações

de máquinas possíveis e seu makespan para uma iteração do método. Nossa ferramenta

oferece uma simulação precisa, o que nos permite realizar tal simulação antes de execu-

78

ções reais da aplicação de inversão. Por esta simulação, podemos prever ainda o melhor

cenário de execução com os recursos disponíveis que temos naquele momento.

Como trabalho futuro, pretendemos portar parte do código da aplicação para ace-

leradores de GPU. Uma vez que este método aplica muitas operações de matriz, podemos

ganhar ainda mais desempenho na execução dessas operações em GPUs. Para fazer tal

aprimoramento é necessário aplicar mudanças de código mais profundas na aplicação, que

contam com um melhor entendimento dos métodos numéricos aplicados pelo processo de

inversão.

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Document Structure

	2 Background
	2.1 Parallel Environments
	2.2 Load Balancing
	2.2.1 Round Robin
	2.2.2 Sorted-Greedy
	2.2.3 Area Bound Estimation - Guided Approach
	2.2.4 Heterogeneous Earliest Finish Time

	3 The mCSEM Inversion Application
	3.1 mCSEM Method
	3.2 The model
	3.3 Inversion Process
	3.4 Parallelization

	4 Related Work
	4.1 Algorithm and Numerical Improvements Focus
	4.2 Computational Improvements Focus
	4.3 Discussion

	5 Contribution: Finding the Imbalance
	5.1 Methodology
	5.2 Mapping Data to the Model
	5.3 Problem Identification
	5.4 Final Remarks

	6 Contribution: Applying Heuristics to the Problem
	6.1 Materials and Methods
	6.2 Theoretical Analysis on a Homogeneous Environment
	6.3 Heuristics in Homogeneous Environments
	6.4 Heuristics in Heterogeneous Environments
	6.5 Numerical Accuracy

	7 Contribution: Capacity Planning
	7.1 Materials and Methods
	7.2 Simulating Real Executions
	7.3 Simulation Validation
	7.4 Hypothetical Test
	7.5 Final Remarks

	8 Conclusion
	8.1 Publications

	References
	Apêndice A — Resumo Expandido em Português
	A.1 Motivação
	A.2 Contribuições
	A.3 Conclusões

