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Abstract

n-GaN/ AIN heterostructures were grown by molecular beam epitaxy on Si(111) substrates.The GaN
films were n-type doped with silicon and the effect of doping concentration on the structural and
optical properties was studied. Si doping promotes a reduction of dislocation density as revealed by
x-ray data analysis and Transmission Electron Microscopy. Furthermore, a decrease in the yellow
band measured by Photoluminescence Spectroscopy was observed when silicon doping concentration
was increased up to 1.7 x 10" atoms cm . A particular mosaic structure was induced by the Si-
doping as inferred from Rutherford Backscattering measurements. The crystal quality shows a small
degradation for very heavily doped samples (1.3 x 10** atoms cm ™).

1. Introduction

The growth of ITI-N semiconductors has made great progress in recent years, however, studies are still required
in areas such as heteroepitaxy [ 1], doping [2] and nanostructuring [3, 4]. In particular, the heteroepitaxy of GaN
on Siis the fundamental basis for a variety of important electronic devices [ 1]. The large mismatch in lattice
constants and thermal expansion coefficients between GaN and Si result in a very high density of crystal defects
that strongly degrade devices performance. For this reason, the study of growth mechanisms and processes that
improve the GaN epitaxial quality is a subject of current interest [5]. Early in the 90’s, Watanabe et al proposed
the use of an AIN intermediate layer to avoid the formation of amorphous SiN at the GaN/Si interface due to the
strong chemical reactivity between Siand N [6]. On the other hand, silicon is the preferred element for GaN
n-type doping, the effects of Si on optical and structural properties have been widely studied [7-11]. It was
reported that at low doping levels Si tends to deteriorate the optical and structural properties of GaN [9, 10].
However, this result has been the subject of controversy [ 10, 11], which becomes more important at high Si
concentrations [12]. Sanchez et al reported the effect of high silicon doping exhibiting an improvement in crystal
quality by reducing the dislocation density as Si doping increases from 10" to 6 x 10'® cm™>[13]. In this work
we have studied the optical and structural properties of n-GaN/AIN/Si heterostructures, aiming to contribute
to the understanding of the effects of Si doping of GaN, in particular in the heavily doped regime (10'*~10%° Si-
atoms cm ).

© 2022 The Author(s). Published by IOP Publishing Ltd
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Table 1. Silicon concentrations, lattice constant values, and dislocation densities obtained in the samples.

Siconcentration atoms FWHM omega Screw dislocation density
Sample cm ™ cconstant (&)  aconstant (&) (degrees) (cm™?)
S1 3.2 x 10'® 5.1847 3.1892 0.8 1.66 x 10"
S2 6.1 x 10'® 5.1869 3.1886 0.44 5.08 x 10°
S3 1.7 x 10" 5.1866 3.1887 0.37 3.57 x 10°
S4 1.3 x 10%° 5.1851 3.1891 0.46 5.57 x 10°
2. Experimental

The heterostructures were grown in a Riber C21 molecular beam epitaxy (MBE) system. Si(111) substrates were
chemically cleaned employing the Ishizaka and Shiraki method [14]. In order to desorb surface oxides, the
substrates were annealed at 900 °C. After this, the substrate temperature was decreased to 750 °C, at this
temperature, the 7 x 7 surface reconstruction was monitored by Reflection High-Energy Electron Diffraction
(RHEED). In order to avoid the degradation of the Si substrate by the exposition to nitrogen [6], a metallization
of the Si surface was performed with an aluminum layer (~5 monolayers) deposited at 850 °C. After this process,
an AIN layer was grown at 850 °C with a nominal thickness of 30 nm. Active N flux was provided by RF-plasma
source operated at 150W with N, flow of 0.25 sccm. The ratio of III /N fluxes was higher than one to ensure a
metallic rich growth condition that leads to a smoother surface [15]. GaN layers with thickness of 1.4 yum were
grown and doped with different silicon concentrations by varying the temperature of the silicon effusion cell.

The Si doping levels in the samples were examined by Secondary Ion Mass Spectroscopy (SIMS) employing a
magnetic sector spectrometer Cameca ims-6f to analyze the silicon distribution through the samples. We
obtained Si concentrations in the range of 3.2 x 10%¥t01.3 x 10*°atomscm >, as presented in table 1. The
GaN structural analysis was performed by High Resolution x-ray Diffraction (HRXRD) w—26 scans and rocking
curves using a Panalytical X’pert Pro diffractometer. Samples for cross-sectional- and plan-view transmission
electron microscopy (TEM) studies, were prepared by focused ion beam (FIB). Raman Spectroscopy technique
was employed with a Thermo Scientific Raman Microscope model DXR. Backscattering configuration was used
with a 20x objective and 532 nm wavelength with 1 mW power. Rutherford back scattering (RBS) measurements
were performed in the Tandetron accelerator of the Physics Institute of the Universidade Federal do Rio Grande
do Sul using the beamline of 3.035 MeV (a-particles). The composition, stoichiometry and thickness of the
samples were determined from the RBS spectra analysis by using the SIMNRA code [16]. In all cases the reduced
quadratic deviation, x * per channel, between experimental data and simulation was kept below 5 as it is
considered an indication of acceptable simulation for RBS. Surface roughness was taking into consideration as
usually, simulating the tails of the corresponding plateaus in the RBS spectra.

3. Results and discussion

Figure 1 shows the variation of the GaN lattice parameters (a and ¢) calculated from HRXRD as a function of Si
doping concentration. The ¢ parameter was obtained directly from the (0002) plane reflection, while the a lattice
constant was obtained through the asymmetric (1011) plane [17]. From the obtained a and ¢ values (table 1), we
observe that the samples suffer from residual strain. The c¢/a ratio approached the ideal value (1.63 in a hcp
structure) for samples S2 and S3 (c/a = 1.626) with a Si concentration of 6.1 x 10'®and 1.7 x 10" atomscm 7,
respectively, as we will show sample S3 presented the best optical and structural properties. The densities of
screw dislocations were calculated using the method described in ref. [18]. The minimum of dislocation density
was obtained for S3, as can be seen in table 1.

The inset in figure 1 shows the full width at half maximum (FWHM) for rocking curves of the GaN(0002)
reflection. These measurements showed a positive effect on the crystalline quality of the GaN layer as the silicon
concentration was increased. The sample S1 with the lower silicon concentration exhibited the worst crystalline
quality, the FWHM dropped for higher Si concentrations up to 1.7 x 10'? cm ™. The crystal quality was slightly
degraded for the sample S4 with a Si doping of 1.3 x 10*° cm >, as evidenced by a small increase of the FWHM
of the rocking curves.

Sénchez et al [19] from a High Resolution Electron Microscopy study concluded that the Si doping produces
adecrease of the threading dislocation density but also leads to an increase of planar defect density. The Si
doping affects both the grain size and misorientation in GaN. The increase in the tilt of GaN grains and in the
planar defect density could be the cause of the reduction in dislocation density in GaN doped with Si[19].

We analyzed our samples by scanning transmission electron microscopy (STEM) to observe the effects of
silicon doping on crystal structure. In figure 2 we present cross-section STEM images corresponding to samples
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Figure 1. (a) and (c) lattice constants measured by HRXRD as a function of Si concentration. Inset shows the FWHM of the GaN
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cm 2, respectively.

Figure 2. STEM and SEM images (insets) for samples: (a) S1 and (b) S3 with silicon concentration of 3.2 x 10"®*cm *and 1.7 x 10"

S1and S3, the insets show the corresponding surface images by scanning electron microscopy (SEM). In order to
clarify the crystallographic orientation relationship between GaN and Si substrate, selected area electron
diffraction (SAED) patterns were collected at different positions of samples. Figure 3 shows SAED patterns
registered at (a) the GaN film, (b) the interface between substrate and epilayer, where the epitaxial relationship is
presented, and (c) the substrate, as a reference. From the cross-sectional STEM images of figure 2 we confirm a
large reduction of the density of dislocations for sample S3. Moreover, the formation of a mosaic structure is
clearly observed in the SEM image of the inset in figure 2(b). As we will show below, the particular orientation of
the columnar grains that compose this mosaic structure has a strong impact on the behavior of RBS spectra.

In wurtzite-type GaN films there are three types of Burgers vectors of perfect dislocations: i) a = 1/3(1120),
ii) ¢ = (0001) andiii) a + ¢ = 1/3(1123). The dislocations associated with these Burgers vectors are: (i) edge
dislocations (type A), (ii) screw dislocations (type B), and (iii) mixed dislocations (type C). The propagation of
edge dislocations takes place on planes of the type {1100}. These dislocations can have sixa = 1/3(1120)
equivalent Burgers vectors. In order to image the edge type dislocations, weak beam (WB) planar view TEM

(PVTEM) images were collected along the [0001] zone axis and the two beam conditions.

The SAED pattern collected along the [0001] zone axis is presented in figures 4(a), and (b) is the PVTEM
image showing edge type dislocations for sample S1. The edge dislocations measured from the PVTEM image,
figure 4(c), gives 1.2 x 10"" dislocations cm 2. That is, the number density of edge type dislocations is one order
of magnitude larger compared to that of screw type dislocations obtained by HRXRD.

Figure 5 shows the RBS spectra corresponding to (a) a non-intentionally doped GaN/AIN/Si(111) sample
and (b) the sample S3, obtained with 3.035 MeV «-particles incident beam. In these conditions, nitrogen signal
is practically no detectable due to the low atomic mass of N (spectra acquired for both samples with a proton

3
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S1, (b) PVTEM image employed to count (c) the edge type dislocations.
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Figure 6. (a) Micro-Raman spectra of the samples and (b) Awg,, FWHM and normalized E2 (high) intensity of Raman spectra.

beam, in which the N signal is enhanced, are presented at the supplementary information). For the spectra
simulation, we consider that all the N atoms are forming GaN; then, a stoichiometric amount of that element
with respect to Ga was considered. In principle, for the Si-doped sample the amount of the Si dopant is too small
to expect an appreciable contribution to the RBS spectrum. The surface signal positions for Ga, O and Si
(coming from the Si substrate and considerably shifted to lower energies due to the large thickness of the GaN
film) are indicated by arrows. The Al signal coming from the buffer layer, also shifted to lower energies, it is
overlapped with the much larger silicon signal. The small oxygen signal corresponds to the expected surface
oxidation in samples exposed to air and was fitted as Ga oxide.

We observe that the fitting reproduces very well the spectrum in figure 5(a), however for the Si-doped sample
there is a strong decrease in the Ga signal with increasing energy, which was not possible to fit considering an
arbitrarily oriented crystal. This is the expected behavior for spectra acquired at partial channeling conditions
[20]. However, is important to note that the sample was not intentionally positioned at channeling conditions.
The channeling-like spectra can be explained considering that the columnar grains have a random distribution
of small tilt angles, such that at a given arbitrary RBS measurement there is a considerable number of columnar
grains aligned at channeling condition producing the characteristic spectra in figure 5(b).

Additional structural characterization was carried out using micro-Raman technique, which was performed
atroom temperature (RT). In figure 6, we show the Raman spectra of the samples.

The strongest signal is associated with the silicon substrate, which is located at 520 cm ™. All spectra have
been normalized to the substrate signal. At 567 cm ™' (dotted vertical line), we found the E2 (high) mode signal of
GaN [21]. In figure 6(b), we present the shift Awg, , the FWHM and the normalized intensity of the E2(high)
peak as a function of silicon concentration. We observe that the FWHM of the E2 mode decreases and its
intensity increases with the amount of Si, presenting a minimum FWHM- and a maximum intensity for sample
S3. As for Awg,, all the samples presented red-shifts in the E2(high) peak position, which are associated with
lattice tensile stress [22]. The sample S1 (with Si-doping in the order of 10'® atoms cm %) has the largest red-shift
of —1.85cm ™!, corresponding to a tensile stress of 0.63 GPa, as calculated by the method described by
Kisielowski et al [23]. For the samples with the highest Si-doping (S3 and S4) the tensile stress decreases to 0.35
GPa. The tensile stress is expected to affect GaN optical properties.

Photoluminescence spectroscopy (PL) for the samples was performed at room temperature employing a
HeCdlaser (325 nm). The PL spectra are shown in figure 7, we observe a yellow band emission (see inset in the
figure) for the doped samples in the order of 10'® atoms cm ™ (S1, S2), this band disappears for samples (S3, S4)
with doping higher than 10" atoms cm ™. We relate the yellow emission mitigation with the reduction of
dislocation density [24]. Besides, for all the samples the most intense PL peak is red-shifted compared to the
300K-GaN band gap energy of 3.4 eV. Impurity related emissions, like donors to acceptors transitions could
contribute to the PL red-shift [25]. However, is important to note that at heavy doping concentration, in
addition to stress, other phenomena such as: band gap renormalization (BGR) and Burstein-Moss shift (BMS),
affect the band gap energy value [12, 26].

4, Conclusions

We performed a study of the structural and optical properties of n-GaN/AIN/Si(111) heterostructures with a
high n-GaN doping in the range of 3.2 x 10'®to 1.3 x 10 Si-atoms cm . As the results, GaN crystal quality
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Figure 7. PL spectra at room temperature as a function of silicon concentration.

increased with the silicon doping, the best crystal quality was obtained for a Si concentration of 1.7 x 10" atoms
cm . The Si-doped samples presented a channeling-like RBS spectrum which was explained by the mosaic
structure produced by columnar grains with a random distribution of tilt angles. Increasing the doping
concentrationupto 1.3 x 10°atoms cm > produces a small degradation of the GaN structural- and optical
properties as evaluated by XRD, TEM, Raman spectroscopy and PL.
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