
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

DANILO DA SILVA ALVES

Using Model-based Analysis to Improve Software Energy
Efficiency

Blaster Tiiesis presented_t0 the I)ostgrarhiate
Program in Computer Science of the Federal
University of Rio Grandc do Sul as a partial
reqinrenient to obtain the degree Of hiaster
in Computer Science

Advisor: Prof. Dr. Lucio Mauro Duarte

Porto Alegre

2022

CIP — CATALOGING-IN—PUBLICATION

Alves, Danilo da Silva

Using Model—based Analysis to Improve Software En—
ergy Ei'hciency / Danilo da Silva Alves. , Porto Alegre:
PPGC da UFRGS, 2022.

62 f.: il.

Thesis (Master) , Universidade Federal do Rio Grande
do Sul. Programa de Pós—Graduação em Computação, Porto
Alegre, BRÍRS, 2022. Advisor: Lucio Mauro Duarte.

1. Model-based Analysis. 2. Software Energy Consump—
tion. 3. Software behaviour. I. Duarte, Lucio Mauro, orient.
II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice—Reitora: Profª. Patricia Franke
Pró—Reitor de Pós—Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informatica: Profª. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Claudio Rosito Jung
Bibliotecária—chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

T0 my friends and family. I am nothing without them.

Acknowledgements

To my mother and sisters, who spared no effort to support me.

To my advisor Lucio Duarte7 who supported me at all times and helped me to
achieve this achievement.

To my friend Oseias7 who helped me to consolidate this work and provided me
with a sincere friendship.

”It is the responsibility of scientists never to suppress knowledge, no matter how awkward
that knowledge is, no matter how it may bother those in power; we are not smart enough
to decide which pieces of knowledge are permissible and which are not. ”

Carl Sagan

Abstract

Recently7 energy consumption has become a concern in the software development scenario.
This is mainly due to the current different types of platforms where software runs. Studies
show that users tend to reject mobile applications that quickly drain battery energy,
indicating energy consumption as a relevant aspect. Despite this emerging interest in
the software energy consumption metric, developers still lack solid knowledge about how
to design, construct and evolve software considering energy efficiency. With the goal of
providing some of this necessary support, this work proposes high—level property definitions
for the analysis of software energy consumption during all phases of software development.
These properties and their analyses rely on a model—based approach, which uses Labelled
Transition Systems (LTS) augmented with energy costs and probabilistic information
to describe software behaviour. Results of analysing the proposed properties on an LTS
model provide useful energy—related information, such as the average energy cost of the
system and the probability of occurrence of the most costly execution. We demonstrate
how to implement, use and interpret the results of analyses of these properties to create,
evaluate and/or evolve software considering energy efficiency. To describe where our work
can be applied, we discuss experiments involving the analysis of the proposed properties in
different scenarios. Some experiments were performed, involving an analysis of an existent
software with a single component, a software evolution and a software with composition of
components, and energy efficiency was analysed in all cases. Recommendation of possible
actions to adjust energy consumption considering results of property analysis are proposed
in a quick guide format, combining energy costs and probabilistic behaviour. This support
of property analysis and recommendations constitutes an important step towards helping
developers create energy—efficient software.

Keywords: Model—based Analysis, Software Energy Consumption, Software behaviour

Resumo

Recentemente, o consumo de energia tornou—se uma preocupação no cenário de desen—
volvimento de software. Isso se deve principalmente aos diferentes tipos de plataformas
atuais em que o software é executado. Estudos mostram que os usuarios tendem a rejeitar
aplicativos móveis que esgotam rapidamente a energia da bateria, apontando o consumo
de energia como um aspecto relevante. Apesar desse interesse emergente na métrica de
consumo de energia de software, os desenvolvedores ainda carecem de conhecimentos sólidos
sobre como projetar, construir e evoluir software considerando a eiieiêneia energética. Com
o objetivo de fornecer algum suporte necessário, este trabalho apresenta definições em alto
nível de propriedades para a analise do consumo de energia de software durante todas as
fases de desenvolvimento de software. Essas propriedades e suas análises dependem de
uma abordagem baseada em modelos, que usa Labelled Transition Systems (LTS) com o
acréscimo de custos de energia e informações probabilístieas para descrever o comporta—
mento do software. Os resultados da análise das propriedades propostas em um modelo
LTS fornecem informações úteis relacionadas à energia, como o custo médio de energia
do sistema e a probabilidade de ocorrência da execução mais cara. Demonstramos como
implementar, usar e interpretar os resultados das análises dessas propriedades para criar,
avaliar e/ou evoluir softwares considerando eficiência energética. Para descrever onde nosso
trabalho pode ser aplicado, discutimos experimentos envolvendo a análise das propriedades
propostas em diferentes cenários. Alguns experimentos são realizados envolvendo uma
análise de um software existente de um único componente, uma evolução de software e um
software com composição de componentes, e a eficiência energética é analisada em todos
os casos. Considerando os resultados analises das propriedades definidas, são propostas
recomendações de possíveis ações para ajustar o consumo de energia em um formato de

guia rapido, combinando custos de energia e comportamento probabilístico. Esse suporte
de análise de propriedades e recomendações constitui um passo importante para ajudar os
desenvolvedores a criarem software com eficiência energética.

List of Figures

Figure 1 , LTS With energy costs 18
Figure 2 , LTS With probability information 19
Figure 3 — Example of an LTS model that contains energy costs and probability

values..................................... 19
Figure 4 , Example model 25
Figure 5 , Example model with probabilities 31
Figure 6 , Model before applying the loop flattening process 40
Figure 7 * Backward transition removal 41
Figure 8 f Link state creation 41
Figure 9 , Model of the SMTPProtocol class 43
Figure 10 , Model of the matrix multiplication system 45
Figure 11 , Model of the matrix multiplication system evolution 46
Figure 12 , FTP program source code 48
Figure 1?) f FTP protocol system modelling 49
Figure 14 * Compression system source code 49
Figure 15 , Compressor model 50
Figure 16 * Compressor + FTP system source code 50
Figure 17 , System evolution resultant model 51

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9

List of Tables

Energy—based properties 25
ExecCost property analysis 26
PossExecsCost property analysis 26
ExecCostsList property analysis 28

LimitSat property analysis 28
LimitsSatList property analysis 29

Energy—probabilistic properties 30
ProbCostExec property analysis 32

ExecCostsList analysis for the SMTP model 44
Table 10 f Impacts of the evolution 47

2.1
2.2
2.2.1
2.2.2
2.2.3

3.1
3.2

4.1
4.1.1
4.1.2
4.1.3
4.2

5.1
5.1.1
5.2
5.2.1
5.2.2
5.2.3
5.3

6.1
6.2
6.3
6.4
6.5

Contents

INTRODUCTION 12

BACKGROUND 16
Collecting Energy Information 16
Energy Consumption Modelling and Analysis 17
Modelling Energy Information 17
Modelling Probabilistic Information 18
Combining Energy Costs and Probabilities 19

RELATED WORK 20
Energy Measurement and Analysis 20
Model-based Analysis 21

PROPERTY-BASED SOFTWARE ENERGY ANALYSIS 23
Property Definitions 24
Energy Properties 24
Energy—Probability Properties 30
Property Combinations 33
Quick Guide to Property Usage 34

RESULTS 39
Implementation of Property Analysis 39
Limitations of the Implementation 42
Experiments 42
SMTP Protocol 42
Matrix Multiplication Evolution 44
FTP Protocol + Compression 47
Discussion 51

APPLICATION AREAS 53
Component/Service-based development 53
Refactoring 53
Energy Optimisation 53
Self-adaptive systems 54
Embedded Systems 54

CONCLUSIONS AND FUTURE WORK 55

REFERENCES 56

APPENDIX A — RESUMO ESTENDIDO 60

12

1 Introduction

Software is present in all types of devices and platforms and some programs must
run with a limited amount of energy due to restrictions imposed by these environments.
Research has shown mobile applications that quickly drain battery energy tend to be
rejected by users (Khalid; Shihab; Nagappan; Hassan, 2015), indicating that energy
consumption is a relevant aspect from the users perspective. Corporations have also come
to the conclusion that small inefficiencies in software can significantly affect its operation
(Pinto; Castor, 2017a). For this reason, software energy consumption has become an
important factor during software development, maintenance and evolution (Albers, 2010)
(Li et al., 2016) (Singh; Naik; Mahinthan, 2015a) (Singh; Dutta; Vandeeleer, 2013).

lt is possible to assume energy will continue to increase its importance when comes
to software, becoming as important as it already is in hardware design (Zhang; Sadler;
Lyon; Martonosi, 2004) (VVheeldon et al., 2020). As a consequence, we might soon start
comparing programs in terms of energy complexity in the same way we now do with
time and space. As systems grow in scale and complexity, mostly composed by multiple
components that are geographically spread and rely on power supply to keep running,
reducing energy consumption might become one of the most important aspects of software

design.

Despite the current relevance of energy consumption analyses, there is still little
support for designing energy—efficient software. In fact, developers find it still unclear how
to produce, evaluate and evolve their software considering energy costs (Pinto; Castor,
2017a) (Pang; Hindle; Adams; Hassan, 2015) (Manotas; Pollock; Clause, 2014) (Pinto;
Castor, 2017b). This is mainly due to the absence of combined abstractions and tools
to model, measure and analyse energy consumption(Duarte; Alves; Toresan; Maia; Silva,
2019). Hence, finding techniques, tools and processes that could help software developers
better understand software energy costs and how to use energy resources has become a
major concern (Pinto; Castor, 2017a). With such support, developers would not only be
able to identify the costs of executing their software, but also perform analyses in the
design phase in order to predict possible inefficiencies, compare different versions in terms
of energy consumption and determine possible changes to improve energy efficiency.

There are some available tools to collect software energy consumption such as
Gem5 (Binkert et al., 2011) and McPAT (Li et al., 2009)7 or jRAPL (Liu; Pinto; Liu,
2015) and pyRAPL (Belgaid; dlAzémar; Fieni; Rouvoy, 2019). Whereas MCPAT and
Gem5 use abstractions to obtain estimates of energy information, simulating an execution,
jRAPL and pyRAPL allow the annotation of source code with methods to collect energy

Chapter 1. Introduction 13

information. Although these tools help the developers measure the energy spent by their
software, there is still the need of interpreting what this information means and how to
use it.

Research such as presented in (Pereira; Couto; Saraiva; Cunha; Fernandes, 2016) is
an example of work on energy consumption analysis. They focused on finding excessive
or anomalous energy consumption in software and used a methodology to optimise Java
programs and decrease their energy consumption by replacing some data structures for their
more energy—efficient alternatives. Although these approaches offer relevant information
about the software energetic behaviour, they do not provide any feedback, analysis or
guideline on how to improve software energy—efficiency, leaving this task to the developer.

A way to perform energy analysis is using models to obtain an abstract repre—
sentation of the energy behaviour. In this context, energy analyses could be performed
using a model checking tool, such as PRISM (Kwiatkowska; Norman; Parker, 2001) or
LoTuS (Barbosa; Lima; Maia; Junior, 2017). LoTuS1 allows the construction of Labelled
Transition Systems (LTS) (Keller, 1976) with energy and probability annotation using
an intuitive graphical user interface. However, there is no support for analyses on energy
behaviour of the model. As described in (Baier; Dubslaff; Klein; Kluppelholz, Wunderlich,
2014) (Dubslaff; Kluppelholz; Baier, 2014), where a Markov chain can be used to model
software considering the probabilistic or stochastic behaviour, transition and state costs
could be used to model energy costs, and information about accumulated energy can be
obtained using a probabilistic temporal logic. Nevertheless, the user still needs to collect
the energy information to be used in the model, and some relevant questions cannot be
asked, such as the behaviour that produces the highest energy consumption or the average
cost of an execution.

Although there are some tools that are able to analyse software energetic behaviour,
it is a difficult task for the developer to determine which information is more relevant
and how to describe it in the form of properties to be analysed. Moreover, even after
describing and running the analysis of these properties, the developer needs to interpret
the results to identify what action — if any — is required. In this work, we propose a set
of high—level property definitions for model—based software energy consumption analyses.
We provide a guideline on how to perform the analyses and interpret their results such
that the software developer can understand how to produce or evolve their software to
improve energy—efficiency and we also elaborate a quick guide, in a "Frequently Asked
Questions"(FAQ) format, considering different scenarios and suggesting some property
analyses to perform in each one. To analyse software using these properties, we model it
using LTS, which has a graph—like structure, augmented with information about energy
cost and probability of execution of software elements. These proposed properties are

1 Available in: http://lotus—web.herokuapp.com/

Chapter 1. Introduction 14

divided into two groups: the first group includes the properties used to perform analyses
about energy costs alone, whereas the second group combines analyses of energy costs
with probabilistic information to give a more informative scenario about the software
behaviour in terms of energy consumption. Defining these two groups is necessary because
the probability information is not always available or may not be accurate. Moreover,
some times, the necessary information does not require probabilities, such as identifying
the behaviour of a system with the highest energy cost.

Considering the results of this work, we can identify 3 possible scenarios of usage:

1. Software Project Analysis: With the proposed analyses, a software developer
could, for instance, estimate the energy efficiency of a software based only on a
blueprint, constructing a behaviour model and collecting energy costs and probability
information. This information can come from a specialist, be based on previous
studies, follow from previous user’s experience or considering available specifications.
Based on the analyses, in this scenario, a developer could, for example, verify the
adequacy of a software energy consumption to limits of a platform where the software
will run;

2. Existing Software Analysis: Other possible scenario is the evaluation of an
existing software to measure how much energy is spent during its execution and
which parts have high consumption. This information allows the user to verify the
necessity of changes to reduce energy consumption and to determine which strategies
can be employed to achieve a more energy—efficient software;

3. Software Evolution Analysis: Finally, these property definitions can be used to
verify the positive or negative impacts of software evolution giving to the developer
a more informative scenario about the results of code changes in terms of energy
consumption. This information can provide support to predict the impacts caused
by, for example, the inclusion or removal of software features, components or func—
tionalities or the consequence of applying some refactoring or replacement of data
structures.

The experiments performed in this work consists of (i) an evaluation of an im—
plementation of the SMTP protocol, (ii) the analysis of a matrix multiplication system
extracted from (Duarte; Alves; Toresan; Maia; Silva, 2019) and (Alves; Ferreira; Duarte;
Maia, 2020) and (iii) the analysis of the impact of the combination of a file compression
component with an implementation of the FTP protocol. The analysis of the SMTP proto—
col energy consumption helps understand the application of property analyses in a existing
single—component system, the experiment performed with the matrix multiplication system
help us observe how to analyse a single—component system evolution, and the analysis of

Chapter 1. Introduction 15

the network file transfer system combining file compression and the FTP protocol shows
important questions about the application of this approach to multiple—component systems.
In our experiments, we decided to apply this approach only to existing systems. Although7
the approach is applicable to systems in the project stage of the software development; we
chose to work with systems for which we could collect energy and probability information,
using real values in the models to be analysed.

The main contributions of this work are:

o The presentation of high—level property definitions including energy and/or probability
information to obtain a model—based analysis able to identify possible problems in
software energy behaviour;

o The demonstration of how to interpret these properties and the results of their
analysis;

o The implementation of analyses of some of the proposed properties, demonstrating
how the analysis of these properties can be conducted automatically;

o The construction of a quick guide that indicates common questions about software
energy behaviour and which property analyses could be used to obtain answers to
these questions.

The remainder of this document is divided as follows: Section 2 present some
information necessary to comprehend this work; Section 3 discusses the main related work;
Section 4 introduces the proposed property definitions; how to interpret the results of their
analyses and a quick guide with possible questions for some situations, while Section 5
presents initial results of using the proposed approach in a few experiments; finally7 in
Section 7 we present our conclusions and outline future research directions.

16

2 Background

In this section, we present some basic ideas related to energy consumption analysis.
Firstly, we discuss how software energy information can be collected and, then, how to use
this obtained information in a behaviour model so that analyses can be carried out using
this model. We also discuss how to model probability information.

2.1 Collecting Energy Information

The first step to make any analysis about software energy costs is to collect the
necessary information. Collecting such information refers to executing the software using
some method to measure energy costs of (part of) a system during its execution. Energy
values can also be provided by software analysts based on their experience or be given by
software/hardware specifications.

There are some available tools able to collect energy information about performed
operations, which allow the measurement of energy costs associated to code locations.
Examples of such tools are jRAPL (Liu; Pinto; Liu, 2015), which is a framework for
profiling energy consumption of Java programs that identifies how much power a code
segment is spending, Gem5 (Binkert et al., 2011), which is an architecture simulator able
to measure the energy cost of a running software, McPAT (Li et al., 2009), which is a
framework for simulating energy consumption and pyRAPL (Belgaid; d’Azémar; Fieni',
Rouvoy7 2019), which uses similar concepts to those of jRAPL, but applied to Python
programs. While jRAPL and pyRAPL can collect the energy consumption of selected
parts of a software, Gem5 and McPAT collect only the global cost of running a program.
However, jRAPL only works with some types of architectures and just with Java programs.
ln (Georgiou; Rizou; Spinellis, 2019), the authors present a detailed comparison about
energy collection tools (including those presented here).

Regardless of the tool, collecting energy consumption information involves either
running some simulations or executing the program a number of times to obtain a more
precise cost information. Moreover, developers still need to understand how such tools
can be used to increase energy efficiency and how the identified hotspots affect the overall
energy consumption of their software.

Chapter 2. Background 17

2.2 Energy Consumption Modelling and Analysis

Having energy consumption information, it can be inserted in a model to be
analysed in some available tool. A widely used model is Labelled Transition Systems (LTS)
(Keller7 1976). In an LTS, the system behaviour is described by the sequences of actions
that it can execute, where actions are defined according to the level of abstraction involved
and can represent method calls, variable assignments, task completion, or some other
significant event. LTS models are similar to state machines, which makes it easier for any
developer to intuitively construct /understand them.

An LTS [ll : (S, si, E, T) is formally defined as a model where:

S is a finite set of states,

3, E S represents the initial state,

2 is an alphabet (set of action names), and

T º S >< E >< S is a transition relation.

Transitions are labelled with the names of actions from the alphabet that trigger a
change from an origin state to a destination state. Therefore, given two states so, 51 E S
and an action a E 2, then a transition so ª) 51 means that it is possible to go from state so
to state 51 executing action a. A behaviour of an LTS]VÍ is then a finite sequence of actions
7r = (a1, ...,a,,,,) such that a1, ...,a” E E. The set L(M) = (71,72, ...} of all behaviours of
M is called its language.

Next, we present how an LTS can be used to model both the energy behaviour of
a system and probabilistic information about this system.

2.2.1 Modelling Energy Information

In (Duarte; Alves; Toresan; Maia; Silva, 2019), the authors proposed a model—based
framework for analysing software energy consumption through the verification of energy—
based properties, thus providing a novel approach for the development and evolution of
energy—efiicient software. They use an LTS to represent the system behaviour and its
associated energy costs. To model energy costs, they add cost values to transition labels,
thus associating a cost to each action. Hence, a behaviour in this energy—labelled model is
a sequence of code elements and their respective costs, where the total cost of a behaviour
is the sum of the costs of each element composing this behaviour. As an LTS is a graph—like
structure, graph—based algorithms can be used to calculate accumulated costs of behaviours
and determine the most /least costly behaviour (i.e., software behaviour). The authors have
extended an LTS—analysis tool called LoTuS (Barbosa; Lima; Maia; Junior, 2017). LoTuS

Chapter Q. Background 18

is an open—source tool that allows the graphical modelling of software behaviour using
LTS, providing a drag—and—drop GUI to create models. The extension allows the inclusion
of energy cost information as part of transition labels. However, there is no support for
any type of analysis using this information.

Representing energy in a behaviour model enables the application of techniques
to find out relevant information that can help understand how software is consuming
energy and which parts have been influencing the most this consumption. An example
of this representation can be observed in Figure 1, which presents an LTS model where
energy costs are shown between braces. A, B, C and D are transitions that represent an
action occurrence in the software execution. In this example, a transition from state 0 to
state 1 has a cost of 1 energy unit (e.g. Watts, Joules and others). With this model, it is
possible to observe that state 0 is the initial state and, it is possible to reach state 3 by
two executions, A — C or B — D, with an energy costs of 4 and 3, respectively.

..»
— (,c- M.

.A“)- C
0

po 0

Figure 1 , LTS with energy costs

2.2.2 Modelling Probabilistic Information

In (Duarte; Maia; Silva, 2018), the authors used LTS models to analyse probabilistic
behaviour. In this context, probabilistic information is inserted in an LTS, originating a
Probabilistic Labelled Transition System (PLTS), which is an LTS that also contains a
probability value for each transition. Hence, a Probabilistic LTS (PLTS) is a structure
P = (S, si, XLT, lambda), whore:

o S, si, 2 and T have the sarne definition as in an LTS,

. A : 1‘ —> [0,1] is the transition probability function which assigns a positive real
number less or equal to 1 for each transition such that the sum of the probability of
all transitions leaving the same state is 1.

A PLTS example can be observed in Figure 2, where the probability of each
transition is presented between parentheses.

Chapter 2. Background 19

Maso; cimo";

Figure 2 , LTS with probability information

2.2.3 Combining Energy Costs and Probabilities

In this work, we combine the PLTS as proposed in (Duarte; Maia; Silva, 2018)
with the LTS with energy costs presented in (Duarte; Alves; Toresan; Maia; Silva, 2019)
to obtain a model where probabilistic properties involving energy consumption can be
analysed. In this model, the energy cost of each transition is represented by the number
between curly brackets and the probability of execution is represented by the number
between parentheses. Figure 3 shows an example of this model.

Alguem“; canons}

si;jo_70i{2} 05100351;

Figure 3 , Example of an LTS model that contains energy costs and probability values.

In this example, we can observe that the operation associated to transition A
has 30% of probability of occurrence and consumes 1 energy unit, whereas the operation
associated to transition C has 100% of chance of occurrence and consumes 3 energy units.
Thus, the behaviour involving operations A and C has a 30% probability of occurring and
consumes a total of 4 energy units.

20

3 Related Work

In this chapter we present the related work, divided into the group of those focused
on measurement and/or direct analysis (i.e., analysis of raw data) of energy consumption
and the group focused on model—based analysis.

3.1 Energy Measurement and Analysis

Software energy consumption research has so far focused mainly on the measurement
of energy costs. The work described in (Singh; Dutta; VanderMeer, 2013) concentrated
on detecting excessive or anomalous energy consumption in software, with the goal of
optimising energy consumption of IT resources knowing how much power an application is
consuming. Other authors analyse the influence of data structures on energy consumption
(Pereira; Couto; Saraiva; Cunha; Fernandes, 2016) (Hasan et al., 2016) (Oliveira; Oliveira;
Castor; Fernandes; Pinto, 2019), introducing a methodology to optimise Java programs and
decrease their energy consumption by replacing data structures by a more energy—efficient
alternative.

The research presented in (Schubert; Kostic; Zwaenepoel; Shin, 2012) described
the development process of a profiler for measuring the energy consumption of source code
points. In (Pereira, 2017), critical energy areas were identified using a statistical method
to associate responsibility for energy consumption to source code components. There have
also been studies focusing on estimating energy costs with the goal of extending battery
life in embedded systems (Brandolese; Fornaciari; Salice; Sciuto, 2002) (Jayaseelan; Mitra;
Xianfeng Li, 2006) and mobile devices (Hao; Li; Halfond; Govindan, 2013) (Couto; Garção;
Cunha; Fernandes; Saraiva, 2014) (McIntosh; Hassan; Hindle, 2019).

The work described in (Singh; Naik; Mahinthan, 2015b) shows how some decisions
during the software development process can influence energy consumption. In their
experiments, they performed energy measurements of some Java Application Programming
Interface (API), used for operations like file reading, file copy, file compression, and file
decompression. They found out that using APIs with different buffer sizes it is possible
to reduce energy consumption. Regarding user decisions, the work described in (Zhang;
Hindle; German, 2014) shows how user requirements and choices directly impact on
software energy consumption.

Some studies show how to decrease energy consumption during software development
by using a search—based modification of the software system as an instance of Genetic
Improvement (Petke et al., 2018)(Pereira; Couto; Saraiva; Cunha; Fernandes, 2016). In

Chapter 5’. Related Work 21

this metric, it is desired to adapt the program and generate some related versions that hold
some properties and improve others. The work described in (Lima et al., 2016) focused on
observing the implications of development decisions in software energy consumption. In
this study, they analysed a subset of decisions in Haskell applications and reported that
some decisions could save up to 60% of energy resources.

None of the above studies employs a model as basis for their analyses as we propose
here, which limits their analysis capacity, since abstractions enable analyses that could not
be — or would hardly be — carried out directly on the actual software. For instance, without
a model supporting the analysis, it would be hard to verify some cost characteristics such
as the most costly execution or the cost of the most probable execution. With a model,
it is also possible to compare different software versions, performing analysis before and
after an evolution.

3.2 Model—based Analysis

A great part of the difficulty of producing and evolving energy—efficient software
comes from the absence of software abstractions and tools (Pinto; Castor, 2017a). A way
of analysing energy costs is through a behaviour model of the system, allowing a set
of analyses that could improve the developer’s understanding of their software energy
behaviour.

Considering energy—cost modelling, some other approaches, such as (Baier; Dubslaff;
Klein; Klúppelholz; VVunderlich, 2014) (Dubslaff; Kliippelholz; Baier, 2014), model energy
costs using Markov chains and use PRISM (Kwiatkowska; Norman; Parker, 2001) to
run quantitative analyses based on probabilistic information. In the approach described
in (Baier; Dubslaff; Klein; Kluppelholz; Wunderlich, 2014), the costs/rewards feature of
PRISM is used to assign costs to states/transitions. A limitation of the aforementioned
approaches is that analyses about paths are not supported, due to the type of logic adopted
to describe properties. Hence, questions that either require producing sequences of actions
or evaluating specific executions (e.g., the most /least costly behaviour) could not be easily
executed, if at all. In the LoTuS tool, we have an interface that provides a simple way of
constructing models and including costs and probabilities, but its analysis capability is
limited.

None of the above studies perform a model—based analysis with combined infor-
mation about energy costs and probability of execution. Although, the study described
in (Baier; Dubslaff; Klein; Kliippelholz; Wunderlich, 2014) employ the energy cost in
money units, enabling the possibility of using energy units instead (probably requiring
some adaptation). Moreover, they do not define what properties could provide relevant
information about energy consumption nor do they present any guideline for software

Chapter 3. Related Work 22

developers on how to interpret analysis results and how to use these results to improve
software energy efficiency. Without direction and orientation, the software developer does
not have the information about What to look for and Which changes could be made to
enhance energy efficiency and may not get any improvement at all.

23

4 Property—Based Software Energy Analysis

Model—based analysis (Magee, Kramer, 2006) is an important technique for un—
derstanding software behaviour and identifying potential and real problems. One way
of carrying out this analysis is using requirements (properties) to guide the process, so

as to obtain objective results that can be used to support development and evolution
decisions. For instance, using model—based analysis, it is possible to check impacts caused
by a software modification, to identify violations of access to shared resources and to
evaluate resource usage as RAM, time, power and others.

In this work, we consider the analysis of Labelled Transition Systems (LTS) (Keller,
1976) models augmented with energy (Duarte; Alves; Toresan; Maia; Silva, 2019) and
probability information (Alves; Ferreira; Duarte; Maia, 2020), and propose high—level
definitions of energy—related properties to help the analysis of software energy efficiency
and offer support to decisions regarding energy consumption. We use the term “high-level”
due the fact that these properties are not defined using any type of formal logic and we
would like them to have a practical interpretation and usage, regardless of the target
application and of their specific implementation.

The proposed properties involve the analysis of energy costs and probability values
associated to executions of a software. We define an execution (trace) based on the definition
presented in (Jr; Grumberg; Kroening; Peled, Veith, 2018), where an execution e of a
deterministic LTS M : (S, E, T, 8,) is a sequence of actions al...an, such that n : |e| and
al, ..., an E E. An execution e always starts in the initial state s, and proceeds according
to the transition function T. In a simplified notation, a transition can be described by
Sj (14 sk E T, where Sj, sk, E S and Sj enables action aj E E of the sequence. The execution
always ends in a state Sf E S , such that sn & sf, where 3,, E S and a,, E 2 is the last

action of the sequence. As a consequence of this definition, an execution is a unique finite
sequence of actions of a model]VÍ .

As it is known, some parts of the software involving loop structures can generate
infinite executions. However, our definition of an execution assumes it is finite. For this
reason, we consider a model—based testing coverage criterion called one—loop path coverage
(Utting; Legeard, 2010) for the analyses of the properties. This coverage criterion considers
at most one occurrence of a loop in each possible execution. Applying this idea makes
it possible to obtain a total coverage of the model and guarantees the analysis of finite
sequences only.

As commented before, to enable the property analyses proposed here, the LTS
model must contain at least an energy cost value associated to each of its transitions,

Chapter 4. Property-Based Software Energy Analysis 24

similar to the model used in (Duarte; Alves; Toresan; Maia; Silva, 2019). To execute

analyses considering probabilistic information, there must also be a probability value
associated to each transition, as presented in (Alves; Ferreira; Duarte; Maia, 2020).

The results of these analyses on executions provide relevant information about
software energy behaviour. Based on this information, a developer can better understand
how the analysed software uses energy resources during its operation, so that they can make
adjustments, if necessary. Moreover, the analyses can lead to the location of anomalous
points of high consumption and support the investigation of what changes could be made
to improve energy efficiency.

4.1 Property Definitions

The set of property definitions is divided into two groups:

o Energy properties: includes properties involving only the analysis of energy costs;
and

o Energy—Probability properties: includes properties involving the analysis of the
combination of energy costs and probabilities.

These properties cover the most important types of energy consumption analysis
based on the framework proposed in (Duarte; Alves; Toresan; Maia; Silva, 2019) and the
extended set of properties described in (Alves; Ferreira; Duarte; Maia, 2020). During the
experimental phase, the set of properties was frequently modified and refined as some
property definitions seemed to be redundant or not useful in practice and others had to
be created to cover some information not provided by the current set of properties.

The two sets of properties are presented in the subsequent sections, as well as
instructions on how to interpret their results.

4.1.1 Energy Properties

The set of energy properties is presented in Table 1. These properties involve only
energy costs, and are defined based on situations where the probability information is not
present or not available. Analyses based only on energy information can, in many cases,
provide sufficient results to support software evaluation.

Figure 4 presents a model that will be used to describe how these properties can be
applied to analyse energy efficiency. The energy cost associated to each transition is given
in some energy unit1 and is expressed by the number between braces. We represent this

1 Here, we will express energy costs in Watts, following the unit provided by tools such as jRAPL, but
any other energy unit could be used as long as all costs in the model consider the same unit.

Chapter 4. Property-Based Software Energy Analysis

Property ID Property Name Input Output
ExecCost Execution Cost An execution trace Energy Cost
PossExecsCost Possible Executions

Cost
Target state List of possible executi—

ons in increasing order by
energy total cost

MaxCostExec Most Costly Execu—
tion

None The execution that more
spend energy

ExecCostsList Execution Cost List None List of all possible executi—
ons in increasing order by
energy total cost

LimitSat Energy Limit Satis—
faction

An execution and a
boolean expression

true or false, according
to the satisfaction or not,
respectively, of the boolean
expression by the execu—
tion cost value

LimitsSatList Limit Satisfaction
List

Inferior or superior
energy limits

List of executions sa—
tisfying the criteria

Anonsumption Average Energy
Consumption

None Average energy value of all
executions

{2flO}A

{8n0}3

Table 1 , Energy—based properties

{300}c

Figure 4 ,

.20010
[5DÚ]F

Example model

{000}Exu_

cost using a function cost(s, l), which takes a state identifier s and a label l of a transition
originated in s as input and returns the energy cost associated to this transition. For
instance, cost(17 D) : 2.00W and cost(3,G) = 1.00W.

Chapter 4. Property-Based Software Energy Analysis 26

Execution Cost (ExecCost)
This property requires as input a specific execution and its analysis can be carried

out by travelling the model accumulating the energy cost of each transition of the given
execution, obtaining the total cost of the particular execution. Considering the model of
Figure 4, we present the results of analysing this property for a few executions, presented in
Table 2. Taking the input A — C — E, for instance, we obtain as a result the sum of the costs
of the transitions that belong to the input execution, resulting in 2.00+3.00+4.00 : 9.00W.

Input Cost(W)
B—F 13.00
A-C—E 9.00
A-C—D—F—G—F 18.00

Table 2 , ExecCost property analysis

The result of an analysis of this property provides to the developer the cost of a
specific execution. With this, they can, for example, check whether a change is required
for this behaviour and can compare costs of selected executions to identify paths with
higher energy consumption.

Possible Executions Cost (PossExecsCost)
To execute the analysis of this property, a target state is provided as input. The

analysis occurs traversing the model to obtain all possible executions from the initial state
of the model to the provided target state. As output, the analysis generates the list of
executions and their respective total energy cost.

Applying an analysis of property PossExecsCost in the model of Figure 4 with
state 3 as target state, the corresponding output is displayed in Table 3, where execution
A — E, with cost of 6.00W, has the lowest energy cost and B — F — G — F, with 19.00W,
is the most costly execution.

Input Output
Target State Execution Cost(VV)

A—E 6.00
A—C-E 9.00
A—D—F 9.00
A—C-D—F 12.00
A—E—G—F 12.00
B—F 13.00
A—D—F—G—F 15.00
A—C-E—G—F 15.00
A—C-D—F-G—F 18.00
B—F-G—F 19.00

Table 3 , PossExecsCost property analysis

Chapter 4. Property-Based Software Energy Analysis 27

In a scenario where a new feature is developed (system evolution), new states
and/or actions may be included in the model. This property analysis can be useful to
determine the possible costs of executing this new feature in a software artifact.

Most Costly Execution (MaXCostExec)
The analysis of this property gives to the developer the execution in the system

that spends more energy resources7 starting from the initial state of the model. To obtain
this result, we need to verify the cost of each possible execution and compare the results
to determine the execution with the highest total cost value.

This analysis uses PossExecsCost to obtain all possible executions by the combi—
nation of the initial state and all other existing states as target states and identify their
corresponding energy costs. With this information, we only need to compare costs to
identify the most costly.

Applying the MaxCostExec analysis in the model of Figure 4, we obtain the
information that execution B — F — G — F, with cost of 19.00W, is the most costly in
terms of energy consumption. This information tells the developer the highest possible
cost of a system execution. Based on this, a developer could verify whether their system’s
energy consumption complies with a platformls upmost energy usage limitation.

Execution Cost List (ExecCostsList)
The analysis of this property consists in traversing the model using all possible

executions starting in the initial state and leading to all other states of the model. The
cost of an execution corresponds to the sum of the costs associated to each transition in
the execution. This is similar to what happens in the analysis of MaxCostExec but, in this
case, the analysis returns a list containing all possible executions starting from the initial
state and the energy cost of each of them ordered by energy costs, from the lowest to the
highest.

Table 4 displays the results obtained by the application of the ExecCostsList
property analysis to the model presented in Figure 4. With this analysis, a broader scenario
of the system energy consumption is provided, giving the software developer information
about all behaviours that can occur. This information allows the developer to identify
which executions consume more energy and, therefore, require more attention in case of a
system change/evolution.

Energy Limit Satisfaction (LimitSat)
The analysis of this property requires an energy cost, a comparison operator (<,

<:, >, >:, or :) and an execution. The result is the verification of whether the cost of

Chapter 4. Property-Based Software Energy Analysis 28

Output
Execution Cost(VV)

A 2.00
A-D 4.00
A-C 5.00
A-E 0.00
A-C-D 7.00
A-E-G 7.00
B 8.00
A-C—E 9.00
A—D—F 9.00
A-C-E—G 10.00
A-D—F—G 10.00
A-C—D—F 12.00
A-E-G—F 12.00
B—F 13.00
A-C—D—F—G 13.00
B—F—G 14.00
A-D—F—G—F 15.00
A-C—E-G—F 15.00
A- C—D—F—G—F 18.00
B—F—G—F 19.00

Table 4 * ExecCostsList property analysis

the informed execution satisfies or not the boolean expression composed of the operator
and the provided energy cost, returning True in case of satisfaction and False, otherwise.

Input
Op. Value Execution
< 5 A—C False

<= 5 A—C True
> 15 B—F—G—F True

>= 15 B—F False
: 10 A—D—F-G True

Output

Table 5 — LimitSat property analysis

Table 5 shows results of analyses of this property in the model of Figure 4. As an
example, the analysis returns False when the cost of execution A — C (5W7) is verified
against the limit < 5 and returns True when verified for the input <= 5.

This property allows the user to check whether specific executions are in confor—
mance with a hardware energy limit. For instance, performing this property analysis giving
as input the energy limit of the target platform where the software will run7 it is possible
to verify that an informed execution can run with energy consumption within that limit.

Limit Satisfaction List (LimitsSatList)
To perform this property analysis, it is necessary to inform as input an inferior

and/or a superior energy limit. With this information, an analysis is carried out considering

Chapter 4. Property-Based Software Energy Analysis 29

all possible executions, returning a list of executions that satisfy the informed limits.

Performing the LimitsSatList analysis in the model presented in Figure 4, it is
possible to obtain the results shown in Table 6. The table presents a list of all executions
with energy cost between 514/ and 10W, executions with energy cost above 10W an
executions with energy cost under 5W.

Input Output
Inf. limit Sup. limit Execution Cost W

A—C 5.00
— 6.00

.00

.00

9.00
9.00
10.00
10.00
10.00
10.00
12.00
13.00
13.00
1 .00

5.
18.00
19.00
2.00

.00
5.00

Table 6 , LimitsSatList property analysis

LimitsSatList aids the developer to perform an analysis to verify and find execu—
tions that may not be in conformance with the expected energy costs or that are above
a platform7s consumption limits. Thus, the developer can determine which behaviours
should be modified to fit the environment energy requirements.

Average Energy Consumption (Anonsumption)

This property analysis consists in obtaining the average amount of energy consumed
by the system under analysis. This information is calculated by the sum of all execution
costs (obtained calculating ExecCostsList) divided by the number of possible executions,
respecting the one—loop path coverage, previously described.

Performing this property analysis in the model presented in Figure 4, we obtain
the information that the average energy cost of the analysed system is, approximately,
8.52VV . This information is useful to verify the standard energy cost of the system, i. e,
the cost that will occur in most executions and should then be the expected frequent
energy consumption of the system. Having this knowledge about all programs running in a

Chapter 4. Property-Based Software Energy Analysis 30

platform, a developer could estimate the overall average cost required to run all necessary
applications.

4.1.2 Energy—Probability Properties

Here we describe a combination of the presented energy properties with probability
information that represents the chance of occurrence of each software component represen—
ted in the model. This information is used to propose another set of properties that can
provide valuable information to developers to support decisions regarding energy efficiency.
These properties are presented in Table 7.

Combining energy properties with probabilistic information, the developer can
conduct a more thorough analysis about components and specific executions. This analysis
is important because some points of the code can have a large energy consumption, but
with minimal chance of execution. Furthermore, this can generate unnecessary rcfactor
work to modify parts that are rarely executed and, thus, have a small impact on the overall
energy consumption. Looking from another perspective, some code parts can present a
lower energy cost, but with a higher probability of execution. In case of loop structures,
which can consume more energy depending on the cost of each iteration and the number
of iterations, if the loop has a high chance of occurring, it could be a point of interest.

To exemplify how the analysis of these properties work, the model previously
presented has been modified with the addition of values of probability of execution to
each transition, such as in a PLTS7 but keeping the energy cost values. This model can be
seen in Figure 5, where the energy cost of each transition is represented by the number
between curly brackets and the probability of execution is represented by the number
between parentheses. This information can be originated, for instance, from a specialist’s
knowledge or from usage profiles analysis. The probability of a transition is given by a
function prob(t), which returns the probability associated to a transition t, where t follows
the definition of the transition relation of an LTS presented in Section 2.2. For instance,
considering the model in Figure 5, prob(1 % 2) = 0.25 and pr0b(3 2> 2) = 0.40.

Property ID Property Name Input Output
ProbCostExec Probability and Cost of Execution trace Probability and energy cost

an Execution value
ProbOfMaXCostExec Probability of Most None Probability value and an exe—

Costly Execution cution trace
CostOfMaxProbExec Energy Cost of Most None Energy cost value and an exe—

Probable Execution cution trace
ExceedProb Probability of Excee— Superior Energy Th— Probability value

ding resholds
AnrobableCost Average System Cost None Energy cost value

Table 7 , Energy—probabilistic properties

Chapter 4. Property-Based Software Energy Analysis 31

(050){aoo}c

(030)(2DO)A (025){490}E

(050){000}Exn;
(0-5}{2eo}o

(LGDJ{500}F

.030){8DU}B

:0){100}G

Figure 5 , Example model with probabilities

Next, each energy—probability property is described in detail, we discuss possible
uses and present how they can be applied to our model of Figure 5.

Fhobabflhyand Costofan Execufion(ProbCostExec)
The analysis of this property requires an execution as input and determines both

the energy cost and the probability of occurrence of this execution. The probability of an
execution is obtained by calculating the product between the probability of each transition
that belongs to the execution.

Applying ProbCostExec in the model presented in Figure 5, we obtain the results
presented in Table 8 for some selected executions. These results show, for example, that
executions B — F and A — C — D — F — G have the same total cost, but the former has
a probability of 30% of being executed against 3.5% of the latter. Also note that the
execution with the highest cost (A — C — D — F — G — F) is not the one with the highest
probability of occurring. Thus the importance of combining costs and probabilities to
decide possible changes.

The analysis of ProbCostExec provides more information about specific system
executions, allowing a developer to decide where they should change a software to improve
energy efficiency and what strategies should be used to achieve this. This analysis could,
for example, be used to support refactoring 0r evolution decisions.

Chapter 4. Property-Based Software Energy Analysis 32

Output
Cost (W) Probability

B-F 13.00 30%
A—C—E 9.00 8.75%
A—C—D-F—G 13.00 3.5%
A—C—D-F—G-F 18.00 3.5%

Input

Table 8 , ProbCostExec property analysis

Probability of the Most Costly Execution (ProbOfMaXCostExec)
Analysis of this property combines the identification of the most costly behaviour

that can be executed during a software run (similarly to MaXCostExec) with the probabi—
lity of executing this behaviour. The probability of the execution is determined by the
multiplication of the probability values associated to each transition that belongs to the
execution (as it occurs in ProbCostExec).

After performing the analysis of ProbOfMaXCostExec in the model of Figure 5,
we obtain the information that execution B — F — G — F is the most costly execution,
consuming 19.00W, and have 12% of chance of being executed. This information is useful
to verify whether the behaviour with the highest energy cost also has a high probability
of execution, indicating a point in the software to bc improved to get a better usage of
energy resources. On the other hand, if the probability is low, the developer can decide
whether it is worth changing the software or not, considering the required work and the
chance of that specific execution occurring.

Energy Cost of the Most Probable Execution (CostMaXProbExec)
Similarly to the previous property, the analysis of Cost OfMaXProbExec also requires

exploring the whole model but, this time, with the aim of finding the behaviour with the
highest chance of being executed. After finding this execution, a complementary analysis,
similarly as it occurs in the analysis of ExecCost, identifies its respective energy cost.

Applying the analysis of the CostOfMaxProbExec property in the example model
of Figure 5, we obtain the information that execution B — F is the most probable to occur
during a software run and has 13.00W of energy cost. This information helps identify
the most critical point (i.e., the most frequent behaviour) in the software under analysis
and the energy cost of running it. This information is useful to verify that the energy
cost of the most probable execution — and the most probable energy consumption — is in
conformance with a platform’s energy limit.

Chapter 4. Property-Based Software Energy Analysis 33

Probability of Exceeding (ExceedProb)
The analysis of this property requires as input a superior energy threshold to

perform a system model verification, identifying all the executions trespassing the imposed
energy limit. After this, we calculate the chance of the energy cost not being in conformance
with this limit by finding the highest probability value among those of the executions
previously identified. This strategy of finding the execution with the highest probability of
exceeding the limit is used because the analysis works on executions with variable sizes
and, due to this fact, performing the sum of the probabilities of all executions could result
in a value superior to 100%. This information is useful to the software developer because
it shows the maximum chance of a behaviour that trespasses the limit to occur.

As an example of usage, applying the analysis of property ExceedProb, it is
possible to obtain the information that the software represented in our example model has
a 70% chance of consuming more than 10W. This information can be useful to verify the
possibility of the consumption becoming higher than that supported by the hardware. In
this situation, a software developer can decide what changes are necessary to reduce this
probability or this consumption.

Average System Cost (AnrobableCost)

This property analysis consists in traversing all possible transitions of the model
performing the multiplication between the energy cost and probability of occurrence of
each possible execution. Accumulating this costs, it is possible to obtain the average cost
of an execution of the system.

This information is useful, for example, to measure the impact of including or
removing features or components during a software evolution. With this information, the
developer can define strategies to decrease the average energy cost, since this value is a
direct indicator of energy efficiency, being an approximation of the expected energy cost
of executing the analysed software.

4.1.3 Property Combinations

The proposed set of property definitions, composed of a combination of analyses of
energy costs and probability information, gives a developer a better view of their software
energy behaviour, supporting the developer, for instance, when it is necessary to verify
the compatibility between the software energy consumption and a platform where it has
to run or when the developer needs to evaluate impacts of an evolution process.

With the results provided by the analyses of the proposed properties, the developer
can understand more about software energy behaviour, observing what should be a concern

Chapter 4. Property-Based Software Energy Analysis 34

when an improvement of software energy efficiency is desired and become more apt to
define changing strategies to achieve this goal.

4.2 Quick Guide to Property Usage

In this section, a quick guide in the form of a "Frequently Asked Questions"(FAQ)
is presented. This guide has been constructed in order to provide a quick view about
some situations where the analysis of the presented properties can contribute with useful
information about software energy behaviour to handle software developers’ decisions. It
also indicates which property(ies) could be analysed in each case and how to interpret and
use the results. The quick guide was constructed thinking in different scenarios where it is
interesting for the developer to know energy properties of its software and also are based
on empirical information acquired from our previous studies. The set of questions might
not be complete for all scenarios, but it is intended as a guide for frequent questions about
energy consumption.

Q1. What is my software energy consumption?

This question is potentially the most asked by software developers that desire to
evaluate their software energy consumption. The answer to this question depends
on the context where the software is running and what is relevant to the developer.
Due to this fact, the answer to this question directly depends on the interpretation
the developer will give to the obtained values. However, the software developer can
make informed decisions based on results from the analysis of properties such as:

o ExecCostsLi st, that makes possible to identify costs for all possible executions,
allowing the developer to obtain a range of the energy cost of their software,
including the minimum and maximum execution cost;

o By using Anonsumption property analysis, the software developer can obtain
the mean cost spent by software executions;

o Finally, using the analysis of AnrobableCost, it is also possible to access the
mean energy cost of the software but, this time, considering the probability
information (if available) about each software component.

Based on the knowledge obtained with these analyses, a developer can define strategies
(such as refactoring7 evolution or structure replacements) to improve energy efficiency
if the current energy consumption is not in conformance with the analysed scenario or
the developer’s expectations. This information is also useful to know the consumption
requirement needed to run the software on a platform.

Chapter 4. Property-Based Software Energy Analysis 35

Q2. Is the energy consumption of my software compatible with some energy
limit?

In this situation, it is necessary to check the maximum amount of energy the software
can spend during an execution, which means finding the most costly execution. This
information can be obtained by analysing property MaXCostExec or, if the probability
information is present in software model, the software developer can apply the
analysis of property ProbOfMaxCostExec and obtain the most costly execution and
the probability of its occurrence. The result of this analysis allows to identify the
executions where the software spends more energy. With this information, it is
possible to perform changes in the code to reduce its consumption or, if necessary
(and possible), make changes in the hardware where software will run to allow a
higher consumption limit.

It is important to highlight that this question considers only one software execution
in isolation. For a long—run software, consider question Q3.

Q3. What is the cumulative energy consumption of a long-run software?

In case of a long—run software (i.e. a system that executes in a loop), it would be
necessary to know the mean time spent to perform one execution and the time
period that is desired to observe. With this information, it is possible to execute
the property analyses presented in Q2. Also is possible to perform analysis such
Anonsumption if the probability information are present or AnrobableCost
in cases where not. Having this information, the developer can perform a simple
calculation as demonstrated below:

TTotal
TRW >< Cost

For instance, take a software that performs a complete run in 15 seconds and
has an average energy cost of 12.5W/7 found by analysis of Anonsumption or
AnrobableCost. In a scenario that this software will run continuously for 500
seconds, we have the equation presented below:

500— 12.15 X 5
As a result, we obtain an approximately amount of energy consumption of 416, 67W.

Q4. What is the probability of the system consumption trespassing an energy
limit?

To obtain the answer to this question, the software developer needs to run an
analysis of property ExceedProb, informing the desired energy limit. With this, the
probability of the software energy consumption getting above this limit is calculated.

Chapter 4. Property-Based Software Energy Analysis 36

After this, the software developer can execute an analysis of other properties, such as
MaxCostExec, to get the most costly behaviour, and ProbUfMaxCostExec, to obtain
its probability of occurrence. In this case, if the probability of execution of the most
costly behaviour is considered high, the software developer can refactor, replace
structures or modify some features to reduce the energy cost of this behaviour.
Another option is to perform the ExecCostsList property analysis to verify the cost
of all executions and, with this7 check which software parts could be modified to
reduce energy consumption.

Q5. Where do I have to modify my software to improve its energy efficiency?

To improve the software energy efficiency, first we need to identify the points
that require more attention (i.e. points where are more energy consumption). This
information can be obtained by the analysis of some properties.

It is possible to use ExecCost to check the consumption of specific executions.
The user also can perform the analysis of MaxCostExec to verify the execution
that have more energy consumption or, to have a more complete scenario, by use
ExecCostsList the developer can check the cost of all executions and verify that
ones that have more consumption.

If the probability information is present in the analysed model, it is possible to
perform the analyses of ProbOfMaXCostExec and CostOfMaXProbExec to obtain the
probability of most costly and the cost of most probable executions. This executions
require some attention due to the fact that they are the ones that can cause more
impact in energy consumption. With this information, the software developer has a
better idea about where they have to make changes in their software to improve its
energy efficiency.

Q6. How does the inclusion of a new feature impact my software energy con-
sumption?

To check this scenario, it is possible for the software developer to:

0 Use the analysis of ExecCost property to compare the energy costs of impacted
executions before and after the system evolution.

0 Use the analysis of PossExecsCost property to check how the system evolution
generates new behaviours, the costs of these behaviours and their impact
compared to the previous behaviours.

. Check the maximum of energy consumption, using MaXCostExec before and
after changes to check if the software consumption upperbound is still in
conformance with the platform’s energy limit.

Chapter 4. Property-Based Software Energy Analysis 37

. Finally, it is possible to execute Anonsumption in cases where the probability
information are not present, or AnrobableCost if are present, before and
after the evolution to evaluate the impacts of perform it by changes in mean of
energy consumption during software execution.

All this information can show how the new feature/system evolution impacts the
software energy efficiency providing the costs before and after the changes. With
this, it is possible to visualise the impacts caused by system evolution and this gives
to the software developer a more informative scenario to make decisions.

Q7. Which parts of my software consume more energy?

To have this information, the user can analyse property MaXCostExec to obtain the
most costly execution. To have a more complete information, the user can combine
this result with an analysis of property Anonsumpt ion, to obtain the average cost,
and property LimitsSatList, applying this obtained cost as input to obtain the
costs that are above the average. Another (and simpler) approach would be to analyse
property ExecCostsList to determine a list of all possible system executions and,
with this, observe which executions consume more energy. With this information,
it is possible to define which software parts cause more impact in energy efficiency
and, consequently, require more attention.

Q8. What is the average cost of executing my software?

If the probability values are known, this information can be accessed using the
analysis of property AnrobableCost. In cases where the probability information is
not available, then it is possible to analyse property Anonsumption. Both analyses
return the approximate energy consumption in most software executions, based

on the provided information. If desired or necessary, the software developer can
execute ProbDfMaxCostExec and CostOfMaxProbExec to identify software points
where performing changes can result in an energy efficiency enhancement.

QQ. What is the relation between the most costly executions and the most
frequent executions?

To have the answer to this question, the software developer can analyse property
ProbOfMaxCostExec to obtain the most costly execution and its probability of
occurrence. To have a complementary information, it is possible to perform an
analysis of property CostOfMaXProbExec to get the information about the most
probable execution.

With the information resulting from these analysis, it would be possible to evaluate
the most costly and the most probable execution. lf they are the same, this means
that part of the software is the most executed and also has the highest energy

Chapter 4. Property-Based Software Energy Analysis 38

Q10.

cost, thus representing a part of the code to be further investigated. Otherwise, it
is important to verify the energy cost of other executions and this can be made
by using ProbCostExec to identify executions with elevated energy costs and high
probabilities of occurrence. This executions are potentially relevant for software
energy efficiency and should have more attention from the developer.

HOW much energy-efficient is my software?

Similarly to Q1, the answer to this question depends on the context where software
under analysis is involved and which information is relevant to the developer. Due
to this fact, this question does not have an objective answer, but there is some
information that may indicate how efficient the software is in terms of energy
consumption, such as:

0 Total energy consumption, as demonstrated in Q1 and Q3 by analysing proper—
ties ExecCostsList, Anonsumption and AnrobableCost,

. Average energy consumption, as explained in Q1 and Q8 by analysing properties
Anonsumpt ion and AnrobableCost;

o The most probable energy cost, obtained through the analysis of properties
PCM, CostOfMaxProbExec and ProbCostExec, as discussed in Q9;

o The highest software consumption, which can be verified by analysing pro—
perties MaxCostExec and ExecCostsList or by the combination between
Anonsumption and LimitsSatList, as demonstrated in Q7;

o The software adherence to an imposed limit, answered in Q2 and Q4 through
the analysis of properties MaxCostExec, ProbOfMaxCostExec and GCE.

All these questions can be answered by analysing the indicated properties of the
proposed set, thus providing clues to the software developers about their software
energy—efficiency. Although answers might not be direct or objective, the developer
can gather enough information to move towards the appropriate answer, considering
their context, environment limitations and application domain.

39

5 Results

In this section, experiments involving the proposed properties and our preliminary
results are presentedl. Model construction can be carried out manually, based on the
knowledge of the developer, or using some model extraction approach, such as the one
presented in (Duarte; Kramer; al., 2017). We emphasise that the precision of the analyses
depends directly on how well the model represents the software behaviour and the costs
and probabilities associated to each transition. For the experiments, we used the LoTuS
tool (Barbosa; Lima; Maia; Junior, 2017) to perform a visual and intuitive modelling, and
energy costs were collected using the jRAPL framework (Liu; Pinto; Liu; 2015).

5.1 Implementation of Property Analysis

Here, we describe the implementation2 of the analyses of the defined set of properties.
This implementation was developed in the Python language3, mainly due to our familiarity
with this programming language and its processing speed. Moreover, some consolidated
libraries, such as NetworkX4, are available to be readily used with Python. NetworkX
allows a developer to construct and operate in graph structures and its derivations and,
thus, it was widely used in this work.

As a first step, we had to define how to deal with loop structures. As we know, loop
structures can generate infinite executions and, as mentioned in Chapter 4, our definition
of an execution assumes it is finite. For this reason, we used the one—loop path coverage
(Utting; Legeard, 2010) to avoid infinite executions. Hence, in our implementation, we
perform a modification in the model structure to produce a model that follows the one—loop
path principle. W'e call this process loop flattening and it has been designed to achieve
a model without loops, but which preserves the energy and probabilistic behaviours of
the original model in terms of finite executions. To make this process possible, we need to
follow a sequence of well—defined steps, which will be described next. To exemplify how
this process occurs in an LTS model, consider the example model presented in Figure 6.

To describe how our one—loop path algorithm works, some roles need to be defined:

. Initial state: the state which is target of a backward transition; i.e., a transition,
that goes back in the model, returning to a previously visited state. For example,

Data for these experiments can be found at https://github.com/danilodsa/
The algorithm can be found at https://github.com/danilodsa/
https: //www.python.org/
https://networkx.org/#

O
J
M

H

Chapter 5. Results 40

transition C in Figure 6. 5;

. Loop state: the state which is origin of a backward transition;

o Intermediary state: the state(s) that is(are) in the path between the Initial and the
Loop states;

o Final state: the state(s) that is(are) the target of non—backward transitions from the
the Loop state;

o Link state: the state(s) that is(are) created to simulate a one—loop execution.

The Loop and Initial states are unique for each loop. The set of intermediary states
can be empty, whereas the set Link state and the set of Final states are non—empty.

The first step of the process is to identify all loop occurrences in the model using the
NetworkX library features. In our example, shown in Figure 6, a loop occurs in execution
0 — 1 — 2 — 0. When we assign the roles mentioned before, state 0 is the Initial state, state
1 is an Intermediary state, state 2 is the Loop state and state 3 is a Final state.

AK100>{5} 5 (1.00) {10} E<10.75i{0}

A o ª L St t. . oo a eInltlal State Intermediary State p

Final State

c (0.25} {15}

Figure 6 f Model before applying the loop flattening process

For each loop, we store all information about transitions that compose it (i.e.,
Loop state, Initial state, Intermediary states, Final states, labels, costs and probability
information) and then eliminate the backward transition. For instance, transition C is
removed from the model in our example, as shown in Figure 7, since it returns from state
2 to state O.

The next step consists in creating new states called Link states for each removed
loop (states 4, 5 and 6 in the model of Figure 8), which will be used to simulate one loop
occurrence. To do so, we recall the information about each removed transition, stored in
the first step, and use it to connect the involved states. We create one link state for each

5 In our LTS representation, states are presented in order, from the start state. Hence, a backward
transition is a transition originated in a state with a higher identifier and with destination to a state
with a lower identifier.

Chapter 5. Results 41

A [1 00, [$) B [1 00) {10} E .,;o.75:. (o;

Final State

Initial State Intermediary State

Figure 7 * Backward transition removal

state involved in the loop. In our example, three link states are required to reproduce the
loop because there were 3 states involved (0, 1 and 2). This re—connection step preserves
the original costs but creates only two possible executions from the Initial state to the
Final state: one considering an execution without a loop (O — 1 — 2 — 3) and another
considering one occurrence of the original loop (O — 1 — 2 — 4 — 5 — 6 — 3). Also it is
possible to see that some transitions, such as E, had its probabilities recalculated to keep
consistent the system probabilistic behaviour. This occurs because in the original model
(see Figure 6)7 reaching the state 2, there was 25% of chance of performing the loop. After
that, reaching state 2 another time would mean again that there was a 25% of chance of a
new execution of the loop. However, as our execution can only allow one occurrence of the
loop, after returning to state 2 (simulated by state 6 in the resulting model), we can only
move to the Final state.

.. 540.753'01Am 00) {5} 5 “DOW-‘0} ª ‘

:025} {15} E ”OOH

Link State A ”ºº' {D} 8 (1.003: (10}

Link State5

Link State

Figure 8 , Link state creation

After performing the presented steps, we have a loopless model containing only
finite executions of the original model, respecting the one—loop path rule. With this model,
it is possible to perform the analysis of the proposed properties without worrying about
infinite executions. Moreover, some information can be lost once each loop execute only
one time. This information can include, for instance, a decision structure that define if the
loop will occur more times.

Chapter 5. Results 42

5.1.1 Limitations of the Implementation

Our implementation does not work well when the model contains nested loops. In
these cases, during the experiments, we observed that NetworkX gives a list of all loops but
does not identify those inside other loops. This limitation can make the analysis of models
with nested loops not as accurate as with models with only simple loops. The set of not
yet implemented properties consists in ExceedProb, LimitSat and LimitsSatList. This
properties were not implemented due to this complexity and time necessary to perform
this implementation. Furthermore, we intend to implement them in future work.

Also, the one—loop path coverage imposes a limitation on the path length and some
information can be lost. For example, decision structures that are dependent on loop
occurrences, as in a WHILE loop that only continues depending on an inside loop variable
value.

5.2 Experiments

To demonstrate an application of the proposed properties, we conducted some
experiments performing the modelling and evaluation of the energy behaviour of some
software. These experiments are divided in three categories, following the scenarios of
application described in Chapterl: a single component system analysis, a single component
evolution and finally, a system constructed by a component combination.

In these experiments, we focused on performing the analysis of existent software.
We intend to demonstrate how our research, the proposed set of properties and the quick
guide can be applied in some cases that can occur in the real world, where a software
developer have to make decisions about its software performance and target platforms.
The experiments were executed in a computer with an Intel Core i5 with RAPL enabled
and 16GB of RAM and the unit used was Watt, as used in the experiments performed in
(Liu; Pinto; Liu, 2015).

5.2.1 SMTP Protocol

In the first experiment, we performed the modelling and evaluation of the software
energy behaviour of the SMTP Protocol class, part of the SMTP implementation of the
ristretto benchmark? The model presented in Figure 9 was obtained using the model
extraction process described in (Duarte; Kramer; al., 2017). In this process, we used the
test cases provided with the benchmark for this class to execute an annotated version of
the code and produce traces, which were used as input to the LTSE (Duarte; Kramer;
al., 2017)(Duarte; Maia; Silva, 2018) tool to construct the LTS model. The probability
6 http: //colun1ba.sourceforge.net/ristretto—l .O—docs/

Chapter 5. Results 43

information was obtained by analysing how many times a transition between a pair of
states was executed according to what was recorded in the traces and the number of
occurrences of the origin state. The energy values represent the average consumption based
on 1000 executions for each method of the class.

[381.19 3}l E iG) eh‘c

«fã 38962:»10 16 l aulh

{3 0999-3310 lõ ji Hoop

o « Ú mom-+0} l, l (O) “(;x-jm on

gasses-zqzocmam{3 mae-:> ,i i l 00)rcp1 º (O JOOC-vCl)(1 (JO lw Auimece vc- º

EMT
ici .1716 ZH] 10310penPcn

[4032273 i J. OI) .* qul .
_[lªre—B)(u 1a) man

>0 o' o '
: 1

{u cacem } i, 1 00 J alllhbe'ld

(3 {DEW-3)(1(1{i] hole

Figure 9 , Model of the SMTPProtocol class

We explore a scenario where we need to use the SMTP to transfer e—mail messages
from an embedded, battery—powered system. Supposing that there is a limitation of the
amount of energy that this task can spend of 0.05VV per operation, is this implementation
of the SMTP suitable for the presented scenario?

To answer this question, we can use our quick guide (presented in the Section 4.2)
and follow the suggestion described in QA. As a result, we can have the information that
an execution of this implementation of the SMTP has a chance of 32.32% of trespassing
the limit of 0.05W. In this case, we should use another implementation of this algorithm
or we could make some changes in the source code to improve energy efficiency.

If we take the second option, to identify where changes should be made to reduce
the software energy consumption, the quick guide shows in Q5 the use of ExecCostsList
to return the costs of all possible executions. With this information, it is possible to
observe that openPort—mail—rcpt—data—quit has the highest energy cost. This information
can also be obtained using the MaXCostExec property, as mentioned in quick guide, but
the ExecCostsList will give to the developer a broader scenario, more useful in this case
of analysis. The developer can choose between these approaches by the effort that will be
required to apply them.

In this system, the probability information is present, which allows us to get more
information about the software behaviour. We can ask, for instance, what is the chance of
the most costly execution occur (QQ) and receive the answer of 16.66% of chance. With
this information, the developer can determine whether this value is high according to the

Chapter 5. Results 44

particular application. If that is the case, this execution requires some attention and a
modification could reduce the software energy consumption. On the other hand, if the
resulting chance is significantly low, the effort to perform a refactoring in this execution
may not pay off.

Execution Cost (W)
openPort 0.004471
openPort—ehlo 0.008285
openPort—auth 0.088361
openPort—noop 0.00757
openPort—quit 0.008503
openPort—mail 0.00634
openPort—ehlo—exception 0.008285
openPort—auth—authReceive 0.088361
openPort—mail—rcpt 0.04537
openPort—ehlo—exception—helo 0.012244
openPort—auth—authReceive—authSend 0.088361
openPort—mail—rcpt—data 0.12803
openPort—mail—rcpt—data—quit 0.132062

Table 9 , ExecCostsList analysis for the SMTP model

Also, it is possible, as shown in the quick guide, to calculate the average cost of
the system (QS). Analysis of the Anonsumption property shows us that the average
consumption of a run of the SMTP implementation is about 0.023VV. This information
gives to the developer the expected energy cost of executing the software, which can help
the developer make decisions considering the platform where the system will run. With the
probability information, a more precise analysis can be done with the AnrobableCost
property, that shows us the expected value is 0.15W based on the cost and probability
provided information.

5.2.2 Matrix Multiplication Evolution

In software engineering, the term software evolution describes the process of
changing a software in one or more attributes or characteristics, adding new features or
removing obsolete functionalities (Lehman; Ramil, 2003). These software changes can
cause alterations in the system behaviour and, consequently, modify the software energy
consumption.

The proposed set of properties also can be used to evaluate how the system energy
consumption is affected by the evolution of the software. The experiments described below
show how to measure the impact of a system evolution in energy consumption by the
comparison of energy properties of the system before and after the evolution.

To demonstrate how to employ our work during a software evolution phase, we
use an experiment involving a matrix multiplication system. We performed the analysis
of a system considering a possible evolution. This analysis was conducted on a matrix

Chapter 5. Results 45

multiplication algorithm7. in which the matrices to be multiplied contain values that can
be of type Short, Int, Long, Float or Double. The algorithm works receiving as input a
selected data type, which determines the type of matrices that will belong to the operation
through the transitions opt0 for Float matrices, opt1 for Short matrices, opt2 for
Double, opt3 for Int and finally, opt4 for Long type. Two matrices are randomly created
with size 1000 x 1000, containing only values of the selected type, and then multiplied.
Figure 10 shows how this system can be modelled as an LTS.

{D.11}(1.00 :] createFloaI
{0-00 l (0.10) aptº {25.d2}(1.0-0}ml.I|IFloai

{ 0.12 :. (_ 1.00 :) createShon

{0.00 H 1.00) main {0.10 '; (: 1.00) createDouble
«30.00H0051I0pt2 =: 39351 |: 1.00) 00.0000 -

{OOOHUGOJDDB

r_ 0.00] [0.10 J cpm

Figure 10 , Model of the matrix multiplication system

Considering some of the possible questions from the quick guide, we can get
information about the software energy behaviour and, with this, it is possible to compare
the results before and after the evolution to analyse the impacts 011 the energy behaviour.
Evaluating a software before and after an evolution can be important when the system
runs in a energy limited platform and the developer needs to keep the energy consumption
under this limitation. Another possible case occurs when the developer needs to decide
between storage structures, for example, and wants to verify the trade off of realising this
evolution and evaluate the impact in complexity, time or capacity.

For instance, if the developer wants to know the part of the code with the highest
energy consumption in this system (Q7), it is possible to observe that the execution
that operates with matrices with Double values (mam-opt?-areateDoublc—multz’plyDouble)
consumes 39,83W and represents the highest energy consumption in this system before
the evolution.

7 Adapted from jRAPL benchmarks available at <http://kliu20.github.io/jRAPL>.

Chapter 5. Results 46

As mentioned before, the probability information gives us the possibility to better
understand the software behaviour. With this, we can ask about the most probable
execution (Q9) and obtain the execution maín-0pt3-createlnt-multiplylnt having the
highest chance of occurrence (60%). Applying thc suggestions presented in Q8 of the quick
guide, we were also able to obtain that the average cost of this system is 24.37VV.

Working in a specific context, matrix operations are part of several computing

processes, including graphic processing (Jodra; Gurrutxaga; Muguerza, 2015). In addition
to multiplication, matrix transposition is another operation that is frequently used in
this area (Baqais; Assayony; Khan; Al—Mouhamed, 2013). Hence, we could implement an
evolution to include this new operation. The model obtained after this process of evolution
is presented in Figure 11. ln state 13, there are new transitions to represent the matrix
transposition after the matrix creation and two transitions that permit the system to
realise a matrix transposition and return to matrix type selection. After constructing the
model, we can ask: how does the inclusion of this new feature impact my software energy
consumption?

' ' I : ”..:H: ITC'JJII'

Figure 11 , Model of the matrix multiplication system evolution

Before the evolution, the average cost of this system was 24.37 watts and, now its
average cost is 21.77 watts. The average cost was reduced by the inclusion of the new
feature because the multiplication consumes more energy than transposition. Before, the
multiplication had 100% of chance of occurrence and now, its Chance is divided with the

Chapter 5. Results 47

Before After
Average cost 24.37 21.77
Most costly path
probability 5% 35%
Probability of
exceeding 30W
Most probable
path
Most probable
path probability

20% 10.5%

main—opt3—createInt—multiplylnt main—opt3—createInt—multiplylnt

60% 42%

Table 10 * Impacts of the evolution

transposition operation. We also can observe that the most costly path is still the same, but
now we have a 3.5% chance that the system will execute a Double matrix multiplication.
Analysing the probability of the system exceeding 30W before the evolution provides a
chance of 20%, now, this chance went down to 10,5%. This comparison can be better
observed in the Table 10.

Now, the system also has the possibility of returning to the matrix type selection
to execute another operation with another type of matrix. We can check, for example,
the cost and probability of executing an Int matrix multiplication and then performing
a transposition of a Short matrix. This analysis results in an energy cost value of 36.42
watts with a 1.8% of chance. This analysis could be interesting to evaluate loop structures
in the system and its result is useful to analyse the energy consumption growth during an
execution and how the probabilities influence such consumption.

By evolution of the matrix multiplication system, the developer would obtain an
improvement in understanding their system energy behaviour. This enhancement could be
useful if the developer needs to adjust the software to a platform with energy limitations.

5.2.3 FTP Protocol + Compression

We performed an experiment composing two systems to originate a new software.
We work on a hypothetical scenario, where the software developer has to work with file
transfers using the File Transfer Protocol (FTP) (Postel; Reynolds, 1985) and would like to
know whether there is an energy gain involved in compressing the files before transmission.

The FTP involves sending files between a client and a server. To establish commu—
nication, the user provides their credentials, including identification and password. With
the user successfully authorised. it is possible to transfer files between both sides (Kurose;
Ross, 2007). The Apache Commons Library8 is used in this experiment and an adaptation
of the code of the FTP implementation was created from a repository of Java codes and

8 https://commons.apache.org/

Chapter 5. Results 48

1public class FTP {
public void submitFTP(localFile ,remoteFile){2

3
4 FTPClient ftpClient : new FTPClient ();
5 try {
6 ftpClient.connect(server, port);
7 ftpClient.logín(user, pass);
8
9 inputStream : new FilelnputStream(localFile);

10 if(firstApproach){ //u5i7z,g an InputStream
11 System . out . println (" StartJuploadingL file ");
12 done=ftpClient . storeFile (remoteFile ,inputStream);
13 inputStream. close ();
14 if (done) {
15 System. out . println ("UploadedLsuccessfully . ");
16 }

18 else { // using an OutputStream
19 inputStream : new Fí1e1nputStream(localFile);
20 outputStream=ftpC1ient.storeFíleStream(remoteFile);
21 byte[] bytesln : new byte[4096];
22 int read : 0;
23 while ((read : inputStream.read(bytesln)) !: —1) {
24 outputStream.write(bytesln, O, read);

26 inputStream. close ();
27 outputStream. close ();
28 completedzftpClient .completePendingCommand ();
29 if (completed) {
30 System. out . println ("UploadedLsuccessfully , ");
31]

}
33]» catch (IOException ex) «[
34 System.out.println("Error: ,
35 } finally {
36 try {
37 if (ftpClient.isConnected()) {
38 ftpClient.logout();
39 ftpClient.disconnect();

+ ex . getMessage ());

}
41 }catch (lOException ex) {
42 ex.printStackTrace();
43 }
44 }

Figure 12 , FTP program source code

tutorialsº, as shown in the partial source code in Figure 12. and the model obtained is
shown in Figure 13. In this experiment, an upload of a 15MB file is executed from a client
to a server7 given the IP address, port number, username, and password.

The source code of the program that performs the data compression and calls the
FTP to perform the transmission is displayed in Figure 14 and the model obtained can be
observed in Figure 15. It is important to observe that the costs to perform the transmission
in the composed model are different from the previous model. This occurs due to the
compression, which reduces the file size and, consequently, reduces its transmission cost.

9 Available at <https://WWW.codejava.net/java—se/ftp/java—ftp-file—upload—tutorial—and—example>

Chapter 5. Results 49

E“: F1 ..
..

C {1 2375} D [C CID

5 {a 18GB]

A {c 0513} H {o 0000} .wcow}

Figure 13 , FTP protocol system modelling

1 public static void compress(String file){
try{

3 byte[] buffer : new byte[256000]:
.; FileOutputStream fos : new FileOutputStreani(" file .zip”):

ZipOutputStream zip : new ZipOutputStream(fos):
r, FileInputStream in : new FileInputStreain(file):
7 int len;

RJ

9 while((len : in.1‘ea(l(buffer)) > O) {
10 Zip.W1'ite(buffer, O. len):
ll }

13 in. close ():
1-1 zip.closeEntry():
15 zip.close();
16

n }catch(lOException ex){
18 ex.printStackTrace():
19 }

20 }

Figure 14 , Compression system source code

Taking this scenario, with the software developer having thc energy consumption
of each software part and an LTS model that represents this software7 it is possible to use
the quick guide to get some information, asking7 for example? "How does the inclusion of a
new feature impact my software energy consumption?"(Q6). In this case, the new feature
is the data compression.

Chapter 5. Results 50

N {00046}

Figure 15 , Compressor model

l public class main {
2 public static void main (String arg “)(
:; String file : ’homc/Documcnts/ filo .pdf”
4 CompressZip compressZip = new CompressZip ();
5 comprossZip . compross(filo);

7 FTP ftp : new FTP();
s ftp .submitFTP(file ,nameOfRemoteFile);
É) }

10 }

Figure 16 , Compressor + FTP system source code

The FTP energy cost, for this experiment, results in a value of 1.3478W/ without
performing the compression. However, executing the file transfer performing the file
compression before calling the FTP results in a total energy cost of 2.572814" (resulting
file with 9Mb); i.e., 1.2250l/V more than the transmission without the compression. Hence,
the energy cost to compress the file before sending it is higher than that of simply sending
the original file.

Having this information in hands, the developer can direct its attention to experi—
ment other compression methods, file sizes or other file types, for instance. Also, other
transmission algorithms and protocols can be used with the objective to find the less
expensive in terms of energy consumption or the developer can simply decide to perform

Chapter 5. Results 51

0400000?
01.0633}

mom—1.5}
B{CI.1991}

HOIH BmL«:D 0305,
['N/1100030]

| (O 0000}

Figure 17 f System evolution resultant model

the transmission without compressing the file, that is, this experiment opens several options
that the developer can choose to adequate the system energy consumption to their need.

This experiment showed us how the utilisation of the proposed set of properties
and the quick guide can support the developer when the objective is analysing the energy
consumption of a software before and after an evolution. Hence, to conduct a more precise
analysis in this experiment, it would be necessary to evaluate different file sizes and types
to check if is worth the effort to compress.

5.3 Discussion

All of the answers obtained with the experiments can provide information to
support a software developer regarding choices that can be made in order to enhance their
software performance in terms of energy consumption or in order to adapt the platform to
run the analysed system.

Our idea was to present examples simple to understand and that are extracted from
the real world. The same process to evaluate the STMP Protocol and the matrix system
can be applied to large systems to perform a general analysis or to its isolated components
to make a local evaluation. These analyses can be performed in any LTS model with
costs and probability information. This can be used in software still in the design phase,
if probabilities and costs of each part are previously known or estimated, to determine
that the software under development attends the limitations of the platform where it will
run. As demonstrated, this property analysis can also be applied to evaluate the energy
consumption of an existing system or in a software evolution, where it is desirable to assess
the impact of the modification on the energy consumption factor.

Chapter 5. Results 52

Even though our results show important information about energy behaviour
analysis of the programs, we still need to further evaluate this analysis in most robust and
multi—component systems. In the experiments, models were constructed either by hand or
by using a model extraction tool and, the quality of the analysed model (ie, the correct
representation of the system behaviour) can have a big impact on the produced results.
For this reason7 models should have some type of conformance with the software behaviour.
The origin of energy and probability values also is a relevant factor, since the analyses
directly depend on these values. We obtained the probability information by the set of
tests in the first experiment, and this can cause a bias depending on how the tests were
constructed and their purpose. However, in the context of this work7 our intention was just
demonstrating the applicability of our proposed analyses and not having a precise model.

6 Application Areas

In this section, we discuss some possible application areas for the proposed property
definitions and their corresponding analyses, highlighting how it can help users to address
the inherent challenges of each area.

6.1 Component/Service—based development

More recently, microservices (Newman7 2015) have been gaining attention from
both academia and industry, particularly due to its efficient manner to scale computational
resources at runtime, thus becoming a trend as an architectural style for cloud—native
applications (Kratzke, 2018). A challenging and yet not addressed question regards how to
build energy—efficient systems upon a set of components or (micro)services. In this direction,

developers could benefit from our set of property definitions to model and exercise the
possible architectural configurations based on the energy consumption and probability of
execution of each available component.

6.2 Refactoring

In the context of energy analysis, a developer could use the results of analyses of the
defined properties to evaluate how applying a given refactoring (Fowler, 1999) would affect
their local and/or overall energy consumption. Property analysis can support the decision—
making process by providing results that can help weigh possible conflicting aspects.
Different versions of a software could be compared and multiple changes considered.

6.3 Energy Optimisation

Ideas about energy complexity analysis have already been presented (Demaine;
Lynch; Mirano; Tyagi, 2016), discussing how to determine, for instance, the minimum
energy required to execute an algorithm. Using the results from analysing our properties,
developers could compare the energy efficiency of their solutions with possible lower/upper
bounds. It would also be possible to discover what parts of the code are more inefficient
and explore possible solutions to improve efficiency.

Chapter 6. Application Areas o4

6.4 Self—adaptive systems

Self—adaptive systems are able to adjust their behaviour or structure in response to
their perception of the environment and the system itself (Cheng; Lemos; al., 2009). In
this realm, energy consumption arises as a possible aspect that can be observed and lead
a system to adapt at runtime in order to choose the most appropriate component to keeps
the system overall energy consumption below a established acceptable threshold.

6.5 Embedded Systems

If we can measure and analyse energy costs for a given software, we can do this
process using different hardware components and configurations to see how they affect
energy—efficiency. In particular, embedded systems (Jayaseelan; Mitra; Xianfeng Li, 2006)
are systems where hardware and software are combined and, therefore, energy consumption
should account for both types of components. Using simulators of architectures and
microprocessors, one could execute a program using different settings and analyse how
they influence energy efficiency in this composed scenario.

O! C:!

7 Conclusions and Future Work

The work described here aimed to show the importance of energy consumption
analysis during the software development process. We proposed a set of high—level property
definitions that consider the energy cost and the probability of occurrence of each software
part combined in an LTS model, which allows a developer to analyse their software energy
consumption. To achieve the proposed objective, an implementation of the one loop path
technique was proposed. Although the implementation presents some weakness in some
nested loops and massive systems due to this experimental phase, it showed its efficiency
on allowing the use of classic graph algorithms to support energy consumption analysis.
We also help the developer understand how to enhance their software energy efficiency
by presenting a list of possible real situations in a quick guide format, present common
situations that the developer can encounter and how to proceed in each case.

The experiments conducted in this study showed how the analyses of these proper—
ties can be used to support the software developers on evaluating the energy consumption
of their systems. We performed experiments modelling and evaluating the energy beha—
viour of a single component system, a single component evolution and finally, a system
constructed through a component combination, presenting preliminary results obtained by
the application of the properties proposed and following the quick guide instructions. To
perform the experiments, an implementation of thc one—loop path coverage and analyses
of some of the proposed properties were developed.

As future work, we intend to study techniques and heuristics that are able to
enhance the one—loop path implementation and generate model traces to perform analysis
in systems with a substantial number of components and events with less effort and, with
this, increase the set of implemented property analyses. We also intend to research and
perform experiments in different scenarios with different limitations to enhance the actual
set of properties and increase the number of possible analyses. With this, a new version of
the quick guide can be proposed, containing more situations and questions to help the
developer.

References

Albers, S. Energy—efficient algorithms. CACM, ACM, New York, NY, USA,
V. 53, n. 5, p. 86796, maio 2010. ISSN 0001—0782. Disponivel em: <http:
//doi.aern.org/10.1145/1735223.1735245>.

Alves, D. da S.; Ferreira, O. A.; Duarte, L. M.; Maia, P. H. Probabilistic model—based
analysis to improve software energy efficiency. In: Proceedings of the 34th Brazilian
Symposium on Software Engineering. [8.1.2 an.], 2020. p. 1327136.

Baier, C.; Dubslaff, C., Klein, J.; Kliippclholz, S., Wunderlieh, S. Probabilistic model
checking for energy—utility analysis. In: . Horizons of the Mind. A Tribute to
Prakash Panangaden: Essays Dedicated to Prakash Panangaden on the Occasion of
His 60th Birthday. Cham: Springer International Publishing, 2014. p. 967123. ISBN
978—3—319—06880—0. Disponível em: <https://doi.org/10.1007/978—3—319—06880—O_5>.

Baqais, A., Assayony, M., Khan, A., Al—Mouharned, M. Bank conflict—free access for
cuda—based matrix transpose algorithm on gpus. In: International Conference on
Computer Applications Technology. [S.l.: s.n.], 2013. p. 160.

Barbosa, D. M.; Lima, R. G. de M.; Maia, P. H. M.; Junior, E. C. Lotus@runtime: A tool
for runtime monitoring and verification of self—adaptive systems. In: Proceedings of the
12th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems. Piscataway, NJ, USA: IEEE Press, 2017. (SEAMS ’17), p. 241730. ISBN
978—1—5386—1550—8. Disponível em: <https://doi.org/10.1109/SEAl\/'IS.2017.18>.

Belgaid, C., d’AZémar, A.; Fieni, G.; Rouyoy, R. pyRAPL: A software toolkit to measure
energy in python language. 2019. <https://pypi.org/project/pyRAPL/>. Accessed:
2021—03—16.

Binkert, N. et al. The gem5 simulator. ACM SICARCH computer architecture news, ACM
New York, NY, USA, V. 39, n. 2, p. 177, 2011.

Brandolese, C.; Fornaeiari, W.; Salice, F.; Sciuto, D. The impact of source code
transformations on software power and energy consumption. Journal of Circuits, Systems,
and Computers, World Scientific, V. 11, n. 05, p. 477—502, 2002.

Cheng, B. H. C.; Lemos, R. de; al. et. Software engineering for self—adaptive systems: A
research roadmap. In: . Software Engineering for Self—Adaptive Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009. p. 1726. ISBN 978-3-642-02161-9. Disponivel
em: <https://doi.org/10.1007/978—3—642—02161—971>.

Couto, M.; Carção, T.; Cunha, J., Fernandes, J. P.; Saraiva, J. Detecting anomalous
energy consumption in android applications. In: Springer. Brazilian Symposium on
Programming Languages. [Sl.], 2014. p. 77791.

Demaine, E. D.; Lynch, J .; Mirano, G. J.; Tyagi, N. Energy—efficient algorithms. In: [TCS
’16. New York, NY, USA: ACM, 2016. (ITCS ’16), p. 3217332. ISBN 978—1—4503—4057—1.
Disponível em: <http://doi.acm.org/10.1145/2840728.2840756>.

References 57

Duarte, L. M.; Alves, D. da S.; Toresan, B. R.; Maia, P. H.; Silva, D. A model—based
framework for the analysis of software energy consumption. In: ACM. Proceedings of the
XXXIII Brazilian Symposium on Software Engineering. [Sl.], 2019. p. 67772.

Duarte, L. M.; Kramer, J .; al. et. Using contexts to extract models from code. Software
and Systems Modeling, V. 16, n. 2, p. 5237557, 2017.

Duarte, L. M.; Maia, P. H. M.; Silva, A. C. S. Extraction of probabilistic behaviour
models based on contexts. In: Proceedings of the 10th International Workshop
on Modelling in Software Engineering - MiSE ’18. New York, New York, USA:
ACM Press, 2018. p. 25732. ISBN 9781450357357. ISSN 02705257. Disponivel em:
<http://dl.acm.org/citation.cfm?doid=3193954.3193963>.

Dubslaff, C.; Kluppelholz, S.; Baier, C. Probabilistic model checking for energy analysis
in software product lines. In: Proceedings of the 13th International Conference on
Modularity. New York, NY, USA: ACM, 2014. (MODULARITY 714), p. 1697180. ISBN
978—1—4503—2772—5. Disponivel em: <http://doi.acm.org/10.1145/2577080.2577095>.

Fowler, M. Refactoring: Improving the Design of Existing Code. Boston, MA, USA:
Addison—VVesley Longman Publishing Co., Inc., 1999. ISBN 0—201—48567—2.

Georgiou, S.; Rizou, S.; Spinellis, D. Software development lifecycle for energy efficiency:
Techniques and tools. ACM Computing Surveys (CSUR), ACM New York, NY, USA,
v. 52, n. 4, p. 1433, 2019.
Hao, S.; Li, D.; Halfond, W. G. J .; Govindan, R. Estimating mobile application energy
consumption using program analysis. In: IEEE Press. 35th International Conference on
Software Engineering (ICSE 2015’). [Sl.], 2013. p. 927101.

Hasan, S. et al. Energy profiles of java collections classes. In: ACM. 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE). [Sl.], 2016. p. 225—236.

Jayaseelan, R.; Mitra, T.; Xianfeng Li. Estimating the worst—case energy consumption
of embedded software. In: IEEE. 12th IEEE Real— Time and Embedded Technology and
Applications Symposium (RTAS’06). [Sl.], 2006. p. 81790.

Jodra, J. L.; Gurrutxaga, 1.; Muguerza, J. Efficient 3d transpositions in graphics
processing units. International Journal of Parallel Programming, Springer, v. 43, n. 5, p.
8767891, 2015.

Jr, E. M. C.; Grumberg, O.; Kroening, D.; Peled, D.; Veith, H. Model checking. [Sl.]: MIT
press, 2018.

Keller, R. Formal Verification of Parallel Programs. CACM, v. 19, n. 7, p. 3717384, July
1976.

Khalid, H.; Shihab, E.; Nagappan, M.; Hassan, A. E. What do mobile app users complain
about? IEEE Software, v. 32, n. 3, p. 70*77, May 2015. ISSN 0740—7459.

Kratzke, N. A brief history of cloud application architectures. Applied Sciences, v. 8, n. 8,
2018. ISSN 2076—3417. Disponivel em: <https://www.mdpi.com/2076—3417/8/8/1368>.

Kurose7 J.; Ross, K. Computer networking: A top—down approach (6th edition). In: . [S.l.:
an.], 2007.

References 58

Kwiatkowska, M.; Norman, G.; Parker, D. PRISM: Probabilistic symbolic model checker.
In: Kemper, P. (Ed..) Proc. of the Tools Session of Aachen 2001 Intl Mnlticonference on
Measurement, Modelling and Evaluation of Computer-Communication Systems. [S_L: sn],
2001. p. 7*12. Available as Technical Report 760/2001, University of Dortmund.

Lehman, M. M.; Ramil, J. F. Software evolutionfbackground, theory, practice.
Information Processing Letters, Elsevier, V. 88, n. 1—2, p. 33744, 2003.

Li, D. et al. Software energy consumption estimation at architecture—level. In: 2016 13th
International Conference on Embedded Software and Systems (ICESS). [S.l.: sn], 2016. p.
7711.

Li, S. et al. McPAT: An Integrated Power, Area, and Timing Modeling Framework for
Multicore and Manycore Architectures. In: 2009 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (]lIICRO). [S.l.: sn], 2009. p. 4697480.

Lima, L. G. et al. Haskell in green land: Analyzing the energy behavior of a purely
functional language. In: IEEE. 2016 IEEE 23rd international conference on Software
Analysis, Evolution, and Reengineering (SANER). [Sl.], 2016. v. 1, p. 5177528.

Liu, K.; Pinto, G.; Liu, Y. D. Data—oriented characterization of application—level energy
optimization. In: Egyed, A.; Schaefer, I. (Ed.). Fundamental Approaches to Software
Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. p. 3167331. ISBN
978—3—662—46675—9.

Magee, J.; Kramer, J. State models and java programs. wiley Hoboken, v. 10, p. 332036,
2006.

Manotas7 I.; Pollock, L.; Clause, J. Seeds: a software engineer’s energy—optimization
decision support framework. In: ACM. Proceedings of the 36th International Conference
on Software Engineering. [Sl.], 2014. p. 5037514.

McIntosh, A.; Hassan, S.; Hindle, A. What can android mobile app developers do about
the energy consumption of machine learning? Empirical Software Engineering, Springer,
v. 24, n. 2, p. 5627601, 2019.

Newman, S. Building Microserpices. 1st. ed. [SI]: O’Reilly Media, Inc., 2015. ISBN
1491950358, 9781491950357.

Oliveira, W .; Oliveira, R.; Castor, F.; Fernandes, B.; Pinto, G. Recommending
energy—efficient java collections. In: 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR). [Slz s.n.], 2019. p. 1607170.

Pang, C., Hindle, A.; Adams, B.; Hassan, A. E. What do programmers know about
software energy consumption? IEEE Software, IEEE, v. 33, n. 3, p. 83789, 2015.

Pereira, R. Locating energy hotspots in source code. In: 39th International Conference on
Software Engineering {ICSE 2017). [S.l.: s.n.], 2017. p. 88790.

Pereira, R.; Couto, M.; Saraiva, J ., Cunha, J .; Fernandes, J. P. The influence of the java
collection framework on overall energy consumption. In: ACM. Proceedings of the 5th
International Workshop on Green and Sustainable Software. [Sl.], 2016. p. 15721.

References 59

Petke, J. et al. Genetic improvement of software: A comprehensive survey. IEEE
Transactions on Evolutionary Computation, V. 22, n. 3, p. 4157432, June 2018. ISSN
1941—0026.

Pinto, G.; Castor, F. Energy efficiency: A new concern for application software developers.
CACM, ACM, New York, NY, USA, v. 60, n. 12, p. 68*75, December 2017. ISSN
0001-0782.

Pinto, G.; Castor, F. Energy efficiency: a new concern for application software developers.
Communications of the ACM, ACM New York, NY, USA, v. 60, n. 12, p. 68775, 2017.

Postel, J.; Reynolds, J. K. RFC 959: File Transfer Protocol. 1985. Obsoletes RFC0765.
Updated by RFC2228 . Status: STANDARD. Disponivel em: <ftp://ftp.internic.net/rfc/
rfc2228.txt,ftp://ftp.internic.net/rfc/rfc765.txt,ftp://ftp.internic.net/rfc/rf0959.txt,ftp:
//ftp.math.utah.edu/pub/rfc/rfc2228.txt,ftp://ftp.math.utahedu/pub/rfc/rfc765.txt,
ftp://ftp.math.utah.edu/pub/rfc/rfc959.txt>.

Schubert, S.; Kostic, D.; Zwaenepoel, W.; Shin, K. G. Profiling software for energy
consumption. In: 2012 IEEE International Conference on Green Computing and
Communications. [S.l.: sn], 2012. p. 5157522.

Singh, J .; Naik, K.; Mahinthan, V. Impact of developer choices on energy
consumption of software on servers. Procedia Computer Science, v. 62, p. 385
f 394, 2015. ISSN 1877—0509. Proceedings of the 2015 International Conference
on Soft Computing and Software Engineering (SCSE715). Disponível em: <http:
//www.sciencedirect.com/science/article/pii / S 1877050915025582> .

Singh, J .; Naik, K.; Mahinthan, V. Impact of developer choices on energy consumption of
software on servers. Procedia Computer Science, Elsevier, v. 62, p. 3857394, 2015.

Singh, V. K.; Dutta, K.; VanderMeer, D. Estimating the energy consumption of executing
software processes. In: 2013 IEEE International Conference on Green Computing and
Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social
Computing. [S.l.: sn], 2013. p. 947101.

Utting, M.; Legeard, B. Practical model-based testing: a tools approach. [Sl.]: Elsevier,
2010.

Wheeldon, A. et al. Learning automata based energy—efficient ai hardware design for
iot applications. Philosophical Transactions of the Royal Society A, The Royal Society
Publishing, v. 378, n. 2182, p. 20190593, 2020.

Zhang, G; Hindle, A.; German, D. M. The impact of user choice on energy consumption.
IEEE software, IEEE, v. 31, n. 3, p. 69775, 2014.

Zhang, P., Sadler, C. M.; Lyon, S. A.; Martonosi, M. Hardware design experiences in
zebranet. In: Proceedings of the Qnd international conference on Embedded networked
sensor systems. [S.l.: s.n.], 2004. p. 2277238.

60

APPENDIX A — Resumo Estendido

Software está presente em todos os tipos de dispositivos e plataformas. Alguns
programas dispõem de uma quantidade limitada de energia, devido as restrições impostas
pelos ambientes onde são executados. Pesquisas mostram que aplicativos móveis que
esgotam rapidamente a bateria do aparelho tendem a ser rejeitados pelos usuários (Khalid;
Shihab; Nagappan; Hassan, 2015), indicando que o consumo de energia é um aspecto
relevante do ponto de vista de quem está utilizando um programa. Grandes indústrias e
corporações também chegaram à conclusão de que a ineficiência do consumo de energia
em software pode afetar significativamente sua operação (Pinto; Castor, 2017a). Por
esta razão, o consumo de energia de software tornou—se um fator importante durante
o desenvolvimento, manutenção e evolução de software (Albers, 2010) (Li et al., 2016)
(Singh, Naik; Mahinthan, 2015a) (Singh; Dutta; VanderMeer, 2013).

Apesar da relevância atual das análises de consumo de energia, ainda há pouco
suporte para a construção de softwares energeticamente eficientes. Na verdade, os desen—
volvedores ainda não sabem como produzir, avaliar e evoluir seu software considerando os
custos de energia (Pinto; Castor, 2017a) (Fang; Hindle; Adams; Hassan, 2015) (Manotas;
Pollock; Clause, 2014) (Pinto; Castor, 2017b). Isso se deve principalmente a ausência
de abstrações e ferramentas combinadas para modelar, medir e analisar o consumo de
energia(Duarte; Alves; Toresan; Maia; Silva, 2019). Assim, prover técnicas, ferramentas e
processos que possam ajudar os desenvolvedores de software a entender melhor os custos
de energia de software e como usar os recursos energéticos tornou-se uma grande preocu-
pação (Pinto; Castor, 2017a). Com esse suporte, os desenvolvedores poderiam não apenas
identificar os custos de execução de seus sistemas, mas também realizar analises na fase
de projeto para prever possíveis ineficiências no consumo, comparar diferentes versões em
termos de consumo de energia e determinar possíveis alterações para melhorar a eficiência
energética.

Existem algumas ferramentas disponíveis para coletar o gasto de energia do software,
como Gemõ (Binkert et al., 2011) e McPAT (Li et al., 2009), ou jRAPL (Liu; Pinto; Liu,
2015) e pyRAPL (Belgaid; dªAzómar; Ficni; Rouvoy, 2019). Pesquisas como as apresentadas
em (Pereira; Couto; Saraiva; Cunha; Fernandes, 2016) são um exemplo de trabalho de
análise de consumo de energia. Eles se concentraram em encontrar consumo excessivo
ou anômalo de energia em software e usaram uma metodologia para otimizar programas
Java e diminuir seu consumo de energia substituindo algumas estruturas de dados por
alternativas mais eficientes em termos de energia. Embora essas abordagens ofereçam
informações relevantes sobre o comportamento energético do software, elas não fornecem
nenhum feedback, analise ou orientação sobre como melhorar a eficiência energética do

APPENDIX A. Resumo Estendida 61

software, deixando essa tarefa para o desenvolvedor.

Uma maneira de realizar a analise de energia é usar modelos para obter uma
representação abstrata do comportamento energético. Nesse contexto. análises de energia
podem ser realizadas usando uma ferramenta de verificação de modelos, como PRISM (Kwi—
atkowska; Norman; Parker, 2001) ou LoTuS (Barbosa; Lima; Maia; Junior, 2017). LoTuS1
permite a construção de Labeled Transition Systems (LTS) (Keller, 1976) com anotação
de custo de energia e probabilidade usando uma interface gráfica intuitiva. No entanto,
não há suporte para análises sobre o comportamento energético do modelo e o usuário
ainda precisa coletar as informações de energia a serem utilizadas no modelo, e algumas
questões relevantes não podem ser feitas, como o comportamento que produz o maior
consumo de energia ou o custo médio de uma execução.

Embora existam algumas ferramentas capazes de prover algum suporte a analise
de comportamento energético de software, é ainda uma tarefa difícil para o desenvolvedor
determinar quais informações são mais relevantes e como descrevê—las na forma de propri—
edades a serem analisadas. Além disso, mesmo depois de descrever e executar a análise
dessas propriedades, o desenvolvedor precisa interpretar os resultados para identificar qual
ação , se houver , é necessaria.

Neste trabalho, é proposto um conjunto de definições de propriedades de alto
nível para análise de consumo de energia de software baseadas em modelos. Tamém é
fornecida uma orientação sobre como realizar as análises e interpretar seus resultados
para que o desenvolvedor de software possa entender como produzir ou evoluir seu
software para melhorar a eHciência energética e também elaboramos um guia rápido,
em "Perguntas Frequentes "(FAQ), considerando diferentes cenários e sugerindo algumas
análises de propriedades para realizar em cada um. Para analisar software usando essas
propriedades, modelos foram criados usando LTS, que tem uma estrutura tipo grafo,
acrescido com informações sobre custo de energia e probabilidade de execução de elementos
de software. Essas propriedades propostas são divididas em dois grupos: o primeiro grupo
inclui as propriedades usadas para realizar analises apenas sobre custos de energia, enquanto
o segundo grupo combina análises de custos de energia com informações probabilísticas
para fornecer um cenário mais informativo sobre o comportamento do software em termos
de energia consumo. Definir esses dois grupos é necessario porque as informações de
probabilidade nem sempre estão disponíveis ou podem não ser precisas. Além disso,
algumas vezes, as informações necessárias dispensam probabilidades, como identificar o
comportamento de um sistema com maior custo energético.

Realizamos experimentos avaliando o comportamento energético de um sistema de
um único componente, uma evolução de um sistema e, por fim, um sistema construído
através de uma combinação de componentes, apresentando resultados preliminares obtidos

1 Disponivel em: http: / / lotus-webherokuapp.com/

APPENDIX A. Resumo Estendida 62

pela aplicação das propriedades propostas e seguindo as instruções do guia rápido. Para
realizar os experimentos, uma implementação da cobertura de caminho denominada
de one—loop path coverage e algumas análises de propriedades foram implementadas.
Os experimentos realizados neste trabalho consistiram em (i) uma avaliação de uma
implementação do protocolo SMTP7 (ii) a analise de um sistema de multiplicação de
matrizes extraído de (Duarte; Alves; Toresan; Maia; Silva, 2019) e (Alves; Ferreira; Duarte;
Maia7 2020) e (iii) a analise do impacto da combinação de um componente de compactação
de arquivos com uma implementação do protocolo FTP. A análise do consumo de energia do
protocolo SMTP ajuda a entender a aplicação de análises de propriedades em um sistema
de componente único existente, o experimento realizado com o sistema de multiplicação
de matrizes nos ajuda a observar como analisar a evolução de um sistema de componente
único e a analise do sistema de transferência de arquivos combinando a compressão de
arquivos e o protocolo FTP mostra questões importantes sobre a aplicação desta abordagem
para sistemas de múltiplos componentes. Os experimentos realizados mostraram como
as análises dessas propriedades podem ser utilizadas para auxiliar os desenvolvedores de
software na avaliação do consumo de energia de seus sistemas.

A principal contribuição deste trabalho foi a apresentação de definições de proprie—
dades de alto nível incluindo informações de energia e/ou probabilidade para obter uma
analise baseada em modelo capaz de identificar possíveis problemas no comportamento
energético do software. Também demonstramos como interpretar estas propriedades e
os resultados da sua análise. A implementação de análises de algumas das propriedades
propostas foi feita para mostrar como a analise dessas propriedades pode ser realizada de
forma automática. Por fim, a construção de um guia rapido, que indica questões comuns
sobre o comportamento energético de software e quais análises de propriedades podem ser
utilizadas para obter respostas para essas questões, completa o conjunto de contribuições
que visam a permitir que desenvolvedores criem software mais energeticamente eficientes.

