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ABSTRACT

Building tests and experiments for Question Answering (QA) tends to be a hardworking

task due to the fact that a lot of time is spent in the production of repeated code and tasks

that could be automated. For example, there is a great number of datasets available and

each of them organizes and structures information differently. Also, there are several QA

benchmarks, which makes the task of testing an approach in different databases laborious.

This work proposes the creation of a system that facilitates researchers to implement new

techniques through the easy availability of different datasets, tasks, and pre-implemented

techniques. Furthermore, the system architecture has been developed in such a way that

having knowledge of the Python programming language is enough to implement and test

new techniques. We have a functional prototype that performs the reading of different

datasets and implements different techniques related to Question Processing, Information

Retrieval, and Answer Processing phases. Empirical tests have shown that the system

facilitates the implementation of techniques for the stages of question processing, infor-

mation retrieval and answer processing.

Keywords: Natural Language Processing. Question Answering. Question Processing.

Information Retrieval. Answer Processing. Experiment Environment.
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1 INTRODUCTION

Question Answering (QA) systems are systems that aim to respond, autonomously

and precisely, questions proposed in natural language. They differ from standard Search

Engines, that receive a set of keywords and return to the users a list of relevant classified

sources (DIMITRAKIS; SGONTZOS; TZITZIKAS, 2020). Question Answering is a

field of study of Information Retrieval and Natural Language Processing.

The architecture of a QA system is usually divided in three parts: question pro-

cessing, information retrieval, and answer processing. The first is responsible for inter-

preting and enrich the question with new information that might assist the next steps; the

second, that resemble search engines, intent to rank relevant information from a database;

the third step is responsible for processing and returning the final answer (CORTES et al.,

2020).

In this context, developing new techniques, improving existing techniques, and

even performing comparative tests are laborious and monotonous tasks. The availability

of several datasets and techniques for each of the three parts of the architecture creates

an enormous quantity of non-reusable code and, many times, diverts the attention of the

scientist to tasks that can be automated. For example, a scientist that is working on a new

technique of named entity recognition and desires to verify the impact of his/her study

on the overall QA system will have to apply this new technique along with other tasks,

and he/she will have the arduous work of configuring (or implementing) several other

techniques.

The objective of this work consists in the development of a system base model
1 that facilitates the development of new techniques in the QA field. This system model

have the main datasets for different tasks, which facilitates the execution and performance

of the techniques. As result, there is a functional environment that abstracts from the

user the implementation of multiple datasets, facilitates the implementation and usage

of several QA techniques with dynamic modules that can be created and have its order

defined in the pipeline. Moreover, this work contains two case studies that aim to identify

the efficiency of the developed system, and an analysis of two related systems.

The next part of this text is divided in the following way. In chapter 2, a back-

ground is given, including a theoretical overview of QA systems, with details in regards

to some used techniques in each one of the three steps (question processing, information

1https://github.com/MauricioCarmelo/QuestionAnsweringSystem
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retrieval, answer processing). Besides that, the reader will be introduced to a few datasets

and how the data are usually structured. Chapter 3 discusses about the simulation system

that has been developed, with an explanation about what the user can expect, including

technical details of the implementation. Chapter 4 presents two experiments that show

what the user can expect while implementing new techniques and collecting metrics from

them. Lastly, chapter 5 concludes the article and give insights on the limitations of the

tool and future work.
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2 BACKGROUND

This chapter provides the necessary theoretical background. It is presented in

more detail what a QA system is and three fundamental steps that might constitute them.

It also discusses some of the datasets that can be found in the literature and how the

information is generally structured, and there is a brief explanation of some work that is

related to the system proposed by this paper.

2.1 QA Systems

The QA field can be considered an advanced form of the Information Retrieval

field (CAO et al., 2011). A QA system must have the capacity of interpreting and an-

swering a great variety of complex and robust questions, generally divided among factoid

and non-factoid. Factoid questions are identified as having immediate and accurate an-

swers ("Who wrote the book Frankenstein?", "How many calories are in a fried egg?",

"What is the average age of people with diabetes?", "Where is Mount Everest?". Non-

factoid questions are open-ended questions that require robust answers, such as opinions,

explanations, and descriptions (YANG et al., 2016).

In addition to question type, QA systems can also be classified between close

domain and open domain. Close domain are systems that focuses on answering ques-

tions related to a specific domain such as History and Medical. Meanwhile, open domain

are systems whose goal is to be generic and aims to answers questions related to "any-

thing". It is also possible to classify QA systems according to the type of knowledge base

available for search in the Information Retrieval step, such as document and linked data

(DIMITRAKIS; SGONTZOS; TZITZIKAS, 2020).

The medical use of QA systems, for example, requires a system that is capable of

interpreting and classifying a question, seeking a set of satisfactory answers, and prepar-

ing an answer in such a way that a system exclusively based on pre-defined templates

cannot do (CAO et al., 2011). To achieve the ability to answer questions in an automated

way, QA systems typically consist of stages present in more detail in the next section.
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2.2 General Architecture

The architecture of the QA system is fundamentally composed of three parts, as

shown in Figure 2.1: 1) Question Processing, grouping tasks of Question Classification

and Question Reformulation, 2) Information Retrieval, with tasks related to Document

Retrieval and Passage Retrieval, and 3) Answer Processing, with three other task types,

such as Candidate Answer Extraction, Candidate Answer Ranking, and Answer Gener-

ation (CORTES et al., 2022). This section presents each of these parts in detail and, in

general terms, some of the techniques used.

Figure 2.1: General architecture of a QA system.

Source: The Authors

The next paragraphs present each of these parts and, in general lines, some of the

techniques used.

2.2.1 Question Processing

The Question Processing step, which works directly with the question that was

entered by the user in natural language, aims to interpret and enrich the question with

information such as the domain of the question (weather, health, sports, etc.) and the type

of information expected in the response (date, description, explanation, location, name,

measure, object, organization, etc.) (CORTES et al., 2022).

The question can therefore go through a reformulation process to prepare it to

increase the chances of finding a satisfactory answer in the database. An example of

question reformulation task in the Portuguese language is to remove all stop words, such

as the determinants (o, a, os, as, um, uma, uns, umas, este, esse, etc.) and the prepositions

(desta, no, neste, nesta, nesse, nessa, etc.).

Question classification tasks play an important role in the overall process of find-

ing the correct answer for an open-domain question. Classify a question in a semantic

category not only reduces the search area in the next steps, but may also propose the
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usage of different processing techniques (ZHANGL D., 2003). Techniques based on Sup-

port Vector Machines (SVMs), for example, are widely used to classify tasks due to its

overall performance. A study proposed by Huang Zhiheng and Qin. (2008) achieved an

accuracy of approximately 90% in a dataset arrangement with 50 question categories.

2.2.2 Information Retrieval

The Information Retrieval (IR) part is responsible for seeking relevant data to as-

sist in formulating a final answer. A technique implemented for this purpose is heavily

dependent on the available source of information. The source of information is a collec-

tion of objects (text files, databases, documents, video or web pages) that comprises the

information available to the system for obtaining answers.

There are different techniques, algorithms, and frameworks related to information

retrieval and extraction (SOARES; PARREIRAS, 2020). Usually, the search is done in

two steps: a) search for relevant documents and, for reducing the amount of text, b)

filtering passages (CORTES et al., 2022). Typically, an information retrieval module is

straightforward: it receives a query as input and returns a list of relevant objects, ranked

according to the plausibility of containing the correct answer to the proposed question

(KOLOMIYETS; MOENS, 2011). The ranked objects can be documents or text passages,

depending on the technique applied. The final response is expected to be contained within

at least one of these objects returned by the technique.

2.2.3 Answer Processing

The Answer Processing step is responsible for structuring the final response that

the user receives. All the information interpreted and extracted by the techniques in the

previous parts is used. The preparation of the answer is performed in three parts: a)

extraction of possible answers, b) classification of answers, to put in order the best answer

options, and c) generation and selection of the answer (CORTES et al., 2022).
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2.3 Datasets

QA experiments are heavily dependent on the quality of the dataset. One of the

most labor-intensive steps to prepare a QA simulation is adapting the code to support the

processing of different datasets, due to the fact that they are structured distinctly and may

have files with different formats and names.

As this work makes extensive use of several previously prepared, consolidated,

and widely used collections in the field of QA, some of these datasets were listed below

with a brief explanation of how the information is structured in each of them.

2.3.1 WikiPassageQA

A collection of thousands of questions and answers based on Wikipedia articles.

This dataset targets the field of non-factoid questions used for training deep learning mod-

els and collecting benchmarks. It is divided into 3332 training, 417 prediction and 416

testing questions, totaling 4165 questions.

Training, prediction and test questions are available in different files. In addition,

a .json file is provided with excerpts referring to the relevant passages, that is, passages

where the answer can be found (COHEN; YANG; CROFT, 2018).

2.3.2 SQuAD - Stanford Question Answering Dataset

With a set of more than 100,000 questions based on Wikipedia articles proposed

by various people, where the answer to each of the questions is a text segment of a passage

that can be found in one of these articles.

This collection contains exactly 107,785 question-answer pairs based on 536 arti-

cles (RAJPURKAR et al., 2016).

2.3.3 Antique

Hashemi H. and Croft (2020) created a dataset called Antique with a total of 2,626

non-factoid questions based on users’ search at Yahoo!. These questions are divided in

training and test sets with 2,426 and 200 questions, respectively.
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2.3.4 MS MARCO - A Human Generated MAchine Reading COmprehension Dataset

Extensive collection of 1,010,916 questions collected from the search logs of the

Bing search engine. Of all these questions, 182,669 answers were rewritten by humans.

In addition, the dataset contains more than 8 million passages extracted from more than

3.5 million documents. It is important to note that some of the questions in this collection

may have none or more than one answer (BAJAJ, 2016).

2.3.5 DuReader: a Chinese Machine Reading Comprehension Dataset from Real-

world Applications

This collection of questions and answers is based on the Baidu search engine. It

contains 200,000 questions, 420,000 answers and 1,000,000 documents. It is the largest

Chinese MRC (Machine Reading Comprehension) dataset to date (HE KAI LIU, 2018).

It is important to highlight the fact that the answers present in this dataset were

made manually.

2.3.6 Other Collections

In addition to the collections described above, others can be used for experiments

in the QA field. Table 2.1 shows the relationship between the name of some of these

datasets and the number of questions available.

Table 2.1: The number of questions of each dataset.

Dataset Name Number of Questions

SQuAD 100,000

WikiPassageQA 4,165

Antique 2,626

MS-MARCO 1,000,000

DuReader 200,000

NarrativeQA 46,765

SearchQA 140,000
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2.4 Related Work

There are similar literature studies, like Gupta D. (2018) and Marx E. (2018), that

works towards the support in the research and development of QA systems. However, its

main goal does not address the implementation and integration of new techniques.

Furthermore, there are open-source implementations of QA systems with particu-

lar strategies in each of the main steps (Question Processing, Information Retrieval, and

Answer Processing) 1, and frameworks that share the objective of facilitating experiments

in the area 2 3.

Table 2.2 highlights the key differences between these two systems and the system

presented in this work in relation to the initial objectives that led to the creation of this

project.

Table 2.2: Key differences between the systems.

WikiQA Qanary Our system

Easy to use Yes No Yes

Easy to implement another component Not possible No Yes

Support Question Classification No Yes Yes

Support Information Retrieval Yes Yes Yes

Support Answer Processing No Yes Yes

2.4.1 WikiQA

This small sized application that focuses on retrieving information from models

trained with Wikipedia articles. This system works alongside Wikipedia’s search engine,

as it queries the question in the search engine and then utilizes the output of the search as

input for the QA model, which returns the extracted passages from the text.

This application is fundamentally different from the application presented in this

work as the objective is not to facilitate the implementation of techniques and modules,

but rather to allow a quick test on top of techniques that are already implemented.

1https://paperswithcode.com/task/question-answering
2https://github.com/cloudera/CML_AMP_Question_Answering
3https://github.com/WDAqua/Qanary-question-answering-components
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2.4.2 Qanary Question Answering Components

This framework can be used to integrate QA components developed in the Java

programming language, enabling rapid development of QA systems. It has a wide variety

of components that can be reused by the community to build a Qanary Pipeline and

execute QA approaches. Unlike our system, the Qanary framework is used to create real

QA applications rather than to facilitate the creation and testing of new QA techniques.

This system has been developed in the Java programming language. Although this

language is largely used by many programmers around the world, it is much less friendly

than Python and it is not as used as Python by scientists in the field of QA. Also, in order

to create a new component and integrate it with existing ones, the users need to understand

about Maven and Spring Boot, frameworks that require a considerable amount of study

and learning time. For these reasons, we are inclined to believe that this might not be

attractive for a researcher that wants to quickly test and evaluate a QA approach under

research and development.

Nevertheless, this framework is more robust than the one presented in this paper

and it currently counts with a group of three core developers 4. It also provides a Web UI

that facilitates the integration of components.

4https://github.com/WDAqua/Qanary/wiki/Who-do-I-talk-to%3F
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3 TOOL FOR TESTING QUESTION ANSWERING TECHNIQUES

The proposed tool aims to support the research and development of the QA area

through a system that facilitates QA experiments combining techniques and tasks in the

QA pipeline to evaluate it with different datasets. The system allows users to create

a pipeline of previously implemented tasks and collect benchmarks related to multiple

datasets. Also, it is possible to implement new tasks, techniques, and evaluation metrics

to employ them in a QA pipeline and evaluate them using different datasets. Once a

new task is implemented it is possible to include this module anywhere in the execution

pipeline. For example, in case the user wants the question domain information, they

can simply include the question classification (section 2.2.1) task in the beginning of the

pipeline and, as a consequence, the next tasks will have access to that information within

the resource entries.

The system executes a simulation that generates an evaluation report. The sim-

ulation comprises a group of Resources, a Pipeline, and a chain of Tasks (Figure 3.1).

A Resource (Figure 3.2) is an entity that encapsulates the information from a dataset,

incorporating it into a generic structure. A Task is an agent that manipulates Resources

by reading its data and may override or add new information into it. The Pipeline is a

sequence of Tasks.

Figure 3.1: Pipeline of tasks.

Source: The Authors

Moreover, it is possible to evaluate each task with different metrics. For example,

Task 1 is evaluated by metrics F1 score and precision while Task 2 is evaluated by the

same metrics in addition to the metric recall. It is also possible to configure a task to not

be evaluated. This scenario is used if the applied technique only assembles some data for
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Figure 3.2: Resource and ResourceEntry class diagram.

Source: The Authors

the next tasks and does not require the evaluation of its generated results.

The rest of this chapter describes in more detail some technical aspects of the

simulation execution flow, how the system loads information from a dataset and uses it

within the pipeline of tasks, and how the result report is generated based on the metrics

that the user expects to collect. It is also shown insights on how to configure a simulation

through the configuration files.

3.1 Characteristics of the Tool

The main characteristic of this tool is to facilitate the implementation of tech-

niques derived from the types of tasks mentioned on Figure 2.1 (Question Classification,

Question Reformulation, Document Retrieval, Passage Retrieval, Candidate Answer Ex-

traction, Candidate Answer Ranking, and Answer Generation).

The tool architecture has been conceived in such a way that it is easy to implement

new techniques, new classes to read information from other datasets, and new evaluation

methods.

With this tool it is possible to:

– use the output of a technique as input for other techniques in the pipeline.

– quickly configure a simulation and collect concrete results with the techniques that

different users implemented.

– easily implement a new dataset reader to parse information from a not (yet) sup-

ported dataset.

– remove entries by filtering undesirable lines of the dataset according to any param-

eter. This can be achieved without implementing a single line of code, as it can be

configured in a .yaml file.
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– execute a simulation with multiple datasets for a single pipeline of tasks, collecting

more results and facilitating the comparison.

– calculate various metrics, including F1 score, precision, accuracy and recall.

– easily add a new metric to the tool and use it to evaluate any existing technique.

3.2 Simulation Execution Flow

The user has access to two configuration files: datasets.yaml, used to set up the

datasets that might be used during the simulation, and pipeline.yaml, used to configure

the chain of tasks in the pipeline. These files are easy to understand, and there is a docu-

mentation in the tool’s official repository.

This section presents an overview of the simulation execution flow. Starting by

loading the information contained in the datasets, execution of the tasks that make up a

pipeline and, finally, generating a report.

3.2.1 Load Data From The Dataset

Initially, the system loads information from the configured datasets into an abstrac-

tion called Resource. In a single simulation, it is possible to load more than one dataset

at the same time. As shown in Figure 3.3, each Resource encapsulates all the information

within a single dataset through the simulation lifetime. Each dataset is abstracted into a

Resource.
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Figure 3.3: Mapping of information from datasets to Resources.

Source: The Authors

The data in the dataset is separated into groups of information and each one of

these groups is inserted into the structure showed in the Python File 3.1, called Resource

Entry.

File 3.1: Resource Entry structure in Python

1 resource_entry = {

2 "id": None,

3 "question": None,

4 "question_domain": None,

5 "answer_type": None,

6 "answers": [{"id": None,

7 "answer": None,

8 "documents": [{"id": None,

9 "name": None,

10 "document": None}],

11 "passages": [{"id": None,

12 "name": None,

13 "passage": None}],
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14 "sentences": [{"id": None,

15 "name": None,

16 "sentence": None}]}

17 ],

18 "entities": [{"entity": None,

19 "start": None,

20 "end": None,

21 "type": None,

22 "subtype": None}],

23 "tokens": [],

24 "pre_evaluation_group": None,

25 "evaluation_group": None

26 }

A group of information is understood to be all data related to a single question

present in the dataset; usually this data is located in a single row of the set. A Resource

(Figure 3.2) consists of a list of Resource Entries. Table 3.1 presents an explanation of

each of the most used fields of the resource entry structure 3.1.

Table 3.1: ResourceEntry fields definition.

Field name Field description

id Question identifier.

question Question text.

question_domain Answer domain (weather, health, sports, etc.).

answer_type
Type of information expected in the response (date, description,

explanation, location, name, measure, object, organization, etc.).

answers Data related to the expected answers.

answer.id Answer identifier.

answer.document Relevant documents containing the answer.

answer.passage Possible passages containing the answer.

answer.sentences Possible sentences containing the answer.

pre_evaluation_group
Some datasets split the inputs between training (train), prediction (dev)

and test (test). One of these values is entered in this field.

Currently, the tool supports the following datasets: QAChave (SANTOS; ROCHA,

2004), available in Portuguese language, WikiPassageQA (COHEN; YANG; CROFT,

2018) and Antique (HASHEMI H.; CROFT, 2020), both available in English language,

and UIUC (LI; ROTH, 2002), available in Portuguese, English and Spanish languages.

To use any of these datasets in a simulation, it is required to configure file datasets.yaml

accordingly. The configuration File 3.2 is an example of configuration that makes avail-
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able for simulation the datasets SQUAD (RAJPURKAR et al., 2016) and WikiPassageQA

(COHEN; YANG; CROFT, 2018). There are instructions on how to use and descriptions

of each field in the documentation available in the repository 1.
File 3.2: Configuration of datasets that will be loaded.

1 dataset:

2 name: "SQUAD"

3 reader_type: "SQUAD"

4 path: "datasets/SQUAD/"

5 dataset_setup:

6 type: "fixed-split"

7 ---

8 dataset:

9 name: "WikiPassageQA"

10 reader_type: "WikiPassageQA"

11 path: "datasets/WikiPassageQA/"

12 dataset_setup:

13 type: "cross-validation"

14 folds_splitter: "shuffle-split"

15 folds: 5

16 test_size: 0.4

17 random_state: 0

Moreover, this excerpt of code signals the fold strategy applied during the usage

of the resources. WikiPassageQA is configured to be shuffled in five different folds and

with a proportion of 40% of the dataset to be separated as a test set. Meanwhile, SQUAD

is configured to be separated as fixed-split, which means, in more technical terms, that the

training and prediction sets are based on what is stored in field pre_evaluation_group of

each resource entry structure (File 3.1).

3.2.2 Pipeline Execution

A Pipeline is composed of a sequence of tasks that were previously implemented.

Note on Figure 3.4 that the Resource undergoes a modification after each task. The mod-

ification changes or adds a value to each of the Resource Entries stored in the Resource.

This behavior can be seen in more detail on Figure 3.5, where the value generated by task

0 is embedded in the ResourceEntry object. This feature plays an important role in the

simulator itself, making it very flexible, as the output of one task can serve as input for

later tasks. A ResourceEntry instance encapsulates all information referring to a group of

information, including the values created or modified in each of the tasks that make up

1https://github.com/MauricioCarmelo/QuestionAnsweringSystem/blob/main/docs/dataset_fields.md
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the Pipeline.

Figure 3.4: Schematic of tasks being executed in a pipeline.

Source: The Authors

A Task is an abstraction that encapsulates a Technique. The user can implement a

technique of any task type: Question Classification, Question Reformulation, Document

Retrieval, Passage Retrieval, Candidate Answer Extraction, Candidate Answer Ranking,

and Answer Generation.

The pipeline of tasks is configured in pipeline.yaml. Although configuration is

easy, there are several fields and parameters that can be used and the user should read the

documentation available in the repository 2 in order to fully understand and use all the

available features of the system.

Configuration File A.4 creates a simulation with only one task while configura-

tion file A.5 creates a simulation with two tasks in sequence. Although they are both

using technique LinearSVCQuestionClassification, the input will be the result of the of

technique nltkTokenizerWithoutStopWords in the second one. Note that technique Lin-

earSVCQuestionClassification is supposed to use the value question_text while reading

the information from dictionary resource_entry (File 3.1); however, configuration in File

A.5 signals the technique to use the value from result_task_0 instead.

2https://github.com/MauricioCarmelo/QuestionAnsweringSystem/blob/main/docs/pipeline_fields.md
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Figure 3.5: Resource entry holding the value generated by task 0 in a debug session.

Source: The Authors

3.2.3 Report Generation

At the end of the simulation, it is generated a report in CSV format with the metrics

that were calculated for the techniques and resources that execute in pipeline.

It is possible to evaluate each technique with different metrics. In the example

shown on Figure 3.1, Task 2 is evaluated by metrics F1 score and precision while Task 3

is evaluated by metrics F1 score, precision and recall. Also, Task 0 is configured to not

be evaluated. This can be used if the applied technique only assembles some data for the

next tasks and does not require the evaluation of its generated results.
File 3.3: Configuring the evaluation of a task.

1 evaluation:

2 should_evaluate: true

3 type: "DocumentRanking"

4 set_usage:

5 evaluate_train: false

6 evaluate_dev: false

7 evaluate_test: true

8 fields:

9 answer: "result_task_0"

10 generated_result: "result_task_0"

The excerpt of code in File 3.3 demonstrates how to configure an evaluation for

a given technique. In this example it is used an evaluation of type "DocumentRanking",

which receives a list of relevant documents and its scores and, currently, it is able to
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calculate both metrics recall and mean average precision. The configuration highlights

that the evaluation method should use the result of task 0 as input and, under set_usage,

it is configured to perform the evaluation only for the test set.

3.3 Tool Extensibility

The tool’s architecture encourages new users to contribute. Via Python code, it is

possible to add new dataset readers and implement and share new tasks with other users.

Details on how to implement a new task and a new dataset reader are described in the

documentation. Once the task is merged to the main branch of the repository, all users

also have access to this code, and they will also be able to configure the pipeline to run

the new task.

This section walks the reader through the steps how a user can contribute by im-

plementing another dataset reader or a new technique. A more complete documentation

is available at the Github repository 3.

3.3.1 Implement another dataset reader

To read information from a dataset that is not supported by the application, it

is necessary to implement another Dataset Reader. This component is responsible for

reading all the information from the dataset and store it into a Resource.

Step by step on how to implement a dataset reader:

1. Give the dataset a name (this name will be used in the configuration file).

2. Create a new enumeration type in ImplementedDatasetReaders. This enumeration

is linked to a name that allude to the dataset itself. It is suggested to insert a com-

ment in the ImplementedDatasetReaders file with the name created on step 1, in

front of the created type.

3. Create a class that extends DatasetReader and save it at "./src/datasetreader/"

4. Implement method DatasetReader.load_entries(). This method needs to return a

list() of resource entries, where each resource entry represents a group of informa-

tion in the dataset. The resource encapsulates the Python dictionary shown on File
3https://github.com/MauricioCarmelo/QuestionAnsweringSystem
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3.1. If the dataset does not have an information in particular, it is possible to leave

that value empty.

5. Adjust method BuilderDatasetReader.build_dataset_reader() to return the correct

class according to the recently created ImplementedDatasetReaders enum type.

6. Adjust method SettingsYAML.determine_reader_type() to return the reader type ac-

cordingly.

Method DatasetReader.load_entries() is particularly important because it is re-

sposible for reading all the information related to the dataset and stored it in different

resource entries.Each resource entry is an instance of class ResourceEntry, that can be

found on QuestionAnsweringSystem/src/ResourceEntry.py.

For more details on how to implement another dataset reader, please refer to this

documentation 4.

3.3.2 Implement another task and/or technique

An instance of a Task is the place where the technique runs. Step by step on how

to implement a task:

1. Give the task a name (this name will be used in the configuration file).

2. Create a class that extends Task and save it at "./src/tasks/".

3. Implement the abstract method Task.run() that returns a list with the results gener-

ated by the task for every resource entry that the technique were applied.

4. Adjust method Simulation.__build_task() by adding a new condition in order to

return the correct class according to the task name.

An instance of a technique is where the information of each ResourceEntry is

processed, generating a result that will be stored on the ResourceEntry itself. Step by step

on how to implement a technique:

1. Give your technique a name (this name will be used in the configuration file).

2. Create a class that extends Technique and save it at "./src/tasks/".
4https://github.com/MauricioCarmelo/QuestionAnsweringSystem/blob/main/docs/implement_dataset_reader.md
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3. Implement the abstract method Technique.run() that returns a list with the results

generated by the technique for every resource entry that the technique were applied.

4. Adjust method Task.build_technique() by adding a new condition in order to return

the correct class according to the technique name.

5. It is possible to override methods Technique.setup(), Technique.train() and Task.validate()

to perform more complex operations, including the usage of Machine Learning

(ML).

For more information on how to implement another task and/or technique, please

refer to the documentation available in the tool repository 5.

5https://github.com/MauricioCarmelo/QuestionAnsweringSystem/blob/main/docs/implement_task_and_technique.md
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4 TESTS AND EXPERIMENTS

This chapter presents two experiments that were conducted with the aim of test-

ing the ease of extending the tool. The first experiment consists of testing a question

classification approach varying the number of tasks in the pipeline. It was necessary to

implement a new dataset reader and two techniques. The second experiment focuses on

testing an information retrieval technique using Elasticsearch. It was implemented a new

dataset reader and one technique.

During the development, others tests were carried out in relation to the functioning

of the system and the steps necessary to create a new dataset reader and other techniques.

Currently, there is no technique related to answer processing implemented. This is sug-

gested as an approach for future work.

4.1 Question Classification test

The first experiment consists in testing a question classification technique along-

side two important features of the tool: concatenating more than one task in the pipeline

and filtering undesirable lines of the dataset. It is intended to show how the final re-

sult of the collected metrics can change with simple changes in the configuration files

pipeline.yaml and datasets.yaml.

This test encompasses the execution of four simulations, as below:

A Raw dataset (without filtering); raw question texts (original question text).

B Raw dataset; removing stop words (definition on section 2.2.1) from questions.

C Filtering questions whose answer type is equal to "OTHER"; raw question texts.

D Filtering questions whose answer type is equal to "OTHER"; removing stop words

from questions.

Note: The complete code and configuration files used in simulation D can be

found in the Github repository, branch TCC_TEST_1_SIM_D 1.

1https://github.com/MauricioCarmelo/QuestionAnsweringSystem/tree/TCC_TEST_1_SIM_D
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4.1.1 Load the dataset

It was decided to use dataset UIUC (LI; ROTH, 2002) in this experiment. This

collection provides 5957 questions and their answer type. Also, there are 2740 ques-

tions whose answer type was normalized to "OTHER"; these questions are particularly

interesting to be filtered out from the dataset before classifying it.

To successfully load the information from UIUC dataset it was necessary to fol-

lowing the steps mentioned on section 3.3.1. Once the name that allures to the dataset was

given (UIUC) and the enumeration type created on class ImplementedDatasetReaders, it

was created class DatasetReaderUIUC 2 that extends class DatasetReader. This class

is responsible for reading the information from the files made available by the dataset

creators and putting all relavant data into resource entry 3 objects.

Then, after adjust on methods BuilderDatasetReader.build_dataset_reader() and

SettingsYAML.determine_reader_type() to take into consideration the new dataset reader,

a Resource containing the data from dataset UIUC can be used by the simulation simply

by adding the configuration shown on Files A.1 and A.2.

To execute a simulation with all questions from the dataset, it was used the config-

uration shown on File A.1. This configuration indicates the usage of 5 folds (re-shuffling

and splitting iterations) and that, in each iteration, 40% of the dataset should be included

in the test split. In order to configure the filtering of all questions whose answer type is

equal to "OTHER", it was simply necessary to add tag filter into the configuration of the

dataset (File A.2) and specify the resource entry field that should be taken into account

while filtering.

4.1.2 Prepare the techniques

For classifying the questions, it was created class TechniqueLinearSVCQuestion-

Classification that extends Technique, according to the instructions described in section

3.3.2. It was used the Linear Support Vector Classification (SVC) 4 function, available in

the sklearn 5 package.

This technique implements the train() function to train a model with the questions

2https://github.com/MauricioCarmelo/QuestionAnsweringSystem/blob/main/src/datasetreader/DatasetReaderUIUC.py
3https://github.com/MauricioCarmelo/QuestionAnsweringSystem/blob/main/src/ResourceEntry.py
4https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
5https://scikit-learn.org/stable/index.html
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from the train set. To train a model within the technique’s class, the user simply has to

extend function train from class Technique. There is also function setup() that can be

implemented in order to prepare the environment for training, as the following:
File 4.1: setup function implemented in the Technique’s child class

1 self.model = LinearSVC()

2 self.vectorizer = TfidfVectorizer()

It was used variations in the input to train and test the technique with question texts

as provided by the dataset (raw questions) and question texts without the stop words.

In order to remove the stop words from the questions, it was necessary to add a new

technique in the beginning of the pipeline (configuration shown in File A.5). For this

purpose, it was implemented a technique that uses package nltk 6 to download the stop

words, available in many languages, including Portuguese and English.

4.1.3 Collect metrics

The results from simulation A (result File B.1), simulation B (result File B.2), sim-

ulation C (result File B.1) and simulation D (result File B.4) listed in Appendix B show

that filtering the questions increased the score of all metrics. This was expected because

removing questions without a defined answer type creates more robust training and test

sets. However, removing the stop words from questions had a negative impact in the over-

all results. This happened because removing stop words deliberately can oversimplify a

question, causing it to lose context (as shown on Figure 4.1). Table 4.1 shows the average

values and Figure 4.2 illustrates the collected metrics f1_score, precision, accuracy and

recall for all four simulations.

6https://www.nltk.org/
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Figure 4.1: Question too simple after removing stop words.

Source: The Authors

Table 4.1: Average values of the simulations.

f1_score precision accuracy recall

Simulation A 0.871102404 0.878193141 0.87167436 0.868308725

Simulation B 0.805339751 0.800393504 0.779101972 0.826190875

Simulation C 0.912408646 0.916526591 0.918259518 0.910536184

Simulation D 0.950476693 0.952957884 0.949339549 0.948571752
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Figure 4.2: Result values of the simulations.

Source: The Authors

4.2 Information Retrieval test with Elasticsearch

The second experiment focuses on testing an IR technique mentioned in the end

of section 2.2.1, where it is created an IR module that extensively uses Elasticsearch to

retrieve relevant documents from a knowledge base.

Labs (2020) presents an information retrieval module that uses Elasticsearch7 to

implement a technique based on a component called Retriever. Elasticsearch can be used

as a powerful IR tool to scrub large amount of text files and documents. The Retriever,

as its name suggests, retrieves potentially relevant documents from a source of informa-

tion and rank them according to a relevance score, calculated by Elasticsearch match

function, which uses a technique call search time analysis to query the text.

The instructions given by Labs (2020) were adapted to fit into the system presented

in this article. The next sections describe in details how this details how this was done. It

is intended to show how easy it is to use the system alongside other tools.

7https://www.elastic.co/



34

4.2.1 Load the dataset

Dataset SQUAD (RAJPURKAR et al., 2016), provides a great number of ques-

tions and raw text that this experiments requires. The text that might contain the answers

to the questions are available in the dataset files dev-v2.0.json and train-v2.0.json. Also,

for each question, there is a field with the correct answer.

To load the information it was created class DatasetReaderSQUAD that extends

DatasetReader. It was implemented both function load_entries() and load_articles() to

read, respectively, the question information that is encapsulated into resource entries and

the information related to the texts that might contain the answers to these questions.

For correct execution of the dataset reader, it was necessary to follow the instructions

mentioned in section 3.3.1.

4.2.2 Prepare the technique

This technique demands connection to Elasticseach tool to execute correctly. Method

setup() was used to establish connection on port 9200 and to create the index 8, an abstrac-

tion provided by Elasticsearch used to store text in a structure that allows efficient search.

Once the connection is established and the index created, method train() was used for

indexing data.

It was implemented class TechniqueRetrievalBasedInformationRetrieval that ex-

tends Technique. The model was populated with 20239 resource articles (text passages)

and tested with approximately 12000 questions. The output of this technique is a list with

10 (this value can be configured) relevant documents, ranked according to the likelihood

of containing the correct answer.

The excerpt on File 4.2 shows how the output result for the question "In what

country is Normandy located?", with list of document and its score:
File 4.2: Output result of technique TechniqueRetrievalBasedInformationRetrieval

1 result = [

2 ('United_Nations_Population_Fund_17', 11.242065),

3 ('Republic_of_the_Congo_22', 10.654305),

4 ('Normans_14', 10.616264),

5 ('Republic_of_the_Congo_24', 10.169264),

6 ('Central_African_Republic_15', 10.161721),

7 ('Raleigh,_North_Carolina_15', 9.984276),

8https://codingexplained.com/coding/elasticsearch/understanding-the-inverted-index-in-elasticsearch
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8 ('Tucson,_Arizona_19', 9.836688),

9 ('Middle_Ages_35', 9.64839),

10 ('Middle_Ages_49', 9.511383),

11 ('Normans_30', 9.229682)

12 ]

4.2.3 Collect metrics

To evaluate an IR technique and collect metrics, it was implemented a new eval-

uation method, called DocumentRanking. This Evaluator passes through all the resource

entries and checks if the correct answer can be found in each one of the documented that

were ranked as relevant by the technique. Note that in order to do this it is required that

the dataset provides the correct answer for comparison purposes.

This evaluator calculates the mean average precision and recall. Recall indicates

the correct answer is present in any of the retrieved documents and mean average precision

indicates the presence of the answer in the retrieved documents taking into account the

ranking position of the list, for example, an output where the correct answer is in the

top-most document has a higher mean average precision than an output where the correct

answer is only in the last document ranked by the technique.

This experiment return the CSV file B.5. Table 4.2 describes these results.

Table 4.2: Results of the experiment.

Mean Average Precision 0.885

Recall 0.959
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5 CONCLUSION

This work proposes the modeling of a base system for carrying out experiments

in the area of QA. The main objective is to facilitate the performance of benchmark tests

in the stages of Question Processing, Information Retrieval and Answer Processing. The

main idea was to make the system as generic and extensible as possible.

The user has at his disposal a configuration file where they can determine the tasks

and the order in which they will be executed in the pipeline. In addition, there are specific

classes that can have their behavior inherited by others to implement new techniques,

tasks, data set readers, and evaluation metrics. Therefore, if someone wants to use a data

set or an unsupported technique, that person simply contributes to the project following

steps specified in the documentation.

There are straightforward instructions on how the user can contribute in the tool

repository, as well as a documentation on how to set up a pipeline of techniques.

With this work, we hope to make the preparation and execution of experiments

in the field of QA as simple as possible, removing from the scientist the need to produce

non-reusable code.

As an output of this work we had a demonstration paper 1 accepted in the 15th In-

ternational Conference on the Computational Processing of Portuguese (PROPOR) 2022
2. The event took place remotely and was based in the city of Fortaleza, in Brazil.

5.1 Limitations of the tool

Like most software tools, development is a never-ending process due to features

that can be included and bugs that need to be fixed and found. Below, a list of known bugs

and require fix and future enhancements that can make the tool more efficient and robust.

Also, it is presented a few ideas for future features that would make this tool better and

more user friendly.

1https://sites.universidadedefortaleza.com/propor2022/?page_id=177
2https://sites.universidadedefortaleza.com/propor2022/
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5.1.1 Known bugs and enhancements

– Enhance the way the techniques access the input field when the technique receives

as input the output of a previous one. It is necessary to standardize this because

currently a lot is in the hands of the programmer.

– Support more datasets; there are many other datasets available.

– Implement a technique related to Answer Processing.

– Currently the result report is being generated with repeated header. The column

names should be only in the top of the file.

– Evaluate what other information may be relevant to the user and print it in the result

report.

5.1.2 Ideas for future features

– Create a graphical interface so the user can manipulate the modules and create the

pipeline in a more friendly way.

– Some datasets cannot be fully loaded during runtime. In this situation, it would

be necessary to change the simulation process to parse the dataset in parts. This

feature requires a major change in the system.
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APPENDIX A — CONFIGURATION FILES

File A.1: Configuration of dataset UIUC.
1 dataset:

2 name: "UIUC"

3 reader_type: "UIUC"

4 path: "datasets/UIUC/UIUC_pt"

5 dataset_setup:

6 type: "cross-validation"

7 folds_splitter: "shuffle-split"

8 folds: 5

9 test_size: 0.4

10 random_state: 0

File A.2: Configuration of dataset UIUC with filter.

1 dataset:

2 name: "UIUC"

3 reader_type: "UIUC"

4 path: "datasets/UIUC/UIUC_pt"

5 dataset_setup:

6 type: "cross-validation"

7 folds_splitter: "shuffle-split"

8 folds: 5

9 test_size: 0.4

10 random_state: 0

11 filter:

12 answer_type: 'OTHER'

File A.3: Configuration of dataset SQUAD.

1 dataset:

2 name: "SQUAD"

3 reader_type: "SQUAD"

4 path: "datasets/SQUAD/"

5 dataset_setup:

6 type: "fixed-split"
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File A.4: Configuring a pipeline with only one task.

1 task:

2 id: 0

3 ignore: false

4 name: "answer_type_classification"

5 technique: "LinearSVCQuestionClassification"

6 predicts:

7 predict_train: false

8 predict_dev: false

9 predict_test: true

10 used_datasets:

11 - used_dataset:

12 name: "UIUC"

13 input_fields:

14 evaluation:

15 should_evaluate: true

16 type: "ValueComparison"

17 set_usage:

18 evaluate_train: false

19 evaluate_dev: false

20 evaluate_test: true

21 fields:

22 answer_type: "result_task_0"

23 metrics:

24 f1_score:

25 average: "macro"

26 precision:

27 average: "macro"

28 accuracy:

29 -

30 recall:

31 average: "macro"

32 generated_result: "result_task_0"
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File A.5: Configuration of a pipeline with 2 tasks.

1 task:

2 id: 0

3 ignore: false

4 name: "generate_query"

5 technique: "nltkTokenizerWithoutStopWords"

6 predicts:

7 predict_train: true

8 predict_dev: false

9 predict_test: true

10 used_datasets:

11 - used_dataset:

12 name: "UIUC"

13 input_fields:

14 evaluation:

15 should_evaluate: false

16 generated_result: "result_task_0"

17 ---

18 task:

19 id: 1

20 ignore: false

21 name: "answer_type_classification"

22 technique: "LinearSVCQuestionClassification"

23 predicts:

24 predict_train: false

25 predict_dev: false

26 predict_test: true

27 used_datasets:

28 - used_dataset:

29 name: "UIUC"

30 input_fields:

31 question: "result_task_0"

32 evaluation:

33 should_evaluate: true

34 type: "ValueComparison"

35 set_usage:

36 evaluate_train: false

37 evaluate_dev: false

38 evaluate_test: true

39 fields:

40 answer_type: "result_task_1"

41 metrics:

42 f1_score:

43 average: "macro"

44 precision:

45 average: "macro"

46 accuracy:

47 -

48 recall:

49 average: "macro"

50 generated_result: "result_task_1"
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APPENDIX B — EXPERIMENTS’ RESULTS

File B.1: Result of Experiment 1 Simulation A
1 task_id,dataset_name,fold,result_type,value

2 0,UIUC,0,f1_score,0.8780717744181242

3 0,UIUC,0,precision,0.875514418554672

4 0,UIUC,0,accuracy,0.8778850188837599

5 0,UIUC,0,recall,0.8852969524362029

6 0,UIUC,1,f1_score,0.8668528502361008

7 0,UIUC,1,precision,0.877628757616481

8 0,UIUC,1,accuracy,0.8699118757868234

9 0,UIUC,1,recall,0.85963822000068

10 0,UIUC,2,f1_score,0.8672357566197219

11 0,UIUC,2,precision,0.8753865759740579

12 0,UIUC,2,accuracy,0.8652958455728074

13 0,UIUC,2,recall,0.8651638571523348

14 0,UIUC,3,f1_score,0.8757981444745202

15 0,UIUC,3,precision,0.880433401428386

16 0,UIUC,3,accuracy,0.878304657994125

17 0,UIUC,3,recall,0.8751931743398572

18 0,UIUC,4,f1_score,0.8675534924529895

19 0,UIUC,4,precision,0.8820025508909113

20 0,UIUC,4,accuracy,0.8669744020142677

21 0,UIUC,4,recall,0.8562514222386997

File B.2: Result of Experiment 1 Simulation B

1 task_id,dataset_name,fold,result_type,value

2 0,UIUC,0,f1_score,0.8157831018708528

3 0,UIUC,0,precision,0.8008905925457865

4 0,UIUC,0,accuracy,0.789760805707092

5 0,UIUC,0,recall,0.8446787974820452

6 0,UIUC,1,f1_score,0.7998169177615756

7 0,UIUC,1,precision,0.7947934862565808

8 0,UIUC,1,accuracy,0.7771716323961393

9 0,UIUC,1,recall,0.8221157980686306

10 0,UIUC,2,f1_score,0.7980786517320381

11 0,UIUC,2,precision,0.7947888316062037

12 0,UIUC,2,accuracy,0.7700377675199328

13 0,UIUC,2,recall,0.8193893495136292

14 0,UIUC,3,f1_score,0.7991089890131446

15 0,UIUC,3,precision,0.7959265495100449

16 0,UIUC,3,accuracy,0.766261015526647

17 0,UIUC,3,recall,0.822395119883811

18 0,UIUC,4,f1_score,0.813911092475849

19 0,UIUC,4,precision,0.8155680619493116

20 0,UIUC,4,accuracy,0.7922786403692824

21 0,UIUC,4,recall,0.8223753123531425

File B.3: Result of Experiment 1 Simulation C

1 task_id,dataset_name,fold,result_type,value

2 0,UIUC,0,f1_score,0.8894496183259248
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3 0,UIUC,0,precision,0.9062219994273688

4 0,UIUC,0,accuracy,0.8966588966588966

5 0,UIUC,0,recall,0.8773011434639553

6 0,UIUC,1,f1_score,0.9195885943828314

7 0,UIUC,1,precision,0.9131348054124815

8 0,UIUC,1,accuracy,0.9254079254079254

9 0,UIUC,1,recall,0.9275145038125991

10 0,UIUC,2,f1_score,0.9173495614459375

11 0,UIUC,2,precision,0.9187259991781268

12 0,UIUC,2,accuracy,0.9168609168609169

13 0,UIUC,2,recall,0.917799901950683

14 0,UIUC,3,f1_score,0.9101478268530271

15 0,UIUC,3,precision,0.9192208111826058

16 0,UIUC,3,accuracy,0.9207459207459208

17 0,UIUC,3,recall,0.9033396057506865

18 0,UIUC,4,f1_score,0.9255076277705744

19 0,UIUC,4,precision,0.9253293404589564

20 0,UIUC,4,accuracy,0.9316239316239316

21 0,UIUC,4,recall,0.9267257640589098

File B.4: Result of Experiment 1 Simulation D

1 task_id,dataset_name,fold,result_type,value

2 1,UIUC,0,f1_score,0.942237416477633

3 1,UIUC,0,precision,0.9507238554425526

4 1,UIUC,0,accuracy,0.9440559440559441

5 1,UIUC,0,recall,0.934579819550681

6 1,UIUC,1,f1_score,0.9517274808794434

7 1,UIUC,1,precision,0.9489976215652123

8 1,UIUC,1,accuracy,0.9518259518259519

9 1,UIUC,1,recall,0.954729635190267

10 1,UIUC,2,f1_score,0.9557658792589085

11 1,UIUC,2,precision,0.9551860355130598

12 1,UIUC,2,accuracy,0.9533799533799534

13 1,UIUC,2,recall,0.9564923701459507

14 1,UIUC,3,f1_score,0.9459738441046402

15 1,UIUC,3,precision,0.9526744541376271

16 1,UIUC,3,accuracy,0.9440559440559441

17 1,UIUC,3,recall,0.9408790119289435

18 1,UIUC,4,f1_score,0.9566788451628216

19 1,UIUC,4,precision,0.9572074551745832

20 1,UIUC,4,accuracy,0.9533799533799534

21 1,UIUC,4,recall,0.9561779221083334

File B.5: Result of Experiment 2

1 task_id,dataset_name,fold,result_type,value

2 0,SQUAD,0,recall,0.9599090373115472

3 0,SQUAD,0,mean_average_precision,0.8849688735286485
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