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1. RESUMO

Abundancia e area de distribuicdo sdo duas variaveis de estado cruciais para entendimento das
populagdes, bem como para a categorizacdo de ameaga das espécies pela IUCN. Nesse trabalho,
focamos a ateng@o em quatro espécies da familia Psittacidae—uma das mais ameagadas dentre as
aves—Amazona brasiliensis, A. pretrei, A. rhodocorytha e A. vinacea. No primeiro capitulo,
estimamos o tamanho populacional global de 4. vinacea a partir de contagens replicadas e
discutimos as fontes de incerteza associadas as contagens e estimativas € como minimiza-las. No
segundo capitulo, mapeamos a area de distribuicdo global de A. vinacea a partir de integragdo de
dados de pesquisa com dados de plataformas de ciéncia cidadd e discutimos como levar em
considera¢do as especificidades de cada conjunto de dados, o esfor¢o amostral, as covariaveis de
sitio e a autocorrelagdo espacial nas analises. No terceiro capitulo, reunimos toda a informacao
disponivel na literatura sobre o tamanho populacional das espécies A. brasiliensis, A. pretrei, A.
rhodocorytha e A. vinacea, e mapeamos a area distribui¢do para cada espécie. Dentre as quatro
espécies estudadas, 4. pretrei possui a série temporal mais longa de monitoramento e as maiores

contagens—em torno de 20.000 individuos. A. vinacea ¢ a unica espécie com uma estimativa
estatistica do tamanho populacional—em torno de 8.500 individuos para 2017. O tamanho das
areas estimadas variou de 15.000 km? para A. brasiliensis até 434.000 km? para A. vinacea. A.
rhodocorytha € a espécie que mais urgentemente necessita de estudos de tamanho populacional,
J& que ndo conta com programa de monitoramento. O uso de dados de ciéncia cidada se mostrou
uma ferramenta muito Util para mapeamento de distribui¢do de espécies. Entretanto, para obter
estimativas mais informativas, ¢ crucial que a amostragem e analises levem em consideragdo a
incerteza associada a essas estimativas.

Palavras-chave: modelos N-mixture, modelos de ocupagdo, integracao de dados, Psittacidae,
espécies ameagadas.



2. ABSTRACT

Population size and geographic range are key predictors of extinction risk and are critical to listing
species in [UCN threat categories. Here we focused our attention on four Psittacidae species one
of the most threatened bird families Amazona brasiliensis, A. pretrei, A. rhodocorytha, and A.
vinacea. In the first chapter, we estimated the A. vinacea’s global population size based on
replicated counts. We discussed the uncertainty sources associated with the counts and estimates
and how to minimize them. In the second chapter, we map the A. vinacea’s geographic range based
on the integration of research-based data with citizen-science datasets and we demonstrate how to
include the sampling effort information, spatial autocorrelation, and site covariates to obtain more
precise and more accurate estimates. In the third chapter, we compiled abundance estimates and
counts and estimated the geographic range of species 4. brasiliensis, A. pretrei, A. rhodocorytha
e A. vinacea. Comparing the four species, 4. pretrei is the one with the longest time series of roost
counts e the highest counts (~20,000 individuals). 4. vinacea is the only species with a statistical
estimate of abundance (~8,500 individuals). Estimated range areas varied from 15,000 km? for 4.
brasiliensis to 434,000 km? for A. vinacea. A. rhodocorytha is the species that most urgently need
studies about population size and geographic range. The integration of citizen-science datasets
with research data is a useful tool to map the geographic range of species. However, to obtain more
informative estimates, it is crucial that the sampling and the analysis considering the uncertainty
associated with the estimates.

Keywords: N-mixture models, occupancy models, data integration, Psittacidae, endangered

species.



3. INTRODUCAO GERAL

Abundancia e distribui¢@o sao as duas variaveis de estado mais importantes para caracterizagao
de populacdes (Gaston, 1994; Norris, 2004). Essas variaveis estdo diretamente relacionadas com
o risco de extingdo (Lawton, 1995) e sdo informagdes fundamentais para o manejo e conservacao
das espécies (Caughley, 1994; Norris, 2004). Além disso, sdo incluidas de forma direta, em quatro
dos cinco critérios utilizados atualmente pela International Union for Conservation of Nature
(IUCN) para defini¢do das categorias de ameaga das espécies (Mace et al., 2008). Apesar da
importancia de conhecer a abundancia e distribui¢do das espécies, a obtencdo de estimativas
acuradas geralmente exige coleta de dados em d4reas extensas e envolve alto custo para
monitoramento. A falta de recursos financeiros e a dificuldade em amostrar t€ém limitado o
conhecimento, ndo sé da distribuicdo geografica (Jetz et al., 2012), mas também da abundancia
das espécies.

As amostragens de uma populagdo estdo sujeitas a falhas. Dois nimeros diferentes, oriundos
de duas contagens da mesma populacdo em diferentes momentos nao significam, necessariamente,
alteracdo na abundancia da espécie. Da mesma foram, a ndo-detec¢cdo de uma espécie em um local
ndo representa uma auséncia verdadeira. A discriminacdo entre alteragdo na abundéancia ou
ocorréncia verdadeiras e variagdo ao acaso nas contagens ou deteccdes sO € possivel através da
quantificag@o da incerteza associada a essas estimativas. Levantamentos planejados com amostras
replicadas de um conjunto predeterminado de locais usando protocolos padronizados que
observam a presenca ou auséncia e numero de individuos de espécies-alvo fornecem informacgdes
de alta qualidade, mas sdo raros. Por outro lado, plataformas de ciéncia cidada, como o eBird
(Sullivan et al., 2009), o Xeno-canto (Xeno-canto, 2019) e o WikiAves (WikiAves, 2019) tém

ganhado popularidade. Pelo fato de armazenarem milhares de registros de espécies de aves,



conjuntos de dados oriundos de plataformas de ciéncia cidada tém o potencial de preencher lacunas
no conhecimento sobre a distribuicdo e abundancia das espécies (Altwegg & Nichols, 2018; La
Sorte & Somveille, 2020; Sullivan et al., 2017).

Dentre os grupos animais que mais urgentemente necessitam de estudos sobre abundancia e
distribuicdo, a familia Psittacidae—a maior familia entre as aves ndo-passeriformes—destaca-se,
pois apresenta o maior numero absoluto de espécies ameacadas entre as aves, segundo a [UCN
(BirdLife International, 2021). A perda de hébitat e a retirada de filhotes de ninhos sdo os principais
fatores causando o declinio da abundancia dessas espécies (Collar & Juniper, 1992; Juniper &
Parr, 1998). Por serem dependentes de ambientes florestais, a maioria dos psitacideos utiliza
cavidades naturais para reproduzir (Juniper & Parr, 1998) e sdo impactados diretamente pela
destruicdo das florestas (Collar & Juniper, 1992) e corte seletivo de arvores (Cockle et al., 2010),
causados principalmente pela expansdo agroindustrial (Berkunsky et al., 2017; Foley, 2005). A
retirada de filhotes de ninhos afeta principalmente as espécies maiores, as mais coloridas, mais
faceis de capturar e as mais valorizadas no comércio ilegal (Tella & Hiraldo, 2014; Wright et al.,
2001).

O género Amazona, grupo dos papagaios, ¢ o mais diverso dentro da familia Psittacidae,
possuindo 36 espécies distribuidas desde o norte da Argentina até o norte do México (BirdLife
International, 2021). Metade das espécies (18) estio ameacadas em nivel global e 25 delas
apresentam declinio populacional, segundo a lista vermelha da ITUCN (BirdLife International,
2021). A retirada de filhotes de ninhos foi reportada por Wright et al. (2001) como a principal
causa de mortalidade para quatro espécies: A. vinacea, A. kawalli, A. ochrocephala, e A.
auropalliata. A perda de habitat ¢ também uma ameaca para o género, especialmente em biomas

onde o desmatamento ¢ mais intenso, como na Mata Atlantica. Habitat para sete espécies de



papagaios (del Hoyo et al., 2017), a Mata Atlantica ¢ a segunda maior floresta na América do Sul
(Ribeiro et al., 2011; Tabarelli et al., 2010) e um hotspot de biodiversidade (Ribeiro et al., 2011).
Entretanto, o bioma perdeu quase 90% da sua cobertura original desde a chegada dos europeus e
apenas 1% da sua extensdo original estd incluida em 4reas protegidas (Ribeiro et al., 2009).
Considerando o efeito do uso da terra nas populagdes de papagaios na Mata Atlantica (Vergara-
Tabares et al., 2020), bem como a importancia do género Amazona dentro da familia Psittacidae,
buscamos nesta tese entender a distribui¢do e tamanho populacional das quatro espécies de
papagaios mais emblematicas da Mata Atlantica: A. brasiliensis, A. rhodocorytha, A. vinacea, € A.
pretrei. Estas sdo espécies endémicas da Mata Atlantica (Vale et al., 2018) e classificadas pela
TUCN como Quase-ameagada, Vulneravel, Em perigo e Vulneravel, respectivamente.

Para entender a distribuicdo e tamanho populacional das quatro espécies de papagaios
endémicas da Mata Atlantica, integramos dados de diferentes fontes. No capitulo 1, estimamos a
abundancia global de A. vinacea a partir de contagens da populacdo realizadas por diferentes
grupos de pesquisa em dormitorios conhecidos ao longo da distribuicao da espécie. Nesse capitulo,
discutimos também as fontes de incerteza associadas a estimativa de abundancia e como minimiza-
las a partir do delineamento amostral e andlise estatistica. No capitulo 2, utilizamos modelos de
ocupagao de sitios com integracao de dados de pesquisa e de plataformas de ciéncia cidada (eBird,
WikiAves e Xeno-canto) para mapear a distribuicdo de A. vinacea. Neste capitulo, mostramos
como incluir integracdo de dados, covariaveis de amostragem, covaridveis de sitio e autocorrelacao
espacial gera mapas mais acurados e precisos da distribui¢do da espécie em comparacdo a modelos
que ndo incluem todos esses fatores. No capitulo 3, reunimos toda a informagao disponivel sobre
distribuicdo e tamanho populacional para as quatro espécies de papagaios: A. brasiliensis, A.

rhodocorytha, A. vinacea, e A. pretrei. A partir de dados de pesquisa e plataformas de ciéncia



cidada, mapeamos a distribui¢ao das quatro espécies e, a partir de dados disponiveis na literatura,
discutimos como o niimero de individuos de cada espécie mudou ao longo do tempo. A atualizagao
no status do conhecimento sobre distribui¢do e tamanho populacional das quatro espécies na Mata
Atlantica contribui para defini¢do de esforgos futuros de monitoramento e conservacao, além de
servir como base para categorizagdo de ameaca das espécies pela [UCN. Além disso, os métodos
de analise envolvendo integragdo de dados desenvolvidos nesta tese poderdo ser aplicados para

outros grupos de animais, contribuindo para melhor conhecimento sobre distribui¢do e abundancia.
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5. CAPITULO 1: Addressing multiple sources of uncertainty in the estimation of
global parrot abundance from roost counts: A case study with the Vinaceous-
breasted Parrot (Amazona vinacea)
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Population size is a key predictor of extinction risk and is critical to listing species in IUCN threat categories.
Assessing population size can be particularly difficult for gregarious species, such as parrots—one of the most
threatened bird families—whose ecology and behavior generate multiple sources of uncertainty that need to be
addressed in monitoring efforts. To improve estimates of abundance for the endangered Vinaceous-breasted
Parrot (Amazona vinacea), we combined extensive roost counts over the global range of the species (Argentina,
Paraguay, Brazil) with an intensive regional survey designed to address five sources of uncertainty about parrot
abundance in western Santa Catarina state (WSC), Brazil, in 2016 and 2017. We estimated abundance at both
regional and whole-range scales using N-mixture models of replicated count data, which account for imperfect
detection. The regional-scale estimate was 1826 = 236 and 1896 + 105 individuals for 2016 and 2017, re-
spectively; global abundance was estimated at 7789 = 655 and 8483 = 693 individuals for the same two years.
We found no statistical evidence of population change at either scale of the analysis. Although our assessments of
abundance and geographic range are larger than those currently reported by the IUCN, we suggest the
Vinaceous-breasted Parrot should remain in the ‘Endangered’ IUCN threat category pending further investigation
of population trends. We recommend that roost-monitoring programs for parrots consider and address sources of
uncertainty through adequate field protocols and statistical analyses, to better inform assessments of population
size, trends, and threat status.

1. Introduction categories (Mace et al., 2008). Among the animal groups in most urgent

need of abundance information, parrots (Psittaciformes) stand out for

Population size is arguably the most important state variable in
population biology (Gaston, 1994); along with range size, it is the best
predictor of extinction risk (Lawton, 1995) and plays a central role in
population management (Caughley, 1994; Norris, 2004). Abundance is
directly implicated in three of the five IUCN (International Union for
the Conservation of Nature) criteria for listing species in threat
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having the highest number of threatened species of all non-passerine
bird orders (Olah et al., 2016). Of 394 extant species of parrots, 117
(29%) are listed as threatened, and 81 of these are declining, according
to the IUCN (BirdLife International, 2020). The key causes of parrot
population decline are habitat loss—due to deforestation and agroin-
dustrial expansion—, and nest poaching —due to illegal pet trade
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Fig. 1. Estimated number of Vinaceous-breasted Parrots per roost (circles), hypothetical IUCN range areas (dashed polygons), and potential extent of Araucaria
angustifolia forests (gray polygon). Concentric circles show estimates from 2016 (gray) and 2017 (empty), with sizes corresponding to the abundance classes shown in
the legend. When the estimates from both years fall in the same class, the superimposed circles appear as a single gray circle. The set of short-dash polygons represent
the IUCN ‘Extant’ range, while the single, larger, long-dash polygon representes the IUCN ‘Possibly Extant’ range. Gray, upper-case labels indicate Paraguay (PY), the
Argentinian province of Missiones (AR), and the six Brazilian states mentioned in the text: Espirito Santo (ES), Minas Gerais (MG), Sao Paulo (SP), Parana (PR), Santa

Catarina (SC), and Rio Grande do Sul (RS).

(Berkunsky et al., 2017; Olah et al., 2016; Wright et al., 2001). How-
ever, statistical estimates of parrot population size remain difficult to
obtain and are available for very few species (Dénes et al., 2018;
Marsden and Royle, 2015).

The globally endangered Vinaceous-breasted Parrot (VBP; Amazona
vinacea) is restricted to the Atlantic Forest biome, mostly within Brazil
but with small areas of occurrence in the Argentinian province of
Misiones and eastern Paraguay (Carrara et al., 2008; Cockle et al.,
2007; Prestes et al., 2014; Segovia and Cockle, 2012; Fig. 1). VBPs
appear to be associated with the ancient Parana Pine (Araucaria angu-
stifolia; Cockle et al., 2019; Collar et al., 2017; Tella et al., 2016), but
they also forage and nest in other trees (Bonaparte and Cockle, 2017;
Cockle et al., 2007; Prestes et al., 2014), and their incompletely known
geographic range extends beyond the current range of Araucaria forests
(Carrara et al., 2008; Cockle et al., 2007; Collar et al., 2017). As with
many other parrot species, incomplete knowledge about the VBP geo-
graphic range and population size results in part from movements as-
sociated with temporal variation in food availability (Renton et al.,
2015; Webb et al., 2014). Seasonal movements reportedly coincide with
the fruiting of Ocotea puberula, Podocarpus lambertii, Vitex mega-
potamica, Jucara palms (Euterpe edulis), and Araucaria pines (Collar
et al., 1992; Forshaw, 2010; Prestes et al., 2014). Unpredictable
movements make it difficult to anticipate where parrots will be, or
whether parrots seen in different places are the same or different in-
dividuals, presenting interesting challenges to the estimation of popu-
lation size. According to the IUCN, the extant geographic range of the
VBP covers approximately 145,700 km? (BirdLife International and
Handbook of the Birds of the World, 2016; Fig. 1). This range consists of

five major patches (>10,000 km?), and eleven relatively small patches
(<1000 km?). Average distance between major patch centroids is
834 + 379 km, revealing a discontinuous VBP distribution. Such dis-
continuity reflects not only the species' true range, but also the scarcity
of information about population structure and movements. Accord-
ingly, the IUCN recently updated the range map with a larger, ‘possibly
extant’ layer that encloses all of the patches above (Fig. 1).

One traditional method to assess parrot abundance is to count in-
dividuals as they enter or leave communal roosts, a technique used for
VBP over the last two decades (Casagrande and Beissinger, 1997; Abe,
2004; Cougill and Marsden, 2004; Cockle et al., 2007; Segovia and
Cockle, 2012). Our field observations prior to this work suggest that, as
in many parrot species, VBPs disperse in pairs across the species' range
while courting and breeding (July-December), begin congregating in
communal roosts towards the end of the breeding season (December
—January), and may or may not continue to use these roosts throughout
the entire non-breeding period (until June). As a result, during the
January—June non-breeding period, the number of VBPs can vary from
fewer than ten to hundreds of individuals, both among roosts and
among days at the same roost (Abe, 2004; VZ, unpublished data). When
August begins, there are virtually no parrots left at communal roosts
and the population is once again dispersed across hundreds of nesting
sites. Despite difficulties inherent to locating roosts and counting the
number of individuals, roost counts remain one of the most popular and
cost-effective ways of assessing the abundance of parrots (Matuzak and
Brightsmith, 2007; Dénes et al., 2018).

Roost count design varies but always involves locating roosts,
choosing the appropriate time for counting, and actually counting a
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number that is as close as possible to the real number of animals present
(Casagrande and Beissinger, 1997). In order to improve knowledge of
the distribution and abundance of parrots from roost counts, one should
approach the three tasks of locating, timing, and counting in a way that
minimizes the magnitude of five key sources of uncertainty about the
end result. Although we focus on one parrot species, the same sources of
uncertainty arise for researchers assessing the abundance of other
gregarious species, such as flamingos (Caziani et al., 2007) or bats
(Mohd-Azlan et al., 2001; Walsh and Harris, 1996). The first and second
sources have to do with locating roosts. First, there is uncertainty about
the extent of the VBP's distribution. When does a gap in the range map
represent true absence of the species vs. absence of observations? This
problem is well represented by the difference between the IUCN ‘Ex-
tant’ and ‘Possibly Extant’ ranges in Fig. 1. The second source is un-
certainty about density of roosts at the regional scale. At what point
should one stop trying to find more roosts to free time for studying
known roosts in detail? The third source of uncertainty concerns
movement of individuals between roosts and constrains the timing of
counts: if roosts correspond to isolated local populations, different
roosts could be counted at any time throughout a non-breeding season.
If, on the contrary, individuals move between roosts, researchers must
account for such movements or count parrots at multiple roosts si-
multaneously. The fourth and fifth sources of uncertainty relate to the
counting technique itself, and address, respectively, false positive and
false negative observations of individuals. A false positive happens
when by mistake a parrot is counted twice or more. A false negative
happens when a parrot that is present at a site is not counted because it
was overlooked.

This paper offers an assessment of VBP abundance for the years
2016 and 2017. We follow a two-pronged approach that combines data
from two spatial scales, two counting techniques, and two research
teams. At the regional scale, we estimate the number of VBPs in
Western Santa Catarina/Brazil (WSC; Fig. 2) while seeking to address
all five sources of uncertainty listed above. We chose to focus the re-
gional research on WSC because a) being an area of intense agro-in-
dustrial activity with no previously published VBP observations, it has
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been left out of the species' IUCN Extant map; b) it sits between two
important VBP habitat areas in different countries (Misiones, in Ar-
gentina, and the Araucaria forests of Eastern Santa Catarina, in Brazil),
and c) based on our previous experience, we expected to find roosts that
were not yet documented in WSC. At the whole-range scale, we provide
a global statistical estimate of the species based on counts of parrots
observed in all VBP roosts known to us, throughout the entire range of
the species.

2. Methods
2.1. Whole-range sampling

Whole-range sampling took place over 98 sites spanning an area
from northern Minas Gerais, in the north, to northeastern Rio Grande
do Sul, 1500 km to the south. The area extends west to, and includes
eastern Paraguay, as well as the Argentinian province of Misiones
(Fig. 1). Approximately one quarter (22) of the count sites are inside the
IUCN Extant range of the VBP, with the remaining three quarters (76)
outside. Sites correspond to regularly-used roosts and to points of fre-
quent flyover by parrots at dawn and dusk (Supplemental Material
Table S1). Our research team and collaborators identified the count
sites, sometimes over decades of VBP observation (e.g. Cockle et al.,
2007; Segovia and Cockle, 2012). All sites are located within the
Atlantic Forest, defined by the southeast Atlantic portion of the ‘tropical
and subtropical moist broadleaf forest’ eco-region of South America
(Olson et al., 2001).

Sampling at the whole-range scale was carried out by 26 volunteer
teams (Supplemental Material Table S1) coordinated by NPP and JM.
Counts took place in 2016 (24-26 March in Argentina, 29 April to 15
May in Paraguay and Brazil) and 2017 (24 April to 15 May in Paraguay
and Brazil only). Each team worked in areas that were familiar to its
members, enabling us to cover most of the range in a short period and
thus minimize the possibility of double-counting between sites. Of the
total 98 sites, 33 were sampled only in 2016, 30 only in 2017, and 35 in
both years (Supplemental Material Table S1). We visited sites once per

400 0 400 800 km
- E——

R Ve

Fig. 2. Regional-scale study area of Western Santa Catarina (light gray). Dark gray indicates every patch of forest (excluding tree plantations) > 5 km? in area,
according to the Brazilian Ministry of the Environment's Mapa de Cobertura Vegetal dos Biomas Brasileiros (MMA, 2007). Circles show the location of all presently
known WSC roosts with their name abbreviations: PS (Palma Sola), CE (Campo Eré), GT (Guatambu), QU (Quilombo), SD (Sdo Domingos), IP (Ipuagu), AL (Abelardo

Luz), ER (Entre Rios), AG (Agua Doce) and LR (Lebon Régis).
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year, counting parrots at the beginning or at the end of the day. Counts
started at dawn (30 min before sunrise) or dusk (90 min before sunset)
and lasted until we could not detect parrot movement into or out of the
roost for 20 min—which always happened within 2 h of the beginning
of the count. The number of counting posts at each site varied between
one and five, located at strategic points for observing movement of
flying parrots in and out of the site area. Each count was performed by a
team of one to ten observers who registered the number of parrots ar-
riving or leaving the area, the flight direction, and the time. Whenever
there was more than one post in a count, observers from different posts
met at the end of the count to compare notes and agree on the minimum
number of individual parrots seen.

2.2. Regional-scale sampling

The regional-scale study area is the western part of the Brazilian
state of Santa Catarina (WSC; IBGE, 2015; Fig. 2), with approximately
100 by 300 km extending West-East between the Uruguay river (to the
South) and the ridgeline that separates the Uruguay and Iguacti wa-
tersheds (to the North). Although mostly deforested, the area adjoins
two large patches of forest habitat: the Atlantic Forest of Misiones, to
the west, and the Araucaria forests of Eastern Santa Catarina, to the east
(Fig. 2). WSC is remarkable for having a high frequency of VBP sight-
ings by citizen scientists (Wikiaves, 2018) in an area that is almost
entirely (88%) outside the IUCN extant range of the species (Fig. 1).
WSC falls within the Araucaria forest and the Interior forest biogeo-
graphic sub-regions of the Atlantic Forest, which have lost, respectively,
87 and 93% of their forest cover since the onset of European coloni-
zation (Ribeiro et al., 2009). Nowadays, the remaining forest patches in
WSC (Fig. 2) are surrounded by agro-industrial development, consisting
mostly of soybean (Glycine max), eucalyptus (Eucalyptus sp.), and pine
(Pinus sp.) plantations (Baptista and Rudel, 2006; Fearnside, 2001). The
ten WSC sampling sites are a subset of the whole-range sites. They
comprise all known VBP roosts in WSC and they all coincide with
Araucaria forest patches >10 m tall. Four of the ten regional sites
(Guatambu, Campo Eré, Abelardo Luz and Agua Doce) have very open to
non-existent vegetation under the Araucaria canopy (Fig. 2).

Fieldwork at the regional-scale was carried out by a single team
coordinated by VZ and ESM. Here, we performed monthly visits to each
site, across two consecutive non-breeding seasons: from December 2015
to July 2016, and from February to June 2017. By employing the same
team for all roost counts of the same month in WSC, we could control
and coordinate field technique much more tightly at the regional than
at the whole-range scale. To avoid counting the same parrots twice in
different roosts during the same month, each visit was performed in the
shortest period possible—between four and ten days, depending on the
number of roosts sampled. Each roost was sampled at dusk and at dawn
of the next day, allowing us to visit two nearby roosts in the same
twelve hour period. The shortest distance between roosts was 19 km
and the longest single-day displacement recorded for radio-tagged VBPs
is 17 km (Prestes et al., 2014). We moved between roosts at the average
speed of 45 km per day; therefore, we find the possibility of double
counting between roosts to be sufficiently small. In all, we completed
13 visits to WSC, eight during 2015-2016 and five during 2017. To
minimize uncertainty about VBP distribution and roost density over the
regional-scale, we spent one day per month searching for roosts and
interviewing WSC residents that we met in the field. As we discovered
new roosts, the number of roosts counted increased from four in De-
cember 2015 to five in February 2016, eight in May 2016, and ten in
May 2017 (Fig. 2; Supplemental Material Table S2). The Lebon Régis and
Entre Rios sites, also located in WSC, were only visited during the
whole-range count of both years. In total, we completed 182 roost
counts at the regional scale.

Regional-scale counts started at dusk (77) or dawn (105 counts),
and lasted until we could no longer detect parrot movements, following
the same times and criteria as described for the whole-range counts. We
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visited every roost before the first count to establish observation posts
in locations suitable for observing the arrival and departure of parrots.
Each count was performed by a team of three observers (one per ob-
servation post), each equipped with a roost area map, a compass, an
audio recorder, and a radio to communicate with team members about
parrots going their way. Every time an observer saw one or more VBPs,
she recorded the number of individuals, the time, and the direction of
flight, as well as any other comments that could help understand the
movement of the birds. At the end of each count, the team of three
observers met to reconcile their notes and agree on one ‘most reason-
able’ (MR) and one ‘highly conservative’ (HC) count result. The dif-
ference between MR and HC counts lies in how observers treat the
possibility of double counting. Suppose, for example, that an observer
sees five parrots arriving at a roost and a few minutes later sees another
arrival of three individuals. Based on this information, the MR count is
eight individuals. Suppose further, however, that one of the observers
in the trio determined that there were unseen, but heard, parrots
leaving the roost during the time between the two observations above.
In this case, the team might judge that there was some, however small,
possibility that the second group of three was a subset of the first group
of five, which had exited the roost undetected and returned within
sight. If that were the case, the HC count should be five and not eight,
because five is the absolute minimum number of birds that the team is
sure to have seen arriving at the roost.

The consideration of MR and HC counts addresses one source of
uncertainty about VBP abundance estimates: the possibility that some
animals may be counted more than once within one count. A second
source of uncertainty is imperfect detection, i.e. the possibility that
some animals are missed. To address imperfect detection, we replicated
counts by working simultaneously with two teams of three observers, at
the same roost and time, in ten of the thirteen sampling months.
Simultaneous replication employed two observers (one from each team
of three) per post, keeping sufficient distance between observers to
preclude overhearing radio communications. Observers from different
teams did not exchange any information about their observations until
each team had separately agreed on its count results. We thus treat
every team-specific count of a given roost and month, whether at dusk
or dawn, as an independent sample of that roost for that month. When
working with two teams counting at dusk and dawn we obtained the
maximum of four replicate counts for one roost and month. Sometimes
it rained and other times we didn't have a second team, but we had
more than one count in 90% of the roost*month combinations. The
crucial difference between sampling designs at the regional- and whole-
range scales was replication. At the regional-scale, we could afford and
strove to replicate counts of the same roost and month as much as
possible.

2.3. Data analysis

We modeled both regional and whole-range data using an N-mix-
ture model approach (Royle, 2004). N-mixture models account for
imperfect detection and estimate the number of individuals per site,
given replicated count data. For each spatial scale, we summarized
counts in an array C with dimensions S by R by M, where S is the
number of roost sites, R is the maximum number of replicate counts per
roost in any month, and M is the number of sampling months. Elements
Cyji of this array give the number of parrots counted in the j™ count of
the i™ roost in the k™ month, withi = 1, ...,S,j =1, ...,R,and k = 1,
..., M. The N-mixture model represents the true number Ny of in-
dividuals in roost i and month k as drawn from a Poisson distribution
with parameter A,. That is, the number of individuals per roost varies
according to a Poisson distribution with mean A, which itself varies
through time. We account for imperfect detection by modeling the
counts Cj as the result of a binomial sample with Nj independent trials
and probability of success px. In short, our models combine the biolo-
gical variation of abundance among roosts with the sampling process of

15



V. Zulian, et al.

parrot detection:

Nj.~Poisson (1)
Cyx~Binomial (Ny, py.).

When a roost i is not sampled in month k, we impute an estimate of
Ny based on the estimate of Ay for that month. Such imputation ac-
counts for the temporal variation in effort and implies that differences
between abundance estimates from different months are not a result of
variation in the number of roosts counted. In the way we set up the
analysis, this imputation is a by-product of our Bayesian model fitting
using MCMC methods (see below).

To analyze regional-scale data, we used two arrays C, of HC and MR
counts, with dimensions S = 10 sites, R = 4 counts, and
M = 13 months. The first eight months correspond to December 2015
through July 2016, while the last five correspond to February-June
2017. Because our counts in WSC were often replicated at different
times of the day, we modeled a binary effect of time of day (dawn vs.
dusk) on logit(p), to account for possible differences in visibility or
parrot behavior between dawn and dusk counts. Models were fit in a
Bayesian framework using gamma-distributed vague priors for A and p
parameters. We implemented models in the BUGS language (Lunn
et al., 2000) running on JAGS (Plummer, 2003) with code adapted from
Kéry and Royle (2016, chap. 6; Supplemental Material Appendix A).
Regional-scale inference is based on draws from the posterior prob-
ability distribution of model parameters using an MCMC algorithm with
three chains, 25,000 iterations and a burn-in stage of 5000 iterations.

Analysis of the whole-range data was based on the same model used
for the regional scale, with some adjustments to model and data
structure. We organized data into an array C with dimensions S = 98
sites, R = 4 counts, and M = 2 ‘months’. The first ‘month’ of whole-
range counts spans the period of late March to early May 2016, the
second is May 2017. The main limitation of the whole-range data is lack
of replicated counts within the same site and month outside WSC and
one of the Misiones sites, i.e. in 87 out of 98 sites. While applying an N-
mixture model to such data, we rely on information from only a few
sites to infer detection probability everywhere else. This is not ideal but
is the best we could do at present with the available data. To avoid
demanding too much from limited information on detection we took
two precautions. First, we simplified the detection model by estimating
p as a constant value through time, across ‘months’. Second, we in-
cluded environmental information—area of remaining Araucaria for-
est—as a covariate of A. We measured Araucaria forest as standardized
cover in a circular buffer with 17 km radius around each roost, which
amounts to an area of 907 km?. We also tried buffer radiuses of 5 and
50 km in exploratory analyses, but elected to use a 17-km buffer be-
cause it corresponds to the longest single-day displacement recorded for
radio-tagged VBPs (Prestes et al., 2014), and indeed resulted in the
highest (positive) slope for the relationship between Araucaria cover
and A. Araucaria forest cover data resulted from the intersection of two
maps: a map of the potential range of South American Araucaria Forest
drawn by Hueck (1966) and georeferenced by Hasenack et al. (2017),
and Ribeiro et al.'s (in prep.) map of existing Atlantic Forest remnants
that are larger than 30-by-30 meters in area. To explore the con-
sequences of the environmental covariate on our assessment of global
population size, we built two alternative models, one without (Model 1)
and the other with (Model 2) a year-dependent effect of Araucaria Forest
cover on A, the average roost population size. All regional-scale counts
used in the whole range analysis were MR counts. As at the regional
scale, we fit models in a Bayesian framework using vague priors.
Whole-range inference was based on an MCMC algorithm with three
chains, 50,000 iterations and a burn-in of 1000 iterations. At both re-
gional and whole-range scales, we ran the MCMC until obtaining a
value of the convergence criterion R-hat lower than 1.1 for all para-
meters.

To assess the Goodness of Fit (GoF) of our models, we applied leave-
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one-out cross-validation (Conn et al., 2018) and a Bayesian p-value
approach (Gelman et al., 1996) on a chi-squared discrepancy statistic T.
For both the regional and the whole-range analysis, the former in-
dicated that our models predicted the observed counts about right on
average, but the latter indicated severe overdispersion. The Bayesian p-
value, reflecting the frequency with which discrepancy is higher for
replicated data (Tyep) than for observed data (Tops), was zero for both
analyses. This was not unexpected, since parrots often travel in pairs,
thus violating the independence assumption of the model. To accom-
modate this, we had experimented with the beta-binomial variant of the
model developed by Martin et al. (2011) and Dorazio et al. (2013) for
group-living animals, which yielded acceptable GoF results, but com-
pletely unrealistic (too high) abundance estimates. This ‘good fit/bad
prediction dilemma’ (Kéry and Royle, 2016) is observed not rarely with
N-mixture models and so far does not have a formal remedy.

Thus, we had to decide between choosing an analysis that ignored
detection error (e.g., some GLMM; Barker et al., 2018) and a simple N-
mixture model that accommodates that key consideration when esti-
mating abundance, but resulting in lack of fit, or overdispersion. We
conducted a simple simulation (see Supplemental Material Appendix
B), where we simulated replicated counts that resembled our data in the
regional analysis. Our simulation randomly varied the degree of over-
dispersion at the site-level in both A and p, and of site-by-occasion level
in p. We then analysed the data set using an intercepts-only N-mixture
model that ignored the resulting lack of fit and estimated the total
population size. As an alternative, p-ignorant method we simply added
up the maximum count across sites. We simulated 1000 data sets and
found that the root mean squared error (RMSE) of the overdispersion-
naive N-mixture model was 25% reduced compared to the p-ignorant
method of adding maximum counts. This led us to choose the formal
estimation method of the N-mixture model.

To accommodate the additional uncertainty stemming from the lack
of fit or overdispersion detected in the GoF test, we chose an ad hoc way
of increasing the uncertainty in our estimates by ‘stretching’ the pos-
terior distributions around their mean. This was motivated by the fre-
quent adoption of variance inflation by some overdispersion factor c-
hat in frequentist analyses of count data, see e.g., Chapter 5 in Cooch
and White (2020) for Cormack-Jolly-Seber models. We estimated the
degree of overdispersion c-hat by the ratio T, / Trep, from above, at 5.6
for the regional and 5.8 for the whole-range scale. To make the pos-
terior distributions more dispersed, we first subtracted from all pos-
terior samples of a parameter its mean, multiplied the result by our
estimate of c-hat and then added back the original mean. All un-
certainty assessments such as posterior SDs or credible intervals were
then based on this ‘stretched’ sample of the posterior of a parameter. In
our simulation, the coverage of this approach for total abundance
summed across roosts was on average only 0.67 and thus considerably
lower than the nominal level of 0.95, but much better than the coverage
of ‘unstretched’ CRIs would have been. Therefore, to be conservative,
we chose the stretching procedure despite its lack of theoretical un-
derpinning.

3. Results

Comparison of most reasonable (MR) and highly conservative (HC)
results from the regional-scale data suggest a small but consistent dif-
ference between counts. Whereas MR counts were always greater than
or equal to HC counts of the same roost and month, they were also less
variable between replicates within the same roost and month
(Supplemental Material Table S2). Accordingly, estimates of detection
probability (p) tended to be higher for MR than for HC results; this was
true in nine out of thirteen months for the whole WSC region (Table 1).
Likewise, MR-based estimates of abundance tended to be more precise
than their HC counterparts: roost and month-specific estimates based
on MR counts were as precise or more precise than those based on HC
counts in 95 of 130 cases (Supplemental Material Table S2). Spatial and
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Table 1
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Western Santa Catarina estimates of the number of Vinaceous-breasted Parrots (N) in all known roosts and the average probability (pgaws) of detecting one parrot
present at those roosts that were visited, at dawn, by month. Values preceded by the ‘*’ sign are standard deviations of the posterior distribution of the parameter in
question. Numbers in parentheses show the sum of the highest counts from each roost sampled in the corresponding month. MR and HC indicate estimates based on,
respectively, ‘most reasonable’ and ‘highly conservative’ count results. Boldface numbers identify the highest N estimate of each year.

Month 2015-2016 2017
N Pdawn N Pdawn

December (MR) 714 + 92 (265) 0.87 = 0.06

(HC) 686 + 106 (244) 0.78 = 0.08

January (MR) 1091 + 190 (335) 0.69 = 0.10

(HO) 956 + 183 (297) 0.68 = 0.12
February (MR) 1826 + 236 (696) 0.67 = 0.08 893 + 90 (426) 0.68 = 0.06
(HO) 1825 + 270 (670) 0.63 = 0.09 754 + 87 (374) 0.70 = 0.07
March (MR) 1364 + 100 (639) 0.87 += 0.03 1151 + 121 (587) 0.78 = 0.08
(HO) 1229 + 99 (588) 0.91 = 0.03 1175 * 176 (529) 0.62 = 0.10
April (MR) 1482 + 173 (562) 0.61 + 0.06 940 + 98 (493) 0.79 = 0.08
(HC) 1546 + 218 (538) 0.53 = 0.07 859 + 131 (418) 0.70 = 0.11
May (MR) 1522 + 166 (997) 0.72 = 0.10 1896 + 105 (1627) 0.76 = 0.06
(HC) 1755 * 336 (965) 0.55 + 0.13 1693 + 74 (1517) 0.82 = 0.05
June (MR) 1397 + 89 (761) 0.80 = 0.04 11,092 = 121 (639) 0.64 = 0.07
(HO) 1329 + 91 (724) 0.78 = 0.04 1100 + 161 (588) 0.53 = 0.09

July (MR) 655 *= 96 (321) 0.73 = 0.09

(HO) 580 + 90 (286) 0.74 = 0.10

temporal variation is qualitatively similar between types of counts, with
MR and HC counts resulting in the same maximum-abundance month
(March 2017) and the same maximum-abundance roost (Lebon Régis).
We also found a small but measurable effect of the time of day on de-
tection probability, with dusk counts having detection probability on
average 0.03 above dawn counts. The 95% credible interval of the
negative ‘dawn’ coefficient excludes zero for both MR and HC data. For
simplicity, we focus on MR results for any WSC-related content in the
remainder of the paper.

Temporal variation in estimated abundance for WSC (summed
across roosts) shows the lowest number of individuals in the two ex-
tremes of the non-reproductive period (Table 1): in December 2015,
with an estimated 714 + 92 individuals (posterior mean + standard
deviation), and in July 2016 with 655 *+ 96 individuals. The highest
aggregate WSC count (1627 individuals) and N estimate (1896 = 105
individuals) were obtained in May 2017. Spatial variation among WSC
roosts shows five of ten roosts — Guatambu, Ipuacu, Abelardo Luz, Agua
Doce and Lebon Régis — reaching N estimates in excess of 200 at some
point during the sampling period. All roosts showed substantial varia-
tion in N between months in both years, but there was no obvious
synchrony in the temporal variation of the number of individuals at
different roosts. As with the highest estimates of N, the lowest were
obtained in different months depending on roost. For example, while
Agua Doce peaked in March 2016 and May 2017, Guatambu did so in
April 2016 and February 2017. Abelardo Luz was the only roost that

Table 2

peaked both years in the same month, in June.

The posterior mean global abundance of VBPs varied slightly be-
tween models and years, but was always smaller than 10,000 in-
dividuals. Model 1 estimated 7789 + 655 individuals (95% Bayesian
credible interval 6586-9184) for 2016, and 8483 + 693 (7181-9977)
for 2017. Model 2 estimated 8012 + 714 individuals (6779-9507) for
2016, and 9039 + 779 (7641-10,677) for 2017. Estimates from Model
2, which includes a relationship between A and Araucaria forest cover,
were slightly higher than those from Model 1, but the 95% credible
intervals from different models in the same year clearly overlap. Both
counts and abundance estimates increased from 2016 to 2017, but there
was overlap between 95% credible intervals of estimates from the same
model in different years. The average probability of detecting a parrot
that is present at a visited roost was 0.70 *= 0.05 under Model 1 and
0.67 = 0.05 under Model 2. There was a smaller difference between
models within year than between years within model, but little statis-
tical support for temporal change in global abundance. The positive
effect (a logit-scale slope parameter) of Araucaria forest cover on A,
estimated by Model 2, differed between years and was higher in 2016
(0.43 + 0.04) than in 2017 (0.16 * 0.04). Such effects amount to a
tripling of abundance as Araucaria cover increases from 20% to 80% of
the buffer in 2016, but only to a 1.3-factor increase accompanying the
same cover change in 2017.

The spatial distribution of Model 1 abundance estimates across re-
gions of the whole range (Table 2) reveals that Brazil accounted for

Roosts visited, total number counted and Model 1 estimates of the number of Vinaceous-breasted Parrots in Argentina, Brazil, and Paraguay during the whole-range
counts of 2016 and 2017. Estimates are given as mean * standard deviation of the posterior distribution. Dashes denote absence of counts in the corresponding

location and year.

Country Region 2016 2017
Roosts Count M1 Roosts Count M1
visited estimate visited estimate
Argentina Misiones 7 252 426 + 56 0 - 605 + 78
Brazil Espirito Santo 0 - 80 *+ 23 1 2 28 = 14
Minas Gerais 5 58 336 = 60 3 135 558 + 70
Parand 16 803 2112 = 198 17 805 2050 + 205
Rio Grande do Sul 6 335 717 £ 75 9 409 642 = 71
Santa Catarina 28 2324 3860 *= 285 31 2606 4197 = 296
Sao Paulo 3 93 164 + 27 2 109 247 = 35
Paraguay Alto Parand 3 23 94 + 27 2 18 156 + 36
Total 68 3888 7789 *= 655 65 4084 8483 = 693
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>90% of the estimated population size in both years. The Brazilian
state of Santa Catarina had the highest number of roosts (41), as well as
the highest estimated population size of all Brazilian regions, ac-
counting for 50% of the total population in both years. Parana had the
second highest estimates among regions, accounting for approximately
25% of the total population. Looking at the spatial variation of abun-
dance estimates per roost, Santa Catarina came out on top again, with
an average of 94 to 102 individuals per roost. The highest number of
individuals estimated at one site was 380 in 2016 and 390 in 2017. The
two estimates came from sites approximately 180 km apart, both in
Santa Catarina and both in May, towards the end of the non-breeding
season. The spatial distribution of Model 2 estimates was qualitatively
similar to that of Model 1. We focus on Model 1 for simplicity and be-
cause it provides the most conservative abundance estimates.

4. Discussion

We developed a counting technique and associated statistical ana-
lysis to estimate VBP abundance at two spatial scales: regional and
whole-range. Our approach sought to address five sources of un-
certainty about parrot abundance related to range limits, roost density,
movement between roosts, false positive—these addressed by our count
technique, and false negative observations—addressed by our statistical
analysis. Based on estimates of abundance for 2016 and 2017, we
provide evidence that the global VBP population consists of a few
thousand, but definitely not more than ten thousand individuals.
Comparison between global abundance estimates from the two years
reveals that even though average estimates were greater in 2017 than in
2016 under both models, there is no statistical evidence that such in-
crease resulted from population growth.

Global population estimates are approximately twice the maximum
number of individuals counted in whole-range counts (Table 2). Since
never >70% of the total known roosts were counted, summed counts
are bound to result in underestimates of the global population size.
Nonetheless, we strongly emphasize that our estimates do not warrant
proposing a category change for the species. The IUCN assigns threat
levels based on a combination of five criteria (Mace et al., 2008). In
order to qualify for one level, a species must meet conditions from any
of the five criteria for that level. Thus, non-fulfillment of one criterion
does not warrant category change. More specifically, non-fulfillment of
the conditions under criterion C (Small population size and decline)
would require examination of range and population dynamic conditions
under the other criteria, which are beyond the scope and possibilities of
our two-year analysis of roost counts. We suggest that the species
should remain in the ‘Endangered’ IUCN threat category pending de-
mographic studies and analysis of the conditions under criteria A, B, D
and E. Ideally, given appropriate coverage of the species range and
understanding of population dynamics, one should be able to assess an
extinction risk for the species, which is demanded by criterion E.

The assessment of extinction risk can only be as good as the un-
derlying estimates of population size. Our regional and global estimates
point out some of the ways in which researchers can address sources of
uncertainty when monitoring VBP and other parrots. At the broadest
level, there is uncertainty about species' ranges. We tried to reduce
uncertainty about the VBP range by searching for new roosts 8 days/
year in WSC, which returned a 150% increase in the number of sam-
pling sites over the 2 years of the study. We covered the northern half of
WSC in more detail than the southern half, which has only one known
roost (Guatambu; Fig. 2), because it has more Araucaria forest and a
higher density of large (=5 km?) forest patches; yet, judging from
verbal reports and the distribution of sightings in WikiAves (Wikiaves,
2018) we believe there are more roosts to be found in the southern part
of WSC. Only one-quarter of the counting sites in the whole-range
counts were inside the IUCN range, showing that range uncertainty
extends well beyond the limits of WSC (Fig. 1). The small areas sug-
gestive of isolated populations in the IUCN Extant range (e.g., Fig. 1)
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may be part of larger areas of continuous use and may be useful starting
points for improving knowledge about the species' distribution.

From the abundance estimates and the spatial distribution of roosts,
it appears that the number of both roosts and individuals per unit area
increases towards the interior of the distribution range (Fig. 1). Roosts
with more than one hundred individuals counted are located in the
three southernmost states of Brazil, in agreement with the pattern of
higher densities towards the center of species' ranges reported by Brown
et al. (1995) and Gaston (2009). The non-homogenous density of in-
dividuals also appears related to the distribution of Araucaria forest
cover, which is centered in southern Brazil (Fig. 1) and offers VBPs an
important food source during the autumn and winter months (Collar
et al., 2017; Prestes et al., 2014; Tella et al., 2016). Model 2 results
suggest that the relationship between Araucaria forest cover and parrot
abundance may change substantially through time, as it decreased by
>50% from 2016 to 2017. Such change is likely due to variability in
the amount, spatial distribution and temporal distribution of Araucaria
angustifolia seed production (Mantovani et al., 2004). When Araucaria
seed production coincides with winter-scarcity of alternative resources,
Araucaria could become a more important food source and a stronger
driver of VBP distribution.

Spatiotemporal variability in environment and demography ne-
cessarily lead to temporal variation in VBP distribution. Such dynamism
is evident in WSC from the disappearance of VBPs from roost sites
during the breeding season, and from the variation in roost estimates
throughout the study (Supplemental Material Table S2). We estimated
the lowest numbers of VBPs during December 2015 and July 2016
(Table 1)—the first and last months of the sampling period of 2016.
Nonetheless, temporal variation of abundance was far from synchro-
nous across roosts (Supplemental Material Table S2). Indeed, estimates
for Sdo Domingos and Abelardo Luz were lowest in January and March of
2016, respectively, neither month being the first or last of the sampling
period. If individuals were breeding in surrounding areas and ag-
gregating at centrally-located roosts for the non-breeding season, we
would expect a gradual accumulation of individuals at all roosts with a
peak in the middle of the non-breeding season. Instead, we observed
irregular temporal variation in roost size, suggesting that VBPs move
well beyond the immediate surroundings of one roost as they track
resources during the non-breeding season (see also Forshaw, 2010;
Prestes et al., 2014). As a result, individuals counted at one roost in a
given month may very well be present at a different roost in another
month. This is why we based our WSC estimate on the month with the
highest estimate of each year (February 2016 and May 2017) and not
on a sum of each roost's highest monthly estimate. Uncertainty about
movement is also the reason behind concentrating monthly counts in as
short a period as possible. We cannot be certain that VBPs don't move
further than the reported maximum daily displacement of 17 km
(Prestes et al., 2014); nonetheless, our own displacement between
roosts was 2.6 times faster. Only two of the ten roosts (Ipuagu and Sao
Domingos) have two neighboring roosts within 30 km of distance, and
these were always sampled on consecutive days minimizing the possi-
bility of parrot movement between counts. Ideally, one would have
different observers counting all the roosts at the same time, but barring
that possibility we believe that our design is one acceptable compro-
mise.

Two further sources of uncertainty originate within counts. These
are double counting (false positive) and imperfect detection (false ne-
gative). They are more methodological in nature, but should also guide
decisions of study design and data analysis for estimating population
sizes. In parrot roost counts, double counting happens when observers
overestimate the number of parrots in a flock, and when parrots move
out of sight and are mistakenly counted as different individuals when
they reappear. Our comparison of MR and HC results was an attempt to
evaluate the consequences of being less or more conservative about the
possibility of double counting. The consequences were negligible: 95%
credible intervals of the MR and HC-based estimates for WSC
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overlapped in all but one month (May 2017). In this month, the dif-
ference was 197 individuals. The tendency for higher precision in MR
than HC estimates stems from a greater agreement among MR, than
among HC results for the same roost and month. All else being equal,
greater similarity of counts fed into an N-mixture model results in
higher estimates of detection probability and therefore greater preci-
sion of the abundance estimate. This is no proof that MR counts are
indeed closer to the true value, but it does support our reliance on the
MR estimates. We suggest that by including MR and HC estimates in
monitoring efforts for other parrots, researchers can assess the potential
effects of double-counting on population estimates.

Despite all our efforts to surround the roosts, work with three-ob-
server teams, and connect each team's observers by radio, the WSC
counts taken by different teams at the same place and time still differed.
This problem of imperfect detection cannot be completely eradicated,
but it should be accounted for. Detection probability (p) was always
estimated to be >0.6 on MR estimates, which is reassuring; however,
its variation through time makes it clear that p can't be estimated once
and subsequently used to correct all counts from then on. Researchers
can address imperfect detection by replicating counts and estimating p
during every time period for which they want to estimate N.
Furthermore, the temporal variation in estimated p suggests that it is
more than a simple function of observer experience. Part of the field
team gained experience with the species, the sites, and the logistics over
the course of the study in WSC, but p did not increase monotonically
from the beginning to the end of the sampling period. Instead, p varied
from month to month without any apparent trend, reaching its max-
imum in March 2016 and its minimum in April 2016 (Table 1). De-
tection at dawn was slightly (though measurably) lower than at dusk,
likely due to mist forming more frequenly during the morning than in
the afternoon, but such intra-day variation was an order of magnitude
lower than the variation between months. We conclude that failure to
detect parrots at roost counts is largely a matter of chance, weather, and
unpredictable parrot movements—not a matter of observer experience.

The difference between the number of parrots estimated and
counted over the whole range is not just due to the failure to detect
some parrots at roosts that were visited. Only 69% of known roosts
were visited in 2016 and 66% in 2017. The Bayesian MCMC-based
implementation of our model accounts for this incomplete coverage by
imputing values of N for each roost that was not visited, in agreement
with the value of A estimated across roosts for the corresponding year.
Multiplying the coverage of 0.66-0.69 by the average detection prob-
ability of 0.67-0.70 estimated by models 1 and 2, one obtains products
of 0.45-0.47, which approximate the ratios of counted to estimated
individuals in Table 2. We thus conclude that the improvement of data
quality for whole-range estimates should benefit more from increasing
the number of sites surveyed than from attempting to increase detection
at each roost, which may be beyond our control.

Habitat loss and nest poaching have caused alarming but poorly
documented declines of many Neotropical parrot populations, in-
cluding VBPs (Berkunsky et al., 2017; Ribeiro et al., 2009; Wright et al.,
2001). Any efforts to protect these species will benefit from improved
knowledge of population size and structure. We hope that our approach
to estimating population size of VBPs in WSC and beyond will motivate
others to obtain replicated counts of parrot roosts for this and other
species and to improve on both our survey design and analyses. In an
attempt to coordinate observers and gather count information for VBPs,
we set up an online count-reporting tool where users can access existing
data and contribute their own. The current version is available in
Portuguese at: http://vivianezulian.azurewebsites.net. The uncertainty
surrounding regional- and whole-range population estimates, however,
is still high enough to justify employing a wide variety of observation
techniques in monitoring Vinaceous-breasted, and other Neotropical
parrots. On one front, citizen science networks such as WikiAves, Xeno-
Canto, and eBird can offer valuable information for mapping species
ranges and reproductive areas. On the other, molecular analysis of

Biological Conservation 248 (2020) 108672

parrots across their range would help understand seasonal movements
and the spatial structure of populations. Progress will require formal
integration of different types of data into one statistical model of species
distribution and abundance. Molecular data collection will require ef-
fective and safe techniques for obtaining parrot DNA without en-
dangering the sampled individuals. Our study illustrates key sources of
uncertainty about parrot abundance estimates, and how they can be
addressed through monitoring protocols and statistical analysis. Criti-
cally, by addressing and estimating uncertainty, parrot monitoring ef-
forts can move beyond minimum or average roost counts to a broader
understanding of what we do and do not know about parrot numbers.
On that basis, one can produce reliable assessments of population
trends over time.
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Supplemental Material Table S1. Whole-range count sites by country and region, with contact
observer, and the year sampled. Contacts given with initials are co-authors of this paper.

Ic{gggrrly and Site Contact Year Sampled
2016 2017
ARGENTINA
Misiones 1. San Pedro — Centro KC* and Bianca Bonaparte X
2. San Pedro — Siete Estellas KC and Bianca Bonaparte X
3. Cruce Caballero KC and Bianca Bonaparte X
4. Alegria KC and Bianca Bonaparte X
5. Tobuna KC and Bianca Bonaparte X
6. Santa Rosa KC and Bianca Bonaparte X
7. Irigoyen KC and Bianca Bonaparte X
BRAZIL
Espirito Santo 8. Dores do Rio Preto Tatiane Pongiluppi X
Minas Gerais 9. Minas Gerais Sérgio Carvalho X
10. Carrancas e Minduri Kassius Santos X X
11. Baipendi Emanuell Ladroz X
12. Santo Antdnio do Grama Leonardo Miranda X
13. Luminarias Kassius Santos X
14. Serra do Cipo Lucas Carrara X
15. Crisolita Marina Somenzari X
Parana 16. General Carneiro A NPP+, IM§ and RTJrq X X
17. General Carneiro B NPP, JM and RTJr X
18. General Carneiro C NPP, JM and RTJr X
19. General Carneiro D NPP, JM and RTJr X
20. General Carneiro E NPP, JM and RTJr X
21. Bituruna NPP, JM and RTJr X
22. Curitiba A Roberto Bogon X
23. Curitiba B Romulo da Silva X
24. Curitiba C Rafael Sezerban X
25. Curitiba D Roberto Bogon X
26. Curitiba E Roberto Bogon X
27. Curitiba F Rafael Sezerban X
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Supplemental Material Table S1: (cont.)

Ic{gggrrly and Site Contact Year Sampled
2016 2017
28. Bocaitiva do Sul A Elenise Sipinski X X
29. Bocaiuva do Sul B Romulo da Silva X
30. Tunas do Parana Roberta Boss X
31. Bocaituva do Sul/Tunas do PR Pedro Scherer-Neto X
32. Bocaitva do Sul C Patricia Serafini X
33. Castro/Pirai do Sul/Jaguariaiva Tony Teixeira X
34. Jaguariaiva Tony A. Bichinky X
35. Tibagi A Romulo da Silva X
36. Tibagi B Romulo da Silva X
37. Coronel Domingos Soares NPP, JM and RTJr X
38. Inacio Martins NPP, JM and RTJr X X
39. Palmas NPP, JM and RTJr X X
40. Pinhdo NPP, JM and RTJr X X
41. Telémaco Borba Roberto Bogon X X
42. Unido da Vitoria NPP, JM and RTJr X
dR(i)Osﬁlr ande 43 Barracio NPP, JM and RTJr X X
44 Sarandi NPP, JM and RTJr X X
45. Coqueiros do Sul NPP, JM and RTJr X
46. Canela NPP, JM and RTJr X X
47. Bom Jesus NPP, JM and RTJr X X
48. Bom Jesus B NPP, JM and RTJr X X
49. Sao José dos Ausentes NPP, JM and RTJr X X
50. Miraguai NPP, JM and RTJr X
51. Dois Irmaos da Missao NPP, JM and RTJr X
Santa Catarina  52. Cerro Negro NPP, JM and RTJr X X
53. Abdon Batista NPP, JM and RTJr X
54. Abelardo Luz VZ** and ESM T+ X X
55. Passos Maia Vanessa Kanaan X
56. Ponte Serrada Vanessa Kanaan X
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Supplemental Material Table S1: (cont.)

Ic{gggrrly and Site Contact Year Sampled
2016 2017

57. Agua Doce VZ and ESM X X
58. Anitapolis NPP, JM and RTJr X

59. Anitapolis B NPP, JM and RTJr X

60. Bom Retiro NPP, JM and RTJr X

61. Campo Belo do Sul NPP, JM and RTJr X X
62. Campo Eré VZ and ESM X X
63. Ipuagu VZ and ESM X
64 Entre Rios VZ and ESM X X
65. Guatambu VZ and ESM X X
66. Irinedpolis NPP, JM and RTJr X X
67. Itaidpolis NPP, JM and RTJr X

68. Lebon Régis NPP, JM and RTJr X X
69. Lebon Régis B NPP, JM and RTJr X X
70. Lebon Régis C NPP, JM and RTJr X

71. Lebon Régis D NPP, JM and RTJr X

72. Lebon Régis E NPP, JM and RTJr X

73. Lebon Régis F NPP, JM and RTJr X
74. Lebon Régis G NPP, JM and RTJr X
75. Lebon Régis H NPP, JM and RTJr X
76. Lebon Régis 1 NPP, JM and RTJr X
77. Lorentino Miguel Angelo Biz X

78. Palma Sola Paulo A. Neto, VZ ¢ ESM X X
79. Urupema NPP, JM and RTJr X X
80. Urupema NPP, JM and RTJr X X
81. Painel NPP, JM and RTJr X X
82. Sdo Joaquim NPP, JM and RTJr X X
83. Sdo Joaquim NPP, JM and RTJr X X
84. Painel NPP, JM and RTJr X X
85. Quilombo VZ and ESM X
86. Santa Cecilia A NPP, JM and RTJr X
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Supplemental Material Table S1: (cont.)

Ic{gggrrly and Site Contact Year Sampled
2016 2017

87 Santa Cecilia B NPP, JM and RTJr X
88. Santa Cecilia C NPP, JM and RTJr X
89. Sdo Domingos VZ and ESM X X
90. Urubici NPP, JM and RTJr X
91. Porto Unido NPP, JM and RTJr X
92. Urubici NPP, JM and RTJr X

Sao Paulo 93. Timburi Fernando Zurdo X
94. Sao Paulo Fernando Zurdo X X
95. Campos do Jordao Luis Fabio Silveira X X

PARAGUAY

Canindeyt 96. Refugio Biologico Carapa ALS§S§ X X
97. Reserva Privada Itabd Rivas AL X

Alto Parana 98. Reserva Biologica de Limoy AL X X

* KC = Kristina L. Cockle

1 NPP = Némora Pauletti Prestes
§ JM = Jaime Martinez

9 RTJr = Roberto Tomasi Jinior
** VZ = Viviane Zulian

11 ESM = Eliara Solange Miiller
§§ AL = Arne Lesterhuis
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Supplemental Material Table S2. Monthly counts and estimates + standard deviation of
the local abundance for each WSC (regional-scale) roost throughout the study period, based
on ‘highly conservative’ (HC) and ‘most reasonable’ (MR) count results. Numbers in
parentheses show the highest count for the corresponding roost and month. Roosts with NA
in parentheses do not have counts in the corresponding month; their estimates for those
months are derived from Model 1. Roost order in the table is longitudinal from West to

East.
Year Month\Roost Palma Sola Campo Eré Guatambu Quilombo Sdao Domingos
2016 December (MR) 1244 (10) 71£24 (NA) 165£10 (155)  71+23 (NA) 83+8 (75)
(HC) 136 (8) 6924 (NA) 157£13 (143)  69+24 (NA) 81+10 (71)
January (MR)  86+18 (65) 11014 (NA) 221426 (175) 109+£32 (NA)  27+13 (10)
HC)  72+17 (53) 96+31 (NA) 192425 (158)  96+31 (NA) 25+14 (10)
February (MR) 129419 (101) 182+41 (NA) 191+26 (141) 18341 (NA)  100£17 (77)
(HC)  126+£21 (94)  182+46 (NA) 192430 (137) 182+45 (NA)  102+19 (75)
March  (MR)  76£7 (68) 136£31 (NA)  61+£7 (51) 136£31 (NA)  32+6 (25)
(HC)  67+£5(63) 123430 (NA) 5145 (47) 123431 (NA) 2745 (24)
April (MR)  32+15(5) 148435 (NA)  246+22(197) 148435 (NA)  59+11 (39)
HC) 4321 (5) 154£39 (NA) 255429 (191) 155+39 (NA)  65£14 (35)
May (MR)  48+16 (25) 47+16 (25) 63£15 (40) 152435 (NA)  83+18(598)
(HC) 72434 (21) 74+35 (24) 81+30 (36) 175+48 (NA)  96+36 (45)
June (MR) 66 (0) 4+4 (0) 4047 (29) 139431 (NA)  35+8 (24)
(HC) 6£6(0) 444 (0) 3748 (26) 132431 (NA)  33+8(22)
July (MR) 38+8 (31) 5549 (46) 18+7 (12) 6523 (NA) 58+10 (45)
(HC)  35£7(30) 4448 (37) 1346 (8) 58422 (NA) 54+11 (42)
2017 February (MR)  173£15(131) 2345 (17) 200+12 (184)  89+25 (NA) 51£10 (32)
(HC) 151£14 (124) 21+4(17) 164£12 (150)  75+25 (NA) 3848 (25)
March  (MR) 202417 (177) 27+8(18) 152415 (125)  1154£29 (NA) 67411 (54)
(HC)  193+£22(162) 36+15 (18) 163+23 (118) 118433 (NA)  63+17 (41)
April (MR)  154+13 (135) 29+5(23) 178£15 (157) 94426 (NA) 4449 (35)
(HC) 145+16 (126) 31+£8(22) 137£19 (113)  86+27 (NA) 40+13 (23)
May (MR)  49+11 (34) 34+10 (20) 183+17 (147)  38+10 (25) 42+11 (27)
(HC) 4248 (34) 2748 (20) 153+12 (135) 26+£7 (19) 3048 (22)
June (MR)  121x17(84)  40=18(5) 117£16 (84)  33+12(12) 76+£15 (45)
(HC) 110£19(81) 49423 (5) 122422 (77)  35+17(8) 82+20 (41)
5
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Supplemental Material Table S2. (cont.)

Year  Month\Roost Ipuagu Entre Rios  Abelardo Luz ~ Agua Doce Lebon Régis
501 December (MR) 7223 (NA)  71:23(NA)  71:22(NA)  26+2(25) 71423 (NA)
(HC) 69424 (NA) 68424 (NA) 68424 (NA)  25+4 (22) 68+24 (NA)
January (MR) 109432 (NA) 109432 (NA) 110433 (NA) 103+17(85)  109+32 (NA)
(HC) 95432 (NA) 96432 (NA) 96431 (NA)  94+17(76)  96+32 (NA)
February (MR) 183+41 (NA) 182441 (NA) 129427 (77) 366434 (300) 182+41 (NA)
(HC) 183+44 (NA) 182444 (NA) 134+31(77)  360+38 (287) 182+44 (NA)
March  (MR) 136+30 (NA)  136+30 (NA) 1945 (14) 495+12 (481)  136+30 (NA)
(HC) 123431 (NA) 123+32 (NA)  17+4 (14) 453+11 (440) 123+£31 (NA)
April (MR) 148435 (NA) 148+35 (NA)  82+17 (48) 323425 (273)  148+35 (NA)
(HC) 155439 (NA) 154439 (NA) 86423 (42)  325+30(265) 154+40 (NA)
May (MR) 152435 (NA) 44422 (8) 14019 (114) 215424 (184) 57922 (543)
(HC) 175447 (NA) 75+39 (8) 164+38 (110)  233+44 (178)  610+40 (543)
June (MR) 139431 (NA) 140431 (NA)  450+12 (433)  304+12 (275) 140+30 (NA)
(HC) 133+32 (NA) 13331 (NA) 430+13 (409) 287+12(267) 133431 (NA)
July (MR) 66422 (NA) 6523 (NA) 16616 (143) 5811 (44) 65423 (NA)
(HC) 58+22 (NA) 58+22 (NA) 155+16 (131)  49+10 (38) 58422 (NA)
sop7 February (MR) 89+25(NA)  8925(NA) 6249 (42) 2846 (20) 89+25 (NA)
(HC) 7525 (NA) 76124 (NA) 57+9 (42) 2245 (16) 75+24 (NA)
March  (MR) 115430 (NA) 115£29 (NA) 202+17 (174)  46+8 (39) 115429 (NA)
(HC) 117433 (NA) 117434 (NA) 198424 (155) 53+15 (35) 118+34 (NA)
April  (MR) 94426 (NA) 94425 (NA)  133+11(122) 27+7(21) 94426 (NA)
(HC) 86+28 (NA) 86+27 (NA) 134+16 (115)  29+11 (19) 86428 (NA)
Ma MR) 328+19 (289 44+19 (6 264+15 (242) 169417 (132)  744+19 (705)
y
(HC) 304+15(280)  30+15 (6) 20712 (193)  146+13 (122)  729+15 (705)
June (MR) 1511 (2) 109429 (NA)  349+18 (320) 122+18(87) 109429 (NA)
(HC) 21+£16 (0) 110+£32 (NA)  336+24 (295) 125423 (81) 110+£32 (NA)
6
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Supplemental Material Appendix A: BUGS language specification of the models used in
estimating Vinaceous-breasted Parrot abundance. Model A is the model used for the
regional scale analysis of Western Santa Catarina data. Models B and C correspond to
Model 1 and Model 2, respectively, in the text; they were used for analyzing data at the
whole-range scale. All models were based on Royle (2004) and Kéry and Royle (2016).

#Model A: Regional analysis with WSC data

#Data object

str(bdata <- list(counts = counts, month = month, site = site, n =
nrow (counts), visit = ncol (counts), nmonth = max(month), morning = COV2-
1))
# Specify model in BUGS language
cat (file = "modelA.txt","
model {
# Priors
# for abundance
for (s in l:nmonth) {
lambda[s] ~ dgamma(0.01, 0.01)
betalO[s] ~ dunif (-10,10)
}
# for detection
betal ~ dunif(-10,10)
# Biological model for true abundance
for(i in 1:n){ # loop over sites
N[i] ~ dpois(lambda[month[i]])
# Observed data at replicated counts
for(j in l:visit) { #loop over visits in each site
counts[i,Jj] ~ dbin(pl[i,3j]l, N[i])
logit(pl[i,j]) <- betalO[month[i]] + betal*morning([i, j]
## Commands for computing Bayesian p-value
eval[i,j] <- pli,3]1*N[i]
E[i,J] <- pow((counts[i,]] - evalli,jl),2) / (evalli,j]l + 0.5)
# Generate replicate data and compute fit stats
C.new[i,j] ~ dbin(pli,j], N[i])
E.new([i,J] <- pow((C.new[1,]j] - evalli,]jl),2)/(evall[i,j1+0.5)
} #counts
} #sites

fit <- sum(E)

fit.new <- sum(E.new)

c.hat <- fit / fit.new

# Total abundance across all sites
Ntotal[l] <- sum(N[1:10]

)
Ntotal[2] <- sum(N[11:20])
Ntotal[3] <- sum(N[21:30])
Ntotal[4] <- sum(N[31:40])
Ntotal[5] <- sum(N[41:50])
Ntotal[6] <- sum(N[51:60])
Ntotal[7] <- sum(N[61:70])
Ntotal[8] <- sum(N[71:80])
Ntotal[9] <- sum(N[81:90])
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Ntotal[1l0] <- sum(N[91:100])
Ntotal[ll] <- sum(N[101:1107)
Ntotal[l2] <- sum(N[111:1207)
Ntotal[1l3] <- sum(N[121:1307)

}
")

# Initial Values

Nst <- apply(counts, 1, max, na.rm=TRUE) + 1
Nst [Nst == '-Inf'] <- 1

inits <- function () {list (N=Nst) }

##Paramets monitored
params <- c('lambda', 'p', 'N', "betaO", "betal", "fit", "fit.new",
"c.hat", "Ntotal")

# MCMC settings
na <- 1000; nc <- 3; nb <- 10000; ni <- 25000; nt <- 20

# Call JAGS
fmA <- jags(bdata, inits, params, "modelA.txt", n.adapt = na, n.chains =
nc, n.thin = nt, n.iter = ni, n.burnin = nb, parallel = TRUE)



#Model B: Whole-range analysis without covariates

#Data object
str(bdata <- list(counts = countsWR, month = mont
nrow (countsWR), wvisit = ncol (countsWR), nmonth =

#Specify model in BUGS language
cat(file = "modelB.txt","
model {

# Priors
# for abundance
for (s in l:nmonth) {
lambda[s] ~ dgamma (0.01, 0.01)
}
# for detection
p ~ dunif(0,1) #fixed for all sites and months

# Biological model for true abundance
for(i in 1:n){ # loop over sites
N[i] ~ dpois(lambda[month[i]])
# Observed data at replicated counts
for(j in 1l:visit) { #loop ove
counts[i,Jj] ~ dbin(p, N[i])
## Commands for computing Bayesian p-val
eval[i,j] <- p*N[i]
E[i,j] <- pow((counts[i,jl-evalli,jl),2)
# Generate replicate data and compute fi

C.new[i,J] ~ dbin(p, N[i])
E.new[i,j] <- pow((C.new[i,]J] - evalli,]
} # reps

} # sites

fit <- sum(E)

fit.new <- sum(E.new)

c.hat <- fit / fit.new

# Total abundance across all sites
Ntotal[l] <- sum(N[1:98])
Ntotal[2] <- sum(N[99:196])

}
")

# Initial Values

Nst <- apply(countsWR, 1, max, na.rm=TRUE) + 1
Nst [Nst == '-Inf'] <- 1

inits <- function () {list (N=Nst) }

# Parameters monitored
params <- c('lambda', 'p', 'N', 'fit', 'fit.new',

# MCMC settings
na <- 1000; nc <- 3; nb <- 10000; ni <- 250

# Call JAGS
fmB <- jags(bdata, inits, params, "modelB.txt", n
nc, n.thin = nt, n.iter = ni, n.burnin = nb, para

(Model 1 in manuscript)

hWR, site = siteWR, n =
max (monthWR) ) )

r visits in each site
ue

/ (evalli,j]l + 0.5)
t stats

1),2)/(eval[i,j]1+0.5)

'c.hat', 'Ntotal')

00; nt <- 20

.adapt = na, n.chains =
llel = TRUE)
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#Model C: Whole-range analysis with covariate on abundance (Model 2 in ms)

#Data object
str(bdata <- list(counts = countsWR, month = monthWR, site = siteWR, n =
nrow (countsWR), visit = ncol (countsWR), nmonth = max (monthWR), arauc =

rep(siteCovsWR[,5],2)))

# Specify model in BUGS language
cat (file = "modelC.txt","
model {

# Priors

# for abundance

for (s in l:nmonth) {

betalO[s] ~ dunif(-10,10)
betal[s] ~ dunif(-10,10)
}
p ~ dunif(0,1) #fixed p between sites and visits of the same month

# Biological model for true abundance
for(i in 1:n){ #loop over sites
N[i] ~ dpois(lambdali])
log(lambda[i]) <- betalO[month[i]] + betal[month[i]]*arauc[i]
#Observed data at replicated counts
for(j in 1l:visit){ #loop over visits in each site
counts[i,Jj] ~ dbin(p, N[i])
eval[i,j] <- p*N[i]
E[i,J] <- pow((counts[i,]Jl-evalli,]J]),2) / (evalli,Jj] + 0.5)
# Generate replicate data and compute fit stats

C.new([i,]Jj] ~ dbin(p,N[i])
E.new([i,J] <- pow((C.new[i,]j] - evalli,jl),2)/(evall[i,j1+0.5)
} #reps
} #sites

fit <- sum(E)
fit.new <- sum(E.new)
c.hat <- fit / fit.new
# Total abundance across all sites
Ntotal[l] <- sum(N[1:98])
Ntotal[2] <- sum(N[99:196])

}

")

#Initial Values

Nst <- apply(countsWR, 1, max, na.rm=TRUE) + 1
Nst [Nst == '-Inf'] <- 1

inits <- function () {list (N=Nst) }

#Parameters monitored
params <- c('lambda', 'p', 'N', 'betalO', 'betal', 'fit', 'fit.new',
'c.hat', 'Ntotal')

#MCMC settings
na <- 1000; nc <- 3; nb <- 10000; ni <- 25000; nt <= 20

#Call JAGS
fmC <- jags(bdata, inits, params, "modelC.txt", n.adapt = na, n.chains =
nc, n.thin = nt, n.iter = ni, n.burnin = nb, parallel = TRUE)
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Supplemental Material Appendix B: Simulation assessment of (1) the coverage of the
posterior-stretching procedure, and (2) the choice of an overdispersion-naive binomial N-
mixture model over a p-ignorant approach

We conducted a simple simulation with two goals:

(1) To assess the coverage of credible intervals that are computed from a 'stretched'
posterior distribution as described in the main text of the article. By ‘coverage’ we
mean the extent to which estimation credible intervals cover the true values of
parameters fed to the simulation.

(2) To assess the estimation error associated with our use of an overdispersion-naive
binomial N-mixture model and compare it with a p-ignorant method that simply
adds maximum counts across sites.

For this, we simulated 1000 data sets that contained heavy overdispersion in both
abundance and detection. Sample sizes were 130 sites and 2 replicate counts, with average
abundance of 120 and average detection 0.7; these resembled the constraints and estimates
of our whole-range analysis. Then, we analyzed each simulated data set with a simple
binomial N-mixture model that had only an intercept for abundance and another one for
detection. Thus, this model was overdispersion-naive in the sense that it did not take
overdispersion into account by trying to estimate it. At the same time, for each data set, we
took the maximum count simulated at each site and added this up across sites for a p-
ignorant estimate of Ntotal, the total abundance across all 130 sites.

We simulated the overdispersed replicated count data sets using function simNmix in the
AHMbook R package (Kéry, Royle & Meredith 2020). In this function, overdispersion can
be simulated by adding Gaussian noise at the site level into the linear predictor for the log-
linear model of abundance, or at the site, occasion, or site-by-occasion (= 'survey') level
into the linear predictor for the logit-linear model of detection. The magnitude of each
component of overdispersion is governed by the value of the standard deviation of a zero-
mean Normal distribution from which the respective contributions are drawn as random
numbers.

In both our regional and whole-range counts, we hypothesize that overdispersion may be
present at the site-level in abundance and at the site-level as well as the survey- (i.e, site-by-
occasion) level in detection. So, for each data set we first randomly picked a value for the
standard deviation of each level of overdispersion from a Uniform distribution on (0, 1),
where 0 denotes the absence of that component of overdispersion and 1 means a lot of
overdispersion. Thus, we intend our simulation to represent a broad assessment of the two
methods for assessing the regional total (Ntotal) under the p-ignorant and the
overdispersion-naive approaches against a very broad range of conditions in terms of the
type of process that creates counts (i.e., coming from the abundance part of the data-
generating processes or from the detection part or from both) and of the magnitude of the
associated noise that is introduced into the counts.

This appendix contains the R and JAGS code to execute the full simulation and also, at the

end, presents some brief results.
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library (AHMbook)
?simNmix # Check how sim function works

# Create R objects to save results
simrep <- 1000 # Number of simulation reps

# True values etc

sigma.vals <- array(NA, dim = c(simrep, 3))

colnames (sigma.vals) <- c('sigma.lam', 'sigma.p.site',
'sigma.p.survey')

true.Nsite <- array(NA, dim = c(data$Snsite, simrep))
true.Ntotal <- numeric (simrep)

# p-ignorant estimators for Nsite and Ntotal
maxCount <- array(NA, dim = c(dataSnsite, simrep))
sumMaxCount <- numeric (simrep)

# posterior summaries of everything

# NOTE: this requires one to have fit the model below once before
# You have to manually pick some of the code below first to create
# a data set and analyse it

posterior.summaries <- array(NA, dim = c(dim(fm$Ssummary), simrep))
dimnames (posterior.summaries) <- list(rownames (fm$summary),
colnames (fm$summary), NULL)
STRETCH.CRI <- array(NA, dim = c
dimnames (STRETCH.CRI) <- list(c(
Upper')), NULL)

2, simrep))
( \}

(
c('Stretch Lower', 'Stretch

# Launch simulation
for(i in l:simrep) {

cat (paste ('\n\n*** Simrep Number',6 i, '***\n\n\n'))
# Simulate a data set with OD

# pick a random value for the three types of OD that make sense
for the parrots

( sigma.lam <- runif (1, 0, 1) )

( sigma.p.site <- runif (1, 0, 1) )

( sigma.p.survey <- runif(l, 0, 1) )

# Simulate a data set using these values
data <- simNmix(nsites = 130, nvisits = 2, mean.lam = 120, mean.p
= 0.7,
sigma.lam = sigma.lam, sigma.p.site = sigma.p.site,
sigma.p.survey = sigma.p.survey, show.plot = FALSE)
summary (c (datascC)) # summary of observed counts
summary (exp (data$log.lam)) # summary of lambda

# Now we fit the model to this data set,
# ignoring the extra-sources of dispersion
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# Data object
str (bdata <- list (counts = data$C, nsites = nrow(datasC),
nsurveys = ncol (datasC)))

# Specify model in BUGS language
cat (file = "model.txt","
model {
#Priors
lambda ~ dgamma (0.001, 0.001)
p ~ dunif (0,1)

# Biological model for true abundance
for(i in l:nsites) {
N[i] ~ dpois(lambda)
for(j in l:nsurveys) {
#Observed data at replicated counts
counts[i,j] ~ dbin(p, N[i]) #counts follow binomial
distribution
## Commands for computing Bayesian p-value
eval[i,j] <- p * N[i]

E[i,J] <- pow((counts[i,]] - evalli,jl), 2) / (evalli,]jl
+ 0.001)

# Pearson GoF statistic

# Generate replicate data and compute fit stats

C.new[i,j] ~ dbin(p, N[il])

E.new[i,]j] <- pow((C.new[i,]J] - evalli,jl),2) /
(eval[i,j] + 0.001) # Pearson GoF statistic

}
} fsites

# Fit assessments

fit <- sum(E)

fit.new <- sum(E.new)
c.hat <- fit / fit.new

# Total abundance across all sites
Ntotal <- sum(N[])

1
")
# Initial Values
Nst <- apply(data$C, 1, max, na.rm=TRUE) + 1
inits <- function () {list (N=Nst) }
# Parameters monitored
params <- c("N", "Ntotal", "lambda", "p", "fit", "fit.new",

"c.hat")

# MCMC settings
na <- 1000; nc <- 3; nb <- 3000; ni <- 10000; nt <- 7

# Call JAGS

13
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fm <- jags(bdata, inits, params, "model.txt", n.adapt = na,
n.chains = nc,

n.thin = nt, n.iter = ni, n.burnin = nb, parallel =
TRUE)

# Now stretch the posterior for Ntotal by sqgrt(c.hat)
# And then check the coverage of the stretched CRIs

# Step 1: subtract the mean of the posterior draws
draws <- fm$sims.list$Ntotal # make a copy
cent.draws <- draws - fmSmean$Ntotal

# Step 2: stretch
cent.stretched.draws <- cent.draws * sqrt (fm$meanS$c.hat)

# Step 3: put back the mean and compute stretched CRIs
stretch.draws <- cent.stretched.draws + fm$meanS$SNtotal
stretch.CRI.Ntotal <- quantile(stretch.draws, prob = c(0.025,
0.975))

# Save all that we need
sigma.vals[i, ] <- c(sigma.lam, sigma.p.site, sigma.p.survey)
true.Ntotal[i] <- data$Ntotal

# p-ignorant estimators for Nsite and Ntotal
maxCount[,1] <- apply(datas$C, 1, max)
sumMaxCount[1] <- data$summax

# posterior summaries of everything
posterior.summaries([,,1i] <- fm$summary

STRETCH.CRI[,i1] <- stretch.CRI.Ntotal

} # simrep

## Present the results

# ____________________
# Quick and dirty check whether things have generally converged
hist (posterior.summaries([,8,]) # ... OK

inside <- numeric (simrep)
for(i in l:simrep) {
inside[i] <- (true.Ntotal[i] > STRETCH.CRI[1,i]) *
(true.Ntotal[i] < STRETCH.CRI[2,i])
}

mean (inside)
[1] 0.633
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Hence, the mean coverage of the stretched CRIs for Ntotal is only 0.633, which is a long
way from 0.95, but it is without a doubt much better than what we would obtain without
stretching the CRIs.

# (2) Results for estimation error of p-ignorant vs. OD-naive
Nmix:
# Would we do better by simply taking the max counts ?

# For the total N across all sites: Ntotal

# Compare Mean total error for both approaches
(RMSE.total.counts <- sgrt (mean (sumMaxCount - true.Ntotal)"2) )
(RMSE.total.Nmix <- sqgrt (mean(posterior.summaries[131,1,] -
true.Ntotal) *2) )

# [1] 4929.368 # max counts
# [1] 3720.835 # OD naive Nmix
round ( (3720.835 - 4929.368) / 4929.368, 4) # minus 25% in

error when using Nmix over counts

Hence, averaged over all the overdispersion scenarios represented by the 1000 realizations
from our data-simulation process, we expect to have 25% less total estimation error (in the
root mean squared error sense) when using an overdispersion-naive binomial N-mixture
model than when using a p-ignorant approach where we simply add up the maximum
counts across sites.

This result was decisive for our choice to use an N-mixture model for inference about
parrot total population size even when that model did not pass our Goodness of fit tests.

We do, however, not recommend such an approach in general and emphasize once more the
ad hoc nature of our procedure. We believe this is the right approach for our data set and
objectives, but that may not be true for other studies!
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6. CAPITULO 2: Integrating citizen-science and planned-survey data improves
species distribution estimates
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Abstract

Aim: Mapping species distributions is a crucial but challenging requirement of wild-
life management. The frequent need to sample vast expanses of potential habitat
increases the cost of planned surveys and rewards accumulation of opportunistic
observations. In this paper, we integrate planned-survey data from roost counts with
opportunistic samples from eBird, WikiAves and Xeno-canto citizen-science plat-
forms to map the geographic range of the endangered Vinaceous-breasted Parrot.
We demonstrate the estimation and mapping of species occurrence based on data in-
tegration while accounting for specifics of each dataset, including observation tech-
nique and uncertainty about the observations.

Location: Argentina, Brazil and Paraguay.

Methods: Our analysis illustrates (a) the incorporation of sampling effort, spatial au-
tocorrelation and site covariates in a joint-likelihood, hierarchical, data integration
model; (b) the evaluation of the contribution of each dataset, as well as the contribu-
tion of effort covariates, spatial autocorrelation and site covariates to the predictive
ability of fitted models using a cross-validation approach; and (c) how spatial repre-
sentation of the latent occupancy state (i.e. realized occupancy) helps identify areas
with high uncertainty that should be prioritized in future fieldwork.

Results: We estimate a Vinaceous-breasted Parrot geographic range of 434,670 km?,
which is three times larger than the “Extant” area previously reported in the IUCN
Red List. The exclusion of one dataset at a time from the analyses always resulted
in worse predictions by the models of truncated data than by the Full Model, which
included all datasets. Likewise, exclusion of spatial autocorrelation, site covariates or
sampling effort resulted in worse predictions.

Main conclusions: The integration of different datasets into one joint-likelihood
model produced a more reliable representation of the species range than any indi-
vidual dataset taken on its own, improving the use of citizen-science data in combina-

tion with planned-survey results.

KEYWORDS

citizen-science, data integration models, endangered species, geographic range, occupancy

models, species distribution models, Vinaceous-breasted Parrot

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. Diversity and Distributions published by John Wiley & Sons Ltd.

Diversity and Distributions. 2021;00:1-12.

wileyonlinelibrary.com/journal/ddi | 1

37



ZULIAN ET AL.

RNV oy isiuions

1 | INTRODUCTION

Wildlife management depends on knowledge about species’
geographic ranges, which is also a key element of threat assess-
ment criteria used by the International Union for Conservation of
Nature (IUCN, Mace et al., 2008). Despite their unequivocal rele-
vance, accurate range maps are scarce (Jetz et al., 2012). Efforts
to improve knowledge about species ranges are hindered by the
extent of necessary field sampling and by the scarcity of funding
for monitoring. The sampling challenge is heightened by the inevi-
table trade-off between data quantity and quality. Planned surveys
with replicated samples of a predetermined set of locations using
standardized protocols that note the presence or absence of target
species provide high-quality information, but they are few and far
between. Large and long running planned surveys such as the North
American Breeding Bird Survey (BBS; Hudson et al., 2017) or the
Pan-European Common Bird Monitoring scheme (PECBM; Gregory
et al., 2005) are exceptions to a global pattern of “opportunistic” col-
lection of mostly presence-only data, which records where a species
is detected but not where it is searched for and not found, in con-
trast with presence-absence data, which records where a species is
and where it is not detected.

Technological advances have produced many collaborative ini-
tiatives where volunteers share wildlife sightings from opportunis-
tic records in easily accessible online platforms. These initiatives
fall under the broad umbrella of citizen science (Heigl et al., 2019;
Tulloch, 2013; Wiggins & Crowston, 2011). Due to the popularity of
birdwatching, citizen-science platforms now hold an extraordinary
amount of spatially indexed bird detections. Outstanding exam-
ples include the global eBird (Sullivan et al., 2009) and Xeno-canto
(Xeno-canto, 2019) platforms, as well as the Brazilian WikiAves
(WikiAves, 2019). These platforms hold data for thousands of bird
species, with increasing spatial coverage. These huge datasets have
the potential to fill gaps in our knowledge of species’ distributions
(Altwegg & Nichols, 2018; La Sorte & Somveille, 2020; Sullivan
et al., 2017). There are, however, wide variations in sampling tech-
nique, expertise, and effort among observers, as well as differ-
ences in data structures and spatial coverage among citizen-science
platforms. The ability to integrate data from different sources is
therefore important. This has spurred progress in the construction
of statistical species distribution models that integrate multiple
data streams for mapping the probability of species presence over
a region of interest (Fletcher et al., 2019; Isaac et al., 2020; Miller
etal., 2019).

Initial work on data integration methods used presence-absence
datasets as an accessory to the analyses of larger presence-only
datasets. Seminal papers by Dorazio (2014), Fithian et al. (2015), and
Giraud et al. (2016) integrated presence-only data from opportunis-
tic samples with presence-absence data from planned surveys in a
spatial point-process, joint-likelihood framework. The resulting data
integration models use the sampling effort information in presence-
absence data to improve inference from the usually larger, presence-

only datasets that lack information about effort. This approach has

been extended to account for local habitat heterogeneity (Coron
et al., 2018) and data patchiness (Peel et al., 2019). In one wide-
ranging study, Pacifici et al. (2017) showed how data integration can
include site covariates, account for spatial autocorrelation, address
false positive detections, combine counts with presence-absence
data and weigh datasets differently based on their quality. Simmonds
et al. (2020) recently explored the limits of data integration, asking
when more data are not necessarily better. These efforts demon-
strated how data integration can not only account for limitations of
presence-only data, but also flexibly and robustly harmonize a wide-
range of data types (Isaac et al., 2020; Miller et al., 2019).

The early emphasis on integrating widely available, opportu-
nistic data from citizen-science sources with explicit sampling in-
formation from planned-survey, presence-absence data may have
concealed the extraordinary amount of sampling information con-
tained in citizen-science datasets themselves (but see previous
analyses of sampling information from citizen-science sources, e.g.
Kéry et al., 2010). The set of data points indicating detection of one
focal species in a citizen-science platform may not explicitly convey
the effort that went into searching for that species; nonetheless,
because platforms gather observations from multiple species, one
can find abundant information about sampling effort by looking
at where and when non-focal species were detected (Hill, 2012;
Phillips et al., 2009). Indeed, citizen-science data frequently include
information that can be used to estimate sampling effort, such as
number of observers, time and distance travelled during sampling,
number of detections of all species or number of species detected.
Here, we build on previous work by Fithian et al. (2015), Pacifici
et al. (2017), Stauffer et al. (2018) and Miller et al. (2019), to develop
a static, integrated occupancy model of species distribution. Our
approach assembles detection non-detection information for each
sampling unit and accounts for imperfect detection within each data
source in the integrated model via the estimation of sampling effort
per source. To assess the extent to which our accounting of sampling
effort improves distribution models, we employ a cross-validation
approach that measures the ability of different models to predict
randomly excluded data points. Such assessment of model fit also
reveals the extent to which data integration, spatial autocorrelation
and site covariates contribute to the modelling task.

Accurate range maps are especially needed for threatened or en-
dangered species in regions that lack planned wildlife surveys, as is
often the case in the tropics. The Vinaceous-breasted Parrot (VBP,
Amazona vinacea) is an endangered species, endemic to the tropi-
cal South American Atlantic Forest (BirdLife International, 2017).
Showing substantial uncertainty about the species’ geographic
range, the IUCN reports a “possibly extant” VBP area that is al-
most three times as large as the “extant” area (Figure 1a, BirdLife
International & Handbook of the Birds of the World, 2016). In a re-
cent study of VBP abundance, Zulian et al. (2020) show how ~75%
of known communal roost sites are outside the IUCN “extant” area,
suggesting current range estimates are inadequate for planning pur-
poses. This motivated us to ask how VBP data sources could be com-

bined to generate a better estimate of the species’ range and identify
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FIGURE 1 Vinaceous-breasted Parrot observations, geographic distribution and uncertainty about the distribution. Panel a maps
Vinaceous-breasted Parrot detections analysed in this study with black diamonds indicating the location of roost counts and crosses the
location of citizen-science (eBird-in red, WikiAves-in blue and Xeno-canto-in purple) records. Grey polygons represent the IUCN “Extant”
range and dashed lines delimit the [IUCN “Possibly Extant” range of the Vinaceous-breasted Parrot. Panel b represents realized occupancy
(mean z). Panels c and d show, respectively, the predicted occupancy (y) and the standard deviation of its posterior distribution. Estimates in
panels b, c and d are based on the Full Model fit to all (roost counts, eBird, WikiAves and Xeno-canto) datasets. Spatial units correspond to
municipalities, with darker tones of red representing higher occupancy (b, c) and higher standard deviation (d)

where the greatest uncertainty in the current distribution exists. We
set out to characterize the spatial extent of the current distribution,
estimating the local probability of the species’ presence (Kéry, 2011)
and quantifying the uncertainty about these probability estimates
(Rocchini et al., 2011).

We aim here to (a) demonstrate how data integration models

can be harnessed to address differences in data collection across

multiple datasets by accounting for variation in sampling effort and
detection probability between and within datasets; (b) develop an
approach to assess the predictive value of including or excluding
different data streams in a single integrated model; and (c) assess
how modelling decisions affect the predictive power of our mod-
els, with particular attention to the choice of occupancy and de-

tection covariates, whether and how to account for residual spatial
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autocorrelation, and how effort and detection are related. We in-
tegrate planned-survey data collected by research teams (Zulian
et al., 2020) with citizen-science data from the eBird (eBird, 2019),
WikiAves (WikiAves, 2019) and Xeno-canto (Xeno-canto, 2019) plat-

forms to model the VBP geographic range in an eleven-year period.

2 | METHODS

2.1 | Study area

Our study area comprises 2,449,757 km? divided into 3,701 munici-
palities from Argentina, Brazil and Paraguay (Figure 1a). This area
includes the entire IUCN-delimited VBP “Possibly Resident” range
(BirdLife International & Handbook of the Birds of the World, 2016)
and is bounded by the limits of the Atlantic Forest biome (Olson
et al., 2001). Considering the absence of VBP records north of the
Brazilian state of Bahia (BirdLife International, 2017), we set the
northern limit of our study area along the northern borders of that
state and the adjacent state of Alagoas.

2.2 | Data collection

We obtained VBP detection-non-detection data for all 3,701 munic-
ipalities collected between 1 January 2008 and 31 December 2018.
We chose the municipality as our spatial unit because WikiAves data
register the location of observations by municipality name, without
spatial coordinates and because municipality limits are easily rec-
ognized by decision-makers and residents. “Occupancy” is given by
the presence of VBPs in a municipality during the eleven-year study
period. Our data come from four sources: roost counts, WikiAves,
eBird and Xeno-canto. Roost counts were performed by research-
ers (Zulian et al., 2020), while WikiAves, eBird and Xeno-canto data
were uploaded to citizen-science platforms by volunteer observers.

Roost counts were performed between 2014 and 2018 by 26
teams in 74 municipalities of Brazil, Argentina and Paraguay, fol-
lowing methodological guidelines described by Zulian et al. (2020).
Between one and 25 counts per site were taken each year, between
April and June, on sites known by researchers to have VBP roosts.
Roost count data were converted into detection/non-detection his-
tories with counts from the same municipality considered as replicate
samples. Counts with at least one parrot received a “1” (detection)
and counts with no parrots received a “0” (hon-detection) in the bi-
nary history. Parrots are observed in relatively narrow time windows
near dawn and dusk, but early arrivals or a late departure from the
roost influence the observations, so we measured the count's dura-
tion in minutes (Time Observing = TObs) as an effort covariate.

We obtained eBird data from birding checklists with observa-
tions in our study area and uploaded to the platform throughout
the study period. Our analysis included only complete checklists—
where the observers recorded all the species they were able to

identify—and excluded all checklists, which did not identify a

municipality or that potentially spanned more than one municipal-
ity due to long distance (>12 km) or long time (>360 min) travelled.
Checklists from the same municipality were treated as replicate
samples. The checklist structure made it easy to convert eBird
data into detection/non-detection format, and we accordingly built
eBird detection/non-detection histories that register the detection
(1) or non-detection (0) of the VBP for each list of each municipality.
eBird effort covariates were the number of species recorded in a
list (SSee), minutes spent observing (TObs) and kilometres travelled
(RLen).

WikiAves receives observer input in the form of individual pho-
tographs or audio recordings of an identified species and has expert
moderators checking uploaded content to avoid misidentification.
Record location is registered as a municipality name along with in-
formation about authorship and comments. We obtained the total
number of WikiAves records uploaded to each municipality of our
study area and period, and recorded detection/non-detection as
only one data point per municipality, without replication at the mu-
nicipality level. Thus, there is only one vector of WikiAves detection/
non-detection data, with length equal to the number of municipal-
ities and values of “1” or “0,” respectively, for those municipalities
that did or did not have at least one VBP photograph or audio re-
cording. Effort covariates were the number of photos (NPho) and
audio recordings (NAud) submitted to WikiAves per municipality.

Xeno-canto hosts only audio recordings of bird sounds (Xeno-
canto, 2019). We used the R package warbleR (Araya-Salas & Smith-
Vidaurre, 2017) to download the list of all Xeno-canto records from
our study area and period. Our Xeno-canto unit data are the set of
all audio recordings from one municipality, without replication. We
organized these detection/non-detection data in the same vector
format as WikiAves’ and used the number of recordings (NAud) up-
loaded in each municipality as a covariate of sampling effort. Unlike
WikiAves, Xeno-canto does not have its content checked by mod-
erators, but we did confirm identification of all Xeno-canto VBP re-
cords. Unlike eBird, neither Xeno-canto nor WikiAves records can be
organized as complete lists of every species that an observer identi-
fied in a given space and time.

2.3 | Data analysis

We summarized each of our four data sources in a matrix or a vec-
tor of detection-non-detection information per municipality, de-
pending, respectively, on whether they had multiple (roost counts,
eBird) or a single (WikiAves, Xeno-canto) observation per munici-
pality. Effort covariates matrices (or vectors) took the correspond-
ing data source shape. In our models, the true occupancy state of
each municipality (or site) i is denoted as z, which takes the value
1 when site i was occupied and O when not. The state of this latent
(partially observed) variable follows a Bernoulli distribution with

mean y;:

z; ~ Bernoulli (y)). (1)
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We allowed the probability y; that site i is occupied by VBPs to
vary with respect to three site environment covariates, with a logit
link function. As VBPs are endemic to the Atlantic Forest and appear
to be associated with both altitude (BirdLife International, 2017)
and Araucaria forest cover (BirdLife International, 2017; Cockle
et al, 2019; Collar et al., 2017; Tella et al., 2016), we included
Atlantic forest cover (AtF;), Araucaria forest cover (ArF;) and average
altitude (Alt;) as covariates of municipality i occupancy. Forest cover
values are from Ribeiro et al. (in preparation) as proportions of the
municipality area. Average municipality altitude x, in metres, is from
DIVA-GIS (2018), log-transformed as log(x + 1). Our linear model of
occupancy also included a spatial random effect to account for un-
explained spatial autocorrelated variation (5;):

logit(y;) = Bo + By = AtF; + By  ArF; + 5 = Alt; + 5;. (2)

This effect follows a conditional auto-regressive (CAR) distribu-
tion as applied by Pacifici et al. (2017) in the context of integrated
species distribution models. To avoid confounding effects of munic-
ipality size variability and to gain sampling replication within spatial
units in the CAR analysis, we represented space by a hexagonal lat-
tice overlaid on the study area, with municipalities assigned to the
lattice cell that matches their centroid. Cells measured 0.5° latitude
across; all the first-order neighbours of each cell were given a weight
of 1 when fitting the CAR model.

We fit a joint-likelihood data integration model with a single
shared occupancy process: for all four data types, VBP detection in
sample j and site i is conditional on the species being present at the
site (z; = 1). Departing slightly from the standard accounting of effort
based on the number of replicate samples (MacKenzie et al., 2002),
we express the conditional probability (p]f‘) of detecting the species as
a function of an estimated amount of sampling effort (E,-) for sample j
(Miller et al., 2019; Stauffer et al., 2018):

P =1-(1-p)", 3)
where p is the probability of detection per unit effort. Because we are
using indirect, and sometimes several metrics of effort for each data
source (our effort covariates), we estimate parameter E; for each sam-
ple j as a linear function of the covariates. Thus, for each data source
(RC = roost counts, EB = eBird, WA = WikiAves and XC = Xeno-canto)

we have:

E],RC =qQq * TOij (43)

EF® = ay * SSee; + a3 * TObs; + ay * RLen, (4b)
EM'* = a5  NPho; + a4  NAud; (4c)

EXC = a7 * NAud;. (4d)

Civrsiy s piruions RTB SV

Equations (4a-d) have no intercept, so that effort is O when all ef-
fort covariates are 0. In addition, we fix p at a value of .5, so that the
a4 — ay coefficients express the relationship between covariates and
the effort necessary to reach a detection probability of .5 per unit of
effort. Without fixing p, Equation (3) becomes over-parameterized.
Coefficients aq — a5 of the effort functions also show the relative
contribution of each covariate to the total estimated effort per data-
set (see code in Appendix S1). Finally, our detection/non-detection

histories Yj; in each dataset follow the Bernoulli distribution:

Y; ~ Bernoulli(z; x p;). (5)

We first fitted a Full Model accounting for the effects of all effort
metrics, all site covariates and spatial autocorrelation. Subsequently,
we evaluated the impact of different modelling decisions on pre-
dicted accuracy by fitting 11 additional models listed in Table 2.
We fitted all the models using a Bayesian estimator coded in the
BUGS language and run on WinBugs software (Lunn et al., 2000),
which includes predefined model structures for CAR random ef-
fects. Inference was based on draws from the posterior distribution
of model parameters using an MCMC algorithm with three chains,
200,000 iterations, and a burn-in phase of 100,000. We considered
parameters with an R-hat lower than 1.1 to have converged and used
results to draw parameter posterior distributions.

We assessed model fit by excluding all the detection non-
detection data from a randomly selected set of 650 municipalities
(20% of the total), fitting the models to the training dataset (i.e. re-
maining data) and then predicting the validation dataset (excluded
data) based on the estimated parameters. In this cross-validation ap-
proach, our prediction accuracy measures a model's ability to predict
excluded data as expressed by the likelihood-based Deviance:

D=-2 Z log(&), (6)

where the likelihood Z equals ¥¥ % (1—-¥)Y for each site and visit
in the validation dataset (Hooten & Hobbs, 2015). We use y and y to
represent, respectively, the observed, binary data and the predicted
probability of detecting VBPs for each site and visit based on estimates
from the training data. The lowest deviance values indicate the best fit.
We examined overall model deviance, summed across data sources,
as well as individual deviance values for each data source to look at
source-specific predictive performance. Comparisons among values
also revealed the impact of site covariates, detection covariates and
the CAR component on the predictive performance of our models.

To determine whether each of the individual datasets improved
the predictive ability of our model, we fit the model to four trun-
cated datasets, including all covariates and the CAR random effect,
but excluding one data source at a time (Models 5-8, Table 2). Such
rotating exclusion made it possible to examine whether the addition
of a data source to the mix improves the model's ability to predict
the validation set from other sources. Specifically, we asked whether
predictions of validation data from a training data source were more

or less accurate when each of the other data sources were excluded.
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For example, if eBird does contribute to improving the overall model,
then including eBird data should lead to better predictions of Xeno-
canto, WikiAves and roost count data. This is a measure of overall
prediction consistency among data sources. To better assess the
usefulness of data integration, we also fit four models that retain the
site covariate and CAR components of the Full Model, but include
only one data source at a time (Models 9-12, Table 2).

Finally, we represent the VBP geographic range using two es-
timates of site occupancy. The first, “realized” occupancy, is con-
ditional on the observations; it equals 1 in all municipalities where
VBP was seen at least once, and is the expected value of the latent
occupancy state (z) where it was not seen. As effort increases and
VBPs are not observed, z converges towards O, and so does realized
occupancy. Even though z; can only be 0 or 1, “realized” occupancy,
the expected value of z, obtained by averaging the MCMC chain
for z in site i can take values between 0 and 1. This metric provides
a measure of local uncertainty about species presence given all
available data and, unlike typical predictions by distribution mod-
els, accurately expresses local certainty of occurrence by adjusting
predictions to actual observation. The second estimate, “predicted”
occupancy, offers estimates of y;, which express occupancy proba-
bility for a statistical population of municipalities with the same site
covariates and neighbourhood of municipality i (Figure 1c). Predicted
occupancy is not conditioned on the actual data for a municipality:
unlike z;, which always equals 1 if the species was detected at site
i, w; can be smaller than 1 in municipalities where the species was
detected. Predicted occupancies are typically visualized in distribu-
tion models, expressing how estimated environmental relationships

affect the local probability of occurrence across a species range.

3 | RESULTS

We draw on 1,007 VBP detections from 47,240 samples in four
datasets collected across the 3,402 municipalities within our study
area (Table 1). While the roost count data contains 40% of all detec-
tions, roost counts covered only 2.2% of the municipalities in our
study area. The highest detection rate—given by the ratio of n , to

Sample size, in Table 1—appears in the roost count dataset (88%), as
expected, because roost counts were only carried out in locations
where VBPs were known to occur. This resulted in the highest de-
tection probability per sample among all datasets (p = .87 + .144;
Table 1). The 596 detections jointly returned by the three citizen-
science platforms, on the other hand, come from 3,401 municipali-
ties, 92% of the number of municipalities in the study area. WikiAves
had the widest coverage, with data for 3,190 municipalities, and VBP
detections for 191 of them. One WikiAves sample comprises all the
photographs and recordings submitted for one municipality, a large
amount of effort per sample, so WikiAves had the highest detection
rate and, naturally, the highest detection probability per sample of all
citizen-science sources. eBird had smaller coverage than WikiAves
but had the largest number of VBP detections of all sources: 388
from 71 municipalities. Differently from WikiAves (and Xeno-canto),
one eBird sample is not the set of all records in one municipality, but
one birding list. The number of eBird samples varied substantially
across municipalities, ranging from 1 to 3,244 (Sao Paulo, SP, Brazil)
with a mean of 42. With so many samples and relatively little effort
per sample, eBird had the lowest detection rate, of 1%, and the low-
est estimated detection probability of all platforms (p = .06 + .003;
Table 1). Xeno-canto, with the smallest coverage and number of VBP
detections had intermediate values of both detection rate and esti-
mated p.

Table 2 shows model predictive ability based on cross-validation.
The Full Model had the best predictive ability. Exclusion of detec-
tion covariates (Model 3) had the greatest negative impact on pre-
dictive ability, with estimated deviance being 2.15 times higher for
this model than for the Full Model (Table 2). Removal of the CAR
component (Model 2) had an intermediate but measurable effect on
deviance, with residual spatial structure (Figure S1) visibly influenc-
ing the distribution map (Figure S2). The values in Table 2 result from
one trial of data exclusion and prediction. We performed another
two trials of this procedure for the first four models in Table 2 with
consistent results for total deviance. The ranking of models with re-
spect to specific dataset deviances changed between trials, but it
showed a tendency for better prediction with the Full Model and
worse prediction when detection covariates are excluded (Table S1).

TABLE 1 Sample size, spatial coverage

Datasets :;lele Coverage n n z:;?t\plmg and number of Vinaceous-breasted Parrot
2 e o] i detections from roost counts (RC), eBird

RC 466 74 411 60 Count .87 +.144 (EB), WikiAves (WA) and Xeno-canto (XC)

EB 42,855 1,274 388 71 List .06 +.003

WA 3,190 3,190 191 191 Municipality .25 +.011

XC 729 729 17 17 Municipality .08 +.015

Total 47,240 3,402 1,007 339

Note: Sample size is number of samples, following each database's sampling unit definition. Spatial
coverage is the number of municipalities sampled, with total smaller than the sum across databases

because some municipalities are included in more than one database. Labels n,, and n

show,

muni

respectively, the number of parrot detections and the number of municipalities with at least one
detection. The sampling unit is the data category considered as a replicate; p is estimated detection
probability per sampling unit at average effort for each dataset, under the Full Model.
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TABLE 2 Deviance for each site-
occupancy model in this study

Models
1. Full Model
2.No CAR

3. No detection covs.

4. No occupancy covs.

5. All data but RC
6. All data but EB
7. All data but WA
8. All data but XC
9. Only RC

10. Only EB

11. Only WA

12. Only XC

Civrsiy s pirions RTBSM

Deviance in each dataset

Total deviance RC EB WA XC
440.85 28.84 281.19 103.35 27.46
581.32 50.97 362.58 139.56 28.20
952.84 57.21 735.61 133.60 26.41
477.06 26.04 315.34 107.79 27.87
- - 301.88 108.78 27.56
- 28.53 - 110.26 25.55
- 35.27 326.01 - 28.61
- 34.04 309.29 116.18 —

- 23.22 — — _

- — 314.78 - —

- — - 107.75 -

- — - - 28.77

Note: Model 1, designated as “Full Model,” includes detection as well as occupancy covariates and
was fitted to data from all datasets: roost counts (RC), eBird (EB), WikiAves (WA) and Xeno-canto
(XC). Model 2 equals model 1 without spatial autocorrelation. Models 3 and 4 are variants of model
1 without, respectively, detection and occupancy covariates. Models 5-8 differ from the Full
Model by the exclusion of one dataset each, as shown. Models 9-12 are each fitted to an individual
dataset alone. As models 5-12 do not use the same data, their Total Deviance is not comparable
and is omitted from the table. Bold font highlights the model with the best fit by Total Deviance.
Contrast the values on line 1 with those on lines 5-12 to see sixteen possible comparisons
between the Full Model fit to all four datasets (line 1) and the same model fit to different
combinations of datasets (lines 5-12).

Our results reveal that effort-based modelling of detection, inclu-
sion of spatial autocorrelation in occupancy, and consideration of
occupancy covariates improved the predictive ability of our species
distribution models.

Models 5-8 assess whether individual datasets improve overall
predictive ability. We compare dataset-specific deviances from the
validation data for each of the four models to that of the Full Model
(where no data were excluded). Including the four datasets in the
analysis (i.e. using the Full Model) improved fit in all but two cases.
Dataset-specific deviances of Models 5, 7 and 8 were all higher—
indicating lower prediction power— than those of the Full Model
(Table 2). Removal of eBird data (Model 6) slightly improved the pre-
diction of Xeno-canto data, but clearly worsened the fit to WikiAves
data, leaving that of the roost count data virtually unchanged. The
Full Model fit to all data sources did a better job of predicting EB,
WA, and XC data than the individual-dataset Models 10-12 them-
selves. Model 9, which was fit to RC data alone, predicted RC valida-
tion data better than the Full Model, but it produced an incongruous
realized range map (Figure 2a), with mean z values in excess of 0.9
for hundreds of municipalities where other datasets produced mean
z smaller than 0.3 (Figure 2b-d). The realized range map obtained
under Model 10, of the EB data alone, missed a large part of the
northern VBP distribution (Figure 2b). Data integration under the
Full Model improved the prediction of EB validation data more that
the prediction for any other dataset.

The sum of municipality areas weighted by the Full Model

realized occupancy estimates returned a realized VBP range of

434,670 km?, which is three times larger than the IUCN Red List
“Extant” area (BirdLife International & Handbook of the Birds of the
World, 2016). Both the realized and the predicted ranges appear
split in two large patches (Figure 1b,c). The southern patch covers
parts of Argentina, Paraguay and the Brazilian states of Rio Grande
do Sul, Santa Catarina and Parand; the northern patch overlaps the
Brazilian states of Minas Gerais, Espirito Santo and Bahia. The real-
ized range also includes small areas between the two large patches,
mainly in the Campos do Jordao region, near the border between
Sdo Paulo and Minas Gerais (Figure 1b). Uncertainty about the
VBP range is greatest around high-occupancy patch edges, as
shown by intermediate values of realized occupancy (Figure 1b)
and high standard deviation of predicted occupancy (Figure 1d).
As expected, municipalities with the most extreme occupancy val-
ues (close to 0 or 1) returned the lowest standard deviation values
(Figure 1d).

Araucaria and Atlantic forest cover had strong (and positive)
effects on occupancy probability (Table 3). Altitude had a weaker,
positive, but more precise effect on y, when compared with the two
forest covariates. The different effort covariates on the bottom part
of Table 3 had varying, though always positive, effects on detection
probability. Among these, time spent observing showed the highest
effect, both as a;, which measures the duration of a roost count, and
as ag, the time spent collecting an eBird list. The number of audio
recordings uploaded in WikiAves was a stronger predictor of survey
effort (,), and thus overall detection probability for a municipality,

than the number of photos (with effect as).
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FIGURE 2 Vinaceous-breasted Parrot realized geographic range (mean z) based on separate analyses of each dataset. The panels show
results based on roost count (a), eBird (b), Wikiaves (c) and Xeno-canto (d) data. Spatial units correspond to municipalities, with darker tones
of red representing higher mean z; intermediate values—of z ~ 0.5—indicate the highest uncertainty about occupancy

4 | DISCUSSION

The Vinaceous-breasted Parrot geographic range covers approxi-
mately 434 thousand square kilometres subdivided into two large
patches, one centred in the southern Brazilian state of Santa Catarina
and another to the north, centred in eastern Minas Gerais state, also
in Brazil. A third, much smaller area of occupancy comprises a group
of relatively high-altitude municipalities near Campos do Jordao, in
Sdo Paulo and Minas Gerais states, approximately 100 km west of

the Rio de Janeiro border. Our two-patch range contrasts with the

five patches represented in the IUCN “resident” range. The “possibly
resident” IUCN range, which encloses all of the “resident” patches,
conveys uncertainty about the subdivision in five areas (BirdLife
International & Handbook of the Birds of the World, 2016). Our
study provides evidence for redrawing the VBP range while quan-
tifying uncertainty associated with the new map. We look forward
to seeing population genetic studies that elucidate the extent of re-
productive isolation between the two large patches, as well as be-
tween the small Campos do Jordao area and the northern, Minas

Gerais patch. A comparison between realized and predicted ranges
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TABLE 3 Estimated mean, standard deviation (SD) and 95%
credible intervals (Cl) for the posterior distribution of Full Model
coefficients

Parameter Mean + SD 95% Cl
Biological process

p, (Atlantic forest cover) 2.110 + 0.8684 0.379-3.792
B, (Araucaria forest cover) 2.133 + 0.9806 0.296-4.104
B4 (Altitude) 0.852 +0.1205 0.579-1.055
Sampling process

a, (RC: Time observing) 1.814 + 0.1110 1.613-2.043
a, (EB: Species seen) 0.002 + 0.0002 0.001-0.002
a5 (EB: Time observing) 0.008 + 0.0027 0.003-0.013
a, (EB: Route length) 0.005 + 0.0019 0.002-0.009
a5 (WA: Photos) 0.001 + 0.0002 0.001-0.002
ay (WA: Audio recordings) 0.006 + 0.0021 0.003-0.011
a, (XC: Audio recordings) 0.007 + 0.0017 0.004-0.011

Note: Occupancy function coefficients (4, to o) specify the biological
process, while detection coefficients (a,-a,) specify the sampling
process. The covariates corresponding to each coefficient appear in
parentheses in front of its name; ¢ measures the magnitude of spatial
autocorrelation in site occupancy. Coefficients a,, a,-a,, as-a, and o,
correspond, respectively, to metrics of effort per municipality in roost
counts (RC), eBird (EB), WikiAves (WA) and Xeno-canto (XC) databases.
Each metric is indicated in parentheses in front of the coefficient name.

shows that some municipalities with high mean z have relatively low
predicted occupancy probability (w). We trust the WikiAves modera-
tion system, have no doubts about VBP identification in the roost
counts, and manually checked every VBP record from Xeno-canto;
but still, we cannot rule out the possibility of some false positive ob-
servations in these municipalities. Occasional discrepancy between
mean z and y could also derive from the observation of animals
released or escaped from captivity. These municipalities deserve
further investigation, particularly those in south-west Minas Gerais
and south-west Sdo Paulo, to exclude the possibility of there being
unknown isolated populations. Intermediate values of realized oc-
cupancy and high standard deviation of the posterior distribution of
predicted occupancy reveal areas with high uncertainty about VBP
presence, which, like the isolated high-z municipalities, ought to be
targeted by future field searches. Three regions stand out for high
uncertainty about VBP presence: northeastern Minas Gerais, central
Parana, and northern Rio Grande do Sul, in Brazil, together with a
few municipalities in eastern Paraguay. These are the regions that
could contribute most to further improvement of knowledge about
the VBP geographic range.

Our estimated VBP range exceeds the area of past Araucaria for-
est mapped by Hueck (1966) and includes vast areas of the Atlantic
forest biome that have been cleared. Nonetheless, both vegetation
site covariates—Araucaria and Atlantic forest cover—had strong pos-
itive effects on site-occupancy probability. The Parana Pine plays
an important role in the VBP natural history, at least in part of its
range, offering roost sites (Prestes et al., 2014), nesting cavities
(Cockle et al., 2007) and nutrition during the coldest months of the

Civrsiy s piruions RUTBSMI

year (Collar et al., 2017; Kilpp et al., 2015; Prestes et al., 2014; Tella
et al., 2016). Nevertheless, as Araucaria forests only extend as far
north as the Campos do Jordao region, parrots from the northern
patch must rely on other plant species to obtain whatever resources
their southern counterparts get from the Parana Pine. Living at a
lower latitude, they may also escape the harshness of cold winter
weeks, when Araucaria seeds are a unique source of energy for
several species of the southern fauna (Dénes et al., 2018). Indeed,
Carrara et al. (2008) registered foraging and roosting in different
trees between northern and southern locations. Likewise, Cockle
et al. (2007), as well as Prestes et al. (2014), document foraging and
cavity nesting in non-Araucaria Atlantic Forest trees of the south-
ern part of the range. The effect of altitude on site occupancy was
smaller and more uncertain than the effects of forest cover, but still
indisputably positive. Thus, environmental consequences of altitude
are not limiting the VBP distribution.

The increasing availability of citizen-science datasets offers a
great opportunity to improve species distribution maps. In our study,
eBird, WikiAves and Xeno-canto jointly produced 1.45 times more
VBP detections, from samples that covered 45 times more munici-
palities, than the researcher-led counts. Comparison of the realized
geographic range produced by the Full Model (Figure 1b) with equiv-
alent maps produced by separate analysis of each dataset (Figure 2)
suggests that the former is more accurate. Even though roost counts
had reliable identifications based on the most standardized samples
in our data, analysis of roost count data alone produces severe over-
estimation of occupancy in areas where the species is well known to
be absent. Such overestimation, and the high predictive power of the
roost count's Model 9, stem from the deliberate sampling bias of roost
counting, which is targeted to sites where the species is known to be
present. Conversely, Xeno-canto data underestimate occupancy in
places where the species was recorded by other datasets. Analysed
in isolation, eBird data miss information about the northern part of
the VBP distribution; WikiAves, in turn, misses the presence of the
species in Paraguay altogether, because it only accepts records from
Brazil. The assessment of predictive accuracy enabled us to measure
the contribution of each dataset for the final estimates. Excluding one
dataset at a time from the analyses, or analysing only one dataset at
a time, resulted in worse prediction by the truncated analyses than
by the joint analysis of all datasets. Only three out of sixteen possi-
ble comparisons resulted in lower deviance for the truncated data; all
three corresponding to prediction of roost count or Xeno-canto data,
the smallest of the four datasets (Table 2). Exclusion of WikiAves data
had the highest impact on predictive power, increasing Deviance for
the other datasets between 4% and 25%. WikiAves still lacks an au-
tomated data download tool, but it is currently the best source of bird
species distribution information in Brazil because of its high coverage
and number of records. Xeno-canto has the fewest records and small-
est spatial coverage, but it still produced a measurable improvement
of predictive power when added to the other datasets. Roost counts
and eBird had the least consistent impact on prediction power but
still produced an average decrease in deviance across datasets. These

two datasets also contributed with sampling replication, essential for
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the quantification of false negative results. While there are limits to
the usefulness of data integration (Simmonds et al., 2020), in our case,
integration clearly improved the fit of models, suggesting that dif-
ferent datasets are capturing similar realities of parrot distribution;
otherwise, their combination should make it more, not less difficult to
predict excluded data.

Comparisons across datasets were only possible thanks to a
methodology that explicitly accounts for differences in data collec-
tion among data sources. Model 3 (Tables 2 and S1), which did not
account for the variation of detection probability with respect to
effort covariates, consistently showed the largest increase in total
deviance relative to the Full Model. Exclusion of the occupancy co-
variates (Model 2) and the spatial autocorrelation component (Model
4) caused an intermediate but measurable decrease in predictive
power. The effect of spatial autocorrelation on deviance signals a
spatially structured geographic distribution. Such residual structure
was evidently not captured by the occupancy covariates in our mod-
els. It remains evident after our accounting of environmental factors,
either due to endogenous movement of animals between adjacent
sites irrespective of the local environment, or due to exogenous
environmental factors that are themselves spatially structured and
are missing from, or mis-specified in our models (Legendre, 1993).
Further interpretation of the spatial structure should clarify the rela-
tive importance of endogenous versus exogenous processes, but for
now we emphasize that residual structure is still present and should
be accounted for in a distribution map of the species. Neglecting
spatial contagion easily leads to biased parameter estimates, po-
tentially resulting in erroneous maps (Guélat & Kéry, 2018; Johnson
etal., 2013).

The term ‘“citizen science” covers a wide variety of collabora-
tive arrangements that involve people from outside the scientific
community in scientific research (Heigl et al., 2019; Tulloch, 2013;
Wiggins & Crowston, 2011). When it comes to collaborative record-
ing of wildlife sightings, however, most citizen-science initiatives
compile presence-only information from opportunistic samples.
Our analysis employs presence-absence (roost counts, eBird) and
presence-only (WikiAves, Xeno-canto) data, as well as a planned
survey (roost counts) and opportunistic sampling (WikiAves, eBird,
Xeno-canto). While integrating planned-survey with opportunistic
sampling data, we account for spatial bias in citizen-science data
via estimation of effort per sample, based on covariates obtained
from the citizen-science datasets themselves. This approach is
synthesized in Equations (3) and (4a-c), which express detection
probability conditional on species presence. Other studies develop
models with more explicit descriptions of the complex variation
of sampling effort that is characteristic of citizen-science datasets
(e.g. August et al., 2020; Johnston et al., 2021). We opted for a more
general approach that, for example, carries no information about
individual observer behaviour. There certainly are biases that were
not or cannot be accounted for within our approach, especially
when analysing one dataset at a time. Nonetheless, our integration
of four datasets did increase spatial cover (relative to each dataset)

and captured the substantial importance of accounting for spatial

bias in sampling effort. Total deviance more than doubled when
effort covariates were removed from the analysis, but it increased
only up to 7% (for the eBird data) when we removed the planned-
survey roost count data. These results are in agreement with the
usefulness of integrating citizen-science with planned-survey data
without any particular data source being regarded as a gold stan-
dard. They also strengthen our confidence in the contribution of
large, multi-species citizen-science datasets for improving knowl-

edge about species distributions.
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Supporting Information: Code

Appendix S1: R and BUGS code for the Full Model used in estimating the Vinaceous-breasted
Parrot geographic range. The code includes the CAR component of the model, accounting for
effort, cross-validation and Deviance computation.

#Data object specification in R

data <- list(munil = datInS$IDENT, muni2 = datOut$IDENT, muni3 = dat2InS$IDENT,
muni4 = dat20ut$IDENT, munib5 = dat3In$IDENT, muni6 =
dat30ut$IDENT, muni7 = dat4InS$SIDENT, muni8 = dat4OutS$IDENT,
Yl = datIn$A_VINACEA, Y3 = dat2In$A_VINACEA, Y5 =
dat3InSAVINACEA, Y7 = dat4InSA VINACEA, nMuni = length (muni),
nObsl = nrow(datIn), nObs2 = nrow(datOut), nObs3 = nrow(dat2In),
nObs4 = nrow (dat20ut), nObs5 = nrow(dat3In), nObs6 =
nrow (dat30ut), nObs7 = nrow(dat4In), nObs8 = nrow(datd4Out),
TObs = datInSEFFORT MIN/60, TObs2 = datOut$EFFORT MIN/60,
SSee = dat2InSNSPECIES, SSee2 = dat20ut$SNSPECIES, TObs3 =
dat2In$SDURATION.M/60, TObs4 = dat20ut$DURATION.M/60,
RLen = dat2InS$SEFFORT.DIS, RLen2 = dat20ut$EFFORT.DIS,
NPho = dat3In$SNPIC, NPho2 = dat30utS$NPIC, NAud = dat3InS$NSONG,
NAud2 = dat30ut$NSONG, NAud3 = dat4In$NSONGS, NAudd =
dat40Out$SNSONGS, VegCover = VegCover, ArauCover = ArauCover,
Alt = Altitude, nCell = nrow(hex.centroids), cell.id = cell.id,
adj = adj, num = num, sumNeigh = sumNeigh)

# Model specification in BUGS language
cat(file = "model.txt","
model {

#CAR prior - spatial random effect

for(j in 1l:sumNeigh) {weights[j] <- 1}

spacesigma ~ dunif (0,5)

spacetau <- 1/ (spacesigma*spacesigma)

delta[l:nCell] ~ car.normal (adj[],weights[],num[], spacetau)

###Data model
for (i in 1:nMuni) { # loop over sites
mu[i] <- delta[cell.id[i]] + betal[l] + beta[2]*VegCover[i] +
beta[3]*ArauCover[i] + betal[4]*Alt[i]
mu.lim[i] <- min (10, max (=10, mufli]))
logit(psi[i]) <- mu.lim[i]
z[i] ~ dbern(psi[i])

for (n in 1:n0Obsl) { # loop over observations - Counts - Data In
el[n] <- alphal[l]*TObs[n]
Pl[n] <- l-pow((1-0.5), el[n])
zP1l[n] <= Pl[n]*z[munil[n]]

Y1l[n] ~ dbern(zPl[n])



for (o in 1:n0Obs2)
2[o] <- alphal
P2[o] <- 1-pow (
zP2[0o] <- P2[0]
Y2[o] ~ dbern(z

{ # loop over observations - Counts - Data Out
1]*TObs2[0]

(1-0.5), e2[o]) # effort model

*z [muni2[o]]

P2[o])

for (j in 1:n0bs3)
e3[j] <- alphal
P3[j] <- l-pow
zP3[j] <= P3[]]
Y3[j] ~ dbern(z

{ # loop over observations - eBird

2]1*SSee[j] + alpha[3]1*TObs3[j] + alphal[4]*RLen[]]
(1-0.5), e3[j]1) # effort model

*z [muni3[j]]

P3[31])

for (p in 1:n0Obs4)
ed[p] <- alphal
P4[p] <- l-pow
zP4 [p] <- P4[p]
Y4 [p] ~ dbern(z

# loop over observations, eBird, Cross-Validation
]*SSee2[p] + alpha[3]*TObs4[p] + alphal[4]*RLen2[p]
1-0.5), ed[p]l) #effort model
z [muni4d [p]]
41pl)

{
2
(
*
P

for (k in 1:n0bsb5){ # loop over observations - Wikiaves
e5[k] <- alpha[5]*NPho[k] + alphal[6]*NAud[k]

5[k] <= 1l-pow((1-0.5), e5[k]) #effort model
ZPS[k] <- P5[k]*z[muni5[k]]
z

5[k] ~ dbern (zP5[k])

#loop over observations - Wikiaves - Cross-Validation

for (s in 1:n0Obsé6) {
5]*NPho2[s] + alpha[6]*NAud2([s]
(
*

6[s] <- alpha
P6[s] <- 1l-pow

[

((1-0.5), e6[s]) #effort model
zP6[s] <- P6[s]

z

z [muni6[s]]
Y6[s] ~ dbern(zP6[s])
}
for (h in 1:n0bs7){ #loop over observations - Xeno-Canto data
e7[h] <- alpha[7]*NAud3[h]
(

[
7[h] <= 1l-pow((1-0.5), e7[h]) #effort model

ZP7[h] <-= P7[h]*z[muni7[h]]

7[h] ~ dbern(zP7[h])

for (t in 1:n0bs8)
8[t] <- alphal
P8[t] <- 1-pow (
zP8[t] <- P8[t]
8[t] ~ dbern(z

{ # loop over obsvts - Xeno-canto - Cross-Validation
7]1*NAud4 [t]

(1-0.5), e8[t]) #effort model

*z[muni8[t]]

P8[t])

#Priors for betas - psi
beta[l] ~ dunif (-10,10)
betal[2] ~ dunif (-10,10)
beta[3] ~ dunif (-10,10)

50



betal[4] ~ dunif (-10,10)
#Priors for alphas - effort model

for (b in 1:7){
alpha[b] ~ dnorm(0,0.0001)I(0,10000)

#compute the mean detection probability of each dataset:

muPl <- mean(P1[])
muP2 <- mean (P2[])
muP3 <- mean (P3[])
muP4 <- mean(P4[])
muP5 <- mean (P5[])
muP6 <- mean (P6[])
muP7 <- mean(P7[])
muP8 <- mean (P8[])

}
")

#Back to R language:

#Specification of Initial Values

inits = function() {list(z = rep(l, datad4$nMuni))}

params <- c("beta", "psi", "z", "alpha", "muPl", "muP2", "muP3", "muP4",
"muP5", "muP6", "muP7", "muP8", "Y2", "v4", "vye", "Y8",
"spacesigma", "delta")

#MCMC settings
nc <- 3; nb <- 150000; ni <- 200000; nt <- 100

out <- bugs(data = data, inits = inits, parameters.to.save = params,
model.file = "model.txt", n.chains = nc, n.iter ni,
n.burnin = nb, n.thin = nthin, debug = TRUE)

#Deviance calculation based on the model output

likhood2 <- (outSmean$¥Y2”datOut$A VINACEA) * ((1- outSmean$y2)”
(1-datOutSA VINACEA)) #likelihood

DEV2 <- - (2* (sum(log(likhood2))))

likhood4 <- (outSmeanS$Y4” dat20utSA VINACEA) * ((1- outSmeans$y4)”
(1- dat20ut$A VINACEA)) #likelihood
DEV4 <- - (2* (sum(log(likhood4))))

likhood6 <- (out$Smean$Y6” dat30ut$AVINACEA) * ((1- outSmeanS$yo)”
(1- dat30utSAVINACEAZA)) #likelihood
DEV6 <- - (2* (sum(log(likhood6))))

likhood8 <- (outSmeanS$¥Y8” dat4OutSA VINACEA) * ((1- outSmeans$y8) "
(1- dat4OutS$A VINACEA)) #likelihood
DEV8 <- - (2* (sum(log(likhood8))))

DEVtotal <- DEV2 + DEV4 + DEV6 + DEVS8 #total deviance
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Supporting Information: Figures

Figure S1: Residual spatial autocorrelation estimated by the Full Model. Dark red hexagons
represent highly positive spatial autocorrelation, i.e. strong clustering of occupancy not explained
by environmental covariates.
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Figure S2: Comparison between the realized geographic range (mean z) according to the Full
Model (A) and according to the model without the spatial component (B).
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Supporting Information: Tables

Table S1: Results of two additional cross-validation trials performed with the first four models
in the study. Model 1, the ‘Full Model’, includes spatial autocorrelation plus detection as well as
occupancy covariates. It was fitted to data from all datasets: roost counts (RC), eBird (EB),
WikiAves (WA), and Xeno-canto (XC). Model 2 equals model 1 without spatial autocorrelation.
Models 3 and 4 are variants of model 1 without, respectively, detection and occupancy
covariates. In these two trials, as well as in that reported in Table 2 of the manuscript, the Full
Model always has the lowest, and the model with no detection covariates always has the highest
total deviance. The ranking of models 1-4 with respect to specific datasets changes between trials
but the full model is still the model that most frequently has the lowest deviance, while model 3
(no detection covs.) most frequently has the highest. Each trial below corresponds to one random
exclusion of 20% of the data, followed by model fitting, parameter estimation, prediction of the
excluded data and computation of deviance.

Trial 1 Deviance in each data set
Models Total Deviance RC EB WA XC
1. Full Model 1099.70 94.73 846.84 148.57 9.55
2.No CAR 1205.34 139.25 888.54 168.69 8.84
3. No detection covs. 1529.71 22797 1123.03 15654 22.14
4. No occupancy covs. 1365.83 140.16  1040.62 170.56 14.48
Trial 2 Deviance in each data set
Models Total Deviance RC EB WA XC
1. Full Model 921.62 197.06 507.49 190.64 26.41
2.No CAR 1173.45 308.87 604.57 22883 31.17
3. No detection covs. 1755.89 54899 960.81 204.11 41.98
4. No occupancy covs. 955.55 245.01 49230 190.31 27091
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overview of their geographic range and population size

Artigo publicado na revista Diversity.

55



diversity

Article

Endemic and Threatened Amazona Parrots of the Atlantic Forest:
An Overview of Their Geographic Range and Population Size

Viviane Zulian ¥, David A. W. Miller 2 and Gongalo Ferraz !

Citation: Zulian, V.; Miller, D.A.W.;
Ferraz, G. Endemic and Threatened
Amazona Parrots of the Atlantic
Forest: An Overview of Their
Geographic Range and Population
Size. Diversity 2021, 13, 416.
https://doi.org/10.3390/d13090416

Academic Editor: Juan Carlos Illera

Received: 4 June 2021
Accepted: 23 August 2021
Published: 30 August 2021

Publisher's Note: MDPI stays
neutral with regard to jurisdictional
claims in published maps and

institutional affiliations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution  (CC  BY) license
(http://creativecommons.org/licenses

[by/4.0/).

1 Programa de Pés-Graduagao em Ecologia, Instituto de Biociéncias, Universidade Federal do Rio Grande do Sul,
CP 15007, Porto Alegre 91501-970, RS, Brazil; goncalo.ferraz@ufrgs.br

2 Department of Ecosystem Science and Management, Pennsylvania State University,

411 Forest Resources Building, University Park, State College, PA 16802, USA; dxm84@psu.edu

Correspondence: zulian.vi@gmail.com

Abstract: Amazona is the largest genus of the Psittacidae, one of the most threatened bird families.
Here, we study four species of Amazona (Amazona brasiliensis, A. pretrei, A. vinacea, and A.
rhodocorytha) that are dependent on a highly vulnerable biome: the Brazilian Atlantic Forest. To
examine their distribution and abundance, we compile abundance estimates and counts, and
develop site-occupancy models of their geographic range. These models integrate data from formal
research and citizen science platforms to estimate probabilistic maps of the species’ occurrence
throughout their range. Estimated range areas varied from 15,000 km? for A. brasiliensis to more than
400,000 km? for A. vinacea. While A. vinacea is the only species with a statistical estimate of
abundance (~8000 individuals), A. pretrei has the longest time series of roost counts, and A.
rhodocorytha has the least information about population size. The highest number of individuals
counted in one year was for A. pretrei (~20,000), followed by A. brasiliensis (~9000). Continued
modeling of research and citizen science data, matched with collaborative designed surveys that
count parrots at their non-breeding roosts, are essential for an appropriate assessment of the species’

status, as well as for examining the outcome of conservation actions.

Keywords: Amazona; Psittacidae; species distribution models; data integration models; occupancy
models; citizen-science; population size; count data

1. Introduction

Three hundred and ninety-five species of parrots, macaws, and parakeets constitute
the Psittacidae family, the largest non-passerine bird family in the world [1]. With 27%
(108) of its species threatened with extinction [1], the Psittacidae is the bird family with
the highest absolute number of threatened species, that is, species classified as
‘vulnerable’, ‘endangered’, ‘critically endangered’, or ‘extinct in the wild’, by the
International Union for Conservation of Nature and Natural Resources (IUCN). In
proportional terms, the Psittacidae come only after the much smaller families of
albatrosses and cranes with, respectively, 68% and 66% of their species threatened.
Habitat loss and nest poaching are two key factors endangering Psittacidae populations
[2,3]. Being dependent on forest habitats, most Psittacidae species require natural cavities
to nest [3] and are thus directly impacted by forest clearance [2] and selective logging [4],
caused primarily by agro-industrial expansion [5,6]. Nest poaching disproportionately
affects species that are colorful, with large body size, relative ease of capture, and that sell
for the highest prices [7,8].

The most diverse genus among the Psittacidae is the neotropical genus Amazona, or
Amazon parrots, with 36 species distributed from northern Argentina to northern Mexico
[1]. One half (18) of the Amazona species are globally threatened, and 25 species have
decreasing population sizes, according to the [IUCN Red List [1]. Nest poaching has been
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reported by Wright et al. [8] as the main cause of mortality in four species: A. vinacea, A.
kawalli, A. ochrocephala, and A. auropalliata. Habitat loss is also a threat to the genus,
especially in those biomes that have been more subjected to deforestation, such as the
Atlantic Forest of Brazil. Home to seven Amazona species [9], the Atlantic Forest is the
second largest rainforest in South America [10,11] and is a global biodiversity hotspot [12].
The biome has lost almost 90% of its forest cover since the onset of European colonization
[12], and only 1% of its original extent is presently included in protected areas [10].
According to one projection to 2070 [13], the Atlantic Forest region will lose bird habitat
at the rate of 1.2% to 3.3% per decade—the highest rate of loss estimated by that study for
any region of the world. Realizing the potential impact of land use in the Atlantic Forest
on parrot populations [14], as well as the relative importance of the genus Amazona among
the Psittacidae, we direct our attention here to what we consider to be the most
emblematic Amazona species of the Atlantic Forest biome: A. brasiliensis, A. rhodocorytha,
A. vinacea, and A. pretrei. They are endemic to the Atlantic Forest [15] and classified by the
IUCN, respectively, as Near-Threatened, Vulnerable, Endangered, and Vulnerable.

Geographic range and population size are two key descriptors of the state of any
living species. Since their temporal trajectories offer evidence of population trends, these
two variables inform four out of the five criteria used by the IUCN in assigning species to
threat categories [16]. Notwithstanding, the IUCN Red List profiles of these four species
in this study reveal substantial uncertainty about their geographic ranges and limited
information about how the estimated population sizes were obtained. Our goal here is to
fill this knowledge gap to the extent that is possible by compiling information from the
ornithological literature and citizen-science platforms. We review information on
population sizes based on published abundance estimates and counts of all species. To
address geographic ranges, we draw new maps for the four species. Our maps express the
species’ distribution as occupancy probability per municipality. The statistical models
used for producing the new maps integrate data from three different citizen-science
platforms (eBird, Wikiaves, and Xeno-Canto) as well as from formal research databases,
where available. We hope that improved knowledge about abundance and distribution of
Amazona species in the Atlantic Forest will help direct future monitoring and conservation
efforts, as well as strengthen the basis for threat assessments.

2. Materials and Methods
2.1. Study Area and Data Collection

We organized information about the population size and the geographic range of
Amazona brasiliensis, A. pretrei, A. rhodocorytha, and A. vinacea following two different
approaches. For population size, we compiled all the information about counts or
abundance estimates that we could find for each species, including results from peer-
reviewed papers, reports, books, and academic theses (Supplementary Tables 51-S3).
Count data were collected by four different research teams, during scientific research or
monitoring programs. The counts were performed at regularly used roosts or near points
of frequent flyover by parrots, at dawn and dusk. For geographic range mapping, we
compiled detection—non-detection data from citizen-science platforms and research
project databases. Such data were analyzed separately for each species, with a site-
occupancy, data-integration model following Zulian, Miller, and Ferraz [17]. We varied
the geographic extent, or focal area, used to fit each species’ model (Figure 1). Focal areas
included either all the states or provinces where the species were detected (A. rhodocorytha
and A. vinacea) or all the municipalities within 150 km of the closest detection (A.
brasiliensis and A. pretrei). These areas ranged from a little over 160,000 km? for A.
brasiliensis, to more than 1.5 million km?, in the case of A. vinacea (Figure 1). We are
confident that the extent for each species covers the entirety of each species’ potential area
of occurrence. The A. vinacea range map that we present here is the only map in this paper
that combines formal research and citizen-science data. This map is identical to that shown
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by Zulian, Miller, and Ferraz [17], in a study focused on devising optimal methods for
fitting distribution models to multiple data streams, which informs the approach that we
used here. Geographic range analyses for the other three species are based uniquely on
citizen-science data, as explained below.

Red-tailed Parrot
Amazona brasiliensis

Realized Geographic Range - Mean z
0-01
01-04

I o04-06

B o6-09

Bl oo-1

340 km

Vinaceous-breasted Parrot
Amazona vinacea

Red-browed Parrot
Amazona rhodocorytha

/

Pl
400 800 km j
|

500 1000 km

Figure 1. Geographic ranges of the four study species represented by the mean of the true occupancy state (z) estimated
for each municipality. Intermediate values—of z~0.5—indicate the highest uncertainty about occupancy by each species.
Black dashed polygons are the Extant range of each species according to the IUCN Red List of Threatened Species [1].

We obtained records of A. vinacea, A. brasiliensis, A. rhodocorytha, and A. pretrei from
citizen-science platforms eBird [18], WikiAves [19], and Xeno-canto [20], corresponding
to the period between 1 January 2008 and 31 December 2018. For A. vinacea, we also
included a formal research dataset derived from roost counts and described by Zulian et
al. [21]. Our sampling unit is the municipality, where the number varied from 3701 to 405
depending on the species. Citizen-science platforms store data resulting from field visits
with highly variable duration, distance covered, observation technique, and observer
experience. This lack of standardization requires platform-specific data processing
solutions. In particular, eBird data come in the form of checklists, which contain
information about observation effort per list. The number of lists per municipality varied
from 1 to 3245, with a mean of 33 lists, collected at different times of the year by different
observers. WikiAves and Xeno-canto, on the other hand, gather records for a municipality
in the form of individual species observations that are not aggregated in any form of
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observation ‘session’ per municipality and observer. As a result, we have the equivalent
of replicate visits for eBird, but not for the other two platforms, where each municipality
has only one “visit'.

Data processing consisted of some filtering, formatting data matrices, and obtaining
effort covariates for all platforms. Starting with eBird, we excluded incomplete checklists,
checklists without location information, and checklists that potentially spanned more than
one municipality due to long distance (>12 km) or long time traveled (>360 min). We set
up a matrix of detection-non-detection histories based on eBird data for each parrot
species. In this matrix, municipalities appeared in rows and consecutive checklists of each
municipality in columns. Matrix elements were ‘1’, for municipalities and checklists where
the parrot species were detected, or ‘0’ where not detected. We calculated three covariates
of sampling effort for each eBird checklist and municipality: the total number of species
recorded, the number of minutes spent observing, and the number of kilometers traveled.
For WikiAves and Xeno-canto, data filtering consisted of deleting sightings of individuals
reported as escaped from captivity. Since WikiAves receives photographic and audio
records of species, we organized data into two vectors per parrot species, one for the
number of photographs and one for the number of audio recordings of that species in each
unique municipality. For the WikiAves data, we calculated two covariates of effort: the
number of photos and the number of audio recordings of all species, per municipality.
Finally, the Xeno-canto platform hosts only audio recordings of bird sounds, so its
detection data were easily organized into a single vector per parrot species, holding that
species’ number of audio recordings per municipality. We also collected the total number
of recordings of any species uploaded for each municipality for use as a covariate of Xeno-
canto sampling effort. For the A. vinacea research data, we created a detection-non-
detection matrix with municipalities as rows and counts as columns. Matrix cells
corresponding to counts with at least one parrot received a detection (‘1’), and those with
no parrots received a non-detection (‘0’). Here, we used the count’s duration, in minutes,
as a covariate of sampling effort (see Zulian, Miller, and Ferraz [17] for details).

2.2. Data Analysis

We drew range maps representing the estimated probability of site (or municipality)
occupancy by each species during the eleven-year study period. We follow a static
approach as originally described by MacKenzie et al. [22] and define ‘occupancy’ as the
probability that a site was occupied by the given species at any point during the whole
eleven-year study period. One of the species—A. pretrei—is known for its within-year
shifts in distribution, which result in exceptionally large concentrations of individuals
during the non-breeding season. Therefore, for this species alone, we estimated both the
full-year distribution for the species and seasonal range maps. Seasonal distributions were
obtained with the same modeling approach applied to four non-overlapping temporal
subsets of the data, each corresponding to one trimester of the year and including
information from all years. At the core of our statistical approach to site occupancy, there
is a process model of the true occupancy state, z;, of each municipality, i, which takes the
value of ‘1’ for those municipalities that are occupied by the species of interest, and ‘0’ for
those that are not. This state follows a Bernoulli distribution with a mean ;:

z; ~ Bernoulli (i;). 1)

The occupancy probability in each municipality i, 3;, varies according to n
environmental covariates, X,,;, according to a generalized linear model with a logit link
function. Since the four species of parrots are associated with Atlantic Forest and altitude
[23-25], we included the Atlantic Forest cover and average altitude as covariates of
municipality i occupancy. We also included the Araucaria Forest cover as a covariate of
occupancy by A. pretrei and A. vinacea, since they rely heavily on Araucaria seeds for food
during the winter [23,26,27], and a Dense Forest cover as a covariate of occupancy by A.
brasiliensis, because this species is apparently associated with dense, lowland coastal forest
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[25,28,29]. We obtained Atlantic Forest cover data from Ribeiro et al. (in prep.), and Dense
Forest cover data from the Brazilian Instituto Brasileiro de Geografia e Estatistica
(https://www.ibge.gov.br/ (accessed on 30 June 2021)) [30]. Average municipality altitude,
x, in meters, is from DIVA-GIS (https://www.diva-gis.org/ (accessed on 18 November
2019)) [31], log-transformed as log(x + 1). Our linear model of occupancy also included
a spatial random effect to account for unexplained spatial autocorrelated variation (3;):

logit(;) = Bo + B * Xy + Bp x Xy + -+ +6;. (2)

In this model, occupancy covariates measured at municipality i are given by X, ;,
Xzi..., and By, By, B... are estimated coefficients. The spatial component of our model
follows a conditional auto-regressive (CAR) distribution [17] and was used to estimate
correlated spatial variation in the data that is not explained by our covariates. To avoid
confounding effects of municipality size variability and to gain replication within spatial
units in the CAR analysis, we represented the spatial random effect using a hexagonal
lattice overlaid on the study area, with municipalities assigned to the lattice cell that
matches their centroid. Hexagonal cells measured 0.5° latitude across, and all the first-
order neighbors of each cell were given a weight of 1 when fitting the CAR model.

Ours is a data-integration approach because it models detections from different
databases with a joint-likelihood that shares the same occupancy process described above
[32,33], for each parrot species. Within each database, detection was expressed as a
conditional probability, pj, of detecting the species as a function of an estimated amount
of sampling effort, Ej, for visit j [17,33,34]:

pj=1-(1-p, @)
where p is the probability of detection per unit of effort. Since we are using indirect, and
sometimes several metrics of effort for each data source (our effort covariates), we
estimated the parameter E; for each sample j as a linear function of the covariates. Thus,
for each dataset, DS, , with n varying between one and four (roost counts, eBird,
WikiAves, and Xeno-canto), we have:

E].DS"=a1*X1j+ a * X2j+ az * X3;, 4)

were X1;, X2;, and X3; are effort covariates measured on visit j. We used one to three
covariates depending on data type. We fixed p at a value of 0.5, so that the a;— a3
coefficients express the relationship between covariates and the effort necessary to reach
a detection probability of 0.5 per unit of effort. Without fixing p, Equation (3) becomes
over-parameterized. Having modeled a conditional probability of detection, pj, we can
represent the detection-non-detection data, Y;;, as the outcome of a Bernoulli distribution,
that accounts for the true state of each municipality, z;, and the conditional probability of
detection, as follows:

Y;; ~ Bernoulli (z; X pj). ®)

We fitted all the models using a Bayesian estimator coded in the BUGS language and
implemented on WinBugs software [35]. Inference was based on draws from the posterior
distribution of model parameters using a Markov Chain Monte Carlo (MCMC) algorithm
with three chains, 200,000 iterations, and a burn-in phase of 150,000 (see code in
Supplementary S1 in the Supplementary Materials). All results presented here correspond
to chains that converged to an R-hat lower than 1.1. We draw maps of ‘realized occupancy’
given by the mean of the estimated z; for each municipality and estimated the area of
each species’ geographic range as the sum of all municipality areas weighted by each
municipality’s predicted occupancy, ;, estimate.
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3. Results

We used a total of 100,289 samples, collected across 3701 municipalities, to inform
the estimation of geographic ranges of the four parrot species that we studied. The
datasets showed a wide coverage, with more than 90% of the municipalities in each
species’ study area having at least one sample (Table 1). Alone, the A. vinacea dataset
accounted for almost 50% of the samples and 58% of the detections, while A. pretrei had
the smallest dataset, with 18% of the samples and 10% of the detections (Table 1). A.
brasiliensis had the third highest number of samples, but only 15 municipalities with at
least 1 detection. A. rhodocorytha had the second smallest sample size, but the second
largest number of detections (Table 1).

Our estimated geographic ranges differed from the Extant area calculated from the
range maps reported by the IUCN for all four species (Table 1). A. vinacea had the largest
estimated range, encompassing more than 400,000 square kilometers [17], followed by A.
rhodocorytha, with approximately 134,000 square kilometers (Figure 1). The discrepancies
between the IUCN Extant area and our estimates are not negligible: while our geographic
range estimate is three times larger than the IUCN value for A. vinaces, it is six times larger
for A. pretrei. The biggest discrepancy is for A. rhodocorytha, for whom the IUCN reports a
range 50 times smaller than our estimate. Geographic ranges are an outcome of history
and environmental constraints. Our results show how the environmental covariates of
Atlantic Forest cover, Araucaria Forest cover, and Altitude help explain the distribution
of A. vinacea, with all three having strong and positive effects on site-occupancy
probability (Table 2). Based on our models, species’ detection data, and environmental
covariate information, there is no evidence of other statistically distinguishable effects of
environmental factors on site occupancy by any of the four species of parrots (i.e., the 95%
credible intervals of other coefficients in Table 2 are nearly centered on zero).

Table 1. Sample size, spatial coverage, and number of detections for the four parrot species. Sample size is the number of
samples collected form the citizen-science and research datasets, as defined in the text. Coverage is the proportion of
municipalities in each study area with at least one sample. The labels rndet and #muni show, respectively, the number of
parrot detections and the number of municipalities with at least one detection. The last two columns show geographic
ranges sizes: the [IUCN Extant area is given in each species’ online entry to the IUCN Red List of Threatened Species. The
estimated geographic range is the sum of municipality areas weighted by the estimated probability the species occurred
in each municipality (given here by the mean + standard deviation of the a posteriori distribution of range size, followed
by its 95% credible interval (in parentheses)).

Estimated
Speci Sample Coverage ) IUCN Extant Area G :;T? eRan
pecies Size % Ndet Hmuni (lm?) eographic ge
(km?)
Amazona brasiliensis 15,627 + 8843
16,7! .7 192 1 47!
(Red-tailed Parrot) 6,705 % 9 > 50 (3127-31,414)
Amazona pretrei 66,203 + 11,425
477 2.7 187 7 10,4
(Red-spectacled Parrot) 5 ? 8 3 0,430 (45,727-90,367)
Amazona rhodocorytha 134,355 + 13,922
30,867 94.2 346 86 2672
(Red-browed Parrot) (109,288-162,828)
Amazona vinacea 47,240 91.9 1007 139 145,700 434,670 + 28,911

(Vinaceous-breasted Parrot)

(382,887-496,550)
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Table 2. Coefficients of the occupancy equation in each species model. The numbers show the mean + standard deviation
and 95% credible intervals (in parentheses) of the a posteriori distribution of each parameter.

Species Atlantic Forest Dense Forest Araucaria Forest Altitude
Amazona brasiliensis -0.63+2.23 -1.33+£3.14 _ 0.23+0.44
(-5.39-3.48) (=7.71-4.77) (-0.72-0.94)

Amazona pretrei -0.55+1.08 _ 0.47 £1.05 0.15+0.18
(2.70-1.56) (-1.55-2.53) (-0.21-0.52)
0.84 +£0.91 -0.14 £ 0.20
Amazona rhodocorytha (-1.70-1.84) — — (-0.51-025)
Amazona vinacea 2.11+0.86 B 2.13 £ 0.98 0.85+0.12
(0.37-3.79) (0.29-4.10) (0.58-1.05)

The subdivision of A. pretrei data into trimesters generates four substantially different
geographic range maps (Figure 2). During the early breeding season months of July to
September, the species is at its most dispersed (Figure 2A). During this period, 39
municipalities throughout the focal area have realized occupancy greater than 0.9 (i.e.,
mean z > 0.9), even though almost all of them are in the state of Rio Grande do Sul. During
the Fall months of April to June, however, A pretrei individuals appear aggregated in only
12 municipalities that have realized occupancy greater than 0.9 (Figure 2D). These
municipalities form four disjunct clusters in the Rio Grande do Sul and Santa Catarina
states. The transition from the aggregated to the dispersed state is faster than the transition
from dispersed to aggregated, which takes place from October to March and is
represented by the intermediate ranges in panels B and C, of Figure 2.

July - September

A

B \‘ i | C '\.’ e D £ “: -

October - December January - March April - June

Realized Geographic Range - Mean z
0-017" 01-04

" 04-06 ™ 06-09 = 09-1

0 400 800 km

Figure 2. Seasonal variation of the geographic range of the Red-Spectacled Parrot (Amazona pretrei) as shown by the mean
of the true occupancy state (z) estimated for each municipality. Each panel represents a trimester, the sequence starting
with July—September (A), when the species is most dispersed, and proceeds in three-month intervals to October-December
(B), January-March (C) until April-June (D), when it aggregates in only a few municipalities. Darker tones of red indicate
higher mean z; intermediate tones indicate the highest uncertainty about species presence.

There is much less information about the abundance of Atlantic Forest Amazona
species than about their geographic range. The species for which we could assemble the
longest time series of roost counts was A. pretrei, which has a long-term monitoring
program led by the same team of researchers since the mid-1990s (Figure 3B). A. pretrei is
also the species with highest counted number of individuals. Its earliest counts, performed
in 1971 by Forshaw and Cooper (ref [36] cited by [37]), returned between 10,000 and 30,000
individuals (Figure 3B). Later, during the 1970s and 1980s, Belton [38] and Varty at al. [37]
reported a decline in the number of individuals counted, with recovery during the 1990s.
Since 1997, the yearly sum of A. pretrei counts has varied around 20,000 individuals
(Figure 3B) [39-42]. The second longest time series of roost counts is that of A. brasiliensis.
This species also has an ongoing monitoring program, coordinated by the same team
throughout the last two decades [43]. The sum of A. brasiliensis counts has varied, always
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below 10,000 individuals, over the last three decades [28,29,43-61]. Figure 3A shows a
tendency towards increasing counts, but one should not rush to interpret this as evidence
of population growth because the count reports do not incorporate corrections for
variation in effort through time. A. vinacea has the shortest time series of roost counts
[21,27,42,62-64] (Figure 3C) but is the only species with a published statistical estimate of
population size, which does account for temporal changes in sampling effort, as well as
for detection errors [21]. There are two estimates, for the non-breeding seasons of 2016
and 2017, both in the vicinity of 8500 individuals and with 95% credible intervals entirely
below the 10,000-individual mark.

We could not assemble a time series of A. rhodocorytha counts, as the few published
count results were obtained in sparse locations that were not revisited in different years.
In 1998, Marsden et al. [65] searched for the species in two separate sites covering 427 km?
of Bahia and Espirito Santo states, reporting distance-sampling estimates of, respectively,
238 + 174 and 5990 + 1680 (mean * standard error) individuals. Later, in 2008, Klemann-
Janior et al. [66] counted 2295 individuals for all of Espirito Santo state. The Plano de A¢do
Nacional para a Conservagdo dos Papagaios da Mata Atldntica considers that the A. rhodocorytha
population size is around 10,000 individuals, based on expert opinion [41], but no more
demographic information is available.
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Figure 3. Number of Red-Tailed (A), Red-Spectacled (B), and Vinaceous-Breasted (C) Parrots
counted by research teams throughout the last fifty years. Panel (C) also includes two estimates of
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the Vinaceous-Breasted Parrot population size, with gray lines showing bounds of the 95%
credible interval of the a posteriori distribution of population size. These are the only statistical
estimates of population size available in the literature for any of the study species. There is no plot
for the Red-Browed Parrot because we could not find published records of count results for this
species. Some of the Red-Spectacled Parrot counts were reported as intervals and appear as
vertical lines in panel (B). Variations in the number of counted individuals may be due to variation
in sampling effort or to real change in population size. Asterisks in panel (A) show differences in
sampling effort: * corresponds to years that the counts were performed only in Parand, and ** only
in Sdo Paulo. Sources for the numbers shown are [28,29,43-61] (A), [36—42,67] (B), and
[21,27,42,62-64] (C).

4. Discussion
4.1. Geographic Range

The four Amazona species we studied showed marked differences in geographic range
and, most likely, also in population size. The estimated areas of the geographic ranges
varied over two orders of magnitude, from the approximately fifteen thousand square
kilometers in A. brasiliensis to more than four hundred thousand square kilometers in A.
vinacea. The mean estimated range was larger than the IUCN Extant area for all species, with
95% credible intervals including the IUCN Extant area for only one of them, A. brasiliensis.
Both our estimated range area and the IUCN Extant areas approximate areas of occupancy
as defined by Gaston and Fuller [68]. The marked disparity is likely a reflection of
conservative caution in the definition of IUCN Extant areas and of extraordinary sampling
coverage afforded by the use of citizen-science data in our estimates.

Geographic-range differences across species partially reflect environmental factors
that limit their distribution. The range of A. brasiliensis appears to be limited by the
highlands of the Serra do Mar [28], which also have high occupancy by A. vinacea. Indeed,
A. vinacea is the only species to show evidence of a positive association between altitude
and occupancy probability. Occupancy by A. vinacea is also positively associated with
Atlantic and Araucaria Forest covers, even though the parrot’s range extends beyond that
of Araucaria angustifolia [17]. None of these associations—with altitude or with any type
of forest cover —were evident from the analyses of the other three species— A. brasiliensis,
A. pretrei, or A. rhodocorytha. Such lack of statistical association does not mean that they
are biologically indifferent to forest cover. They are all cavity-nesters, and will not
reproduce without access to tree holes, which are predominantly found in old-growth
forests [28,29,66,69-71]. Instead, the focal areas of all three include extensive regions of
forest (or of high or low altitude) that happen to not be occupied. This weakens the
statistical association with occupancy covariates, not because they do not facilitate
occupancy, but because unknown factors not included in our models may be further
restricting the parrot distributions.

4.2. Population Size

Of the four species in this study, we only have a statistical estimate of global
population size for A. vinacea. At around 8500 individuals [21], this estimate is nearly three
times the number reported by the IUCN [72]. The local estimate of ~6000 A. rhodocorytha
individuals for one 461 km? site in Espirito Santo, reported by Marsden et al. in 1998 [62],
appears too high. This number, which implies a homogeneous density of 13 individuals
per km? throughout the study site, is more than twice the number counted for the whole
state of Espirito Santo by a different team ten years later [63]. There was either a dramatic
population reduction in the state or these A. rhodocorytha numbers need reconsideration.
There are no published estimates or counts of A. rhodocorytha for five of the states covered
by the range map in Figure 1C. The species’ global population size of 10,000 individuals
reported by the IUCN [73] and the Brazilian Red List [74] may be reasonable, but neither
source provides an explanation of how that number was obtained.
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Any considerations about population sizes of A. pretrei and A. brasiliensis must be
based solely on raw counts, as there are no published statistical estimates of population
size for these species. Counts are difficult to compare because they do not quantify
uncertainty about their values. They are also likely to underestimate real population size
because they do not account for detection errors. In the absence of statistical estimates,
however, counts offer a reasonable lower bound for population size. A. pretrei is the
species with the largest counts, exceeding 20,000 individuals in 2006, 2008, and 2011, a
number that is also greater than the 16,000 individuals cited by the species’ IUCN Red List
profile [75,76]. This species’ well-known tendency to concentrate in only a few
municipalities during the non-breeding season [39] reduces the probability that observers
overlook large flocks and makes us relatively more confident of the accuracy of A. pretrei’s
counts than of the others. Counts of A. brasiliensis reached more than 9000 individuals in
2018 [61,77], making it, possibly, the species with the smallest geographic range but the
second highest population size in this study. Future research could be aimed at the
question of whether A. brasiliensis presents an exception to the well-supported positive
relationship between area of occupancy and local abundance [78].

4.3. Seasonal Change in Geographic Range

Seasonal movements of aggregation and dispersion, influenced by the reproductive
cycle and changes in food availability, are well-documented for A. brasiliensis [29], A.
pretrei [39], and A. vinacea [21,27]. Dispersion occurs in the beginning of the breeding
season (August-September), when breeding pairs abandon collective roosts to start
spending the nights near the nest. By the end of the breeding season—December to March
depending on the species—parrots aggregate again in collective roosts, which vary in size
from dozens to thousands of individuals [21,27,29,39,79]. Aggregation and dispersal
phases of A. pretrei occur in nearly non-overlapping parts of the species’ range. By early
Autumn, individuals concentrate in southeast Santa Catarina [39,80], and they spend the
coolest months of the year in this region, feeding on abundant Parana pine (Araucaria
angustifolia) seeds [39] while other food resources are scarce [26]. Even though some
individuals may overwinter in Rio Grande do Sul, the majority of the A. pretrei population
spends this period in Santa Catarina, forming groups with thousands of individuals, in
the municipalities of Painel, Urupema, Lages, and Sao Joaquim [39]. Between July and
September, A. pretrei individuals disperse back to breed in Rio Grande do Sul, reaching at
this point their largest geographic range and smallest group sizes [39]. Providing evidence
of range dynamics at a larger temporal scale, A. pretrei’s center of aggregation has not
always been in southeast Santa Catarina. Reports from the 1970s show large wintering
aggregations of more than 10,000 individuals in the municipality of Muitos Capdes,
northern Rio Grande do Sul [3,37,38,67]. By the early 1990s, however, this number had
decreased to only a few tens of individuals [39], and larger groups began appearing in
Southeast Santa Catarina [39,81]. This shift of more than 100 km to the north follows
decades of intense exploration and widespread destruction of Parana pine forests in RS,
which peaked between the 1920s and 1950s [82]. Most likely, scarcity of their most
important winter fallback food forced A. pretrei into the colder but still relatively abundant
Araucaria forests of the new wintering grounds in Santa Catarina [81].

4.4. Long-Term Changes in Geographic Range

Among the four species in our study, A. vinacea shows the strongest evidence of range
contraction, with local extinctions in parts of Argentina and Paraguay since the 1970s
[63,64]. With a historic range that covered southern Paraguay west of Misiones and all the
way into central Paraguay to the northwest [63], the occurrence of A. vinacea outside Brazil
is now restricted to three localities in Argentina [21,63,64] and two in Paraguay [21,63].
Both A. vinacea and A. pretrei are classified as critically endangered in Argentina [83],
which may have had a historical population of the latter [84,85] A. pretrei is rarely
observed in Paraguay [23,86], where it is also classified as threatened [87]. Belton [38]
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mentions the possible past occurrence of A. pretrei as far north as Sao Paulo state, in Brazil,
but the validity of XIX century records that could backup such possibility is disputed
[3,75]. Reviewing information about A. brasiliensis, Scherer-Neto [28] cites reports of XIX
century sightings in northern Rio Grande do Sul and northeast Santa Catarina (see also
[77]), but the validity of these reports, too, is questionable [3]. Even with reliable
identification, though, past observation of any species far outside the present range is no
firm evidence of range contraction. Individuals may wander away from their species’
ranges, sometimes across oceans [88], with sightings in unexpected locations inevitably
getting more attention than within a known range, even if they bear no consequence to
population dynamics. Parrots introduce the additional complication of having been kept
as pets for a long time, so that past sightings in odd places could also be of individuals
escaped from captivity. To conclude, A. rhodocorytha has the least historical information of
the four species, with perhaps one observation deserving special attention: one recent
record in the state of Alagoas [89] dispels a previous suggestion of local extinction [3] and
confirms the existence of a disjunct population in the extreme north of the distribution.

4.5. Long-Term Change in Population Size

The time series of counts that we report for A. vinacea and A. brasiliensis show
increasing numbers very likely due to an increase in sampling effort. The time series for
A. pretrei shows relatively small variation for the last two and a half decades. After an
apparent decline during the 1970s [37,38], A. pretrei counts increased to around 20,000
individuals in 1997. Such increase coincides with the period when A. pretrei was shifting
its wintering aggregation to Southeast Santa Catarina, where counts have been carried out
by the same research team since 1995. Counts of A. brasiliensis and A. vinacea, on the other
hand, have been carried out by different research groups in different locations, with
variable degrees of coordination. The highest counts of A. brasiliensis, for example, were
obtained in 2015 (9176 individuals), and in 2018 (9112 individuals), when research teams
visited all known roosts in Sao Paulo and Parana. In 2019, however, when only Parana
roosts were visited, approximately 2000 fewer individuals were counted. Similar, effort-
driven variation is evident in the A. vinacea time series, which had fewer than one
thousand individuals counted annually from 2001 to 2013. A. vinacea counts have
increased since 2014, with the implementation of annual coordinated counts performed at
anumber of sites, that increased gradually from 20, in 2014, to 67, in 2017. The only period
for which we can draw statistical inference about temporal change in the A. vinacea
population is the transition from 2016 to 2017 [21]. The estimates shown in Figure 3C
account for detection error and for variation in effort between the two years. The credible
intervals of the abundance estimates, broadly overlapping between the two years, provide
no evidence of a substantial change. Future analysis of population trends will require
more coordination and replication of counts. This will facilitate statistical analysis of count
results and investigation of real trends in population size.

4.6. Concluding Remarks

The future of the four parrot species analyzed in this study is threatened by two key
environmental hazards: habitat loss and human exploitation [2]. A. brasiliensis, A. pretrei,
A. rhodocorytha, and A. vinacea are all impacted by the destruction of the Atlantic Forest,
especially because they nest in tree cavities that are much more common in old growth
than in secondary forests [90]. Since the arrival of Europeans in South America, almost
90% of the original Atlantic Forest cover was lost [12]. The remaining forest is highly
fragmented, with only 20% of its area contained in patches larger than 100 km?, and 83%
of the patches being smaller than 50 hectares [12]. When not replaced by pasture or
farmland, cleared forest gives way to exotic tree monocultures, such as Pinus and
Eucalyptus [91]. In coastal areas intensely used by the tourism industry, cleared forests
may also give way to urban expansion, which disproportionally affects A. brasiliensis [29].
The other primary threat to all four species, human exploitation, comes in the form of nest

66



Diversity 2021, 13, 416

12 of 15

References

poaching [8,69,74,92-96]. According to one study [8], nest poaching is the principal cause
of nest failure for A. vinacea—with more than 80% of 25 monitored nests poached —and A.
brasiliensis—with 50% of 78 monitored nests poached. Four initiatives have been
promoting conservation, as well as research and monitoring of the four species
throughout the last three decades: Projeto Charao (for A. pretrei, since 1991), Projeto para
Conservagao do Papagaio-de-cara-roxa (for A. brasiliensis, since 1997), Projeto Chaua (for
A. rhodocorytha, since 2014), and the Programa Nacional para a Conservacao do Papagaio-
de-peito-roxo (for A. vinacea, since 2015). To improve knowledge about population
dynamics and manage a response to environmental threats, it is essential that these and
similar initiatives expand their reach. Continued tapping of citizen-science data will help
to update knowledge about species’ ranges. The estimation of abundance and validation
of range maps, however, require observers on the ground. Much can be achieved just by
sending observers to municipalities with higher uncertainty about species’ occurrence,
but one can go much further by practicing integration of citizen-science and professional
research work on a routine basis. The combination of range mapping based on citizen-
science and coordinated observation by research teams throughout the species’ ranges
offers a powerful tool for accurately monitoring the species’ status and for assessing the
consequences of management decisions.
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Supporting Information: Code

Appendix S1: Example of R and BUGS code for the models used in estimating the
parrot’s geographic range. The code includes the CAR component of the model,
accounting for effort and site covariates.

## Extract the spatial adjacencies:
muni = readOGR ("DISTRIBUTION.shp") #read the municipality shapefile

muni.centroids <- getSpPPolygonsLabptSlots (muni) #extract the centroids

make grid <- function(x, cell diameter, cell area, clip = FALSE) {
if (missing(cell diameter)) {
if (missing(cell area)) {
stop ("Must provide cell diameter or cell area")
} else {

cell diameter <- sqrt(2 * cell area / sqgrt(3))

}
}
ext <- as(extent(x) + cell diameter, "SpatialPolygons")
projection (ext) <- projection (x)
# generate array of hexagon centers
g <- spsample (ext, type = "hexagonal", cellsize = cell diameter,

offset = ¢ (0.5, 0.5))

# convert center points to hexagons
g <- HexPoints2SpatialPolygons (g, dx = cell diameter)
# clip to boundary of study area
if (clip) {

g <- glIntersection(g, x, byid = TRUE)
} else {

g <- glx, 1
}
# clean up feature IDs
row.names (g) <- as.character(l:length(qg))
return (g)

hex <- make grid(muni, cell diameter = .5)
hex.centroids <- getSpPPolygonsLabptSlots (hex)

cell.id <= c()

for (a in l:nrow(muni.centroids)) {

cell.id[a] <- which.min (sgrt ((hex.centroids([,1]-
muni.centroids[a,1l]) "2+ (hex.centroids[,2]-muni.centroids([a,2])"2))

}

## Convert the polygonal representation into a neighborhood list
hex.nb = poly2nb (hex)

num <- sapply (hex.nb, length)

sumNeigh <- sum (num)

adj = unlist (hex.nb)



#Data object specification in R
data <- list(munil = datS$IDENT, muni2 = dat2$IDENT, muni3 = dat3$
muni4 = dat4S$IDENT, Y1 = dat$A_VINACEA, Y2 = dat2$A_V

dat3SAVINACEA, Y4 = dat4SA VINACEA, nMuni = length(muni), nObsl

IDENT,
INACEA, Y3 =

nrow (dat), nObs2 = nrow(dat?2), nObs3 = nrow(dat3), nObsd =
nrow (dat4), TObs = dat$SEFFORT MIN/60, SSee = dat2$NSPECIES, TObs2

= dat2$DURATION.M/60, RLen = dat2$EFFORT.DIS, NPho =
NAud = dat3$NSONG,NAud2 = dat4$NSONGS, VegCover = Veg
ArauCover = ArauCover, Alt = Altitude, nCell =

dat3$NPIC,
Cover,

nrow (hex.centroids), cell.id = cell.id, nMuni = length(muni), adj

= adj, num = num, sumNeigh = sumNeigh)

# Model specification in BUGS language
cat(file = "model.txt","
model {
#CAR prior - spatial random effect
for(j in 1l:sumNeigh) {weights[j] <- 1}
spacesigma ~ dunif (0,5)
spacetau <- 1/ (spacesigma*spacesigma)
delta[l:nCell] ~ car.normal (adj[],weights[],num[], spacetau)

### data model

for (i in 1:nMuni) { #loop over sites

mu[i] <- alpha(cell.id[i]] + beta[l] + betal[2]*VegCover[i]
beta[3]*ArauCover[i] + betal[4]*Alt[i]

mu.lim[i] <- min(10, max(-10, muli]))

logit(psi[i]) <- mu.lim[i]
z[i] ~ dbern(psi[i])
}

el[n] <- BETA[1l]*TObs[n]

(1-0.5), el[n])
*z [munil[n]]
P1[n])

for (n in 1:n0Obsl) { #loop over observations - Count Data
(

1
Pl[n] <- l-pow
zP1[n] <- Pl[n]
Y1l[n] ~ dbern(z

e2[j] <- BETA[2]*SSee[]j] + BETA[3]*TObs2[j] + BETA[4]*RLen
P2[j] <- l-pow((1-0.5),e2[3])

zP2[j] <= P2[j]*z[muni2[j]]

Y2[j] ~ dbern(zP2[]j])

for (j in 1:n0bs2) { #loop over observations - eBird Data
(

for (k in 1:n0bs3){ #loop over observations - Wikiaves data
e3[k] <- BETA[5]*NPho[k] + BETA[6]*NAud[k]
P3[k] <= 1l-pow((1-0.5), e3[k])
zP3[k] <- P3[k]*z[muni3[k]]
Y3[k] ~ dbern(zP3[k])

for (h in 1:n0bs4){ #loop over observations - Xeno-Canto data

+

(3]
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4[h] <- BETA[7]*NAud2[h]
P4[h] <- 1l-pow((1-0.5), e4fh])
zP4[h] <- P4[h]*z[munid[h]]

4[h] ~ dbern(zP4[h])

beta[l] ~ dunif (-10,10)
betal[2] ~ dunif (-10,10)
beta[3] ~ dunif (-10,10)
betal[4] ~ dunif (-10,10)

for (b in 1:7){
BETA[b] ~ dnorm(0,0.0001)I(0,10000)

#compute the mean detection probability of each dataset:
muPl <- mean (P1[]

(P )
muP2 <- mean (P2[])
muP3 <- mean (P3[])
muP4 <- mean (P4[])

#Back to R language:

#Specification of Initial Values
inits = function() {list(z = rep(l, data$nMuni))}

params <- C("beta", "pSi", "Z", "alpha", "muPl", "muP2", "muPB", "muP4",

"muPS", "muP6"’ "muP7"’ "muP8"’ "Y2"’ "Y4"’ "Y6"’ "Y8"’
"spacesigma", "delta")

#MCMC settings
nc <- 3; nb <- 150000; ni <- 200000; nt <- 100

out <- bugs(data = data, inits = inits, parameters.to.save = params,
model.file = "model.txt", n.chains = nc, n.iter
n.burnin = nb, n.thin = nthin, debug = TRUE)

ni,
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Supporting Information: Tables

Table S1: Compilation of the available counts for Amazona brasiliensis with the
respective reference.

Year Counted number of individuals Source of information

1989 1,581 Scherer-Neto, 1989

1993 1,550 Martuscelli, 1995

1994 1,988 Scherer-Neto and Toledo, 2007
1995 3,672 Scherer-Neto and Toledo, 2007
1996 2,294 Scherer-Neto and Toledo, 2007
1997 1,548 Scherer-Neto and Toledo, 2007
1998 1,965 Scherer-Neto and Toledo, 2007
1999 2,512 Scherer-Neto and Toledo, 2007
2000 3,452 Scherer-Neto and Toledo, 2007
2003 3,657 Galetti et al., 2006; SPVS, 2003
2004 6,589 Galetti et al., 2006; SPVS, 2004
2005 4,870 SPVS, 2005

2006 3,000 SPVS, 2006

2007 4,821 SPVS, 2007

2008 4,100 SPVS, 2008

2009 5,099 SPVS, 2009

2010 5,000 SPVS, 2010

2011 6,412 SPVS, 2011

2012 4,141 SPVS, 2012

2013 6,086 SPVS, 2013

2014 7,451 SPVS, 2014

2015 9,176 SPVS, 2015

2016 8,380 SPVS, 2016

2017 7,339 SPVS, 2017

2018 9,112 SPVS, 2018

2019 7,493 SPVS, 2019




Table S2: Compilation of the available counts for Amazona pretrei with the respective

reference.
Year i(rilodlil‘r:itgialr;umber of Source of information
1971 10,000-30,000 Forshaw and Cooper, 1978; cited by Varty et al., 1994
1972 10,000 W. Belton in Silva 1989; cited by Varty et al., 1994
1975 5,000 Silva, 1981
1980 1,000 Silva, 1981
1981 10,000 R. Reis verb to N. Varty; cited by Varty et al., 1994
1983 10,000 Belton, 1984
1986 8,000 COA pers. commun. to N. Varty; cited by Varty et al., 1994
1988 10,000 COA pers. commun. to N. Varty; cited by Varty et al., 1994
1989 9,500-14,000 E}?safsse.tc;?g;il. to N. Varty/Scherer Neto 1991; cited
. Mahler pers. commun. . Var herer Neto 1991;
1990 3070 Gtedby Vorty s el 1908
1991 15-200 E}?safsse.tc;?g;il. to N. Varty/Scherer Neto 1991; cited
1992 7,000-7,500 Varty et al., 1994
1993 7,500-8,000 Varty et al., 1994
1994 8,000-8,500 Varty et al., 1994
1995 8,593 Martinez and Prestes, 2008
1996 11,590 Martinez and Prestes, 2008
1997 19,141 Martinez and Prestes, 2008
1998 19,913 Martinez and Prestes, 2008
1999 19,517 Martinez and Prestes, 2008
2000 16,232 Martinez and Prestes, 2008
2001 16,897 Martinez and Prestes, 2008
2002 18,418 Martinez and Prestes, 2008
2003 17,162 Martinez and Prestes, 2008
2004 16,772 Martinez and Prestes, 2008
2005 20,437 Martinez and Prestes, 2008
2006 21,598 Martinez and Prestes, 2008
2007 18,800 Martinez and Prestes, 2008
2008 21,311 Schunck et al., 2011
2009 15,658 Schunck et al., 2011

2010 16,657 Schunck et al., 2011



2011
2014
2017
2018
2019

21,653
15,685
20,128
18,425
19,872

Schunck et al., 2011

Tella et al., 2016 citing unpublished data

ICMBio, 2020
ICMBio, 2020

ICMBio, 2020

Table S3: Compilation of the available counts and abundance estimates for Amazona

vinacea with the respective reference.

Year

Counted number of

Estimated number of

Source of information

individuals individuals
2001 464 — Abe, 2004; Cockle et al., 2007
2002 899 — Abe, 2004
2003 906 — Abe, 2004
2004 514 — Abe, 2004
2005 423 _ gzzlljzeztoallg 2007; Segovia and
2007 203 — Segovia and Cockle, 2012
2008 214 - Segovia and Cockle, 2012
2009 214 — Segovia and Cockle, 2012
2010 125 — Segovia and Cockle, 2012
2011 911 — Eroecsl‘zfes’ eztoilz., 2014; Segovia and
2012 747 - Prestes et al., 2014
2013 728 - Prestes et al., 2014
2014 1,752 — N. Prestes, pers. commun.
2015 3,160 — N. Prestes, pers. commun.
2016 3,888 7,789 (c.i. 6,586- 9,184 Zulian et al., 2020
2017 4,084 8,483 (c.i. 7,181-9977) Zulian et al., 2020
2018 4,758 - ICMBio, 2020
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8. RESULTADOS GERAIS

A érea de distribuicdo estimada para cada uma das quatro espécies deste estudo—A. vinacea,
A. pretrei, A. brasiliensis e A. rhodocorytha—foi maior do que a calculada a partir dos mapas de
distribui¢do disponiveis na TUCN. O tamanho das areas estimadas variou de 15.000 km? para A.
brasiliensis até 434.000 km? para A. vinacea. As covariaveis de sitio cobertura de Mata
Atlantica, cobertura de Floresta com Araucéria e altitude ajudaram a explicar a ocorréncia de 4.
vinacea, apresentando um efeito positivo na probabilidade de ocupacdo desta espécie. Para as
demais espécies, ndo houve evidéncia de efeito de covariaveis de sitio na probabilidade de
ocupagdo, ja que os intervalos de credibilidade de 95% das estimativas incluiram zero.

A partir das comparacdes entre modelos de ocupagao de sitio, observamos que o modelo
integrando os dados de pesquisa com as trés bases de dados de ciéncia cidada produziu melhores
predi¢des acerca da distribuicdo de 4. vinacea. Além disso, a inclusdo da autocorrelacao
espacial, das covariaveis de sitio e das covariaveis de esfor¢o amostral também aumentou o
poder preditivo do modelo. A integracdo de diferentes conjuntos de dados em um modelo de
Jjoint-likelihood produziu uma representagdo mais acurada e precisa da distribuicdo da espécie do
que qualquer conjunto de dados usados individualmente.

Em relacdo ao tamanho populacional, 4. vinacea, apesar de ter o menor tempo de
monitoramento (desde 2001), ¢ a tnica espécie que possui uma estimativa estatistica de
abundancia, a qual leva em consideracdo as variagdes temporais no esfor¢o amostral e os erros
de detecg¢ao. A abundancia global da espécie € de 7.789 + 655 para 2016 e 8.483 + 693
individuos para 2017. Nao observamos evidéncia de crescimento populacional de A. vinacea
entre os dois anos analisados. Amazona pretrei, por outro lado, possui a série temporal mais

longa de monitoramento (desde os anos 70) e o maior numero de individuos contados e, desde
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2007, as contagens se concentram em torno de 20.000 individuos. A segunda série temporal mais

longa ¢ a de A. brasiliensis, que conta com monitoramento desde o final dos anos 80 e tem as

contagens das ultimas trés décadas sempre abaixo de 10.000 individuos. Para A. rhodocorytha,

que ndo possui um programa de monitoramento, o Plano de A¢ao Nacional para Conservagao

dos Papagaios da Mata Atlantica reporta um tamanho populacional de 10.000 individuos com

base em opinido de peritos, mas nenhuma informac¢ao demografica adicional estd disponivel.

9.

CONSIDERACOES FINAIS

Os resultados dessa tese sdo muito mais do que as estimativas de tamanho populacional e de

area de distribuicdo de quatro papagaios ameacados na Mata Atlantica. Algumas ligdes

aprendidas podem ser aplicadas a qualquer organismo de estudo:

1y

2)

3)

Conhecer minimamente a biologia da espécie foco ¢ essencial para delinear a
amostragem. O fato de os papagaios se reunirem em dormitérios coletivos durante o
periodo nao reprodutivo facilitou as contagens e auxiliou na obtencao de estimativas de
abundancia mais precisas.

O delineamento amostral deve levar em consideragao as possiveis analises estatisticas
que serdo utilizadas para responder a pergunta de estudo. Definimos previamente que
utilizariamos modelos N-mixture para estimar a abundancia e modelos de ocupagdo de
sitio para estimar a area de distribui¢do dos papagaios. A partir disso, desenhamos as
amostragens e definimos quais dados precisdvamos para cada uma das analises.

A andlise de tendéncia populacional de espécies s € possivel a partir de quantificacdo da
incerteza. Monitoramentos longos, mas sem contagens replicadas, dificultam a
diferenciagdo entre alteragdes reais no tamanho populacional e alteracdes devido a

mudangas no esfor¢o amostral.
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4) O mapeamento de distribui¢do de espécies com base em dados de deteccdo/nao-detecgao
que incluem informacgdo sobre esfor¢co amostral resultam em mapas informativos. A partir
do uso de dados de deteccao/ndo-detecgdo, ¢ possivel separar as auséncias verdadeiras
das falhas de deteccdo e obter mapas da incerteza associada as estimativas. Esses mapas
informam os locais foco para amostragens futuras.

5) Plataformas de ciéncia cidada e a integracdo de dados de diferentes fontes se mostraram
uma ferramenta valiosa para estudos sobre area de distribuicao das espécies podendo
auxiliar na categorizacdo de ameacas das espécies, bem como na andlise de resultados das
acoOes de conservacao.

6) Resultados de predi¢des com base em mapas da IUCN precisam ser interpretadas com
cautela. Observamos que os mapas de distribui¢do apresentados pela [IUCN para as
quatro espécies de papagaios sdo muito diferentes dos estimados em nosso estudo. Se o
mapa da IUCN fosse tomado como base, poderiamos chegar a conclusdes precipitadas

sobre alteragdo passada ou futura na area de distribuicao das espécies.

A perda de habitat e roubo de filhotes sdo os fatores que mais afetam as populacdes de
papagaios atualmente. Por isso, os estudos sobre tamanho populacional e distribui¢ao sao
essenciais para tomada de decisdes de manejo e conservacdo das espécies. Programas de
monitoramento de psitacideos que levem em consideragdo as fontes de incerteza por meio de
protocolos de campo adequados e andlises estatisticas, para melhor informar as avaliagdes do
tamanho da populacdo, area de distribuicdo, tendéncias e status de ameaga sdo essenciais para a

conservagdo das espécies.
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