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ABSTRACT

Normalizing Flows (NFs) have gathered significant attention from the academic commu-

nity as a means of embedding a data distribution into a much simpler base distribution.

The second belonging to a latent space with the same dimensionality as the data. The

Machine Learning models’ evolution in the last decades and their now viable industrial

use have raised concerns regarding the explainability and maintainability of such models.

For example, how private the data used to train such a model remains and how easy it is

to modify this model such that it complies with the required data protection guidelines.

NFs offer a statistically grounded framework that might help us with both: explainability

and maintainability. In this work, the concept of NF coherence is informally presented

together with evidence of a known but ignored gap between the learned embedding and

the base distribution contained in the latent space. This gap significantly impairs the us-

age of the base distribution, and further hinders more complex models that could arise

from NF-based ones. Guided by the concept of NF coherence, we will asses two adapted

models based on the Glow model. Several questions are raised that, to the best of the

author’s knowledge, have not been considered in the literature. The potential existence

of a non-unimodality metric that could improve future assessments of the quality of fit of

NFs is also discussed.

Keywords: Normalizing Flows. Deep Generative Models. Statistical Machine Learning.

Latent Space Interpretability.



Normalizing Flows: Um Estudo Sobre Coerência de Modelos

RESUMO

Normalizing Flows (NFs) atraíram atenção significativa da comunidade acadêmica como

um meio de mergulhar uma distribuição de dados em uma distribuição de base muito mais

simples. A segunda pertencendo a um espaço latente de mesma dimensionalidade dos da-

dos. A evolução dos modelos de Aprendizado de Máquina nas últimas décadas e seu

agora viável uso industrial trouxe preocupações a respeito da explicabilidade e manuteni-

bilidade de tais modelos. Por exemplo, quão privados são mantidos os dados utilizados no

treinamento de tal modelo e quão fácil é modificá-lo de modo a cumprir com as diretrizes

de proteção de dados requeridas. NFs oferecem um framework fundado em estatística

que talvez possa nos ajudar com ambos: explicabilidade e manutenibilidade. Neste tra-

balho, o conceito de coerência de NF é informalmente apresentado junto de evidências

de uma conhecida, mas ignorada brecha entre o mergulho aprendido e a distribuição de

base contida no espaço latente. Essa brecha restringe de modo significativo o uso da dis-

tribuição de base e, subsequentemente, prejudica modelos mais complexos que poderiam

emergir dos modelos fundamentados em NFs. Guiado pelo conceito de coerência de NF,

vamos analisar dois modelos baseados no modelo Glow. no conceito de coerência de NF,

diversas questões são levantadas que, no melhor do conhecimento do autor, não foram

consideradas na literatura. A potencial existência de uma métrica de não-unimodalidade

que pode aprimorar futuras avaliações da qualidade de ajustamento de NFs também é

discutida.

Palavras-chave: Normalizing Flows. Modelos Gerativos Profundos. Aprendizado de

Máquina Estatístico. Interpretabilidade do Espaço Latente.
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1 INTRODUCTION

This chapter presents an overview of how the statistical generative modeling ap-

proach and the Deep Neural Network approach complement each other (Section 1.1).

Next, a brief motivation for studying Normalizing Flows (NFs) (Section 1.2), some of its

known limitations and problems, and works related to this thesis are presented (Section

1.3). The aim, questions, and goals of this work (Section 1.4), as well as this work’s lim-

itations (Section 1.5) and contributions (Section 1.6) follow. The overall structure of this

document is laid out last (Section 1.7).

1.1 The motivation for Deep Statistical Models

When we want to get to the level of dependable Artificial Intelligence or Machine

Learning (ML) based software and cyber-physical systems, we must be able to trace back

its decisions and make informed design choices when faced with requirement violations.

We are not only interested in a model’s capability of performing the tasks it models, but we

want it to be auditable and maintainable. We want to be able, for example, to explain the

behaviors behind a particular output or to protect confidential data that otherwise could be

leaked by the model. In any case of deviation from the intended system function, we must

be able to pinpoint the causes and determine the potentially best course of action with

enough information to ensure traceability of the rationale behind the model’s evolution.

Often, explainable ML models ground themselves in the statistical framework.

Statistical models can be approached discriminatively or generatively (BISHOP, 2006).

The discriminative approach models the conditional probability distribution of a random

variable Y , conditioned on some observation X = x. The generative approach seeks to

model the joint distribution of these variables, i.e., it also models the probabilities over

the random variable X . Thus, in the generative approach, the model learns to approxi-

mate the random process behind the manifestations of Y and X together. Even though

the statistical framework enables very intricate models (KOLLER; FRIEDMAN, 2009),

relying on purely statistical methods can present time and spatial complexities that render

models impractical.

With the increase of available computational resources for matrix and tensor op-

erations, we have seen great advances in Deep Neural Network (DNN) -based models.

DNNs have proved to learn highly complex functions and are often used for both re-
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gression and classification tasks. DNNs’ applicability remains in their ability to learn

observations’ features with little to no human intervention, greatly accelerating the whole

process of modeling. But their power comes with a significant problem that often hinders

its industrial and commercial applicability: a DNN’s parameter space is often too com-

plex to render models readily explainable. Added to that, the correlations implied by the

learned subnets may be artefactual.

We have seen DNNs and statistical models being mixed in different proportions

and structures in the literature. Examples include, among others, Bayesian DNNs (BNNs),

Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Nor-

malizing Flows (NFs). BNNs provide a measure of uncertainty by using a second-order

approximation of the learned parameters’ distribution (AZEVEDO-FILHO; SHACHTER,

1994). GANs (GOODFELLOW et al., 2014) use a generator DNN and a discriminator

DNN to learn how to generate samples from random noise. The generator receives a noise

input, generates a data sample, and the discriminator tries to determine if it is synthetic

or not. Generator and discriminator are then trained together until their abilities to fool

and discern reach a draw. VAEs (KINGMA; WELLING, 2013) make use of an encoder-

decoder architecture, comprised of one DNN each, to model a parameterized distribution

in an implicit latent space. Its training is based on minimizing the reconstruction loss of

the inputs. NFs (DINH; KRUEGER; BENGIO, 2015) apply DNNs to model components

of a bijective transform between data space and a base probability distribution space.

The VAE’s training entails learning a parametric change of variable to a base distribution

contained in a latent space, such that the likelihood of the embedded data is maximized.

Each of the aforementioned models provides different trade-offs between applicability,

generalization power, complexity, interpretability, and maintainability.

1.2 Normalizing Flows

Although we have seen advances regarding the interpretability of the latent space

of GANs and VAEs, their latent space is defined by the activation patterns of its com-

posing DNNs. Consequently, the significance of its latent space observations is directly

tied to such activation patterns that are themselves products of an arbitrary transformation.

The great capacity of these methods to generate high-quality samples comes with a severe

impairment: the latent space comprises more than just the observation itself. The transfor-

mation often comes with an implicit dimensionality reduction or increase, possibly over



14

a number of layers.

NFs have seen a steep increase in interest since its popularization through the Non-

linear Independent Component Estimation (NICE) model (DINH; KRUEGER; BENGIO,

2015). NFs define a one-to-one embedding transformation between a given continuous

data space and a probability distribution space. Effectively, A NF-based model learns

a parametric distribution by means of a change of variable between the data space and

a base probability distribution in the latent space. By maximizing the likelihood of the

data under its parametric distribution, the embedding is limited to regions of high prob-

ability in the base distribution. Furthermore, since the transformation is bijective, each

embedded observation has a unique representation in both spaces. Added to that, we are

able to choose any continuous probability distribution in the latent space. Usually, the

choice favors those probability distributions with a closed analytical form and can thus be

efficiently computed. NF-based models offer a rich framework for arbitrary continuous

distribution modeling due to its sound theoretical roots in statistics. The base distribution

is a proper probability distribution, and thus, we may be able to use known results from

statistics, such as distribution conditioning, variable marginalization, etc. Or so we would

like.

1.3 Known limitations and problems of NFs and related work

Even though NFs are an advancement in transformer-based generative models’

interpretability, NF-based models may present drawbacks. For instance, Kirichenko, Iz-

mailov and Wilson (2020) have presented that the Glow model (KINGMA; DHARIWAL,

2018) learns probability distributions over local graphical patterns in opposition to more

global semantics. In their work, the authors argued about the tendency of Glow to infer

high probabilities to out-of-distribution (OOD) data, rendering them unusable for, e.g.,

face detection.

Such NF-based models may also suffer from problems arising from an ill-defined

parameterized transformation or an architecture not capable of effectively transforming

data observations to the base distribution space. In this case, we may end up with an

embedding where the codomain is constrained by the base distribution but with distinct

properties such as skewness and number of modes. Figure 1.1 presents how ten different

NFs with a different number of transform compositions and the same standard Gaussian

base distribution behave when presented with the same data set. Each row represents a
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single model with a distinct number of layers. The first column is the original data. Each

subsequent column depicts the result data after the application of each transform. The

transforms interleave an axis permutation and an affine transform. For example, if we

look at the image’s first row, we have the original data in the first column, the result after

applying the axis permutation in the second column, and the final output after applying

the affine transform. Notice, looking at the last plot of each line, that for NFs that are

not powerful enough, we end with embedded data that is not well modeled by the stan-

dard Gaussian base distribution. Furthermore, the gaps in the embedded data distribution

within high probability regions of the base distribution might result in unexpected gener-

ated samples. In the context of image generation, this is the same of recovering incoherent

images from high probability regions of the base distribution.

Figure 1.1: Inside a simple NF model

The usage of distinct models’ latent spaces has seen some recent advances. Tra-

ditionally, vector arithmetic has been used to demonstrate the generative capabilities of

models and are present in many works, for instance, Real NVP (DINH; SOHL-DICKSTEIN;

BENGIO, 2016) and Glow (KINGMA; DHARIWAL, 2018). In the context of GANs, the

work of Shen et al. (2019) presents a Support Vector Machine classifier approach to learn

the directions of each attribute’s manifestation in the latent space. Valenzuela et al. (2021)

present a facial expression transfer procedure using the Glow model. Their goal was to

manipulate a target image such that it presents the same expression from a source image

while maintaining the face’s identity. The average latent vector of multiple images of

a single individual’s identity is calculated. These are then used to neutralize the source

identity, leaving a latent representation of the expression. This latent expression vector is
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then linearly combined with the target image.

Although the advances regarding the usage of the embedded data, studies focusing

on how well the base distribution fits the embedded data distribution are unsatisfyingly

dim. Although my research on NFs is very small, only one work was found that discussed

how well the embedded data distribution and the base distribution relate. In the work of

Funes (2021), the embedding of the Glow model is briefly assessed. His work suggests

that the expected distribution of the model’s embedding deviated from the base distribu-

tion. This may be the effect of a limited embedding transformation (See Figure 1.1), bias

in the data used for the assessment, or both. It should be emphasized that this was the

only work found that attempts to determine how the embedded data distribution deviates

from the base distribution.

During the writing of this thesis, although not covered here, no other work was

found that used two NF models with distinct data domains or learning goals in an at-

tempt to use the more tractable functional form of the base distribution to compose joint

distributions. This might be a novelty idea in the context of NFs, and it may have been

hindered by the lack of proper attention to the quality of fit between the embedded data

and the base distributions.

1.4 Research goals and significance

The focus of this work is to explore the coherence of an adaption of the NF-based

Glow model (KINGMA; DHARIWAL, 2018) in the context of facial synthesis. Coher-

ence, in this context, is a combination of two properties. Property one is: given a high

probability region of the embedded data distribution, regardless of the base distribution,

we recover coherently structured data. This is the main property that is explored in the

NFs’ literature for the generative capabilities it entails. Property two is: given a high

probability sub-region of the base distribution in the latent space, the NF transform must

recover coherently structured sample data. This would mean that the base distribution ad-

equately approximates the embedded data distribution and thus offers a proxy for the data

distribution in the latent space. Given the importance of these properties and the potential

implications behind the coherence concept introduced by this work, it has earned its own

section: Section 2.5.

One example of the potential benefits of having a closed-form proxy base distri-

bution, more specifically a Gaussian one, lies in the efficient inference and in the mainte-
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nance of the functional form under more complex compositions. Probabilistic Graphical

Models (KOLLER; FRIEDMAN, 2009) offer a very rich and compelling framework for

the modeling of joint distributions. A probabilistic graphical model encodes conditional

independencies of a potentially broader probability distribution’s random variables by

means of network graphs, where each node corresponds to a single random variable and

edges indicate dependencies. By having analytically tractable proxy distributions in the

latent space for distinct random variables, we may define more complex models that learn

and execute inferences in the latent space much more efficiently than we would have with

non-analytically tractable ones.

Provided that we already have evidence of the first property of NF coherence’s

holding, at least to some extent, the goal of this work is to briefly assess my Glow adap-

tion from the perspective of this second property of NF coherence (Section 2.5). This is

done by means of the inspected structural coherence of sampled data and their assigned

probabilities in the data and in the base distribution spaces.

1.5 Disclaimer and research limitations

Resources are always a very significant potential limitation of any work. This one

is no different. The overall topic of this bachelor thesis was conceptualized, developed,

and written in approximately three months of part-time work. Added to such time con-

straints is the lack of prior knowledge or experience of the author with respect to NFs.

Needless to say, the direction to which take this thesis has changed a number of times

until it converged into its final form. In this time window, the author has collected in-

formation on the subject and digested it, found the potential problem in which this work

focuses: that the distribution of the embedded data deviates from the base distribution;

justified why this may hinder progress with such models and its potential applications;

and realized experiments enough to, finally, write this bachelor thesis.

Another gap that limits significantly the usability of this work is that the Glow

model was developed in-house by use of a third-party library, and some adaptations of the

model were required. This breaks the flow of composable research, and the findings may

be limited by the quality of the model at hand. This choice was taken based more on my

own interest to learn about the nflows library (DURKAN et al., 2020) and the potential

future work it might enable. To mitigate this problem, the code used in this work can
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be accessed in GitHub1. Furthermore, the overall scope of the literature covered by this

work is relatively narrow when compared with the volume of research available, and the

new models that were proposed after Glow (2018) are not accounted for. Thus, results

may be too specific to this work and may not be valid for most recent NF-based models

or for other data domains. More experiments are required to validate this work’s overall

idea with different models and data.

This thesis is very small for the magnitude of the problem. This work does not

answer a number of very significant questions about the topic: is the goal of having an

embedding properly modeled by the base distribution achievable? If so, to what extent?

How does it relate to the dimensionality of the data? Is there a minimum number of

samples for us to achieve such a model? Also, does it affect the quality of the generative

process? And does it improve the interpretability and further usage of the embedding in

any way? These and other questions are laid out in Section 6.2.

1.6 Contributions

To the best of the author’s very limited knowledge:

• This is the first work to discuss the importance of a good fit between the base dis-

tribution and the embedded data and why it may be hindering further applications

that build from NFs.

• This is the first work to explicitly define the properties that compose the possibly

new NF coherence concept.

• This is the first work that suggests the use of a non-unimodality metric as a means

for the quality of fit assessment between the embedded data distribution and the

base distribution of NFs.

• This is also the first work that has reportedly used Support Vector Machine (SVM)

linear classification in an attempt to determine a direction of attribute manifestation

in the latent space of NFs.

• This is the first work that attempts to approximate the embedded data’s individual

class distributions from a Bayesian perspective with the goal of assessing the overall

embedded data distribution. This is also the first work to show we can bias our

1The code used in this work is available in GitHub: <https://github.com/IronPS/NF-coherence_
BScThesis>.

https://github.com/IronPS/NF-coherence_BScThesis
https://github.com/IronPS/NF-coherence_BScThesis
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samples by using such distributions.

A number of open questions pertaining to NF coherence and related future work

not considered in the NFs’ literature assessed are presented in Section 6.2.

1.7 Document structure

This work is structured as follows. Chapter 2 introduces NFs, the NF-based model

in which this work grounds itself, and the properties behind the concept of NF coherence.

The data set used, the model, and training specifications, as well as the training results,

are contained in Chapter 3. The description of the experiments executed in this thesis and

their results are respectively in Chapters 4 and 5. A discussion about possible improve-

ments, questions related to NF coherence, and other tangent questions are presented in

Chapter 6. Finally, Chapter 7 contains the concluding remarks.
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2 NORMALIZING FLOWS

This chapter is designed to present the necessary concepts about Normalizing

Flows (NFs) and the related work that built up to the Glow model (KINGMA; DHARI-

WAL, 2018), on which this work is based.

NFs are a family of methods that provide an easy-to-model representation of a

provided data set’s distribution. NF-based models aim to model the generative process of

the data by learning the variables’ joint distribution through a parameterized invertible and

differentiable transformation guided by a much more easily tractable base distribution.

Its learning process is unsupervised, and the learned distribution could be used for both

sampling and inferring information about data.

This chapter proceeds as indicated. Section 2.1 presents a brief overview of the

previous work that preceded the Glow model. Section 2.2 lays down the definition of a NF.

Its functional form, as well as other relevant information with respect to the transforms

that compose the NF are discussed in Section 2.3. The Glow model and the properties of

NF coherence are introduced in Sections 2.4 and 2.5, respectively.

2.1 Related work

The normalizing flow’s framework was first proposed in the work of Tabak and

Turner (2013) and popularized by Dinh, Krueger and Bengio (2015), where its potential

was demonstrated over image data sets to problems of image generation and image in-

painting. Since then, multiple works have extended the proposed model. In the work

of Dinh, Sohl-Dickstein and Bengio (2016), the model was generalized to work with

non-volume preserving transformations, enabling a much larger class of parameterized

distributions. To reduce the requirements of human intervention and model architecture

manipulation, Kingma and Dhariwal (2018) designed a 1x1 invertible convolution layer

that, instead of being fixed, is learned during the training process and presented the Glow

model (KINGMA; DHARIWAL, 2018). Since then, the NFs framework has been applied

to a myriad of problems: image and video generation, noise modeling, computer graphics,

physics, and more (KOBYZEV; PRINCE; BRUBAKER, 2021).
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2.2 Definition

Let D = {x1, x2, ..., xD} be a dataset comprised of D vectors xd ∈ R
M . A Nor-

malizing Flow maps a vector x to another vector u ∈ R
M , with u ∼ pu(u), by means of

an invertible and differentiable transformation T, such that

x = T(u) (2.1)

The distribution pu(u) is deemed base distribution of the flow-based model (PAPAMAKAR-

IOS et al., 2019). It is usually selected by its desirable properties, e.g., a standard Gaussian

distribution for its analytical closed-form.

Given that T is invertible and both T and T−1 are differentiable, the densities

px(xd) are well defined and can be determined by the change of variables formula:

px(x) = pu(T
−1(u)) |det JT−1(x)|

= pu(u) |det JT(u)|
−1

(2.2)

where JT denotes the Jacobian of the transformation T and has the form

JT(u) =









∂T1

∂u1
. . . ∂T1

∂uM
...

. . .
...

∂TM

∂u1
. . . ∂TM

∂uM









(2.3)

Furthermore, a sequence of transformations T1, ...,TN that are all invertible and differen-

tiable is also composable, i.e., we can build a transformation T = T1 ◦ T2 ◦ ... ◦ TN and

it will also be invertible and differentiable. Its inverse follows the form

T−1 = T−1
N ◦ T−1

N−1... ◦ T−1
1 (2.4)

and its Jacobian determinant is given by the chain rule

det JTN◦...◦T1
(u) = det JTN

(TN−1 ◦ ... ◦ T1(u)) · ... · det JT1
(u) (2.5)

Following these properties, we can define a transformation T composed of mul-

tiple transformations Ti, each parameterized by a set of parameters Ψi. We can specify

this function to be as simple or complex as we need. Furthermore, we may let the base
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distribution be defined by a set of parameters θ. Let Ω = {Ψ, θ} be the parameters that

guide the model. We can then use maximum likelihood estimation to find the parameters

that maximize the data set log-likelihood as follows:

ΩMLE = argmax
Ω

L(D|Ω)

= argmax
Ω

1

D

D
∑

d=1

ln px(xd|Ω)

= argmax
Ω

1

D

D
∑

d=1

[

ln pu(T
−1(xd|Ψ)|θ) + ln

∣

∣det JT−1(T−1(xd|Ψ))
∣

∣

]

= argmin
Ω

−
1

D

D
∑

d=1

[

ln pu(T
−1(xd|Ψ)|θ) + ln

∣

∣det JT−1(T−1(xd|Ψ))
∣

∣

]

(2.6)

Using the above, we can train our model by means of gradient descent.

Overall, since evaluating the above log-likelihood involves computing the trans-

form and its Jacobian determinant, we are interested in a sequence of transformations

that are easy to invert and with a Jacobian determinant that is easy to evaluate. Different

types of transformations that observe these properties have been proposed in the litera-

ture. Some of the proposed transforms are described in Section 2.3. After training, we

may use the base distribution and the identity given by equation (2.1) to sample from the

model. In case we want to evaluate the probability of a new observation in the data space,

we may use equation (2.2).

It is important to note that other optimization methods have been proposed for

NF training. For instance, Rezende and Mohamed (2015) present a variational inference

method of learning by defining a variational distribution q(u) ≈ p(u|x) and by maximiz-

ing its Evidence Lower Bound through the coordinate ascent. Papamakarios et al. (2019)

present two KL-divergence approaches to train the flow in both directions since, depend-

ing on the application, we may be interested in exchanging one direction’s transform

tractability for sampling or density estimation capability. The optimization criterion de-

scribed in this thesis is the same as the forward KL-divergence and maximum likelihood

estimation described in Section 2.3.1 of Papamakarios et al. (2019).
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2.3 Functional form

From the previous section, we have seen that the transformations used to com-

pose the model architecture will determine how efficient its learning, sampling, and in-

ference will be. We are generally interested in easy to invert transformations with an

easily tractable Jacobian determinant. Furthermore, the functional form of such trans-

forms will affect how general the model can become. Consequently, affecting the quality

of the approximation learned by the flow-based model given the complexity of the data

distribution.

2.3.1 Coupling layer

Coupling layers are bijective transforms with a general functional form that en-

forces the Jacobian matrix to be lower triangular. Lower triangular matrices have straight-

forward determinant computations, simply given by the product of its diagonal elements.

A general coupling layer was proposed in (DINH; KRUEGER; BENGIO, 2015). Intu-

itively, a given observation is partitioned such that one partition is directly fed into the

next layer, whereas the other partition is transformed by a function, deemed by Dinh,

Krueger and Bengio (2015) as the coupling law. Such a functional form effectively makes

the Jacobian lower triangular.

More formally, the general coupling layer is an invertible function f : RM →

R
M , differentiable almost everywhere, and defined over a fixed vector partition x =

(x1:m, xm+1:M)T , such that its codomain is a partitioned vector y guided by the follow-

ing equations:

y1:m = x1:m

ym+1:M = g (xm+1:M , h(x1:m))
(2.7)

where g : R
M−m × R

m → R
M−m is the coupling law and h is a function with the

appropriate domain and codomain dimensionality called coupling function. Notice that

the function g is required to be a differentiable bijection, whereas this requirement can be

waived for h. The coupling layer inversion is then defined as

x1:m = y1:m

xm+1:M = g−1
(

ym+1:M , h(x1:m)
)

(2.8)
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From the Equations 2.7 and 2.8, we see that the Jacobian is the matrix

Jf =
∂y

∂x
=





Im 0
∂y

m+1:M

∂x1:m

∂y
m+1:M

∂xm+1:M



 (2.9)

where Im is the m ×m identity matrix. Given its lower triangular form, its determinant

can be calculated in linear time as

det Jf =
M
∏

i=1

Jf ii (2.10)

Given the functional form of the coupling layer, it is not necessary to evaluate the

derivatives of the coupling function h with respect to the input vector x when calculating

the Jacobian determinant. As a consequence, the coupling function can be as complex as

one may need. Added to the fact that its inverse is not required, we can choose such a

function independently of how difficult it may be to invert.

2.3.2 Input vector partitioning

From the nature of the coupling layer, presented in Equation 2.7, of its Jacobian

determinant (2.9) and the chain rule presented in Equation 2.5, we can observe that at least

three layers are required such that all dimensions influence all others when alternating

the partitions after each layer. During the optimization process, the first layer inflicts

influences of the partitioned vector xm+1:M onto itself. The second layer inflicts influences

of the partition x1:m onto itself. And finally, the third layer encompasses the influences of

one partition over the other.

In the work of Dinh, Krueger and Bengio (2015), the partitions are simply alter-

nated after each layer. Within the context of images, a posterior work proposes a manually

defined spatial checkerboard pattern mask to exploit local correlation structures (DINH;

SOHL-DICKSTEIN; BENGIO, 2016). In their work, Dinh, Sohl-Dickstein and Bengio

(2016) propose a recursive multi-scale treatment of the channels, where each alternation

of the vector partitions outputs two times the number of channels, each with halved spatial

dimensions. The effect of such treatment is that, as we go from the image domain to the

base distribution domain, the variables of the base distribution vector corresponding to

the later transformations become more and more global. I.e., they capture characteristics
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of a greater area of the image, in opposition to smaller local patches.

Envisioning the reduction of the requirements of human manipulation of features

and further generalization of the previous models, the work of Kingma and Dhariwal

(2018) presents a learnable invertible and differentiable 1 × 1 convolution that acts as a

permutation of channels. Such 1 × 1 convolutions are typically used in neural network

architectures before another, more expensive, n × n convolution as a means of reducing

the number of channels that the filter must operate on. The convolution will operate over

all channels of a single pixel and output another single pixel with the same or a different

number of channels. Kingma and Dhariwal (2018) make use of a 1× 1 convolution with

equal input and output dimensions to generalize the permutation operation.

2.4 The Glow model

This thesis is based on an adaptation of the Glow model proposed by Kingma

and Dhariwal (2018). Glow is a multi-scale model composed of ns scales. Each scale

performs a channel squeezing operation on its input and feeds it to a transformation com-

posed of nf flow steps, described in Section 2.4.2. The result is then split in half, where

one part is output as a vector in the base distribution space, and the other part is forwarded

to the next scale. Figure 2.1 presents an overview of the multi-scale architecture adopted

by Kingma and Dhariwal (2018).

Figure 2.1: The multi-scale architecture defined in (DINH; SOHL-DICKSTEIN; BEN-

GIO, 2016).

Adapted from (KINGMA; DHARIWAL, 2018)
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2.4.1 Squeeze operation

The squeeze operation performs an augmentation of the number of channels in

an exchange for spatial dimensions. Its input is a tensor of shape s × s × c, where s is

the spatial dimension and c is the number of channels. The output is a tensor of shape
s
a
× s

a
× 2a · c, where a is the exchange factor. The exchange factor used here is set

to 2 as in the Glow model. The squeezing operation enables the model to capture local

inter-channel correlations in subsequent layers.

2.4.2 Flow step

The flow step proposed by Kingma and Dhariwal (2018) is comprised of three

transforms: an activation normalization, a 1 × 1 learnable convolution, and an affine

coupling layer. Figure 2.2 presents the overall structure of the step.

Figure 2.2: One step of the flow

Adapted from (KINGMA; DHARIWAL, 2018)

The goal of the activation normalization is to approximately centralize and further

limit the scale of the activation of each input channel. This is done by initializing the

parameters of the normalization using a single batch of input data. Each channel will be

centralized to the mean and standard deviation of the activation of the first batch. Thus, in-

stead of recalculating these parameters for each data batch, as in batch normalization, this

is done only once. Such an approach reduces computational effort and the noise added

by batch normalization to the activation, which is inversely proportional to batch size.

For example, in batch normalization, a batch size of 1 will incur greater activation varia-

tions than a much larger batch size. The latter tends to smooth the activation’s standard

deviation.
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As described in Section 2.3.2, the parameterized 1 × 1 convolution learns a per-

mutation of the input vector, such that the learned correlations better fit our maximum

likelihood method and do not depend on fixed, manually devised vector partitioning. The

resulting partitions are fed to the coupling layer. The coupling layer is what provides us

with the functional form that will determine the generalization capacity of our model as

well as the ability to efficiently compute the transform between the spaces of the distribu-

tions px(x) and pu(u) (Section 2.3.1).

2.5 Normalizing Flow Coherence

Given the nature of this work, it is necessary to lay down, even if informally, two

very important properties of what this work deems a coherent Normalizing Flow:

1. Given a high probability region of the embedded data distribution, the NF transform

must recover coherently structured sample data.

2. Given a high probability sub-region of the base distribution in the latent space, the

NF transform must recover coherently structured sample data.

The first property implies that the embedding conceals the data into sub-regions of

the latent space where the embedding is itself well defined. Whereas the second property

defines a much stronger condition and is the equivalent of saying that the base distribu-

tion, by means of the NF transform, model a region of high probability in the data space.

If we can guarantee both these properties (or bounds on them) we have a coherent (par-

tially coherent) NF model: the base distribution, the NF transform and the modeled data

distribution are coherently related (within the given bounds). This could enable future

works to use the base distribution as a proxy for the data distribution in the latent space.
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3 MODELING PROCESS

This chapter presents the necessary information about the domain being con-

sidered and the final models used throughout this document. Section 3.1 presents an

overview of the data set used and the pre-processing adopted in this work. The models’

architectures are delineated in Section 3.2. The training procedure and immediate results

are then discussed in Sections 3.3 and 3.4, respectively.

3.1 Data set

CelebA (LIU et al., 2015) is a data set of annotated celebrities’ facial pictures. It

has become a de-facto standard for NF-based models facial image generation capabilities

and has been consistently used in studies that aim to model and manipulate such images.

The Liu et al. (2015) report the following numbers:

• 10,177 number of identities.

• 202,599 number of face images.

• 5 landmark locations.

• 40 binary attributes annotations per image.

Sample images are presented in Figure 3.1. The proportions of attributes to data

used in this work are depicted in Figures 3.3 and 3.4. This and other information pertain-

ing to the model’s training can be found in Section 3.3.
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Figure 3.1: CelebA overview

Source: Liu et al. (2015)

3.1.1 Data pre-processing

The pre-processing is similar to the one described by Dinh, Sohl-Dickstein and

Bengio (2016). The aligned and cropped data from the CelebA data set is used. The

images have a resolution of 178 × 218 pixels, from which a central square area of size

148×148 pixels are cut. A resizing is then applied to result in 128×128 images, in oppo-

sition to the higher resolution 256× 256 images from the CelebA HQ data set (KARRAS

et al., 2017) used in the original work of Glow (KINGMA; DHARIWAL, 2018). This

choice has one purpose and a consequence. Its purpose is to reduce the resource require-

ments for learning the models. The consequence is that this required one less layer in the

model (Section 3.2).

3.1.1.1 Data dequantization

Since values of each of the images’ channels are discrete, a uniform dequantization

adapted from a lecture of a series authored by Lippe (2021) is used. The dequantization

operation adds to the discrete values a uniform random noise in the interval [0, 1). We
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then have likelihoods over contiguous intervals given by

p(x) = Eu∼U(0,1)M [p(x + u)] (3.1)

These are then scaled according to the number of quanta, in our case 256. The result-

ing values, in the interval [0, 1), are passed to a continuous and monotonically increasing

function defined in the open interval (0, 1), the logit function. The logit function effec-

tively encodes each of the quantum’s intervals to another corresponding interval in its

codomain. If we invert the logit function we end up with a sigmoid, which we can inter-

pret as a cumulative distribution function (CDF). By derivation of the sigmoid, we end

up with a bell-shaped function, where domain intervals correspond to single quanta with

probability masses encoded by each of their corresponding areas below the curve. Figure

3.2 (LIPPE, 2021) depicts this idea for 8 quanta. Each colored area corresponds to a sin-

gle quantum’s probability mass. Since the quanta are uniformly distributed, all the areas

are equal.

Figure 3.2: Dequantization result for 8 quanta

Source: (LIPPE, 2021)

3.2 Model specification

Two models that follow the Glow architecture were used. Both were implemented

using the same parameters, but with distinct base distributions. For ease of reference,

let Mstd and Mdiag denote the models. Model Mstd uses a fixed standard multivariate

Gaussian, whereas model Mdiag uses a parameterized multivariate diagonal Gaussian that

learns to better fit the embedded data distribution. Both models were implemented using

nflows (DURKAN et al., 2020), a PyTorch library with many ready-to-use functionalities
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for the definition, training, and inference with NFs.

Since the data that is being input to the model has dimensions 128 × 128 × 3,

instead of 256 × 256 × 3 as in the original Glow publication, the number of scales was

reduced from six to five. Similarly, the number of neurons of the convolutional DNN that

takes part in the affine coupling layer was reduced from 512 to 256.

3.3 Training procedure

For the training, 30, 000 samples from the CelebA training partition were used.

These were mirrored, resulting in a total of 60, 000 images. Figures 3.3 and 3.4 respec-

tively depict the distribution of attribute labels of the subsets of the train and the test data

used in this work.

The models were trained for 42 epochs by minimizing the training data negative

log-likelihood. The transform parameters are regularized following an L2 regularization

using decoupled weight regularization (LOSHCHILOV; HUTTER, 2017) by means of its

PyTorch implementation AdamW, with weight decay parameter set to 0.1. Batches of 16

samples were used. The initial learning rate was set to 0.0005 and was reduced by a factor

of 0.8 every Nc checkpoint with no further decrease in the loss function. A checkpoint

occurs every 8192 samples or 512 batches. Nc is initially set to 24 and is increased by a

factor of 1.3 every time the learning rate is decreased.
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Figure 3.3: Attribute distribution of the train data subset

Figure 3.4: Attribute distribution of the test data

The train and test mean negative log-likelihood losses of both models are depicted

in Figures 3.5 and 3.6. It is important to note that the presented values were calculated

using a single batch of data to reduce the computational effort of its evaluation. Further-

more, the test data used is not fixed. That is, at each evaluation of the test data loss a new

batch of test data is selected.



33

Figure 3.5: Mstd Training Mean Negative Log-likelihood

Figure 3.6: Mdiag Training Mean Negative Log-likelihood

3.4 Mean images and models’ samples

Let’s discuss what we can readily get from the models. First, the mean images of

each of the models are depicted in Figures 3.7 and 3.8. Below each image there are two

pieces of information: ln p(x) refers to the log-likelihood of the data sample according

to the learned data distribution, whereas ln p(u) refers to the log-likelihood in the latent

space according to the base distribution. Notice that the parameterized diagonal base dis-
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tribution of model Mdiag attributes a higher probability to its mean than in the standard

Gaussian case. Given that a Gaussian has a single mode, we can conclude that the base

distribution of Mdiag has lower variance values than the base distribution of Mstd and, be-

ing parameterized, it has reduced its variance in an attempt to approximate the embedded

data. Added to that, this seems to also reflect in the image likelihood in the data space.

Notice also, that the Mstd base distribution seems more biased towards women or longer

hair than the Mdiag model. Following the discussion presented with Figure 1.1, this can

be merely artefactual. Even though it sounds reasonable to assume that higher probability

data will be embedded towards the base distribution mode, there is little evidence that this

is indeed the case.

These mean images’ log probabilities will prove useful in our next attempts to

comparatively infer how close or distant to the mode the samples of each model are.

Figure 3.7: Mstd base distribution mean image

Figure 3.8: Mdiag base distribution mean image

We might also sample images to inspect their structural qualities and try to relate

them to the quality of the model. This also proves useful from the perspective of com-

paring the quality of sample generation with the original Glow publication. Figures 3.9

and 3.10 present ten generated samples for each of the models. Here, a tempered sam-

pling was used with temperature τ = 0.7, that is, the modified base distribution with only

seventy percent of its standard deviation. Although the images present some overall co-

herent structure of a human face, it is uncertain why the quality of details is inferior to the
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original. Figure 3.11 presents 24 samples of the Glow model. The observable diminished

quality might happen for a number of reasons, such as the much-reduced training data set

used, the reduced image resolution, the decrease in the number of scales, a less fine-tuned

model and much possibly, a combination of these.

Figure 3.9: Mstd Tempered Samples with τ = 0.7

Figure 3.10: Mdiag Tempered Samples with τ = 0.7

Figure 3.11: Glow Model Tempered Samples with τ = 0.7

Source: (KINGMA; DHARIWAL, 2018)
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4 EXPERIMENTS DESCRIPTION

The exploration of the latent space can take a number of forms. For instance, we

could select subsets of samples according to some common attribute of interest and per-

form simple arithmetic operations using them. In this work, two experiments are defined.

The first, described in Section 4.1, follows an informed vector manipulation by means of

a Support Vector Machine (SVM) hyperplane as seen in the work by Shen et al. (2019)

in the context of GANs. The second approach attempts to approximate multiple maxi-

mum a posteriori (MAP) parameterized diagonal Gaussians to the embedded data and is

explained in Section 4.2. Experiments results can be found in Chapter 5.

4.1 Support Vector Machine classifier

In the context of GANs, the work of Shen et al. (2019) presents an approach based

on learning directions of manifestation of attributes. To do so, for each attribute a linear

SVM classifier is trained. In the binary case, a SVM classifier learns the hyperplane of the

largest margin that separates one class from another. In this section, the approach adopted

for single attribute manipulation is presented.

For each attribute, an SVM classifier is trained by means of the LinearSVC module

from scikit-learn (PEDREGOSA et al., 2011) using the test data partition of CelebA. The

classifier is used out of the box, and no parameter adjustments were applied. The vector

that defines the learned hyperplane is then normalized. Embedded images are modified by

means of a weighted addition of said vector. That is, given the latent space representation

of an image uorig, the potential vector of manifestation of an attribute vattr and a coefficient

α, we have that the modified latent vector follows the equation

umod = uorig + α
vattr

‖vattr‖
(4.1)

If α is negative, we should observe less of the attribute in the recovered image.

Conversely, if α is positive, we should see more of the same attribute in the resulting

image. We can use this method in an attempt to informedly explore the latent space and

gather information about the embedding and the base distribution. We should be able to

recover coherent images from the high probability regions of the base distribution. The

results of these experiments are laid out in Section 5.1.
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4.2 Maximum a posteriori diagonal Gaussian parameterization

It is natural to consider what the embedded data distribution looks like. The first

problem that arises with current NF-based models is that there is actually no guarantee that

the embedded data distribution can be adequately modeled by any analytically tractable

probability distribution. As a first approach, this work proposes approximating the em-

bedded observations of each of the attribute labels using a multivariate diagonal Gaussian

distribution parameterized by learned MAP parameters. Having a distribution model for

each positive and negative attribute should provide us with interesting information about

the embedded data overall distribution, and might offer us a means of comparison and

future label prediction if the approximations are adequate and the embedded data conveys

enough structure to do so. The mathematical description of this approach is illustrated

below. Experiments results are presented and discussed in Section 5.2.

4.2.1 Mathematical description

A multivariate diagonal Gaussian distribution, denoted N (µ,Σ), is defined by

a mean parameter vector µ = (µ1, . . . , µM) and a diagonal covariance matrix Σ =

diag(σ2
1, . . . , σ

2
M). Our goal is to use the embedded data to determine the parameters

of the Gaussian that best fit its distribution. A characteristic that makes the diagonal

Gaussian interesting is the ease with which we can work with its closed form, making it a

good first candidate approximate distribution for analysis.

Multivariate Gaussian distributions with diagonal covariance matrix are equivalent

to multiple independent 1-D Gaussians. Given a vector x = (x1, . . . , xM), its likelihood

probability p(x|µ,Σ) of being generated by the random process the diagonal Gaussian

describes is

p(x|µ,Σ) = N(x|µ,Σ) =
M
∏

m=1

N(xm|µm, σ
2
m) (4.2)

Let Λ = diag(λ1, . . . , λM), where λi = σ−2
i , for i = 1, . . . ,M . Λ is also known as

the precision matrix. By means of the Bayes’ Theorem and of conjugate priors (BISHOP,

2006), given a vector x we can calculate the posterior probability of the parameters in
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closed form as

p(µ,Λ|x) = p(x|µ,Λ)p(µ|Λ)p(Λ)

=
M
∏

m=1

p(xm|µm, λm)p(µm|λm)p(λm)

=
M
∏

m=1

N(xm|µm, λ
−1
m )N(µ|µ′

0, (λ
′

0λm)
−1)Gam(λm|a0, b0)

=
M
∏

M=1

N(xm|µm, λ
−1
m )GaussianGamma(µm, λm|µ

′

m0, λ
′

m0, am0, bm0)

(4.3)

where Gam(·) denotes the Gamma distribution. Notice that the primes ·′ are used to dis-

tinguish between parameters of the Gaussian-Gamma and the parameters of the Gaussian

likelihood. Given the Gaussian-Gamma distribution’s functional form, the parameters can

be updated in an incremental way (BISHOP, 2006). After D observations, the parameters

of the Gaussian-Gamma distribution will have the form

µ′

D =
λ′
0µ

′
0 +DµmMLE

λ′
0 +D

(4.4)

λ′

D = λ′

0 +D (4.5)

aD = a0 +
D

2
(4.6)

bD = b0 +
1

2

(

Dσ2
mMLE

+
λ′
0D (µmMLE

− µ′
0)

2

λ′
0 +D

)

(4.7)

where µmMLE and σ2
mMLE

are the mean and variance parameters of a single Gaussian ap-

proximate that maximize the likelihood probability of the elements {xdm}
D
d=1 of the vector

data, and are given by

µmMLE =
1

D

D
∑

d=1

xdm

σ2
mMLE

=
1

D

D
∑

d=1

(xdm − µmMLE)
2

(4.8)

Taking the modes of the posterior distribution for µ and Λ, we have

µMAP = µ
′

D (4.9)

ΛMAP = diag

(

αD1 −
1
2

β−1
D1

, . . . ,
αDM − 1

2

β−1
DM

)

(4.10)

The above parameters effectively maximize the posterior probability p(µ,Σ|X)
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(thus the name) with respect to a set of observed data X = {xd}
D
d=1. The updated diag-

onal Gaussian distribution that approximates X is then N (µMAP,Λ
−1
MAP). The likelihood

probability of new data points can then be evaluated according to this learned approximate

distribution.
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5 RESULTS

This chapter is dedicated to presenting and discussing the results of the experi-

ments described in Chapter 4. Sections 5.1 and 5.2 contain the results from the SVM and

the MAP-parameterized Gaussian experiments, respectively.

5.1 Support Vector Machine experiments results

The SVMs are trained using a subset of the test data partition of the CelebA data

set. The evaluations that follow use a subset of the evaluation partition of the said data set.

The attribute distribution of both subsets are presented in Figures 5.1 and 5.2, respectively.

Figure 5.1: Attribute distribution of the test data subset
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Figure 5.2: Attribute distribution of the evaluation data subset

The accuracies of the learned SVMs using each of the models Mstd and Mdiag are

depicted in Figures 5.3 and 5.4, respectively. Remember that one classifier is trained for

each attribute. In both cases we see that some classifiers are barely not random, whereas

others have learned what appears to be quite good decision hyperplanes. Still, these accu-

racies might be biased by the data itself. Given that we have, e.g., much less bald images

than non-bald ones, the SVM accuracy can be much higher by simply always predicting

the same non-bald class. If we look at the support vector numbers, which will not be

explicitly presented here because of technicalities involving the used library, we have that

all SVM classifiers that use the embedded space of Mstd have more than 13, 000 support

vectors. Whereas the number of support vectors of the SVMs that used the Mdiag embed-

ded data vary from approximately 9, 000 to 16, 000. Provided that the test data partition

has 19, 868 observations, we can conclude that the embedded data of both models do

not convey much structure when it comes to separating the attributes’ binary classes, or

that the very high dimension of the problem imposes such small scales that our ability to

explore and interpret the space with this method is hindered.
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Figure 5.3: Mstd model - Individual attributes SVM classifier accuracy

Figure 5.4: Mdiag model - Individual attributes SVM classifier accuracy

5.1.1 Informed manipulations

Even though the previous analysis suggests negative results regarding the struc-

turing of the embedded data, we can try and use the directions captured to explore if our

regions of high probability of the latent space really result in coherently structured images

in the data space. To this end, let’s select some easy to identify attributes, like smiling and

no beard. The value of α is varied linearly from −20 to 20 for 20 iterations. Figures 5.5

and 5.6 present the results of manipulating the same 30 facial images using the embedded
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spaces of Mstd and Mdiag with the smiling hyperplane, respectively. Similarly, Figures

5.7 and 5.8 present the results for the no beard attribute. In each figure, the original im-

ages are the ones in the leftmost column. The first thing to notice is that all of them have

relatively low probabilities when compared with the average images, presented in Section

3.4. Similarly, if we compare the probabilities of the originals with the sample images

from said section, we see that all of them present non-negligible lower probabilities in

the base distribution, even though they are originals and present much better quality. This

might be an indication that the embedded data is sparsely organized in the base distri-

bution space. Furthermore, this might be itself an effect of using too little data for the

training of the models considering the very high data and latent spaces dimensions.

Figure 5.5: Mstd model - Smiling manipulation
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Figure 5.6: Mdiag model - Smiling manipulation
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Figure 5.7: Mstd model - No Beard manipulation
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Figure 5.8: Mdiag model - No Beard manipulation

Given the previous comparisons, it is difficult to say if the data presented in the

above images should or not be considered to be in a high probability region of the base

distribution. This is actually not defined in the context of NFs. We might, for instance,

take a look at the log probabilities of points located at two standard deviations from the

mean of each of the models’ base distributions:

ln pMstd(µ+ 2Σ
1

2 1) = −143471.671875

ln pMdiag(µ+ 2Σ
1

2 1) = −134741.21875
(5.1)

where the overloaded mean and covariance symbols should be taken to be the mean and

covariance of the respective base distributions, which are diagonal, and 1 is a vector of

ones. If we consider that the region comprised by two standard deviations is to be deemed
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of high probability, then all of the presented images, even the incoherent ones, are well

within this boundary. Thus, we clearly have a violation of NF coherence: the recovered

images do not present the structure of the data we want to model when we transform back

latent vectors in high probability regions of the base distribution. Before we continue, we

should not consider this a good bound. Such a bound may be too broad and was chosen for

the sake of the argument. A sample at two standard deviations in such a high dimensional

space might be a very improbable one. Back to the results, notice in the first row of

Figure 5.7 how there is a gap in the domain of the NF inverse, where it passes through

an undefined subregion of the latent space to then again reach a well-defined subregion.

This could be an indication of overfitting, or it could be an artifact common to NFs when

we start to distance the sampling too much from the mode.

It is still uncertain why we have these ill-defined NF transform codomains. They

might have manifested for a number of reasons. For instance, this could be because the

transform model of the adapted Glow is too limited, or too little data was used for training

considering the very high dimensionality of the problem and the data embedding is too

sparse and its distribution even multimodal. In the last case, metrics and validation meth-

ods could direct us toward further results regarding how the unimodality of the embedded

data distribution relates to the quality of sample generation and how to achieve it. Section

6.1 presents a discussion in this regard. Going back to the results at hand, and given all

the considerations above, we cannot conclude much at this point. All we know is that the

embedding of the models here presented is not coherent with the data of interest and the

base distributions given the bound of two standard deviations.

5.2 MAP-parameterized diagonal Gaussian results

This section presents an analysis of the results of the learned attribute class ap-

proximate distributions. For each attribute, we can define two distributions: the distri-

butions of the positive and the negative classes. As in the SVM training, the test data

partition of the CelebA data set is used to learn the parameters of each of the diagonal

Gaussian approximates, whereas the evaluation partition is used to assess them. Figures

5.1 and 5.2 depict the distribution of the subsets of data used. Section 5.2.1 presents an

initial discussion about the learned distributions. The learned approximate distributions

for two selected attributes are discussed more in depth in Section 5.2.2. Lastly, Section

5.2.3 shows results of the attempted sampling of these distributions.
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5.2.1 Distributions’ overview

Let’s start with an overview of the distributions learned. To this end, Figures 5.9

and 5.10 present the log probabilities of the average vectors of each of the positive at-

tributes’ distributions according to the learned distribution itself, the base distribution and

the data distribution. The top row shows the log probabilities calculated with the learned

approximate distributions. The middle row presents the base distribution probabilities as-

signed to the mentioned mean vectors, and in the bottom row are the assigned probabilities

according to the data distribution. Notice that the x-axis scales are distinct.

First, notice how close all of these log probabilities are to the mean probabilities of

the base distribution (Figures 3.7 and 3.8) in both cases. This might mean that they have

very similar precisions and, as a consequence, might not be capturing the data clusters

adequately. If this is the case, the embedded images of each attribute class are scattered

across the high dimensional latent space and the Gaussians offer poor approximations.

In another words, the attribute class embedding does not result in a single cluster region.

If we compare the base distribution likelihoods of the average vectors (second row) with

the likelihoods of the models’ samples from Figures 3.9 and 3.10, we see that the latter

are much more distanced from the mode of the base distribution than any of the average

vectors of the attributes’ distributions. In Section 6.1 a discussion about how we might

get a better approximation by means of a Student’s t-distribution is presented. For now,

let’s try and take a look if we can use the approximate Gaussians for anything else.
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Figure 5.9: Mstd mean positive attribute log probabilities

Figure 5.10: Mdiag mean positive attribute log probabilities

Before we proceed to the next topic, let’s select two of the attribute distributions

and check its average image. As with the previous analysis using SVMs, let’s use the

smiling and no beard attributes. But now, instead of the no beard attribute, let’s look at

beard. Figures 5.11 and 5.12 present the means images for smiling using both models,

Mstd and Mdiag. Analogously, Figures 5.13 and 5.14 present the mean image to the beard

attribute. We can see an overall coherent image structure, even if in low quality, that does
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resemble the attribute it encodes.

Figure 5.11: Mstd mean image for Smiling

Figure 5.12: Mdiag mean image for Smiling

Figure 5.13: Mstd mean image for Beard

Figure 5.14: Mdiag mean image for Beard

5.2.2 Log probability distributions

As we have seen, the mean images indeed do provide some local characteristics

that resemble the attributes of interest. Still, their probability values indicate that they

have a very similar variance to the base distribution. This raises questions about their
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usefulness. Figures 5.15, 5.16, 5.17 and 5.18 depict histograms of log probabilities at-

tributed to the evaluation data partition using the learned MAP-parameterized diagonal

Gaussians. The positive label distribution indicates the Gaussian that approximates the

positively labeled data of a given attribute. Similarly, the negative label distributions are

the Gaussian that approximate the negatively labeled data. In these images, true posi-

tives and true negatives indicate the data attribute value with respect to the data, i.e., true

positive indicates that a data sample is marked positively for determining attribute and

true negative indicates that the attribute is labeled as absent. We see that the distributions

of log-likelihoods in all histograms, excluded the magnitude differences caused by the

number of data samples, are very similar.

Figure 5.15: Mstd log probabilities histograms for Smiling

Figure 5.16: Mdiag log probabilities histograms for Smiling
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Figure 5.17: Mstd log probabilities histograms for No Beard

Figure 5.18: Mdiag log probabilities histograms for No Beard

For the sake of completeness, let’s take only the smiling attribute and try determin-

ing its class, smiling or not smiling, using the positive and negative attributes’ Gaussian

approximates. Let’s consider a simple decision criterion: the distribution that assigns the

highest log probability to the sample image determines its class. Figures 5.19 and 5.20

present the confusion matrix that results from this experiment. As we can see, the results

are not too bad to the point of being random, with approximately 20% of error. Further-

more, there seems to be a bit of a better generalization capability for the Gaussians that

used the Mdiag embedded data for training. This might be because the higher precision of

the diagonal Gaussian base distribution induces greater penalties to the NF, giving it more

space to improve. Still, depending on the application and its requirements, these models

together with this simple decision criterion might prove to be not enough. Section 6.1
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presents a discussion on why and when a Student’s t-distribution might provide us with

better distribution approximates.

Figure 5.19: Mstd Smiling confusion matrix

Figure 5.20: Mdiag Smiling confusion matrix

5.2.3 Sampling the distributions

Even though using the distributions above for classification tasks is less than ideal,

they might prove useful when it comes to sampling from specific attributes. Figures

5.21, 5.22, 5.23 and 5.24 present ten samples each for each of our attribute class models.

Remember that τ stands for the temperature parameter in a tempered sampling. Here,

seventy percent of the standard deviation of the learned distributions are used. Below each

image are their assigned data and base distributions probabilities, as well as third values
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that indicate the probability of the image according to the learned attribute distribution,

denoted ln p(c). In all cases we see very close values between the base and attribute

distributions assigned probabilities. As discussed in previous sections, this suggests that

both distributions’ variances are similar. Still, even though this similarity could impair

the use of the learned attributes’ distributions for sampling purposes, we observe that it

does bias the sampling process towards the attribute of interest.

Figure 5.21: Mstd Smiling sample with τ = 0.7

Figure 5.22: Mdiag Smiling sample with τ = 0.7

Figure 5.23: Mstd Beard sample with τ = 0.7

Figure 5.24: Mdiag Beard sample with τ = 0.7
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6 DISCUSSION AND FUTURE WORK

We have seen that the models this work uses do not comply with the second NF

coherence property. Still, it is difficult to determine the reasons this might be happening.

We do not have enough tooling to assess the embedded data distribution properties and

ways to relate these to the base distribution. Section 6.1 presents a discussion about how

we could gather more information about the embedded data distribution by means of a

non-unimodality metric and how could we compose such a metric. Open questions with

respect to NFs and their coherence are laid out in Section 6.2. Other questions on tangent

subjects are presented last in Section 6.3.

6.1 How to detect multimodality?

In the presented Bayesian approach, the embedded data was modeled by a Gaus-

sian distribution with fixed MAP mean and precision parameters. This can be a poor

approximation if the data present multiple modes, as both will be scattered across the

space. The Student’s t-distribution might offer a better approximation. The Student’s t-

distribution integrates the precision parameter by summing an infinite number of Gaussian

distributions of distinct precision. This mitigates the effects of outliers and small clusters

in our approximate distribution. One potential problem of this approach might still be

that, if the distribution is indeed multimodal, the Student’s t-distribution’s approximation

is less than ideal.

Having more insight on the reasons, why the embedded data distribution Gaussian

approximate might fail, let us try and relate this with the properties of NF coherence and

present how we might be able to assess such properties. Going back to the first property,

which relates the codomain of the NF transform with the embedded data distribution, we

might become more confident of its holding if somehow the latter was simpler and more

readily assessable. Given that the Student’s t-distribution contains each single Gaussian

precision case, it also accounts for the specific case of the Gaussian with MAP precision.

Using this, future work might be able to determine the degree of multimodality of the

embedded data distribution to some extent by means of a divergence metric between the

Student’s t and the Gaussian distributions modeling the embedded data. This might prove

useful in future models, for instance, by guiding the embedding codomain into a single

convex region of high probability.
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We have discussed the concept of a metric of non-unimodality and how reducing

the divergence of an MAP-parameterized Gaussian and a Student’s t-distribution could

help reduce the potential multimodal characteristics of the embedded data distribution.

But what can it say about the second property? The second property basically says that

we want the base distribution of the NF model to actually model the data by means of

the NF transform. Even if the embedded data is adequately approximated by both MAP-

parameterized Gaussian and the Student’s t-distributions, we might still end up with a base

distribution that is not an adequate model of the embedded data distribution. Although

uncertain, the solution might prove to be simple: use one of the approximate distributions

as the base distribution itself. After the model’s training, if both are sufficiently similar,

we might even exchange them for working with distinct functional forms.

6.2 NF Coherence open questions

This work suggests that the adapted Glow models present regions of high proba-

bility where the embedding fails to recover a valid image. This clearly does not comply

with the second property of NF coherence. Still, the results presented are themselves very

limited and actually raise more questions than answer them:

• Currently, the NFs’ literature does not cover any real form of validation of the

embedding with respect to the base distribution model. This greatly hinders the

advance of studies regarding the usage of the base distribution as a proxy for the data

distribution in the latent space. In Section 6.1, a potential way of quantifying the

degree of unimodality of the embedded data is presented. Can we derive it further

with the goal of validating the base distribution approximation to the embedded data

distribution? Also, what should we consider to be the "high probability region" of

the base distribution when it comes to NFs? Can we find ways to guarantee NF

coherence within better-defined bounds?

• A more thorough and well-grounded assessment should be made regarding the fea-

sibility of the second property of NF coherence. For example, is there a relation

between the dimension of the latent space and the required number of samples,

number of transforms, or the functional form of the transforms?

• Can we determine a schedule for the precision of the base distribution, aiming at

its effect in the NF transform? For example, increasing the precision of the base
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distribution in hopes of making the transform contract and expand regions of the

latent space to better cover the determined high probability region.

• There is still little evidence suggesting that a coherent NF offers any real improve-

ment. For instance, the quality of generated samples or other applications such as

attribute manipulation or OOD data detection. Are there any immediately notable

improvements of a coherent NF?

6.3 Other questions

This section presents other questions that have surfaced while this work was being

produced. These are presented below:

• The very high dimension of the image space offers possibilities for highly multi-

modal distributions. Added to that, the values of the loss tend to get very small

for individual vector elements of an individual datum, limiting its influence on the

learning procedure. Could we find ways to mitigate this effect?

• We could try and approximate the posterior probability of the NF transform pa-

rameters to a Gaussian distribution (AZEVEDO-FILHO; SHACHTER, 1994), thus

having a metric of uncertainty when the embedding is confronted with new sam-

ples. Even if theoretically possible, the approximation requires calculating the sec-

ond derivatives of the DNN’s parameters and can prove intractable, often relying

on approximations. Is such a method viable in the context of NFs, and can we find

a use for it? For example, can we use it to validate generated data? Could we use it

to define a sampling policy in the latent space? Or maybe use it to bias the model

against data we want to protect? What about removing data not belonging to the

distribution of interest from the high probability regions encoded by the model?

• If we can determine that quality of fit is given by the degree of unimodality of the

embedded data distribution of an NF model, we might have something with which

to guide our models’ learning, or even change its structures. Given that, would

a non-unimodality metric prove useful for meta-learning? If this is the case, and

if we are indeed able to use the latent data representations by means of the base

distribution to build efficient relations between random variables from distinct NF

embeddings, where can it take us?
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7 CONCLUSION

In this work, the concept of Normalizing Flow (NF) coherence and an assessment

of two models from the perspective of its properties are presented. Results suggest that

their embedding codomain is not coherently defined if we factor in the data and base

distributions when high probability regions of the latter are considered. This renders the

base distribution a poor approximation for the embedded data, hindering its use as a proxy

for the data space in the latent space by models that build upon NFs. Still, what should

be considered a high probability region of the base distribution is itself ill-defined in this

context. In this thesis, two standard deviations were considered, but this might prove to

be too broad a bound for the models at hand, the cardinality of the data set used for their

training, and the very high dimensionality imposed by the image data domain.

The analysis through Gaussian approximates of individual data attributes suggests

that the attributes data are scattered throughout the base distribution space. Even though

this could prevent the usage of these approximates, their sampling was shown to be biased

toward the attributes of interest. From the results, a discussion is presented in which it is

suggested that we might be able to define a non-unimodality metric and further guide the

embedded data into a single region of high density. This could be useful from the point

of view of NF coherence, but a number of things are still left uncertain. For instance,

we don’t know if guaranteeing NF coherence brings any improvement in data generation,

out-of-distribution data detection, or latent space usage and interpretability. These uncer-

tainties and other open questions suggest that there is a lot of potential in NFs future work,

and that the perspective of its coherence might offer a direction for its future research.
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