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RESUMO 

 

Diversos processos hidrológicos estão associados à condição de umidade do solo e às 

características dos eventos de precipitação. O conteúdo de água no solo pode impactar na 

geração de escoamento tanto superficial, quanto subsuperficial, bem como na conexão dos 

caminhos do fluxo preferencial. Dependendo da escala de observação, todos os processos 

podem ocorrer de forma conjunta, com maior ou menor relevância, conforme as 

características do ambiente. Em pequenas bacias hidrográficas, a geração do escoamento 

está associada à interação existente entre as características do solo e da paisagem, à 

aspectos dinâmicos, como a umidade antecedente do solo e à precipitação, além do 

possível efeito das ações antrópicas. No entanto, a maioria das pequenas bacias 

hidrográficas monitoradas, não possuem a disponibilidade de medidas de umidade do solo, 

ou então detêm informações limitadas a poucas observações. Assim, o objetivo desta 

pesquisa é avaliar os principais fatores que contribuem para a dinâmica da umidade do solo 

na camada superficial e subsuperficial e a influência da condição da umidade antecedente 

do solo na geração de escoamento, em uma pequena bacia hidrográfica no sul do Brasil. 

Para isso, foi primeiramente desenvolvido um modelo de redes neurais artificiais para a 

estimativa consistente da umidade do solo, em seguida realizada a análise dos principais 

fatores que afetam os resultados dos modelos. Posteriormente, foi verificado os possíveis 

impactos da umidade antecedente do solo na geração de escoamento. Isto foi feito de duas 

formas: i) analisando 104 eventos de chuva – vazão que ocorreram durante 4 anos de 

monitoramento; ii) utilizando a umidade antecedente do solo como parâmetro de entrada 

nas simulações de 15 eventos de chuva-vazão com um modelo físico distribuído baseado 

em eventos, o OpenLISEM (open source Limburg Soil Erosion Model). Os resultados 

indicam que os modelos de umidade do solo obtiveram um bom desempenho e 

conseguiram estimar a umidade do solo para ambas as camadas. Enquanto as variáveis 

relacionadas ao clima são as mais importantes para o desempenho do modelo de superfície, 

para a camada subsuperficial as variáveis relacionadas ao solo são as mais importantes. 

Em relação à geração de escoamento na bacia hidrográfica do Arroio do Ouro, não foi 

observado um limiar claro entre a umidade antecedente do solo e o coeficiente de 

escoamento. Porém, os maiores coeficientes de escoamento foram registrados nos eventos 

cuja umidade antecedente do solo era muito próxima ou superior à capacidade de campo. A 

utilização da umidade antecedente como parâmetro de entrada nas simulações com o 

OpenLISEM mostrou-se promissora, visto os resultados sólidos encontrados durante a 

etapa de validação do modelo. Mesmo considerando as incertezas associadas às 

estimativas da umidade antecedente do solo, foi possível representar a forma de 

hidrogramas complexos.   

  

 

Palavras-chave: Umidade do solo. Redes neurais artificiais. Escoamento. OpenLISEM. 

Pequena bacia hidrográfica 

 

  



 
 

ABSTRACT 

 

Several hydrological processes are associated with the soil moisture condition and the 

characteristics of rainfall events. Soil water content can impact the generation of overland 

flow and subsurface flow and the connection of preferential flow paths. Depending on the 

observation scale, all processes may be occurring together, with greater or lesser relevance, 

depending on the characteristics of the environment. In small watersheds, the generation of 

runoff is associated with the interaction between soil and landscape characteristics, dynamic 

aspects, such as antecedent soil moisture and precipitation, and the possible effect of human 

actions. However, most of the small watersheds monitored do not have the availability of soil 

moisture measurements, or they have limited information to a few observations. Thus, this 

research aims to evaluate the main factors that contribute to soil moisture dynamics in the 

surface and subsurface layer and the influence of the antecedent soil moisture condition on 

the generation of runoff in a small watershed in southern Brazil. For this, firstly, an artificial 

neural network model was developed for the consistent estimation of soil moisture and 

analysis of the main factors that affect the results of the models. Subsequently, verified the 

possible impacts of previous soil moisture on runoff generation. Did this done in two ways: i) 

analyzing 104 rainfall-runoff events that occurred during four years of monitoring; ii) using the 

antecedent soil moisture as an input parameter in the simulations of 15 rainfall-runoff events 

with an event-based distributed physical model, the OpenLISEM (open source Limburg Soil 

Erosion Model). The results indicate that the soil moisture models performed well and could 

satisfactorily estimate the soil moisture for both layers. While the climate-related variables 

are the most important for the performance of the surface model, for the subsurface layer, 

the soil-related variables are the most important. A clear threshold between the antecedent 

soil moisture and the runoff coefficient was not observed in the Arroio do Ouro catchment. 

However, the highest runoff coefficients were recorded in events whose antecedent soil 

moisture was close to or greater than field capacity. The use of antecedent moisture as an 

input parameter in the simulations with OpenLISEM proved to be promising, given the solid 

results found during the model validation stage. Even considering the uncertainties 

associated with the antecedent soil moisture estimates, it was possible to represent the form 

of complex hydrographs. 

 

Keywords: Soil moisture. Artificial neural networks. Runoff. OpenLISEM. Small watershed
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CAPÍTULO 1 

 

1.1 Introdução 

 

A umidade do solo tem um papel crucial nos componentes do ciclo 

hidrológico. Sobretudo, esta variável governa a troca de água e energia entre a 

superfície terrestre e a atmosfera (Bogena et al., 2015). Ela contribui com o 

fornecimento de vapor d’água para a atmosfera a partir da evaporação em 

solos descobertos ou evapotranspiração da vegetação, tendo um efeito positivo 

na geração das chuvas (Corradini, 2014). Além disso, as características 

hidráulicas do solo, em conjunto com o teor de água presente no solo, 

influenciam na capacidade de armazenamento da água no solo e, 

consequentemente, a geração de escoamento (Uber et al., 2018). Desta forma, 

uma série de aplicações se beneficiam das informações de umidade do solo, 

como as previsões de inundações, deslizamentos de terra e manejo de 

irrigação (Brocca et al., 2017). 

Diversos processos hidrológicos estão associados à condição de umidade 

do solo e às características dos eventos de precipitação. Além disso, estes 

processos são dependentes da escala de observação. À medida que a escala 

passa de local para regional, os processos tornam-se mais complexos. Na 

escala pontual até a escala de parcela, são representados principalmente os 

fenômenos superficiais (e.g. escoamento superficial), e os processos de 

infiltração relacionados às características de solo (Sidle et al., 2017).   

Os processos hidrológicos em escala de vertente (hillslope) são 

integrados pelos efeitos da precipitação, propriedades físico-hídricas do do 

solo, condições da superfície do solo, vegetação, fluxo subsuperficial e 

dinâmica de fluxos preferenciais, que redistribuem a água do escoamento 

superficial e subsuperficial (Sidle et al., 2017, 2000). Dentre outros fatores que 

influenciam o comportamento do fluxo subsuperficial, a condição de umidade 

antecedente do solo, e do volume e intensidade da precipitação, foram 

constatados em vários estudos (Guo et al., 2014; Liao et al., 2016; Newman et 

al., 1998; Penna et al., 2011). Uma maior umidade do solo promove a conexão 

entre os caminhos de fluxo preferenciais (Sidle et al., 2001). Com o incremento 

da área saturada, aumenta o número de caminhos de fluxo preferenciais ativos, 
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gerando um fluxo subsuperficial maior na vertente (Sidle et al., 2000). Assim, 

com o solo mais úmido, os caminhos preferenciais ficam mais conectados, 

sendo necessário um volume menor de precipitação para ativar o fluxo 

preferencial subsuperficial (Guo et al., 2014). 

Já na escala de bacia hidrográfica (escala de observação utilizada neste 

estudo) os processos hidrológicos são controlados pelo solo, geomorfologia, 

regime climático e vegetação (Sidle et al., 2017). A interação existente entre a 

vertente e a rede de drenagem é crucial na resposta hidrológica em ambientes 

mais complexos como bacias hidrográficas (Cammeraat, 2004; Sidle et al., 

2017). Desta forma, a condição de umidade do solo pode afetar a 

conectividade da encosta com a rede de drenagem em uma bacia hidrográfica. 

Algumas encostas podem permanecer conectadas à rede de drenagem 

durante todo o tempo, enquanto outras, apenas durante períodos mais úmidos 

ou em grandes eventos de precipitação (Jencso et al., 2009).  

Além da umidade do solo, a influência da intensidade da precipitação no 

escoamento é notadoa como um fator importante em trabalhos conduzidos em 

bacias hidrográficas de regiões semiáridas (Cammeraat, 2004; Cantón et al., 

2001; Mayor et al., 2011), e temperadas (Ares et al., 2016; Gomi et al., 2008; 

Penna et al., 2015). Além da geração de escoamento subsuperficial, destacam-

se outros dois processos de geração de escoamento superficial em uma bacia 

hidrográfica: i) quando a intensidade das chuvas excede a capacidade de 

infiltração de água no solo, o escoamento é dependente da intensidade da 

chuva e das características da camada superficial do solo; ii) quando a 

capacidade de armazenamento de água no solo é excedida ocorre o 

escoamento superficial de saturação, sendo o escoamento dependente da 

lâmina de precipitação (Scherrer et al., 2007). 

Em bacias hidrográficas, também é observado o efeito das ações 

antrópicas sobre a geração de escoamento, principalmente aquelas 

relacionadas a modificações no terreno (construção de terraços, canais de 

drenagem, estradas, etc.) (Bracken et al., 2013). A construção de terraços em 

áreas agrícolas pode trazer benefícios como o aumento da infiltração de água 

no solo e a redução do escoamento e vazão de pico (Londero et al., 2018). Já 

as estradas modificam os padrões de drenagem e de geração de escoamento, 
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devido à concentração do escoamento gerado sobre a superfície, e à 

interceptação do fluxo subsuperficial (Montgomery, 1994). 

Dependendo das características de uma bacia hidrográfica, todos os 

processos acima descritos podem ocorrer de forma conjunta, com maior ou 

menor importância. No entanto, informações de longo prazo sobre a umidade 

do solo são escassas e distribuídas de maneira não uniforme (Sungmin and 

Orth, 2021). Por exemplo, a International Soil Moisture Network (ISMN), uma 

rede global que reúne medições in situ de umidade do solo, coletadas e 

compartilhadas gratuitamente, apresenta 73% dos dados que estão em seu 

repositório, oriundos da América do Norte, Europa e Ásia (Dorigo et al., 2021). 

No Brasil, a rede de monitoramento de umidade do solo do Centro Nacional de 

Monitoramento e Alertas de Desastres Naturais (CEMADEN) é restrita à região 

do semiárido (Zeri et al., 2020). Além disso, mesmo em bacias hidrográficas 

experimentais, o monitoramento da umidade do solo é muito limitado (Melo et 

al., 2020).  

Esta pesquisa foi desenvolvida em uma pequena bacia hidrográfica 

experimental no sul do Brasil. A bacia hidrográfica do Arroio do Ouro é 

monitorada desde 2013 permanentemente. Possui a coleta de dados de 

precipitação em três locais distintos, além de duas seções de monitoramento 

de nível, velocidade e vazão. Para contornar a indisponibilidade de medidas de 

umidade do solo para este estudo, foram realizadas campanhas de 

amostragem. Em seguida, foi desenvolvido um modelo de redes neurais 

artificiais para a estimativa consistente da umidade do solo, além de analisados 

os possíveis impactos da umidade antecedente do solo na geração de 

escoamento.  
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1.2 Objetivos 

 

O objetivo deste estudo é avaliar os principais fatores que contribuem 

para a dinâmica da umidade do solo na camada superficial e subsuperficial e a 

sua influência na geração de escoamento superficial em uma pequena bacia 

hidrográfica no sul do Brasil. Para atingir o objetivo geral, os seguintes 

objetivos específicos foram propostos: 

 

• Avaliar a capacidade de modelos de redes neurais em estimar a 

umidade do solo para a camada superficial e subsuperficial; 

• Analisar quais foram as variáveis mais importantes para prever a 

dinâmica da umidade do solo na camada superficial e subsuperficial; 

• Investigar os efeitos da precipitação e da umidade antecedente do solo 

na geração de escoamento; 

• Verificar a existência de um limiar claro entre a umidade antecedente 

do solo e o coeficiente de escoamento; 

• Investigar a utilização dos dados de umidade do solo provenientes dos 

modelos de redes neurais para a calibração e validação dos 

hidrogramas simulados com o modelo OpenLISEM. 

• Avaliar os efeitos das incertezas das estimativas da umidade 

antecedente do solo nos hidrogramas simulados com o modelo 

OpenLISEM. 

 

 

1.3 Organização da Tese 

 

Para alcançar os objetivos deste estudo, esta tese está organizada em 

seis capítulos, sendo três na forma de artigos (Capítulos 2 ao 4). Estes 

manuscritos estão publicados, submetidos ou aguardado submissão. Na Figura 

1.1 é apresentada uma visão geral dos estudos abordados em cada capítulo e 

a relação entre eles. As referências estão apresentadas no final de cada 

capítulo. No capítulo 1 é apresentada uma introdução geral com os aspectos 

relacionados à dinâmica da umidade do solo em diferentes escalas de 
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observação até o nível de bacia hidrográfica. Também são relatados os 

objetivos desta pesquisa. No capítulo 5 são retomadas as conclusões obtidas 

durante esta pesquisa e são comentadas as limitações encontradas neste 

estudo. Já o capítulo seis possui o apêndice A, cujo conteúdo possui 

informações quanto as características do solo da região do estudo e o uso e 

cobertura do solo na bacia hidrográfica do Arroio do Ouro. 

No capítulo 2 foi avaliado o desempenho das redes neurais artificiais 

(RNAs), na modelagem da umidade do solo a partir de informações climáticas, 

propriedades do solo, características topográficas e variáveis relacionadas à 

precipitação. Além de analisar a dinâmica espacial e temporal da umidade do 

solo e os principais fatores que controlam esse processo, tanto na camada 

superficial como na subsuperficial. Para isso, intensas campanhas de 

monitoramento da umidade do solo foram realizadas, na bacia hidrográfica do 

Arroio do Ouro. Referência para este capítulo: 

• Bartels, G.K., Castro, N.M. dos R., Pedrollo, O., Collares, G.L., 2021. Soil 

moisture estimation in two layers for a small watershed with neural network 

models: Assessment of the main factors that affect the results. CATENA 

207, 105631. https://doi.org/10.1016/j.catena.2021.105631 

 

No capítulo 3 é apresenta uma investigação da relação entre a umidade 

do solo, a chuva e o escoamento na bacia hidrográfica do Arroio do Ouro. Nela, 

são avaliados os possíveis impactos da umidade antecedente do solo no 

coeficiente de escoamento. Para isso, foram analisados 104 eventos de chuva 

– vazão, que ocorreram durante 4 anos de monitoramento (8/2017 – 9/2021). 

Possível referência para este capítulo: 

• Bartels, G.K., Castro, N.M.D.R., Collares, G.L., 2021. Influence of Initial Soil 

Moisture and Precipitation on Runoff Generation in a Small Catchment. 

Hydrological Sciences Journal. (Submetido) 

 

No capítulo 4 foi investigada a utilização da abordagem de estimativa da 

umidade antecedente do solo a partir dos modelos desenvolvidos no capítulo 2, 

para a calibração e validação de hidrogramas simulados com o OpenLISEM 

(open source Limburg Soil Erosion Model). Também foram avaliados os efeitos 

das incertezas associadas à estimativa da umidade antecedente do solo. Para 
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melhor representação da bacia hidrográfica, foi utilizado um banco de dados de 

alta qualidade relacionado às propriedades físicas de solo, e um modelo digital 

de elevação (DEM) mais detalhado (resolução de 5 m). Possível referência 

para este capítulo: 

• Bartels, G.K., Castro, N.M.D.R., Collares, G.L., 2021. Runoff generation and 

the relevance of initial soil moisture: consequences of hydrographs 

simulated with the OpenLISEM in a small catchment. CATENA.  

(Aguardando submissão) 

 

 

 

Figura 1.1 - Fluxograma da organização da pesquisa, com as principais etapas 
realizadas em cada capítulo. 
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Abstract  

Soil moisture, which impacts various hydrological processes, can be 

estimated from point measurements in a watershed or via remote sensing. As 

both methods are expensive and complex, efforts have been made to develop 

empirical models based on data that affect the occurrence of soil moisture. 

However, these models have been based only on surface-layer data. We 

present an original approach for investigating regional empirical models of soil 

moisture, both for the surface (0–10 cm) and subsurface (10–20 cm) layers, and 

evaluate the main factors which affect the model results. Based on data about 

the climate, soil properties, topographic features and rainfall, we applied 

artificial neural network soil-moisture models for a small watershed, in southern 

Brazil. The models for each layer, with all selected variables, showed Nash-

Suitcliffe coefficients of 0.870 and 0.893, respectively, for the surface and 

subsurface models. We then tested the effects of removing each variable or 

categories of variables. The most important variables for the surface model 

were the season, followed by exponential weighted moving average (EWMA) of 

rainfall. For the subsurface model, the most important variables were the 
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season (although less so than for the surface model), followed by microporosity. 

All of the variable categories were important in the surface model. In the 

subsurface model, the soil-related variables were the most important, whereas 

the rainfall and topography variables were of little importance. It was possible to 

estimate soil moisture for both layers with good performance. The subsurface 

model, which used only the soil- and climate-related variables, explained more 

of the variance in soil moisture than the other models. The subsurface layer is 

easier to model, because the variation in moisture that is induced by recent 

climate and precipitation effects is attenuated by the physical features of the soil 

which control water infiltration. 

 

Keywords: Surface and subsurface layer; Soil physical properties; Climatic 

variables; Topographic variables; Rainfall-related variables  

 

2.1 Introduction 

 

Soil moisture is characterized as a key hydrological and ecological 

variable of the Earth’s surface systems (Gao et al., 2013). Above all, it governs 

the exchange of energy and water between the surface of the earth and the 

atmosphere, controlling hydrological, meteorological, and ecological processes 

(Cho and Choi, 2014, Pan et al., 2017). Including soil moisture in hydrological 

models significantly reduces their uncertainty, enhancing watershed flood 

prediction (e.g. Alvarez-garreton et al., 2014, Berthet et al., 2009, Massari et al., 

2014, Meng et al., 2017, Tayfur et al., 2014, Wooldridge et al., 2003, Zhong et 

al., 2019). Hydrological models for watershed soil moisture estimation have 

many potential applications. 

However, soil moisture presents high spatial and temporal variability (Gao 

et al., 2013, Huang et al., 2016, Suo et al., 2018, Zhu et al., 2014), produced by 

the effects of climate, soil, topography and vegetation (Hagen et al., 2020, Li et 

al., 2013). Soil properties such as density, organic matter content, texture, 

structure and macroporosity impact water retention and transport in the soil 

column (Famiglietti et al., 1998). Features linked to the land cover, root system 

and plant litter layer impact hydrological aspects such as seepage, surface 

runoff, interception and evapotranspiration (Jacobs et al., 2004). Topography 
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plays a key role in determining the spatial distribution of soil moisture. In 

watersheds, steep parts tend to be dryer than flat parts, due to their lower 

infiltration rates, faster subsurface drainage, and higher surface runoff 

(Famiglietti et al., 1998). Further, concave surface areas are more humid than 

convex areas, due to the accumulation of surface and subsurface lateral flow in 

the surrounding area (Rosenbaum et al., 2012, Zhu et al., 2014). Aspect 

(hillslope orientation) affects the sun’s angle of incidence, and consequently 

impacts water evaporation (Famiglietti et al., 1998, Moore et al., 1988), altering 

soil moisture. Grayson et al. (1997) analysed spatial patterns of water 

distribution during humid periods (when rainfall exceeds evapotranspiration) 

and dry periods (when evapotranspiration exceeds rainfall) in two Australian 

catchment areas. In the humid periods, the water movement was mostly surface 

and subsurface lateral movement, and was mostly determined by topography; 

in the dry periods, most of the flows were vertical, and the spatial distribution of 

soil moisture was determined mostly by the soil properties and topography of 

highly converging areas, such as highly curved depressions (Grayson et al. 

1997). 

Soil water content is conventionally measured via sample collection and 

drying (the gravimetric method). However, although this method is reliable, it is 

impractical because it requires destructive sampling, and has high costs, both in 

terms of labour and time (Elshorbagy and Parasuraman, 2008, Topp et al., 

1984). Devices such as neutron probes, electromagnetic sensors and heat 

pulse tracers are used to obtain in situ point-specific soil moisture data (Gao et 

al., 2013, Robinson et al., 2008). Time Domain Reflectometry (TDR) is a 

noteworthy method; this approach determines soil moisture by measuring the 

dielectric constant following an electromagnetic pulse emission (Topp et al., 

1984). 

In the last decade, the use of remote sensing applied to large areas (river 

basins larger than 2,500 km2) has increased, with the launch of projects to 

study soil moisture, such as Soil Moisture and Oceans Salinity (SMOS) and Soil 

Moisture Active Passive (SMAP) (McCabe et al., 2017). The use of point-

specific measurements via in situ sensors has increased. Nonetheless, there 

remains a gap in the assessment of intermediate-scale areas, for which 

information on watershed characteristics, including spatiotemporal soil-moisture 
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dynamics, is lacking (Robinson et al., 2008, Western et al., 2002). For 

intermediate scales (subwatersheds or small watersheds of 1–80 km2; 

Robinson et al., 2008), the understanding of soil moisture is limited, both by the 

lack of in situ soil moisture measurements, and because of the complexity of the 

watershed environments, which are characterized by a range of soil types, 

diverse topography and multiple land-use types (Hagen et al., 2020). Therefore, 

the use of data-driven models such as artificial neural networks (ANNs) are an 

efficient alternative for soil moisture modelling and for examining related 

problems at small watersheds. 

ANNs for modelling soil moisture typically use remote sensing data for 

large areas (Cui et al., 2016, Hachani et al., 2019, Rodriguez-Fernandez et al., 

2015, Santi et al., 2016, Yao et al., 2017), and point-specific data for small 

catchment areas (smaller than 1 km2 area), based on meteorological 

parameters, soil properties, land use and topographic features (Arsoy et al., 

2013, Contador et al., 2006, Elshorbagy and Parasuraman, 2008, Oliveira et al., 

2021, Yang et al., 2018). However, very few studies have addressed 

intermediate-scale catchments (Al-mukhtar, 2016, Gill et al., 2006, Oliveira et 

al., 2017). For instance, Oliveira et al. (2017) used ANNs to analyse 

spatiotemporal variation in SWC in a 78 km2 watershed in Brazil, based on 

climate data, soil physical properties and topographic variables. The results 

show that it is possible to estimate SWC efficiently (Nash-Sutcliffe statistic (NS) 

= 0.770) using topographic data, soil physical properties and rainfall. 

Alternatively, SWC can be estimated via simplified models using rainfall and 

topographic information, although with less satisfactory performance (NS = 

0.65). However, Oliveira et al. (2017) modelled soil moisture for only the surface 

layer, leaving a knowledge gap that will be addressed by modelling of the 

subsurface layer. 

The primary purpose of this research was to assess the ability of regional 

empirical soil moisture models to predict both surface and subsurface layer 

dynamics, using data on climate, soil properties, topographic features, and 

rainfall, for a small watershed. Further, we evaluated which variables are most 

important in determining the performance of these models. To do this, we used 

ANN modelling with the Multilayer Perceptron (MLP) architecture, due to its 
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relative simplicity and high capacity for approximating nonlinear relationships 

(Hornik et al., 1989). 

 

2.2  Materials and methods 

 

2.2.1 Study area 

The study was performed in the Arroio do Ouro watershed, with an area of 

17.17 km2, in the state of Rio Grande do Sul, Brazil (Figure 2.1). The elevation 

ranges from 76 to 326 m above sea level; the mean slope is 7.4°, and it can 

reach up to 30° (Bartels et al., 2021). The region is located at the Pelotas 

batholith, a plutonic complex which includes granite, gabbro and diorite, located 

in the Dom Feliciano belt geotectonic unit, in southern Brazil (Philipp et al., 

2016). The soils are considered Acrisols and Regosols, distinguished for being 

shallow and predominantly containing sandy loam (35%−75% sand), based on 

World Reference Base ratings (FAO, 2014) (Bartels et al., 2016; see also 

Figure 2.2b). The climate is humid subtropical (Cfa in the Köppen classification), 

with hot summers and well distributed rainfall throughout the entire year (Peel et 

al., 2007). Annual rainfall is 1400 ± 299 mm, annual reference 

evapotranspiration is 1077 ± 33 mm, and mean annual temperature is 

18.5 ± 0.5 °C (1971–2018).  

 



24 
 

 
 

 

Figure 2.1 - (a) Study area in the State of Rio Grande do Sul, Brazil; (b) Arroio 
do Ouro watershed showing digital elevation model, streams (blue lines) and 
the locations of the tensiometer (red point), rain gauges (blue points) and flow 
station (yellow triangle); (c) Topographic wetness index (TWI); (d) Slope. 

 

Dry/wet variation results from the interaction of precipitation and 

evapotranspiration (Hu et al., 2018). Thus, drought indices have been widely 

used for monitoring local dry and wet conditions. We applied two indices – the 

Standardized Precipitation Index (SPI) (McKee et al., 1993) and the 

Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et 

al., 2010) – to evaluate the representativeness of the soil moisture monitoring 

period, using a long time series (1971–2019). Although we tested these indices 

at various time scales (e.g., 1, 3, 6, and 12 months; supplementary material 

section), we analysed only at the one-month scale in this study, because of the 

strong correlations found with soil moisture (Scaini et al., 2015). 

 

2.2.2 Soil moisture measurement 

 

Surface (0−10 cm) and subsurface (10−20 cm) soil samples were 

collected at 39 points at the site (Figure 2.2), from 28 February 2018 to 3 
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September 2018, during ten surveys (Figure 2.3). In each survey, soil samples 

were collected over four consecutive days (two surveys) and five consecutive 

days (eight surveys), totalling 24 soil samples per layer at each of the 39 

measurement points. In total, 936 samples were collected from each layer. As it 

was not possible to sample all points in a single day, it was necessary to divide 

the 39 sampling points into two sets: set A with 18 points, and set B with 21 

points (Figure 2.2a). 

Gravimetric soil moisture determination (the ratio between water mass and 

dry soil mass) was performed in a lab, by weighing the wet samples, then drying 

them in a drying oven at 105 °C for a minimum time of 24h, and weighing the 

dried samples. The median soil moisture value obtained from triplicate 

measurements was used in network training and validation, avoiding possible 

errors associated with extreme values. 

 

 

Figure 2.2 - (a) Soil moisture at the 39 monitoring points, divided spatially into 
two sets (A and B), so that one set could be sampled on one day; (b) Soil 
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texture at the 39 points at the surface (red dots) and subsurface (black dots); (c, 
d) Soil texture rating at the 39 points for the surface and subsurface, 
respectively. 
 

 

Figure 2.3 - Soil moisture monitoring for the samples from sets A and B, from 28 
February to 3 September, 2018. Sets A and B were divided spatially to enable 
sampling of one set on one day. 
 

 

 

2.2.3 Model input variables 

 

In total, 48 input variables were tested using ANN models, to select those 

variables that improved the estimation of soil moisture spatial and temporal 

variability. The variables were divided in four categories: (i) Topography (6 

variables); (ii) Soil properties and land use and cover (14); (iii) Climatic variables 

(17); and (iv) rainfall-related variables (11). 

 

2.2.3.1 Topographic variables 

 

Six topographic variables were tested; four reflect point-related features 

(elevation, slope, distance from sample point to the closest river reach, and 

difference in elevation between the sampling point and the closest river reach). 

The two others, terrain curvature and topographic wetness index (TWI), are 

associated with the water mass, which is proportional to the contributing area, 

and its momentum, which is proportional to the slope (Contador et al., 2006). 

TWI was originally drafted by Beven and Kirkby (1979), calculated as follows: 
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where α represents the upstream contribution area per unit contour length 

(specific area) and β is the local slope.  

All topographic variables were extracted from the digital elevation model, 

with a spatial resolution of 30 m. The topographic variables are described in 

Table S2.1, and their descriptive statistics are presented in Table 2.1. 

 

Table 2.1 - Topography, climate, and rainfall-related variable categories that 
were used as input for the artificial neural network models, and the model 
output (soil moisture), for the surface and subsurface soil layers. 

Nº Variable Categories Minimum Maximum Mean Median SD 

1 Elevation (m) 

Topography 
  

94.00 269.00 188.26 188.00 48.45 

2 Slope (%) 1.37 39.17 13.47 10.70 9.15 

3 1TWI (-) 4.34 13.37 7.01 6.41 2.00 

4 Curvature (-) -1.32 1.44 0.03 0.12 0.63 

5 2DTR (m) 15.70 533.50 193.96 157.80 129.68 

6 3DNR (m) 0.00 84.00 22.59 21.00 20.16 

7 4Season (-) 

Climate 
  

- - - - - 

8 Min. air temp. (ºC) 2.40 20.90 11.84 11.10 4.83 

9 Max. air temp. (ºC) 9.20 32.60 20.89 21.30 6.39 

10 Mean air temp. (ºC) 6.33 25.80 15.91 15.34 5.17 

11 Min. Rel. humid. (%) 24.80 99.70 64.00 61.40 18.51 

12 Max. Rel. humid. (%) 82.30 100.00 98.91 100.00 3.44 

13 Mean Rel. humid. (%) 55.71 100.00 86.14 87.85 10.58 

14 Soil Temp. 5 cm (ºC) 9.10 28.30 17.59 16.20 5.48 

15 
Global solar radiation (cal.cm-2 
day-1) 

27.00 564.70 273.77 260.80 158.34 

16 5ETo (mm) 0.40 5.00 2.30 2.35 1.32 

17 6Cum. ETo with 5 days (mm) 2.70 21.20 11.68 10.80 5.00 

18 6 Cum. ETo with 7 days (mm) 6.30 27.90 16.12 14.15 6.79 

19 6 Cum. ETo with 14 days (mm) 15.10 60.10 31.66 27.25 14.26 

20 6 Cum. ETo with 21 days (mm) 23.00 90.30 47.28 40.20 21.49 

21 6 Cum. ETo with 30 days (mm) 38.00 139.70 70.87 60.00 32.34 

22 6 Cum. ETo with 45 days (mm) 60.00 207.80 110.38 86.50 52.06 

23 6 Cum. ETo with 60 days (mm) 83.90 287.20 154.92 131.15 72.24 

24 7 Cum. rainfall with 6 h (mm) 

Rainfall 

0.00 18.45 1.24 0.00 3.38 

25 7 Cum. rainfall with 12 h (mm) 0.00 26.79 2.33 0.00 5.29 

26 8 Cum. rainfall with 1 day (mm) 0.00 29.73 4.93 0.11 8.01 

27 8 Cum. rainfall with 2 days (mm) 0.00 100.78 11.07 3.27 18.68 

28 8 Cum. rainfall with 3 days (mm) 0.00 145.39 16.80 7.00 25.73 

29 8 Cum. rainfall with 4 days (mm) 0.00 175.27 21.24 11.80 30.32 

30 8 Cum. rainfall with 5 days (mm) 0.00 196.90 26.51 17.54 34.58 

31 8 Cum. rainfall with 10 day (mm) 1.89 198.31 43.94 42.61 37.01 
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32 8 Cum. rainfall with 15 days (mm) 10.02 255.66 72.38 61.82 44.31 

33 8 Cum. rainfall with 25 days (mm) 43.89 270.40 124.65 106.35 60.45 

34 9EWMA of past hour rainfall (mm) 0.00 1.53 0.21 0.06 0.34 

- 
Soil Moisture (g g-1) – 

 Layer: 0-10 cm 
Output 

0.013 0.438 0.193 0.192 0.074 

- 
Soil Moisture (g g-1) –  

Layer: 10-20 cm 
0.014 0.383 0.178 0.179 0.063 

Nº: Identification of the respective variable; SD: Standard deviation; 1 Topographic 
wetness index; 2 Distance from sampled point to the closest river stretch; 3 Difference 
in elevation between the sampling point and the closest river stretch; 4 Season 
(summer, 1; autumn, 2; winter, 3); 5 Reference evapotranspiration (ETo); 6 Cumulative 
Eto over the preceding 5 to 60 days; 7 Cumulative rainfall over the preceding 6 to 12 
hours; 8 Cumulative rainfall over the preceding 1 to 25 days; 9EWMA: Exponential 
weighted moving average. 

 

2.2.3.2 Soil variables 

 

The soil variable category comprises 14 variables: land use and cover; soil 

bulk density; macroporosity; microporosity; total porosity; clay; silt; total sand 

content; very coarse sand; coarse sand; medium sand; fine sand; very fine 

sand; and soil water tension. Except for land use and cover, these variables 

were collected in three replicates, of which we used the median, from the 

surface (0−10 cm) and subsurface (10−20 cm) layers at each point (Table 

S2.2). 

Land use and cover was scored as follows: native forest, 1; native 

grassland, 2; fruit crops, 3; annual crops with vegetable covering, 4; annual 

crops without vegetable covering, 5; commercial forests, 6. These scores reflect 

the spatiotemporal variability in land use and cover. 

Undisturbed soil samples were collected in metal tubes (0.076 m diameter; 

344.1 cm³ core volume) using a Uhland soil sampler, to determine soil bulk 

density, total porosity, macroporosity and microporosity. Soil microporosity 

corresponds to water retained at a pressure potential of 6 kPa (pore diameter 

equivalent to 50 μm), and macroporosity was calculated as the difference 

between total porosity and microporosity (Danielson and Sutherland, 1986). 

Samples were then dried for 24 h at 105 °C to determine soil bulk density 

(Blake and Hartge, 1986). Mean total porosity was slightly higher for the surface 

layer than for the subsurface layer. However, the subsurface layer exhibited 

higher amplitude in variation (between the maximum and minimum 
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microporosity) than the surface layer (Table 2.2). For the surface layer, native 

forest had the lowest soil bulk density and highest total porosity.  

 Disturbed soil samples were air-dried, sieved through a 2 mm sieve, and 

used to analyse soil granulometry (clay, silt, and sand percentages) using the 

pipette method (Gee and Bauder, 1986). Sandy loam predominated in both 

layers (Figure 2.2b). Soil water tension was measured daily throughout the 

study period using tensiometers installed in the watershed (Figure 2.1b). The 

tensiometers were installed with two replicates, at depths of 7 cm and 15 cm 

from the soil surface, to measure the surface and subsurface layers, 

respectively. As input into the neural network models, we used soil water 

tensions obtained on the same days as the sample surveys. The amplitude of 

variation in soil water tension was higher in the surface than in the subsurface 

layer (Table 2.2). 

 

2.2.3.3 Climatic variables 

 

Seventeen climatic variables, measured daily, were tested as inputs for 

the ANN models. The season variable was used, based on the season in which 

the soil moisture samples were collected: summer, 1; autumn, 2; and winter, 3. 

This approach has been performed with satisfactory results (Oliveira et al., 

2017). Air relative humidity and air temperature (minimum, medium, and 

maximum) were obtained from two automatic stations installed in the watershed 

(HS-PLU-AO-01 and HS-PLU-AO-03, Figure 2.1b). The other variables – soil 

temperature at 5 cm depth, global solar radiation and reference 

evapotranspiration (ETo) – were obtained from a weather station of the 

Empresa Brasileira de Pesquisa Agropecuária (Brazilian Corporation of 

Agricultural Research - EMBRAPA), located about 17 km from the watershed 

(Latitude 31° 41′ S; Longitude 52° 26′ O; elevation: 57 m). ETo was calculated 

via the Penman-Monteith equation, as recommended by the FAO (Allen et al., 

1998). Along with ETo values, another eight input variables were tested in the 

model (ETo on the day of soil moisture measurement, and the cumulative ETo 

from day 5 before soil moisture sampling (hereafter “cumulative 5-d Eto”); the 

same naming convention is then applied to cumulative ETo on days 7, 14, 21, 

30, 45, and 60 before soil moisture sampling). The sample surveys were 
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conducted on days with low and high global solar radiation, which affects ETo; 

ETo exhibited a large range (0.4 to 5.0 mm day−1) during the monitoring period 

(Table 2.1). 
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Table 2.2 - Soil characteristics used as input for the artificial neural network models. 

Nº Variable Minimum Maximum Mean Median SD   Minimum Maximum Mean Median SD 

   Layer: 0 - 10 cm  Layer: 10 - 20 cm 

35 1Land use and cover (-) - - - - -  - - - - - 

36 2BD (g cm-3) 0.886 1.663 1.401 1.468 0.207  1.064 1.710 1.433 1.449 0.146 

37 3Macro (cm3 cm-3) 0.050 0.313 0.156 0.132 0.079  0.039 0.305 0.146 0.135 0.074 

38 4Micro (cm3 cm-3) 0.104 0.413 0.296 0.303 0.071  0.066 0.472 0.281 0.292 0.076 

39 5TP (cm3 cm-3) 0.356 0.611 0.451 0.430 0.066  0.329 0.574 0.427 0.424 0.052 

40 Soil water tension (cm Hg) 0.00 22.00 3.84 2.00 4.34  0.00 9.50 3.26 2.38 2.63 

41 Clay (%) 5.37 34.92 16.42 16.19 5.51  3.67 43.82 18.86 17.82 7.87 

42 Silt (%) 15.42 31.16 23.10 22.67 4.42  13.90 34.90 22.87 22.38 4.59 

43 Total sand (%) 41.03 72.72 60.48 61.73 7.35  34.78 74.73 58.28 58.75 8.88 

44 Very coarse sand (%) 2.56 37.79 17.30 15.16 9.31  1.34 37.51 16.29 15.72 9.28 

45 Coarse sand (%) 5.69 27.21 14.22 13.62 3.52  4.27 24.54 13.78 13.74 3.50 

46 Medium sand (%) 6.97 19.55 11.88 11.56 3.00  6.20 21.78 11.73 10.70 3.58 

47 Fine sand (%) 8.11 20.26 13.00 12.16 3.12  3.64 21.66 12.22 11.98 3.33 

48 Very fine sand (%) 0.40 9.51 4.07 3.94 2.23  0.52 8.07 4.27 4.38 2.30 

Nº: Identification of the respective variable; SD: Standard deviation; 1 Land use and cover (native forest, 1; native grassland, 2; fruit crops, 3; annual crops with 
vegetable covering, 4; annual crops without vegetable covering, 5; commercial forests, 6); 2 Soil bulk density; 3 Macroporosity; 4 Microporosity; 5 Total porosity. 
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2.2.3.4 Rainfall variables 

 

We selected 11 rainfall-related variables: cumulative rainfall in the 6 h and 

12 h before soil moisture measurement (hereafter “cumulative 6-h rainfall” and 

“cumulative 12-h rainfall”); cumulative rainfall on day 1 before soil moisture 

measurement (hereafter “cumulative 1-d rainfall”; the same naming convention 

is then applied to cumulative rainfall on days 2, 3, 4, 5, 10, 15, and 25 before 

soil moisture measurement); and the exponential weighted moving average 

(EWMA) of rainfall. EWMA was introduced by Moore (1980) to represent soil 

moisture in rainfall-based models. EWMA assigns a higher weight to more 

recent rainfall events; it has been used (Oliveira et al. 2017) as an important 

variable in estimating soil moisture via ANNs. 

Rainfall data were obtained from three tipping‐bucket rain gauges installed 

in the watershed (Figure 2.1b). We calculated average rainfall over the 

watershed using the Thiessen polygon method,and used this in the model. 

Table 2.1 describes the topography, climate, and rainfall variable categories 

that were used as inputs for the ANN models, as well as the model output (soil 

moisture). Table 2.2 describes the soil-related variables used as input for the 

ANN models. 

 

2.2.4 ANN models 

 

ANNs emerged with the artificial neuron concept of McCulloch and Pitts 

(1943). However, it was only after the 1990s that they were applied with 

success to hydrology and related areas (ASCE, 2000; Dawson and Wilby, 

2001). They achieved relevance following the development by Rumelhart et al. 

(1986) of the algorithm for training MLP networks; according to this algorithm, 

the set of artificial neurons is arranged into a layered structure, and the outputs 

from previous neural layers are used as inputs by the following neurons in 

determining the next output layer. An MLP network with a three-layer 

architecture is considered capable of approximating any continuous function to 

any desired degree of accuracy, if it is appropriately trained and relies on a 

sufficient number of neurons in the inner layer (Hornik et al., 1989). We chose it 

for this research because of these features.  
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The backpropagation algorithm (Rumelhart et al., 1986) and convergence 

acceleration techniques of Vogl et al. (1988) were applied to network training. 

However, because of their approximation capabilities, ANNs may be overly 

adjusted to the data, which would make the model unviable for other 

applications. To prevent this overfitting, the cross-validation technique (Hecht-

Nielsen, 1990) was implemented, with the available dataset divided into three 

parts, for training, validation, and verification. In this way, one can identify the 

training cycle in which performance with training samples continues to improve 

while performance with data other than the training data decreases. Such a 

cycle indicates model overfitting, and the training of the network should be 

interrupted. Finally, the trained network is submitted to a verification sample 

which was not included in the training stage, to guarantee the model’s capacity 

to generalize (Hecht-Nielsen, 1990). 

Through systematic sampling, the same frequency distribution of the 

complete original series was maintained for training, validation, and verification 

sub-samples. For the training subsample, additional care was taken to ensure 

the representativeness of the entire data domain (extreme values), both in 

terms of the input and output variables (soil moisture). 

At the initialization of the neural network, synaptic weights are randomly 

assigned to the neurons, which may result in an unfavourable beginning. 

Therefore, a series of repetitions is used to identify the ANN whose training 

results in the best validation performance. 

Due to the high number of variables (48) that could be included in the 

input layer, we adopted an initial method to select the variables to be tested. 

The selection method departed from the Pearson correlation coefficient (r) 

between the input variables and soil moisture (Table 2.3). Variables with higher 

correlations with soil moisture were chosen; among them, those with a 

correlation among themselves below a given limit (r = 0.9) were selected. Linear 

correlation applied to variable selection provides an indication of which 

variables are worth including as inputs in the model for soil moisture estimation. 

However, using strongly correlated variables duplicates the information used by 

the model, which confuses the ANNs, often reducing network performance, as 

observed by Oliveira et al. (2017). We used this method for initial model 
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selection,and included variables that were not highly correlated with soil 

moisture, but that are known to be affect soil moisture dynamics.  

We used a method first presented by Sari et al. (2017) to estimate the 

number of inner layer neurons. From an oversized network, the number of 

inner-layer neurons is progressively reduced until a reduction in its 

generalization capacity, due to the reduced degrees of freedom, is observed. 

The lowest number of neurons observed before the reduction in generalization 

capacity is chosen. This must be assessed using the validation sample, since 

the verification sample must not be used in the training of synaptic weights or in 

choosing the ANN architecture (Hecht-Nielsen, 1990).  

The ANN models were developed, trained, and verified by the authors 

using MATLAB® R2012b. In total, 144 ANN models were tested, with different 

input variable combinations. 

 

2.2.5 Evaluation of model performance 

 

After training, validation and verification, the statistical indicators were 

calculated based on the errors between the observed and simulated values: 

mean absolute error (MAE); root mean squared error (RMSE); Nash-Sutcliffe 

efficiency coefficient (NS); and the quantiles of the error distribution (10, 50, and 

90%). MAE, RMSE, and NS are calculated as follows: 
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where jy  is the jth observed variable; jŷ  is the jth simulated variable 

assessed; y  is the average of all observed values, and N is the total number of 

measurements. 

Since the NS coefficient represents the proportion of the variance 

explained by the model, the difference in NS between the complete model and 
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a simpler model reflects the proportion of explained variance lost by using the 

simpler model. Therefore, this difference can be used to quantify comparisons. 

 

2.3  Results 

 

2.3.1 Analysis of correlation with soil moisture 

 

Table 2.3 presents the correlation coefficient (r) between the 48 variables 

and soil moisture. In both layers, soil moisture was most strongly correlated with 

microporosity (0.651 and 0.710) and total sand content (−0.624 and −0.671), for 

the surface and subsurface layers, respectively. The strong positive correlation 

for microporosity is understandable, because it represents the soil’s water 

retention capacity. The opposite correlation, for the proportion of sand, makes 

sense because higher sand content improves soil infiltration and reduces its 

moisture retention capacity. 

 In terms of topography, soil moisture was most highly correlated with 

slope, followed by the difference in elevation between the sampling point and 

the closest river reach (negative correlations), and TWI (positive correlation; 

Table 2.3). A steep slope increases runoff to lower-lying regions. The highest 

points in the watershed had lower soil moisture than points at similar elevation 

as the channel network, reflecting water movement from the top hillslope 

towards the channel network. Further, as the upstream contributing area 

increases (resulting in more cumulative flow), the downstream soil moisture 

increases. 

The climatic variables were more strongly correlated with soil moisture in 

the surface layer than in the subsurface layer. Compared to the climatic 

variables, the rainfall-related variables were less strongly correlated with soil 

moisture (Table 2.3). This suggests that these climatic variables affect soil 

moisture more than rainfall-related variables, especially at the surface layer. 
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Table 2.3 - Pearson linear correlation (r) between the input variables and soil 
moisture at the surface (0–10 cm) and subsurface (10–20 cm) layers. 

Variable 
r 
(0-10 cm) 

r 
(10-20 cm) 

 Variable 
r 
(0-10 cm) 

r 
(10-20 cm) 

Elevation (m) 0.163 0.155  Min. Rel. humid. (%) 0.207 0.195 

Slope (%) -0.223 -0.321  Max. Rel. humid. (%) -0.039 -0.038 

TWI (-) 0.170 0.222  Rel. humid. (%) 0.148 0.137 

Curvature (-) -0.078 -0.102  Soil Temp. 5 cm (ºC) -0.334 -0.298 

DTR (m) -0.120 -0.178  Global solar radiation (cal cm-2 
day-1) 

-0.338 -0.322 

DTR (m) -0.168 -0.248  ETo (mm) -0.332 -0.308 

Land use and cover 
(-) 

-0.419 -0.271  Cum. ETo of 5 days (mm) -0.369 -0.349 

BD (g cm-3) -0.533 -0.442  Cum. ETo of 7 days (mm) -0.379 -0.354 

Macro (cm3 cm-3) -0.162 -0.371  Cum. ETo of 14 days (mm) -0.385 -0.370 

Micro (cm3 cm-3) 0.651 0.710  Cum. ETo of 21 days (mm) -0.400 -0.384 

TP (cm3 cm-3) 0.503 0.507  Cum. ETo of 30 days (mm) -0.408 -0,385 

Soil water tension 
(cm Hg) 

-0,344 -0,390  Cum. ETo of 45 days (mm) -0,419 -0,390 

Clay (%) 0.492 0.557  Cum. ETo of 60 days (mm) -0.416 -0.377 

Silt (%) 0.422 0.342  Cum. rainfall of 6 h (mm) 0.148 0.151 

Total sand (%) -0.624 -0.671  Cum. rainfall of 12 h (mm) 0.229 0.232 

Very Coarse sand 
(%) 

-0.578 -0.648  Cum. rainfall of 1 day (mm) 0.256 0.256 

Coarse sand (%) -0.126 -0.193  Cum. rainfall of 2 days (mm) 0.233 0.214 

Medium sand (%) 0.096 0.054  Cum. rainfall of 3 days (mm) 0.234 0.211 

Fine sand (%) 0.190 0.134  Cum. rainfall of 4 days (mm) 0.220 0.195 

Very Fine sand (%) 0.169 0.038  Cum. rainfall of 5 days (mm) 0.205 0.175 

Season (-) 0.402 0.361  Cum. rainfall of 10 days (mm) 0.164 0.160 

Min. air temp. (ºC) -0.230 -0.197  Cum. rainfall of 15 days (mm) 0.279 0.260 

Max. air temp. (ºC) -0.276 -0.252  Cum. rainfall of 25 days (mm) 0.251 0.230 

Mean air temp. (ºC) -0.266 -0.236  EWMA of past hour rainfall 
(mm) 

0.275 0.264 

 

2.3.2 Temporal and spatial soil moisture variation in the watershed  

 

During the monitoring period (February to September 2018), soil moisture 

ranged from 0.013 to 0.438 g g−1 for the surface and 0.014 to 0.383 g g−1 for the 

subsurface, presenting very similar mean values throughout the period (Table 

2.1). Average soil gravimetric moisture was lowest during the first week of 

surveys, at 0.123 g g−1 for the surface and 0.114 g g−1 for the subsurface. 

Temporal soil moisture variation was influenced by rainfall and 

evapotranspiration seasonality (Figure 2.4a). From summer to the end of 

autumn (21 December 2017 to 20 June 2018), there was 605.2 mm cumulative 

rainfall and 624.2 mm cumulative ETo. In the winter (21 June to 22 September 



16 
 

 
 

2018), cumulative rainfall was 646.8 mm, while ETo was only 156.8 mm. In both 

layers, soil moisture was lowest during the first five surveys (summer and 

autumn; Figure 2.4b, c), presenting averages of 0.167 g g−1 for the surface and 

0.159 g g−1 for the subsurface. In winter, average soil moisture was higher, at 

0.218 g g−1 for the surface and 0.195 g g−1 for the subsurface, respectively. 

These findings reflect the fact that soil moisture responds to rainfall (which 

raises it) and evapotranspiration (which lowers it). SPI (SPEI) ranged from −1.0 

to 1.56 (−1.1 to 1.6) at the one-month time scale (Figs S1 and S2). SPI and 

SPEI can be classified as near-normal (−0.99 to 0.99), moderately wet (1.0 to 

1.49), and severely wet (1.50 to 1.99). For the period 1971 to 2019, the 

proportions of samples falling into these categories, for SPI (SPEI), were 70% 

(65%) for near-normal, 10.0% (10.5%) for moderately wet, and 4.1% (5.8%) for 

severely wet (Figure S2.3). Overall, the frequency of SPI (SPEI) explained 81% 

(80%) of the variation in the time series. This indicates that the conditions 

during the monitoring period were near-normal, both in terms of dry and wet 

conditions. 

 

Figure 2.4 - (a) Rainfall and reference evapotranspiration (ETo) variation during 
the study period. Box-plot of gravimetric moisture measurements for the ten 
surveys at (b) the surface layer (0–10 cm) and (c) the subsurface layer (10–20 
cm). A, B, and A/B: group of points displayed, according to Figure 2.2a. Box 
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edges: 25th and 75th percentiles; Central line: median; Whiskers: lower and 
upper non-divergent limits; Crosses: outliers. 
 

High soil moisture was observed even during the driest period (the first 

five weeks), and low soil moisture even during the wet period (the last four 

weeks), particularly in the subsurface (Figure 2.4b, c). This becomes more 

evident when comparing the two sets of sample points: set A points have lower 

soil moisture variability than set B points, in both layers (Figure 2.5). Point P14 

had the highest median surface and subsurface soil moisture (at 0.322 and 

0.357 g g−1, respectively; Figure 2.5b, d). This point had the highest proportion 

of clay, and highest microporosity, in the surface layer (Table S2.2). In contrast, 

point P30 had the lowest median soil moisture (0.038 and 0.031 g g−1), lowest 

proportion of clay and lowest microporosity, in both layers. This reflects the 

importance of soil granulometry and porosity for water retention. 

Topography and land use and cover may also explain the differences in 

soil moisture between sample sets A and B. For both layers, spatial 

heterogeneity of soil moisture was higher in set B (CV = 0.44) than in set A (CV 

= 0.29). The average slope of set B points (17.5%) was higher than that of set A 

points (8.8%). Further, land use and cover affected soil moisture: points in 

native forest had greater variability (CV = 0.35) than those in grassland (CV = 

0.28). One-third of the area of sample set B is native forest.  
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Figure 2.5 - Spatial and temporal distribution of soil moisture for the 39 
measurement points. (a, b) Surface-layer soil samples from sets A and B, 
respectively; (c, d) Subsurface soil samples from sets A and B, respectively. 
The numbers on the x-axes indicate the soil sampling points. 
 
 

2.3.3 Soil moisture estimation via ANN models  

 

We used one-third of the records from each subsample for cross-validation 

training, and the same training configuration was used for all models (20 

repetitions and a maximum of 90,000 cycles). Starting with an oversized initial 

network, with 20 neurons in the hidden layer, each model was tested to 

determine its optimal complexity (Section 2.2.4). All models whose complexity 
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was researched resulted with up to six neurons in the inner layer. Since, in all 

cases, the possible excess of complexity was contained by means of cross-

validation, the number of six neurons was adopted as a reasonable standard for 

the final complexity of all models.  

By assessing their linear correlations (Section 2.2.4), we selected 14 

variables for the surface and 15 for the subsurface. We then tested the effects 

of including or removing certain variables. The initial selection of input variables 

had the greatest impact in selecting the best models for each layer (Table 

S2.3). The best models contained more topographical variables and fewer soil-

related variables. Tables S2.4 and S2.5 present data on model performance 

evaluation during network verification, for the 39 models analysed. 

For the subsequent analysis, we used the verification subsample (one-

third of the samples). The main models for this stage of the analysis had NS 

coefficients ranging from 0.477 to 0.887 for the surface and 0.213 to 0.893 for 

the subsurface (Table 2.4). The two best models were M38 (surface, with 11 

network input variables) and M49 (subsurface, with 13 network input variables), 

representing all of the variable categories (topography, soil, climate, and rainfall; 

Table S2.4). Model M38 (NS = 0.870) had the following input variables: 

elevation, slope, TWI, land use and cover, soil bulk density, microporosity, total 

sand content, season, cumulative 6-h rainfall, EWMA, and cumulative 7-d ETo 

(model statistics, in g g−1: RMSE = 0.026, MAE = 0.02, E10 = −0.03, E50 = 

0.001, and E90 = 0.033; Figure 2.6a, Table 2.4). The symmetrical error 

distribution (E10 versus E90), its MAE, and the E50 close to zero, indicates 

good neural network adjustment during the verification stage. 

In contrast, model M49 (the best subsurface model; NS = 0.893) included 

soil water tension and clay percentage; further, rather than cumulative 7-d ETo, 

it included cumulative 45-d ETo; and rather than cumulative 6-h rainfall, it 

included cumulative 24-h rainfall (model statistics, in g g−1: RMSE = 0.020, MAE 

= 0.015, E10 = −0.021, E50 = 0.0002, and E90 = 0.025 (Figure 2.6b, Table 2.4). 

M49 also had symmetrically distributed errors, with low MAE and E50 values, 

indicating good neural network adjustment, even better than for the surface 

model (M38). 

The good verification performance of both M38 and M49 demonstrates 

that ANNs can be used to model soil moisture, and to make predictions even for 
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situations not presented during training, thus confirming their capacity to 

generalize. Given that M49 presented better verification performance statistics, 

the performance statistics cannot be used alone to compare the surface and 

subsurface models. Nonetheless, it may be important to address large 

differences in model performance statistics, particularly in NS.  

 

 

Figure 2.6 - Model performance during the verification process. (a) Model M38, 
surface layer; (b) Model M49, subsurface layer. Soil moisture measurements 
and estimates in relation to the ideal adjusted values (1:1 line) for training (black 
circles) and verification (blue circles) for both models. Error: difference between 
the measurements and estimates for training (black circles) and verification 
(blue circles) for both models. 
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Table 2.4 - Statistical verification performance of the best models for the surface and subsurface layers. 
Model 38 51 52 53 54 55 56  49 64 65 66 67 68 69 

Layer Surface (0-10 cm)  Subsurface (10-20 cm) 

J1 18273 62377 48001 16781 13005 34215 5852  16618 61888 49176 3784 53695 13096 1193 

Input 
variables2 

1, 2, 3, 
35, 36, 

38, 43, 7, 
24, 34, 

18 

35, 36, 
38, 43, 7, 

24, 34, 
18 

1, 2, 3, 7, 
24, 34, 

18 

1, 2, 3, 
35, 36, 
38, 43, 
24, 34 

1, 2, 3, 
35, 36, 

38, 43, 7, 
18 

1, 2, 3, 
35, 36, 
38, 43 

35, 7, 24, 
34, 18 

 
1, 2, 3, 35, 
36, 38, 40, 
41, 43, 7, 
26, 34, 22 

35, 36, 
38, 40, 

41, 43, 7, 
26, 34, 

22 

1, 2, 3, 7, 
26, 34, 

22 

1, 2, 3, 
35, 36, 
38, 40, 
41, 43, 
26, 34 

1, 2, 3, 
35, 36, 
38, 40, 

41, 43, 7, 
22 

1, 2, 3, 
35, 36, 
38, 41, 

43 

35, 40, 7, 
26, 34,22 

 Verification 

E10 -0.03 -0.033 -0.038 -0.046 -0.036 -0.054 -0.061  -0.021 -0.029 -0.042 -0.027 -0.025 -0.045 -0.07 

E50 0.001 0.0014 -0.003 0.0033 -0.0045 0 0.0033  0.0002 0.0025 -0.0005 0.0044 -0.0013 0.0018 0.0036 

E90 0.033 0.041 0.046 0.064 0.036 0.049 0.063  0.025 0.03 0.043 0.041 0.028 0.047 0.057 

MAE 0.02 0.023 0.027 0.035 0.023 0.034 0.04  0.015 0.018 0.026 0.021 0.017 0.03 0.043 

RMSE 0.026 0.031 0.035 0.045 0.031 0.044 0.052  0.020 0.024 0.034 0.027 0.022 0.040 0.055 

NS 0.870 0.824 0.770 0.617 0.824 0.635 0.497  0.893 0.858 0.708 0.816 0.880 0.594 0.224 
1J: number of cycles used in model selection. 2 Input variables: 1, elevation; 2, Slope; 3, TWI; 7, Season; 18, Cumulative 7-day ETo; 22, Cumulative 45-day 
ETo; 24, Cumulative 6-h rainfall; 26, Cumulative 1-day rainfall; 34, EWMA of rainfall in the hour before sampling; 35, Land use and cover; 36, Soil bulk 
density; 38, Microporosity; 40, Soil water tension; 41, Clay; 43, Total Sand. 
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2.3.3.1 Importance of input variables in the ANN models  

 

For the surface model (M38), removing the season variable caused the 

largest reduction in network predictive capacity, reducing NS by 0.076, 

producing a model with NS = 0.794, RMSE = 0.033 g g−1, MAE = 0.026 g g−1. 

EWMA of rainfall in the hour before sampling was the second most important 

input variable: its removal reduced the model’s predictive capacity, reducing NS 

by 0.053, producing a model with NS = 0.817, RMSE = 0.031 g g−1, MAE = 

0.023 g g−1. Therefore, EWMA and its interactions with the other variables were 

important predictive factors, although without a strong linear relationship with 

soil moisture.  

For the subsurface layer model (M49), removing microporosity and the 

season variable caused the largest reductions in predictive performance (NS = 

0.846 and 0.842, RMSE = 0.025 for both, with NS reductions of 0.047 and 

0.051 g g−1, MAE = 0.019 and 0.018 g g−1, respectively). These findings indicate 

that, for the subsurface soil moisture, microporosity is as important as the 

season variable. Further, the season variable was less important in the 

subsurface model than in the surface model. These results highlight the 

relevance of easily obtainable input variables for predicting both surface and 

subsurface soil moisture. 

 

2.3.3.2 Importance of the variable categories for the best models  

 

The performance statistics of the M38 and M49 models, and of those 

obtained by removing all of the variables in each of the four variable categories, 

are shown in Figure 2.7. The reductions in NS are relative to the complete 

models.  

Removing the topographic variables reduced the verification performance 

of both models, noticeably increasing the dispersion of errors, with reductions in 

NS of 0.046 (M51, surface) and 0.035 (M64, subsurface).  

Removing soil-related variables caused larger reductions in performance 

than removing topography-related variables, reducing NS by 0.100 (M52, 

surface) and 0.185 (M65, subsurface). This indicates that soil-related variables 

affected the subsurface model more than the surface model. M52 and M65 had 
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similar E10 and E90 values: E10 was slightly higher in M65 (−0.042 g g−1) than 

in M52 (−0.038 g g−1). 

Removing climate-related variables reduced the predictive performance of 

the surface and subsurface models (M53 and M66, respectively). For the 

surface model, removing climatic variables had more effect than removing the 

other variable categories, reducing NS by 0.253; for the subsurface model, the 

reduction in NS was lower, at 0.077. The errors were larger, and the error 

distribution was more asymmetric, for M53 (E10 = −0.046 g g−1, E90 = 0.064 g 

g−1) than for M66 (E10 = −0.027 g g−1, E90 = 0.041 g g−1). M53 tended to 

overestimate low soil moisture values and underestimate high soil moisture 

values (Figure 2.7). 

Removing rainfall-related variables reduced model performance less for 

the subsurface model (M67) than for the surface model (M54), with NS 

reductions of 0.013 and 0.046, respectively. Although both models had 

symmetrical error distributions, the errors more dispersed for M54 (E10 = 

−0.036 g g−1, E90 = 0.036 g g−1) than for M67 (E10 = −0.025 g g−1, E90 = 0.028 

g g−1).  

In summary, although all four variable categories are important for the 

surface model, those related to climate are the most important, followed by 

those related to soil. For the subsurface model, soil-related variables are the 

most important, followed by those related to climate; rainfall and topographical 

variables are of little importance for the subsurface model. 
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Figure 2.7 - Model performance testing by removing each variables category 
(topography, soil, climate and rainfall). The 1:1 line depicts the ideal adjusted 
values. For soil moisture, the colder (blue) and hotter (red) colors depict higher 
negative errors (overestimates) and higher positive errors (underestimates), 
respectively. 

 

 

2.3.3.3 Importance of spatial and temporal variables for the best models  

 

The input variables were separated based on spatial features (for 

elevation, slope, TWI, land use and cover, soil bulk density, microporosity, clay 

content, and total sand content) and temporal features (land use and cover, soil 

water tension, climate, cumulative 6-h rainfall, cumulative 1-day rainfall, EWMA 

of rainfall in the hour before sampling, and cumulative 7-day and 45-day ETo). 

Because it is a spatial variable with patterns that change over time, land use 

and cover was considered as both spatial and temporal. Not surprisingly, 

excluding either the spatial or temporal information from the models reduced 

their predictive potential (Figure 2.8, Tables S2.4 and S2.5). 

Removing the spatial features from the models reduced the predictive 

performance of the subsurface model (M69) more than that of the surface 

model (M56). Although they had similar median errors (E50 = 0.0036 and 

0.0033 g g−1 for M69 and M56, respectively), the error distribution of M69 was 

more asymmetrical (E10 = −0.07 g g−1, E90 = 0.057 g g−1) than that of M56 

(E10 = −0.061 g g−1, E90 = 0.063 g g−1). This confirms our earlier finding that 

removing the soil-related variables reduces predictive performance more for the 

subsurface model than the surface model. 

Removing temporal variables similarly reduces the predictive performance 

of both the subsurface model (M68: NS = 0.594, RMSE = 0.040 g g−1, and MAE 

= 0.03 g g−1) and the surface model (M55: NS = 0.635, RMSE = 0.044 g g−1 and 

MAE = 0,034 g g−1). The errors of M55 were larger and more asymmetrically 

distributed (E10 = −0.054g g−1, E90 = 0.049 g g−1) than those of M68 (E10 = 

−0.045 g g−1, E90 = 0.047 g g−1). Although the climate and rainfall-related 

variables had little influence on the performance of the subsurface model, 

removing all of the temporal variables (climate and rainfall-related variables, 

land use and cover, and soil water tension) reduced the model’s predictive 
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performance. This is because the soil-related variables have a strong influence 

on model performance. 

For the surface model, removing spatial variables reduced predictive 

performance more than removing temporal variables. However, the effect of 

removing spatial variables was less strong for the surface than for the 

subsurface model. Although spatial variables are important for the surface 

model, they have a larger effect on the subsurface model (M69). This provides 

further evidence that the climatic variables are more relevant to the 

performance of the surface model. 
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Figure 2.8 - Model performance following removal of temporal and spatial 
variables. The 1:1 line depicts the ideal adjusted values. For soil moisture, the 
colder (blue) and hotter (red) colors depict higher negative errors 
(overestimates) and higher positive errors (underestimates), respectively. 
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2.4 Discussion 

 

The effects of topography, soil, climate, land use, and land cover on soil 

moisture have been widely investigated (e.g. Hu and Cheng, 2014; Korres et 

al., 2015; Liang, 2017; Yang et al., 2017). In the studied watershed, for both 

layers, spatial heterogeneity of soil moisture was higher for set B than set A 

samples, which can be attributed to the higher average slope of set B. Further, 

the higher CV of soil moisture for the native forest than for the grassland 

indicates that land use and cover also influenced soil moisture variability. The 

greater heterogeneity of soil moisture on steep slopes and in native forest is 

consistent with previous findings (Korres et al., 2015; Yang et al., 2017).  

All four of the input variable categories (topography, soil, climate, and 

rainfall) were included in the best-performing ANN-based soil moisture models 

(M38 and M49). This reflects the complex spatiotemporal dynamics that 

determine soil moisture, at the watershed scale. The fact that variables with low 

linear correlations with soil moisture (e.g., elevation, EWMA; Table 2.3) were 

included in the best models indicates that even low-correlation variables can 

affect ANN performance. This is because ANNs build nonlinear relationships 

among input and output variables (Oliveira et al., 2017). 

Both of the best-performing models (M38 and M49, for surface and 

subsurface, respectively) performed well during the verification stage. The 

slightly superior performance of the subsurface model probably reflects the fact 

that the soil moisture has lower coefficients of variation in this layer. Similarly, 

Contador et al. (2006) obtained good results when using ANN modelling to 

estimate soil moisture in a Spanish watershed, emphasizing the effects of 

changes in land cover on soil moisture. Further, Kornelsen and Coulibaly (2014) 

reported that ANNs can explain nonlinear soil moisture dynamics; however, 

they achieved good results for deeper layers only when using surface soil 

moisture as a network input. Using the same variable categories that we used, 

Oliveira et al. (2017) also achieved good results, for a watershed of the same 

climatic type but with very different land use, land cover, soil hydro-physical 

features, and topography. In the present study, cumulative 6-h rainfall was more 

important in predicting surface soil moisture, whereas cumulative 24-h rainfall 

was more important in predicting subsurface soil moisture, indicating that 
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rainfall affected surface soil moisture faster than subsurface soil moisture. 

Similarly, cumulative 7-day ETo was more important for the surface model, 

whereas cumulative 45-day Eto was more important for the subsurface model, 

indicating that the surface soil dries out faster than the subsurface soil. This 

suggests that surface soil moisture responds to the most recent rainfall and 

climatic conditions, whereas subsurface soil moisture is attenuated by the soil’s 

hydro-physical features, which control water infiltration and delay the effects of 

rainfall and climate conditions, as observed by Lv et al. (2019). Furthermore, the 

linkage of soil moisture in surface and subsurface is dependent on the kind of 

transition between soil horizons (Hagen et al., 2020). Water reallocation to 

greater depths causes soil moisture to be more stable at greater depths 

(Rosenbaum et al., 2012).  

Excluding the input variable categories had different effects on the 

performance of the surface and subsurface ANN models. In both layers, 

excluding the soil-related variables caused greater loss of performance than 

removing the topographic variables. Gwak and Kim (2017) and Hu and Cheng 

(2014) report that soil-related properties are more important than topography in 

determining the soil moisture distribution. Various other studies have reported 

that topography, land use and land cover are essential in characterizing 

catchment-scale soil moisture variability (Liang, 2017; Yang et al., 2017; Yu et 

al., 2018). 

For the surface layer, climate-related variables were more important than 

topography, soil, and rainfall-related variables in predicting soil moisture. This 

probably related to the observed differences in cumulative rainfall and ETo 

between dry periods (summer and autumn) and humid periods (winter). By 

assigning a numeric value to each season, this information is indirectly included 

in the model. Further, for small watersheds, it has been reported that changes 

in soil moisture over time may influence processes which control spatial 

patterns of soil moisture (e.g. Hu and Cheng, 2014; Liang, 2017; Western et al., 

2004). In this context, for a small watershed in Germany, Rosenbaum et al. 

(2012) observed that temporal changes in the surface layer (0–5 cm) were 

strongly influenced by climatic forcing. 

Consistent with Oliveira et al. (2017), we found that including simple, 

accessible, and low cost variables (such as land use and cover, and season) 
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improved network performance in estimating soil moisture. Excluding rainfall-

related variables caused small losses in predictive performance, especially for 

the subsurface layer. This is consistent with other experimental and modelling 

studies. For instance, Metzger et al. (2017), in a forest-parcel experiment, 

observed that soil wetting and rainfall patterns were weakly associated; they 

attributed this to the rapid drying of soil after rainfall, with dry soil being the 

stable condition over time. Using a Richards equation-derived 3D model for a 

hillslope, Coenders-Gerrits et al. (2013) observed that rainfall influences soil 

moisture predictions, but only during and shortly after a rainfall event, with 

bedrock topography being the limiting factor most of the time. 

 

2.5 Conclusions 

 

For a small watershed, we investigated the capacity of ANN models to 

predict regional soil moisture, both for surface and subsurface layers, and 

evaluated the main driving factors. The models were configured using inputs in 

four categories (topography, soil properties, climate, and rainfall) and were 

classified as spatial (having invariant physical characteristics) and temporal 

(varying over time, such as rainfall and ETo). 

For both layers, the complete models showed excellent performance. We 

then evaluated model performance by removing each one of the variables, 

categories, or spatiotemporal classes, in turn. The most important variable for 

the surface model was climate, followed by the EWMA of rainfall. For the 

subsurface model, climate was also the most important variable (although less 

so than for the surface model), followed by microporosity. Although all four 

categories were important for the surface model, the most important was 

climate, followed by soil properties. For the subsurface model, the most 

important categories were soil properties, followed by climate; rainfall and 

topography were of little importance. For both layers, the models were more 

sensitive to exclusion of spatial than of temporal variables. 

In conclusion, it is possible to estimate soil moisture for both layers with 

good performance, using the selected variables, which represent the physical 

conditions affecting soil moisture. However, the surface model requires more 

input variables to achieve good performance. In contrast, for the subsurface 
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model, more variance in soil moisture can be explained using only soil and 

climate-related variables (in particular, season and microporosity). This is 

because the most recent rainfall and climate conditions determine changes in 

surface soil moisture, whereas subsurface soil moisture is attenuated by soil 

properties, which control water infiltration and delay the effects of rainfall and 

climate. 
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Appendix A. Supplementary data 

 

 

 
Figure S2.1 - The 1-, 3-, 6-, and 12-month SPIs in the Arroio do Ouro watershed (1971–2019). 
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Figure S2.2 - The 1-, 3-, 6-, and 12-month SPEIs in the Arroio do Ouro watershed (1971–2019). 
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Figure S2.3 - Frequencies of drought and wetness in different categories at 1-, 3-, 6-, and 12-month SPEI/SPI in the Arroio do Ouro 
watershed (1971–2019). 
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Table S2.1 - Topographic variables of the 39 soil moisture monitoring points. 

 Coordinates Group topographic variables 

Point North (m) East (m) DEM (m) Slope (%) TWI Curvature DTR (m) DNR (m) 

P01 6500807.035 350189.819 262.0 12.3 6.9 0.01 100.9 4.0 

P02 6502754.349 346798.502 242.0 10.7 5.6 0.05 233.6 26.0 

P03 6504008.686 348293.163 205.0 5.5 7.7 0.05 321.6 20.0 

P04 6502403.456 348222.575 230.0 3.1 6.9 0.10 233 26.0 

P05 6503569.989 347508.669 215.0 5.5 8.1 0.58 138.6 6.0 

P06 6502789.537 350603.013 210.0 28.1 5.8 0.16 348.2 30.0 

P07 6504084.511 348318.903 206.0 9.9 6.4 0.07 297.5 25.0 

P08 6504325.972 350172.712 134.0 30.1 4.6 -0.32 108.4 18.0 

P09 6504604.935 350079.739 184.0 21.8 5.6 0.10 404.5 68.0 

P10 6505665.007 350084.702 193.0 6.6 6.8 0.12 533.5 84.0 

P11 6505091.14 350095.592 121.0 16.8 10.0 -0.24 24.2 4.0 

P12 6505611.122 349194.406 205.0 13.5 6.1 0.17 341.6 35.0 

P13 6505725.351 350752.534 153.0 20.5 5.7 0.48 204.1 41.0 

P14 6504696.698 350839.618 112.0 2.6 9.1 -0.12 29.4 4.0 

P15 6503366.146 350097.106 148.0 14.5 7.8 0.06 15.7 1.0 

P16 6505653.88 351220.098 113.0 10.0 5.7 -0.09 149.2 15.0 

P17 6505067.99 351623.338 165.0 9.6 5.7 0.16 170.6 31.0 

P18 6503308.791 350124.565 152.0 11.2 12.2 -0.03 32.3 1.0 

P19 6505689.081 351825.098 106.0 34.5 6.4 0.06 80.5 13.0 

P20 6500914.878 350214.38 269.0 6.6 7.7 0.10 65.3 4.0 

P21 6500952.001 350225.455 266.0 6.1 13.4 0.00 27.3 1.0 

P22 6501439.094 349745.787 249.0 1.4 10.4 0.26 187.01 0.0 

P23 6503282.877 348779.105 170.0 5.8 8.6 -0.52 50.1 2.0 

P24 6503743.397 348511.693 181.0 17.0 5.2 0.07 156.4 16.0 

P25 6503548.886 347520.597 220.0 6.6 6.1 0.48 132.7 8.0 

P26 6504007.535 347194.189 246.0 3.9 6.7 0.05 271.1 21.0 

P27 6504464.924 349200.807 180.0 21.2 6.6 -0.12 296.4 34.0 

P28 6502334.821 348832.555 214.0 9.2 5.8 0.20 217.8 23.0 

P29 6505610.806 349270.01 207.0 15.4 5.3 0.26 290.7 37.0 

P30 6504910.426 350123.016 154.0 23.9 5.5 -0.09 148.2 32.0 

P31 6504664.785 350050.575 180.0 11.7 5.5 0.16 338.6 56.0 

P32 6505029.124 351608.249 166.0 6.8 6.1 0.11 149.1 32.0 

P33 6505041.239 351570.022 161.0 21.2 5.6 0.01 112.5 27.0 

P34 6505737.402 351809.307 94.0 39.2 4.3 -0.05 63.8 4.0 

P35 6504447.271 349171.153 188.0 21.1 6.9 -0.05 317.9 42.0 

P36 6501430.364 349703.72 249.0 2.4 9.9 0.34 157.8 3.0 

P37 6504268.403 350195.415 119.0 9.2 8.7 0.00 48.5 3.0 

P38 6502392.971 347559.263 233.0 10.3 6.4 0.15 362.9 24.0 

P39 6502680.937 350574.069 240.0 19.6 5.7 0.14 403.1 60.0 

TWI: topographic wetness index; DTR: distance from sampled point to the closest river 
stretch; DNR: difference in elevation between the sampling point and the closest river 
stretch.
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Table S2.2 - Soil-related variables of the 39 soil moisture monitoring points in the surface layer (0-10 cm) and subsurface layer (10-
20 cm). 

Point 

Land use 
and 

cover 

 
BD 

(g cm-3) 
Macro 

(cm3 cm-3) 
Micro (cm3 

cm-3) 
TP 

(cm3 cm-3) 

Total 
sand 
(%) 

Clay 
(%) 

Silt 
(%) 

 
BD 

(g cm-3) 
Macro 

(cm3 cm-3) 
Micro (cm3 

cm-3) 
TP 

(cm3 cm-3) 

Total 
sand 
(%) 

Clay 
(%) 

Silt 
(%) 

  
 

Surface layer (0-10 cm) 
 

Subsurface layer (10-20 cm) 

P01 4  1.54 0.050 0.348 0.397 55.4 24.8 19.7  1.63 0.097 0.232 0.329 49.7 33.9 16.4 

P02 2  1.47 0.083 0.329 0.412 53.5 25.7 20.8  1.06 0.229 0.292 0.521 48.6 32.2 19.2 

P03 4/5  1.64 0.050 0.325 0.375 59.0 15.0 26.0  1.46 0.118 0.259 0.377 57.5 17.8 24.7 

P04 2  1.28 0.132 0.349 0.481 50.3 20.8 28.8  1.26 0.236 0.256 0.493 54.6 19.7 25.7 

P05 4/5  1.53 0.096 0.296 0.392 57.7 26.9 15.4  1.52 0.111 0.282 0.392 51.0 35.1 13.9 

P06 2  1.52 0.130 0.282 0.412 63.8 13.6 22.6  1.47 0.120 0.259 0.379 64.2 12.8 23.0 

P07 6  1.50 0.180 0.245 0.425 61.7 11.9 26.4  1.31 0.051 0.399 0.450 50.5 25.7 23.8 

P08 6  1.30 0.270 0.269 0.540 66.2 15.3 18.4  1.45 0.098 0.317 0.415 66.9 14.3 18.8 

P09 1  1.32 0.313 0.182 0.495 66.6 14.0 19.4  1.27 0.142 0.349 0.491 66.9 14.6 18.5 

P10 3  1.51 0.149 0.232 0.382 63.3 17.7 18.9  1.32 0.141 0.320 0.461 63.7 17.5 18.8 

P11 2  1.54 0.115 0.308 0.423 66.2 11.6 22.2  1.43 0.147 0.298 0.445 55.9 17.0 27.1 

P12 3  1.51 0.099 0.302 0.401 56.7 18.8 24.6  1.42 0.039 0.394 0.433 58.7 18.0 23.3 

P13 1  0.99 0.275 0.316 0.591 51.6 17.2 31.2  1.60 0.052 0.313 0.364 46.9 18.2 34.9 

P14 4  1.37 0.067 0.413 0.480 41.0 34.9 24.0  1.52 0.071 0.335 0.406 34.8 43.8 21.4 

P15 1  1.15 0.128 0.391 0.520 66.0 10.3 23.7  1.40 0.135 0.295 0.430 60.5 13.2 26.3 

P16 4  1.63 0.090 0.266 0.356 72.7 7.2 20.1  1.71 0.040 0.385 0.424 73.3 7.4 19.4 

P17 4/5  1.54 0.067 0.321 0.388 64.6 15.7 19.7  1.27 0.156 0.302 0.458 63.2 16.4 20.4 

P18 2  1.49 0.153 0.265 0.417 62.6 11.9 25.5  1.49 0.172 0.245 0.416 63.6 11.6 24.9 

P19 1  1.06 0.261 0.295 0.556 57.4 15.0 27.7  1.46 0.166 0.237 0.403 58.9 12.9 28.2 

P20 2  1.41 0.173 0.301 0.474 68.6 14.4 17.0  1.29 0.129 0.339 0.468 63.1 17.6 19.3 

P21 1  1.06 0.204 0.336 0.540 64.7 17.8 17.5  1.31 0.269 0.190 0.459 63.8 19.0 17.3 

P22 4/5  1.44 0.058 0.396 0.454 58.6 19.1 22.3  1.54 0.221 0.181 0.402 58.8 18.9 22.4 

(continued on next page) 
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Table S2.2 (Continued). 

Point 

Land use 
and 

cover 

 
BD 

(g cm-3) 
Macro 

(cm3 cm-3) 
Micro (cm3 

cm-3) 
TP 

(cm3 cm-3) 

Total 
sand 
(%) 

Clay 
(%) 

Silt 
(%) 

 
BD 

(g cm-3) 
Macro 

(cm3 cm-3) 
Micro (cm3 

cm-3) 
TP 

(cm3 cm-3) 

Total 
sand 
(%) 

Clay 
(%) 

Silt 
(%) 

  
 

Surface layer (0-10 cm) 
 

Subsurface layer (10-20 cm) 

P23 4/5  1.41 0.106 0.385 0.491 54.6 16.8 28.6  1.14 0.103 0.472 0.574 54.5 17.2 28.3 

P24 4/5  1.51 0.135 0.275 0.410 64.1 16.6 19.3  1.51 0.145 0.224 0.369 54.6 26.4 19.0 

P25 2  1.39 0.080 0.378 0.458 50.5 21.3 28.3  1.15 0.237 0.273 0.509 46.6 24.9 28.5 

P26 4/5  1.52 0.107 0.303 0.410 61.1 11.8 27.1  1.60 0.059 0.294 0.353 55.8 17.5 26.7 

P27 2  1.57 0.232 0.198 0.430 72.6 11.4 16.1  1.29 0.220 0.254 0.474 72.7 10.8 16.5 

P28 4/5  1.66 0.093 0.329 0.422 54.2 16.2 29.6  1.62 0.100 0.251 0.350 37.9 29.5 32.6 

P29 1  0.89 0.289 0.294 0.583 50.5 19.6 29.9  1.42 0.167 0.290 0.457 51.5 19.8 28.7 

P30 6  1.66 0.270 0.104 0.374 72.0 5.4 22.7  1.56 0.291 0.066 0.357 74.7 3.7 21.6 

P31 4/5  1.49 0.250 0.132 0.382 70.4 11.5 18.0  1.43 0.305 0.148 0.453 68.8 12.2 19.0 

P32 1  0.90 0.276 0.335 0.611 50.7 20.8 28.5  1.50 0.236 0.166 0.402 53.2 22.0 24.8 

P33 4/5/6  1.41 0.192 0.244 0.436 66.0 16.1 17.9  1.55 0.092 0.304 0.397 63.6 16.3 20.2 

P34 2  1.58 0.096 0.303 0.399 63.3 13.3 23.4  1.52 0.253 0.181 0.434 64.8 12.9 22.3 

P35 1  1.37 0.239 0.227 0.466 64.2 16.3 19.5  1.40 0.204 0.240 0.444 62.3 18.2 19.6 

P36 2  1.41 0.097 0.348 0.444 59.2 17.2 23.7  1.42 0.130 0.337 0.467 58.8 18.1 23.1 

P37 4/5  1.58 0.217 0.178 0.395 68.5 10.5 21.0  1.58 0.060 0.318 0.378 68.5 10.7 20.9 

P38 4/5  1.41 0.074 0.368 0.442 56.9 17.6 25.6  1.45 0.087 0.328 0.415 56.8 18.4 24.9 

P39 1  1.09 0.174 0.361 0.535 51.5 18.6 29.9  1.58 0.068 0.322 0.390 53.1 19.5 27.4 

Land use and cover (native forest, 1; native grassland, 2; fruit crops, 3; annual crops with vegetable covering, 4; annual crops without vegetable 
covering, 5; commercial forests, 6); BD: soil bulk density; Macro: Macroporosity; Micro: microporosity; TP: total porosity; 
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Table S2.3 - Variables selected through the initial method of linear correlations 
for the surface (MI-SS) and for the subsurface (MI-SB) layers. Variables 
selected on the best surface (MM-SS) and subsurface (MM-SB) models. 

Variable 
MI - 
SS 

MI - 
SB 

MM-
SS 

MM-
SB 

 Variable 
MI - 
SS 

MI - 
SB 

MM-
SS 

MM-
SB 

Elevation (m)   X X  Min. Rel. humid. (%)     

Slope (%)  X X X  Max. Rel. humid. (%)     

TWI (-)   X X  Rel. humid. (%)     

Curvature (-)      Soil Temp. 5 cm (ºC)     

DTR (m)      Global solar radiation (cal 
cm-2 day-1) 

X X   

DTR (m)      ETo (mm)     

Land use and 
cover 

X X X X  Cum. ETo of 5 days (mm)     

BD (g cm-3) X X X X  Cum. ETo of 7 days (mm)   X  

Macro (cm3 cm-3)  X    Cum. ETo of 14 days (mm)     

Micro (cm3 cm-3) X X X X  Cum. ETo of 21 days (mm)     

TP (cm3 cm-3)  X    Cum. ETo of 30 days (mm)     

Soil water tension 
(cm Hg) 

X X  X  Cum. ETo of 45 days (mm) X X  X 

Clay (%) X X  X  Cum. ETo of 60 days (mm)     

Silt (%) X X    Cum. rainfall of 6 h (mm)   X  

Total sand (%) X X X X  Cum. rainfall of 12 h (mm)     

Very Coarse sand 
(%) 

X X    Cum. rainfall of 1 day (mm) X   X 

Coarse sand (%)      Cum. rainfall of 2 days 
(mm) 

    

Medium sand (%)      Cum. rainfall of 3 days 
(mm) 

    

Fine sand (%)      Cum. rainfall of 4 days 
(mm) 

    

Very Fine sand 
(%) 

     Cum. rainfall of 5 days 
(mm) 

    

Season (-)   X X  Cum. rainfall of 10 days 
(mm) 

    

Min. air temp. (ºC)      Cum. rainfall of 15 days 
(mm) 

X X   

Max. air temp. 
(ºC) 

X     Cum. rainfall of 25 days 
(mm) 

X    

Mean air temp. 
(ºC) 

     EWMA of past hourly 
rainfall (mm) 

 X X X 
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Table S2.4 - Statistical verification performance of the selected models for surface layer (0-10 cm). 
Model 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 

J1 18273 25024 2702 12649 57890 19391 29947 5839 2385 5166 18071 14351 62377 48001 16781 13005 34215 5852 

                   

Input 
variables2 

1, 2, 3, 
35, 36, 
38, 43, 
7, 24, 
34, 18 

2, 3, 
35, 36, 
38, 43, 
7, 24, 
34, 18 

1, 3, 
35, 36, 
38, 43, 
7, 24, 
34, 18 

1, 2, 
35, 36, 
38, 43, 
7, 24, 
34, 18 

1, 2, 3, 
36, 38, 
43, 7, 

24, 34, 
18 

1, 2, 3, 
35, 38, 
43, 7, 

24, 34, 
18 

1, 2, 3, 
35, 36, 
43, 7, 

24, 34, 
18 

1, 2, 3, 
35, 36, 
38, 7, 

24, 34, 
18 

1, 2, 3, 
35, 36, 
38, 43, 
24, 34, 

18 

1, 2, 3, 
35, 36, 
38, 43, 
7, 34, 

18 

1, 2, 3, 
35, 36, 
38, 43, 
7, 24, 

18 

1, 2, 3, 
35, 36, 
38, 43, 
7, 24, 

34 

35, 36, 
38, 43, 
7, 24, 
34, 18 

1, 2, 3, 
7, 24, 
34, 18 

1, 2, 3, 
35, 36, 
38, 43, 
24, 34 

1, 2, 3, 
35, 36, 
38, 43, 
7, 18 

1, 2, 3, 
35, 36, 
38, 43, 

35, 7, 
24, 34, 

18 

Verification 

E10 -0.03 -0.029 -0.033 -0.029 -0.03 -0.034 -0.03 -0.033 -0.037 -0.029 -0.035 -0.034 -0.033 -0.038 -0.046 -0.036 -0.054 -0.061 

E50 0.001 0.0014 
-

0.0041 
-0.002 0.0017 

-
0.0006 

-
0.0018 

-
0.0003 

-
0.0018 

-
0.0014 

-
0.0019 

0.0004 0.0014 -0.003 0.0033 
-

0.0045 
0 0.0033 

E90 0.033 0.033 0.038 0.034 0.043 0.035 0.035 0.033 0.04 0.035 0.032 0.036 0.041 0.046 0.064 0.036 0.049 0.063 

MAE 0.02 0.019 0.023 0.021 0.023 0.023 0.021 0.021 0.026 0.021 0.023 0.022 0.023 0.027 0.035 0.023 0.034 0.04 

RMSE 0.026 0.026 0.030 0.027 0.031 0.029 0.028 0.027 0.033 0.027 0.031 0.029 0.031 0.035 0.045 0.031 0.044 0.052 

NS 0.87 0.877 0.836 0.863 0.82 0.842 0.851 0.863 0.794 0.858 0.817 0.844 0.824 0.77 0.617 0.824 0.635 0.497 
1J:   number of cycles used in model selection.  
2Input variables: 1: elevation; 2: Slope; 3: TWI; 7: Season; 15: Global solar radiation; 18: Cumulative 7-day ETo ; 22: Cumulative 45-day ETo ; 
24: Cumulative 6-h rainfall; 26: Cumulative 1-day rainfall; 32: Cumulative 15-day rainfall; 34: EWMA of rainfall in the hour before sampling; 35: 
Land use and cover; 36: Soil bulk density; 37: Macroporosity; 38: Microporosity; 39: Total Porosity; 40: Soil water tension; 41: Clay; 42: Silt; 43: 
Total Sand; 44: Very Coarse sand. 
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Table S2.5 - Statistical verification performance of the selected models for subsurface layer (10-20 cm). 
Model 01 49 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 

J1 
31916 16618 14407 18609 11753 3560 15939 13165 21436 56225 5079 8024 37614 41028 53945 61888 49176 3784 53695 13096 1193 

  
                    

Input 
variables2 

2, 35, 36, 37, 
38, 39, 40, 
41, 42, 43, 
44, 15, 32, 

34, 22 

1, 2, 3, 
35, 36, 
38, 40, 
41, 43, 
7, 26, 
34, 22 

2, 3, 
35, 36,  
38, 40, 
41, 43, 
7, 26, 
34, 22 

1, 3, 
35, 36,  
38, 40, 
41, 43, 
7, 26, 
34, 22 

1, 2, 35, 
36,  38, 
40, 41, 
43, 7, 

26, 34, 
22 

1, 2, 3, 
36,  38, 
40, 41, 
43, 7, 
26, 34, 

22 

1, 2, 3, 
35, 38, 
40, 41, 
43, 7, 
26, 34, 

22 

1, 2, 3, 
35, 36, 
40, 41, 
43, 7, 
26, 34, 

22 

1, 2, 3, 
35, 36, 
38, 41, 
43, 7, 
26, 34, 

22 

1, 2, 3, 
35, 36, 
38, 40, 
43, 7, 
26, 34, 

22 

1, 2, 3, 
35, 36, 
38, 40, 
41, 7, 
26, 34, 

22 

1, 2, 3, 
35, 36, 
38, 40, 
41, 43, 
26, 34, 

22 

1, 2, 3, 
35, 36, 
38, 40, 
41, 43, 
7, 26, 

34 

1, 2, 3, 
35, 36, 
38, 40, 
41, 43, 
7, 34, 

22 

1, 2, 3, 
35, 36, 
38, 40, 
41, 43, 
7, 26, 

22 

35, 36, 
38, 40, 
41, 43, 
7, 26, 
34, 22 

1, 2, 3, 
7, 26, 
34, 22 

1, 2, 3, 
35, 36, 
38, 40, 
41, 43, 
26, 34 

1, 2, 3, 
35, 36, 
38, 40, 
41, 43, 
7, 22 

1, 2, 3, 
35, 36, 
38, 41, 

43 

35, 40, 
7, 26, 
34,22 

Verification 

E10 -0,024 -0.021 -0.022 -0.024 -0.022 -0.027 -0.023 -0.028 -0.028 -0.023 -0.025 -0.027 -0.025 -0.024 -0.024 -0.029 -0.042 -0.027 -0.025 -0.045 -0.07 

E50 -0,011 0.0002 0.0006 0.0029 -0.0005 -0.0005 0.0019 0.0013 0.0021 0.0011 0.0004 0.0009 -0.0001 0.0006 0.0007 0.0025 -0.0005 0.0044 -0.0013 0.0018 0.0036 

E90 0,033 0.025 0.03 0.032 0.028 0.028 0.034 0.031 0.03 0.032 0.032 0.035 0.03 0.029 0.027 0.03 0.043 0.041 0.028 0.047 0.057 

MAE 0,018 0.015 0.017 0.017 0.017 0.018 0.018 0.019 0.018 0.018 0.018 0.018 0.017 0.017 0.016 0.018 0.026 0.021 0.017 0.03 0.043 

RMSE 0,026 0.020 0.022 0.023 0.022 0.023 0.024 0.025 0.023 0.024 0.024 0.025 0.021 0.022 0.021 0.024 0.034 0.027 0.022 0.040 0.055 

NS 0,833 0.893 0.865 0.87 0.882 0.864 0.852 0.846 0.861 0.858 0.862 0.842 0.877 0.877 0.883 0.858 0.708 0.816 0.88 0.594 0.224 

1J:   number of cycles used in the best model validation result.  
2Input variables: 1: elevation; 2: Slope; 3: TWI; 7: Season; 15: Global solar radiation; 18: Cumulative 7-day ETo ; 22: Cumulative 45-day ETo ; 
24: Cumulative 6-h rainfall; 26: Cumulative 1-day rainfall; 32: Cumulative 15-day rainfall; 34: EWMA of rainfall in the hour before sampling; 35: 
Land use and cover; 36: Soil bulk density; 37: Macroporosity; 38: Microporosity; 39: Total Porosity; 40: Soil water tension; 41: Clay; 42: Silt; 43: 
Total Sand; 44: Very Coarse sand. 
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Abstract  

We investigated the relationships among soil moisture, rainfall, and runoff in a 

catchment in southern Brazil to evaluate the impact of antecedent soil moisture (Θi) 

on the runoff coefficient. We analyzed 104 rainfall-runoff events over four years of 

monitoring, and soil moisture data were obtained from a robust model of artificial 

neural networks. The results indicate a significant relationship between runoff depth 

and total precipitation (P). The antecedent soil moisture index (ASI) exhibited a 

significant Pearson correlation coefficient with runoff only when used in conjunction 

with P (ASI+P). The relationship between Θi and the runoff coefficient was significant 

but weak, with a large dispersion of the runoff coefficient for soil water content above 

field capacity. Although a threshold was not evident between Θi and the runoff 

coefficient, the highest runoff coefficients were recorded in events whose Θi was 

close to or greater than the field capacity. 
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3.1 Introduction 

 

The hydrological response of a watershed to a single precipitation event is 

related to its interaction with various factors that control runoff (Castillo et al., 2003). 

Among these, the antecedent soil moisture, that is, the soil water content at the 

beginning of a precipitation event, is a crucial factor that, together with the hydraulic 

characteristics of the soil, influences the water storage capacity in the soil and, 

therefore, the runoff generation in the watershed (Uber et al., 2018). Under high initial 

soil moisture conditions, rainfall events of a certain depth and intensity can cause a 

solid reaction to runoff, whereas the same event occurring under conditions of low 

soil water content can drive runoff to small magnitudes (Meißl et al., 2020). 

Several authors have highlighted the importance of soil water content in 

generating runoff in hydrographic basins of different scales, both in semi-arid and 

more humid regions (James and Roulet, 2009; Penna et al., 2011; Zhang et al. ., 

2011; Nied et al., 2013; Uber et al., 2018; Schoener and Stone, 2019). Others have 

analyzed the response sensitivity of event-based hydrological models under different 

soil moisture conditions (Castillo et al., 2003; Tramblay et al., 2010; Hu et al., 2015; 

Grillakis et al., 2016; Morbidelli et al., 2016). For example, in a tropical dry forest 

watershed, Farrick and Branfireun (2014) observed that after reaching certain 

thresholds of soil water content and precipitation, the magnitude of the runoff was 

governed by the rainfall event characteristics rather than by previous soil moisture 

conditions. In a study of 100 watersheds in Australia, the increased the magnitude of 

precipitation events also reduced the effect of antecedent moisture on flood volume 

(Bennett et al., 2018). 

Generally, there are two processes for generating runoff in a watershed: i) when 

the rainfall intensity exceeds the soil infiltration capacity, the runoff is dependent on 

the intensity of the rainfall and the characteristics of the surface layer of the soil; ii) 

when rainfall exceeds the water storage capacity in the soil, saturation overland flow 

occurs, and the runoff is dependent on precipitation depth (Scherrer et al., 2007). 
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Thus, threshold behavior can characterize the processes of flow formation in a 

watershed. Studies have shown that higher runoff coefficients occur only if a specific 

soil moisture condition is reached (Penna et al., 2011; Huza et al., 2014; Mcmillan et 

al., 2014; Meißl et al., 2014; Meißl et al. al., 2020). However, this threshold behavior 

may not be evident in some watersheds that present high dispersion of runoff 

coefficients, mainly under high soil moisture conditions, as reported by Uber et al. 

(2018). This could be due to the spatial and temporal dynamics of soil moisture 

(Huza et al., 2014). 

In Brazil, recent efforts have been made to create hydrological databases on a 

continental scale (Chagas et al., 2020; Almagro et al., 2021). However, a soil 

moisture data time series was not available. Even in experimental watersheds, a 

recent review showed that soil moisture is poorly monitored in Brazil (Melo et al., 

2020). Additionally, the soil moisture monitoring network of the National Center for 

Monitoring and Early Warning of Natural Disasters (CEMADEN) is restricted to the 

semiarid region of Brazil (Zeri et al., 2020). The scarcity of long-term observations of 

soil moisture measurement networks and their uneven distribution is not limited to 

Brazil (Sungmin and Orth, 2021). To circumvent this, some authors have used 

indirect information, such as the antecedent precipitation index, to characterize 

antecedent moisture conditions (Rodríguez-Blanco et al., 2012; Zhao et al., 2019; 

Bennedtt et al., 2018). However, the weak relationship between precipitation before 

the events and the initial soil moisture compromises the use of such information 

(Brocca et al., 2008; Hagen et al., 2020).  

In this study, we investigated the relationship between soil moisture, rainfall, 

and runoff in a headwater catchment in southern Brazil to evaluate the possible 

impact of antecedent soil moisture on the runoff coefficient. We used surface and 

subsurface soil moisture data obtained from a robust model of artificial neural 

networks (ANNs) previously developed specifically for the study area of this research 

(Bartels et al., 2021). The developed model was trained and validated using soil 

moisture data collected in situ, making it possible to evaluate the uncertainties 

associated with soil moisture estimates. By analyzing 104 rainfall-runoff events from 

four years of monitoring in combination with antecedent soil moisture estimates, we 

intend to answer the following questions: 
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• Which precipitation characteristics are most relevant to the increase in 

the runoff?   

• What are the combined effects of antecedent soil moisture conditions 

and total precipitation on runoff? 

• What is the relationship between the soil moisture at the beginning of 

the event and the runoff coefficient? Is it possible to establish a clear threshold 

between the antecedent soil moisture and runoff coefficient? 

 

3.2 Materials and methods 

 

3.2.1 Study Site 

This study was conducted in the Arroio do Ouro headwater, located south of the 

state of Rio Grande do Sul, Brazil (Figure 3.1). The Arroio do Ouro headwater is a 

third-order (Strahler scheme) catchment area of 2.16 km2, with an altitude between 

238.6 m and 329.9 m and a 10% average slope. The study region is located in the 

Pelotas Batholith, a plutonic complex including granite, gabbro, and diorite, within the 

geotectonic unit of the Dom Feliciano Belt, in the eastern portion of the Sul-Rio-

Grandense Shield (Philipp et al., 2016). The classification soils of the Arroio do Ouro 

watershed are Acrisols and Regosols (FAO, 2014), characterized by being shallow 

with a predominantly sandy-loam texture (35–75% sand) (Bartels et al., 2016, 2021). 

The land use in the catchment did not change during the analysis period. The 

main agricultural activity is soybean and corn cultivation, which accounts for 21.6% of 

the catchment area during summer. These crops are replaced by pastures such as 

ryegrass (Lolium multiflorum) in winter. Soil management in agricultural areas is 

characterized by conventional and minimal tillage. In addition to maintaining residues 

on the soil surface in some areas, no other conservation measures, such as terraces, 

have been implemented. However, the main land use is natural grassland (51.4%). 

Dairy cattle and meat production activities are the main economic activities of the 

farmers. The riparian areas represent important parts of the catchment (23.3%), 

indicating the conservation of the marginal regions of the channels, thus preventing 

the occurrence of erosion on the banks of the channels. 

 According to the Köppen climate classification, the region's climate is of the 

"Cfa" type, with well-distributed rainfall throughout the year (Alvares et al., 2013). 
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Information obtained from the meteorological station of the Instituto Nacional de 

Meteorologia (INMET) from 1971—2020 showed that the average annual 

precipitation in the region was 1.399 ± 297 mm with a reference evapotranspiration 

(ETo) of 1.080 ± 36 mm (Figure 3.1). The average monthly rainfall was well 

distributed throughout the year, with a minimum of 103 ± 69 mm (December) and a 

maximum of 147 ± 95 mm (February). In contrast, ETo presented a minimum monthly 

average of 36 ± 3 mm in June (winter) and a maximum monthly average of 150 ± 11 

mm in December (summer). 

 

 

Figure 3.1 - (a) Study area in the State of Rio Grande do Sul, Brazil; (b) Arroio do 
Ouro watershed, Arroio do Ouro headwater catchment showing digital elevation 
model, streams (blue lines), soil moisture samples (red points), rain gauges (blue 
points) and flow station (yellow triangle); (c) Precipitation and reference 
evapotranspiration for period 1971 – 2020. 
 

3.2.2 Soil Water Retention Curves 
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A total of 75 sample points in the catchment were sampled to determine the soil 

water retention curves (Bartels et al., 2016; Tronco, 2020). At each point, three 

undisturbed soil samples were collected in volumetric rings (0.076 m diameter; 344.1 

cm3) using an Uhland soil sampler in the surface layer (0—10 cm) and subsurface 

(10—20 cm). Soil water retention curves (SWRCs) were obtained by applying 

tensions of 1, 6, and 10 kPa in a tension table (Reinert and Reichert, 2006), 33 and 

100 kPa in Richard's chambers (Klute, 1986). For low soil moisture content, which 

corresponds to tensions of 500, 1000, and 1500 kPa, a psychrometer Dewpoint 

Potential Meter WP4 (Decagon Devices, 2007) was used. For the 75 sampling 

points, SWRCs were fitted using the van Genuchten (1980) model. 

 

3.2.3 Soil Moisture Time-Series 

 

Soil moisture measurements were obtained from the study developed by 

Bartels et al. (2021), who investigated the use of ANN models to estimate soil 

moisture in the Arroio do Ouro watershed. The authors developed robust soil 

moisture estimation models for the surface (0-10 cm) and subsurface (10-20 cm) 

layers by collecting soil moisture data from 39 monitoring points. We took advantage 

of the database developed by the authors and constructed a soil moisture time series 

with ANN models for five monitoring points within the Arroio do Ouro catchment. The 

ANN models were used to develop the soil moisture series for the surface and 

subsurface layers based on the availability of the input data and statistical 

performance during the model verification step. The statistical indicators used in this 

step were based on the errors between the observed and simulated values, such as 

the mean absolute error (MAE) and quantiles of the error distribution (10% and 90%). 

The surface layer model used 11 network input variables and presented the following 

error distribution statistics in cm3 cm-3: MAE = 0.031, E10 = -0.049, E90 = 0.044. In 

contrast, the subsurface layer model was fitted with 11 network input variables and 

presented the following errors in cm3 cm-3: MAE = 0.024, E10 = -0.038, and E90 = 

0.041. More information regarding the performance of the ANN models is provided in 

the Supporting Information (Table S3.1 and Figure S3.1). Both models presented 

satisfactory performances, with symmetrical distributions of errors (E10 versus E90) 
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and MAE values near zero during the verification stage. These results encouraged us 

to use these models to construct soil moisture time series.  

The soil moisture time series was generated at 15 min intervals from August 

2017 to September 2021 (Figure 3.2). We carefully removed all ANN model values 

extrapolated from the time series of soil moisture. That is, data outside the domain 

(extreme values) in the network training stage, both in terms of input and output 

variables (soil moisture), were removed (data gaps in Figure 3.2). We then used the 

soil moisture series from the five sites (Figure 3.1b) to obtain the average volumetric 

soil moisture and calculate the antecedent soil moisture index (ASI) for one hour 

before the start of an event: 

𝐴𝑆𝐼 = ∑ (𝜃�̅� × 𝑑𝑖)
𝑁
𝑖=1                                                          (1) 

where i represents the soil layers, N is the number of soil layers, 𝜃�̅� is the average 

volumetric soil water content at the five monitored points in layer i (cm3 cm-3), and di 

is the depth of layer i (10 cm). To determine the upper and lower limits of the average 

volumetric soil moisture and the ASI, the quantiles considered here were 5% and 

95% error distributions between the observed and estimated values with soil 

moisture models. 

 

Figure 3.2 - Temporal coverage of the runoff, precipitation, and soil moisture time 
series. 
 

3.2.4  Precipitation Data 

Precipitation data from 8/2017 to 9/2021 were obtained from three rain gauges 

(Figure 3.1) with a temporal resolution of 15 min. We used the mean precipitation, 

calculated using the Thiessen polygon, to identify and characterize the rainfall 

events. We adopted the following criteria to identify rain events: (i) a rainfall event 

must have a total rainfall of at least 6 mm; (ii) precipitation readings below 0.2 mm in 

15 min were excluded; (iii) rainfall events were separated if no rainfall was recorded 

for at least three hours. Within the considered time period, we identified 241 rainfall 
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events that met all conditions described. To differentiate rainfall events by their 

characteristics, events were grouped using Ward's hierarchical clustering (Ward, 

1963) and Euclidean distance as dissimilarity measures (Everitt and Dunn, 1991). 

Cluster analysis was based on total rainfall (mm), rainfall duration (h), maximum 15 

min intensity (mm/h), and mean intensity of the rainfall event (mm/h).  To calculate 

the Euclidean distance, the characteristics of precipitation events must be weighted 

the same; thus, it was necessary to standardize the variables characterizing 

precipitation events (Urgilés et al., 2021). 

 

3.2.5 Discharge and rainfall - runoff events 

Discharge was measured continuously at the outlet catchment (Figure 3.1) 

using a Doppler acoustic meter (Sontek-IQ Plus) with a temporal resolution of 10 min. 

The equipment was installed on a channel bed to measure the flow depth and 

velocity. A vertical acoustic beam measures the flow depth or built-in pressure sensor 

when vertical acoustic beam data are not available. The flow velocity was measured 

with four 3.0 MHz acoustic beams angled upstream, downstream, and to the left and 

right banks, tracing the flow velocity profile along the column (Fulford and Kimball, 

2015). All discharge data were acquired using a Doppler acoustic meter. Periods in 

which only stage data were available were discarded. 

Baseflow must be eliminated to quantify the runoff coefficient of each rainfall 

event. To separate the base flow, we used the recursive digital filter (RDF) proposed 

by Lyne and Hollick (1979) because of its ease of application and good correlation 

with other physical methods such as electrical conductivity (Uber et al., 2018). 

According to the recommendation of Ladson et al. (2013), the value of the filter 

parameter α was centered at 0.98. Therefore, we used the approach proposed by 

Meißl et al. (2020) to analyze the uncertainty of the baseflow estimate. We 

systematically tested 49 values of the α-filter parameter, ranging from 0.969 to 0.993. 

The runoff of each event was obtained by subtracting the median value of the base 

flow, and the upper and lower limits were considered quantiles of 5% and 95% of the 

base flow. The master recession curve parameterization tool (MRCPtool; Carlotto 

and Chaffe, 2019) was used for baseflow separation. Rainfall-runoff events were 

identified at the start of the rainfall event and ended 12 h after the rainfall event 
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ended or until the start of the next rainfall event. The runoff coefficient of each event 

was defined as the ratio between the runoff depth and the total event precipitation. 

Finally, we analyzed 104 rainfall-runoff events because of the availability of rainfall, 

runoff, and soil moisture data. 

 

3.3 Results  

 

3.3.1 Characteristics of rainfall events 

 

We identified 241 rainfall events over four years (8/2017 to 9/2021). The events 

were clustered into three types according to the characteristics specified below 

(Figure 3.3): (i) C1: events with low total precipitation, short duration, low mean 

intensity, and low maximum 15 min intensity (n = 190); (ii) C2: events with high total 

precipitation, long duration, low mean intensity, and mean maximum 15 min intensity 

(n = 27); and (iii) C3: events with intermediate total precipitation, short duration, and 

high mean and maximum 15 min intensities (n = 24). Most of the analyzed events 

(79% of the total) had short durations and low intensities (C1, Figure 3.4a). However, 

the precipitation from these events represented 54% of the total precipitation 

recorded across all events (Figure 3.4b). Although Cluster 2 rainfall events occurred 

in a smaller number (11% of the total), their fraction of the total precipitation was high 

(32%). This cluster of events was important in winter (June 21 to September 22), 

representing 45% of the total precipitation (Figure 3.4b). In contrast, events with short 

durations and high intensities (C3) occurred in smaller numbers (10% of the total) 

and were more important in the summer period (December 21 to March 21), where 

they represented 41% of the volume of precipitation (Figure 3.4b). 
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Figure 3.3 - Characteristics of the three clustered types of rainfall events (C1–C3) in 
terms of total precipitation (a), rainfall duration (b), maximum 15 min intensity (c), and 
mean intensity (d). 

 

Figure 3.4 - Distribution of events grouped into three clusters according to season (a) 
number of precipitation events; (b) precipitation total. 
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3.3.2 Rainfall-runoff relationships 

 From the 2017 to 2021 dataset, we analyzed 104 rainfall-runoff events, given the 

mutual availability of precipitation, runoff, and soil moisture data. The total 

precipitation during these events ranged from 6.2 to 112.9 mm, with a mean of 24.9 

mm. Rainfall duration ranged from 0.5 to 54 h with a mean duration of 9.9 h. The 

mean rainfall intensities ranged from 0.4 to 15.6 mm h-1. The maximum 15 min 

intensities presented values between 2.4 and 60 mm h-1 with 95% of events < 34 mm 

h-1. The surface runoff depth generated for each event presented values between 

0.04 and 21.5 mm (Figure 3.5), and the Pearson correlation coefficient showed a 

statistically significant linear relationship with the total precipitation (r = 0.877; ρ < 

0.05, Figure 3.5a), the same way that maximum 15 min intensity (r = 0.336; ρ < 0.05, 

Figure 3.5b), however, with a greater dispersion. In contrast, Pearson's coefficient 

showed a non-significant weak linear relationship between surface runoff depth and 

mean rainfall intensity (r = 0.04; ρ > 0.05, Figure 3.5c). The vertical gray bars in 

Figure 3.5 indicate the uncertainty associated with hydrograph separation, 

considering the different values of the α parameter of the recursive digital filter 

(considering the 5% and 95% confidence intervals). As can be seen, this uncertainty 

is associated with the magnitude of the surface runoff of each event. 

 

 

Figure 3.5 - Relationships surface runoff depth and (a) precipitation total (P), (b) 
maximum 15 min rainfall, (c) mean rainfall intensity. 
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3.3.3 Soil moisture's contribution to runoff generation 

 

 3.3.3.1 Antecedent Soil Moisture Index 

The antecedent soil moisture index (ASI) for the two soil layers (0 – 20 cm) was 

calculated using Eq. (1) to characterize the soil surface water storage. The ASI 

presented values between 36.7 to 67.7 mm with a mean of 56.6 mm. The Pearson's 

coefficient results in a weak linear relationship between ASI and runoff depth (r = 

0.216; ρ < 0.05, Figure 3.6a), indicating that ASI alone exerts little control over runoff. 

This changed when the ASI was added to the total precipitation (P) of each event 

(Figure 3.6b). The strong and significant linear relationship between ASI+P and 

surface runoff (r = 0.858; ρ < 0.05, Figure 3.6b) demonstrated that the use of ASI+P 

exerted greater control over surface runoff. The horizontal gray bars in Figure 3.6 

indicate the uncertainty associated with the soil moisture values (considered in the 

ANN models) calculated from the distribution quantiles of the 5% and 95% errors. In 

this way, the distribution of errors presented for soil moisture associated with the 

ANN models was homogeneous for all precipitation events, contrary to what was 

observed with the uncertainty associated with the separation of the hydrographs 

(vertical gray bars). 

 

 

Figure 3.6 - Relationships between runoff and (a) antecedent soil moisture index 
(ASI), (b) ASI + Precipitation. 
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3.3.3.2 Runoff coefficients 

The runoff coefficients calculated for the 104 analyzed events varied between 

0.008 and 0.262, with mean values of 0.09. Antecedent soil moisture to the events 

varied between 0.18 and 0.34 cm3 cm-3 with a mean of 0.28 cm3 cm-3, considering 

the two analyzed layers (0–20 cm). Pearson's coefficient showed a significant linear 

relationship between antecedent soil moisture and runoff coefficient (r = 0.357; ρ < 

0.05, Figure 3.7). However, this relationship was weak given the high variability of the 

runoff coefficient, especially when the antecedent soil moisture was close to or higher 

than the mean (Figure 3.7). Only 15% of the events had runoff coefficients greater 

than 0.17. Eight events were in cluster C1 and seven were in cluster C2. Even so, 

events grouped into clusters C1 and C2 had very different runoff coefficients, with 

values close to zero (Figure 3.7). 

 

Figure 3.7 - Relationships between antecedent soil moisture and runoff coefficient. 
 

3.4 Discussion 

 

3.4.1  Effects of rainfall characteristics on runoff  
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The dependence of runoff on rainfall characteristics is consistent with that 

observed in other studies conducted on hillslopes and watersheds (Wei et al., 2020; 

Zhang et al., 2021; Wang et al., 2022). The strong relationship between total 

precipitation and runoff depth (Figure 3.5a) indicates that when soil water storage 

deficits are satisfied, the runoff response depends on the characteristics of the 

rainfall event, as demonstrated in other watersheds (Penna et al., 2011; Farrick and 

Branfireun, 2014). The highest observed runoff depths were observed in the events 

with the highest total precipitation and longest duration, which usually occurs in 

winter and spring. However, the mean rainfall intensity did not show a significant 

relationship with runoff, corroborating the findings of previous studies (Farrick and 

Branfireun, 2014; Uber et al., 2018; Zhang et al., 2021). The events analyzed in the 

Arroio do Ouro catchment may characterize the importance of the initial soil moisture 

conditions. Virtually all of the most intense events (cluster C3) had below-average 

initial soil moisture conditions (Figure 3.7). Owing to the low water content in the soil, 

it is unlikely that the soil reached saturation, starting with saturated flow for these 

events. Despite the high maximum 15 min intensity, it is unlikely that these events 

exceeded the infiltration capacity of the soil surface layers (Bartels et al., 2016).  

 

3.4.2 Antecedent soil moisture threshold for runoff reaction 

There was no evidence of an antecedent soil moisture threshold with the runoff 

coefficient for the events analyzed in the Arroio do Ouro catchment area. Some 

studies indicate limited soil moisture, above which significant increases in the runoff 

coefficient occur. For example, Penna et al. (2011) analyzed the influence of soil 

moisture on surface runoff generation processes in an alpine watershed and 

identified a threshold value for soil moisture (approximately 45 vol%), above which 

runoff increased significantly. In an alpine watershed, Meißl et al. (2020) found an 

explicit threshold behavior where runoff coefficients above 0.23 only occurred when 

the mean soil moisture exceeded 43.5 vol%. A study by Huza et al. (2014) in a 

watershed in southern France showed a lower initial soil moisture threshold (22 

vol%). In other studies, however, the antecedent soil moisture threshold to generate 

runoff coefficient increases was not clear, as also shown in our results (Figure 3.7). 

When evaluating the influence of initial soil moisture in a southern France catchment, 
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Uber et al. (2018) found a threshold of 34 vol% of the initial soil moisture to generate 

a high runoff coefficient. However, the authors reported that only three events below 

this threshold were considered; thus, more measurements are needed to corroborate 

this result. 

The high dispersion of the runoff coefficient, found mainly under conditions of 

higher initial soil moisture, indicates a very complex relationship that is dependent on 

other poorly understood factors and processes (Uber et al., 2018). Thus, the weak 

relationship between the antecedent soil moisture and the runoff coefficient may be 

associated with the limitations of the precipitation measurement owing to either the 

hydrograph separation method or the fact that the antecedent soil moisture is only 

one among many different factors that influence flow (Meißl et al., 2020). 

Furthermore, the sensitivity of the runoff coefficient to the antecedent soil moisture 

may be related to the dominant runoff process. In experimental plots in Switzerland, 

Scherrer et al. (2007) observed that sites with dominant surface flows are slightly 

affected by the antecedent moisture condition, as the response is rapid in both dry 

and humid conditions. In contrast, the plots with dominant subsurface flow were very 

sensitive to antecedent soil moisture. 

Other studies have reported the effects of soil moisture nearing field capacity on 

soil water movement. In tank experiments, Song and Wang (2019) noted that soil 

moisture near field capacity was a threshold between rainfall and runoff events that 

generated lower and higher runoff coefficients. Similarly, Ruggenthaler et al. (2015) 

found that field capacity is a threshold for surface runoff estimates on experimental 

slopes in Austria. Meyles et al. (2006) observed that soil moisture above field 

capacity generated an exponential increase in discharge in a headwater catchment in 

southeast Dartmoor (UK). In the Arroio do Ouro catchment, the high variability of the 

runoff coefficient may be associated with soil moisture close to the field capacity. 

Analysis of the soil water retention curves obtained at 75 sampling sites in the 

catchment (Figure 3.8a) showed that the median field capacity was ~0.29 cm3 cm-3 

for both layers (Figure 3.8b), considering the field capacity at a matric potential of -10 

kPa (Timm et al., 2020) adjusted to the van Genuchten (1980) model. This value is 

similar to that of the mean soil moisture before the events (0.28 cm3 cm-3); the events 

that recorded the highest runoff coefficients presented antecedent soil moisture very 
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close to or higher than the field capacity (Figure 3.7), considering the median of the 

soil water retention curves. 

 

 

Figure 3.8 - (a) Arroio do Ouro catchment showing digital elevation model, streams 
(blue lines), soil water retention curve samples (black dots), rain gauges (blue dots) 
and flow station (yellow triangle); (b) Soil water retention curve for layer 0–10 cm (red 
line) and 10–20 cm (blue lines). 
 

Under soil moisture conditions close to or greater than field capacity, the water 

content available for drainage and flow is limited mainly by rainfall rather than by soil 

water storage conditions (Farrick and Branfireun, 2014). This is more evident in the 

relationship between runoff depth and ASI + precipitation (Figure 3.6b). Events with 

ASI+P values below field capacity (approximately 58 mm) resulted in runoff below 5 

mm. On the other hand, events in which the ASI+P depth was higher than the total 

porosity may have reached soil saturation in at least 50% of the soil water retention 

curves (approximately 86 mm), generating runoff of the order of 0.6 to 21.5 mm. If we 

look more closely, events with a runoff depth greater than 9 mm were those whose 

ASI+P exceeded the total porosity (approximately 104 mm), considering the 95% 

confidence interval. In other words, the highest runoff levels were only observed 

when the entire catchment reached soil saturation. Soils under saturation conditions 

led to a more significant amount of rapid surface flow and water-filled pores favoring 

the rapid start of subsurface flow (Meißl et al., 2020). 
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3.5 Study Limitations and Research Recommendations 

 

As described in Section 3.2.3, we used ANN models to generate the soil 

moisture time series. Both models (surface and subsurface layers) had satisfactory 

performances with very symmetrical errors and MAE values close to zero (Figure 

S3.1). However, it was necessary to remove a series of soil moisture data to 

extrapolate the ANN models. The ANN models that were built can only represent the 

entire data domain (extreme values), for both input and output variables, in the form 

of soil moisture (Bartels et al., 2021). Thus, of all rainfall events (241), many had to 

be removed from the analysis, resulting in only 104 rainfall-runoff events being 

analyzed, given the mutual availability of precipitation, discharge, and antecedent soil 

moisture data. Additionally, continuous analysis of soil moisture throughout rainfall-

runoff events was not possible because many events, especially those with high 

precipitation, had periods with input values outside the domain of the data used in the 

ANN training. 

We recommend that future research compiles soil moisture data that is mainly 

collected under moisture conditions close to soil saturation. From rainfall–runoff 

events, it is possible to obtain more precise information on the mechanisms by which 

runoff is generated in the Arroio do Ouro catchment. Additionally, we considered 

installing piezometers to examine the connectivity between runoff and groundwater 

(Pavlin et al., 2021), using tracers to separate hydrographs (de Barros et al., 2021), 

and piecewise regression analysis (PRA) to examine the behavior of different 

controls on runoff coefficients (Zhang et al., 2021). 

  

3.6 Conclusions 
 

This study aimed to evaluate the influence of initial soil moisture on the 

hydrological response in a southern Brazil catchment. For this, we used robust ANN 

models to generate a soil moisture time series and analyzed 104 rainfall-runoff 

events with available data for precipitation, discharge, and antecedent soil moisture. 

The results revealed a linear and statistically significant relationship between the 

runoff depth generated and the total precipitation for each event. However, a weak 

and non-significant relationship was found between the mean rainfall intensity and 
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runoff depth. On the other hand, the antecedent soil moisture index showed a solid 

and significant Pearson correlation coefficient with runoff depth only when used in 

conjunction with the event's total precipitation (ASI +P). 

There was a significant relationship between antecedent soil moisture and the 

runoff coefficient. However, this is a weak relationship with a large dispersion of the 

runoff coefficient, especially when the antecedent soil moisture is above field 

capacity. It is unclear whether there is a threshold between the antecedent soil 

moisture and runoff coefficient for the events analyzed in the catchment. However, 

our results indicated that the highest runoff coefficients were recorded in events 

whose initial soil moisture was very close to or greater than the field capacity. 

Unfortunately, continuous soil moisture analysis throughout rainfall-runoff events is 

not available because of limitations in ANN model development, which made it 

difficult to analyze the mechanisms by which runoff is generated in the Arroio do 

Ouro catchment. 
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Appendix A. Supplementary data 

 
Table S3.1 - Statistical verification performance of the selected models for surface (0-
10 cm), and subsurface layer (10-20 cm). 

Model surface Subsurface 

   
Input variables1 1, 2, 36, 38, 39, 41, 43, 

24, 31, 18, 22 
1, 2, 36, 38, 39, 41, 43, 

26, 31, 18, 22 

Verification 
E10 -0.049 -0.038 
E50 -0.01 -0.0013 
E90 0.044 0.041 
MAE 0.031 0.024 
NS 0.763 0.848 

1Input variables: 1: elevation; 2: Slope; 18: Cumulative 7-day ETo; 22: Cumulative 45-day 
ETo ; 24: Cumulative 6-h rainfall; 31: Cumulative 10-day rainfall; 36: Soil bulk density; 38: 
Microporosity; 39: Total Porosity; 41: Clay; 43: Total Sand. 
Details about the input variables can be found in Bartels et al. (2021). 
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Figure S3.1 - Model performance during the verification process. (a) surface layer; (b) 
subsurface layer. Soil moisture measurements and estimates in relation to the ideal 
adjusted values (1:1 line) for training (black dots) and verification (blue dots) for both 
models. Error: difference between the measurements and estimates for training 
(black dots) and verification (blue dots) for both models. 
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Abstract  

Several hydrological processes are associated with the initial soil moisture condition 

(Θi) and rainfall event characteristics. Runoff generation can be sensitive to the soil 

moisture conditions preceding a precipitation event owing to the rapid response in a 

small watershed. In event-based hydrological models, Θi must be considered an 

input parameter. However, its dynamic behavior limits the possibility of regular and 

continuous monitoring. In this study, we investigated the use of an Θi estimation 

approach using an artificial neural network (ANN) model to calibrate and validate 

hydrographs simulated with open source Limburg Soil Erosion Model (OpenLISEM) 

in a small catchment in southern Brazil. We used 11 rainfall-runoff events for the 

OpenLISEM calibration and four events during validation. The satisfactory results 

obtained during the calibration ( Nash-Sutcliffe coefficients of 0.53 to 0.90) indicated 

adequately represented the simulated hydrograph shapes. The robust and innovative 

approach to estimating Θi from ANN models proved promising based on the solid 

results obtained during the OpenLISEM validation stage. The uncertainties 

associated with the values of Θi caused pronounced changes in the estimates of 
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peak runoff and peak time, but to a lesser extent. Overall, even when uncertainties in 

the estimation of Θi in complex events are considered, the shape of the hydrographs 

could be represented. 

 

Keywords: soil moisture, hydrological modeling, uncertainty analysis, artificial neural 

networks 
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4.1 Introduction 
 

Runoff generation in watersheds results from precipitation events, soil hydraulic 

characteristics, and the condition of soil moisture (Zehe and Sivapalan, 2009). The 

flow response of a small watershed through a rainfall event is fast and sensitive to 

antecedent soil moisture conditions. As soil moisture can vary significantly, even on a 

sub-daily time scale, the water content in the soil can be used as a determinant in the 

production of runoff during rainfall or a flash flood (Grillakis et al., 2016). In addition to 

controlling overland flow, higher soil moisture promotes connections between the 

preferential flow paths (Sidle et al., 2001). As the saturated area increases, the 

number of active preferential flow paths also increases, generating a greater 

subsurface flow on the hillslope (Sidle et al., 2000). Thus, the preferential paths 

become more connected with the wetter soil, requiring a smaller volume of water 

(precipitation) to activate the preferential subsurface flow (Guo et al., 2014). 

Thus, regardless of the dominant flow generation process in a watershed, the 

initial soil moisture condition (Θi) is essential for event-based hydrological modelling. 

Unlike continuous simulations, the antecedent moisture condition must be measured 

and entered into event-based modeling or calibrated based on the observed 

hydrograph (Hossain et al., 2019). Among the methodologies used to determine soil 

moisture information for implementation in event-based models, we highlight the 

measurements carried out in the soil, in situ data from remote sensing, and indices 

such as the antecedent precipitation index (Sunwoo and Choi, 2017; Tramblay et al., 

2010; Vargas et al., 2021). However, due to the dynamic behavior of soil moisture 

(Gao et al., 2013; Huang et al., 2016; Suo et al., 2018; Zhu et al., 2014), which is 

affected by climate, soil, relief, and cover, both at the surface and in deeper layers 

(Bartels et al., 2021b), representing soil water content using only antecedent 

precipitation information in the form of indices may not be a promising strategy 

(Brocca et al., 2008; Hagen et al., 2020). 

Among the event-based models, the open source Limburg Soil Erosion Model 

(OpenLISEM) was designed to simulate the generation of runoff and erosion (De 

Roo, 1996; De Roo et al., 1996a, 1996b; Jetten, 2018). Among the processes that 

are incorporated in OpenLISEM, the interception of rainfall, surface water storage, 

infiltration, surface runoff, and flow in the drainage network are highlighted (Bout and 

Jetten, 2018). The model continues with constant improvements and the possibility of 
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selecting different flow approximation methods (Bout and Jetten, 2018). Acceptable 

calibration of simulated hydrographs with OpenLISEM has been extensively reported 

in Brazil (de Barros et al., 2021a; dos Santos et al., 2021; Rodrigues et al., 2014) and 

other countries (Grum et al., 2017; Lefrancq et al., 2017; Stolte et al., 2003); 

however, information on validation is more limited (de Barros et al., 2014; Ebling et 

al., 2021; Vargas et al., 2021). The complexity of runoff generation processes in a 

watershed and the spatial and temporal variability of control factors, such as Θ i, 

compromise the validation of event-based physical models (de Barros et al., 2014). 

Initial soil moisture plays an important role in generating runoff in a watershed. 

Furthermore, the OpenLISEM is highly sensitive to the soil water content (Sheikh et 

al., 2010). Thus, in this study, we investigated a robust Θi estimation approach that 

can be used for the calibration and validation of hydrographs simulated with 

OpenLISEM in a small watershed in southern Brazil. We used soil moisture data 

obtained from a model of artificial neural networks (ANNs) developed specifically for 

this research area (Bartels et al., 2021b). Further, we determined the effects of 

uncertainties associated with the estimation of Θi in the simulated hydrographs during 

the model calibration step. A database related to the hydraulic characteristics of the 

soil of high quality and a more detailed digital elevation model (DEM) (resolution of 5 

m) were implemented in the simulations as simplifications of the basin geometry can 

affect the volume runoff and peak flow (Hessel, 2005; Tan et al., 2015; Zhang et al., 

2009). 

 

4.2 Materials and methods  

4.2.1 Study Site 

This study was conducted in the Arroio do Ouro catchment, which is located in 

the south of the state of Rio Grande do Sul, Brazil (Figure 4.1). This catchment has 

an area of 2.16 km2, an altitude between 238.6 m and 329.9 m, and a mean slope of 

10%. The predominant relief is smooth, and undulating, and its soils are classified as 

Acrisols and Regosols (FAO, 2014), and characterized as shallow with a dominant 

sandy-loam texture (35–75% sand) (Bartels et al., 2021b, 2016). The land uses in the 

catchment include native pasture, native forest, and agricultural cultivation, with 51.4, 

23.3, and 21.6%, respectively. Other land uses correspond to 3.7%. 
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The region's climate is subtropical with hot summers, according to the Köppen 

climate classification “Cfa,” with well-distributed rainfall throughout the year (Alvares 

et al., 2013). The average annual precipitation in the region is 1,399 ± 297 mm and 

the evapotranspiration reference (ETo) is 1,080 ± 36 mm based on information 

obtained from the meteorological station of the Instituto Nacional de Meteorologia 

(INMET), located near the study site (approximately 27 km) from 1971-2020.  

 

 

 

Figure 4.1 - (a) Location of the study area in the State of Rio Grande do Sul, Brazil; 
(b) Arroio do Ouro catchment showing a digital elevation model, streams (blue lines), 
soil samples (black dots), rain gauge (yellow dot) and flow station (yellow triangle). 
 

4.2.2 Hydrological monitoring in the Arroio do Ouro Catchment 

 

The discharge was measured continuously at the catchment outlet (Figure 4.1) 

using a Doppler Sontek-IQ Plus acoustic meter, and data were collected at 10-min 

intervals. The equipment was installed on a channel bed, and the flow depth and flow 
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velocity were measured. This acoustic meter uses a pressure transducer or a vertical 

acoustic beam to measure the flow depth in the monitoring section. The flow velocity 

profile was measured using four 3.0 MHz acoustic beams angled upstream, 

downstream, and to the left and right channel banks (Fulford and Kimball, 2015). 

Rainfall data were obtained from a rain gauge installed in the central region of the 

catchment (Figure 4.1). In periods when this rain gauge was non-operational, a 

hyetograph from another rain gauge was used. Owing to the proximity between the 

rain gauges (approximately 1.7 km) and the homogeneous characteristics of the 

relief, the registered precipitation in both areas is homogeneous. 

The hydrograph was separated into two components for each analyzed event: 

surface runoff and baseflow. For the analyses performed using OpenLISEM, the 

baseflow was disregarded. A recursive digital filter (RDF) was used to separate the 

baseflow proposed by Lyne and Hollick (1979). This methodology is easy to apply 

and is correlated with other physical methods, such as electrical conductivity (Uber et 

al., 2018). For this study, α = 0.98, where α is the filter adjustment parameter. This 

value was used based on tests of 49 values of the α filter parameter carried out for 

104 rainfall-runoff events (8/2017 to 9/2021) in the Arroio do ouro catchment (Bartels 

et al., submitted). For the analysis of hydrological modeling using OpenLISEM, we 

used 15 rainfall-runoff events, 11 events for model calibration and four events in the 

validation stage. These events were chosen based on the magnitude of peak flows 

observed during the four years of monitoring. One event has a peak discharge lower 

than the median (E1), and two other events (E2 and E3) have a peak discharge of 

less than 75% of the observed for the 104 events. The other events have a greater 

magnitude, five (E5, E6, E7, E8, and E13) with peak discharge lower than 90%, and 

the others (E4, E9, E10, E11, E12, E14, and E15) are events whose peak discharge 

is exceeded in only 10% of the 104 events that occurred in the period. All selected 

events had available precipitation, flow, and Θi data. The characteristics of these rain 

events and antecedent soil moisture are presented in Table 4.1. 
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Table 4.1 - Characteristics of rainfall-runoff events and Θi used for the calibration and 
validation of OpenLISEM. 

Events Date 
Qpeak 

(m3 s-1) 
Qrunoff 

(mm) 

Total 
Rainfall 
(mm) 

Rainfall 
duration 

(min) 

Mean 
Rainfall 
intensity 
(mm h-1) 

Máximum 
15 min 

intensity 
(mm h-1) 

Θi 

(cm3 cm-3) 

  Calibration 
E1 08/08/2017 0.156 0.61 16.2 120 8.1 20.0 0.316 
E2 27/09/2017 0.373 1.27 15.0 150 6.0 19.2 0.291 
E3 01/10/2017 0.527 2.69 18.6 180 6.2 29.6 0.301 
E4 18/10/2017 2.449 11.80 46.8 285 9.9 20.8 0.315 
E5 27/10/2017 0.638 1.92 22.4 105 12.8 25.6 0.303 
E6 24/03/2018 1.220 4.05 56.8 765 4.5 46.4 0.242 
E7 01/04/2018 0.811 3.51 43.4 330 7.9 28.8 0.218 
E8 15/01/2019 0.754 3.15 26.6 235 6.8 44.0 0.184 
E9 18/01/2019 1.238 13.46 72.0 1485 2.9 20.0 0.2227 
E10 08/09/2019 1.466 7.71 53.2 690 4.6 31.2 0.315 
E11 03/10/2019 3.090 12.55 60.8 1155 3.2 32.0 0.298 
  Validation 
E12 29/10/2019 1.723 6.95 32.4 240 8.1 22.4 0.281 
E13 26/03/2021 1.226 5.86 38.6 210 11.0 40.0 0.232 
E14 13/09/2021 1.599 11.45 55.8 675 5.0 12.0 0.335 
E15 20/09/2021 2.342 8.67 48.8 1110 2.6 22.0 0.332 

Θi, initial soil moisture mean (0 – 20 cm); Qpeak, runoff peak; Qrunoff, total runoff. 

4.2.3 Measurement and estimation of the input parameters in OpenLISEM 

The OpenLISEM was designed to simulate the runoff in individual rainfall 

events, incorporated into a GIS environment, with model algorithms applied to each 

grid cell of the study site (Merritt et al., 2003). Thus, the information in the model was 

obtained from maps in PCRaster (Karssenberg et al., 2010), which contained 

properties related to soil, relief, vegetation, and surface, in addition to tabulated 

information, such as rainfall intensity. The main processes incorporated in 

OpenLISEM include interception, surface storage in microdepressions, infiltration, 

surface flow, and channel flow (Jetten, 2018). An overview of the input values used in 

OpenLISEM is presented in Table 4.2. The measurement process and estimates are 

presented below. In OpenLISEM, the following infiltration submodels can be used: 

Smith and Parlange (1978) and SWATRE (Belmans et al., 1983), which use a 

solution of the Richards equation, and the Green-Ampt model (Green and Ampt, 

1911) for one or two layers of soil. This study used the Green-Ampt model, which 

assumes a wetting front that moves downwards in the soil layers due to rainfall 

infiltration (Green and Ampt, 1911). Owing to the characteristics of shallow soils in 

the catchment, only one layer of soil with a depth of 0.50 m was considered; deeper 
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layers were considered impermeable. Therefore, the Green–Ampt model with one 

layer was used for the infiltration simulation. The simulations with OpenLISEM 

(version 6.62) were performed with a spatial resolution of 5 m and a temporal 

resolution of 20 s. 

 

4.2.3.1 Digital elevation model (DEM) 

 

As more detailed characteristics of the relief in the study area are needed, a 

DEM was prepared using different sources of information. Topographic and geodetic 

surveys were carried out using total station and global navigation satellite system 

(GNSS) receivers in real-time kinematic (RTK) mode, in addition to information from 

unmanned aerial vehicles (UAVs). The use of photogrammetry techniques to process 

images obtained with UAVs can yield information from the terrain surface with high 

spatial resolution. However, in areas with dense vegetation (e.g., forests), mapping 

using conventional topography is necessary to obtain the altitude of the terrain and 

not the height above the vegetation. A total of 20,480 points were surveyed, 

representing a density of approximately 95 points per hectare. With these points, a 

DEM was generated with maps of the drainage network and flow direction in a grid 

with 5 m pixel resolution. A portion of the collected points (1,000 points) was not used 

in the DEM interpolation process and was only used for the validation of the final 

product. The low mean absolute error obtained (MAE = 0.35 m) indicated that the 

DEM was accurate, representing the quality and fidelity of the relief characteristics in 

the catchment (Figure S4.1 in Supplementary Material). Higher quality than would be 

obtained with terrain elevation data from the Shuttle Radar Topography Mission 

(SRTM), which overall has a vertical accuracy of 16 m absolute error with 90% 

confidence (Mukul et al., 2017). 
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Table 4.2 - Input parameters used in the simulation with OpenLISEM. 

 Parameters Range Unit Determination Source 

Vegetation Leaf area index 0.0–6.1 m2 m–2 Literature (Campoe, 2008; Heiffig et al., 2006; 
Pillar et al., 2009; Sachet et al., 2015; 
Zuluaga, 2014) 

Fraction with 
vegetation 

0.3–1.0 – Literature (Heiffig et al., 2006; Moro, 2011) 

Height of vegetation 0.0–6.0 m Field/Literature This study and Moro (2011) 

Surface Random soil 
roughness 

0.7-3.3 cm Field observation This study 

Manning’s n coefficient 0.03–0.16 – Literature (Jetten, 2018) 

Soil Ksat 63 - 418 mm h–1 Field/Laboratory (Bartels et al., 2016; Tronco, 2020) 

Total porosity 0.31 – 0.54 cm3 cm–3 Field/Laboratory (Bartels et al., 2016; Tronco, 
2020) 

Matric potential 3.6 – 
15296 

cm Field/Laboratory (Bartels et al., 2016; Tronco, 
2020) 

Initial soil moisture 0.19 - 0.32 cm3 cm–3 Model ANN (Bartels et al., 2021) 

Basic map Digital elevation model 238 - 330 m Field observation This study 

Drainage network – – Field observation This study 

Roads – – Field observation This study 

Land use – – Field observation This study 

Channel Flow direction – – Field observation This study 

Width 2.2 m Field observation This study 

Shape 0 – Literature (Jetten, 2018) 

Manning’s n coefficient 0.08-0.20 – Hydraulic modeling (Loguercio, 2018) 
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4.2.3.2 Soil physical parameters 

 

The database used to provide the soil attributes was obtained from Bartels et al. 

(2016) and Tronco (2020). Both studies used the same methodologies for the 

collection process and laboratory analysis. A total of 65 points were sampled to 

determine the total porosity and soil water retention curve (SWRC). The saturated 

soil hydraulic conductivity (Ksat) was characterized by sampling 12 of the 65 points. 

Three undisturbed soil samples were collected at each point in volumetric rings 

(0.076 m diameter; 344.1 cm3) using a Uhland soil sampler in the 0-10 cm and 10-20 

cm soil layers. Ksat was determined in the laboratory using a constant head 

permeameter (Klute and Dirksen, 1986). 

 The total porosity was obtained with 100% of the pores filled with water. SWRC 

was obtained by applying tensions of 1, 6, and 10 kPa in a tension table (Reinert and 

Reichert, 2006), and 33 and 100 kPa in Richard's chambers (Klute, 1986). For low 

soil moisture content (tensions of 500, 1000, and 1500 kPa), a psychrometer 

(Dewpoint Potential Meter WP4) (Decagon Devices Inc., 2007) was employed. 

Further, for the 65 sampling points, SWRC was fitted using the van Genuchten 

(1980) model. The adjustment of the SWRC proved to be adequate given the low 

error between the observed volumetric moisture values and those adjusted with the 

van Genuchten model (Figure S4.2 in Supplementary Material). Many researchers 

used the equation by Rawls et al. (1983) to determine the matric potential from soil 

characteristics (dos Santos et al., 2021; Grum et al., 2017). However, as this 

equation only uses the total porosity and the fractions of clay and sand of soil, the 

matric potential remains constant for all events. In this study, the initial soil moisture 

(described below) was related to the respective matric potential obtained at each 

sampled point. This method considers the spatial and temporal variabilities of the 

matric potential at the wetting front. The inverse distance weighting (IDW) method 

(Bonham-Carter, 1994) was also used to spatialize the soil physical parameters. 

 

4.2.3.3 Estimation of initial soil moisture (Θi) 
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Soil moisture estimation was performed using the ANNs models proposed by 

Bartels et al. (submitted). The robust models were developed for the 0-10 cm and 10-

20 cm layers at 39 sampling points. According to the researchers, the models 

performed satisfactorily with the symmetrical distribution of errors and a mean 

absolute error (MAE) close to zero. Therefore, we used the ANNs models developed 

by Bartels et al. (submitted) to estimate the initial soil moisture for the 65 points of 

SWRCs. The mean Θi between 0-10 and 10-20 cm layers was used on the one-layer 

Green-Ampt model. 

 

4.2.3.4 Other OpenLISEM calibration parameters  

 

Vegetation-related parameters, such as leaf area index, fraction of soil covered 

with vegetation, and vegetation height, were obtained from the literature (Table 4.2). 

The height of the native forest was estimated using a digital surface model obtained 

using the UAV. The random soil roughness (RR), which is used in OpenLISEM to 

estimate the fraction of water stored on the soil surface (micro-depressions), was 

obtained using a 1 m-long profilometer, with readings performed every 5 cm, in 31 

locations distributed in the catchment. These sites were chosen based on the 

different characteristics of the relief and also to cover the different uses and land 

cover. The RR data were grouped according to the land use and cover type. To 

simulate runoff, we used an approach in which the kinematic flow and the Manning 

equation for flow velocity were implemented using an established flow direction 

network (Bout and Jetten, 2018). The Manning's n parameter for the slope 

(Manning's n slope) was initially calculated using the relationship between the RR 

and the fraction of soil with vegetation cover (Jetten, 2018). For the channel, 

Manning's n coefficient (Manning's n channel) was initially determined using hydraulic 

modeling (de Ávila, 2018). 

 

4.2.4 Calibration and validation processes 

The calibration process in OpenLISEM is performed manually by adjusting 

several parameters independently for each rainfall-runoff event. Several authors 

have described Ksat and Θi as the most influential parameters for hydrological 
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simulations among the calibrated parameters (de Barros et al., 2021; dos Santos et 

al., 2021; Grum et al., 2017), requiring a calibration process due to the high 

sensitivity of the model to these parameters or the low representativeness of field 

samples in characterizing the complexity of a watershed. However, we considered Θi 

obtained with the ANN models to represent the soil water content before the rainfall 

event. Thus, we did not calibrate Θi and the respective matric potentials obtained with 

the SWRCs. Accordingly, three parameters were adjusted for each of the 11 

calibrated events: Ksat, Manning's n slope, and Manning's n channel. In OpenLISEM, 

this calibration process is performed by a multiplicative factor, which proportionally 

increases or decreases the original value for each grid cell. The best fit of each 

parameter was determined by trial and error, with efforts to minimize the differences 

between the observed and simulated values based on the following hydrograph 

characteristics: runoff peak (Qpeak), time until peak (Qtime), runoff volume (Qrunoff), and 

shape of the hydrographs. We used the approach proposed by Vargas et al. (2021) 

in the validation stage. The mean values obtained for the calibrated parameters were 

used to validate the simulated hydrographs based on four other rainfall-runoff events. 

4.2.5 Analysis of the Θi uncertainty in the simulated hydrographs 

We analyzed the uncertainty of the Θi estimate for 11 calibrated events. Briefly, 

we considered the distribution of errors associated with the ANN models for the 

generation of the Θi series. The quantiles of 5% and 95% of error distribution (E5 and 

E95, respectively) between the observed and estimated values with soil moisture 

models were considered to determine the upper and lower limits of Θi. Accordingly, 

the mean Θi in each simulated event increased (Θi + E95) and decreased (Θi + E5), 

and the respective values of the matric potential were adjusted to the new values of 

soil moisture. 

 

4.2.6 Evaluation of performance  

As a statistical indicator to analyze the quality of the simulations with 

OpenLISEM, we used the Nash-Sutcliffe (NS) efficiency coefficient (Nash and 

Sutcliffe, 1970) and the percentage of bias (Pbias). NS indicates the similarity 

between the simulated values and the observed data and is used to assess the 



83 
 

 
 

general shape of the simulated hydrograph. According to recommendations by 

Moriasi et al. (2007), NS values greater than 0.75 are considered very good, 0.65 < 

NS ≤ 0.75, good; 0.50 < NS ≤ 0.65, satisfactory; and less than 0.50, unsatisfactory. 

Pbias represents the mean tendency of the simulated data to be higher or lower than 

the observed value. Positive values indicate an overestimation bias and negative 

values indicate an underestimation bias. Thus, Pbias was calculated for Qpeak, Qtime, 

and Qrunoff. A Pbias < ±10 was considered very good, ±10 < Pbias < ±15, good; ±15 < 

Pbias< ±25, satisfactory; and Pbias > ±25, unsatisfactory (Moriasi et al., 2007). 

 

 

4.3 Results and discussion 

4.3.1 Calibration of OpenLISEM with Θi obtained using the ANN models 

The calibration process in the OpenLISEM was performed manually for each 

simulated event. A multiplication factor was applied for Ksat, Manning's n slope, and 

Manning's n channels. The trial-and-error calibration process is typically adopted in 

OpenLISEM to adequately represent the shape of the hydrographs, Qpeak, Qtime, and 

Qrunoff at the catchment outlet. For the 11 calibrated events, the value of Manning's n 

slope was multiplied by a factor from 0.9 to 1.6. The multiplicative factor adopted for 

Manning's n channel ranged from 0.9 to 1.30 (Table 4.3). As expected, the most 

significant change in the values initially adopted occurred with Ksat, with 

multiplicative factor values between 0.01 and 0.06 (Table 4.3). The reduction in Ksat 

values during calibration was consistent with that observed by other researchers (de 

Barros et al., 2021b; de Barros et al., 2021a; Hessel et al., 2006). Grum et al. (2017) 

also observed significant reductions in calibrated Ksat values compared to field 

measurements for two small catchments in northern Ethiopia. The researchers 

emphasized the difficulty of representing Ksat on a watershed scale from the sample 

points. By evaluating the impact of two DEM sources (interpolated 5-m resolution 

SRTM and field topographic survey with GNSS/RTK) in the southern Brazil 

catchment, de Barros et al. (2021b) also found significant reductions in the Ksat 

value for both DEM sources. Although no significant gains in the simulation of 

hydrological variables were found using the DEM obtained with the field survey,, the 

researchers argued that the better representation of relief and landscape reduced the 

need to modify the original values during OpenLISEM calibration. For the simulations 
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Table 4.3 - Calibration parameters and efficiency analysis of calibration OpenLISEM. 

Events Date 
Ksat 
(% of 

measured) 

Manning’s n 
slope (% of 
estimated) 

Manning’s n 
channel (% 

of estimated) 

Qpeak (m3 s-1)  Qrunoff (mm)  Pbias (%) NS (-) 

Obs Sim 
 

Obs Obs 
 

Qpeak Qtime Qrunoff  

E1 08/08/2017 4.0 130 100 0.156 0.169  0.61 0.53  8.47 6.67 -13.03 0.65 

E2 27/09/2017 3.0 110 130 0.373 0.406  1.27 1.07  8.75 0.00 -15.20 0.83 

E3 01/10/2017 3.0 160 110 0.527 0.589  2.69 1.65  11.75 9.09 -38.76 0.53 

E4 18/10/2017 5.0 90 90 2.449 2.220  11.80 9.06  -9.35 0.00 -23.23 0.79 

E5 27/10/2017 5.0 125 90 
0.638 0.673 

 
1.92 1.56 

 
5.41 

14.6
0 

-18.75 0.78 

E6 24/03/2018 6.0 140 115 1.220 1.262  4.05 2.88  3.43 0.00 -28.93 0.85 

E7 01/04/2018 4.0 125 110 0.811 0.848  3.51 1.94  4.59 0.00 -44.58 0.61 

E8 15/01/2019 1.0 140 130 0.754 0.770  3.15 1.98  2.23 0.00 -37.01 0.73 

E9 18/01/2019 2.0 120 110 1.238 1.202  13.46 7.79  -2.95 -7.98 -42.13 0.55 

E10 08/09/2019 5.0 120 120 1.466 1.349  7.71 6.59  -7.95 -2.13 -14.50 0.90 

E11 03/10/2019 6.0 110 100 3.090 2.900  12.55 8.06  -6.14 1.94 -35.77 0.85 

Ksat, saturated soil hydraulic conductivity; Manning’s n slope, Manning's n coefficient for slope; Manning’s n channel, Manning's n 
coefficient for channel;Obs, observed data; Sim, simulated data; Qpeak, runoff peak; Qtime, time until peak; Qrunoff, total runoff; NS, 
Nash and Sutcliffe coefficient of efficiency; Pbias, percentage bias. 

 

 

 



85 
 

 
 

with OpenLISEM in the Arroio do Ouro catchment, we used a DEM with a resolution 

of 5 m, which represented the characteristics of the relief with quality and fidelity.  

In addition to the high sensitivity to Ksat values, both Manning coefficients 

(Manning's n slope and Manning's n channel) were important for adequately 

representing hydrographs in the catchment outlet. According to Bout and Jetten 

(2018), mean flood depth and velocity were mainly affected by input parameters, 

such as the Manning coefficient. However, using single fixed values for the Manning 

coefficients during the event period can serve as a limitation. As observed by 

Ferguson et al. (2017), Manning's n tends to decrease with increasing discharge in 

mixed-bed channels. A similar behavior of reduced flow resistance with increasing 

discharge was identified in the Arroio do Ouro-mixed bedrock alluvial channel 

(Bartels et al., 2021a). 

 

 

In general, the calibration of the parameters resulted in a good fit of the 

OpenLISEM simulations to the observed hydrographs for the 11 analyzed events 

(Table 4.3 and Figure 4.2). The Nash-Sutcliffe coefficient presented a 'very good' and 

'good' performance for most events (eight events) according to the classification by 

Moriasi et al. (2007), indicating good simulation of the shape of the hydrographs. The 

other three events (E3, E7 and E9) showed ‘satisfactory' performances. However, 

many researchers reported difficulty in adequately simulating the shape of 

hydrographs using OpenLISEM (de Barros et al., 2021a; de Barros et al., 2021b; 

Grum et al., 2017). 

Based on the Pbias calculated for Qpeak and Qtime, all events had very good 

performance according to Moriasi et al. (2007), except Qtime for event E5, and Qpeak 

for event E3. The worst performance was observed when runoff volume (Qrunoff) was 

estimated. In every event, OpenLISEM underestimated the Qrunoff. This result was 

obtained by other researchers (de Barros et al., 2021b; Lefrancq et al., 2017), and 

can be explained by the omission of subsurface flow in the simulations (Lefrancq et 

al., 2017). 

For six events, the underestimation was greater than 28%, indicating 

unsatisfactory performance. For the events E3, E7 and E8, the falling limb of the 

simulated hydrograph was found to decrease rapidly, limiting the improvement in the 
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accuracy of the simulated runoff volume. According to Hessel et al. (2006), this 

finding may indicate underestimation of Manning’s n values. During our simulations, 

an increase in Manning's n was not found to improve the results, causing a decrease 

in the discharge peaks. Further, the effect of the initial soil moisture in the 

OpenLISEM simulations may also lead to this result. The lowest values of Θi were 

recorded in four of these six events (E6, E7, E8, and E9), indicating that LISEM has 

difficulty adequately simulating the runoff volume under drier soil conditions. By 

evaluating the effects of different stages of vegetation recovery in a forest watershed, 

Van Eck et al. (2016) also observed that OpenLISEM performed worse in estimating 

runoff when the soil was drier. 
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Figure 4.2 - The observed and simulated hydrographs during the calibration of 
OpenLISEM for the 11 selected rainfall-runoff events and the observed hyetograph. 
 

OpenLISEM consistently simulated events with more complex hydrographs 

comprising two or more flow peaks, which occurred for events E4 and E9. However, 

the model could not simulate small peaks, which occur both after a larger runoff peak 

(E1) and before a large runoff peak (E11). The difficulties faced by the model in 

adequately simulating smaller peaks in more complex events are consistent with 

those observed by other researchers (de Barros et al., 2021a; Grum et al., 2017). For 

event E11, the low intensity at the beginning of rainfall may have led to a more 

significant initial soil storage, limiting the adequate simulation of runoff. Besides the 

lower intensity of rain that generated the second peak of flow, event E1 was the 

smallest event among the simulated events. The difficulty of simulating small events 

has already been observed in the literature (Hessel et al., 2006). 

4.3.2 Effect of Θi uncertainties on the runoff simulated by OpenLISEM 

As previously mentioned, to analyze the uncertainty of Θi estimation, we 

considered quantiles of 5% and 95% of the error distribution. The ANN model had a 

satisfactory performance with a symmetrical distribution of errors, considering the 0 – 

20 cm layer: E5 = -0.059 cm3 cm-3, E95 = 0.058 cm3 cm-3 (Bartels et al., submitted). 

As observed in other studies (dos Santos et al., 2021; Hu et al., 2015; Sheikh et al., 

2010), the simulated hydrographs were strongly affected by the conditions of 

previous soil moisture for the calibrated events in the Arroio do Ouro catchment 

(Figure 4.3). 

As expected, the increase and decrease in the mean Θi values caused 

increases and decreases in Qpeak, respectively, but with different magnitudes. 

Although the increase in Θi caused a Pbias (considering the simulated hydrograph) 

between 56.1 and 452.9% in the runoff peak, the decrease in Θi represented a 

decrease between 52.2 and 95.9% in Qpeak (Table 4.4). In a small catchment in 

southern Brazil, dos Santos et al. (2021) observed that reductions in Θi caused less 

pronounced changes in Qpeak than increases in Θi. The event that presented the 

smallest overestimation of Qpeak (Pbias = 56.1%) was a complex event formed by a 

hydrograph of three peaks (E9). The highest observed flow was found to occur at the 

end of the event. The increase in Θi caused a more pronounced increase in Qpeak at 
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the first peak of the event than that simulated with the mean Θi (Figure 4.3). This 

finding indicates that Θi is particularly important for simulations at the beginning of the 

events. The time until the peak was markedly less affected by the increase and 

decrease in Θi. For six events, the increase in Θi did not cause a pronounced 

reduction in Qtime (Pbias < |10|%). However, in six events, the decrease in Θi caused 

an increase in the time until peak flow occurred (Pbias > 25%). 

Even with the increase or decrease in Θi, the simulations with OpenLISEM were 

found to maintain the characteristics of the shape of the hydrographs, such as those 

that had more than one peak flow (E4 and E9, Figure 4.3), ultimately characterizing 

the proper calibration of the input parameters. By simulating the effect of systematic 

increases and decreases in Θi, dos Santos et al. (2021) found that OpenLISEM 

presented difficulties in properly representing hydrographs during the formation of a 

rainfall event by two or more peaks separated by a period of lower precipitation 

intensity. 

 

 

Table 4.4 - Efficiency analysis of OpenLISEM based on the uncertainties in the 
estimation of Θi. 

Events Date 
Pbias (%)* 

Qpeak Qpeak Qtime Qtime 
(Θi + E5) (Θi + E95) (Θi + E5) (Θi + E95) 

1 08/08/2017 -87.9 317.3 56.3 -18.8 
2 27/09/2017 -95.9 171.7 107.1 -14.3 
3 01/10/2017 -92.5 125.3 66.7 -16.7 
4 18/10/2017 -57.8 105.7 85.5 76.9 
5 27/10/2017 -83.5 152.5 12.7 -12.7 
6 24/03/2018 -95.4 241.0 51.0 -6.4 
7 01/04/2018 -94.2 270.2 11.0 -7.3 
8 15/01/2019 -91.0 452.9 58.8 -9.8 
9 18/01/2019 -92.7 56.1 4.3 -1.1 
10 08/09/2019 -52.6 313.2 2.2 -2.2 
11 03/10/2019 -52.2 191.6 0.0 -1.0 

Qpeak: runoff peak; Qtime: time until peak; Pbias: percentage bias; Θi: mean initial soil 
moisture; E5: error in the estimation of soil moisture (quantile 5%), E95: error in the 
estimation of soil moisture (quantile 95%). * Considering the simulated hydrographs 
with Θi means. 
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Figure 4.3 - The simulated hydrographs with Θi and the respective hydrograph based 
on the uncertainties of E5 (Θi + E5) and E95 (Θi + E95), and the observed hyetograph. 
 

4.3.3 Validation of OpenLISEM 

 

The good performance obtained during the event calibration stage and the 

adequate representation of the hydrographs, even considering the uncertainties 

associated with Θi, encouraged us to carry out the validation stage with the four 

events that had not been analyzed. We used the mean of the calibrated parameters 

for the 11 events (Ksat, Manning's n slope, and Manning's n channel) in sets with the 

Θi series obtained using the ANN models and the adjustments for the respective 

matric potentials. The validated events presented satisfactory performance for the 

Nash-Sutcliffe coefficient, according to the classification by Moriasi et al. (2007), 

which indicates that OpenLISEM adequately simulated the shape of the hydrographs 

(Figure 4.4 and Table 4.5). However, the adequate representation of the runoff 

volume, with an underestimation for three events (Pbias > |10|%), remains the main 

difficulty of the model. Event E14 presented the most considerable underestimation 

of the runoff peak (Pbias = -25%). Of the events used in the validation, this event had 

a long duration and a hyetograph that remained more constant throughout the rainfall 

event. On one hand, this is a simulated hydrograph without pronounced peak flow. 

However, the flow remained higher for a longer period. The simulation proved 

adequate even for a more complex event with two peaks (E13). Given the reported 

difficulties in simulating smaller events using OpenLISEM, events with a greater 

magnitude were used for validation. However, the total precipitation, maximum 15 

min intensity, Qpeak, or Qrunoff of the events used in the calibration were not 

extrapolated. As for Θi, only the E14 and E15 events had slightly higher values than 

those observed in the events used in the calibration (Θi of 0.33 for both), which may 

have caused the overestimation of Qpeak in E15. 

 

Table 4.5 - Efficiency analysis of validation using OpenLISEM. 

Events Date 
Qpeak (m3 s-1) Qrunoff (mm) Pbias (%)  NS 

Obs Sim Obs Sim Qpeak  Qtime Qrunoff (-) 

12 29/10/2019 1.723 1.816 6.952 3.61 5.41 0.00 -48.06 0.51 
13 26/03/2021 1.226 1.459 5.863 5.33 19.03 0.00 -9.11 0.67 
14 13/09/2021 1.599 1.199 11.452 10.03 -25.03 -16.51 -12.39 0.75 
15 20/09/2021 2.342 3.245 8.666 7.49 38.52 0.00 -13.56 0.61 
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Obs, observed data; Sim, simulated data; Qpeak: runoff peak; Qtime: time until peak; 
Qrunoff: total runoff; NS: Nash and Sutcliffe coefficient of efficiency; Pbias: percentage 
bias. 
 

Despite the importance of validation in hydrological modeling, this step has 

been employed in a limited number of studies that developed simulations with event-

based models, especially OpenLISEM (de Barros et al., 2014; Ebling et al., 2021; 

Vargas et al., 2021). For example, in a small catchment in southern Brazil, de Barros 

et al. (2014) achieved satisfactory results in representing the flow processes for four 

validated events. The researchers pointed out that the high spatial discretization of 

the parameters related to the soil and surface contributed to this result. In the 

simulations performed, a better representation of the relief characteristics obtained 

with a DEM and the high-quality set of available soil data helped in the calibration 

process and consequently, in the adequate validation of the events. A crucial point of 

our research is the approach for estimating Θi from a robust ANN model developed 

specifically for the Arroio do Ouro catchment. The results obtained during validation 

ensured that Θi estimates were adequate for the simulated events. Such finding 

indicates that the adopted procedure is a good alternative for obtaining a highly 

complex input parameter in OpenLISEM. In other studies, a simplified approach was 

used to estimate Θi based on antecedent precipitation alone (de Barros et al., 2021a; 

Vargas et al., 2021). However, in the Arroio do Ouro catchment, rainfall is less 

important in estimating the soil water content about other characteristics, such as soil 

properties, especially in the subsurface (Bartels et al., 2021b). Thus, the use of only 

antecedent precipitation as an indicator of antecedent soil moisture conditions is not 

recommended for the Arroio do Ouro catchment.  
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Figure 4.4 - The observed and simulated hydrographs during the validation of 
OpenLISEM for the four selected rainfall-runoff events and the observed hyetograph. 
 

 

 

 



94 
 

 
 

 

 

 

4.4 Conclusions 

 

In this study, we proposed the use of Θi obtained from ANN models as an input 

parameter for the OpenLISEM. Soil moisture models were developed specifically for 

the Arroio do Ouro catchment, and the effects of their uncertainties on runoff 

generation were analyzed. The good results obtained during the calibration of the 

OpenLISEM revealed that the input parameters (Ksat, Manning's n slope, and 

Manning's n channel) were adjusted correctly, thereby representing the runoff 

generation processes in the catchment. The use of a DEM that suitably represented 

the relief characteristics of the catchment combined with a high-quality database 

related to soil characteristics favored the event calibration process. The robust and 

innovative approach to estimate Θi from ANN models proved promising based on the 

satisfactory results obtained during OpenLISEM validation. The uncertainties 

associated with Θi estimates caused more pronounced changes in Qpeak and to a 

lesser extent, Qtime. However, the shape of the hydrographs in more complex events 

can be represented, even when considering these uncertainties. 
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Appendix A. Supplementary data 

 
 
 

 

Figure S4.1 - Quality assessment of the DEM developed for the Arroio do Ouro 
headwater catchment. Elevation measurements and estimates in relation to the ideal 
adjusted values (1:1 line). Error: difference between the measurements and 
estimates. 
 

 

Figure S4.2 - Evaluation of the quality of soil water retention curves (SWRC) adjusted 
for van Genuchten (1980) model, (a) Measured (Θobs) and estimated (Θest) soil 
water content measurements. Error: difference between measured and estimated 
values for (b) layer: 0 - 10 cm, (c) layer: 10 - 20 cm. (b) Median SWRC for layer 0 - 
10 cm (red lines) and 10 - 20 cm (blue lines). 



102 
 

 
 

CAPÍTULO 5 

 

5.1 Conclusões  

 

Neste estudo buscou-se avaliar os principais fatores que contribuem para a 

dinâmica da umidade do solo bem como a influência da umidade antecedente na 

geração de escoamento. Para isso, esta pesquisa desenvolveu-se na pequena bacia 

hidrográfica do Arroio do Ouro, localizada no sul do Brasil. De modo a contornar a 

indisponibilidade de medidas de umidade do solo, realizaram-se campanhas de 

amostragem da umidade do solo. A seguir, desenvolveu-se um modelo de redes 

neurais artificiais para a estimativa consistente da umidade do solo e foi realizada a 

análise dos principais fatores que afetam os resultados destes. Estes modelos foram 

desenvolvidos usando quatro categorias de dados de entrada (propriedades do solo, 

topografia, variáveis climáticas, e as variáveis relacionadas à precipitação). 

Os modelos de redes neurais artificiais apresentaram um excelente 

desempenho na estimativa da umidade do solo, tanto para a camada superficial, 

quanto para a camada subsuperficial. Estes resultados foram alcançados utilizando 

todas às quatro categorias de variáveis, mostrando que todas afetam a dinâmica da 

umidade do solo. No entanto, a relevância que cada categoria de variáveis possui 

difere da camada superficial para a subsuperficial. Para a camada superficial o clima 

seguido das propriedades do solo foram as categorias de variáveis mais 

importantes. Na camada subsuperficial ocorre o inverso, com mais importância para 

as variáveis relacionadas ao solo, seguidas do clima. De uma forma geral, as 

condições climáticas determinaram as mudanças na umidade do solo para a 

camada superficial, enquanto na camada mais profunda, a dinâmica da umidade do 

solo está mais relacionada com as propriedades do solo, que controlam a infiltração 

e retardam os efeitos da chuva e clima. 

Quanto aos aspectos relacionados à geração de escoamento na bacia 

hidrográfica do Arroio do Ouro, apesar de observada uma relação entre a umidade 

antecedente do solo e o coeficiente de escoamento, esta é uma relação fraca com 

grande dispersão do coeficiente de escoamento, quando a umidade antecedente do 

solo está acima da capacidade de campo. Desta forma, não está clara a existência 

de um limiar entre a umidade antecedente do solo e o coeficiente de escoamento. 
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Porém, os mais altos coeficientes de escoamento ocorreram em condições de 

umidade do solo superior à capacidade de campo. A precipitação total foi a 

característica do evento de chuva de maior importância para a lâmina de 

escoamento, já a intensidade média da precipitação, não apresentou relação. 

A utilização da umidade antecedente como parâmetro de entrada nas 

simulações com o OpenLISEM mostrou-se promissora, visto os resultados sólidos 

encontrados durante a etapa de validação do modelo. Mesmo considerando as 

incertezas associadas às estimativas da umidade do solo antecedente, foi possível 

representar a forma de hidrogramas complexos. Estas incertezas ocasionaram 

mudanças mais pronunciadas nas estimativas das vazões de pico e em menor 

magnitude para o tempo até atingir a vazão de pico. 

Os modelos de redes neurais artificiais desenvolvidos neste estudo para a 

estimativa da umidade do solo, possuem a limitação da capacidade de representar 

apenas o domínio dos dados utilizados durante a etapa de treinamento e verificação. 

Esta é uma limitação geral do desenvolvimento de modelos empíricos. Assim, muitos 

dados de umidade do solo extrapolados, foram removidos da análise. Desta forma, 

não foi possível realizar uma análise contínua da umidade do solo no decorrer dos 

eventos de chuva-vazão. Assim, para obter informações mais claras sobre os 

processos de geração de escoamento, é oportuno a compilação de mais 

informações de umidade do solo, principalmente durante a ocorrência dos eventos 

de chuva-vazão. 
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CAPÍTULO 6 

 

6.1 Apêndice A  

6.1.1 Características do solo e de uso e cobertura na bacia hidrográfica do 
Arroio do Ouro 

A bacia hidrográfica do Arroio do Ouro é uma sub-bacia do Arroio Pelotas, 

sendo localizada entre os municípios de Pelotas e Morro Redondo, e seu 

escoamento converge para a bacia hidrográfica Mirim-São Gonçalo que possui uma 

área de aproximadamente 62.250 Km2 (Fernandes et al., 2021). Na bacia 

hidrográfica do Arroio do Ouro estão presentes pequenas propriedades familiares, 

tendo como principais atividades econômicas desenvolvidas o cultivo de espécies 

como milho, soja e tabaco, além de atividades de pecuária leiteira e de corte 

(Bartels, 2015). 

O local de estudo está inserido na região geomorfológica do Escudo Uruguaio-

Sul-Rio-Grandense, mais precisamente localizada nas regiões fisiográficas da serra 

do sudeste e encosta do sudeste, sendo uma região se caracteriza por apresentar 

predomínio de Argissolos, Neossolos, Planossolos e Cambissolos (Streck et al., 

2008). Na região da bacia, Cunha et al. (1996) determinou as classes de solo 

através de um acervo técnico da Agência da Lagoa Mirim (ALM). Os solos foram 

classificados em podzólicos bruno-acinzentados, podzólicos Vermelho-Amarelo, 

regossolos e litossolos. As classes de solo foram reorganizadas de acordo com o 

Sistema Brasileiro de Classificação dos Solos de 2006, apresentando para a bacia 

solos das classes de Argissolos e Neossolos. Como Cunha et al. (1996) não fornece 

de forma isolada a localização das classes de solo e sim associações por unidade, 

aqui não é apresentado um mapa com a classificação dos solos. As classes de solo 

estão muitas vezes associadas ao relevo do local, enquanto que o relevo fortemente 

ondulado e montanhoso caracterizam a ocorrência de solos muito rasos, nas regiões 

com relevo plano ou suave ondulado o desenvolvimento de solos mais profundos é 

maior (Cunha et al. 1996). Na bacia hidrográfica do Arroio do Ouro o relevo 

ondulado é predominante, com 54% da área, seguido pelo suave ondulado e forte 

ondulado com 24,6 e 16,8%, respectivamente (Tabela 6.1 e Figura 6.1). 
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Tabela 6.1 – Distribuição das classes de declividade na bacia hidrográfica do Arroio 
do Ouro. 
 

Declividade (%) Relevo Área (%) 

0 – 3 Plano 4,5 
3 - 8 Suave Ondulado 24,6 

8 - 20 Ondulado 54,0 
20 - 45 Forte Ondulado 16,8 
45 - 75 Montanhoso 0,2 

> 75 Forte Montanhoso 0,0 

 

 

Figura 6.1 – Mapa de declividade da bacia hidrográfica do Arroio do Ouro. 
 

 

Os usos do solo foram classificados utilizando imagens de satélite obtidas para 

o ano de 2021. Na Tabela 6.2 e Figura 6.2, estão apresentados os usos do solo e 

observa-se como principal uso o campo nativo, seguido das áreas com floresta 

nativa, ocupado 38,8 e 33,7% da área, respectivamente. As áreas com cultivo anual 

(19,5%) são destinadas, no verão, principalmente para a cultura da soja (Glycine 

max) e em menor escala do milho (Zea mays) e, no inverno, com pastagens anuais. 

As áreas com reflorestamento são destinadas para extração de madeira, sendo 
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utilizadas principalmente em carvoarias e indústrias da região. Já as áreas utilizadas 

com fruticultura são em quase sua totalidade, cultivadas com pêssego (Prunus 

persica), tendo como principal destino as agroindústrias da região. As principais 

modificações de uso do solo que ocorreram nos últimos anos (de 2014 para 2021), 

na bacia hidrográfica do Arroio do Ouro, considerando o levantamento realizado por 

Bartels (2015), foram o aumento de 5,5% das áreas com cultivo anual, e por 

consequência uma redução de 4,6% das áreas de campo nativo e 0,8% das áreas 

de reflorestamento.  

Tabela 6.2 – Distribuição dos usos e coberturas do solo na bacia hidrográfica do 
Arroio do Ouro para o ano de 2021. 
 

Uso do solo Área (km2) Área (%) 
Campo 6.67 38.8 

Mata nativa 5.79 33.7 
Cultivo anual 3.34 19.5 

Reflorestamento 0.58 3.4 
Fruticultura 0.54 3.2 
Estradas 0.13 0.8 

Água 0.06 0.4 
Construções 0.05 0.3 

 

 

Figura 6.2 – Uso do solo na bacia hidrográfica do Arroio do Ouro para o ano de 
2021. 
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