
FEDERAL UNIVERSITY OF RIO GRANDE DO SUL

PHYSICS INSTITUTE

PORTO ALEGRE, BRAZIL

A PROPER VELOCITY MEASURE FOR MESENCHYMAL CELLS

MIGRATION

MASTERS DISSERTATION

GUILHERME S. Y. GIARDINIa

PORTO ALEGRE, RS
2022



FEDERAL UNIVERSITY OF RIO GRANDE DO SUL (UFRGS) - BRAZIL
PHYSICS INSTITUTE

A PROPER VELOCITY MEASURE FOR MESENCHYMAL CELLS
MIGRATION

GUILHERME S. Y. GIARDINIa

Masters dissertation presented as a partial require-
ment for obtaining the title of Master.

Advisor:
Prof. Rita M. C. de Almeidaa,b,c

a Instituto de Fı́sica, Universidade Federal do Rio Grande do
Sul, Porto Alegre, RS, Brazil
b Instituto Nacional de Ciência e Tecnologia, Sistemas Com-
plexos, Universidade Federal do Rio Grande do Sul, Porto Ale-
gre, RS, Brazil
c Programa de Pós Graduação em Bioinformática, Universidade
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Abstract

Single cell migration experiments [Selmeczi et al., 2005, Dieterich et al., 2008] shows a short-
time, diffusive behavior that precludes definition of instant velocity and puts in check some
current cell migration theory [Thomas et al., 2020, Fortuna et al., 2020]. These experiments
show a mostly ballistic motion for intermediate time intervals, followed by a diffusive (whose
displacement evolves proportional to the square root of the elapsed time) migration for large
time intervals, both already known, and a diffusive migration for short time intervals, a dy-
namics that makes the usual concept of instantaneous velocity, mathematically undefined
(a diffusive displacement, that is proportional to the square root of the elapsed time goes
to infinity when divided by an infinitesimal time interval). Consequently, any mathematical
model that considers time derivatives for velocity is ill-defined. Recently, we proposed a two
dimensional anisotropic migration model, which we analytically and numerically solved,
that recreates this observed cellular dynamics [de Almeida et al., 2022]. We considered a
polarization vector that defines a preferential migration orientation, along which velocity
is well defined, described by a Langevin-like equation, and an orthogonal-to-polarization
direction along which the cell describes a diffusive motion.The polarization direction is a
further variable of the model, being continuously updated. The predicted values for mean
square displacement are in agreement with experiments. However, the probability density
function for the velocity along the polarization axis is symmetrical around zero, disagree-
ing with what is observed experimentally. Here we present analytic stochastic calculations
where the noise term for the velocity along the polarization axis has a non-zero average
value. The analytical results reproduce the experimentally observed behavior for the mean
square displacement and probability density functions for the velocity along the polariza-
tion axis. The calculations are based on our analytical stochastic integration method pre-
sented in a previous work [de Almeida et al., 2022], and the results agree with experiments,
numerical integration and the results from CompuCell3D simulation method.

Keywords: Anisotropy, Velocity, Velocity Autocorrelation, Mean Square Displacement,
Fürth, Active Matter, Cell Migration, Diffusion, Ornstein-Uhlenbeck, Polarity, Single-
Cell, Vicsek
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Resumo

Experimentos de migração celular [Selmeczi et al., 2005, Dieterich et al., 2008] mostram para
tempos curtos de observação, um comportamento difusivo que impede a definição de ve-
locidade instantânea e põe em cheque algumas das teorias atuais de migração [Thomas et al.,
2020, Fortuna et al., 2020]. Estes experimentos mostram um movimento de tipo balı́stico
para intervalos intermediários de tempo, seguidos um novo regime difusivo (o desloca-
mento é proporcional à raiz quadrada do tempo decorrido) para longos intervalos de tempo,
ambos previamente conhecidos. O regime de migração para intervalos curtos de observação
é um regime que torna o conceito usual de velocidade instantânea, matematicamente mal
definido (a razão entre um deslocamento proporcional à raiz do tempo pelo próprio tempo
diverge quando o mesmo tende a zero). Consequentemente, qualquer modelo matemático
que considera derivadas temporais da velocidade, fica mal definido. Recentemente, nós
propusemos um modelo anisotrópico de migração (resolvido numérica e analiticamente)
que recria essa nova dinâmica observada [de Almeida et al., 2022] ao considerar um vetor
de polarização que define uma orientação preferencial de migração ao longo do qual a ve-
locidade instantânea é bem definida, descrita por sua vez por uma equação de Langevin
e uma direção ortogonal à polarização na qual a célula descreve um movimento difusivo.
A orientação do vetor polarização é uma variável adicional do modelo e é continuamente
atualizada. Os valores preditos para o deslocamento quadrático médio concordam com
os experimentos. No entanto, a função de densidade de probabilidade da velocidade ao
longo do eixo de polarização, assume uma curva simétrica em torno de zero, discordando
com o que se é observado experimentalmente. Neste trabalho, nós mostramos um novo
cálculo estocástico analı́tico no qual os termos de ruı́do para a velocidade definida ao longo
do eixo de polarização apresentam um valor médio que não é centrado em zero. Os re-
sultados analı́ticos reproduzem os comportamentos observados experimentalmente para o
deslocamento quadrático médio e a função de densidade de probabilidade da velocidade ao
longo do eixo de polarização. Os cálculos são baseados nos métodos estocásticos analı́ticos
apresentados em nosso trabalho anterior, com algumas modificações e os resultados corcor-
dam com as soluções numéricas, simulações produzidas no Compucell3D e experimentos
de migração individual.

Keywords: Anisotropy, Velocity, Velocity Autocorrelation, Mean Square Displacement,
Fürth, Active Matter, Cell Migration, Diffusion, Ornstein-Uhlenbeck, Polarity, Single-
Cell, Vicsek
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Chapter 1

Introduction

Cells are the units of life, being present in different kinds of environments forms and quan-

tities. Some are able to exist on its own, while others form collectives of cells that are able to

exist by cooperating with one another through the differentiation that allows tasks division,

eventually forming multi-cellular beings as plants and animals as we know.

Surviving in a highly competitive environment is what propelled cells to evolve and

develop different kinds of life maintenance mechanisms, like cilia for locomotion and chem-

ical fields emission and sensing, enabling long distance cooperation between cells. Along

with some other capacities, these favoured the emergence of multi-cellular beings.

Among the many existing processes exhibited by many cells, cellular migration is im-

portant for single cells to search for nourishment, flee from predators, find possible partners

for sexual reproduction or a better environment to live. In case of multi-cellular organisms,

migration presents itself as an organized and coordinated behavior necessary in tissue heal-

ing, embryo development, immunological defense and much more. Cell migration dynam-

ics also plays a role in tumour evolution and spreading, meaning that a better understanding

of cancerous cell migration could allow for better cancer therapies.

Cell migration has been the focus of scientific research since the beginning of the last

century. Fürth and collaborators [Fürth, 1920] characterized cell migration by the mean

square displacement (MSD). They concluded that cells’ MSD was similar to that of Brown-

inan motion, whose equation is a solution for the Langevin´s problem of a point particle

moving in a viscous fluid subject to thermal noise [Lemons and Gythiel, 1997]. For these

1



CHAPTER 1 INTRODUCTION

systems, the MSD presents two regimes, depending on the time interval used to measure

displacements: for short-time intervals the movement is mostly ballistic and for long-time

intervals the movement is diffusive. In this model, the short time predominantly ballistic

movement implies that instantaneous velocity is well defined.

In the last decades single cell migration experiments [Selmeczi et al., 2005, Dieterich

et al., 2008] showed that mesenchymal cells migrating on flat surfaces exhibit an additional

very short-time diffusive regime i.e. |∆r⃗| = |r⃗(T+∆T )−r⃗(T )| ∼
√
∆T , where r⃗(T ) represents

a cell position at time T . This short-time interval behavior precludes the definition of an

instantaneous velocity as |v⃗| = lim∆T→0
|∆r⃗|
∆T

∼
√
∆T
∆T

→ ∞. The concept of instantaneous

velocity is frequently used to propose cell migration models and measurement procedures,

overlooking the dependence on the time interval used to estimate cell velocity. Furthermore,

a diverging instantaneous velocity puts in check some of the current single cell migration

theory.

To account for the short-time diffusion observed in mesenchymal cell migration, we

recently proposed a two-dimensional stochastic model. Whose analytical and numerical so-

lutions present a three regime behavior observed in cell migration [de Almeida et al., 2022]:

for short time intervals, the dynamics is diffusive, for intermediary intervals the dynamics is

predominantly ballistic and for long time intervals, the dynamics is again diffusive. In this

model, we considered a polarization vector that defines a preferential migration orienta-

tion, along which the velocity is well defined and is described by a Langevin-like equation.

Orthogonal to the polarization vector, we introduced a diffusive dynamic described by a

Wiener variable. The two different motions were then able to recreate the same mean square

displacement behavior as seen experimentally, besides agreeing with the measured velocity

auto-correlation function.

The model, however, is not perfect, the probability density distribution for the ve-

locity along the polarization axis has a maximum at zero, meaning the cells could migrate

with equal probability both forward or backward staying put on average. That disagrees

with experiments: cells maintain a stable forward motion with respect of its polarization

orientation. The importance of a forward biased cellular motion becomes apparent when

we consider chemotaxis.

2



CHAPTER 1 INTRODUCTION

The effect of a chemical gradient is to make the cell change the direction of its internal

organization such that they migrate following the gradient direction. However, aligning the

cell’s polarization with the chemical field gradient can only cause a preferential movement

towards the chemical source if the probability density function for velocity is not symmetric

around zero.

In this work adapt the anisotropic stochastic model by assuming a biased noise term

acting on the parallel-to-polarization velocity. We obtain the analytical and numerical solu-

tions and compare with experiments and simulations. We based our stochastic calculations

on the methods of a previous work [de Almeida et al., 2022], while introducing new solu-

tions such as the analytical velocity probability density function which agrees with experi-

ments, numerical integration and the results from CompuCell3D simulation method.

In the chapters to come, we briefly present current biological background of single

cell migration, focusing on the facts we used to create our model. Chapter three presents

some useful mathematical tools we use in what follows. Chapter four presents the existing

single cell migration models, the most common modelling approaches and discuss their

advantages and disadvantages. Next, we present the anisotropic Ornstein-Uhlenbeck model

[de Almeida et al., 2022], its analytical solutions and results and discuss why do we need

a new biased model. Chapter five introduces the biased anisotropic Ornstein-Uhlenbeck

model, and present its numerical and analytical solutions. In the last chapter we conclude

and discuss future perspectives.
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Chapter 2

Biological Background

In the eighteenth century the only known information was that cells were able to vary its

rigidity by transitioning between states of solid and gel. Scientists didn’t obtain new sig-

nificant clues until mid 1970’s were it was observed that under certain conditions the cell’s

lamellipodia (part of the cell that extends over the substrate and pulls the cells forwards and

which at that time looked void of cellular organelles) could separate from the cell’s main

body and migrate on its own for several hours (without the energy provided by the mito-

chondria) while the cellular body stood mainly still. This observation showed that all the

needed mechanisms for migration were present in the lamellipodium. During this same

decade, Hatano and Oosawa [Pollard, 2017] and later, Thomas Pollard [Pollard and Korn,

1973], observed some proteins that are abundant in muscle tissue could be found inside di-

verse cells such as amoebas, platelets and white blood cells. These proteins localized more

abundantly in the peripheral regions of these cells, which made scientists question their

relation with migration.

Some years later, Pollard and Niederman [Niederman and Pollard, 1975] observed

that inside each cell there were polymeric strands of actin that could provide rigidity for

them. Even though the process of actin polymerization and depolymerisation was known

from chemistry, there was no knowledge of it forming rigid structures inside biological cells.

When it became possible, scientists observed through electron microscopy, that the actin

strands could form a three-dimensional structure, an impossible feat if with actin was the

only molecule in this process[Stossel, 1990]. Stossel and collaborators concluded that a sec-

ond protein complex bound different actin strands in an orthogonal way and that they also

4



CHAPTER 2 BIOLOGICAL BACKGROUND

worked as hinges due to cells’ variable flexibility. He coined these protein complexes as actin

binding proteins (ABP).

In 1974, John Hartwind and Stossel isolated the first of these protein complexes from

phagocytes, confirming the theory that the actin structures were very similar to polymer

structures observed in gelatinous materials. Later on, Actin Related Proteins 2/3 (Arp2/3)

complexes were also observed, they also connected different actin strands, but without flex-

ibility and at an angle of ∼ 70°.

The myosin complex was another very important protein complex that finally ex-

plained how cells could move its actin structure. They are very abundant in muscles and

also bind to actin strands Using Adenosine Three-Phosphates (ATPs), the cells’ chemical en-

ergy supply, myosin complexes are able to contract and generate movement, a phenomenon

much similar to muscular contraction. The structure described previously is known today

as the cytoskeleton. The capacity to extend and contract in a muscle-like way, was already

hypothesised by [Pollard et al., 1974].

If we consider the protein interactions described above the cytoskeleton is able to

extend itself, but it lacks directionality, as the polymerization occurs irrespective of orien-

tation. And cells need an inherent polarization to move in one preferential direction. The

steps required to achieve a stable polarization direction start when proteins from the Rho

family (CDC42, Rho, Rac) translate mechano-chemical cues perceived by sensory organelles

present in the cellular membrane into chemical gradients that end up creating a cytoskeletal

asymmetry. The cytoskeleton asymmetry favors actin polymerizing at the farther ends of the

cellular body, while favoring capping and actin depolymerising in regions that are near the

cellular nucleus. This process creates a stable expansion of the cytoskeleton at the cell front

effectively pushing the plasma membrane forwards [Stossel, 1990, Bugyi and Kellermayer,

2020, Mogilner, 2009, Callan-Jones and Voituriez, 2016, Maiuri et al., 2015, Hall, 1998] and a

fast actin polymerizing depolymeryzing phenomena at other regions (this is very important

to explain the short-time diffusion migration regimes).

Although this process pushes the plasma membrane forwards with a directional pref-

erence (we call it the polarization orientation), it is not enough to propel the whole cell for-

5
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ward: cell movement requires traction, achieved by adhesion to the substrate. At the ends

of each cytoskeletal protrusion, trans-membrane protein complexes (composed of integrins,

talins, paxilins, vinculins and others) bind themselves to the external substrate at the cel-

lular front, effectively creating an adhesion interface (that unbinds when needed) between

the cellular cytoskeleton and the substrate. The translocation of the whole cellular body is

accomplished when the myosins contract (process mediated by the Rho proteins). The cell

body moves, but the adhesion point remains fixed in respect to the substrate, such that each

adhesion point starts a retrograde movement with respect to the cell’s body, and eventually

breaks when they reach the cell’s rear [Mogilner, 2009]. The sequence of steps described

above is schematically represented in figure 2.1, a model that was schematically proposed

by Abercrombie [Abercrombie et al., 1970] and that was confirmed in the following years.

Figure 2.1: Simplified explanation of a single cell migration process adapted from reference
[Schwartz, 2013]. Step 1: The cell starts to polymerize actin monomers at the cellular front,
creating leading edge protrusions. Step 2: Formation of foci of new adhesion that adhere to
the substrate at the leading edge, disassembly of old foci of adhesion located at the rear end
of the cell due to the tension of the actin-myosin contraction. Step 3: With the contraction at
the rear end and the creation of leading edge protrusions at the cellular front, the cell moves
forwards.
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Chapter 3

Useful Mathematical Concepts

The mechanisms that originate cellular migration are very complex and also depend on

many external factors such as substrate irregularities, thermal fluctuations, protein diffu-

sion, chemical and sometimes electrical fields. Due to the impossibility of taking all these

factors into account, we consider the cellular migration as a stochastic phenomena and study

the processes through mathematical modeling, computer simulations and statistical analy-

ses. Here we define the quantities we will use in the following chapters.

Consider the trajectory of a particle given by r⃗(T ), in the time interval 0 ≤ T ≤ Tfinal.

The mean square displacement function MSD, is a function of the time interval ∆t and is

defined as

MSD(∆T ) =
1

Tfinal −∆t

∫ Tfinal

0

ds |r⃗(s+∆T )− r⃗(s)|2 , (3.1)

Usually MSD(∆T ) is plotted as log(MSD) versus log(∆T ), such that its slope indi-

cate whether the particle is in a diffusive (slope = 1) or ballistic regime (slope = 2) or mixes

of both regimes anomalous diffusive (1 ¡ slope ¡ 2). The mean square displacement obtained

from the solution of an Ornstein-Uhlenbeck system was considered to describe single cell

migration experiments. It is represented by a differential equation named after Langevin,

who at the beginning of the twentieth century modelled the dynamics of microscopic parti-

cles immersed in a viscous fluid. The equation reads
dv⃗

dT
= −γv⃗(T ) + ξ(T ) , (3.2)

where v⃗(T ) is the particle’s velocity at instant T with a friction constant γ and Wiener

stochastic variable ξ(T ) with Gaussian distribution and zero average. It was believed that

7



CHAPTER 3 USEFUL MATHEMATICAL CONCEPTS

the random expansion of the cytoskeleton through the diffusion of proteins inside the cells

produced a behavior that could also be described by the Langevin equation and conse-

quently exhibited the same mean square displacement solution, first applied in cell migra-

tion by Fürth [Fürth, 1920] and described as

MSD(∆T ) ≡ ⟨|r⃗(T +∆T )− r⃗(T )|2⟩T (3.3)

= 4D
(
∆T − P (1− e−∆T/P )

)
, (3.4)

where D is the diffusion constant for long time intervals and P the persistence coefficient

(time scale for the particle to forget its initial trajectory, transiting from a anomalous diffusive

movement to a diffusive one). Fürth equation shows us that the magnitude of the time

interval we consider when analysing some trajectory influences on what is measured. If we

observe time scales ∆T < P , we will find a mostly ballistic regime (anomalous diffusion)

MSD(∆T ) ∼ ∆T 2 and for ∆T > P we observe a ballistic regime, where the particle has

forgotten its initial trajectory.

The velocity auto-correlation function VACF measures the correlation between veloc-

ity measured at times separated by a time interval ∆T . It quantifies the time it takes for a

particle to forget its previous velocity. The VACF’s definition is

V ACF (∆T ) =
1

Tfinal −∆t

∫ Tfinal

0

ds v⃗(s+∆T ) · v⃗(s) , (3.5)

such that the VACF measures the correlation of velocity with itself in two different instants

of time separated by ∆T .
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Chapter 4

Single Cell Migration Mathematical
Modelling

Mathematical and computational modeling is essential in studying many subjects, from biol-

ogy to economy, as it allows for controlled environments, precisely varying every parameter

of the system and non expensive in-silico experiments. It would not be different for the cell

migration.

Models can describe a migrating particle in different ways, some, use a microscopic

approach [Mogilner, 2009, Marée et al., 2006, Marée et al., 2012] with mathematical descrip-

tions for the protein dynamics that are responsible for the cell movements, these models

reproduce cellular behavior in a very accurate way, at the same time, they are computation-

ally expensive and very hard to extend to a collective migration scenario.

Others have a more coarse-grained perspective such as the phase-field models [Shao

et al., 2010, Ziebert and Aranson, 2013, Camley et al., 2013], who consist of differential field

equations that represent each agent of the system through the values of multi dimensional

functions, as function are continuously variable, they provide a very accurate representation

of extensive bodies, being able to reproduce twists, expansion and contractions. However,

this kind of representation presents the same difficulties from the previous approach, they

are still very complex.

The cellular Potts models, adopts an even more coarse grained approach, they were

adapted from solid state theory to model cellular segregation by [Graner and Glazier, 1992]

9
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and are currently used for single and multi cellular migration [Albert and Schwarz, 2014,

Goychuk et al., 2018, Fortuna et al., 2020]. They approximate continuum space to a grid,

which reduces significantly the computational load and is versatile but may introduce arti-

facts to the system.

Lastly, there is the punctual particle perspective whose dynamics may be described

in two ways, the probabilistic one, that considers stochastic differential equations whose so-

lutions represent the probability of finding the particle with a given position and velocity

at some time t (similar to the Fokker-Planck equation) [Szabó et al., 2006]. And the direct

approach, which also uses stochastic differential equations, but with solutions that corre-

spond directly to some particle’s velocity and position [de Almeida et al., 2022, Vicsek et al.,

1995, Szabó et al., 2006]. By considering punctual bodies, these models become computa-

tionally light, however this exact consideration makes it difficult to add interactions that

depend on the extensiveness of objects (in a collective scenario, for example, where cell-cell

interaction is present, the representation of a neighborhood of interaction is changeable and

malleable, something difficult to create in the punctual particle scenario).

In this work, we consider punctual particle models, as we are dealing with single cells

and are able to reproduce most of the phenomena that generate cell migration as the action

of stochastic variables. The Ornstein-Uhlenbeck model is possibly one of the most used

representations to recreate cell migration, adapting what was originally used to describe the

dynamics of particles immersed in fluids to model cellular motion, it was able to reproduce

experimental observations thus being a sound proposition. However, to account for the

data provided by more recent experiments and computer simulations, the model required

modifications.

Cell tracking experiments use intermittent photographs, where the time lapse be-

tween two frames is predefined by the experiment design and two successive points of the

trajectories are actually not instantly successive, there are many fluctuations and movement

between any two shots. Also the characteristic times of protein dynamics is on the molec-

ular scale and impossible to observe when focusing on the whole cell. Both facts must be

considered when comparing experiments and simulations with theory predictions.
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Selmeczi and collaborators [Selmeczi et al., 2005] and Dieterich and collaborators [Di-

eterich et al., 2008] have observed a short-time diffusive behavior in the measured MSD.

If we assume that correct (devoid of significant experimental errors [Thomas et al., 2020]),

then, instantaneous velocities become ill defined since v = lim
∆t→0

∆r/∆t = ∞, in other words,

instantaneous velocity measurements of diffusive particles, do not converge to a fixed value

( A very nice account for this discussion on the beginning of the twentieth century is pre-

sented in reference [Genthon, 2020]). Consequently, models whose dynamics depend on a

well defined instantaneous velocity and also present diffusive behaviors at short time scales

must be modified to take into account divergent velocities.

Thomas and collaborators [Thomas et al., 2020] analyzed 12 experimental data sets re-

garding the MSD, concerning 5 different laboratories. All experiments showed a short-time

diffusive regime, as presented in Fig. 4.1. The short-time diffusive regime is indicated by the

higher values measured as compared to the MSD value predicted by the Fürth equation at

short-time intervals. The same effect was observed in Potts Model simulations by Fortuna

and collaborators [Fortuna et al., 2020].
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Figure 4.1: Comparison between the Fürth MSD (dashed lines) solution and experimental
MSD curves from different articles [Dieterich et al., 2008, Takagi et al., 2008, Wu et al., 2014,
Potdar et al., 2009]. Figure obtained from [Thomas et al., 2020].

The MSD curves presented in 4.1 also show a mostly ballistic regime for intermediate

time intervals, followed by another diffusive migration regime for long time intervals. The

last two regimes are predicted by Fürth equation, being the mostly ballistic or anomalous

diffusive regime due to the stable polymerization of actin over the polarization axis and

the long-time diffusive behavior due to changes in the orientation of the cellular front and

consequently the preferential direction of migration (polarization direction). Thomas and

collaborators [Thomas et al., 2020] explains the short-time diffusion as caused by the fast

actin polymerization and depolymerization in the non preferential orientations of migration.

For punctual and/or rigid bodies, a short time interval diffusive regime poses a prob-

lem with the Newtonian description of such systems, a controversy that involved a stack

of geniuses at the beginning of the twentieth century, such as Eisntein, Ornstein, Wiener,

Langevin, among others [Genthon, 2020], whose work provided tools of how to study diffu-
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sive processes. Extended bodies in contrast have centers of mass whose dynamics depend

on a infinitely large number of events of mechanisms at the protein level, simultaneously

acting in a time scale that is much shorter than those available to experiments. Their dy-

namics may be described by a mathematical model with diffusion at small time intervals.

We tackle this short-time diffusion model in the next chapters.
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Chapter 5

Anisotropic Ornstein-Uhlenbeck Model

5.1 The Model

The anisotropic Ornstein-Uhlenbeck (AOU) single cell migration model considers a parti-

cle exhibiting an internal degree of freedom, namely, a polarization orientation given by

vector p̂(t) =
(
cos
(
θ(t)

)
, sin

(
θ(t)

))
, which must exist, since cells spontaneously break their

spacial symmetry through existing anisotropies in the distribution of proteins responsible

for cell movement. We also define an orthogonal to polarization unit vector as n̂(t) =(
sin
(
θ(t)

)
,−cos

(
θ(t)

))
. We assume that AOU particle changes its polarization orientation

at every step of time ∆t obeying the equation

θ(t+∆t) = θ(t) +

∫ t+∆t

t

β(s) ds , (5.1)

where β(t) is a Wiener variable. The polarity produces two different dynamics for the parti-

cle, one in the parallel-to-polarization orientation and another in the direction perpendicular

to polarization.

The dynamics on the polarization direction is given by a modified Langevin equation

v∥(t+∆t) =

(
(1− γ∆t)v∥(t) +

∫ t+∆t

t

ξ∥(s) ds

)(
p̂(t) · p̂(t+∆t)

)
, (5.2)

where v∥(t) is the particle’s parallel-to-polarization velocity (namely parallel velocity) at the

instant of time t, γ is the dissipation constant, ξ∥(t) is a Wiener variable (Gaussian white

noise) which is uncorrelated to β and replicates the acto-myosin mechanism that propels the

particle forwards (because it is a zero centered distribution it also propels the particle back-

wards). The modification from the original Langevin equation is the product
(
p̂(t)·p̂(t+∆t)

)
,
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meaning that the particle’s parallel velocity is projected onto the new polarization direction,

effectively losing some velocity at each turn. Real cells also lose some of its velocity when

turning due to the need of cytoskeletal reassembly.

The particle’s dynamics in the orthogonal to polarization orientation is given by a

Wiener process;

r⃗⊥(t+∆t) = r⃗⊥(t) +

∫ t+∆t

t

ξ⊥(s) ds n̂(t) , (5.3)

where ξ⊥ is a Wiener variable directly proportional to β i.e. ξ⊥ =
√
qβ and n̂(t) is the unitary

vector, orthogonal to p̂(t) direction. The sideways stochastic fluctuation of the particle’s po-

sition is replicating the phenomena of rapid assembly and disassembly of the actin filaments

on the lateral parts of the cellular body.

Each Wiener variable has zero mean and a scale given by its second momentum, that

is

⟨ξ∥(t)⟩ = 0 ⟨ξ∥(t)ξ∥(t′)⟩ = gδ(t− t′) (5.4)

⟨β(t)⟩ = 0 ⟨β(t)β(t′)⟩ = 2kδ(t− t′) (5.5)

⟨ξ⊥(t)⟩ = 0 ⟨ξ⊥(t)ξ⊥(t′)⟩ = 2qkδ(t− t′) , (5.6)

where g, k and qk have the units of [length2]/[time3], 1/[time] and [length2]/[time] respec-

tively.

In a succinct way, the AOU model consists of a particle with an inner degree of free-

dom represented by the polarization orientation that changes its direction at each instant of

time (according to a Wiener process) and provides an asymmetric dynamics for the migrat-

ing particle. In the direction that is orthogonal to the polarization axis, the particle’s position

follows a Wiener process. The particle’s dynamics on the polarization direction is ruled by

a modified Langevin equation for the speed.
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Figure 5.1: Diagrammatic representation of a particle that moves according to an Ornstein-
Uhlenbeck process, where v∥(t) is its velocity in the polarity axis p⃗ = (cos(θ(t)), sen(θ(t)))
and at each time-step its initial velocity is projected onto its new polarization axis, in other
words, we model a cell’s loss of velocity at each turn to the cytoskeletal reshaping.The figure
was obtained from [de Almeida et al., 2022].

5.2 Analytical Solutions

Here we show the analytical solutions for the model’s average velocity, parallel to polariza-

tion VACF and MSD.

In what follows, for brevity we shall call parallel velocity, the velocity parallel to the

polarization and perpendicular (or orthogonal) displacement for the displacement on the

direction perpendicular to the polarization. The solutions were obtained by iteration. We

consider the trajectory in the time interval 0 ≤ t ≤ T where a partition of this time interval

may be written as ∆t = T/n such that we have n partitions for this time interval. When we

take the limit where n→ ∞ and ∆t→ 0, such that T = n∆t remains finite.
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Average Square Parallel Velocities

The parallel velocity at the first time step is

v∥(∆t)p̂1 =

(
(1− γ∆t)v∥(0) +

∫ ∆t

0

ξ∥(s) ds

)
(p̂0 · p̂1) , (5.7)

with p̂i is the polarization vector at the instant of time i∆t. Then we found the parallel

velocity equation corresponding to the second, third and fourth time steps and so on such

that it was possible, after n iterations, to create a generalized parallel velocity equation for

an arbitrary time step T = n∆t, it is written as

v∥p̂n = (1− γ∆t)nv∥(0)
n−1∏
i=0

(p̂i · p̂i+1) p̂n (5.8)

+
n−1∑
j=0

(1− γ∆t)n−j+1

∫ (j+1)∆t

j∆t

ξ∥(s) ds
n−1∏
i=j

(p̂i · p̂i+1) p̂n . (5.9)

We then squared equation (5.9) and averaged it reaching

⟨v2∥(n∆t)⟩ = (1− γ∆t)2nv2∥(0)

〈
n−1∏
i=0

(p̂i · p̂i+1)
2

〉
(5.10)

+g∆t
n−1∑
j=0

(1− γ∆t)2(n−j+1)

〈
n−1∏
i=0

(p̂i · p̂i+1)
2

〉
, (5.11)

with
〈∫ (l+1)∆t

l∆t

∫ (j+1)∆t

j∆t
ξ∥(s)ξ∥(s

′)ds ds′
〉
= g∆tδl,j , a result that is direct consequence of (5.4).

We also employed the fact that (p̂i · ˆpi+1) = cos
(
θ
(
j∆t

)
− θ
(
(j + 1)∆t

))
= cos(∆θ) where

very small values of ∆t allows us to write cos(∆θ) ∼ 1 − 1
2
(∆θ)2 and cos2(∆θ) ∼ 1 − (∆θ)2.

Considering the average values for cos(∆t) over small time intervals ∆t, we obtain from

equation 5.5, ⟨(∆θ)2⟩ ∆t→0
= 2k∆t, which allows us to evaluate the product terms in equation

5.11, obtaining

⟨v2∥(n∆t)⟩ = v2∥(0)(1− γ∆t)2n(1− k∆t)2(n−1) + g∆t
n−1∑
j=0

(1− γ∆t)2(n−j−1)(1− k∆t)2(n−j−1) .(5.12)

Taking the limit ∆t→ 0, with n = T
∆t

, we obtain

⟨v2∥(T )⟩ =
g

2(γ + k)
+

(
v2∥(0)−

g

2(γ + k)

)
e−2(γ+k)T . (5.13)
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If we assume an infinite time has passed (T → ∞) such that the system has reached

a stationary state, we find that ⟨v2∥⟩ =
g

2(γ+k)
. Notice that assuming v2∥(0) =

g
2(γ+k)

forces the

system into an initial stationary state. For detailed calculation, please see [de Almeida et al.,

2022].

Equation 5.13 also allows us to find the rate at which the average squared velocity

reaches its stationary value. We name it the relaxation time R = (γ + k)−1.

Both experiments and simulation deal with discrete values of time. Also, instanta-

neous velocity is estimated from a means velocity, calculated for finite values of time inter-

vals. When instantaneous velocity is a well defined quantity, an adequately small time inter-

val gives the instantaneous velocity within a predefined precision. However, for diffusive

movements this is not the case. To compare the theoretical predictions with the measured

values in both experiments and simulations, we define a mean velocity, that depends on the

time interval ε as follows 〈
v2
〉
ε

=

〈
|r⃗(T + ε)− r⃗(T )|2

ε2

〉
, (5.14)

which can be decomposed into two components, one perpendicular (∆r⃗⊥) to the polariza-

tion axis and one parallel (∆r⃗∥)〈
|r⃗(T + ε)− r⃗(T )|2

ε2

〉
=

〈
|r⃗∥(T + ε)− r⃗∥(T )|2

ε2

〉
+

〈
|r⃗⊥(T + ε)− r⃗⊥(T )|2

ε2

〉
. (5.15)

For small values of ε, equation 5.15 tends to〈
|r⃗(T + ε)− r⃗(T )|2

ε2

〉
=

〈
v2∥
〉
+

〈
|r⃗⊥(T + ε)− r⃗⊥(T )|2

ε2

〉
, (5.16)

Starting from a high velocity initial condition
〈
v2∥

〉
tends to its stationary value g

2(γ+k)
. Con-

sequently, the difference
〈

|r⃗(T+ε)−r⃗(T )|2
ε2

〉
− g

2(γ+k)
has two terms. The first is the excess in the

parallel velocity in respect to its stationary value and the second component is due to the

contribution from the stochastic displacement on the perpendicular direction that we expect

to be constant in time. If the systems starts with a high parallel velocity, the plot of this dif-

ference against T should decrease from the initial value and stabilize at 2qk
ε

, the value of the

contribution from the perpendicular displacement. Figure 5.2 shows a semi-log plot of The
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difference
〈

|r⃗(T+ε)−r⃗(T )|2
ε2

〉
−
〈
v2∥

〉
versus time for v∥(0) = 103 in arbitrary units and 4 values

of k.

Figure 5.2: Semi-log plots of the average square displacement over ε2 subtracted by g
2(γ+k)

versus T , with arbitrary (values selected for best display of the model’s possible dynamics)
ε = 10−4, q = 0.1, g = 10, γ = 1 and k indicated in the figure’s superior right-side corner.
The dots consists of the numerical estimations made of over 10 particles and 106 steps.

Mean Square Displacement (MSD)

The MSD was obtained by partitioning the time interval 0 ≤ t ≤ ∆T in N time intervals ∆t

such that ∆T = N∆T . We iterate the evolution equations to obtain a general equations for

the quantity of interest, then we take the average over the stochastic noise terms and finally

take the limit for n → ∞ and ∆t → 0, such that ∆T remains finite. See [de Almeida et al.,

2022] and C for more information.
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For N > 0 steps, the particle’s position is described as

r⃗(n∆t) = r⃗(0) + v∥(0)∆t
N∑

n=0

(1− γ∆t)n
n−1∏
i=0

(p̂i · p̂i+1) p̂n

+∆t
N∑

n=0

n−1∑
j=0

(1− γ∆t)n−1−j

∫ (j+1)∆t

j∆t

ξ∥(s) ds
n−1∏
i=j

(p̂i · p̂i+1) p̂n

+∆t
N∑

n=0

∫ (n+1)∆t

n∆t

[(n+ 1)∆t− s] ξ∥dsp̂n

+
N∑

n=0

∫ (n+1)∆t

n∆t

ξ⊥(s)ds n̂n . (5.17)

Squaring the particle’s position and averaging over the noise terms, we find

MSD(∆T ) = ⟨r⃗(T +∆T )− r⃗(T )⟩ (5.18)

=
g

(γ + 2k)(γ + k)

[
∆T − 1

γ + 2k
(1− e−(γ+2k)∆T )

]
+ 2qk∆T , (5.19)

which has the same form as the Fürth equation [Fürth, 1920] added to a diffusive term

(2qk∆T ) :

MSDFürth(∆T ) = 2D
(
∆T − P (1− e−∆T/P )

)
, (5.20)

that can be rewritten as

MSDModified Fürth(∆T ) = 2D

(
∆T

1− S
− P (1− e−∆T/P )

)
, (5.21)

that has been used as fitting equation, called the modified Fürth equation [Thomas et al.,

2020], that could account for the observed short-time diffusive regime.

By comparing the modified Fürth equation and the MSD equation we found for the

AOU model, we obtain the fitting parameters as functions of the theoretical model parame-

ter, as follows:

D =
g

2(γ + 2k)(γ + k)
(5.22)

P =
1

γ + 2k
and (5.23)

S =
2qk(γ + 2k)(γ + k)

g + 2qk(γ + 2k)(γ + k)
. (5.24)
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Varying the constants g, q, k and γ allows us to obtain different dynamics, for k = 0

the AOU model presents a one dimensional Ornstein-Uhlenbeck particle, with a normal

Fürth equation for its MSD and S = 0, P = 1
γ

and D = g
2γ2 . When k > 0 and q = 0 we

obtain a Vicsek-like model [Vicsek et al., 1995] but with a variable speed ruled by a Langevin

equation in the p̂(t) direction, in this case, our MSD curve is still the same as Fürth one, but

with different ⟨v2∥⟩ and relaxation time R from that of the usual Ornstein-Uhlenbeck process.

For q, k > 0, we observe the AOU model with the three regime MSD and ⟨v2∥⟩ =
g

2(γ+k)
.

We also find important the study of the limit cases for the MSD from the AOU model,

for small ∆T , 5.21 yields

lim
∆T→0

MSDModified Fürth ∼ 2DS

1− S
∆T , (5.25)

indicating that for small time intervals of observation, the system exhibits a diffusive regime

with diffusion constant Dfast =
DS
1−S

= qk. For ∆T >> P , we find that

lim
∆T→∞

MSDModified Fürth ∼ 2D

1− S
∆T , (5.26)

reproducing a long diffusive dynamic with diffusion constant Dslow = D
1−S

. This way, it is

possible to attribute a meaning to the S constant, as a ratio, S = Dfast
Dslow

, from [Fortuna et al.,

2020], we name it the excess diffusion coefficient. The four variables S, P , D and R then define

a three regime MSD with a short diffusive interval for ∆T < SP , a medium anomalous

diffusive or partially ballistic regime for SP < ∆T < P and a long diffusive regime for

∆T > P , which reproduces the three regime MSD found experimentally [Thomas et al.,

2020].

An important aspect from the AOU model is the possibility of defining natural units

for time and space, which rescales any system obeying an anisotropic Ornstein-Uhlenbeck

process and allows quantitatively comparing theory, simulations, and experiments. We fol-

low the rescaling done in [Thomas et al., 2020] where 2DP
1−S

is used as a length scale and P as

a time scale. The reescaled MSD is〈
|∆ρ⃗|2

〉
=

⟨|∆r⃗|2⟩
2DP/(1− S)

(5.27)

= ∆τ − (1− S)(1− e−∆τ ) , (5.28)

where ∆τ = ∆T
P

and ⟨|∆ρ⃗|2⟩ are dimensionless variables.
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Figure 5.3: Log-log plot comparing the analytical MSD curve in natural units from equation
5.28 (continuous lines) with the numerical MSD solutions (dots) for q = 0.1, g = 10, γ = 1
and four values of k, they are k ∈ {0.04405, 0.2625, 0.965, 1.7425} corresponding to four
values of S, they are S ∈ {0.001, 0.01, 0.1, 0.3}. The numerical solutions are the results of
100 independent trajectories.

Velocity Auto-Correlation Functions

The anisotropy of the AOU model, allows us to establish two different displacements with

respect to the polarization axis, one parallel and the other perpendicular to the cell polariza-

tion . In natural units this displacement is written as

∆ρ⃗ = ρ⃗(τ + δ)− ρ⃗(τ)

= ∆ρ⃗∥ +∆ρ⃗⊥ , (5.29)

where ∆ρ⃗∥ is the dimensionless displacement parallel to the polarization axis and ∆ρ⃗⊥ the

perpendicular one. With the displacements in hand, we hypothetically calculate the instan-
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taneous velocity as

u⃗(τ) = lim
δ→0

∆ρ⃗∥ +∆ρ⃗⊥
δ

= u∥(τ)p̂(τ) + lim
δ→0

∆ρ⃗⊥
δ

n̂(τ) , (5.30)

when k > 0 and q > 0 the ratio limδ→0
∆ρ⃗⊥
δ

goes to infinity as ∆ρ⃗⊥ ∼
√
δ, a fact that originates

from the perpendicular Wiener process whose nature is always diffusive. The other compo-

nent of displacement ∆ρ⃗∥ originates from an Ornstein-Uhlenbeck process, which is ballistic

for δ → 0 and thus, finite.

To better illustrate how an AOU particle’s speed diverges for small values of δ, we

plotted the the average mean speed versus δ and show that it is mostly constant for the time

intervals corresponding to the partially ballistic regime and it gets larger as δ gets smaller.

Figure 5.4: Log-log plot of the average mean speed reescaled in natural units of velocity√
2D

P (1−S)
and time P , whose numerical solutions are the result of 100 independent trajecto-

ries, with q = 0.1, g = 10, γ = 1 and four values of k k ∈ {0.04405, 0.2625, 0.965, 1.7425}
corresponding to four values of S S ∈ {0.001, 0.01, 0.1, 0.3}. The speeds are mostly conver-
gent when δ values correspond to that of mostly ballistic regimes and diverge when δ → 0.
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In the laboeratory, it is not always possible to separate the perpendicular and parallel

displacement components. However, a profile of the mean speed against the time intervals

δ provides us some clues. Defining the mean velocity as

u⃗(τ, δ) ≡ ρ⃗(τ + δ)− ρ⃗(τ)

δ
, (5.31)

we know that for δ → 0, the mean speed value ⟨u⃗(τ, δ)⟩ should diverge, but for some specific

value of δ, we observe that ∆ρ⃗∥ becomes much more significant than ∆ρ⃗⊥ such that the mean

velocity may be characterize by this value, as we see in what follows.

Velocity Auto-Correlation Function VACF

We observe that, although v⃗(τ) = ∆ρ⃗
δ

diverges as δ → 0, velocity auto-correlation function
does not. The reason for that is that the only term that does not vanish for finite values of δ
is the parallel velocity, as shown below:

V ACF (∆T ) = lim
δ→0

〈(
v∥(T )p̂(T ) +

∆r⊥(T )

δ
n̂(T )

)
·
(
v∥(T +∆T )p̂(T +∆T ) +

∆r⊥(T +∆T )

δ
n̂(T +∆T )

)〉
=

〈
v∥(T )p̂(T ) · v∥(T +∆T )p̂(T +∆T )

〉
, (5.32)

since ∆r⊥(T ) and ∆r⊥(T + ∆T ) both obey a Wiener process with zero average and zero

auto-correlation when considering two different instants of time (T and T +∆T ).

The analytical velocity auto-correlation function may be obtained by iteration method

used in obtaining MSD, and is

V ACF (∆T ) =
〈
v2∥(T )e

−(γ+2k)∆T
〉
=
〈
v2∥ stationary

〉
e−∆T/P , (5.33)

which corresponds to the second derivative of the MSD curve, as it should. Because both

the Fürth MSD curve and the AOU modified Fürth one have the same second derivative,

both models have equivalent VACF curves: an exponential decay given by the constant

P = (γ + 2k)−1.

Mean Velocity Auto-Correlation Function Ψ(δ,∆T )

We conclude through equation 5.33 that when in the stationary state we have V ACF (∆T →
0) = ⟨v2∥ stationary⟩, however, this result usually does not agree with what is observed ex-
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perimentally. There are two different factors that play an important role in experimental

measuring, as we discuss below.

Velocities are defined as the ratio of a displacement and the time interval in which the

displacement occurred and instantaneous velocities consider the case where δ → 0 such that

u⃗ = lim
δ→0

∆ρ⃗(δ)

δ
= lim

δ→0

[
∆ρ∥(δ)

δ
p̂+

∆ρ⊥(δ)

δ
n̂

]
. (5.34)

However, for a Wiener process dynamics the ratio ∆ρ⊥(δ)
δ

diverges, making the instantaneous

velocity to diverge.

In the experimental cell migration scenario, it is not possible to obtain truly instan-

taneous velocities and their values are estimated using finite values for δ. Separating the

displacement into two components, it becomes clear that for S < δ < 1 (in natural units of

time, P = 1) the predominant component for the total displacement is ∆ρ⃗∥. This case will

result in the experimental measurements of the VACF agreeing with the theoretical results,

as the ballistic behavior dominates.

On the other hand, if δ < S , we observe that ∆ρ⃗⊥ >> ∆ρ⃗∥, in other words, the

predominant component of the velocity becomes u⃗(τ) ≈ ∆ρ⊥(τ)
δ

n̂(τ), which results into de-

creasing values for the velocity auto-correlation as ∆ρ⊥(τ) obeys a Wiener process.

Using the average velocity concept for a finite time interval δ we define mean velocity

auto-correlation function MVACF as

ψ(δ,∆τ) ≡
〈
u⃗(τ, δ) · u⃗(τ +∆τ, δ)

〉
, (5.35)

where u⃗(τ, δ) =
∆ρ∥(δ)

δ
p̂(τ) + ∆ρ⊥(δ)

δ
n̂(τ). For displacement measurements for finite time in-

tervals δ, we find an analytical MVACF (with the system represented in natural units) as

ψ(δ,∆τ) =
γ + 2k

γ

(
1− e−γδ/(γ+2k)

) (
1− e−γδ

)
δ2

e−∆τ
〈
u2∥
〉

stationary
. (5.36)

The detailed calculations may be found in Ref. [de Almeida et al., 2022].
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Figure 5.5: Log-log plot of numerical MVACF solutions (in natural units) versus ∆τ for
q = 0.1, g = 10, γ = 1, k = 0.04405 and δ = 0.001. To emulate low precision measurements,
we truncated the position and velocities estimates. From Ref.[de Almeida et al., 2022].

For experimental measurements with a finite precision, it may happen that the mea-

surement only detects the perpendicular displacement, that is much larger than the parallel

one for small values of δ. In this case, we expect that the measured velocity auto-correlation

goes to zero, since perpendicular displacements are not auto-correlated. In Fig. 5.5 we

present the results where we have mimicked a loss of precision by artificially cutting the

number of digits of speed in our numeric solutions.

Since in real experiments we do not have infinitesimal δ values, we have to be careful

to keep ∆τ > δ. δ > ∆τ introduces an artificial velocity auto-correlation due to the over-

lapping of the time intervals δ used to calculate the average u⃗(τ, δ) and u⃗(τ +∆τ, δ). This

phenomenon happens even for high precision measurements. Figure 5.6 shows the mean

velocity auto-correlation function for different values of δ. When ∆τ < δ the MVACF curve
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separates from the theoretically calculated VACF.

Figure 5.6: Log-log plot of numerical MVACF solutions (in natural units) versus ∆τ for
q = 0.1, g = 10, γ = 1, k = 0.04405 with four values of δ in which we measure the average
velocity auto-correlation for ∆τ < δ, effectively introducing an artificial correlation. The
lines correspond to the VACF solution and the symbols to the numerical solutions from 10
trajectories. From Ref. [de Almeida et al., 2022]

There is also the possibility of both the low precision measurements (big values of

δ) and the overlapping quantities being present in some migration experiment, which may

cause erroneous measurements and conclusions.

The Anisotropic-Ornstein Uhlenbeck is successful in reproducing the three regime

MSD observed experimentally and in simulations, we introduced natural units of length

and time, which allows for comparisons between different cells, simulations and any sys-

tem whose dynamics is a composition two perpendicular processes, one of them a Ornstein-

Uhlenbeck and the other a Wiener process. We were also able to explain the shortcoming
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of VACF measurements in the laboratories whose measuring apparatus present finite pre-

cision, which end up diminishing the auto-correlation for short time intervals between suc-

cessive shots.

Although the AOU model was able to reproduce various cell behaviors, it considers

an Ornstein-Uhlenbeck process in the direction of polarization, with a parallel velocity dis-

tribution centered around zero something that is not observed experimentally. Real cells

maintain a stable actin polymerization activity at their frontal region and they exhibit veloc-

ity distributions centered around a positive velocity value. This is clearly shown by Nousi

and colleagues [Nousi et al., 2021]. They first measured brain cancer cells MSD obtaining

what we see in figure 5.7.

Figure 5.7: Experimental log-log plot of mean square displacements of brain cancer cells.
The values 25%, 50%, 67% and 75% represent the quantity of adhering substrate (extra cellu-
lar matrix or ECM) used in each experiment. Fig. from [Nousi et al., 2021]

Figure 5.7 shows four MSD curves with no short-time diffusive behavior, meaning

that subsequent displacements should be mostly ballistic, consequently calculated average

velocities should converge to what we defined as the parallel velocity v∥ i.e.

v⃗(T, ε)
SP<ε<P

≈ v⃗∥(T ) . (5.37)

Knowing that the average velocity converges to the parallel one when considering

time-intervals corresponding to mostly ballistic regimes, we may compare our model’s par-

allel velocity distribution F (u∥x, 0) shown in figure 5.8 with the displacement distributions
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obtained by Nousi et. al. shown in fig. 5.9 (both distributions are comparable because in

a mostly ballistic regime, the parallel velocity is proportional to the particles’ displacement

i.e. ∆r⃗∥
δ

SP<ε<P
≈ v∥).

Figure 5.8: Parallel velocity histogram plots in natural units. The left figure is a cross section
of the average velocity histogram F (u∥x, u∥ y) for u∥ y = 0, i.e. F (u∥x, 0). The right figure is
the superior view of a two dimensional histogram F (u∥x, u∥ y) versus (u∥x, u∥ y)), for q = 0.1,
g = 10, γ = 1 and k = 0.04405.

Figure 5.8 shows the numerical solutions for the velocity probability density function

F (u∥x, u∥ y) with u⃗∥ =
(
u∥x, u∥ y

)
the parallel velocity written in natural units of velocity for

the parameters q = 0.1, g = 10, γ = 1 and k = 0.04405. The right panel shows a heat-map

of both velocity axes, while the left map shows a cross section of the PDF at u∥ y = 0 i.e.

F (u∥x, 0). Both panels show velocity PDFs whose peaks are localized at the origin (u∥x =

0, u∥ y = 0).
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Figure 5.9: Distribution of experimental cells displacements d given in micrometers. Where
25%, 50%, 67% and 75% represent the quantity of adhering substrate (extra cellular matrix
or ECM) used in each experiment. Fig. from [Nousi et al., 2021]

Figure 5.9 shows experimentally obtained displacements distributions in counts ver-

sus displacement d in micrometers where each of the four figures show the distribution for

different quantities of the cellular substrate known as extracellular matrix ECM. With excep-

tion of the first figure with 25% of ECM concentration, all of the other distributions present

peaks displaced from the origin. thus in the least, the AOU model should have a parameter

that controls said displacement.

With evidence that cells exhibit forwards biased migration, we introduced a bias in

the parallel-to-polarization axis Ornstein-Uhlenbeck dynamics, shifting the parallel veloc-

ity’s average from zero to a positive value. We explain this model in the following chapters.
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Chapter 6

Biased Anisotropic Ornstein-Uhlenbeck

6.1 The Model

As in the previous chapter, we consider a particle with a preferential direction of motion

described by a polarization vector p̂ = (cos(θ), sin(θ)) whose orientation varies according to

a Wiener variable

θ(t+∆t)− θ(t) =

∫ t+∆t

t

β(s)ds , (6.1)

where

⟨β(t)⟩ = 0 and (6.2)

⟨β(t)β(t′)⟩ = 2kδ(t− t′) , (6.3)

with zero average and variance 2k. The polarization introduces a spacial asymmetry, which

allows the existence of two different dynamics, one for each direction. Parallel to the po-

larization direction, the particle moves according to a biased Ornstein-Uhlenbeck process

that loses speed after every infinitesimal reorientation through the projection of the current

parallel velocity onto the new polarization direction:

v∥(t+∆t) =

(
(1− γ∆t)v∥(t) +

∫ t+∆t

t

(
ξ∥(s) + b

)
ds

)(
p̂(t) · p̂(t+∆t)

)
,

where γ is the velocity dissipation due to the cells’ internal cytoskeleton dynamics, ξ∥ is a

Wiener variable with zero average and variance g and b is the bias constant, responsible

for emulating a cell’s higher probability of moving forwards in the polarization direction

31



CHAPTER 6 BIASED ANISOTROPIC ORNSTEIN-UHLENBECK

instead of backwards. In short, this is the main difference between the AOU and the biased

AOU model.

The second dynamics, on the orthogonal-to-polarization direction, evolves due to the

same Wiener process that dictates the turnover fluctuation of the polarization (both pro-

cesses are consequences of the actin-myosin fluctuations [Mogilner, 2009]). This is why we

define the relation

ξ⊥(t) =
√
qβ(t) , (6.4)

where the perpendicular Wiener variable ξ⊥(t) is proportional to β(t). The dynamics origi-

nated by ξ⊥(t) is then written as

∆r⊥ =

∫ t+∆t

t

ξ⊥(s)ds , (6.5)

where ⟨ξ⊥⟩ = 0 and the variance of the Wiener variable is considered ⟨ξ⊥(t)ξ⊥(t′)⟩ = 2qkδ(t−
t′). The variables g, k, qk and b have the units of [length2]/[time3], 1/[time], [length2]/[time]

and [length]/[time3/2] respectively.

To fully represent the perpendicular-to-polarization direction we need a second vec-

tor n̂ = (sin(θ),−cos(θ)) that is orthogonal to p̂(t), consequently p̂·n̂ = 0. Figure 6.1 schemat-

ically represents the dynamics of our model.
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Figure 6.1: Diagrammatic representation of a particle of our model, where its total displace-
ment is decomposed into two components, ∆r⃗∥ given by a biased Ornstein-Uhlenbeck pro-
cess and ∆r⃗⊥, a Brownian process. The components are decomposed according to the polar-
ity axis p̂ = (cos(θ(t)), sen(θ(t))) and its perpendicular counterpart n̂.

6.2 Analytical Solutions

Analytical Solutions for ⟨v∥(T )⟩ and ⟨v2∥(T )⟩

We start by considering a particle whose parallel velocity is described during the time inter-

val 0 ≥ t ≥ T , where T may be separated by n partitions of infinitesimal size ∆t. To obtain
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a generalized formula for said velocity, we consider it at the first time partition t = ∆t:

v∥(∆t) =

(
(1− γ∆t)v∥(0) +

∫ ∆t

0

(
ξ∥(s) + b

)
ds

)(
p̂(0) · p̂(∆t)

)
and

We iterate this equation over n partitions and generalize it for n→ ∞, such that in the

limit of ∆t → 0, the product n∆t remains finite. We then find an equation for the particle’s

parallel velocity

v∥(n∆t) = (1− γ∆t)nv∥(0)
n−1∏
i=0

(p̂i · p̂i+1)

+
n∑

i=1

(1− γ∆t)n−i

(∫ i∆t

(i−1)∆t

(ξ∥(s) + b)ds

) n−1∏
j=i−1

(p̂j · p̂j+1) ,

where we used the sub-index notation p̂(n∆t) = p̂n for simplicity. Every integral with re-

spect to the Wiener’s variables are fully integrable via stochastic Ito’s integral [Klebaner,

2005]. For more details, please see the appendix (B).

From equation (6.6) we take the average over noise terms and obtain

⟨v∥(T )⟩ =
b

γ + k
+

(
v∥(0)−

b

γ + k

)
e−(γ+k)T . (6.6)

The stationary value is taken as the limit T → ∞ such that ⟨v∥⟩St = b
γ+k

. Observe that the

system exhibits a non zero average velocity. The non-biased AOU model presents ⟨v∥⟩ = 0

[de Almeida et al., 2022].

Following the same procedure to obtain 6.6, we found the squared parallel velocity,

as follows

⟨v2∥(T )⟩ = e−(γ+k)T

[
− 2b2

(γ + k)2
+

2bv∥(0)

γ + k

]
+e−2(γ+k)T

[
v2∥(0) +

b2

(γ + k)2

]
+e−2(γ+k)T

[
− g

2(γ + k)
−

2bv∥(0)

γ + k

]
+

g

2(γ + k)
+

b2

(γ + k)2
, (6.7)

and hence we obtain the second moment for the parallel velocity, as

⟨v2∥(T )⟩ − ⟨v∥(T )⟩2 =
g

2(γ + k)
− g

2(γ + k)
e−2(γ+k)T , (6.8)
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what shows that the dispersion around ⟨v∥(T )⟩ behaves the same as in the non biased AOU,

that is

⟨v2∥⟩St − ⟨v∥⟩2St =
g

2(γ + k)
. (6.9)

Mean Square Displacement

We then proceed to obtain a general formula for the particle’s position r⃗(t), by considering

that v⃗∥(t)∆t =
[
r⃗∥
(
(n+ 1)∆t

)
− r⃗∥

(
n∆t

)]
. We find

r⃗∥
(
(N + 1)∆t

)
− r⃗∥(0) = u∥(0)∆t

N∑
n=0

(1− γ∆t)n
n−1∏
j=0

(p̂j · p̂j+1)p̂n

+
b

γ + k
∆t

N∑
n=0

(1− γ∆t)n
n−1∏
j=0

(p̂j · p̂j+1)p̂n

+b∆t2
N∑

n=0

n−1∑
i=0

(1− γ∆t)n−1−i

n−1∏
j=i

(p̂j · p̂j+1)p̂n

+∆t
N∑

n=0

n−1∑
i=0

(1− γ∆t)n−1−i

n−1∏
j=i

(p̂j · p̂j+1)

∫ (i+1)∆t

i∆t

ξ∥(s)ds p̂n

+∆t
N∑

n=0

∫ (n+1)∆t

n∆t

[(n+ 1)∆t− s]ξ∥(s)ds p̂n . (6.10)

Equation (6.10) represents only the parallel-to-polarization displacement. The complete dis-

placement is obtained by adding the perpendicular displacement ∆r⃗⊥(t) =
∫
ξ⊥(s) ds n̂(t) at

every time step. The final position depends on integrals of stochastic variables, whose aver-

ages are always zero because the polarity direction distribution (θ distribution) is isotropic.

The mean square displacement (MSD), is obtained by squaring equation (6.10) and

taking its average, a long, but straightforward procedure found on appendix (C). The result
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is

MSD =
g∆T

(γ + k)(γ + 2k)
+ 2qk∆T

− g

(γ + k)(γ + 2k)2
[
1− e−(γ+2k)∆T

]
− 2b2

γ(γ + k)2

[
1− e−2(γ+k)∆T

2(γ + k)

]
+

2b2

γk(γ + k)

[
1− e−(γ+2k)∆T

γ + 2k

]
+

2b2

k(γ + k)2

[
∆T − 1− e−k∆T

k

]
− 2b2

k(γ + k)2

[
1− e−(γ+k)∆T

γ + k

]
. (6.11)

We have numerically solved this model equations and the result agrees with the theoretical

prediction. Also, for adequate parameter values, the MSD equation has the same shape as

the modified Fürth equation 5.21 introduced by [Fortuna et al., 2020], presenting all three

migration regimes shown by real cells, indicating that we may be able to define a set of

effective parameters Seff., Peff., Deff. and Reff. that map onto the Biased Ornstein-Uhlenbeck

model’s parameters g, q, γ, b and k.

Since equation 6.11 is composed of more than one exponential term with different

decay rates, however, the mapping of g, q, γ, b and k onto the effective Fürth variables

Seff., Peff., Deff. and Reff., becomes a hard task which has not been completed. Without the

aforementioned mapping, the definition of proper natural units for the system is not yet

possible. Consequently, our future work will focus on these tasks. In what follows we

show figures and calculations with the standard units of time and length instead of the

dimensionless ones introduced in chapter 5.
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Figure 6.2: Comparison between the mean square displacement (MSD) measured from the
numerical solution of our model for 10 particles and with constants g = 10, q = 0.1, γ = 1,
k = 0.04405 and b = 1 (black dots) with the analytical solutions of our current biased model
(black line) and our previous model [de Almeida et al., 2022] (red line), whose velocity PDF
did not agree with experimental results.

Figure 6.2 shows the three-regime behavior: the movement is diffusive for ∆T → 0,

mostly ballistic or anomalous diffusive for 0 < ∆T < ∞ and diffusive for ∆T → ∞, as ob-

served in real cells [Thomas et al., 2020]. In comparison to the AOU model, the bias extends

the particle’s persistence. Observe that the diffusive motion when ∆T → 0 precludes the

definition of instant velocity, the same for the non-biased case.
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Parallel Velocity Probability Density Function

Since this model has a non zero average for the stationary parallel velocity, we may conclude

that this model produces a particle more prone to move forwards than backwards on its po-

larization direction. However, these results are not enough to fully characterize cell motion.

Cell migration experiments also measure probability distributions. Our previous model [de

Almeida et al., 2022] presents a parallel velocity probability density function (PDF) peaked

at zero, a result that does not agree with cell migration experiments.

In this section we analytically obtain the velocity probability density function. We

assume an infinitesimal variation in the PDF, denoted as ∆ρ
(
v∥(T )

)
= ρ

(
v∥(T + ∆t)

)
−

ρ
(
v∥(T )

)
at time T = n∆t, which may be partitioned in n infinitesimal time intervals ∆t.

Then we expand ρ
(
v∥(T +∆t)

)
in a Taylor series where v∥ is given by equation (6.6). Because

we only consider an infinitesimal variation in the PDF and consequently on v∥, the higher

than second order terms can be neglected.

Taking ∆t → 0, we obtain a differential equation for the PDF, known as the Fokker-

Planck equation

∂P (v∥, T )

∂T
= [γ + k]

∂

∂v∥

(
P (v∥, T )

(
v∥ −

b

γ + k

))
+
g

2

∂2P (v∥, T )

∂v2∥
,

where a possible stationary solution ∂P (v∥,t)

∂t
= 0 is a gaussian function, written as

P (v∥) =

√
γ + k

π g
exp

−[γ + k]

(
v∥ − b

γ+k

)2
g

 , (6.12)

a result that implies that in the stationary limit, the velocity probability density function

becomes a gaussian centered at v∥ = b
γ+k

. Hence, the particle has the highest probability

of moving with velocity v∥ = b
γ+k

along the polarization direction, as is observed for single

cell migration, where a cell maintains its actin polymerization at its frontal region. A full

explanation in how to obtain the Fokker-Planck equation (6.12) can be found in appendix

(A). If we compare the analytical results and the numerical ones we see that they agree, as

shown in Fig. 6.3.
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Figure 6.3: Comparison between the analytical (black line) parallel velocity probability den-
sity function with the numerical results (red dots), for 20 particles and with constants g = 10,
q = 0.1, γ = 1, k = 0.04405 and b = 10.

In figure 6.3 we see indeed that the probability density function for the parallel-to-

polarity velocity has a non zero average and assumes a Gaussian form similar to experimen-

tal results. The Gaussian form in our model is due to the uncorrelated impulses originated

from the Wiener variable.

We also measured the velocity PDF along the velocity x and y axes, forming an axially

symmetrical velocity distribution, easily seen that is not centered on zero
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Figure 6.4: Parallel velocity probability density function obtained from the numer-
ical solution of our model for 10 particles and with constants g = 10, q = 0.1, γ = 1,
k = 0.04405 and b = 10. Left: cross section of the parallel velocity’s x axis versus
the velocity probability density function (VPDF). Right: upper view of the VPDF
where the coloring present the probability of each point in the v∥x vs v∥ y.

In experiments, the parallel and perpendicular displacements may not always be sep-

arated. In these cases, displacements are measured together and the ill-definition for instan-

taneous velocity has its effect. That can be by-passed by choosing an adequate time interval

for estimating the mean velocities as v⃗avg = r⃗(t+ε)−r⃗(T )
ε

. This is showcased in figure 6.5, as we

plotted six heat-maps of mean velocity distributions for varying values of ε.
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Figure 6.5: Upper view of the mean velocity probability density func-
tion obtained from the numerical solutions, for varying ε values (ε =
0.0001, 0.001, 0.01, 0.1, 1 and 10 from left to right and top to bottom). The data con-
siders 10 particles and parameter values g = 10, q = 0.1, γ = 1, k = 0.04405 and
b = 10. The brighter the color, the greater the number of occurrences.

We see in figure 6.5 that the time interval in which the average velocity is measured

changes the velocity probability density function. It is also visible that when ε = 0.01 compu-

tational units, the distribution is mostly similar to the parallel-to-polarization distribution,

indicating an approximately ideal time interval of measurement for the mean velocities.

An ideal experimental procedure for robust velocity measurements is to film the tra-

jectories of some cells, obtain its mean square displacement and through the analysis of the

exponents of the mean square displacement curve, find the ideal time interval (when the

trajectory is mostly ballistic) [Fortuna et al., 2020, Thomas et al., 2020].
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Velocity Auto-Correlation Function

Similar to what is found in chapter 5, the biased AOU model also exhibits a exponentially

decaying velocity auto-correlation function. Here, we also define an instantaneous velocity

as

v⃗(T ) = lim
ε→0

∆r⃗(T )

ε

= lim
ε→0

∆r⃗∥(T )

ε
+

∆r⃗⊥(T )

ε

= v⃗∥(T ) + lim
ε→0

∆r⃗⊥(T )

ε
, (6.13)

a value that diverges as ε → 0 due to the diffusive nature of the particle’s perpendicular

dynamics i.e. lim
ε→0

∆r⃗⊥
ε

∼
√√

ε

ε
→ ∞. This does not happen for the VACF solution, as the

perpendicular displacements do not correlate with each other (the perpendicular displace-

ments are both Wiener processes at different instants of time)

V ACF (∆T ) ≡
〈(

v⃗∥(T ) + lim
ε→0

∆r⃗⊥(T )

ε

)
·
(
v⃗∥(T +∆T ) + lim

ε→0

∆r⃗⊥(T +∆T )

ε

)〉
≡

〈(
v⃗∥(T )

)
·
(
v⃗∥(T +∆T )

)〉
. (6.14)

From the parallel velocity equation for the biased AOU model for an arbitrary time T

and equation 6.14, we find

V ACF (∆T ) =
g

2(γ + k)
e−(γ+2k)∆T +

b2

(γ + k)2
e−k∆T , (6.15)

which is an expected result since for ∆T → 0, the correlation is maximum and equal to the

average square velocity V ACF (∆T ) = ⟨v⃗∥(T ) · v⃗∥(T + ∆T )⟩ ∆T→0
= ⟨v2∥⟩ and when ∆T → ∞,

the correlation becomes zero, as the particle forgets its past velocities.

Mean Velocity Auto-Correlation Function Ψ(ε,∆T )

In the previous section, we have shown the parallel velocity auto-correlation solution is at

its maximum when the observation time interval ∆T goes to zero, however experimental

measurements present finite precision, meaning that when the perpendicular displacement
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is much larger than the parallel displacement, the measurement may keep information only

from the perpendicular component. That is

v⃗(ε, T ) =
∆r⃗∥
ε

+
∆r⃗⊥
ε

∼ ∆r⃗⊥
ε

. (6.16)

The finite precision effect is more important for smaller ε, like in the AOU model. Using such

measurements to obtain the MVACF implies that only the non-correlated, perpendicular

displacements are taken into account, thus decreasesing the auto-correlation for small time-

intervals ∆ε.

However, if ε was exactly zero (infinite precision measurements), all of the informa-

tion regarding both v⃗∥ =
∆r⃗∥
ε

and ∆⃗⃗r⊥
ε

would be known, meaning that when the correlations

were calculated, the only remaining value would be that of ⟨v⃗∥(T ) · v⃗∥(T +∆T )⟩ as the self-

correlation ⟨∆r⃗⊥(T ) · r⃗⊥(T + ∆T )⟩ is zero. The consequence is that the theoretical value for

the MVACF may be different when compared to experiments.

To obtain a mean velocity auto-correlation function, we considered two average ve-

locities separated by a time interval ∆T given as v⃗(ε, T ) = r⃗(T+ε)−r⃗(T )
ε

and v⃗(ε, T +∆T ) =
r⃗(T+∆T+ε)−r⃗(T+∆T )

ε
and using equation (6.10) found their respective values. Then we found

their correlation function by calculating the average dot productψ(ε,∆T ) = ⟨v⃗(ε, T )·v⃗(ε, T +∆T )⟩,
which is the mean velocity auto-correlation function.

We got

ψ(ε,∆T ) =
g

2(γ + k)ε2

(
e−(γ+2k)∆T

(γ + 2k)2
(1− e−(γ+2k)ε)(e(γ+2k)ε − 1)

)
+

b2

ε2(γ + k)2

(
e−k∆T

k2
(1− e−kε)(ekε − 1)

)
, (6.17)

which makes sense as we assume the limit ε→ 0, as

ψ(ε→ 0,∆T ) =
g

2(γ + k)ε2

(
e−(γ+2k)∆T

(γ + 2k)2
(
1− (1− (γ + 2k)ε)

)(
(1 + (γ + 2k)ε)− 1

))
+

b2

ε2(γ + k)2

(
e−k∆T

k2
(
1− (1− kε)

)(
(1 + kε)− 1

))
(6.18)

=
g

2(γ + k)
e−(γ+2k)∆T +

b2

(γ + k)2
e−k∆T , (6.19)
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which is precisely the VACF solution, when the perpendicular displacement component is

disregarded. We also note that there is no problem concerning eventual values of ekε and

e(γ+2k)ε for ε→ ∞.

If ∆T < ε we artificially introduce a correlation originated from overlapping average

velocities intervals, meaning that T must be always bigger than ε, as we concluded from

chapter 5 section 5.2. Thus if ε→ ∞ then ∆T → ∞ which makes ψ(ε,∆T ) → 0.

To emulate the lack of instrumental precision in the numerical solutions, we forcibly

reduced the significant figures for the particle’s position, which in turn produced MVACF

solutions with lower correlations for small time intervals ∆T . The numerical solutions were
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Figure 6.6: Log-log plot of ψ(ε,∆T ) versus ∆T considering the numerical solution of our
model for 10 particles and with constants g = 10, q = 0.1, γ = 1, k = 0.04405 and b = 1 with.
Where significant places were reduced as a way to reproduce a reduction of experimental
precision.

As expected, by artificially reducing the significant digits in calculating MVACF we

successfully reproduced experimental velocity auto-correlation graphs [Thomas et al., 2020].
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Also note that the results in figure 6.6 are very similar to the MVACF results from chapter 5

as expected from the analytical results of equations (6.19) and (6.15).
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Chapter 7

Conclusion and Perspectives

In this work we show that to model single cell dynamics focusing on its kinetics properties

we must consider both asymmetry in the dynamics equations and a bias in the stochastic

term responsible to provide kinetic energy to the parallel-to-polarization degree of freedom.

In this way, we could explain the short time interval diffusive regime and still consider a

Langevin-like dynamics for the parallel velocity. The result is a properly described kinetics,

that evinces a century-old problem in measuring single cell speed, that yields theoretical pre-

dictions for MSD, VACF, and velocity density functions that describe well the experimental

findings.

For the non-biased model, it was possible to obtain natural units to the system based

on the theoretical parameters. These natural units provided a straightforward way to quan-

titatively compare theory, simulations, and experiments. For example, simulation units as

Monte Carlo Steps and the lattice constants may be translated into seconds and micrometers.

The biased model revealed to be more complicated and requires further work to understand

the limits for the theory parameters where natural units of length and time may be ade-

quately defined. The resulting plots for MSD and VACF, however, show the same behavior

as the experiments and the non-biased model, indicating that at least approximately these

natural units may be defined.

Adding anisotropy to both models is important to separate the dynamics and by in-

troducing the Wiener dynamics for the perpendicular displacement we could explain the

short-time interval diffusive regime. For point particles, that could be a conceptual prob-

lem, regarding on how to assign Newton’s law to a particle for which it is not possible to
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define velocity. However, cells are not point particles nor they are rigid body. The lamel-

lipodium in mensechymal migrating cells are constantly protruding and receding at many

different time and size scales. At a given moment more than one membrane fluctuation

may occur at different locations of the lamellipodium. The cell’s center of mass will change

due to a sum of these fluctuations. Furthermore, there is a favored direction in the lamel-

lipodium protrusions due to an organized mesh of fibers that carry the necessary molecules

to the cell front. Directions perpendicular to the preferred orientation of these fibers are less

favored and it may be a sound hypothesis that they sum up as a Gaussian source of stochas-

tic displacements. As a by-product, the model we proposed basis a robust procedure for

experimental cell speed measurement as well as its correlation and probability density func-

tions, by pointing to the important role played by the choice of the adequate time intervals

to estimate speed and velocity.

A further remark regards to chemotaxis, an important process in cell migration, present

in many in-vivo phenomena. A cell is guided by chemical gradients, but not in the same way

as a charged particle is attracted or repelled by an electric field. The cell is not pulled by the

chemical gradient, in the sense that the cell machinery is responsible for the cell motion with

or without a chemical field. A cell always migrate due to its internal machinery and in the

direction that its lamellipodium is pulling. Due to the lamellipodium dynamics, in the ab-

sence of a chemical field, the cell movement changes direction with a a persistence that is

characteristic of the experimental set-up. When a chemical gradient is present, the lamel-

lipodium direction changes are affected, such that the motion direction persistence may be

infinite. Increasing the chemical gradient, for example, may not change the cell speed, this

is determined by the internal cell machinery. However, the cell velocity in the direction of

the chemical gradient is enhanced, due to the increased directional persistence.

Forcing an alignment of cell polarization with the chemical gradient in the non-biased

AOU model cannot increase the average cell velocity in this direction since its average is

zero. On the other hand, in the biased AOU model may explain the cell kinetics under the

action of a chemical gradient. This is part of my future work.

Finally, the Fokker Planck equation for migrating cells, presented as a way to calcu-

lated velocity probability density function, opens the possibility of describing cells dynamics
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as probability equations and extending it to a system made of many cells, where the inter-

action terms between each cell may be added. Naturally in this case, we must focus on

numerical solutions. This will be contemplated in future works.
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Appendix A

Parallel Velocity Density of Probability
Function

Considering the parallel velocity equation 6.4 at time t = n∆t, with n being an arbitrary

integer

v∥(t+∆t) =

[
(1− γ∆t)v∥(t) +

∫ t+∆t

t

(ξ∥ + b)ds

]
p̂n · p̂n+1 , (A.1)

we may write a probability density function ρ(v∥) as

ρ(v∥(t+∆t)) = ρ

([
(1− γ∆t)v∥(t) +

∫ t+∆t

t

(ξ∥ + b)ds

]
p̂n · p̂n+1

)
then, (A.2)

we can write a finite time difference of the aforementioned probability density as

∆ρ = ρ
(
v∥(t+∆t)

)
− ρ

(
v∥(t)

)
= ρ

([
(1− γ∆t)v∥(t) +

∫ t+∆t

t

(ξ∥ + b)ds

]
p̂n · p̂n+1

)
− ρ

(
v∥(t)

)
. (A.3)

To obtain a differential equation that depends directly on the parallel velocity equa-

tion, we consider that the difference of v∥ will be infinitesimal when considering an infinites-

imal time interval ∆t i.e. v∥(t+∆t)− v∥(t) = ∆v∥ ∼ ∆t. For an infinitesimal variation in v∥,

we may expand the probability density function in Taylor series centered around t

∆ρ = ρ(v∥(t)) + ρ′(v∥(t))

([
(1− γ∆t)v∥(t) +

∫ t+∆t

t

(ξ∥ + b)ds

]
p̂n · p̂n+1 − v∥(t)

)
+
1

2
ρ′′(v∥(t))

([
(1− γ∆t)v∥(t) +

∫ t+∆t

t

(ξ∥ + b)ds

]
p̂n · p̂n+1 − v∥(t)

)2

− ρ
(
v∥(t)

)
+O(∆t2) .

(A.4)
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Here we prove that higher than second order terms can be left out. To do this, we first

note that ⟨p̂n · p̂n+1⟩ = ⟨cos(∆θ)⟩ ≈ (1− k∆t), a conclusion from appendix F. Allowing us to

rewrite equation (A.4) as

∆ρ = ρ′(v∥(t))

([
(1− γ∆t)v∥(t) +

∫ t+∆t

t

(ξ∥ + b)ds

]
cos(∆θ)− v∥(t)

)
+
1

2
ρ′′(v∥(t))

([
(1− γ∆t)v∥(t) +

∫ t+∆t

t

(ξ∥ + b)ds

]
cos(∆θ)− v∥(t)

)2

− ρ
(
v∥(t)

)
+O(∆t2)

= ρ′(v∥(t))

([(
1− 1

cos(∆θ)
− γ∆t

)
v∥(t) +

∫ t+∆t

t

(ξ∥ + b)ds

]
cos(∆θ)

)
+
1

2
ρ′′(v∥(t))

([(
1− 1

cos(∆θ)
− γ∆t

)
v∥(t) +

∫ t+∆t

t

(ξ∥ + b)ds

]
cos(∆θ)

)2

+O(∆t2)

, (A.5)

here, the series will be proportional to powers of (the parallel velocity equation)

v∥(t+∆t) =

([(
1− 1

cos(∆θ)
− γ∆t

)
v∥(t) +

∫ t+∆t

t

(ξ∥ + b)ds

]
cos(∆θ)

)
. (A.6)

The second power of (A.6) is

(A.6)2 =

[(
1− 1

cos(∆θ)
− γ∆t

)2

v2∥(t) +

(∫ t+∆t

t

(ξ∥ + b)ds

)2

+2

{(
1− 1

cos(∆θ)
− γ∆t

)
v∥(t)

}∫ t+∆t

t

(ξ∥ + b)ds

]
cos2(∆θ) , (A.7)
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after averaging, we have

〈
(A.6)2

〉
=

〈[(
1− 1

cos(∆θ)
− γ∆t

)2

v2∥(t) +

(∫ t+∆t

t

(ξ∥ + b)ds

)2

+2

{(
1− 1

cos(∆θ)
− γ∆t

)
v∥(t)

}∫ t+∆t

t

(ξ∥ + b)ds

]
cos2(∆θ)

〉

=

(
1− 1

1− k∆t
− γ∆t

)2

⟨v2∥(t)⟩⟨cos2(∆θ)⟩+
(∫ t+∆t

t

(ξ∥ + b)ds

)2

cos2(∆θ)

+2

(
1− 1

1− k∆t
− γ∆t

)
⟨v∥(t)⟩

∫ t+∆t

t

(ξ∥ + b)ds⟨cos2(∆θ)⟩

≈
(
1− k∆t− 1− γ∆t(1− k∆t)

)2
⟨v2∥(t)⟩+

〈(∫ t+∆t

t

(ξ∥ + b)ds

)2
〉
(1− k∆t)2

+2
(
(1− k∆t)2 − (1− k∆t)− γ(1− k∆t)2∆t

)
⟨v∥(t)⟩

〈∫ t+∆t

t

(ξ∥ + b)ds

〉

≈
�������������:0(
− k∆t− γ∆t

)2
⟨v2∥(t)⟩+

(
g∆t+ b2∆t2

)
(1− 2k∆t)

+2
(
1− 2k∆t− 1 + k∆t− γ(1− 2k∆t)∆t

)
⟨v∥(t)⟩b∆t

≈ g∆t+ 2
(
− k∆t− γ(1− 2k∆t)∆t

)
⟨v∥(t)⟩b∆t

≈ g∆t . (A.8)

Because (A.6)2 ≈ g∆t, we know that every other higher power of (A.6) will result in

terms proportional to ∆tn n > 3/2, which can be ruled out. Considering (A.6)3 ∼ 0, we have

⟨∆ρ⟩ =

〈
ρ′(v∥(t))

([(
1− 1

cos(∆θ)
− γ∆t

)
v∥(t) +

∫ t+∆t

t

(ξ∥ + b)ds

]
cos(∆θ)

)〉
+
1

2
⟨ρ′′(v∥(t))⟩g∆t+O(∆t2)

=
〈
ρ′(v∥(t))

(
[1− k∆t− 1− γ∆t (1− k∆t)] v∥

〉
+
〈
ρ′(v∥(t))b∆t(1− k∆t)

)〉
+
1

2
⟨ρ′′(v∥(t))⟩g∆t+O(∆t2)

=
〈
ρ′(v∥(t))

(
[−k∆t− γ∆t] v∥ + b∆t

) 〉
+
1

2
⟨ρ′′(v∥(t))⟩g∆t+O(∆t2) . (A.9)

Now, we divide both sides of equation (A.9) by ∆t, wee have a time variation of the
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parallel velocity probability density

⟨∆ρ⟩
∆t

= −
〈
ρ′(v∥(t))

(
[γ + k] v∥ − b

)〉
+

1

2
⟨ρ′′(v∥(t))⟩g +O(∆t2) , (A.10)

here, we have obtained an equation that is similar to a Fokker-Planck however we must

remove the averaging brackets to obtain a full Fokker-Planck equation, to do it, we assume

that

⟨F
(
x(t)

)
⟩ =

∫
P (z, t)F (z) dz thus, (A.11)

we rewrite the left side of equation (A.10) as

⟨∆ρ⟩
∆t

∆t→0
=

∂

∂t

∫
P (z, t)ρ(z) dz whereas,

the right side terms of (A.10) may be rewritten as

⟨ρ′(v∥)
(
[γ + k] v∥ − b

)
⟩ =

∫
P (z, t)

(
[γ + k] v∥ − b

)
ρ′(z) dz and (A.12)

⟨ρ′′(v∥)g⟩
2

=

∫
P (z, t)gρ′′(z) dz now, (A.13)

considering the special case where ρ(v∥) = δ(v∥(t)−V∥) (the velocities all start from the same

point at t = 0), we have

⟨∆ρ⟩
∆t

∆t→0
=

∂

∂t

∫
P (z, t)δ(z − V∥) dz

∆t→0
=

∂

∂t
P (V∥, t) , (A.14)

to simplify the other terms, we recall that the Dirac’s delta function has the property of

”transferring” a derivative applied to itself to a function that it is multiplied by inside an

integral (this is actually a case of the integration by parts),

⟨ρ′(v∥)
(
[γ + k] v∥ − b

)
⟩ =

∫
P (z, t) ([γ + k] z − b)

d

dz
δ
(
z − V∥

)
dz

= −
∫

d

dz
(P (z, t) ([γ + k] z − b)) δ

(
z − V∥

)
dz

= − ∂

∂V∥

(
P (V∥, t)

(
[γ + k]V∥ − b

) )
, (A.15)

the second term is

⟨ρ′′(v∥(t))⟩g =

∫
P (z, t) g

d2

dz2
δ(z − V∥)dz

=

∫
δ(z − V∥)

d2

dz2

(
P (z, t) g

)
dz

= g
d2

dV 2
∥
P (V∥, t) , (A.16)
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after grouping the three separate terms, the final simplified equation has the form of

∂P (V∥, t)

∂t
=

∂

∂V∥

(
P (V∥, t)

(
[γ + k]V∥ − b

))
+
g

2

∂2P (V∥, t)

∂V 2
∥

= [γ + k]
∂

∂V∥

(
P (V∥, t)

(
V∥ −

b

γ + k

))
+
g

2

∂2P (V∥, t)

∂V 2
∥

, (A.17)

here, V∥ is an arbitrary variable, we can write it as the old parallel to polarization velocity v∥,

in other words,

∂P (v∥, t)

∂t
= [γ + k]

∂

∂v∥

(
P (v∥, t)

(
v∥ −

b

γ + k

))
+
g

2

∂2P (v∥, t)

∂v2∥
. (A.18)

The known solution of a Fokker-Planck equation for the Ornstein-Uhlenbeck process

is a Gaussian function, to find a stationary result, we impose ∂P (v∥,t)

∂t
= 0, thus obtaining

P (v∥) =

√
γ + k

π g
exp

−[γ + k]

(
v∥ − b

γ+k

)2
g

 , (A.19)

a result that implies that in the stationary limit, the velocity probability density function

becomes a Gaussian curve centered at v∥ = b
γ+k

, in other words, the particle has the highest

probability of moving with velocity v∥ = b
γ+k

in the polarity axis, as is observed in individual

cellular migration, where a cell maintains a stable actin polymerization in its frontal region.
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Figure A.1: Comparing between the analytical parallel-to-polarity vector velocity probabil-
ity density function with the numerical results, for 20 particles and with constants g = 10,
q = 0.1, γ = 1, k = 0.04405 and b = 10.
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Appendix B

Parallel Velocity Solution

B.1 Average Parallel Velocity

We start at t = 0 with the speed v∥0 (which can be either positive or negative) in the direction

of the cell polarization p̂0. The velocity in the direction of cell polarization p̂1 at the beginning

of the subsequent small time interval [∆t, 2∆t] is:

v∥(∆t)p̂1 =

[
(1− γ∆t)v∥(0) +

∫ ∆t

0

(ξ∥(s) + b)ds

]
(p̂0 · p̂1)p̂1 , (B.1)

where p̂i is the polarization vector at time interval [i∆t, (i+ 1)∆t], b is the constant of biased

motion and ξ∥ is a Gaussian white noise with variation g (⟨ξ∥(t)ξ∥(t′)⟩ = gδ(t − t′)). By

iterating the velocity equation (B.1) once, we obtain v∥ at the beginning of the subsequent

time interval [2∆t, 3∆t]

v∥(2∆t)p̂2 =

[
χ v∥(∆t) +

∫ 2∆t

∆t

(ξ∥(s) + b)ds

]
(p̂1 · p̂2)p̂2

=

[(
χ2 v∥(0) + χ

∫ ∆t

0

(ξ∥(s) + b)ds

)
(p̂0 · p̂1) +

∫ 2∆t

∆t

(ξ∥(s) + b)ds

]
(p̂1 · p̂2)p̂2 ,

(B.2)

where we have used (1− γt) = χ(t). For the next time interval [3∆t, 4∆t], v∥ is

v∥(3∆t)p̂3 =

[
χ v∥(2∆t) +

∫ 3∆t

2∆t

(ξ∥(s) + b)ds

]
(p̂2 · p̂3)p̂3

=

[(
χ3v∥(0) + χ2

∫ ∆t

0

(ξ∥(s) + b)ds

)
(p̂0 · p̂1) +

(
χ

∫ 2∆t

∆t

(ξ∥(s) + b)ds

)]
(p̂1 · p̂2)(p̂2 · p̂3)p̂2

+

∫ 3∆t

2∆t

(ξ∥(s) + b)ds (p̂2 · p̂3)p̂3 . (B.3)
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We iterate the formula once more:

v∥(4∆t)p̂4 = χ4v∥(0)(p̂0 · p̂1)(p̂1 · p̂2)(p̂2 · p̂3)(p̂3 · p̂4)p̂4

+χ3

(∫ ∆t

0

(ξ∥(s) + b)ds

)
(p̂0 · p̂1)(p̂1 · p̂2)(p̂2 · p̂3)(p̂3 · p̂4)p̂4

+χ2

(∫ 2∆t

∆t

(ξ∥(s) + b)ds

)
(p̂1 · p̂2)(p̂2 · p̂3)(p̂3 · p̂4)p̂4

+χ

(∫ 3∆t

2∆t

(ξ∥(s) + b)ds

)
(p̂3 · p̂4)p̂4

+

∫ 4∆t

3∆t

(ξ∥(s) + b)ds p̂4 . (B.4)

With the results above, we can create a generalized formula for the nth step

v∥(n∆t)p̂n = χnv∥(0)
n−1∏
i=0

(p̂i · p̂i+1)p̂n+
n∑

i=1

χn−i

(∫ i∆t

(i−1)∆t

(ξ∥(s) + b)ds

) n−1∏
j=i−1

(p̂j · p̂j+1)p̂n . (B.5)

With a generalized equation for the parallel velocity in hands, we must characterize

this stochastic function by taking its average and squared average. The first step is to take

an average over the noise realizations of the parallel velocity’s noise ξ∥

⟨v∥(n∆t)⟩ =

〈
χnv∥(0)

n−1∏
i=0

(p̂i · p̂i+1)

〉
+

〈
n∑

i=1

χN−i

(∫ i∆t

(i−1)∆t

(ξ∥(s) + b)ds

) n−1∏
j=i−1

(p̂j · p̂j+1)

〉

= χnv∥(0)(1− k∆t)n +∆tb
n∑

i=1

χn−i(1− k∆t)n−i

= v∥(0)χ
nαn + b∆t

n∑
i=1

χn−iαn−i , (B.6)

where we call α = (1 − k∆t). To obtain a solution for the geometric summation, we will

invert the order of the powers of χ and α such that

X =
n∑

i=1

xn−i =
n−1∑
i=0

xi , (B.7)

this is always true, as we may consider the terms in a increasing or decreasing order of

powers.
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By applying the same identity to the parallel velocity formula, we get

⟨v∥(n∆t)⟩ = v∥(0)χ
nαn + b∆t

n−1∑
i=0

χiαi

= v∥(0)χ
nαn + b∆t

(
1− (χα)n−1

1− χα

)
. (B.8)

In the equation above (B.8), we used the definition for a geometric sum

n∑
i=j

xi =
xj − xn+1

1− x
. (B.9)

The next step is to assume that n→ ∞ and n∆t→ T <∞. If n→ ∞, we can use

(1− x∆t)n =

(
1− x

T

n

)n
n→∞
= e−xT , (B.10)

we also consider that the product of χ and α is

χα = (1− γ∆t)(1− k∆t) = 1− (γ + k)∆t+ γk∆t2

= 1− (γ + k)∆t+O(∆t2)
∆t2<<∆t

≈ 1− (γ + k)∆t , (B.11)

where we assumed that ∆t2 << ∆t, allowing us to rule out the term γk∆t2. Using identities

B.10 and B.10 onto B.8, we find

⟨v∥(n∆t)⟩ ≈ v∥(0)(1− (γ + k)∆t)N + b∆t

(
1− (1− (γ + k)∆t)N

(γ + k)∆t

)
≈ v∥(0)e

−(γ+k)T + b

(
1− e−(γ+k)T

γ + k

)
, (B.12)

which may be rewritten as

⟨v∥(n∆t)⟩ =
b

γ + k
+

(
v∥(0)−

b

γ + k

)
e−(γ+k)T (B.13)

So if we start from an initial distribution of v∥(0) whose average is b
γ+k

, the average

parallel speed becomes assumes its stationary value. Consequently,

⟨v∥(N∆t)⟩stationary =
b

γ + k
(B.14)
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We can also define u∥ as

u∥ = v∥ −
b

γ + k
. (B.15)

Using Eq.B.15 in Eq.B.1, after we have projected to the new polarization direction, but

at the beginning of interval [∆t, 2∆t),[
u∥(∆t) +

b

γ + k

]
p̂1 =

{
(1− γ∆t)

[
u∥(0) +

b

γ + k

]
+

∫ ∆t

0

(ξ∥(s) + b)ds

}
(p̂0 · p̂1)p̂1

=

{
(1− γ∆t)

[
u∥(0) +

b

γ + k

]
+ b∆t+

∫ ∆t

0

ξ∥(s)ds

}
(p̂0 · p̂1)p̂1 ,

(B.16)

Iterating, we get the expression for
[
u∥(2∆t)− b

γ+k

]
as

[
u∥(2∆t) +

b

γ + k

]
p̂2 =

{
(1− γ∆t)

[
u∥(∆t) +

b

γ + k

]
+

∫ 2∆t

∆t

(ξ∥(s) + b)ds

}
(p̂1 · p̂2)p̂2

= (1− γ∆t)2
[
u∥(0) +

b

γ + k

]
(p̂0 · p̂1)(p̂1 · p̂2)p̂2

+b∆t [(1− γ∆t)(p̂0 · p̂1) + 1] (p̂1 · p̂2)p̂2

+(1− γ∆t)

∫ ∆t

0

ξ∥(s)ds (p̂0 · p̂1)(p̂1 · p̂2)p̂2

+

∫ 2∆t

∆t

ξ∥(s)ds (p̂1 · p̂2)p̂2 . . . (B.17)

and for the next time interval[
u∥(3∆t) +

b

γ + k

]
p̂3 =

{
(1− γ∆t)

[
u∥(2∆t) +

b

γ + k

]
+

∫ 3∆t

2∆t
(ξ∥(s) + b)ds

}
(p̂2 · p̂3)p̂3

= (1− γ∆t)3
[
u∥(0) +

b

γ + k

]
(p̂0 · p̂1)(p̂1 · p̂2)(p̂2 · p̂3)p̂3

+b∆t
[
(1− γ∆t)2(p̂0 · p̂1)(p̂1 · p̂2) + (1− γ∆t)(p̂1 · p̂2) + 1

]
(p̂2 · p̂3)p̂3

+(1− γ∆t)2
∫ ∆t

0
ξ∥(s)ds (p̂0 · p̂1)(p̂1 · p̂2)(p̂2 · p̂3)p̂3

+(1− γ∆t)

∫ 2∆t

∆t
ξ∥(s)ds (p̂1 · p̂2)(p̂2 · p̂3)p̂3

+

∫ 3∆t

2∆t
ξ∥(s)ds (p̂2 · p̂3)p̂3 . (B.18)
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Generalizing,[
u∥(n∆t) +

b

γ + k

]
p̂n =

{
(1− γ∆t)

[
u∥((n− 1)∆t) +

b

γ + k

]
+

∫ n∆t

(n−1)∆t

(ξ∥(s) + b)ds

}
(p̂n−1 · p̂n)p̂n

= (1− γ∆t)n
[
u∥(0) +

b

γ + k

] n−1∏
i=0

(p̂i · p̂i+1) p̂n

+b∆t
[
(1− γ∆t)n−1

n−1∏
i=0

(p̂i · p̂i+1) + (1− γ∆t)n−2

n−2∏
i=1

(p̂i · p̂i+1) + · · ·+ 1
]
p̂n−1

+(1− γ∆t)n−1

∫ ∆t

0

ξ∥(s)ds
n−1∏
i=0

(p̂i · p̂i+1) p̂n

+(1− γ∆t)n−2

∫ 2∆t

∆t

ξ∥(s)ds
n−1∏
i=1

(p̂i · p̂i+1) p̂n

+ · · ·

+

∫ n∆t

(n−1)∆t

ξ∥(s)ds (p̂n−1 · p̂n)p̂n (B.19)

or in the summation notation[
u∥(n∆t) +

b

γ + k

]
p̂n = u∥(0)χ

n

n−1∏
j=0

(p̂j · p̂j+1)p̂n

+

(
b

γ + k

)
χn

n−1∏
j=0

(p̂j · p̂j+1)p̂n

+b∆t

(
n−1∑
i=0

χn−1−i

n−1∏
j=i

(p̂j · p̂j+1)

)
p̂n

+

(
n−1∑
i=0

χn−1−i

n−1∏
j=i

((p̂j · p̂j+1))

∫ (i+1)∆t

i∆t

ξ∥(s)ds

)
p̂n (B.20)

Averaging 〈
u∥(N∆t) +

b

γ + k

〉
=

b

γ + k
+ u∥(0)e

−(γ+k)T , (B.21)

which allows us to conclude that when we consider a non-biased average parallel velocity

becomes zero a stationary state:

〈
u∥(N∆t)

〉
= u∥(0)e

−(γ+k)T T→∞→ 0 . (B.22)
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B.2 Average Squared Parallel Velocity

The average squared parallel velocity ⟨|v∥|2⟩ can be calculated by squaring expression (B.20),

but first, we make substitutions χ = (1− γ∆t) and α = p̂i · p̂i+1 for simplicity

v2∥(N∆t) =

[
u∥(n∆t) +

b

γ + k

]2
= χ2Nv2∥(0)

N−1∏
i=0

(p̂i · p̂i+1)
2

+
N∑
i=1

N∑
n=1

χ2N−i−n

(∫ i∆t

(i−1)∆t

∫ n∆t

(n−1)∆t

(ξ∥(s) + b)(ξ∥(s
′) + b)ds ds′

)

×
N−1∏
j=i−1

(p̂j · p̂j+1)
N−1∏
l=n−1

(p̂l · p̂l+1)

+2χNv∥(0)
N−1∏
q=0

(p̂q · p̂q+1)
N∑
i=1

χN−i

(∫ i∆t

(i−1)∆t

(ξ∥(s) + b)ds

) N−1∏
j=i−1

(p̂j · p̂j+1) .

(B.23)

averaging it, we get

⟨v2∥(N∆t)⟩ =
〈
χ2Nv2∥(0)

N−1∏
i=0

(p̂i · p̂i+1)
2

+
N∑
i=1

N∑
n=1

χ2N−i−n

(∫ i∆t

(i−1)∆t

∫ n∆t

(n−1)∆t

(ξ∥(s) + b)(ξ∥(s
′) + b)ds ds′

)

×
N−1∏
j=i−1

(p̂j · p̂j+1)
N−1∏
l=n−1

(p̂l · p̂l+1)

+2χNv∥(0)
N−1∏
q=0

(p̂q · p̂q+1)
N∑
i=1

χN−i

(∫ i∆t

(i−1)∆t

(ξ∥(s) + b)ds

) N−1∏
j=i−1

(p̂j · p̂j+1)
〉

,
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now we proceed by expanding the terms inside the integrals

⟨v2∥(N∆t)⟩ =
〈
χ2Nv2∥(0)

N−1∏
i=0

(p̂i · p̂i+1)
2

+
N∑
i=1

N∑
n=1

χ2N−i−n

(∫ i∆t

(i−1)∆t

∫ n∆t

(n−1)∆t

(ξ∥(s)ξ∥(s
′) + b2)ds ds′

)

×
N−1∏
j=i−1

(p̂j · p̂j+1)
N−1∏
l=n−1

(p̂l · p̂l+1)

+2χNv∥(0)
N−1∏
q=0

(p̂q · p̂q+1)
N∑
i=1

χN−i

(∫ i∆t

(i−1)∆t

(ξ∥(s) + b)ds

) N−1∏
j=i−1

(p̂j · p̂j+1)
〉

,

and then taking their averages. Here we know that the averages of the random stochastic

variables become zero for they have zero average. The average of a product of a stochastic

variable with itself is also zero if their respective time intervals are different i.e. ⟨ξ∥(t)ξ∥(t′)⟩ =
gδ(t− t′), if t ̸= t′, then ξ∥(t)ξ∥(t′)⟩ = 0. Then

⟨v2∥(N∆t)⟩ = χ2Nv2∥(0)α
2(N−1)

+
N∑
i=1

N∑
n=1

χ2N−i−n

(∫ i∆t

(i−1)∆t

∫ n∆t

(n−1)∆t

(gδ(s− s′) + b2)ds ds′
)

×
〈 N−1∏

j=i−1

(p̂j · p̂j+1)
N−1∏
l=n−1

(p̂l · p̂l+1)
〉

+2
〈
v∥(0) b∆t χ

N

N−1∏
q=0

(p̂q · p̂q+1)
N∑
i=1

χN−i

N−1∏
j=i−1

(p̂j · p̂j+1)
〉

.

The equation then becomes
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⟨v2∥(N∆t)⟩ = χ2Nv2∥(0)α
2(N−1)

+b2(∆t)2
N∑
i=1

N∑
n=1

χ2N−i−n
〈 N−1∏

j=i−1

(p̂j · p̂j+1)
N−1∏
l=n−1

(p̂l · p̂l+1)
〉

+
N∑
i=1

N∑
n=1

χ2N−i−n

(∫ i∆t

(i−1)∆t

g δi,n ds

)〈 N−1∏
j=i−1

(p̂j · p̂j+1)
N−1∏
l=n−1

(p̂l · p̂l+1)
〉

+2
〈
v∥(0) b∆t χ

N

N∑
i=1

N−1∏
q=0

N−1∏
j=i−1

χN−i(p̂q · p̂q+1)(p̂j · p̂j+1)
〉

.

After evaluating the integrals and taking the averages of all the terms in equation

B.24, we get

⟨v2∥(N∆t)⟩ = χ2Nv2∥(0)α
2(N−1)

+b2(∆t)2
N∑
i=1

N∑
n=1

χ2N−i−n
〈 N−1∏

j=i−1

(p̂j · p̂j+1)
N−1∏
l=n−1

(p̂l · p̂l+1)
〉

+g∆t
N∑
i=1

χ2(N−i)
〈 N−1∏

j=i−1

(p̂j · p̂j+1)
2
〉

+2
〈
v∥(0) b∆t χ

N

N∑
i=1

N−1∏
q=0

N−1∏
j=i−1

χN−i(p̂q · p̂q+1)(p̂j · p̂j+1)
〉

,

for simplicity, we will solve each term in the expression (B.24) separately

V1 = χ2Nv2∥(0)α
2(N−1) (B.24)

V2 = b2(∆t)2
N∑
i=1

N∑
n=1

χ2N−i−n
〈 N−1∏

j=i−1

(p̂j · p̂j+1)
N−1∏
l=n−1

(p̂l · p̂l+1)
〉

(B.25)

V3 = g∆t
N∑
i=1

χ2(N−i)
〈 N−1∏

j=i−1

(p̂j · p̂j+1)
2
〉

(B.26)

V4 = 2
〈
v∥(0) b∆t χ

N

N∑
i=1

N−1∏
q=0

N−1∏
j=i−1

χN−i(p̂q · p̂q+1)(p̂j · p̂j+1)
〉

. (B.27)

The first term is straightforward, we just have to assume that N → ∞ and use an

exponential approximation
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V1 = χ2Nv2∥(0)α
2(N−1)

= v2∥(0)e
−2(γ+k)T , (B.28)

where we considered that

χ2Nα2(N−1) = (1− γ∆t)2N(1− k∆t)2(N−1)

≈
(
1− γ

T

N

)2(N−1)(
1− k

T

N

)2(N−1)

(B.29)

N→∞
≈ e−2(γ+k)N∆t (B.30)

N→∞
≈ e−2(γ+k)T . (B.31)

The second term is not so simple,

V2 = b2(∆t)2
N∑
i=1

N∑
n=1

χ2N−i−n
〈 N−1∏

j=i−1

(p̂j · p̂j+1)
N−1∏
l=n−1

(p̂l · p̂l+1)
〉

= b2(∆t)2
N∑
i=1

N∑
n=1

χ2N−i−nαN−iαN−n (B.32)

To solve it, we will invert the order of the powers of the summation and use the

geometrical series identity (B.9)

V2 = b2(∆t)2
N−1∑
i=0

N−1∑
n=0

χi+nαi+n

= b2(∆t)2
N−1∑
i=0

χiαi

N−1∑
n=0

χnαn

= b2(∆t)2
(
1− (χα)N

1− χα

)(
1− (χα)N

1− χα

)
= b2(∆t)2

(
1− (χα)N

1− χα

)2

. (B.33)

Now we have again to use the approximation (B.11) such that we obtain
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V2 = b2(∆t)2
(
1− (χα)N

1− χα

)2

≈ b2(∆t)2
(

1− (χα)N

1− (1− (γ + k)∆t)

)2

≈ b2(∆t)2
(
1− (χα)N

(γ + k)∆t

)2

≈ b2
(
1− e−(γ+k)T

γ + k

)2

. (B.34)

The third one is

V3 = g∆t
N∑
i=1

χ2(N−i)
〈 N−1∏

j=i−1

(p̂j · p̂j+1)
2
〉

= g∆t
N∑
i=1

χ2(N−i)α2(N−i)

= g∆t

(
1− (χα)2N

1− (χα)2

)
= g

(
1− e−2(γ+k)T

2(γ + k)

)
. (B.35)

And for the last term we have
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V4 = 2
〈
v∥(0) b∆t χ

N

N∑
i=1

N−1∏
q=0

N−1∏
j=i−1

χN−i(p̂q · p̂q+1)(p̂j · p̂j+1)
〉

= 2v∥(0) b∆t χ
N

N∑
i=1

N−1∏
q=0

N−1∏
j=i−1

χN−iαNαN−i+1

= 2v∥(0) b∆t χ
NαN

N∑
i=1

χN−iαN−i+1

= 2v∥(0) b∆t χ
NαN

(
1− (χα)N

1− χα

)
= 2v∥(0) b∆t e

−(γ+k)T

(
1− e−(γ+k)T

(γ + k)∆t

)
= 2v∥(0) b e

−(γ+k)T

(
1− e−(γ+k)T

(γ + k)

)
= 2v∥(0) b

(
e−(γ+k)T − e−2(γ+k)T

(γ + k)

)
(B.36)

Now, returning to expression (B.24) = V1 + V2 + V3 + V4, we get

⟨v2∥(N∆t)⟩ = v2∥(0)e
−2(γ+k)T + b2

(
1− e−(γ+k)T

γ + k

)2

+ g

(
1− e−2(γ+k)T

2(γ + k)

)
+2bv∥(0)

(
e−(γ+k)T − e−2(γ+k)T

γ + k

)
(B.37)

= e−(γ+k)T

[
− 2b2

(γ + k)2
+

2bv∥(0)

γ + k

]
+e−2(γ+k)T

[
v2∥(0) +

b2

(γ + k)2
− g

2(γ + k)
−

2bv∥(0)

γ + k

]
+

g

2(γ + k)
+

b2

(γ + k)2
,

(B.38)

finally
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⟨v2∥(N∆t)⟩ = e−(γ+k)T

[
− 2b2

(γ + k)2
+

2bv∥(0)

γ + k

]
+e−2(γ+k)T

[
v2∥(0) +

b2

(γ + k)2
− g

2(γ + k)
−

2bv∥(0)

γ + k

]
+

g

2(γ + k)
+

b2

(γ + k)2
.

(B.39)

Because for the biased anisotropic Ornstein-Uhlenbeck model, the average parallel

velocity is not zero, the parallel velocity second momentum is

⟨v2∥⟩ − ⟨v∥⟩2 = e−(γ+k)T

[
− 2b2

(γ + k)2
+

2bv∥(0)

γ + k

]
+e−2(γ+k)T

[
v2∥(0) +

b2

(γ + k)2
− g

2(γ + k)
−

2bv∥(0)

γ + k

]
+

g

2(γ + k)
+

b2

(γ + k)2

− b2

(γ + k)2
+

(
v2∥(0) +

b2

(γ + k)2
−

2bv∥(0)

(γ + k)

)
e−2(γ+k)T

− 2b

(γ + k)
e−(γ+k)T

(
v∥ −

b

(γ + k)

)
=

g

2(γ + k)

(
1− e−2(γ+k)T

)
, (B.40)

which means that the dispersion in the velocity distribution is only an effect of the Wiener

variable ξ∥ with variance g, the same dispersion as we obtained in the AOU model. The bias

variable b, only shifts the parallel distribution from v∥ = 0 to v∥ = b
(γ+k)

. Which would be the

same result if we calculated the variance of the non-biased velocity u∥.

Now, assuming that the system starts at the stationary state, where v∥(0) = b
γ+k

and

v2∥(0) =
g

2(γ + k)
+

b2

(γ + k)2
, (B.41)

we obtain the same result if we considered the limits to T → ∞

⟨v2∥(T )⟩
T→∞≡ ⟨v2∥⟩stationary (B.42)

=
g

2(γ + k)
+

b2

(γ + k)2
, (B.43)

we obtain the stationary average squared velocity (when the system relaxed, reaching a

stationary state).
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Appendix C

Mean Square Displacement

Here we assume that the parallel velocity can be written as

v⃗∥(∆T ) =
r⃗∥ ((n+ 1)∆t)− r⃗∥(n∆t)

∆t
, (C.1)

then, using equation B.5 from appendix B, we isolate the position terms of the displacement
equation to obtain

∆r⃗(n∆t) = v∥(n∆t) ∆t p̂n

= ∆t

[
u∥(n∆t) +

b

γ + k

]
p̂n

= ∆t (1− γ∆t)n
n−1∏
i=0

(p̂i · p̂i+1)

[
u∥(0) +

b

γ + k

]
p̂n

+b∆t2
[
(1− γ∆t)n−1

n−1∏
i=0

(p̂i · p̂i+1) + (1− γ∆t)n−2
n−1∏
i=1

(p̂i · p̂i+1) + · · ·+ (p̂n−1 · p̂n)
]
p̂n

+∆t (1− γ∆t)n−1
n−1∏
i=0

(p̂i · p̂i+1)

∫ ∆t

0
ξ∥(s)ds p̂n

+∆t (1− γ∆t)n−2
n−1∏
i=1

(p̂i · p̂i+1)

∫ 2∆t

∆t
ξ∥(s)ds p̂n

. . .

+∆t

∫ (n+1)∆t

n∆t
[(n+ 1)∆t− s]ξ∥(s)ds p̂n , (C.2)
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where ∆r⃗(n∆t) = r⃗∥ ((n+ 1)∆t)− r⃗∥(n∆t), or in a more synthesized notation

∆r⃗(n∆t) = v∥(n∆t) ∆t p̂n

= ∆t

[
u∥(n∆t) +

b

γ + k

]
p̂n

= ∆t (1− γ∆t)n
n−1∏
i=0

(p̂i · p̂i+1)

[
u∥(0) +

b

γ + k

]
p̂n

+b∆t2
n−1∑
j=0

(1− γ∆t)n−1−j

n−1∏
i=j

(p̂i · p̂i+1)p̂n

+∆t
n−1∑
j=0

(1− γ∆t)n−1−j

n−1∏
i=j

(p̂i · p̂i+1)

∫ (j+1)∆t

j∆t

ξ∥(s)ds p̂n

+∆t

∫ (n+1)∆t

n∆t

[(n+ 1)∆t− s]ξ∥(s)ds p̂n (C.3)

To find a total parallel displacement formula, we sum each parallel displacement,

from n = 0 to n = N to obtain

r⃗∥ ((N + 1)∆t)− r⃗∥(0) = ∆t

[
u∥(0) +

b

γ + k

] N∑
n=0

(1− γ∆t)n
n−1∏
i=0

(p̂i · p̂i+1)p̂n

+b∆t2
N∑

n=0

n−1∑
j=0

(1− γ∆t)n−1−j

n−1∏
i=j

(p̂i · p̂i+1)p̂n

+∆t
N∑

n=0

n−1∑
j=0

(1− γ∆t)n−1−j

n−1∏
i=j

(p̂i · p̂i+1)

∫ (j+1)∆t

j∆t

ξ∥(s)ds p̂n

+∆t
N∑

n=0

∫ (n+1)∆t

n∆t

[(n+ 1)∆t− s]ξ∥(s)ds p̂n , (C.4)
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then we expand all the term between parenthesis

r⃗∥ ((N + 1)∆t) = r⃗∥(0) + u∥(0)∆t
N∑

n=0

(1− γ∆t)n
n−1∏
j=0

(p̂j · p̂j+1)p̂n (C.5)

+
b

γ + k
∆t

N∑
n=0

(1− γ∆t)n
n−1∏
j=0

(p̂j · p̂j+1)p̂n (C.6)

+b∆t2
N∑

n=0

n−1∑
i=0

(1− γ∆t)n−1−i

n−1∏
j=i

(p̂j · p̂j+1)p̂n (C.7)

+∆t
N∑

n=0

n−1∑
i=0

(1− γ∆t)n−1−i

n−1∏
j=i

(p̂j · p̂j+1)

∫ (i+1)∆t

i∆t

ξ∥(s)ds p̂n (C.8)

+∆t
N∑

n=0

∫ (n+1)∆t

n∆t

[(n+ 1)∆t− s]ξ∥(s)ds p̂n , (C.9)

to find the general equation for the parallel displacement of a particle that moves according

to our biased anisotropic Ornstein-Uhlenbeck model. For the total displacement, we must

add the perpendicular displacement to equations (C.5-C.9):

r⃗⊥
(
(N + 1)∆t

)
= r⃗⊥(0) +

N∑
n=0

∫ (n+1)∆t

n∆t

ξ⊥(s) ds n̂n . (C.10)

We then have to square the total displacement and take its average, to obtain the MSD,

but first, we define each term in the total displacement equation as:

A⃗1 = u∥(0)∆t
N∑

n=0

(1− γ∆t)n
n−1∏
j=0

(p̂j · p̂j+1)p̂n

+∆t
N∑

n=0

n−1∑
i=0

(1− γ∆t)n−1−i

n−1∏
j=i

(p̂j · p̂j+1)

∫ (i+1)∆t

i∆t

ξ∥(s)ds p̂n

+∆t
N∑

n=0

∫ (n+1)∆t

n∆t

[(n+ 1)∆t− s]ξ∥(s)ds p̂n

+r⃗⊥(0) +
N∑

n=0

∫ (n+1)∆t

n∆t

ξ⊥(s) ds n̂n , (C.11)

A⃗2 =
b

γ + k
∆t

N∑
n=0

(1− γ∆t)n
n−1∏
j=0

(p̂j · p̂j+1)p̂n and (C.12)
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A⃗3 = b∆t2
N∑

n=0

n−1∑
i=0

(1− γ∆t)n−1−i

n−1∏
j=i

(p̂j · p̂j+1)p̂n . (C.13)

Then we proceed to the squaring, followed by the averages over the noises:

⟨|r⃗∥ ((N + 1)∆t)− r⃗∥(0)|2⟩ = ⟨|A1|2⟩+ ⟨|A2|2⟩+ ⟨|A3|2⟩+ 2⟨A⃗1 · A⃗2⟩+ 2⟨A⃗1 · A⃗3⟩+ 2⟨A⃗2 · A⃗3⟩
(C.14)

We calculate each term of the biased AOU particle’s position:

⟨|A1|2⟩ =MSDunbiased , (C.15)

which was obtained by de Almeida et. al. in [de Almeida et al., 2022]. The other products
arise due the introduction of the bias constant b, thus have not yet been calculated, for ⟨A22⟩
we have

⟨|A2|2⟩ =

〈 b

γ + k
∆t

N∑
n=0

(1− γ∆t)n
n−1∏
j=0

(p̂j · p̂j+1)p̂n

 ·

 b

γ + k
∆t

N∑
n=0

(1− γ∆t)n
n−1∏
j=0

(p̂j · p̂j+1)p̂n

〉

=

(
b

γ + k

)2

∆t2
N∑

n=0

N∑
m=0

(1− γ∆t)n+m

〈
n−1∏
j=0

(p̂j · p̂j+1)

m−1∏
k=0

(p̂k · p̂k+1) (p̂n · p̂m)

〉

=

(
b

γ + k

)2

∆t2
N∑

n=0

(1− γ∆t)2n

〈n−1∏
j=0

(p̂j · p̂j+1)

2〉
(C.16)

+2

(
b

γ + k

)2

∆t2
N−1∑
n=0

N∑
m=n+1

(1− γ∆t)n+m

〈
n−1∏
j=0

(p̂j · p̂j+1)

m−1∏
k=0

(p̂k · p̂k+1) (p̂n · p̂m)

〉
, (C.17)
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where we separate the calculations even further:

(C.16) =

(
b

γ + k

)2

∆t2
N∑

n=0

(1− γ∆t)2n

〈(
n−1∏
j=0

(p̂j · p̂j+1)

)2〉

=

(
b

γ + k

)2

∆t2
N∑

n=0

(1− γ∆t)2n(1− k∆t)2n

=

(
b

γ + k

)2

∆t2
N∑

n=0

(1− 2(γ + k)∆t)n

=

(
b

γ + k

)2

∆t2
1− (1− 2(γ + k) ∆t))n+1

2(γ + k)∆t

=

(
b

γ + k

)2

∆t
1− (1− 2(γ + k)∆t)n+1

2(γ + k)

→ 0 if ∆t→ 0 and (C.18)
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(C.17) = 2

(
b

γ + k

)2

∆t2
N−1∑
n=0

N∑
m=n+1

(1− γ∆t)n+m⟨
n−1∏
j=0

(p̂j · p̂j+1)
m−1∏
k=0

(p̂k · p̂k+1) (p̂n · p̂m)⟩

= 2

(
b

γ + k

)2

∆t2
N−1∑
n=0

N∑
m=n+1

(1− γ∆t)n+m(1− k∆t)m+n(1− k∆t)|m−n|

= 2

(
b

γ + k

)2

∆t2
N−1∑
n=0

N∑
m=n+1

(1− γ∆t)n+m(1− k∆t)2m

= 2

(
b

γ + k

)2

∆t2
N−1∑
n=0

(1− γ∆t)n
N∑

m=n+1

(1− γ∆t)m(1− k∆t)2m

= 2

(
b

γ + k

)2

∆t2
N−1∑
n=0

(1− γ∆t)n
(1− (γ + 2k)∆t)n+1 − (1− (γ + 2k)∆t)N

(γ + 2k)∆t

= 2

(
b

γ + k

)2

∆t2
N−1∑
n=0

(1− 2(γ + k)∆t)n

(γ + 2k)∆t

−2

(
b

γ + k

)2

∆t2
N−1∑
n=0

(1− (γ + 2k)∆t)N
(1− γ∆t)n

(γ + 2k)∆t

= 2

(
b

γ + k

)2
1− (1− 2(γ + k)∆t)N

(γ + 2k)2(γ + k)

−2

(
b

γ + k

)2

(1− 1− (1− γ∆t)N

(γ + 2k)γ

= 2

(
b

γ + k

)2
1− (1− 2(γ + k)∆t)N

(γ + 2k)2(γ + k)

−2

(
b

γ + k

)2

(1− (γ + 2k)∆t)N
1− (1− γ∆t)N

(γ + 2k)γ

= 2

(
b

γ + k

)2
1− e−2(γ+k)∆T

(γ + 2k)2(γ + k)

−2

(
b

γ + k

)2

e−(γ+2k)∆T 1− e−γ∆T

(γ + 2k)γ

= 2

(
b

γ + k

)2
1− e−2(γ+k)∆T

(γ + 2k)2(γ + k)

−2

(
b

γ + k

)2
e−(γ+2k)∆T − e−2(γ+k)∆T

(γ + 2k)γ
. (C.19)

Summing results (C.18) and (C.19) we obtain ⟨|A2|2⟩
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⟨|A2|2⟩ = −2

γ

(
b

γ + k

)2(
1− e−2(γ+k)∆T

2(γ + k)
− 1− e−(γ+2k)∆T

(γ + 2k)

)
. (C.20)

Now, we calculate ⟨|A3|2⟩:

⟨|A3|2⟩ =

〈b∆t2
N∑

n=0

n−1∑
i=0

(1− γ∆t)n−1−i
n−1∏
j=i

(p̂j · p̂j+1)p̂n

 ·

b∆t2
N∑

n=0

n−1∑
i=0

(1− γ∆t)n−1−i
n−1∏
j=i

(p̂j · p̂j+1)p̂n

〉

= b2∆t4

〈
N∑

n=0

N∑
m=0

n−1∑
i=0

m−1∑
k=0

(1− γ∆t)n+m−2−i−k
n−1∏
j=i

(p̂j · p̂j+1)

m−1∏
ℓ=k

(p̂ℓ · p̂ℓ+1) (p̂n · p̂m)

〉

= b2∆t4

〈
N∑

n=0

N∑
m=0

n−1∑
i=0

m−1∑
k=0

(1− γ∆t)n+m−2−i−k(1− k∆t)n−i(1− k∆t)m−k(1− k∆t)|m−n|

〉

= 2b2∆t4

〈
N−1∑
n=0

N∑
m=n+1

n−1∑
i=0

m−1∑
k=0

(1− γ∆t)n+m−2−i−k(1− k∆t)n−i(1− k∆t)m−k(1− k∆t)m−n

〉

= 2b2∆t4
N−1∑
n=0

N∑
m=n+1

(1− k∆t)m−n
n−1∑
i=0

(1− (γ + k)∆t)n−1−i
m−1∑
k=0

(1− (γ + k)∆t)m−1−k

= 2b2∆t4
N−1∑
n=0

N∑
m=n+1

(1− k∆t)m−n

[
1− (1− (γ + k)∆t)n

(γ + k)∆t

]
×
[
1− (1− (γ + k)∆t)m

(γ + k)∆t

]

=
2b2∆t2

(γ + k)2

N−1∑
n=0

N∑
m=n+1

(1− k∆t)m−n (C.21)

−2
2b2∆t2

(γ + k)2

N−1∑
n=0

N∑
m=n+1

(1− k∆t)m−n(1− (γ + k)∆t)n (C.22)

− 2b2∆t2

(γ + k)2

N−1∑
n=0

N∑
m=n+1

(1− k∆t)m−n(1− (γ + k)∆t)m (C.23)

+2
2b2∆t2

(γ + k)2

N−1∑
n=0

N∑
m=n+1

(1− k∆t)m−n(1− (γ + k)∆t)n+m . (C.24)

Calculating each parcel separately we have:

(C.21) =
2b2∆t2

(γ + k)2

N−1∑
n=0

N∑
m=n+1

(1− k∆t)m−n

=
2b2∆t2

(γ + k)2

N−1∑
n=0

(1− k∆t)− (1− k∆t)N−n

k∆t

=
2b2∆t

k(γ + k)2

[
N−1∑
n=0

1−
N−1∑
n=0

(1− k∆t)N−n

]

=
2b2

k(γ + k)2

(
∆T − 1− e−k∆T

k

)
(C.25)
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(C.22) = − 2b2∆t2

(γ + k)2

N−1∑
n=0

N∑
m=n+1

(1− γ∆t)n(1− k∆t)m

= − 2b2∆t2

(γ + k)2

N−1∑
n=0

(1− γ∆t)n
(1− k∆t)n+1 − (1− k∆t)N+1

k∆t

= − 2b2∆t

k(γ + k)2

[
N−1∑
n=0

(1− (γ + k)∆t)n −
N−1∑
n=0

(1− k∆t)N+1(1− γ∆t)n

]

= − 2b2

k(γ + k)2

(
1− e−(γ+k)∆T

(γ + k)
− e−k∆T (1− e−γ∆T )

γ

)
(C.26)

(C.23) = − 2b2∆t2

(γ + k)2

N−1∑
n=0

(1− k∆t)−n

N∑
m=n+1

(1− (γ + 2k)∆t)m

= − 2b2∆t2

(γ + k)2

N−1∑
n=0

(1− k∆t)−n

[
(1− (γ + 2k)∆t)n+1

(γ + 2k)∆t
− (1− (γ + 2k)∆t)N

(γ + 2k)∆t

]

= − 2b2∆t

(γ + k)2(γ + 2k)

[
N−1∑
n=0

(1− (γ + k)∆t)n − (1− (γ + k)∆t)N
N−1∑
n=0

(1− k∆t)N−n

]

= − 2b2

(γ + k)2(γ + 2k)

[
1− e(γ+k)∆T

(γ + k)
− e(γ+k)∆T (1− e−k∆T )

k

]
(C.27)

(C.24) =
2b2∆t2

(γ + k)2

N−1∑
n=0

(1− γ∆t)n
N∑

m=n+1

(1− (γ + 2k)∆t)m

=
2b2∆t2

(γ + k)2

N−1∑
n=0

(1− γ∆t)n
[
(1− (γ + 2k)∆t)n+1

(γ + 2k)∆t
− (1− (γ + 2k)∆t)N

(γ + 2k)∆t

]

=
2b2∆t

(γ + k)2(γ + 2k)

[
N−1∑
n=0

(1− 2(γ + k)∆t)n − (1− (γ + 2k)∆t)N
N−1∑
n=0

(1− γ∆t)n

]

=
2b2

(γ + k)2(γ + 2k)

[
1− e−2(γ+k)∆T

2(γ + k)
− e−(γ+2k)∆T (1− e−γ∆T )

γ

]
(C.28)

Summing (C.25), (C.26),(C.27), and (C.28) we find ⟨|A3|2⟩:
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⟨|A3|2⟩ =
2b2

k(γ + k)2

(
∆T − 1− e−k∆T

k

)
− 2b2

k(γ + k)2

(
1− e−(γ+k)∆T

(γ + k)
− e−k∆T (1− e−γ∆T )

γ

)
− 2b2

(γ + k)2(γ + 2k)

(
1− e−(γ+k)∆T

(γ + k)
− e−(γ+k)∆T (1− e−k∆T )

k

)
+

2b2

(γ + k)2(γ + 2k)

(
1− e−2(γ+k)∆T

2(γ + k)
− e−(γ+2k)∆T (1− e−γ∆T )

γ

)
(C.29)

Now we proceed in finding the crossed multiplication terms, here we observe that

the average over the initial speed u∥(0) = 0, hence the only crossed term that survives the

average is ⟨A⃗2 · A⃗3⟩. As follows:
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⟨A⃗2 · A⃗3⟩ =
b2∆t3

γ + k

〈
N∑

n=0

N∑
m=0

m−1∑
i=0

(1− γ∆t)n(1− γ∆t)m−1−i

n−1∏
j=0

(p̂j · p̂j+1)
m−1∏
k=i

(p̂k · p̂k+1)(p̂n · p̂m)

〉

=
b2∆t3

γ + k

N∑
n=0

N∑
m=0

m−1∑
i=0

(1− γ∆t)n(1− γ∆t)m−1−i(1− k∆t)n(1− k∆t)m−i(1− k∆t)|m−n|

=
b2∆t3

γ + k

N∑
n=0

N∑
m=0

(1− γ∆t)n(1− k∆t)n(1− k∆t)|m−n|
m−1∑
i=0

(1− (γ + k)∆t)m−i

=
b2∆t2

γ + k

N∑
n=0

N∑
m=0

(1− γ∆t)n(1− k∆t)n(1− k∆t)|m−n|1− (1− (γ + k)∆t)m

(γ + k)

=
b2∆t2

(γ + k)2

N∑
n=0

N∑
m=0

(1− γ∆t)n(1− k∆t)n(1− k∆t)|m−n|

− b2∆t2

(γ + k)2

N∑
n=0

N∑
m=0

(1− γ∆t)n+m(1− k∆t)n+m(1− k∆t)|m−n|

=
2b2∆t2

(γ + k)2

N−1∑
n=0

N∑
m=n+1

(1− γ∆t)n(1− k∆t)m

− 2b2∆t2

(γ + k)2

N−1∑
n=0

N∑
m=n+1

(1− γ∆t)n+m(1− k∆t)2m

=
2b2∆t

k(γ + k)2

N−1∑
n=0

(1− γ∆t)n
(
(1− k∆t)n+1 − (1− k∆t)N

)
− 2b2∆t

(γ + 2k)(γ + k)2

N−1∑
n=0

(1− γ∆t)n
(
(1− (γ + 2k)∆t)n+1 − (1− (γ + 2k)∆t)N

)
=

2b2

k(γ + k)3
(
1− (1− (γ + k)∆t)N

)
− 2b2

kγ(γ + k)2
(1− k∆t)N

(
1− (1− γ∆t)N

)
− 2b2

2(γ + 2k)(γ + k)3
(
1− (1− 2(γ + k)∆t)N

)
+

2b2∆t

γ(γ + 2k)(γ + k)2
(1− (γ + 2k)∆t)N

(
1− (1− γ∆t)N

)
=

2b2

k(γ + k)3
(1− e−(γ+k)∆T )

− 2b2

kγ(γ + k)2
e−k∆T (1− e−γ∆T )

− 2b2

2(γ + 2k)(γ + k)3
(1− e−2(γ+k)∆T )

+
2b2

γ(γ + 2k)(γ + k)2
e−(γ+2k)∆T (1− e−γ∆T ) (C.30)81
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Now we can write MSDbiased:

MSDbiased = MSDunbiased

2

γ

(
b

γ + k

)2(
1− e−(γ+2k)∆T

(γ + 2k)
− 1− e−2(γ+k)∆T

2(γ + k)

)
+

2b2

k(γ + k)2

(
∆T − 1− e−k∆T

k

)
− 2b2

k(γ + k)2

(
1− e−(γ+k)∆T

(γ + k)
− e−k∆T (1− e−γ∆T )

γ

)
− 2b2

(γ + k)2(γ + 2k)

(
1− e−(γ+k)∆T

(γ + k)
− e−(γ+k)∆T (1− e−k∆T )

k

)
+

2b2

(γ + k)2(γ + 2k)

(
1− e−2(γ+k)∆T

2(γ + k)
− e(−γ+2k)∆T (1− e−γ∆T )

γ

)
+

2b2

k(γ + k)3
(1− e−(γ+k)∆T )

− 2b2

kγ(γ + k)2
e−k∆T (1− e−γ∆T )

− 2b2

2(γ + 2k)(γ + k)3
(1− e−2(γ+k)∆T )

+
2b2

γ(γ + 2k)(γ + k)2
e−(γ+2k)∆T (1− e−γ∆T ) (C.31)

To simplify the equation above, we then define some terms

M1 =
1− e−(γ+2k)∆T

γ + 2k
, (C.32)

M2 =
1− e−2(γ+k)∆T

2(γ + k)
, (C.33)

M3 =
1− e−(γ+k)∆T

(γ + k)
, (C.34)

M4 =
1− e−k∆T

k
, (C.35)

M5 =
1− e−γ∆T

γ
. (C.36)
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And rewrite the biased mean square displacement as

MSDbiased = MSDunbiased

+
2b2

γ(γ + k)2
[M1 −M2]

+
2b2

k(γ + k)2

[
∆T −M4 −�

�M3 +((((((((
M5 (1− kM4) +�

�M3 −((((((((
M5 (1− kM4)

]
+

2b2

(γ + k)2(γ + 2k)

[
−M3 +M4 (1− (γ + k)M3) +�

�M2

−
(((((((((((
M5 (1− (γ + 2k)M1)−�

�M2 +(((((((((((
M5 (1− (γ + 2k)M1)

]
= MSDunbiased

+
2b2

γ(γ + k)2
[M1 −M2]

+
2b2

k(γ + k)2

[
∆T −M4

]
+

2b2

(γ + k)2(γ + 2k)

[
−M3 +M4 (1− (γ + k)M3)

]
= MSDunbiased

+
2b2

γ(γ + k)2

[
1− e−(γ+2k)∆T

γ + 2k
− 1− e−2(γ+k)∆T

2(γ + k)

]
+

2b2

k(γ + k)2

[
∆T − 1− e−k∆T

k

]
+

2b2

(γ + k)2(γ + 2k)

[
−1− e−(γ+k)∆T

γ + k
+

(
1− e−k∆T

k

)
e−(γ+k)∆T

]
(C.37)

Writing the whole biased mean square displacement we then obtain

MSDbiased =
g

(γ + k)(γ + 2k)

[
∆T − 1

(γ + 2k)
(1− e−(γ+2k)∆T )

]
+ 2qk∆T

+
2b2

γ(γ + k)2

[
1− e−(γ+2k)∆T

γ + 2k
− 1− e−2(γ+k)∆T

2(γ + k)

]
+

2b2

k(γ + k)2

[
∆T − 1− e−k∆T

k

]
+

2b2

(γ + k)2(γ + 2k)

[
−1− e−(γ+k)∆T

γ + k
+
e−(γ+k)∆T

k
− e−(γ+2k)∆T

k

]
,(C.38)

finally, we group the e−(γ+2k)∆T terms together. It can be done by adding the null term
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2b2

(γ+k)2(γ+2k)

(
1
k
− 1

k

)
to the equation, which in turn, results

MSDbiased =
g

(γ + k)(γ + 2k)

[
∆T − 1

(γ + 2k)
(1− e−(γ+2k)∆T )

]
+ 2qk∆T

− 2b2

γ(γ + k)2

[
1− e−2(γ+k)∆T

2(γ + k)

]
+

2b2

γk(γ + k)

[
1− e−(γ+2k)∆T

γ + 2k

]
+

2b2

k(γ + k)2

[
∆T − 1− e−k∆T

k

]
− 2b2

(γ + k)2(γ + 2k)

[
1− e−(γ+k)∆T

γ + k
+

1− e−(γ+k)∆T

k

]
, (C.39)

now, simplifying, we finally get

MSDbiased =
g

(γ + k)(γ + 2k)

[
∆T − 1

(γ + 2k)
(1− e−(γ+2k)∆T )

]
+ 2qk∆T

− 2b2

γ(γ + k)2

[
1− e−2(γ+k)∆T

2(γ + k)

]
+

2b2

γk(γ + k)

[
1− e−(γ+2k)∆T

γ + 2k

]
+

2b2

k(γ + k)2

[
∆T − 1− e−k∆T

k

]
− 2b2

k(γ + k)2

[
1− e−(γ+k)∆T

γ + k

]
. (C.40)

To verify the results of the analytical calculations, we plotted the mean square dis-

placement of a simulation of a single cell moving according to our model biased model
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Figure C.1: Log-log plot of the Mean Square Displacement versus ∆T of 20 non-interacting
particles with parameters k = 0.04405, q = 0.1, g = 10, γ = 1 and b = 1. The solid lines
correspond to the analytical calculations corresponding to (C.40)

Since we have verified the analytical calculations with the results from a simulations,

the next logical step should be to compare these results with other simulations and real

world cell migrations experiments, but first it is necessary to establish a relationship be-

tween the parameters found in our model and real world phenomena and its consequences.

The easiest way to do it, is to find the set of parameters (g, q, k, γ, b) as a function of the

macroscopic parameters D and P , already used in stochastic literature as the diffusion coef-

ficient and the persistence parameter respectively and also S defined in [de Almeida et al.,

2022] as the fraction of time in which the crawler stays in the initial diffusive dynamic.

In a scenario without any complications, the procedure to identify the relationship

between the microscopic parameters ((g, q, k, γ, b)) and the macroscopic ones, would be as-

sume a correspondence between the biased mean square displacement and an effective un-

biased mean square displacement given as

MSDeffective =
2DP

1− S

(
∆T

P
− (1− S)

(
1− e−∆T/P

))
(C.41)
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in such a way that

MSDbiased(g, q, k, γ, b,∆T ) =MSDeffective and (C.42)

then obtain the relation between the macroscopic and the microscopic variable.

It was already done in [de Almeida et al., 2022], for a non biased self moving particle

(b=0), it was found that

P =
1

(γ + 2k)
, (C.43)

D =
g

2(γ + k)(γ + 2k)
and (C.44)

S =
2qk(γ + k)(γ + 2k)

g + 2qk(γ + k)(γ + 2k)
. (C.45)

In the case of the biased model however, the mean square displacement resulted in the

sum of exponential terms with different exponents thus, the procedure cited above results

in a transcendental equation. Considering all this, we may at least find the limit cases for

∆T → 0 and ∆T → ∞.

To begin, we consider the case where ∆T → 0, which prompts us to expand the

exponential terms of both effective MSD and the biased MSD and compare the results

MSDeffective
∆T→0
=

2DP

1− S

(
∆T

P
− (1− S)

(
1−

[
1− ∆T

P
+O(∆T 2)

]))
≈ 2DPS

1− S

(
∆T

P

)
≈ 2DS

1− S
∆T now (C.46)
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we do the same for the biased MSD

MSDbiased
∆T→0
≈ g

(γ + k)(γ + 2k)

[
∆T − 1

(γ + 2k)
(1− 1 + (γ + 2k)∆T )

]
+ 2qk∆T

− 2b2

γ(γ + k)2

[
1− 1 + 2(γ + k)∆T

2(γ + k)

]
+

2b2

γk(γ + k)

[
1− 1 + (γ + 2k)∆T

γ + 2k

]
+

2b2

k(γ + k)2

[
∆T − 1− 1 + k∆T

k

]
− 2b2

k(γ + k)2

[
1− 1 + (γ + k)∆T

γ + k

]
≈ 2qk∆T + 2b2∆T

(
(((((((((((((((((((

1

γk(γ + k)
− 1

γ(γ + k)2
− 1

k(γ + k)2

)
≈ 2qk∆T . (C.47)

The result implies that, for small times, we have

2DS

1− S
∆T

∆T→0
≈ 2qk∆T (C.48)

For ∆T → ∞, we know that exponentials with negative exponents go to zero, which

implies for an effective MSD

MSDeffective
∆T→∞
≈ 2DP

1− S

(
∆T

P
− (1− S)

)
≈ 2D∆T

1− S
, (C.49)

doing the same procedure of zeroing negative exponentials of ∆T , for the biased MSD, gets
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us

MSDbiased
∆T→∞
≈ g

(γ + k)(γ + 2k)

[
∆T − 1

(γ + 2k)

]
+ 2qk∆T

− 2b2

γ(γ + k)2

[
1

2(γ + k)

]
+

2b2

γk(γ + k)

[
1

γ + 2k

]
+

2b2

k(γ + k)2

[
∆T − 1

k

]
− 2b2

k(γ + k)2

[
1

γ + k

]
≈ g∆T

(γ + k)(γ + 2k)
+ 2qk∆T +

2b2∆T

k(γ + k)2
. (C.50)

With this, we find for ∆T → ∞ that

2D

1− S
∆T

∆T→∞
=

[
g

(γ + k)(γ + 2k)
+

2b2

k(γ + k)2
+ 2qk

]
∆T (C.51)

We may also analyse the case where k = 0, which implicates in a self-propelling particle that

does not change its polarization orientation neither exhibits a perpendicular to polarization

diffusion, thus, staying permanently in a 1D trajectory. At first sight, it may seem as a

problem for we have in our biased MSD equation, three terms divided by k, they are

2b2

k(γ + k)2

[
∆T − 1− e−k∆T

k

]
, (C.52)

2b2

γk(γ + k)

[
1− e−(γ+2k)∆T

γ + 2k

]
and (C.53)

− 2b2

k(γ + k)2

[
1− e−(γ+k)∆T

γ + k

]
. (C.54)

The first term, when k goes to zero, has an exponential expansion proportional to k2, which

cancels out with the factor k2 by which the expression is divided, producing an equation

proportional to ∆T 2 and thus, generating ballistic dynamics.

2b2

k(γ + k)2

[
∆T − 1− e−k∆T

k

]
k→0
≈ 2b2

k(γ + k)2

∆T −
1−

(
1− k∆T + k2∆T 2

2

)
k


≈ 2b2

k(γ + k)2

[
∆T − k∆T

k
+
k2∆T 2

2k

]
≈ b2∆T 2

(γ + k)2
(C.55)
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To show that we have non infinite terms, we may sum the last two and find the result

2b2
(
1− e−(γ+2k)∆T

)
γk(γ + k)(γ + 2k)

−
2b2
(
1− e−(γ+k)∆T

)
k(γ + k)3

k→0
≈

2b2
(
1− e−γ∆T

)
γk(γ + k)(γ + 2k)

−
2b2
(
1− e−γ∆T

)
k(γ + k)3

≈
(
1− e−γ∆T

)( 2b2

γk(γ + k)(γ + 2k)
− 2b2

k(γ + k)3

)
≈ 2b2k

γ(γ + 2k)(γ + k)3
(
1− e−γ∆T

)
, (C.56)

which in fact results in a equation that is multiplied by k and not divided, so it must go to

zero when k → 0.
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Appendix D

Velocity Auto-Correlation Function

The parallel-to-polarization velocity auto-correlation function is a function that shows the

velocity correlation between two different instants of time separated by a time interval ∆T .

Thus we consider a time T = n∆t and another instant of time T +∆T = (n +m)∆t, where

∆t is a infinitesimal time interval. The velocity auto-correlation function can then be written

as

V ACF (∆T ) = ⟨v⃗∥(T ) · v⃗∥(T +∆T )⟩

= ⟨v∥(T )p̂(t) · p̂(T +∆T )v∥(T +∆T )⟩ , (D.1)

where T represents a determined instant of time and ∆T , an arbitrary time interval. In terms

of infinitesimal time intervals ∆t, we may write T = n∆t and ∆T = m∆t with n,m ∈ N.

Now we have to consider the parallel velocities in times T and T +∆T , from equation B.5

v⃗∥(n∆t) = v∥(0)(1− γ∆t)n
n−1∏
j=0

(p̂j · p̂j+1)p̂n

+
n−1∑
i=0

(1− γ∆t)n−1−i

n−1∏
j=i

(p̂j · p̂j+1)

∫ (i+1)∆t

i∆t

(
ξ∥(s) + b

)
ds p̂n and (D.2)

v⃗∥ ((n+m)∆t) = v∥(0)(1− γ∆t)n+m

n+m−1∏
j=0

(p̂j · p̂j+1)p̂n+m

+
n+m−1∑

i=0

(1− γ∆t)n+m−1−i

n−1∏
j=i

(p̂j · p̂j+1)

∫ (i+1)∆t

i∆t

(
ξ∥(s) + b

)
ds p̂n+m .(D.3)
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Next, we calculate the product between both velocities and take their average over
realizations, which is denoted by the brackets ⟨ ⟩. The product becomes

v⃗∥(T ) · v⃗∥(T +∆T ) = v2∥(0)(1− γ∆t)2n+m
n−1∏
j=0

(p̂j · p̂j+1)

n+m−1∏
j=0

(p̂j · p̂j+1)(p̂n · p̂n+m)

+v∥(0)

n+m−1∑
l=0

(1− γ∆t)2n+m−1−l
n+m−1∏

j=0

(p̂j · p̂j+1)

n−1∏
j=l

(p̂j · p̂j+1)(p̂n · p̂n+m)

∫ (l+1)∆t

l∆t

(ξ∥(s) + b)ds

+v∥(0)

n−1∑
i=0

(1− γ∆t)2n+m−1−i
n+m−1∏

j=0

(p̂j · p̂j+1)

n−1∏
j=i

(p̂j · p̂j+1)(p̂n · p̂n+m)

∫ (i+1)∆t

i∆t

(ξ∥(s) + b)ds

+

n−1∑
i=0

n+m−1∑
l=0

(1− γ∆t)2n+m−2−i−l
n+m−1∏

j=l

(p̂j · p̂j+1)

n−1∏
j=i

(p̂j · p̂j+1)

∫ (l+1)∆t

l∆t

∫ (i+1)∆t

i∆t

ξ∥(s
′)ξ∥(s)ds ds

′

+

n−1∑
i=0

n+m−1∑
l=0

(1− γ∆t)2n+m−2−i−l
n+m−1∏

j=l

(p̂j · p̂j+1)

n−1∏
j=i

(p̂j · p̂j+1)

∫ (l+1)∆t

l∆t

∫ (i+1)∆t

i∆t

b2ds ds′ ,

we know that p̂i·p̂i+1 = cos(∆θ) for an arbitrary integer i, we also know from appendix F that

p̂i+n · p̂i = cos(n∆θ) and ⟨p̂i+n · p̂i⟩ = ⟨cos(n∆θ)⟩ which can be approximated to ⟨cos(n∆θ)⟩ ≈
(1− k∆t)n, a conclusion reached from equation (F.15). In other words, the sequence of inner

products of polarization vectors ⟨
∏m

j=n(p̂j · p̂j+1)⟩ = ⟨p̂n · p̂m⟩ = (1− k∆t)|m−n|.

We also know that the averages of the random variables ⟨ξ∥(s)⟩ = 0 because of their

symmetrical Gaussian distribution around zero. For the products between two distinct

Wiener variables, we know ⟨ξ∥(s)ξ∥(s′)⟩ = g δ(s−s′) which become ⟨ξ∥(s)ξ∥(s′)⟩ = g δi,l when

considering that the variables s and s′ depend on the summation indexes i and l. Following

these, we denote ⟨v⃗∥(T ) · v⃗∥(T +∆T )⟩ as V ACF (∆T ) and proceed to obtain

V ACF (∆T ) = v2∥(0)(1− γ∆t)2n+m(1− k∆t)2n+m−2(1− k∆t)n+m−n (D.4)

+v∥(0)

n+m−1∑
l=0

(1− γ∆t)2n+m−1−l(1− k∆t)2n+m−2−l(1− k∆t)n+m−n

∫ (l+1)∆t

l∆t

b ds

+v∥(0)

n−1∑
i=0

(1− γ∆t)2n+m−1−i(1− k∆t)2n+m−2−i(1− k∆t)n+m−n

∫ (i+1)∆t

i∆t

b ds

+

n−1∑
i=0

n+m−1∑
l=0

(1− γ∆t)2n+m−2−i−l(1− k∆t)2n+m−2−i−l(1− k∆t)n+m−n

∫ (l+1)∆t

l∆t

∫ (i+1)∆t

i∆t

gδ(s− s′)ds ds′

+

n−1∑
i=0

n+m−1∑
l=0

(1− γ∆t)2n+m−2−i−l(1− k∆t)2n+m−2−i−l(1− k∆t)n+m−n

∫ (l+1)∆t

l∆t

∫ (i+1)∆t

i∆t

b2ds ds′ ,
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now, with an equation without stochastic variables, the integrals’ solutions become trivial

V ACF (∆T ) = v2∥(0)(1− γ∆t)2n+m(1− k∆t)2n+m−2(1− k∆t)n+m−n (D.5)

+b∆t v∥(0)

n+m−1∑
l=0

(1− γ∆t)2n+m−1−l(1− k∆t)2n+m−2−l(1− k∆t)n+m−n

+b∆t v∥(0)

n−1∑
i=0

(1− γ∆t)2n+m−1−i(1− k∆t)2n+m−2−i(1− k∆t)n+m−n

+

n−1∑
i=0

n+m−1∑
l=0

(1− γ∆t)2n+m−2−i−l(1− k∆t)2n+m−2−i−l(1− k∆t)n+m−n

∫ (i+1)∆t

i∆t

gδi,lds

+b2∆t2
n−1∑
i=0

n+m−1∑
l=0

(1− γ∆t)2n+m−2−i−l(1− k∆t)2n+m−2−i−l(1− k∆t)n+m−n then

solving the only remaining integral over g, we have

V ACF (∆T ) = v2∥(0)(1− γ∆t)2n+m(1− k∆t)2n+m−2(1− k∆t)n+m−n (D.6)

+b∆t v∥(0)

n+m−1∑
l=0

(1− γ∆t)2n+m−1−l(1− k∆t)2n+m−2−l(1− k∆t)n+m−n (D.7)

+b∆t v∥(0)

n−1∑
i=0

(1− γ∆t)2n+m−1−i(1− k∆t)2n+m−2−i(1− k∆t)n+m−n (D.8)

+g∆t

n−1∑
i=0

(1− γ∆t)2n+m−2−2i(1− k∆t)2n+m−2−2i(1− k∆t)n+m−n (D.9)

+b2∆t2
n−1∑
i=0

n+m−1∑
l=0

(1− γ∆t)2n+m−2−i−l(1− k∆t)2n+m−2−i−l(1− k∆t)n+m−n , (D.10)

to proceed, we must use the identities

b∑
i=a

(1− x∆t)i =
(1− x∆t)a − (1− x∆t)b

1− (1− x∆t)
and (D.11)

(1− x∆t)N
N→∞;∆t→0

= e−xN ∆t (D.12)

where x is an arbitrary constant and a, b and N are arbitrary integers. We also divide the the

velocity auto-correlation function into separate terms for more clarity in the calculations.

(D.6) = v2∥(0)(1− γ∆t)2n+m(1− k∆t)2n+m−2(1− k∆t)n+m−n

= v2∥(0)e
−γ(2n+m)∆t(1− k∆t)2n+2m−2

= v2∥(0)e
−γ(2n+m)∆te−k(2n+2m−2)∆t ,

considering that n∆t = T and m∆t = ∆T (we may rule out the exponential e−2∆t, for 2 is

much smaller than the other terms m and n), then

(D.6) = v2∥(0)e
−2(γ+k)T e−(γ+2k)∆T .
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CHAPTER D VELOCITY AUTO-CORRELATION FUNCTION

The following results are obtained in a similar way

(D.7) = b∆t v∥(0)
n+m−1∑

l=0

(1− γ∆t)2n+m−1−l(1− k∆t)2n+m−2−l(1− k∆t)n+m−n

= b∆t v∥(0)
n+m−1∑

l=0

(1− γ∆t)2n+m−1−l(1− k∆t)2n+2m−2−l ,

here, we note that it is possible to rewrite a summation as follows

n−1∑
i=0

xn−i =
n∑

i=1

xi , (D.13)

where x is an arbitrary variable, the only difference in the summations, being that the left

side starts to sum from the bigger powers to the smaller ones and the right side does the

opposite, applying the same concept for expression (D.7), we obtain

(D.7) = b∆t (1− γ∆t)n(1− k∆t)n+m−1v∥(0)
n+m−1∑

l=0

(1− γ∆t)n+m−1−l(1− k∆t)n+m−1−l

= b∆t (1− γ∆t)n(1− k∆t)n+m−1v∥(0)
n+m∑
l=1

(1− γ∆t)l(1− k∆t)l

= b∆t e−γ n∆te−k(n+m−1)∆tv∥(0)
n+m∑
l=1

(1− γ∆t)l(1− k∆t)l

= b∆t e−γ n∆te−k(n+m−1)∆tv∥(0)
1− (1− γ∆t)n+m(1− k∆t)n+m

1− (1− γ∆t)(1− k∆t)
,

where we may consider that (1−γ∆t)(1−k∆t) = 1−k∆t−γ∆t due to the fact that ∆t2 << ∆t

(we rule out the term γ k∆t2), we also assume that (1−γ∆t)1(1−k∆t)1 = 1, because 1 >> ∆t,

thus obtaining

(D.7) = b∆t e−γ n∆te−k(n+m−1)∆tv∥(0)
1− e−(γ+k)(n+m)∆t

(γ + k)∆t

=
bv∥(0)

γ + k
e−γ n∆te−k(n+m−1)∆t

(
1− e−(γ+k)(n+m)∆t

)
=

bv∥(0)

γ + k
e−(γ+k)T e−k∆T

(
1− e−(γ+k)(T+∆T )

)
. (D.14)
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We then proceed to obtain (D.8)

(D.8) = b∆t v∥(0)
n−1∑
i=0

(1− γ∆t)2n+m−1−i(1− k∆t)2n+m−2−i(1− k∆t)n+m−n

= b∆t (1− γ∆t)n+m(1− k∆t)n+2m−1v∥(0)
n−1∑
i=0

(1− γ∆t)n−1−i(1− k∆t)n−1−i

= b∆t e−γ(n+m)∆te−k(n+2m−1)∆tv∥(0)
n∑

i=1

(1− γ∆t)i(1− k∆t)i

= b∆t e−γ(n+m)∆te−k(n+2m−1)∆tv∥(0)
(1− γ∆t)(1− k∆t)− (1− γ∆t)n(1− k∆t)n

1− (1− γ∆t)(1− k∆t)

= b∆t e−γ(n+m)∆te−k(n+2m−1)∆tv∥(0)
1− e−(γ+k)n∆t

1− (1− (γ + k)∆t)

= bv∥(0)∆t e
−γ(T+∆T )e−k(T+2∆T )1− e−(γ+k)n∆t

(γ + k)∆t

=
bv∥(0)

(γ + k)
e−γ(T+∆T )e−k(T+2∆T )

(
1− e−(γ+k)T

)
=

bv∥(0)

(γ + k)
e−(γ+k)T e−(γ+2k)∆T

(
1− e−(γ+k)T

)
,
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which ends our calculations for (D.8), proceeding to the next we have

(D.9) = g∆t
n−1∑
i=0

(1− γ∆t)2n+m−2−2i(1− k∆t)2n+m−2−2i(1− k∆t)n+m−n

= g∆t
n−1∑
i=0

(1− γ∆t)2n+m−2−2i(1− k∆t)2n+2m−2−2i

= g∆t (1− γ∆t)m(1− k∆t)2m
n−1∑
i=0

(1− γ∆t)2n−2−2i(1− k∆t)2n−2−2i

= g∆t e−(γ+2k)m∆t

n−1∑
i=0

(1− γ∆t)2n−2−2i(1− k∆t)2n−2−2i

= g∆t e−(γ+2k)m∆t

n∑
i=1

(1− γ∆t)2i(1− k∆t)2i

= g∆t e−(γ+2k)∆T 1− (1− γ∆t)2n(1− k∆t)2n

1− (1− γ∆t)2(1− k∆t)2

= g∆t e−(γ+2k)∆T 1− e−2(γ+k)T

1−
(
1− 2(γ + k)∆t

)
= g∆t e−(γ+2k)∆T 1− e−2(γ+k)T

2(γ + k)∆t
)

=
g

2(γ + k)
e−(γ+2k)∆T

(
1− e−2(γ+k)T

)
.

The last term is

D.10 = b2∆t2
n−1∑
i=0

n+m−1∑
l=0

(1− γ∆t)2n+m−2−i−l(1− k∆t)2n+m−2−i−l(1− k∆t)n+m−n

= b2∆t2
n−1∑
i=0

n+m−1∑
l=0

(1− γ∆t)2n+m−2−i−l(1− k∆t)2n+2m−2−i−l

= b2∆t2 (1− k∆t)m
n−1∑
i=0

(1− γ∆t)n−1−i(1− k∆t)n−1−i

n+m−1∑
l=0

(1− γ∆t)n+m−1−l(1− k∆t)n+m−1−l

= b2∆t2 (1− k∆t)m
n∑

i=1

(1− γ∆t)i(1− k∆t)i
n+m∑
l=1

(1− γ∆t)l(1− k∆t)l

= b2∆t2 (1− k∆t)m
1− (1− γ∆t)n(1− k∆t)n

1− (1− γ∆t)(1− k∆t)

1− (1− γ∆t)n+m(1− k∆t)n+m

1− (1− γ∆t)(1− k∆t)

= b2∆t2 e−k∆T 1− e−(γ+k)T

(γ + k)∆t

1− e−(γ+k)(T+∆T )

(γ + k)∆t

=
b2

(γ + k)2
e−k∆T

(
1− e−(γ+k)T

) (
1− e−(γ+k)(T+∆T )

)
.

95



CHAPTER D VELOCITY AUTO-CORRELATION FUNCTION

To find the total parallel-to-polarization velocity we must sum the obtained expres-

sions for (D.6), (D.7), (D.8), (D.9), and (D.10)

V ACF (∆T ) = ⟨v⃗∥(T ) · v⃗∥(T +∆T )⟩ = (D.6) + (D.7) + (D.8) + (D.9) + (D.10)

= v2∥(0)e
−2(γ+k)T e−(γ+2k)∆T

+
bv∥(0)

γ + k
e−(γ+k)T e−k∆T

(
1− e−(γ+k)(T+∆T )

)
+
bv∥(0)

(γ + k)
e−(γ+k)T e−(γ+2k)∆T

(
1− e−(γ+k)T

)
+

g

2(γ + k)
e−(γ+2k)∆T

(
1− e−2(γ+k)T

)
+

b2

(γ + k)2
e−k∆T

(
1− e−(γ+k)T

) (
1− e−(γ+k)(T+∆T )

)
.

To continue the solution, we have to assume that the system has reached a stationary

state where ⟨v∥(0)⟩ = b
γ+k

and ⟨v2∥(0)⟩ = g
2(γ+k)

+ b2

(γ+k)2
, results obtained in appendix B.

Substituting these terms into the above expression, we reach

V ACF (∆T ) =

(
g

2(γ + k)
+

b2

(γ + k)2

)
e−2(γ+k)T e−(γ+2k)∆T

+
b2

(γ + k)2
e−(γ+k)T e−k∆T

(
1− e−(γ+k)(T+∆T )

)
+

b2

(γ + k)2
e−(γ+k)T e−(γ+2k)∆T

(
1− e−(γ+k)T

)
+

g

2(γ + k)
e−(γ+2k)∆T

(
1− e−2(γ+k)T

)
+

b2

(γ + k)2
e−k∆T

(
1− e−(γ+k)T

) (
1− e−(γ+k)(T+∆T )

)
,

the substitution allows us to cancel a series of terms

V ACF (∆T ) =

(
���

��g

2(γ + k)
+

�
�
�

��b2

(γ + k)2

)
e−2(γ+k)T e−(γ+2k)∆T

+

(((((((((((((((((((((((
b2

(γ + k)2
e−(γ+k)T e−k∆T

(
1− e−(γ+k)(T+∆T )

)
+

b2

(γ + k)2
e−(γ+k)T e−(γ+2k)∆T

(
1−�����

e−(γ+k)T
)

+
g

2(γ + k)
e−(γ+2k)∆T

(
1−�����

e−2(γ+k)T
)

+
b2

(γ + k)2
e−k∆T

(
1−�����

e−(γ+k)T
) (

1− e−(γ+k)(T+∆T )
)

,
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leaving us with

V ACF (∆T ) =
���������������

b2

(γ + k)2
e−(γ+k)T e−(γ+2k)∆T

+
g

2(γ + k)
e−(γ+2k)∆T

+
b2

(γ + k)2
e−k∆T

(
1−(((((((

e−(γ+k)(T+∆T )
)

=
g

2(γ + k)
e−(γ+2k)∆T +

b2

(γ + k)2
e−k∆T , (D.15)

and that is the final analytical solution for the parallel-to-polarization velocity auto-correlation

function

V ACF (∆T ) =
g

2(γ + k)
e−(γ+2k)∆T +

b2

(γ + k)2
e−k∆T . (D.16)

Note that when ∆T → 0, we obtain

V ACF (∆T )
∆T→0
=

g

2(γ + k)
+

b2

(γ + k)2
= ⟨v2∥⟩ , (D.17)

which is the expected result, because if the interval between the two velocities goes to zero,

the velocity auto-correlation function simply becomes the average of the squared velocity

⟨v⃗∥(T ) · v⃗∥(T +∆T )⟩ ∆T→0
= ⟨v⃗∥(T ) · v⃗∥(T )⟩ = ⟨v2∥(T )⟩. Also note that when ∆T → ∞ we obtain

V ACF (∆T → ∞) = 0 due to to the zeroing of the exponential terms, which is another

expected result, since the auto-correlation of a stochastic with times separated by an infinite

interval should be also zero as the particle has forgotten its initial state velocity.
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Appendix E

Mean Velocity Autocorrelation Function

From appendix C, equation (C.9), we know that a particle’s general position for the biased

anisotropic Ornstein-Uhlenbeck system may be written as

r⃗ ((N + 1)∆t) = r⃗(0) + ∆t v∥(0)
N∑

m=0

(1− γ∆t)n
n−1∏
i=0

(p̂i · p̂i+1)p̂m

+∆t
N∑

m=0

n−1∑
j=0

(1− γ∆t)n−1−j

n−1∏
i=j

(p̂i · p̂i+1)

∫ (j+1)∆t

j∆t

(ξ∥(s) + b)ds p̂m

+∆t
N∑

m=0

∫ (n+1)∆t

n∆t

[(n+ 1)∆t− s]ξ∥(s)ds p̂m

+
N∑

m=0

∫ (n+1)∆t

n∆t

ξ⊥(s)ds n̂m

we may use this result to obtain an average velocity that depends upon a time interval

δ = ∆N ∆t, being ∆N an arbitrary integer. Thus, we define an average velocity at time

T = N∆t ; N ∈ N as

v⃗(T, δ) =
r⃗(T + δ)− r⃗(T )

δ
, (E.1)

with the definition of the average velocity, we now propose the measure of the mean velocity

auto-correlation function (MVACF)

MVACF(∆T, δ) = ⟨v⃗(T, δ) · v⃗(T +∆T, δ)⟩

=

〈
r⃗(T + δ)− r⃗(T )

δ
· r⃗(T +∆T + δ)− r⃗(T +∆T )

δ

〉
, (E.2)

where ∆T = M∆t. To proceed with the calculations, we the need to discover the equations

for r⃗(T + δ)− r⃗(T ) and r⃗(T +∆T + δ)− r⃗(T +∆T ), which is easily obtained by subtracting
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the general position for the particle at two different times

r⃗ ((N +∆N)∆t)− r⃗(N∆t) = r⃗(0) + ∆t v∥(0)
N+∆N∑
m=0

(1− γ∆t)n
n−1∏
i=0

(p̂i · p̂i+1)p̂m

+∆t
N+∆N∑
m=0

n−1∑
j=0

(1− γ∆t)n−1−j

n−1∏
i=j

(p̂i · p̂i+1)

∫ (j+1)∆t

j∆t

(ξ∥(s) + b)ds p̂m

+∆t
N+∆N∑
m=0

∫ (n+1)∆t

n∆t

[(n+ 1)∆t− s]ξ∥(s)ds p̂m

+
N+∆N∑
m=0

∫ (n+1)∆t

n∆t

ξ⊥(s)ds n̂m

−r⃗(0)−∆t v∥(0)
N∑
q=0

(1− γ∆t)n
n−1∏
i=0

(p̂i · p̂i+1)p̂q

−∆t
N∑
q=0

n−1∑
j=0

(1− γ∆t)n−1−j

n−1∏
i=j

(p̂i · p̂i+1)

∫ (j+1)∆t

j∆t

(ξ∥(s) + b)ds p̂q

−∆t
N∑
q=0

∫ (n+1)∆t

n∆t

[(n+ 1)∆t− s]ξ∥(s)ds p̂q

−
N∑
q=0

∫ (n+1)∆t

n∆t

ξ⊥(s)ds n̂q ,

because the expressions are the same until a certain point, the equivalent parts cancel each
other, leaving only the summation indexes that remain between the position of smaller times
and the one at greater times, i.e.

∆r⃗
(
(N +∆N)∆t

)
= r⃗ ((N +∆N)∆t)− r⃗(N∆t)

= ∆t v∥(0)

N+∆N∑
m=N

(1− γ∆t)m
m−1∏
i=0

(p̂i · p̂i+1)p̂m (E.3)

+∆t

N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j
m−1∏
i=j

(p̂i · p̂i+1)

∫ (j+1)∆t

j∆t

(ξ∥(s) + b)ds p̂m (E.4)

+∆t

N+∆N∑
m=N

∫ (m+1)∆t

m∆t

[(m+ 1)∆t− s]ξ∥(s)ds p̂m (E.5)

+

N+∆N∑
m=N

∫ (m+1)∆t

m∆t

ξ⊥(s)ds n̂m . (E.6)

observe that the indexes present on the sum expressions, now start from m = N and go to
m = N + ∆N , now we have a general expression for a position separated by an arbitrary
time interval, to find its average velocity, it is only necessary to divide the expression by δ,
however we will not do it for now. The second position interval we want is r⃗(T +∆T + δ)−
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r⃗(T +∆T ), easily obtained through the process stated earlier

∆r⃗
(
(N +M +∆N)∆t

)
= r⃗

(
(N +M +∆N)∆t

)
− r⃗
(
(N +M)∆t

)
= ∆t v∥(0)

N+M+∆N∑
q=N+M

(1− γ∆t)q
q−1∏
i=0

(p̂i · p̂i+1)p̂q (E.7)

+∆t

N+M+∆N∑
q=N+M

q−1∑
j=0

(1− γ∆t)q−1−j
q−1∏
i=j

(p̂i · p̂i+1)

∫ (j+1)∆t

j∆t

(ξ∥(s) + b)ds p̂q (E.8)

+∆t

N+M+∆N∑
q=N+M

∫ (q+1)∆t

q∆t

[(q + 1)∆t− s]ξ∥(s)ds p̂q (E.9)

+

N+M+∆N∑
q=N+M

∫ (q+1)∆t

q∆t

ξ⊥(s)ds n̂q . (E.10)

The only thing remaining to do to obtain the mean velocity auto-correlation is to mul-

tiply both expressions (E.3-E.6) and (E.7-E.10) and take their average. However, because

both expressions are too big, we will name each part of it and obtain the multiplication of

the terms separately (E.3) ≡ A⃗1, (E.4) ≡ A⃗2, (E.5) ≡ A⃗3, (E.6) ≡ A⃗4 and (E.7) ≡ B⃗1,

(E.8) ≡ B⃗2, (E.9) ≡ B⃗3, (E.10) ≡ B⃗4. The multiplication of both expressions would result

in 16 terms (A⃗i · B⃗j, i, j ∈ [1, 4]), however some of these terms go to zero, if the series multi-

plication has a power of ∆t greater than the number of summations, then it goes to zero as

∆t→ 0, this happens because at every summation, we get something of the form

b∑
i=a

(1− x∆t)i =
(1− x∆t)a − (1− x∆t)b+1

1− (1− x∆t)
=

(1− x∆t)a − (1− x∆t)b+1

x∆t
, (E.11)

with x being an arbitrary value, observe that every summation of a term of the form (1 −
x∆t), is equivalent to a power divided by x∆t, thus if the average of an arbitrary multiplica-

tion A⃗3 · B⃗3, for instance, is multiplied by ∆t to a higher power than it has summation terms,

it becomes proportional to some positive power of ∆t, which is much smaller than unit and

can be ruled out, the only multiplication where this does not happen is A⃗1 ·B⃗1, A⃗1 ·B⃗2, A⃗2 ·B⃗1
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and A⃗2 · B⃗2. Starting with A⃗1 · B⃗1, we have

〈
A⃗1 · B⃗1

〉
=

〈
∆t v∥(0)

N+∆N∑
m=N

(1− γ∆t)m
m−1∏
i=0

(p̂i · p̂i+1)p̂m

·∆t v∥(0)
N+M+∆N∑
q=N+M

(1− γ∆t)q
q−1∏
i=0

(p̂i · p̂i+1)p̂q

〉

= ∆t2v2∥(0)
N+∆N∑
m=N

N+M+∆N∑
q=N+M

(1− γ∆t)m+q

〈
m−1∏
i=0

(p̂i · p̂i+1)

q−1∏
j=0

(p̂j · p̂j+1)(p̂m · p̂q)

〉

= ∆t2v2∥(0)
N+∆N∑
m=N

N+M+∆N∑
q=N+M

(1− γ∆t)m+q(1− k∆t)m−1(1− k∆t)q−1(1− k∆t)|q−m| ,

where
〈∏b

i=a(p̂i · p̂i+1)
〉
= (1− k∆t)|b−a| and ⟨(p̂a · p̂b)⟩ = (1− k∆t)|b−a|, the demonstration of

these identities can be found in appendix F. Because q > m∀ q,m, we know that |q −m| =
q −m, which takes us to

〈
A⃗1 · B⃗1

〉
= ∆t2v2∥(0)

N+∆N∑
m=N

N+M+∆N∑
q=N+M

(1− γ∆t)m+q(1− k∆t)m−1(1− k∆t)q−1(1− k∆t)q−m

= ∆t2v2∥(0)
N+∆N∑
m=N

N+M+∆N∑
q=N+M

(1− γ∆t)m+q(1− k∆t)2q−1

= ∆t2v2∥(0)
N+∆N∑
m=N

(1− γ∆t)m
N+M+∆N∑
q=N+M

(1− γ∆t)q(1− k∆t)2q−1

= ∆t2v2∥(0)

(
(1− γ∆t)N − (1− γ∆t)N+∆N

1− (1− γ∆t)

)
×
(
(1− γ∆t)N+M(1− k∆t)2(N+M) − (1− γ∆t)N+M+∆N(1− k∆t)2(N+M+∆N)

1− (1− γ∆t)(1− k∆t)2

)
= ∆t2v2∥(0)

(
e−γ N∆t − e−γ(N+∆N)∆t

γ∆t

)
e−(γ+2k)(N+M)∆t

(
1− e−γ∆N∆te−2k∆N∆t

(γ + 2k)∆t

)
= v2∥(0)e

−γ N∆t

(
1− e−γ∆N∆t

γ

)
e−(γ+2k)(N+M)∆t

(
1− e−(γ+2k)∆N∆t

(γ + 2k)

)
= v2∥(0)e

−γ T

(
1− e−γδ

γ

)
e−(γ+2k)(T+∆T )

(
1− e−(γ+2k)δ

(γ + 2k)

)
=

v2∥(0)

γ(γ + 2k)
e−γ T e−(γ+2k)(T+∆T )

(
1− e−γδ

) (
1− e−(γ+2k)δ

)
,

which ends our calculation for the first term, the second one
〈
A⃗1 · B⃗2

〉
is obtained through
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similar procedures

〈
A⃗1 · B⃗2

〉
=

〈
∆t v∥(0)

N+∆N∑
m=N

(1− γ∆t)m
m−1∏
i=0

(p̂i · p̂i+1)p̂m

·∆t
N+M+∆N∑
q=N+M

q−1∑
j=0

(1− γ∆t)q−1−j

q−1∏
i=j

(p̂i · p̂i+1)

∫ (j+1)∆t

j∆t

(ξ∥(s) + b)ds p̂q

〉
,

where ⟨ξ∥⟩ = 0, because it is a stochastic variable with distribution centered around zero,
thus the only remaining term in the integral is b∆t

〈
A⃗1 · B⃗2

〉
=

〈
b∆t3 v∥(0)

N+∆N∑
m=N

(1− γ∆t)m
m−1∏
i=0

(p̂i · p̂i+1)p̂m

N+M+∆N∑
q=N+M

q−1∑
j=0

(1− γ∆t)q−1−j
q−1∏
i=j

(p̂i · p̂i+1) p̂q

〉

= b∆t3

〈
v∥(0)

N+∆N∑
m=N

(1− γ∆t)m
m−1∏
i=0

(p̂i · p̂i+1)
N+M+∆N∑
q=N+M

q−1∑
j=0

(1− γ∆t)q−1−j
q−1∏
i=j

(p̂i · p̂i+1) p̂m · p̂q

〉

= b∆t3v∥(0)
N+∆N∑
m=N

(1− γ∆t)m(1− k∆t)m−1
N+M+∆N∑
q=N+M

q−1∑
j=0

(1− γ∆t)q−1−j(1− k∆t)q−1−j+|q−m|

= b∆t3v∥(0)
N+∆N∑
m=N

N+M+∆N∑
q=N+M

q−1∑
j=0

(1− γ∆t)q+m−1−j(1− k∆t)q+m−2−j+|q−m| ,
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because q is always bigger than m, then |q −m| = q −m, getting us

〈
A⃗1 · B⃗2

〉
= b∆t3v∥(0)

N+∆N∑
m=N

N+M+∆N∑
q=N+M

q−1∑
j=0

(1− γ∆t)q+m−1−j(1− k∆t)q+m−2−j+q−m

= b∆t3v∥(0)
N+∆N∑
m=N

N+M+∆N∑
q=N+M

q−1∑
j=0

(1− γ∆t)q+m−1−j(1− k∆t)2q−2−j

= b∆t3v∥(0)

N+∆N∑
m=N

(1− γ∆t)m
N+M+∆N∑
q=N+M

q−1∑
j=0

(1− γ∆t)q+m−1−j(1− k∆t)2q−2−j

= b∆t3v∥(0)

N+∆N∑
m=N

(1− γ∆t)m
N+M+∆N∑
q=N+M

q−1∑
j=0

(1− γ∆t)q−1−j(1− k∆t)2q−2−j

= b∆t3v∥(0)

(
(1− γ∆t)N − (1− γ∆t)N+∆N

1− (1− γ∆t)

)N+M+∆N∑
q=N+M

q−1∑
j=0

(1− γ∆t)q−1−j(1− k∆t)2q−2−j

= b∆t3v∥(0)

(
e−γN∆t − e−γ(N+∆N)∆t

γ∆t

)
N+M+∆N∑
q=N+M

(1− k∆t)q−1
q−1∑
j=0

(1− γ∆t)q−1−j(1− k∆t)q−1−j

= b∆t3v∥(0)

(
e−γN∆t − e−γ(N+∆N)∆t

γ∆t

)
N+M+∆N∑
q=N+M

(1− k∆t)q−1
q∑

j=1

(1− γ∆t)q(1− k∆t)q

= b∆t3v∥(0)

(
e−γN∆t − e−γ(N+∆N)∆t

γ∆t

)
N+M+∆N∑
q=N+M

(1− k∆t)q−1 1− (1− γ∆t)q(1− k∆t)q

1− (1− γ∆t)(1− k∆t)

= b∆t3v∥(0)e
−γT

(
1− e−γδ

γ∆t

)N+M+∆N∑
q=N+M

(1− k∆t)q−1 1− (1− γ∆t)q(1− k∆t)q

(γ + k)∆t
,

here we used the fact that
∑N−1

i=0 xN−i =
∑N

i=1 x
i and that (1−k∆t)(1−γ∆t) ∆t→0

= 1−(γ+k)∆t,
because γk∆t2 << ∆t, now we only have to obtain the sum over the summation index q

〈
A⃗1 · B⃗2

〉
=

b∆tv∥(0)

γ(γ + k)
e−γT

(
1− e−γδ

)(
(1− k∆t)N+M

(
1− (1− k∆t)∆N

1− (1− k∆t)

)

−(1− γ∆t)N+M (1− k∆t)2(N+M)

(
1− (1− γ∆t)∆N∆t(1− k∆t)2∆N∆t

1− (1− γ∆t)(1− k∆t)2

))

=
b∆tv∥(0)

γ(γ + k)
e−γT

(
1− e−γδ

)(
e−k(N+M)∆t

(
1− e−k∆N∆t

k∆t

)
− e−(γ+2k)(N+M)∆t

(
1− e−(γ+2k)∆N∆t

(γ + 2k)∆t

))

=
bv∥(0)

γ(γ + k)
e−γT

(
1− e−γδ

)(
e−k(T+∆T )

(
1− e−kδ

k

)
− e−(γ+2k)(T+∆T )

(
1− e−(γ+2k)δ

(γ + 2k)

))
,
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which is the final form of
〈
A⃗1 · B⃗2

〉
, next, we must obtain

〈
A⃗2 · B⃗1

〉
〈
A⃗2 · B⃗1

〉
=

〈
∆t

N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j

m−1∏
i=j

(p̂i · p̂i+1)

∫ (j+1)∆t

j∆t

(
ξ∥(s) + b

)
ds p̂m

·∆tv∥(0)
N+M+∆N∑
q=N+M

(1− γ∆t)q
q−1∏
l=0

(p̂l · p̂l+1)p̂q

〉
, (E.12)

where ⟨ξ∥(t)⟩ = 0, given ξ∥ is a Gaussian stochastic variable with a distribution centered

around zero, thus, the integral in equation E.12 results in b∆t, and the equation becomes〈
A⃗2 · B⃗1

〉
=

〈
b∆t3

N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j

m−1∏
i=j

(p̂i · p̂i+1) p̂m

·v∥(0)
N+M+∆N∑
q=N+M

(1− γ∆t)q
q−1∏
l=0

(p̂l · p̂l+1)p̂q

〉
. (E.13)

From appendix F, we know that the average of each successive projection equals ⟨p̂i ·
p̂i+1⟩ = (1 − k∆t) and that two projections separated by more than one time-step can be

decomposed into ⟨p̂i · p̂j⟩ =
∏j

l=i(p̂l · p̂l+1) = (1 − k∆t)|i−j|. This result implies that we are

able to do the same for equation E.13〈
A⃗2 · B⃗1

〉
= b∆t3

N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j(1− k∆t)m−1−j

v∥(0)
N+M+∆N∑
q=N+M

(1− γ∆t)q(1− k∆t)q−1(1− k∆t)|q−m| . (E.14)

Because q > m is always true, |q −m| = q −m〈
A⃗2 · B⃗1

〉
= b∆t3

N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j(1− k∆t)m−1−j

v∥(0)
N+M+∆N∑
q=N+M

(1− γ∆t)q(1− k∆t)q−1(1− k∆t)q−m

= bv∥(0)∆t
3

N+∆N∑
m=N

m−1∑
j=0

N+M+∆N∑
q=N+M

(1− γ∆t)q+m−1−j(1− k∆t)2q−1−j

= bv∥(0)∆t
3

(
e−(γ+2k)(T+∆T ) − e−(γ+2k)(T+δ+∆T )

(γ + 2k)∆t

)
N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j(1− k∆t)−1−j , (E.15)
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where we used the fact that
∑b

q=a x
q = xa−xb+1

1−x
for an arbitrary variable x and that (1 −

γ∆t)a(1− k∆t)2a = e−(γ+2k)a∆t.

Proceeding to solve the summations with corresponding indexes m and j, we have〈
A⃗2 · B⃗1

〉
=

bv∥(0)∆t
2

(γ + 2k)
e−(γ+2k)(T+∆T )

(
1− e−(γ+2k)δ

)
N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j(1− k∆t)−1−j

=
bv∥(0)∆t

2

(γ + 2k)
e−(γ+2k)(T+∆T )

(
1− e−(γ+2k)δ

)
N+∆N∑
m=N

(1− k∆t)−m − (1− γ∆t)N

1− (1− γ∆t)(1− k∆t)

=
bv∥(0)∆t

2

(γ + 2k)
e−(γ+2k)(T+∆T )

(
1− e−(γ+2k)δ

)
N+∆N∑
m=N

(1− k∆t)−m − (1− γ∆t)N

(γ + k)∆t
,

in equation E.16 we know that
∑j=m−1

j=0 am−jb−j = b−m−am

1−ab
for arbitrary variables a and b. We

also used the fact that (1− k∆t)(1− γ∆t) = 1− (γ + k)∆t+ γk∆t2
∆t→0
≈ 1− (γ + k)∆t, which

takes us to〈
A⃗2 · B⃗1

〉
= −

bv∥(0)∆t

(γ + 2k)(γ + k)
e−(γ+2k)(T+∆T )

(
1− e−(γ+2k)δ

)
(
(1− k∆t)−N − (1− k∆t)−N−∆N

1− (1− k∆t)
+

(1− γ∆t)N(1− γ∆t)N+∆N

1− (1− γ∆t)

)
= −

bv∥(0)∆t

(γ + 2k)(γ + k)
e−(γ+2k)(T+∆T )

(
1− e−(γ+2k)δ

)(ekT (1− ekδ)

k∆t
+
e−γT (1− e−γδ)

γ∆t

)
= −

bv∥(0)

(γ + 2k)(γ + k)
e−(γ+2k)(T+∆T )

(
1− e−(γ+2k)δ

)(ekT (1− ekδ)

k
+
e−γT (1− e−γδ)

γ

)
.

(E.16)

Now, the only remaining non zero average product is ⟨A⃗2 · B⃗2⟩

⟨A⃗2 · B⃗2⟩ =

〈
∆t

N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j

m−1∏
i=j

(p̂i · p̂i+1)

∫ (j+1)∆t

j∆t

(ξ∥(s) + b)ds p̂m

·∆t
N+M+∆N∑
q=N+M

q−1∑
j=0

(1− γ∆t)q−1−j

q−1∏
i=j

(p̂i · p̂i+1)

∫ (j+1)∆t

j∆t

(ξ∥(s) + b)ds p̂q

〉
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for ease of calculus, we separate the calculation into two parts, one corresponding to the

non-biased part of integral
∫ (j+1)∆t

j∆t
(ξ∥ + b)ds and the other corresponding to the biased part

(the non-biased part corresponds to the terms proportional to the Wiener variable ξ∥, the

biased part stands for the terms multiplied by the bias b). Starting from the non biased part,

we have

⟨A⃗2 nb · B⃗2 nb⟩ =

〈
∆t

N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j

m−1∏
i=j

(p̂i · p̂i+1)

∫ (j+1)∆t

j∆t

ξ∥(s)ds p̂m

·∆t
N+M+∆N∑
q=N+M

q−1∑
l=0

(1− γ∆t)q−1−l

q−1∏
i=l

(p̂i · p̂i+1)

∫ (l+1)∆t

l∆t

ξ∥(s)ds p̂q

〉
.

Because the integrals
∫ (j+1)∆t

j∆t
ξ∥(s)ds and

∫ (l+1)∆t

l∆t
ξ∥(s)ds have intersecting time inter-

vals, their averaged product isn’t equivalent to 0, we have∫ (j+1)∆t

j∆t

ξ∥(s)ds

∫ (l+1)∆t

l∆t

ξ∥(s
′)ds′ =

∫ (l+1)∆t

l∆t

∫ (j+1)∆t

j∆t

ξ∥(s)ξ∥(s
′)dsds′

=

∫ (l+1)∆t

l∆t

∫ (j+1)∆t

j∆t

gδ(s− s′)dsds′

= δl,j

∫ (l+1)∆t

l∆t

gds′

= δl,jg∆t , (E.17)

where the only scenario that the integrals’ intervals overlap is when l = j, thus the result in

equation E.17.
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Back to ⟨A⃗2 nb · B⃗2 nb⟩, we have

⟨A⃗2 nb · B⃗2 nb⟩ =

〈
g∆t3

N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j

m−1∏
i=j

(p̂i · p̂i+1)p̂m

·
N+M+∆N∑
q=N+M

q−1∑
l=0

(1− γ∆t)q−1−l

q−1∏
i=l

(p̂i · p̂i+1)p̂qδl,j

〉

=

〈
g∆t3

N+M+∆N∑
q=N+M

N+∆N∑
m=N

q−1∑
l=0

m−1∑
j=0

(1− γ∆t)q+m−2−l−j

m−1∏
i=j

(p̂i · p̂i+1)

q−1∏
i=l

(p̂i · p̂i+1)p̂q · p̂mδl,j

〉

= g∆t3
N+M+∆N∑
q=N+M

N+∆N∑
m=N

q−1∑
l=0

m−1∑
j=0

(1− γ∆t)q+m−2−l−j(1− k∆t)m−1−j

(1− k∆t)q−1−l(1− k∆t)|q−m|δl,j

= g∆t3
N+M+∆N∑
q=N+M

N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)q+m−2−2j(1− k∆t)m−1−j

(1− k∆t)q−1−j(1− k∆t)|q−m| , (E.18)

in the last step of (E.18), the Kronecker’s δl,j forced l = j, and this only happens from j, l = 0

to j, l = m−1, the upper limit beingm−1 becausem < q. We also know that |q−m| = q−m,

thus

⟨A⃗2 nb · B⃗2 nb⟩ = g∆t3
N+M+∆N∑
q=N+M

N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)q+m−2−2j(1− k∆t)m−1−j

(1− k∆t)q−1−j(1− k∆t)q−m

= g∆t3
N+M+∆N∑
q=N+M

N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)q+m−2−2j(1− k∆t)2q−2−2j .

To solve equation E.19, we need to multiply it by (1− γ∆t)m−m(1− k∆t)2m−2m, which
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produces

⟨A⃗2 nb · B⃗2 nb⟩ = g∆t3
N+M+∆N∑
q=N+M

N+∆N∑
m=N

(1− γ∆t)q−m(1− k∆t)2q−2m
m−1∑
j=0

(1− γ∆t)2(m−j)(1− k∆t)2(m−j)

= g∆t3
N+M+∆N∑
q=N+M

N+∆N∑
m=N

(1− γ∆t)q−m(1− k∆t)2q−2m

(
1− (1− γ∆t)2m(1− k∆t)2m

1− (1− γ∆t)2(1− k∆t)2

)

= g∆t3
N+M+∆N∑
q=N+M

N+∆N∑
m=N

(1− γ∆t)q−m(1− k∆t)2q−2m

(
1− (1− (γ + k)∆t)2m

2(γ + k)∆t

)

=
g∆t2

2(γ + k)

N+M+∆N∑
q=N+M

N+∆N∑
m=N

(1− γ∆t)q(1− k∆t)2q
[
(1− (γ + 2k)∆t)−2m − (1− γ∆t)m

]
= g∆t

(
−e(γ+2k)T − e(γ+2k)(T+δ)

(γ + 2k)
− e−γT − e−γ(T+δ)

γ

)N+M+∆N∑
q=N+M

(1− γ∆t)q(1− k∆t)2q

2(γ + k)

= −g∆t

(
e(γ+2k)T − e(γ+2k)(T+δ)

(γ + 2k)
− e−γT − e−γ(T+δ)

γ

)(
e−(γ+2k)(T+∆T ) − e−(γ+2k)(T+∆T+δ)

2(γ + k)(γ + 2k)∆t

)
= −g∆t

(
e(γ+2k)T 1− e(γ+2k)(δ)

(γ + 2k)
− e−γT 1− e−γ(δ)

γ

)(
e−(γ+2k)(T+∆T ) 1− e−(γ+2k)δ

2(γ + k)(γ + 2k)∆t

)

= − g

2(γ + k)

e−(γ+2k)∆T
(
1− e−(γ+2k)δ

)(
1− e(γ+2k)δ

)
(γ + 2k)2

− g

2(γ + k)

e−2(γ+k)T e−(γ+2k)∆T (1− e−(γ+2k)δ)(1− e−γδ)

γ(γ + 2k)
. (E.19)

This finishes our calculations for the non biased part of ⟨A⃗2 · B⃗2⟩, as for the biased part

we have

⟨A⃗2 b · B⃗2 b⟩ =

〈
b2∆t4

N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j

m−1∏
i=j

(p̂i · p̂i+1)p̂m

·
N+M+∆N∑
q=N+M

q−1∑
l=0

(1− γ∆t)q−1−j

q−1∏
i=l

(p̂i · p̂i+1)p̂q

〉
,

here, we know that ⟨p̂q ·p̂m⟩ = (1−k∆t)|q−m|, where q > m is always true, thus |q−m| = q−m,

we may also know that
〈∏m−1

i=j (p̂i · p̂i+1)
〉
= (1 − k∆t)m−1−j from the previous calculations
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and from appendix F, thus

⟨A⃗2 b · B⃗2 b⟩ = b2∆t4
N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j(1− k∆t)m−1−j

×
N+M+∆N∑
q=N+M

q−1∑
l=0

(1− γ∆t)q−1−j(1− k∆t)q−1−l(1− k∆t)q−m

= b2∆t4
N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j(1− k∆t)−1−j

×
N+M+∆N∑
q=N+M

q−1∑
l=0

(1− γ∆t)q−1−j(1− k∆t)2q−1−l . (E.20)

from now on, each summation (over the indices m and q) can be solved separately as the

terms are each independent.

109



CHAPTER E MEAN VELOCITY AUTOCORRELATION FUNCTION

⟨A⃗2 b · B⃗2 b⟩ = b2∆t4
N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j(1− k∆t)−1−j

×
N+M+∆N∑
q=N+M

q−1∑
l=0

(1− γ∆t)q−1−j(1− k∆t)2q−1−l

= b2∆t4
N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j(1− k∆t)−1−j

×
N+M+∆N∑
q=N+M

(1− k∆t)q
1− (1− γ∆t)q(1− k∆t)q

(γ + k)∆t

=
b2∆t3

(γ + k)

N+∆N∑
m=N

m−1∑
j=0

(1− γ∆t)m−1−j(1− k∆t)−1−j

×
(
(1− k∆t)N+M − (1− k∆t)N+M+∆N

1− (1− k∆t)
− (1− (γ + 2k))N+M − (1− (γ + 2k))N+M+∆N

1− (1− (γ + 2k)∆t)

)
=

b2∆t2

(γ + k)

N+∆N∑
m=N

(1− k∆t)−m − (1− γ∆t)m

1−
(
1− (γ + k)∆t

)
×

(
e−k(T+∆T ) 1− e−kδ

k
− e−(γ+2k)(T+∆T ) 1− e−(γ+2k)δ

(γ + 2k)

)

=
b2∆t

(γ + k)

(
(1− k∆t)−N−∆N − (1− k∆t)−N

1− (1− k∆t)
− (1− γ∆t)N − (1− γ∆t)N+∆N

1− (1− γ∆t)

)
×

(
e−k(T+∆T ) 1− e−kδ

k
− e−(γ+2k)(T+∆T ) 1− e−(γ+2k)δ

(γ + 2k)

)

=
b2

(γ + k)

(
−ekT

1− ekδ

k∆t
− e−γT 1− e−γδ

γ∆t

)
×

(
e−k(T+∆T ) 1− e−kδ

k
− e−(γ+2k)(T+∆T ) 1− e−(γ+2k)δ

(γ + 2k)

)
.

Now, the only remaining step for us to obtain the MVACF analytical solution is to
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sum all of the separate non-zero products and divide it by δ2

ψ(δ,∆T ) δ2 = ⟨A⃗1 · B⃗1⟩+ ⟨A⃗1 · B⃗2⟩+ ⟨A⃗2 · B⃗1⟩+ ⟨A⃗2nb · B⃗2nb⟩+ ⟨A⃗2 b · B⃗2 b⟩

= v2∥(0)
e−2(γ+k)T e−(γ+2k)∆T (1− e−γδ)(1− e−(γ+2k)δ)

γ(γ + 2k)

+
b2

k(γ + 2k)(γ + k)2
e−(γ+k)T e−(γ+2k)∆T (1− e−(γ+2k)δ)(1− ekδ)

+
b2

γ(γ + 2k)(γ + k)2
e−2(γ+k)T e−(γ+2k)∆T (1− e−(γ+2k)δ)(1− e−γδ)

− b2

k2(γ + k)2
e−k∆T (1− e−kδ)(1− ekδ)

− b2

γk(γ + k)2
e−(γ+k)T e−k∆T (1− e−kδ)(1− e−γδ)

−
bv∥(0)

γ(γ + k)(γ + 2k)
e−2(γ+k)T e−(γ+2k)∆T (1− e−γδ)(1− e−(γ+2k)δ)

+
bv∥(0)

γk(γ + k)
e−(γ+k)T e−k∆T (1− e−γδ)(1− e−kδ)

−
bv∥(0)

k(γ + 2k)(γ + k)
e−(γ+k)T e−(γ+2k)T (1− e−(γ+2k)δ)(1− ekδ)

−
bv∥(0)

γ(γ + 2k)(γ + k)
e−2(γ+k)T e−(γ+2k)∆T (1− e−(γ+2k)δ)(1− e−γδ)

− g

2(γ + k)

e−(γ+2k)∆T
(
1− e−(γ+2k)δ

) (
1− e(γ+2k)δ

)
(γ + 2k)2

− g

2(γ + k)

e−2(γ+k)T e−(γ+2k)∆T (1− e−(γ+2k)δ)(1− e−γδ)

γ(γ + 2k)
(E.21)

Now we substitute the v∥(0) and v2∥(0) for their stationary values and cancel the op-
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posite signaled terms

ψ(δ,∆T ) δ2 =

(
��

���g

2(γ + k)
+

�
�
�
��b2

(γ + k)2

)
e−2(γ+k)T e−(γ+2k)∆T (1− e−γδ)(1− e−(γ+2k)δ)

γ(γ + 2k)

((((((((((((((((((((((((((((((((

+
b2

k(γ + 2k)(γ + k)2
e−(γ+k)T e−(γ+2k)∆T (1− e−(γ+2k)δ)(1− ekδ)

(((((((((((((((((((((((((((((((((

+
b2

γ(γ + 2k)(γ + k)2
e−2(γ+k)T e−(γ+2k)∆T (1− e−(γ+2k)δ)(1− e−γδ)

− b2

k2(γ + k)2
e−k∆T (1− e−kδ)(1− ekδ)

(((((((((((((((((((((((((

− b2

γk(γ + k)2
e−(γ+k)T e−k∆T (1− e−kδ)(1− e−γδ)

(((((((((((((((((((((((((((((((((

− b2

γ(γ + k)2(γ + 2k)
e−2(γ+k)T e−(γ+2k)∆T (1− e−γδ)(1− e−(γ+2k)δ)

(((((((((((((((((((((((((

+
b2

γk(γ + k)2
e−(γ+k)T e−k∆T (1− e−γδ)(1− e−kδ)

(((((((((((((((((((((((((((((((

− b2

k(γ + 2k)(γ + k)2
e−(γ+k)T e−(γ+2k)T (1− e−(γ+2k)δ)(1− ekδ)

(((((((((((((((((((((((((((((((((

− b2

γ(γ + 2k)(γ + k)2
e−2(γ+k)T e−(γ+2k)∆T (1− e−(γ+2k)δ)(1− e−γδ)

− g

2(γ + k)

e−(γ+2k)∆T
(
1− e−(γ+2k)δ

) (
1− e(γ+2k)δ

)
(γ + 2k)2

(((((((((((((((((((((((((((((

− g

2(γ + k)

e−2(γ+k)T e−(γ+2k)∆T (1− e−(γ+2k)δ)(1− e−γδ)

γ(γ + 2k)
, (E.22)

after canceling the terms with opposite signals, we end up with

ψ(δ,∆T ) =
g

2(γ + k)(γ + 2k)2δ2
e−(γ+2k)∆T (1− e−(γ+2k)δ)(e(γ+2k)δ − 1)

+
b2

k2(γ + k)2δ2
e−(γ+2k)∆T (1− e−kδ)(ekδ − 1) , (E.23)

which can also be written as

ψ(δ,∆T ) =
g

(γ + k)(γ + 2k)2δ2
e−(γ+2k)∆T

(
cosh

(
(γ + 2k)δ

)
− 1
)

+
2b2

k2(γ + k)2δ2
e−(γ+2k)∆T

(
cosh

(
kδ
)
− 1
)

, (E.24)
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this is the analytical solution for the MVACF. Notice that for δ → 0 (emulating an infinite

precision VACF solution), we recover the VACF solution

ψ(δ,∆T )
δ→0
=

g

2(γ + k)(γ + 2k)2δ2
e−(γ+2k)∆T

(
1−

(
1− (γ + 2k)δ

))((
1 + (γ + 2k)δ

)
− 1
)

+
b2

k2(γ + k)2δ2
e−(γ+2k)∆T

(
1−

(
1− kδ

))((
1 + kδ

)
− 1
)

δ→0
=

g

2(γ + k)(γ + 2k)2δ2
e−(γ+2k)∆T

(
(γ + 2k)δ

)(
(γ + 2k)δ

)
+

b2

k2(γ + k)2δ2
e−(γ+2k)∆T

(
kδ
)2

δ→0
=

g

2(γ + k)
e−(γ+2k)∆T +

b2

(γ + k)2
e−(γ+2k)∆T = V ACF (∆T ) . (E.25)
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Appendix F

θ Dynamics

Here we introduce calculations for a particle with an internal degree of freedom represented

by a polarization vector p̂ = (cos(θ), sin(θ)) subject to a chemical field that forces the particle

to orient itself to the point of highest concentration. Mathematically speaking, we specify

a polarization vector whose direction varies according to a stochastic differential equation

with decay, forcing θ → θq with intensity ϕ and θq an arbitrary direction dictated by some

chemical concentrations.

We assume, without loss of generality, that θq = 0, creating a particle that migrates

preferentially in the θ = 0 direction. Also note that all calculations work for ϕ = 0, which rep-

resents the case where there is no chemical field and takes us back to the biased anisotropic

Ornstein-Uhlenbeck model.

Considering the differential equation for the angular position θ(t) as

dθ

dt
= −ϕθ + β⊥ , (F.1)

where

⟨β⊥(t)β⊥(t′)⟩β⊥ = 2kδ(t− t′) . (F.2)

We obtain a solution for θ(t) via an integrating factor or via the Green’s function

method
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dθ

dt
eϕt + ϕθeϕt = β⊥e

ϕt∫ t

t0

d

dt′
(θeϕt

′
)dt′ =

∫ t

t0

β⊥e
ϕt′dt′

θ(t)eϕt − θ(t0)e
ϕt0 =

∫ t

t0

β⊥e
ϕt′dt′

θ(t) = θ(t0)e
ϕ(t0−t) +

∫ t

t0

β⊥e
ϕ(t′−t)dt′ . (F.3)

After using this solution, we can then obtain other pertinent measures, like the av-

eraged squared angle, where ⟨X⟩N represents the average of the variable X considering all

possible realizations of the stochastic term β⊥. But first we have to find ∆θ = θ(t) − θ(0),

assuming t0 = 0 with no loss of generality

θ(t)− θ(0) = θ(0)e−ϕt − θ(0) +

∫ t

t0

β⊥e
−ϕ(t−s)ds , (F.4)

with the result above (F.4) we can find its average and its average squared value

⟨θ(t)⟩ = ⟨θ(t0)⟩e−ϕ(t−t0) ∀ t ∈ [t0,∞] , (F.5)

meaning that the average direction for the polarization vector is 0 as we have chosen θq = 0.

The squared average for θ is

⟨|∆θ|2⟩ =
〈
θ2(0)(e−ϕt − 1)2 + θ(0)(e−ϕt − 1)

∫ t

0
β⊥e

−ϕ(t−s)ds+

∫ t

0

∫ t

0
β⊥(s)β⊥(s

′)e−ϕ(2t−s−s′)ds ds′
〉

=
〈
θ2(0)(e−ϕt − 1)2

〉
+
〈
θ(0)(e−ϕt − 1)

∫ t

0
β⊥e

−ϕ(t−s)ds
〉
+
〈∫ t

0

∫ t

0
β⊥(s)β⊥(s

′)e−ϕ(2t−s−s′)ds ds′
〉

=
〈
θ2(0)(e−ϕt − 1)2

〉
+ 0 +

〈∫ t

0

∫ t

0
β⊥(s)β⊥(s

′)e−ϕ(2t−s−s′)ds ds′
〉

= θ2(0)(e−2ϕt + 1− 2e−ϕt) +

∫ t

0

∫ t

0
2kδ(s− s′)e−ϕ(2t−s−s′)ds ds′

= θ2(0)(e−2ϕt + 1− 2e−ϕt) + 2k

∫ t

0
e−2ϕ(t−s)ds

= θ2(0)(e−2ϕt + 1− 2e−ϕt) +
k

ϕ
(1− e−2ϕt) .
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If we assume that t→ ∞, then we obtain the asymptotic solution for ⟨|∆θ|2⟩, which is

⟨|∆θ|2⟩asymptotic = lim
t→∞

θ2(0)(e−2ϕt + 1− 2e−ϕt) +
k

ϕ
(1− e−2ϕt)

= θ2(0) +
k

ϕ
and (F.6)

if we assume ϕ→ 0 before taking the limit of t→ ∞, we get

⟨|∆θ|2⟩asymptotic = lim
ϕ→0

θ2(0)(e−2ϕt + 1− 2e−ϕt) +
k

ϕ
(1− e−2ϕt)

= lim
ϕ→0

θ2(0)(1− 2ϕt+ 1− 2 + 2ϕt) +
k

ϕ
(1− e−2ϕt) (F.7)

= lim
ϕ→0

k

ϕ
(1− e−2ϕt) (F.8)

now expanding the exponential term we obtain

⟨|∆θ|2⟩ϕ→0 ≈ k

ϕ
(1− 1− 2ϕt)

= 2kt, (F.9)

implying that when ϕ = 0, we have a simple diffusion in θ i.e. ∆θ =
∫ t

0
β⊥(s) ds, taking us

back to usual migration without chemotaxis.

Another important measure is the cosine of an angle variation ∆θi,j , where i and j

are integers such that t = i∆t and t′ = j∆t and also that |i − j| ̸= 1. This calculation is

important because the cosine represents the projection of a unit vector onto another, which

occurs recursively in the anisotropic Ornstein-Uhlenbeck model [de Almeida et al., 2022]

and the biased anisotropic Ornstein-Uhlenbeck model. We have the product denoted as

(p̂i · p̂j) = cos(∆θi,j) = cos(∆θi,i+1 +∆θi+1,i+2 + · · ·+∆θj−2,j−1 +∆θj−1,j)

= cos(θi,i+1) cos(θi+1,i+2 + · · ·+ θj−1,j)− sin(θi,i+1) sin(θi+1,i+2 + · · ·+ θj−1,j) .
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Assuming that ∆θi,i+1 << 1 for any integer i, then we obtain the sine and cosine

values of it

cos(∆θi,i+1) ≈ 1− (∆θi,i+1)
2

2
and (F.10)

sin(∆θi,i+1) ≈ (∆θi,i+1) . (F.11)

Now expanding equation (F.10) through sines and cosines sums, we can find a general

equation for cos(∆θi,j).

⟨cos(∆θi,j)⟩ = (1− k∆t) cos(∆θi+1,j) + ϕ⟨θi⟩∆t sin(∆θi+1,j)

= (1− k∆t)2 cos(∆θi+2,j) + (1− k∆t)ϕ⟨θi⟩∆t sin(∆θi+2,j)

− (ϕ⟨θi⟩∆t)2 cos(∆θi+2,j) + (1− k∆t)(ϕ⟨θi⟩∆t) sin(∆θi+2,j)

= (1− k∆t)3 cos(∆θi+3,j) + (1− k∆t)2(ϕ⟨θi⟩∆t) sin(∆θi+3,j)

− (1− k∆t)(ϕ⟨θi⟩∆t)2 cos(∆θi+3,j) + (1− k∆t)2(ϕ⟨θi⟩∆t) sin(∆θi+3,j)

− (1− k∆t)(ϕ⟨θi⟩∆t)2 cos(∆θi+3,j) + (ϕ⟨θi⟩∆t)3 sin(∆θi+3,j)

− (1− k∆t)(ϕ⟨θi⟩∆t)2 cos(∆θi+3,j) + (1− k∆t)2(ϕ⟨θi⟩∆t) sin(∆θi+3,j) ,(F.12)

if we generalize the equation above (F.12), we get

cos(∆θi,j) = c0(1− k∆t)|i−j| + c1(1− k∆t)|i−j|−1(ϕ⟨θi⟩∆t) + c2(1− k∆t)|i−j|−2(ϕ⟨θi⟩∆t)2

+ · · ·+ c|i−j|−1(1− k∆t)(ϕ⟨θi⟩∆t)|i−j|−1 + c|i−j|(ϕ⟨θi⟩∆t)|i−j|

= c0(1− k∆t)|i−j| +

|i−j|∑
n=1

cn(1− k∆t)|i−j|−n(ϕ⟨θi+n⟩∆t)n , (F.13)

where n is an integer between i and j and cn is an arbitrary coefficient. Remembering that

⟨θN⟩ = ⟨θt0⟩e−ϕN∆t, then
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⟨cos(∆θi,j)⟩ = c0(1− k∆t)|i−j| +

|i−j|∑
n=1

cn(1− k∆t)|i−j|−n(ϕ⟨θt0⟩e−ϕ(i+n)∆t∆t)n , (F.14)

if i, j → ∞ in such a way that i∆t = Ti and j∆t = Tj are finite values, we make the

summation terms go to zero as ϕ θt0e−ϕ(i∆t) → 0. This way, the cosine of |i − j| successive

variations in θ become

⟨cos(∆θi,j)⟩
i,j→∞
≈ c0(1− k∆t)|i−j| ,

then, if all of the summation terms are zero with the exception of the first, we notice that

c0 = 1 by comparing equation F.15 with equation F.12 (the term with the highest power of

(1 − k∆) has a coefficient 1 multiplying it). This result means that we can approximate the

cosine of a variation in θ as the product of cosines of infinitesimal variations ∆θ. Here the

assumption that i, j → ∞ is the same as considering that the system is in a stationary state.
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