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Abstract

In broad terms, compact stars are astrophysical objects that are stabilized by the pressure of de-
generate matter. Driven by the rising gravitational-wave era in astronomy we can find a renewed interest in
theoretical scenarios where new classes of highly compact objects could emerge. Recently a generalization
of the Tolman-Oppenheimer-Volkoff (TOV) equation has been proposed by analyzing the hydrostatic equi-
librium through a framework known as semiclassical gravity, a minimal extension of general relativity that
incorporates the quantum behavior of matter but still treats gravity classically. In this work some models for
highly dense matter available in the literature are revisited by applying the semiclassical picture for stellar
equilibrium. In particular, the goal is to verify the possibility of achieving ultracompact solutions, a class
of hypothetical compact stars where the stellar radius is less than one and a half times the Schwarzschild
radius. The extreme gravity of such bodies provide them a distinctive feature in comparison to regular com-
pact stars, namely, ultracompact stars exhibit circular photon orbits called photon spheres. Although the
quantum corrections furnished by semiclassical gravity are negligible in most scenarios, for ultracompact
configurations where the star is not much larger than its gravitational radius such effects may be relevant.
Since any object that undergoes complete gravitational collapse passes through an ultracompact phase, the
semiclassical corrections can create a midterm solution between regular compact stars and black holes.
Distinct models indicate a considerable increase of the compactness parameter when semiclassical gravity
is considered, motivating future studies.
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Resumo

Em termos gerais, estrelas compactas são objetos astrofı́sicos que são estabilizados pela pressão
da matéria degenerada. Impulsionado pelo surgimento da era das ondas gravitacionais na astronomia
podemos observar um interesse renovado em cenários teóricos nos quais novas classes de objetos alta-
mente compactos podem emergir. Recentemente, uma generalização da equação de Tolman-Oppenheimer-
Volkoff (TOV) foi proposta analisando o equilı́brio hidrostático através de um formalismo conhecido
como gravitação semiclássica, uma extensão mı́nima da relatividade geral que incorpora o comportamento
quântico da matéria, mas que ainda trata a gravidade classicamente. Neste trabalho alguns modelos para
matéria altamente densa disponı́veis na literatura são revisitados aplicando a representação semiclássica
para o equilı́brio estelar. Em particular, o objetivo é verificar a possibilidade de alcançar soluções ultra-
compactas, uma classe de estrelas compactas hipotéticas onde o raio estelar é menor que uma vez e meia
o raio de Schwarzschild. A extrema gravidade de tais corpos fornece uma caracterı́stica distintiva em
comparação com estrelas compactas regulares, a saber, estrelas ultracompactas exibem órbitas circulares
de fótons chamadas de fotoesferas. Embora as correções quânticas fornecidas pela gravitação semiclássica
são desprezı́veis na maioria dos cenários, para configurações ultracompactas onde a estrela não é muito
maior que seu raio gravitacional tais efeitos podem ser relevantes. Tendo em vista que qualquer objeto que
passa por um colapso gravitacional completo passa por uma fase ultracompacta, as correções semiclássicas
podem criar uma solução intermediária entre estrelas compactas regulares e buracos negros. Modelos dis-
tintos indicam um aumento considerável do parâmetro de compacidade quando a gravitação semiclássica é
considerada, motivando estudos futuros.

Palavras-chave: Estrelas Ultracompactas, Gravitação Semiclássica, Relatividade Geral.



Resumo simplificado (Press Release)

Usualmente são considerados três destinos possı́veis para estrelas que chegaram ao final da sua
evolução: anãs brancas, estrelas de nêutrons e buracos negros. Esses objetos são denominados generica-
mente como objetos compactos, devido às suas enormes densidades. No entanto, a existência de outras
classes de objetos compactos não é proibida pela natureza. A descoberta das ondas gravitacionais renovou
o interesse em cenários teóricos nos quais novas classes de objetos compactos poderiam surgir. Conse-
quentemente, diversos modelos têm sido propostos ao longo dos anos como resultados alternativos para o
colapso de uma estrela massiva. Nesse contexto, o presente estudo dá enfoque a objetos denominados de
ultracompactos, uma classe de objetos com densidades situadas entre estrelas de nêutrons e buracos negros.

A Teoria da Relatividade Geral é o formalismo tradicionalmente adotado para estudar objetos as-
trofı́sicos que possuem campos gravitacionais intensos. Interessante observar que, após mais de um século
de existência, a teoria segue sem modificações. Apesar de seu enorme sucesso, trata-se de uma formulação
completamente clássica. Albert Einstein estava ciente que efeitos quânticos demandariam modificações
na sua teoria. Na tese, a busca por configurações ultracompactas é feita através de uma extensão mı́nima
da Relatividade Geral chamada de Gravitação Semiclássica, que incorpora o comportamento quântico da
matéria mas que ainda trata a gravidade classicamente. Por consequência, trata-se de uma aproximação.
Todavia o colapso de uma estrela parece ser um ambiente propı́cio para desencadear efeitos semiclássicos,
pois campos quânticos estão inseridos em um espaço-tempo curvo e espera-se que efeitos quânticos da
gravidade sejam desprezı́veis.

Vale a pena observar que o vácuo, sendo uma entidade dinâmica, gravita. Explorando esse as-
pecto, interessantes estudos têm apontado que efeitos associados ao vácuo quântico podem atuar como
ingredientes adicionais no colapso gravitacional, desempenhando um papel fundamental no equilı́brio es-
telar em certos cenários. Na Gravitação Semiclássica, as equações que descrevem o equilı́brio entre forças
atrativas e repulsivas em uma estrela são generalizadas, abrindo novas possibilidades. Na tese, alguns
modelos para matéria altamente densa disponı́veis na literatura são revisitados aplicando a representação
semiclássica para o equilı́brio estelar. Tais modelos foram propostos visando investigar se é possı́vel obter
soluções semiclássicas, com desvios significativos em relação a Relatividade Geral, capazes de produzir
objetos ultracompactos sem horizontes de eventos.



Na primeira abordagem, uma das primeiras avaliações numéricas do equilı́brio estelar semiclássico,
a matéria é descrita através de um modelo frequentemente adotado para modelar fases exóticas de matéria
bariônica. As soluções semiclássicas são mais compactas que aquelas obtidas adotando a Relatividade
Geral, sem alterar o perfil esperado para diversas quantidades fı́sicas como densidade de energia, pressão
e massa gravitacional. O segundo modelo é construı́do a partir da noção de estrela estranha, um tipo de
estrela hipotética composta inteiramente por quarks, sendo o cenário mais extremo para matéria de quarks
em estrelas compactas. Na proposta, essas estrelas estranhas são acrescidas de um ingrediente extra, com
pressão negativa, que é o responsável por carregar os efeitos semiclássicos. Nesse caso foi possı́vel identi-
ficar soluções capazes de satisfazer simultaneamente dados observacionais recentes e ainda assim produzir
soluções ultracompactas. Visando expandir os cenários explorados na tese, no terceiro modelo não é as-
sumida a igualdade entre as pressões radial e tangencial, isto é, considera-se um objeto composto por um
fluido imperfeito. Sistemas dessa categoria podem emergir, por exemplo, em transições de fase exóticas
passı́veis de ocorrer no colapso gravitacional de configurações altamente densas.

Se estrelas ultracompactas como as estudadas na tese realmente existem na natureza é algo que só
pode ser estabelecido mediante observações. Tais modelos podem soar excêntricos, todavia é interessante
lembrar que até a década de 60 do século XX, antes da descoberta de quasares e pulsares, essa era visão
geral diante de propostas como estrelas de nêutrons e buracos negros. Além disso, as ondas gravitacionais
estão fornecendo uma nova janela para olhar para o Universo. A descoberta de um objeto de 2.6 massas
solares tem aberto discussões, tendo em vista que a priori poderia ser tanto o buraco negro mais leve que
temos notı́cia, quanto a estrela nêutrons mais massiva. Não podemos ignorar, diante dos diversos modelos
de estrelas hipotéticas disponı́veis, a possibilidade de ser um representante de uma nova classe de estrelas
compactas.

Palavras-chave: Estrelas Ultracompactas, Gravitação Semiclássica, Relatividade Geral.
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Notation and Units

Throughout the text, unless explicitly specified, gravitational units where G = c = k = 1 will be adopted
[1]. In order to illustrate these units that can bring some confusion for an unfamiliar reader, consider for
example, the solar mass. First we observe that G = c = 1 implies

1 = 2.9979× 1010 cm s−1,

1 = 6.6720× 10−8 cm3 g−1s−2.

It follows that
1 g = 7.4237× 10−29 cm.

Since 1M⊙ = 1.989× 1033 g we obtain:

1M⊙ = 1.4766 km.

Important to notice that the compactness parameter, the ratio between mass and radius, is dimensionless.

However when expressing some numerical results, units frequently adopted in astrophysics are
employed. The main conversion factors, pressure and energy density, are given by [1]:

1 dyne cm−2 = 8.2601× 10−40 km−2,

1 g cm−3 = 7.4237× 10−19 km−2.

Therefore both pressure and energy density are expressed in inverse squared kilometers. Surprisingly these
units can offer some advantages, for instance, in the case of the energy density, when integrating a quantity
with this unity over the volume of a star, it expresses the mass in kilometers [1].

Regarding the metric signature, the (−,+,+,+) convention will be adopted simply because it
is generally much more convenient than the alternative choice (+,−,−,−) in the sense that it induces a
positive definite (rather than negative definite) metric on spacelike hypersurfaces [2].



Following the usual convention, components of contravariant vectors, usually called simply vec-
tors, are written upstairs. Components of covariant vectors are written downstairs [3]. The Einstein sum-
mation convention1 will be used all over the text: in an expression where the same index occurs twice, once
up once down, the summation symbol will be suppressed [4]. (In a fraction up in a denominator counts as
down in the numerator and vice versa). For example:

3∑
µ=0

AµA
µ = AµA

µ.

For the benefit of the reader we list below some mathematical symbols used in the text:

G Newton’s gravitational constant
c Speed of light
k Boltzmann constant
ℏ Reduced Planck constant
ρP Planck density
Λ Cosmological constant
M⊙ Solar mass
B Bag constant
m Gravitational mass
mS Strange quark mass
r Schwarzschild radial coordinate
R Stellar radius
M Stellar gravitational mass
C Compactness
ℓP “renormalized” Planck length
εS Saturation density of nuclear matter
∇ Covariant derivative
pµ Four-momentum components
Γµ
αβ Christoffel symbols
ds2 Line element
dΩ2 Angular line element on the 2-sphere
cs Speed of sound
λ Tidal deformability
Λ Dimensionless tidal deformability
RS Schwarzschild radius

1 Einstein said to a friend “I have made a great discovery in mathematics; I have suppressed the summation sign every time
that the summation must be made over an index which occurs twice...” [5].



b Impact parameter of the photon trajectory
p Isotropic pressure
pr Radial pressure
p⊥ Tangential pressure
ε Mass-energy density
uµ Four-velocity components
µ Chemical potential
∆ Gap parameter
T µν Energy-momentum tensor components
Gαβ Einstein tensor components
gαβ Metric tensor components
√
−g Square root of the determinant of the metric tensor

ηαβ Minkowski metric components
R Curvature scalar
Rµν Ricci tensor components
Rµναβ Riemann tensor components
Cµναβ Weyl tensor components
S Action
Lm Lagrangian density for the matter fields
⟨T̂µν⟩ Expectation value of the energy-momentum tensor components
δαβ Kronecker delta
Dq(t) Measure over all paths q(t)
∧ Wedge product
Θa Basis of 1-forms
ωa
b Connection forms

Ωa
b Curvature forms

□ d’Alembert operator
M Manifold
Mp Tangent space at point p of a manifold
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Chapter 1
Introduction

The history of compact stars dates back to 1844, when the German astronomer and mathematician Friedrich
Wilhelm Bessel discovered that Sirius, the brightest star in the night sky, was describing an elliptical orbit
[6]. Bessel thus conjectured that Sirius must be part of a binary system with an unknown companion.
Eighteen years later, Alvan Clark found the Sirius companion while testing a new telescope [6]. The
brightness of the object was orders of magnitude smaller, but the mass (deduced from the orbital period of
Sirius using Kepler’s Law) was about a solar mass (or half the mass of Sirius). Since stellar radiation can
be reasonably approximated by a black body, the faintness of the companion could be easily be explained
if the surface temperature of the companion was less than that of Sirius, in other words, the companion was
expected to be a red star, instead of being a white star like Sirius.

An intriguing moment came in 1914 after spectroscopy observations carried out by Walter Adams
showed that the surface temperature of the companion was roughly the same as that of Sirius, implying
that the mean density of the companion must be roughly a million grams per cubic centimetre [6]. The
confirmation that the Sirius companion was indeed small came through redshift measurements in 1925
[7]. This white dwarf seemed to defy comprehension, but sometimes such scenarios can lead to major
breakthroughs in theoretical physics, or as Sir Arthur Eddington said: “The white dwarf appears to be the
happy hunting ground for the most revolutionary developments of theoretical physics”[8].

The dilemma was solved in 1926 by Ralph Fowler through the brand new Fermi-Dirac statistics2,
in a paper called dense matter. Fowler’s idea was that, differently from regular stars where stabilization

is acquired through thermal pressure induced by nuclear reactions, in a highly dense star such as a white
dwarf, gravity is balanced by an electron pressure of quantum mechanical origin called degeneracy pres-
sure. This effect emerges from the Pauli exclusion principle, which dictates that a particle must occupy

2 Dirac was one of Fowler’s students when he derived the Fermi-Dirac distribution [6].
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a different quantum state from the others. So as compression increases the electrons are pushed closed
to each other and this decreases the de Broglie wavelength and, equivalently, increases the kinetic energy,
opposing compression [9]. It is remarkable to notice that the first application of a quantum principle was
to solve an astrophysics problem, leading to a major breakthrough in our understanding about the stellar
structure. Developing further Fowler’s ideas, a maximum mass for white dwarfs due to relativistic effects
was found to exist in 1930 by the seminal work of Chandrasekhar [10].

The soviet physicist Lev Landau played a controversial role in the early developments of the
theory of dense stars [11, 12]. Landau calculated the maximum mass for white dwarfs independently, but
later than Chandrasekhar, in the first part of a concise four page paper. In the second part, Landau speculated
about the structure of stars with even higher density where “the laws of ordinary quantum mechanics break
down... ”. Such dense stars would look like giant atomic nuclei, which in some sense can be seen as
an anticipation of the concept of neutron stars albeit prior to the discovery of the neutron [11, 12]. The
first explicit neutron star prediction was made by Baade and Zwicky in an extraordinary paper3, soon after
Chadwick’s discovery of the neutron in 1932. Once gravity overwhelms electron degeneracy pressure,
neutron degeneracy pressure was assumed to be the last hope for averting total gravitational collapse4, and
with that configuration they associated a new type of compact star5, called neutron star, thus extending
Fowler’s ideas to the neutron [10].

The next vital step was taken independently (although they certainly communicated and discussed
their results) by R.C. Tolman from Caltech and by J.R. Oppenheimer and G.M. Volkoff from the University
of California, Berkeley. Their papers were received in the Physical Review on the same day and appeared
in the same issue [14]. Both papers presented a derivation of the general relativistic equation for the
hydrostatic equilibrium of a spherically symmetric star. Tolman proposed eight exact solutions of the new
equation (although none of them corresponds to any realistic equation of state) [14]. Oppenheimer and
Volkoff on the other hand, in a pioneer work, developed the first numerical neutron star model where the
matter was taken to be an ideal degenerate neutron gas [15]. In this study they found a maximum stable
gravitational mass of 0.71M⊙, which is often called the Oppenheimer-Volkoff mass limit6. This result

3 Besides introducing the notion of a neutron star the same paper also presents another remarkable points: For the first time
the existence of supernovae is presented as a distinct class of astronomical objects; It was the first appearance of the name
supernovae; It suggests that supernovae represent transitions of ordinary stars into neutron stars; Although the reasoning is
incorrect it estimates correctly the total energy released in a supernova; It gives a theoretical scenario for the production of
cosmic rays [6].

4 At some point the electron capture by protons via inverse beta decay is energetically favorable, otherwise relativistic
electrons would have a very large electron Fermi energy εF = pF , in comparison with the much smaller value for nucleons
εF = p2F /2mN [1, 13].

5 Throughout the work the term compact star refers to white dwarfs, neutron stars and theoretical proposals where a full
collapse has not taken place. A more broad term, compact object, also includes black holes. It should be mentioned that
depending on the reference the terms compact object and compact star have a different meaning or even are used interchangeably.

6 Although their mass limit is wrong, when combined with mass measurements of neutron stars it is extremely important
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was unpleasant in the sense that it was lower than the Chandrasekhar mass limit of white dwarfs, 1.44M⊙.
This would probably hamper the formation of neutron stars from ordinary stars [14]. Nonetheless, they
acknowledged the simplicity of their model based on non-interacting neutrons and discussed a possible
repulsive component of neutron-neutron interaction, which could stiffen the equation of state and increase
the maximum mass [14]. Neutron stars remained a textbook curiosity until 1967 with the discovery of
pulsating radio sources (pulsars in short)7 by Jocelyn Bell Burnell. Pulsars found no acceptable explanation
except as rotation-powered neutron stars, giving life to the idea predicted decades earlier.

Although white dwarfs and neutron stars (the two observationally supported classes of compact
stars) are stabilized by the same mechanism, they are fundamentally distinct objects. The gravitational
field of most stars are so weak that an astrophysicist can usually ignore general relativity, thus in most
cases the Newtonian theory of gravity applies [17]. This is true even for studying the structure of white
dwarfs, although general relativity is important to evaluate other issues like their stability and oscillation
frequencies [18]. Neutron stars, however, are about 6 orders of magnitude denser than white dwarfs (with
no stable stars between them). In this regime the use of general relativity is mandatory8. In Einstein’s
theory the force grows faster than r−2 (the term r−2 is replaced by r−2

(
1− 2m

r

)−1), reducing stability and
decreasing the mass limit [20]. Moreover, neutron interactions become important at densities exceeding the
nuclear one, which is the kind of environment found in neutron star cores where matter presents densities
ranging from a few times εS to an order of magnitude higher [21]. Therefore, an additional stabilization
against collapse comes from the repulsion forces between nucleons at large densities increasing the mass
limit of a neutron star. The second effect appears to be the dominant one and the limiting mass of a
neutron star is taken about two times larger than that of a white dwarf [20]. Neutron stars are one of the
most interesting and interdisciplinary objects from the physics point of view. Their analysis involve the
study of a variety of extreme matter states, such as magnetic fields beyond the quantum electrodynamics
vacuum pair-creation limit, supranuclear densities, superfluidity, superconductivity, exotic condensates and
deconfined quark matter [20]. To put in numbers [22]:

• Four teaspoons of a neutron star contain as much mass as the moon.

• Their surface gravity is about 100 billion times the Earth’s gravity.

• They are also the fastest spinning macroscopic objects. A pulsar, PSR J1748-2446ad in the globular

since it provides direct evidence of strong repulsive interaction in dense matter at supranuclear density [14].
7 Pulsars are rotating compact stars whose radiation is observed in periodic pulses. The pulsation is a consequence of the

radiation’s alignment in a beam along the magnetic axis. When the magnetic axis and the rotation axis are distinct, the beam
may point towards the earth periodically, similar to a lighthouse when observed from a beach [16].

8 In terms of the compactness parameter C = M
R (used to distinguish strong from weak gravity), a quantity that will play a

major role throughout this work, generally relativistic corrections start being relevant for objects with C ∼ 0.1. For most neutron
star models this parameter lies in the range [0.13− 0.25] [19].
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cluster Terzan 5, has a spin rate of 714 Hz, so that its surface velocity at the equator is about a quarter
of the speed of light.

• Huge magnetic fields as high as 1015 gauss 9.

• The highest temperature superconductor, with a critical temperature of a few billion K, has been
deduced for the superfluid neutron core in the remnant of the Cassiopeia A supernova.

• The highest temperatures known outside the Big Bang, exist at birth or in merging neutron stars,
about 700 billion K.

• The pulsar PSR B1508+55 has a spatial velocity in excess10 of 1100 km s−1.

• Neutron stars at birth or in matter from merging neutron stars are the only places in the universe,
apart from the Big Bang, where neutrinos become trapped and must diffuse through high density
matter to eventually escape.

However, from a phenomenological perspective, the existence of other families of compact ob-
jects apart from the standard triad (that is, white dwarfs, neutron stars and black holes) is not forbidden.
Therefore a plethora of models have been explored by several authors as possible outcomes that could be
formed after the gravitational collapse of a massive star. This class of hypothetical compact stars includes:

• Quark stars: Stars where deconfined quark matter is present. They are usually divided into two
possibilities, strange stars which are completely made of quark matter, and hybrid stars where the
quark matter is restricted to the core. However, it is unlikely that both types can co-exist in nature
[25].

• Boson stars: Hypothetical self-gravitating compact objects resulting from the coupling of a complex
scalar field to gravity [26].

• Gravastars11: Black hole alternative where an effective phase transition occurs at (or at least near)
the position where the event horizon would be formed. The interior is composed of empty space with
a strong repulsive vacuum polarization, responsible for preventing further collapses of the matter
shell (a suitable outer layer of matter required to ensure stability) [27, 28].

9 Although most neutron stars have been observed in the form of the classic pulsar, there are other astrophysical objects that
are also associated with neutron stars, for instance, magnetars. Magnetars are a class of compact stars characterized by unusually
large magnetic fields, up to 1015 gauss at the surface and possibly larger at the interior [16, 23].

10 Phenomenon known as pulsar kick in which a newly born neutron star moves with a greater velocity than its progenitor star,
possibly due to an asymmetry in the core collapse or the subsequent supernova explosion [24].

11 The name is a portmanteau of the words “gravitational vacuum star”.
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• Black stars: Proposed as “the most compact and quantum mechanical kind of star”, it has some
similarities with the gravastar model, but the interior is made of extremely dense matter supported by
quantum vacuum polarization. A black star could emit Hawking-like radiation, but different from a
black hole, the process preserves unitarity. If it could be peeled layer by layer, the result would be a
smaller black star, also emitting radiation [27, 29].

• Fuzzballs: Star-like solutions found in string theory with no singularities. The horizon is a transition
region between the exterior classical geometry and a quantum interior where the notion of space-
time becomes meaningless. Each exterior geometry could have an immense large number of stringy
quantum states as its interior [27].

The cornerstone of this work, rather than focusing on a particular type of compact star, is to study the
strong gravity regime where the astrophysical objects are called ultracompact. The first models date back
to the mid-1970s when some speculations were made about compact stars with a proper stellar radius
smaller than its photon sphere radius, that is, R ⩽ 1.5RS [30]. Later studies started to refer to such objects
as ultracompact [31]. Even more compact than regular neutron stars, these ultracompact configurations
have a compactness parameter C = M

R
larger than 1/3. In addition, if the compactness parameter satisfies

C > 1/2.038, then it is called a Clean photon sphere object [32]. As a matter of comparison, the Sun, a
star with non relativistic nature, possesses C = 2 × 10−6 [33]. Ultracompact configurations appear in a
wide range of different models. One famous example are Q-stars12 which received some attention in the
astrophysical literature as possible candidates for members of binary systems requiring a high mass unseen
companion [34, 35, 36, 37].

The ultracompact regime exhibits a variety of interesting visual effects when compared to regular
compact stars. A critical distinctive feature is the presence of a photon sphere, in other words, the unstable13

circular null geodesic of the external Schwarzschild spacetime metric [38]. Unfortunately, the current the-
oretical status of studies regarding horizonless ultracompact objects is unsatisfactory, as their constructions
are often based on assumptions that manifestly deviate from known physics, sometimes making it difficult
to verify if other general relativity predictions are not affected [39]. Ultracompact stars can also be seen
as an interesting conceptual link between regular neutron stars and black holes, since the first has neither
a photon sphere or a event horizon and the second has both, an ultracompact star could be an intermediate
step presenting a photon sphere but no event horizon [37].

Initially there was some hope that nuclear forces would always be able to resist gravity, but even

12 It is worth mentioning that the “Q” in the name does not stand for quark, but for the conserved baryon number charge which
stabilizes the matter against strong, weak and electromagnetic decay [34, 35].

13 Stable circular trajectories are only possible for r ⩾ 6M . The surface r = 6M defines what is called the innermost stable
circular orbit (ISCO). Some authors adopt the ISCO to provide a precise definition of a compact object, being in this case any
object satisfying C ⩾ 1

6 [32].
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neglecting the uncertainties arising from the equation of state at supranuclear densities, different upper
limits can be established from very general considerations [10]. Above such limit is currently believed that
the complete collapse is unavoidable, giving rise to a black hole. Nowadays a black hole can informally
be defined as “any dark compact object with mass exceeding a threshold of about three solar masses”
[40]. However, it has been pointed out by some researches that the phenomena known as quantum vacuum
polarization may act as an additional ingredient, which under certain circumstances could play a distinctive
role in stellar equilibrium [27, 29, 39]. Aiming to incorporate this effect the analysis is developed under the
theoretical framework known as semiclassical gravity, which is basically the theory obtained from a self-
consistent solution of the geometry and dynamics of the spacetime and the quantum matter field altogether
[41].

Classically, matter influences gravity through the stress-energy tensor, which appears as a source
term in Einstein’s field equations. Aiming to describe the backreaction of the quantum field on the space-
time geometry, instead of the usual Einstein field equations of general relativity, one uses field equations
where the expectation value of the stress-energy operator of the quantum matter field act as the source, that
is [42, 43, 44]

Gµν = 8π⟨Ψ|T̂µν |Ψ⟩, (1.1)

where matter fields are quantized in some appropriate state |Ψ⟩ (Heisenberg-picture) but the gravitational
field remains classical [45]. Therefore the effects of quantum vacuum polarizations are represented in
the field equations by the expectation value of the stress-energy tensor, an extra contribution present in
the semiclassical field equations, which becomes an additional source of gravity. The main conceptual
purpose of semiclassical gravity is precisely to include this backreaction, that is, the effects of the quantum
fields on the dynamics of the gravitational field itself. For many researchers, especially astrophysicists,
the impacts of quantum process, such as vacuum polarization (e.g., trace anomaly) and vacuum fluctuation
(e.g., particle creation), on the background geometry is of primary interest [46].

Historically, semiclassical gravity was first applied to investigate cosmological backreaction prob-
lems, such as particle creation in cosmological spacetimes [39, 42, 47]. An specific example is the damping
of anisotropy in Bianchi universes by the backreaction of particles created from the vacuum [42]. Infla-
tionary cosmology, proposed in the early eighties by Guth and others, is another well known example
of semiclassical gravity where the vacuum expectation value of a gauge or Higgs field acts as source in
the Einstein field equations. It is not difficult to see that an exponential expansion arises from a constant
energy density in a spatially flat Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) universe, the case of
eternal inflation described by a de Sitter universe. Such solution is unpleasant in classical grounds because
it corresponds to an unconventional equation of state where p = −ε. A quantum source in the semiclassi-
cal framework make this solution not only plausible, but, as later investigations in inflationary cosmology
showed, desirable [42].



Chapter 1. Introduction 10

The basic idea of this work is to study the impacts that semiclassical gravity has upon the ultra-
compact regime. It should be emphasized that this combined analysis of ultracompact stars and semiclassi-
cal gravity is not an arbitrary one. First, considering that any object that undergoes a complete gravitational
collapse passes through an ultracompact phase, any effect not taken into account in general relativity could
have a prominent role, avoiding the full collapse in certain scenarios [36]. Moreover, since the structure
equations for stellar equilibrium in semiclassical gravity differ from those obtained in general relativity,
some solutions could be naturally promoted to the ultracompact regime due to different predictions for the
final mass and radius. It is also pleasant from the theoretical point of view (although any hypotheses has ob-
viously to be verified by observations) because the physical properties that demarcate the transition between
regular compact stars to ultracompact stars, and from the later to black holes, namely, the presence of a
photon sphere and an event horizon, could also establish transitions from frameworks. First regular neutron
stars (without photon spheres or event horizons) would be described by general relativity. Ultracompact
stars (with photon spheres but no event horizon) on other hand, would require semiclassical corrections,
and finally black holes (with both photon spheres and event horizons) would demand a complete quantum
gravity theory to be fully described.

In the next chapter the standard theory of gravitation, general relativity, is briefly discussed with
emphasis on the subject of compact stars, highlighting its differences with respect to Newtonian physics.
It covers key points like relativistic fluids and the structure equations for relativistic stars made of perfect
and imperfect fluids. It also discusses the difficulties in describing the behavior of matter at supranuclear
densities, as well as physical properties like the sound speed and the tidal deformability, which are essential
topics in compact star physics. Chapter 3 introduces, via photon trajectories in the Schwarzschild metric,
the notion of an ultracompact star by discussing some optical effects that arise as compactness increases.
Two sections are dedicated to gravitational waves and the impact that this new kind of astronomy may have
in future discoveries. After this, it is argued why horizonless ultracompact objects may play a prominent
role in this flourishing gravitational wave astronomy era. Chapter 4 presents the formalism which will
be applied to study ultracompact stars, semiclassical gravity. It explores its purposes, field equations and
its subsequent picture for hydrostatic equilibrium. The chapter finishes with a discussion on how quantum
vacuum polarizations may act as a new stabilizing ingredient for relativistic stars. The work reaches its main
goal in Chapter 5, where three independent models are proposed. In all cases ultracompact configurations
are pursued. The conceptual theoretical motivation for this study is to consider a transition of frameworks
to describe different classes of compact stars motivated by physical properties. It should be mentioned,
however, that this line of thought is strongly inspired by previous works done by Nemiroff [36, 37]. The
first model relies on the linear equation of state, a well known relation frequently used to describe exotic
states of matter, which under discussed conditions maximizes compactness. Some of its content can be
found at [48]. The second model takes advantage of the fact that there are two ways of expressing the
pressure gradient in semiclassical gravity. Therefore the model is constructed attaching to each solution an
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appropriate equation of state. The resulting object is a color flavor locked strange star where semiclassical
effects are added through a negative pressure component. These first two models are constructed upon
isotropic sources. In order to diversify this aspect, the last model consists in a primitive attempt to create
anisotropic semiclassical solutions. Chapter 6 closes the main text with the final remarks.

The work also counts with five appendices aiming to further elucidate the ideas developed through-
out the previous chapters. Appendix A presents a derivation of the structure equations of Schwarzschild
stars (static and spherically symmetric stars in general relativity). Appendix B heuristically demonstrates
the line element in which the solution presented in Appendix A is based. Appendix C discusses the semi-
classical hydrostatic equilibrium equations, in other words, it deals with the generalization of what was
presented in Appendix A by incorporating quantum vacuum polarization effects. Appendix D provides
some mathematical supplementary material that was chosen to be presented separately to avoid unnec-
essary interruptions in the main text, although it might be useful for some readers. Appendix E briefly
discusses the Einstein field equations, complementing what was discussed in Chapter 2.

For clarity, it is important to explicitly mention what is original in this text. The content of the first
four chapters, as well as the appendices, are predominantly reviews. The semiclassical picture for hydro-
static equilibrium was developed in Ref. [39]. However this work dealt only with exact solutions, ignoring
explicit descriptions for the material composition. So the idea is to make advances by reinterpreting some
stellar configurations produced by different equations of state available in the literature using semiclassical
gravity. Therefore Chapter 5, viewed as a semiclassical study of the equations of state considered, is the
original piece in this work.

Twenty years ago, Norman Glendenning ended the preface of the second edition of his traditional
book about compact stars with the sentence: Great challenges await those who hear the siren song [1]. On
that occasion he was referring to the discovery of new pulsars, especially those that are accreting matter
from a companion. But now, with the emergence of gravitational wave astronomy, as well as other initia-
tives like the NICER experiment14, this truly seems to be the case more than ever. The LIGO Scientific and
Virgo Collaborations, using ground based laser interferometers, have detected gravitational wave signals
of binary black holes and binary neutron stars coalescences, opening a new window to look at gravitational
physics, particularly in the strong field regime [49]. More recently the LIGO collaboration has announced
the discovery of an object in the so-called mass gap, a mass region that separates the lightest known black
hole from the heaviest known neutron star, with 2.6 solar masses [51]. It’s not clear yet if what they observe
is the lightest black hole or the heaviest neutron star that we know of. Maybe the future reveals that it is
actually neither and in that case we would be facing exciting times with new classes of compact objects to
be explored.

14 The Neutron star Interior Composition Explorer (NICER) probes interior composition of neutron stars through stellar radius
and mass measurements [50].



Chapter 2
Relativistic Gravitation

Gravity is a fundamental interaction of nature known since antiquity, noticeable by everyone everywhere.
The most remarkable property of the gravitational field is its universality, in the sense that all particles,
independently of their masses, feel the gravitational attraction equally. In other words, particles with dif-
ferent masses experience a gravitational field in such a way that all of them acquire the same acceleration
and, given the same initial conditions, will follow the same path [52]. Newtonian gravity offers no natural
explanation for such a fact, it is instead assumed that the inertial mass is exactly equal to the gravitational
mass for all bodies [53].

Forces equally felt by all bodies were known since long. They are called inertial forces, which
are experienced in non-inertial frames. Common examples found on Earth (not an inertial system) are the
centrifugal force and the Coriolis force. Actually, this universality regarding inertial forces has been the
first hint towards general relativity [52]. The universality of response is the most distinguished feature
of the gravitational interaction. It is an exclusive property of gravity, no other fundamental interaction of
nature has it [52]. Due precisely to such universality of response, the gravitational interaction accepts a
unique description, which is completely indifferent to the concept of a gravitational force.

In general relativity, the standard theory for the gravitational interaction, Einstein proposed that
the geometry of spacetime is a new physical entity with degrees of freedom and dynamics of its own, hence
the responsibility of describing the gravitational interaction is transferred to the spacetime geometry [52].
In this sense the theory is also sometimes called geometrodynamics, a term coined by John Wheeler [54]. In
this new description of gravity the universal character is encapsulated from the beginning, since the relative
acceleration of particles is not viewed as a reaction to gravitational forces, but results from the curvature
of spacetime in which the particles are moving [10]. It is an outstanding conceptual insight that can only
reinforce Einstein’s geniality.
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The early development of general relativity was slow because the theory seemed to be poor in
applications. Despite of its beauty and richness, it is a sterile theory without the stimulus that can only
be accomplished through experiments and observations. Today it’s a rich field with much more to offer
than its three famous tests: the gravitational red shift, the bending of light by the sun, and the precession
of the perihelion of Mercury around the sun [54]. Einstein’s theory is also responsible for the predictions
of exciting new phenomena, such as the expansion of the Universe, black holes, gravitational lenses and
gravitational waves, all of them currently supported by observations.

The theory has been frequently praised as one of greatest intellectual achievements of all times
by many figures of the physics pantheon. According to Lev Landau general relativity is the most beautiful
of the existing physical theories [55]. If Landau was exaggerating he was certainly not alone, Paul Dirac
said: probably the greatest scientific discovery [56]. Let us also quote Max Born [57]:

(The general theory of relativity) seemed and still seems to me at present to be the great-
est accomplishment of human thought about nature; it is a most remarkable combination of
philosophical depth, physical intuition and mathematical ingenuity. I admire it as a work of
art.

and finally Einstein himself:

In the light of present knowledge, these achievements seem to be almost obvious, and every
intelligent student grasps them without much trouble. Yet the years of anxious searching in the
dark, with their intense longing, their alternations of confidence and exhaustion and the final
emergence into the light—only those who have experienced this can understand it.

There are many excellent textbooks on the subject and the reader should consult them for sys-
tematic and complete discussions [2, 3, 4, 17, 54, 58]. The goal here is to discuss only the aspects relevant
for the subsequent chapters. Aiming to avoid successive interruptions on the main text, the definitions of
some mathematical notions used in what follows are presented in Appendix D.

2.1 Geometry of Spacetime Before General Relativity

Perhaps the most significant obstacle to comprehend the theories of special and general relativity resides in
the difficulty in realizing that a number of previously held basic assumptions about the nature of space and
time, although intuitive, are simply wrong [2]. Despite the fact that prerelativity physics was developed
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without explicitly mentioning this idea, the concept of spacetime can be perfectly incorporated to it [59].
The spacetime in Newtonian physics has a particular structure that implements the notions of space and
time as absolute independent entities, completely unperturbed by matter and events that may happen in
them. Therefore the Newtonian spacetime can be understood as a sequence of “pictures” of the absolute
space taken at all the successive instants of the absolute time [59]. In mathematical terms, since space and
time are entirely distinct objects, the associated spacetime is simply the direct product of its underlying
structures and its invariance group is called the Galileo group. The variation of time is represented by R
and space itself is taken to be an Euclidean space E3, in other words, R3 equipped with an Euclidean metric,
which in Cartesian coordinates assumes the form [3]:

ds2 =
∑
i

(
dxi
)2
. (2.1)

This mathematical model is associated with observations by identifying points of this Euclidean space with
observed objects [3].

This framework was seriously challenged for the first time in the theory of special relativity,
whose invariance group is the Poincaré group, and the underlying spacetime is called the Minkowski space-
time M4, which replaces the Newtonian absolute space E3 and the absolute time R [3]. The Minkowski
spacetime is represented by R3 × R endowed with a Lorentzian15 flat metric, which in inertial coordinates
is given by

ds2 = ηµνdx
µdxν , (2.2)

with ηµν = diag{−1, 1, 1, 1}. Observe that in both cases spacetime is represented by a fixed four-
dimensional affine space16. Affine spaces are sufficient to treat electromagnetism, hydrodynamics or even
relativistic quantum field theory. However in order to incorporate gravitation into relativity in a satisfactory
manner, the general notion of a manifold, not simply reduced to an affine space, has to be invoked [59].
The reason to abandon the Minkowski metric can be exemplified in very practical terms, for example, by
the fact that it cannot account for the gravitational redshift, a well tested physical effect predicted by any
relativistic theory of gravitation based on the equivalence principle 17.

15 Positive definite metrics are called Riemannian. On the other hand, metrics with signatures like those on spacetime (one
minus and the remainder plus) are called Lorentzian [2]. A standard well known result from linear algebra, the “Sylvester’s law
of inertia ”, guarantees that the signature is basis-independent [4].

16 The definition is presented in Appendix D, despite of this it may be helpful to mention, for instance, that an one dimensional
affine space is a straight line and a two dimensional affine space is a plane [59].

17 It can be demonstrated that if gravitation obeys the equivalence principle, then the proper time no longer satisfies the
Minkowski metric [60].
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2.2 General Relativity

The two frameworks mentioned in the previous section, namely, Newtonian physics and special relativity
are incompatible and therefore it is impossible to construct a relativistic theory of gravitation by simply
merging them. The reason for this is rooted in the fact that Newtonian gravitation is built upon the notion
of action at distance, more specifically, the Newtonian expression for the gravitational force relates the
force between two bodies in a given time with their distance at the same instant of time. This absolute
notion of simultaneity is meaningless in special relativity. However it is worth mentioning that general
relativity coincides with special relativity whenever gravity can be neglected, and Einstenian gravitation
nearly coincides with Newtonian gravitation in the physical domain where the latter has proved to be
successful, that is, when the velocities of the gravitating bodies are slow (in comparison with the speed of
light) and the gravitational fields are relatively weak [3].

A brief introduction to the main points of the theory can be made by outlining its four key prin-
ciples [10]. As a starting point consider the notion of a field. This concept provides the best procedure to
describe interactions consistent with special relativity [52]. In fact all known forces are mediated by fields
on spacetime, which is the natural arena where physical phenomena takes place. Now, if gravitation is to be
represented by a field, it makes sense, having in mind the considerations made earlier, to use an universal
field. A natural possibility is to change spacetime itself. As Hawking and Israel stated: it was Einstein’s
greatest stroke of genius to realize that it could be given a dynamical role [61]. Among all fields present
in a space, the first fundamental form, or metric, seemed to be the most suitable one [52]. Therefore the
simplest way to modify spacetime would be to change its metric. This motivates the following premise:

1. Spacetime is mathematically described by a four-dimensional manifold M endowed with a global
symmetric metric field g.

Another important structure on the manifold is the connection, which essentially provides a prescription
to “connect” neighboring points on the spacetime in order to calculate derivatives. Consequently, the
connection and its associated covariant differentiation operator are frequently treated as synonyms [62].

A connection also defines the notion of parallel transport of a vector along a curve, allowing the
comparison between vectors belonging to different tangent spaces. A vector with components vα is said to
be parallelly transported along some curve with tangent vector tα if, and only if [53]

tα∇αv
β = 0. (2.3)

This expression is simply a generalization to manifolds of the notion of “keeping a vector constant” in
ordinary vector spaces [53].
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Many connections can be defined on the same metric spacetime and in the general case it can be
decomposed into a symmetric and a antisymmetric part 18 ,

Γλ
αβ = Γλ

(αβ) + Γλ
[αβ]. (2.4)

In order to continue our discussion, consider the following theorem [4]:

▲ Theorem 1. If a manifold possesses a metric g then there is a unique symmetric connection, the Levi-
Civita connection or metric connection such that19

∇g = 0. (2.5)

. In general relativity only the Levi-Civita connection is considered. The connection coefficients
are then called Christoffel symbols and satisfy

Γλ
[αβ] = 0 =⇒ Γλ

αβ = Γλ
(αβ). (2.6)

In the language of differential geometry, the property Γλ
[αβ] = 0 has a deep meaning which brings us to our

second premise:

2. There is no torsion associated with gravity20.

Therefore when restricted to the case of general relativity only the zero-torsion connection is present. This
allows the interpretation that the presence of a gravitational field induces a curvature in spacetime itself, but
no other kind of deformation. This deformation preserves the Lorentzian character of the flat Minkowski
spacetime associated with the absence of gravitation.

In flat spacetime, a free particle follows a straight line, that is, a curve keeping a constant direc-
tion. However, in curved spacetime the gravitational field prevents massive free bodies from moving in
straight lines with constant velocity with respect to inertial frames. So the trajectory of a particle submitted
exclusively to gravity will follow a geodesic21 of the deformed spacetime, which is a curve whose tangent
vector is parallelly transported along itself satisfying [53]

tα∇αt
β = 0. (2.7)

18 Symmetrizing of indices is denoted by parentheses, A(αβ) :=
(Aαβ+Aβα)

2 , and antisymmetrization by brackets, A[αβ] :=
(Aαβ−Aβα)

2 .
19 In the general case ∇µgαβ = Kµαβ , where K is called the non-metricity tensor that measures the incompatibility between

the metric and the connection [63].
20 Curvature and torsion are properties of Lorentz connections. Nevertheless, in general relativity the gravitational interaction

is described only by curvature. It should be mentioned that alternative approaches may take different paths. For example,
in teleparallel gravity the gravitational field is represented by torsion, not curvature. This framework uses a special linear
connection, the Weitzenböck connection [52].
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Obviously physics is much more than free particles, so it is legitimate to ask what happens to the rest
of physics (for instance Maxwell’s equations) under the influence of gravitational fields. The answer is
expressed in the next premise, namely

3. Any non-gravitational physical interaction behaves in a local inertial frame as if gravitation were
absent.

This means that locally spacetime preserves the same structure found in special relativity, and all its exper-
imentally observed effects are predicted [61]. This statement is sometimes called the Einstein equivalence
principle, which deeply guided him while developing his theory of gravitation. As a matter of complete-
ness it is important to enunciate two other versions of the equivalence principle. First the weak equivalence
principle, which states that all test bodies follow the same trajectories when submitted to the same initial
position and velocity. There is also a strong version which says that the effects of an external gravitational
field can always be removed by choosing a local inertial frame in which all laws of physics (including
gravity) assume the same form as in the absence of this external gravitational field [53]. The weak equiv-
alence principle can be seen as a corollary of Einstein equivalence principle, which itself is a corollary
of the strong equivalence principle. However, none of the converse implications are necessarily true [53].
Even though, Schiff’s conjecture states that any acceptable theory of gravity that obeys the weak version of
the equivalence principle must also obey the Einstein equivalence principle. Among all metric theories of
gravity, general relativity is one of the few that obeys the strong equivalence principle, although the weak
version is respected in all of them [53].

The last topic regards the field equations. If no other geometrical structure is added to spacetime
apart from the metric itself, and if one requires that the field equations should not contain derivatives higher
than the second, it can be shown that one is led uniquely to Einstein field equations [61]

Gµν = 8πTµν , (2.8)

which is the mathematical manifestation of our last premise:

4. The Einstein tensor couples to the matter-energy content of the Universe.

Having in mind that the components of the Einstein tensor are defined by the relationGµν := Rµν− 1
2
gµνR,

the Einstein field equations can be expressed in a alternative way by taking the trace of equation (2.8),
namely

R− 2R = 8πT. (2.9)
21 In other words, a geodesic is basically a curve keeping a constant direction in curved spacetime or as Wald describes,

geodesics are the “straightest possible lines” [2, 52].
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Substituting this result in (2.8) one obtains

Rµν = 8π

(
Tµν −

1

2
gµνT

)
(2.10)

In particular, in vacuum (that is, when Tµν = 0) the components of both Einstein and Ricci tensors vanish.
In this case spacetime is said to be Ricci flat.

The only quantity responsible to describe the properties of matter, as well as its influence on the
metric tensor, is the stress-energy-momentum tensor22. General Relativity does not provide the possible
forms of this tensor corresponding to different types of matter, so the theory is void of physical content
without information prescribed by other branches of physics. This shortcoming implies that general rela-
tivity is not a closed theory. This point has been regarded, particularly by Einstein, as an inconvenience of
the theory [64].

The interactions between the spacetime geometry and the matter distribution can be summarized
by the words of Misner, Thorne and Wheeler [54]: Space acts on matter, telling it how to move. In
turn, matter reacts back on space, telling it how to curve23. This sentence beautifully expresses the non-
linear character of the theory, since geometry is dynamically determined by its matter content. Due to this
complexity, Einstein thought that it would be impossible to find exact solutions24[7].

The field equations can be theoretically justified and experimentally verified, however they can
not be derived from some fundamental principle. Despite of this, the Einstein field equations can be ob-
tained by applying the action principle (see Appendix E) [58]

δS = 0, (2.11)

to the following action

S =

∫ (
1

16π
R+ LM

)√
−gd4x, (2.12)

where the variation is made with respect to the metric25.

22 Following the standard practice, throughout the text the stress-energy-momentum tensor will be referred either as stress-
energy tensor or energy-momentum tensor.

23 In general relativity “matter” refers to anything else which is not the gravitational field. For example, not only atomic nuclei
and electrons, but also the electromagnetic field [65].

24 Contrary to Einstein’s expectations, the first solution was proposed by Karl Schwarzschild only two months after the pub-
lication of the theory. This solution remains one of the few with real astrophysical interest, describing the exterior geometry of
non-rotating black holes and stars [7].

25 The first variation of an operator P : u 7→ P (u) between open sets of two vector spaces E1 and E2, at some point u ∈ E1,
is a linear operator acting on vectors δu ∈ E2 given by the (Frechet) derivative P ′

u of P at u, namely δP := P ′
uδu with

P (u+ δu)− P (u) = P ′
u(u)δu+O

(
|δu|

)
[3].
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In general relativity the energy-momentum tensor obeys the equation [61]

∇ ·T = 0 (2.13)

as a consequence of the field equations (because the covariant divergence of the Einstein tensor vanishes,
as shown in Appendix D). This relation expresses the local conservation of energy and momentum. It
should be emphasized however that the curvature of the metric prevents integration in order to obtain
global conservation laws. The physical reason for this is rather simple once one observes that T represents
the energy and momentum of the matter field only, not including a contribution from the gravitational field.
There is no locally defined quantity capable of measuring the energy and momentum of the gravitational
field since the field can always be transformed to zero locally by choosing inertial coordinates. This non-
localizability of the gravitational energy was a source of much confusion in the early days of general
relativity [61].

To summarize, general relativity is the most successful gravitational theory so far proposed. The
gravitational field is represented by a mathematical object called spacetime and is formalized as the pair
(M,g), where M is a differentiable manifold and g is a metric of Lorentzian signature. The restrictions
on the metric are imposed by the field equations (together with boundary and other initial conditions) and
there are ten second order partial differential equations for the metric [3, 66].

2.3 Compact Stars in General Relativity

When, due to a gravitational instability initiated by some external factor or temperature drop, a cloud
of interstellar gas starts to contract due to its own gravitational attraction, the formation of a star begins.
During the contraction there is a conversion of the gravitational potential energy into thermal energy, which
raises the temperature of the gas. The pressure of the gas tries to stop the collapse and if it did not lose
energy, this pressure would prevent the collapse at this stage. However the gas loses energy in the form
of electromagnetic radiation and as a result the cloud is unable to maintain the necessary pressure and the
collapse continues, getting hotter and hotter. After a slow collapse the center of the cloud becomes hot
enough for nuclear reactions to occur and stability is achieved. The radiated energy is balanced by the
generation of nuclear energy so that the cloud does not need to follow the collapse to obtain the thermal
energy necessary to maintain the pressure required to achieve stability. A star has been born and if its
temperature lies above that of its surroundings, it will continuously lose energy (and hence mass), mostly
in the form of radiation [65].

Frequently this interplay between gravitational force, thermal pressure and outgoing radiation
provides a relatively stable state [65]. However, eventually the star exhausts all the available sources of nu-
clear fusion energy. At this point the star can no longer sustain itself against the gravitational force, and its
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matter must resume the gravitational collapse upon itself [67]. For massive stars, the gravitational collapse
is one of the most severe deviations of general relativity with respect to Newtonian gravity. Classically
speaking, nothing can halt this collapse. Nonetheless, quantum matter obeys quantum statistics. Driven by
Fermi-Dirac statistics, if the mass of the star is not too great, and it has cooled sufficiently, a new stable
configuration is possible, a white dwarf star held by the quantum degeneracy pressure of its electrons. In
other cases, the collapse produces an even more compact configuration, in which the electrons and protons
are forced under high pressure to become neutrons, giving rise to a neutron star, also sustained against
further collapse by the quantum degeneracy pressure mechanism. If the mass of the stellar remnant core
exceeds a certain value, intimately related with the equation of state of dense matter, which is not very
accurately known, not even the degeneracy pressure achieved by neutron star matter is sufficient to prevent
the final and inexorable collapse due to gravity.

Regarding the gravitational description of stars, conventional stars with less than 100 solar masses
do not require general relativity, at least not while such stars are in states normally observed by astronomers.
Good agreement with the observational data is found by combining Newtonian gravitation with thermo-
dynamics, nuclear physics and plasma physics [68]. However, for neutron stars, the Newtonian mass
predictions differ from Einstein predictions by 10 to 100 percent [54]. Therefore neutron stars are fully
relativistic objects and their extreme conditions (impossible to reproduce in terrestrial laboratories) require
General Relativity26.

2.3.1 Relativistic Fluids

Generally speaking, a fluid can be viewed as a special kind of continuum, which in turn can be seen as
some collection of particles sufficiently numerous that its dynamics can be well represented by average or
bulk quantities such as energy density or pressure [69]. In the theory of relativity the word fluid may be
used to describe not only ordinary fluids, but also gases, radiation and even vacuum energy [70].

This notion is useful when dealing with stellar configurations, since their properties do not depend
upon where any of its individual particles happens to be. In fact, most matter in the Universe can be
approximated as a fluid and in several occasions it undergoes relativistic motion (for instance in high-
energy particle beams or in supernova explosions) [71].

In particular, since the Schwarzschild’s interior solution of 1916, the perfect fluid approximation

26 Although dense objects like neutron stars could in principle exist in Newton’s theory, they would be completely different
objects. All degenerate stars have a maximum possible mass, but in the Newtonian description such limit is attained asymptot-
ically when all fermions whose pressure supports the star are ultrarelativistic [1]. Under such conditions stars populated with
heavy quarks would exist. Such unphysical stars do not occur in general relativity.
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is a common assumption to describe matter distributions in self-gravitating systems. In this approximation,
the macroscopic distribution of mass can reasonably be described by a continuous energy density associated
with a large assembly of particles and it is assumed that those particles collide frequently enough that
their mean free path is short when compared with scale on which the density changes, allowing a local
thermodynamic equilibrium [72]. It can also be seen as a medium in which the pressure is isotropic (equal
principal stresses)27 in the rest frame of each fluid element, and shear stresses and heat transport are absent.
The perfect fluid can be mathematically represented by a stress-energy tensor with components given by28:

T µν = (ε+ p)uµuν + pgµν , (2.14)

where the four-velocity is defined so that [17]

uµuµ = −1. (2.15)

Regarding its motion, observe that the energy-momentum conservation ∇µT
µν = 0 for a perfect fluid

yields [7]
(ε+ p)uµ∇µu

ν + uν∇µ

[
(ε+ p)uµ

]
+ gµν∇µp = 0. (2.16)

It is useful to decompose the above expression into two components, one aligned with the flow and an
orthogonal part. The component along the four-velocity can be obtained by contracting (2.16) with uν , that
is

uµ∇µε+ (ε+ p)∇µu
µ = 0. (2.17)

Assuming that the fluid is composed of single-particle species, the chemical potential (basically the energy
cost to add a single particle to the system) is given by [7]

µ =
dε

dn
, (2.18)

where n is the particle number density. The associated thermodynamic relation is then [7]

ε+ p = nµ. (2.19)

Using the above expression equation (2.17) reduces to

∇µ (nu
µ) = 0, (2.20)

which expresses the particle flux conservation, not accounting for particle creation or destruction [7].

The orthogonal part is given by

(ε+ p) u̇α + ςµα∇µp = 0, (2.21)

where ςµν = gµν + uµuν are the components of the projection tensor29 and u̇µ = uν∇νu
µ is the four-

27 Fluids in which the pressure is the same in every direction are called Pascalian [68].
28 The principle of general covariance assures that the stress-energy tensor of a perfect fluid has the same form familiar from

special relativity, just replacing the Minkowski metric ηµν by gµν . Even so, the energy-momentum tensor of a perfect fluid is
verified in Appendix E.

29 The contraction of a tangent vector V with ς projects V into the 3-surface orthogonal to the four-velocity u [54].
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acceleration. Expression (2.21) is the relativistic version of the Euler equations, showing that the fluid
deviates from geodesic motion due to pressure gradients [7].

In equilibrium, a neutron star can be accurately approximated as a self-gravitating perfect fluid30,
but in general, the properties of the matter in a compact star will depend on several parameters: fluid and
magnetic stresses, composition, entropy gradients, heat flow and neutrino emission [72]. Nevertheless, it is
often assumed a one-parameter equation of state to describe a compact star, because neutrino emission cools
the object within a short time after formation to 1010K ≈ 1 MeV. This value is negligible in comparison to
the Fermi energy in the interior, where the density is greater than the nuclear one, which is approximately
60 MeV. In this sense a neutron star is cold, and since nuclear reaction times are shorter than the cooling
time, a zero-temperature equation of state with barotropic flow is suitable to describe the matter, that is
[72]:

ε = ε(p). (2.22)

It is noteworthy that in the strong gravity regime, pressure and stresses are normally so large that
incompressibility can not be assumed. Differently from usual plasmas, where the stress-energy tensors are
dominated by their rest-mass density, the pressure contributions to the stress-tensor can be of the same
order as those from the energy density [10].

Deviations from local isotropy may take place under particular circumstances, an idea perhaps
first explored by Lemaı̂tre while studying cosmological problems [75]. Anisotropic pressure means that
the radial pressure, pr, differs from the angular components, pθ = pϕ = p⊥ (while the equality between the
angular components is a direct consequence of spherical symmetry). Spherical symmetry also implies that
both pr and p⊥ must be functions of the radial coordinate [26].

Anisotropic fluid spheres have been invoked in many compact star models, giving more freedom
to the equation of state while maintaining the spherical symmetry, although it is not known to which extent
anisotropy may contribute in realistic models. A scalar field with non-zero spatial gradient is an example
of a physical system where the pressure is anisotropic. This anisotropic character of a scalar field occurs
already at the level of special relativity [26]. Another example can be found in the internal structure of
gravastars, in which the use of anisotropic pressure is unavoidable, otherwise the gravastar swells up to
infinite size or even will form undesirable structures like horizons or naked singularities [76].

For anisotropic fluids the energy-momentum tensor assumes the form [77]:

Tµν = (ε+ p⊥)uµuν + p⊥gµν + (pr − p⊥) kµkν , (2.23)

30 In particular, deviations from perfect fluid equilibrium due to a solid crust are expected to be smaller than 10−3. This
corresponds to the maximum strain that an electromagnetic lattice can support, which is verified by the observations of pulsar
glitches, being consistent with departures from a perfect fluid equilibrium of order 10−5 [72, 73, 74].
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where pr and p⊥ are respectively the radial and tangential pressure components, and kµ are the components
of a space-like vector (satisfying kµuµ = 0 and kµlµ = 0, where lµ represent the components of a null-
vector). Clearly, when pr(r) = p⊥(r) = p(r) the above equation recovers the isotropic expression (2.14).

2.3.2 Structure of Relativistic Stars

Every physical model, aiming to describe certain aspects of reality, relies upon some assumptions. Stellar
structure models often assume a static and spherically symmetric distribution of matter, and as a conse-
quence all physical quantities depend only on the radial coordinate r. Spherical symmetry implies that
every point of spacetime is on a two-surface which is a two-sphere [69]. This can be represented by the
line element:

ds2 = f (r∗, t)
(
dθ2 + sin2 θdϕ2

)
, (2.24)

where f (r∗, t) is some function of the two other coordinates of the manifold. The associated area of each
sphere is 4πf (r∗, t). The radial coordinate can be defined as f (r∗, t) := r2, representing a coordinate
transformation from (r∗, t) to (r, t) [69]. In this case, any surface with r and t constant is a two-sphere of
area 4πr2 and circumference 2πr. This coordinate r is called curvature coordinated or area coordinate,
since it defines the area and the radius of curvature of these spheres [69]. It is important to emphasize that
no a priori relation can be established between r and the proper distance from the center of the sphere to its
surface. In fact, what could in principle be called their centers (at r = 0 in flat space) are not points on the
spheres themselves, which implies that spherical symmetry does not even require the existence of a point
at the center [69].

On the other hand, static spacetime is characterized by a time coordinate t that satisfies two
properties, namely, all metric components are independent of t and the geometry must remain unchanged
by time reversal t→ −t [69]. The first condition does not guarantee the latter, a situation that happens, for
example in a rotating star and in this case the spacetime is said to be stationary.

The structure equations of relativistic stars can be better understood when contrasted with the
Newtonian standpoint, so it is pertinent to quickly review the Newtonian equations for hydrostatic equilib-
rium. In this case consider a static and spherically symmetric star with pressure p and mass density ρ. The
total mass interior to the radius r is given by

m(r) =

∫ r

0

4πu2ρ(u)du, (2.25)

or as a differential equation:
dm(r)

dr
= 4πρ(r)r2, (2.26)
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subjected to the initial condition m(0) = 0. A thin spherical shell of radius r and thickness dr has its mass
given by dm = 4πr2ρdr, therefore it feels a gravitational force given by [78]

F = −4πρ(r)r2m(r)dr

r2
= −4πρ(r)m(r)dr. (2.27)

Besides the inward gravitational force, the shell also experiences an outward buoyant force Fb, which is
equal to the pressure force on the inner surface of the shell minus the pressure force on its outer surface,
namely [78]

Fb = 4πr2
[
p(r)− p(r + dr)

]
= −4πr2p′(r)dr. (2.28)

Hydrostatic equilibrium is achieved when these two forces are equal, yielding

dp(r)

dr
= −mρ

r2
. (2.29)

Moreover, the gravitational potential obeys the relation

dΦ(r)

dr
=
m(r)

r2
. (2.30)

The above equation satisfies the condition that −Φ′(r) must be equal to the ratio between the Newtonian
gravitational force and the mass −m(r)/r2. An arbitrary constant of integration is assumed so that Φ(r) →
0 as r → ∞.

Now let is turn to the general relativistic picture of static and spherically symmetric stars, also
called Schwarzschild stars [1]. Schwarzschild stars are mathematically represented by the following line
element

ds2 = −e2Φ(r)dt2 + e2λ(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (2.31)

By solving the Einstein field equations for the above line element, treating matter as a perfect
fluid, one is led to a set of four equations which completely determines the structure of a compact star:

dm(r)

dr
= 4πε(r)r2; (2.32)

dp(r)

dr
= −m(r)

r2
[
ε(r) + p(r)

] [
1 +

4πr3p(r)

m(r)

][
1− 2m(r)

r

]−1

; (2.33)

e−2λ(r) = 1− 2m(r)

r
; (2.34)

dΦ(r)

dr
=

1

1− 2m(r)
r

(
m(r)

r2
+ 4πp(r)r

)
. (2.35)

These equations are called the Tolman–Oppenheimer–Volkoff (hereafter abbreviated by TOV) equations31

[15]. This set of equations replaces the Newtonian expressions for hydrostatic equilibrium. It is worth
31 The derivation of the TOV equations can be found at Appendix A.
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noticing by looking at the equation (2.29), the fundamental equation of Newtonian astrophysics, and com-
paring with equation (2.33) that general relativity imposes four modifications with respect to the Newtonian
case and three additional correction terms [10, 17]:

1. The mass density ρ has to be replaced by the total mass-energy density ε.

2. The inertial mass density is given by ε+ p (first factor on the right hand side).

3. Pressure acts as an active volume correction (second factor).

4. The last factor represents three-space metric contributions essential to determine stability properties
of the solutions. The surface of the object always has to be far outside the Schwarzschild surface.

So we recover the Newtonian equations for stellar structure when p≪ ε (roughly speaking for sound veloc-
ities much less than the speed of light), 2m(r)

r
≪ 1 (low compactness) and low pressure-mass 4πp(r)r3 ≪

m(r) [10]. It is also interesting to notice the dual role of pressure in (2.33). In Newtonian gravity the pres-
sure within a star has only the role of opposing self-gravity, and its gradient is responsible to prevent the
star from collapsing [79]. In general relativity on the other hand, all sources of energy and momentum con-
tribute to gravity. Therefore pressure influences the stress-energy tensor and acts as a source of gravity, not
only opposing but also enhancing it. Consequently matter in a relativistic star has to withstand much larger
internal forces to maintain hydrostatic equilibrium. This role of pressure becomes more pronounced with
increasing compactness, the ratio between mass and radius, which can be seen as a measure of the strength
of its gravity. The assertion that neutron stars have a maximum mass beyond which the collapse is in-
evitable, independently of the model proposed, is intimately connected to this fact [18, 79]. This maximum
mass has no Newtonian analogue and it is fundamentally different from the Stoner-Landau-Chandrasekhar
limit in Newtonian gravity, attained asymptotically for ultra-relativistic fermions [79]. The critical mass
for white dwarfs is very close to the Stoner-Landau-Chandrasekhar limit, which in some sense reinforces
the Newtonian character of its structure [79]. In the case of neutron stars the Oppenheimer-Volkoff limit is
about a few times smaller than the limiting mass that would be obtained using Newtonian gravity.

Despite its simple appearance, the highly non-linear character of the Einstein field equations, as
well as the fact that spacetime and matter act upon each other, implies that an analytic solution of the TOV
equations is impossible for general problems. It follows that numerical computation is a fundamental aspect
of this research field. Numerical relativity is a vast subject on its own and there are many excellent books
dedicated to it [19, 60, 80]. With respect to the TOV equations, the system can be integrated for a given
equation of state with the conditions m(0) = 0, ε(0) = εc (an arbitrary value for the central energy density)
and Φ(0) arbitrary32. The condition m(0) = 0 can be justified as follows. Imagine a tiny sphere with

32 The arbitrariness in the initial value for Φ(r) is removed by matching the solution at the surface of the star with the analytic
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radius ϵ. Its circumference is given by 2πϵ and its proper radius |grr|1/2ϵ. Consequently the ratio between
the circumference and the radius is 2π|grr|−1/2. On the other hand, the manifold structure demands that
the spacetime around r = 0 must be locally flat (just as any other point), then the referred ratio must be
2π, implying grr(0) = 1. Therefore as r approaches zero, m(r) also goes to zero, in fact even faster than r
[69].

Since m(0) = 0, one might think that the gravity in the center is weak and general relativistic
effects could be negligible in its neighborhood. Actually this line of reasoning carries a Newtonian imprint
in thinking about gravity. Although it is true that the Newtonian acceleration is small near the center, the
relativistic correction is significant due to the contribution of pressure to gravity [79]. The integration is
performed from the center until the pressure drops to zero (because zero pressure can support no overlying
matter against the gravitational attraction) at some point r = R, which is subsequently interpreted as the
radius of the particular star with central energy density εc and mass given by m (r = R) =M .

2.3.3 Matter at Supranuclear Densities

It is usually assumed that general relativity is the ultimate theory of gravity for describing compact stars.
Fixing the gravitational side in this way, properties like the mass-radius relation of a family of compact
stars is uniquely determined by the equation of state. Although many advances have been made since the
free neutron-gas model of Oppenheimer and Volkoff, the search for the equation of state at supranuclear
densities keeps puzzling both the theorists and observers [15, 81].

The problem is that quantum chromodynamics (the fundamental theory of strong interaction on
which nuclear and hadronic physics is based) is notoriously hard to solve for temperatures and densities
relevant for compact stars. In other words, the associated ground state of the strongly interacting matter at
this regime is largely unknown, and since terrestrial experiments are not able to sufficiently constrain the
equation of state, some uncertainty about the matter composition of such objects is inevitable [16, 79].

So in practice compact stars act as astrophysical laboratories for nuclear and particle physics and
their measurements are crucial to distinguish between different theoretical models for the equation of state
[21]. However, most of the electromagnetic observations available provide weak constraints for properties
as mass, spin, and gravitational redshift [82]. Observations in which mass and radius are measured simul-
taneously could in principle provide stronger constraints. The problem is that these measurements deeply
rely on the details regarding radiation mechanisms at the neutron star surface and absorption in the inter-

exterior solution which is an asymptotically flat vacuum solution. According to Birkhoff’s theorem, the Schwarzschild solution,
which describes a static, spherically symmetric vacuum spacetime, is the only spherically symmetric, asymptotically flat solution
to the Einstein vacuum field equations [10, 72].
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stellar medium, being subject to systematic uncertainties [82]. Until very recently, the main outcome of this
scenario was a wide range of possible astrophysical properties for neutron stars, most notably perhaps was
an almost 50% variation on their predicted size [83]. However, several studies using NICER and XMM
data are changing this situation [84, 85, 86]. For instance, the radius of the most massive pulsar known,
PSR J0740+6620, has been set inR = 12.39+1.30

−0.98 km. The radius of a 1.4M⊙ neutron star was also updated
to R1.4 = 12.18+0.56

−0.79 km [85]. Moreover, the measurements of massive neutron stars (M ≈ 2M⊙) suggests
that the high density equation of state is stiff33 [79]. Currently, three pulsars fall under this regime, namely,
PSR 1614–2230 (M = 1.908± 0.016M⊙), PSR J0348+0432 (M = 2.01± 0.04M⊙) and PSR J0740+6620
(M = 2.08 ± 0.07M⊙) [86]. NICER data have also been used to study configurations at the threshold
which marks the ultracompact regime (defined by C > 1/3). Although such stars are not currently an
observational reality, they may become important in the near future [87].

In fact, our degree of uncertainty about the behavior of matter above the nuclear density is great
enough to consider that beyond some threshold density a neutron star core may contain deconfined quarks.
This is motivated by the so-called strange matter hypothesis, developed independently by Bodmer and
Witten, which asserts that the true ground state of the strong interaction is strange quark matter, composed
of an approximately equal proportion of up, down and strange quarks34 [88, 89]. Ultimately one may
argue that if strange-quark matter is the most stable form of matter at supranuclear densities as the ones
found in compact stars, then all observed neutron stars could actually be strange stars. In addition, a recent
study has suggested that the existence of quark cores in massive neutron stars should be considered the
standard scenario, and not an exotic alternative [90]. More cautiously though, it could be said at least that
the existence of strange stars is theoretically well founded, and if confirmed it would provide important
constraints on the QCD parameters [7]. It is another intricate problem to distinguish between strange and
neutron stars through observations, since for the canonical mass of 1.4M⊙ gravity dominates the strong
interaction, and the resulting strange stars are similar in size when compared with regular neutron stars [7].

Despite all challenges around measuring compact star properties, the future looks promising with
regard to new constraints on dense matter and strong gravity. For instance, the Neutron Star Interior Com-
position Explorer (NICER), successfully installed on the International Space Station in 2017, is devoted to
achieve precise mass and radius measurements of neutron stars through soft X-ray timing. NICER covers a
energy range from 0.2− 12 keV, offers a high effective area (> 2000 cm2 at 1.5 keV and 600 cm2 at 6 keV)
and an unprecedented timing precision (absolute time-tagging resolution of < 300 ns) [91]. The Large Ob-
servatory For X-ray Timing (LOFT) (proposed to The European Space Agency) is a concept mission that

33 Stiff means that for a given energy density the pressure is higher when compared with a softer equation of state. The stiffest
equation of state compatible with causality is the one for which the speed of sound and the speed of light are the same [1].

34 In the quark phase the difference between quark masses is significantly smaller than their respective Fermi energies, there-
fore the equilibrium configuration should involve an equal fraction of these three flavors, with a strangeness fraction per baryon
of almost unity [7].
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aims to study the properties of dense matter and strong gravity by X-ray observations of accreting neutron
stars and black holes, with a very large effective area up to 30 keV [92]. Together with other proposed
instruments (for example: FAST, ATHENA and SKA), these observations may provide an unprecedented
amount of data on compact stars, covering the electromagnetic spectrum from radio to gamma rays [91].

Another possibility for obtaining information about compact star composition is due to gravita-
tional radiation. Gravitational waves will be better discussed in Chapter 3, however, it is interesting to
mention a recent landmark, the observation made in August 2017 of two coalescing neutron stars on the
event GW170817. This observation placed constraints in the tidal effects and consequently on the equation
of state.

2.3.4 Sound Speed

The sound speed is a key physical property in characterizing dense matter, directly related to the equation
of state. For a general medium, the effective sound speed is the propagation speed of acoustic scalar
fluctuations in the rest frame, given by [93]

c2s eff =
δp

δε
. (2.36)

In the general case the pressure perturbation δp is composed of adiabatic and non-adiabatic parts:

δp = c2sδε+ δpnad, (2.37)

where cs is the adiabatic sound speed defined by

c2s :=
p′

ε′
= ω +

ε

ε′
ω′. (2.38)

For barotropic fluids (or any adiabatic medium) δpnad = 0 and cs = cs eff , so the sound speed is given
simply by

c2s =
dp

dε
(2.39)

Causality demands that the sound speed must be less than the speed of light. Non-relativistic models under
appropriate densities predict cs ≪ 1, while gases of ultrarelativistic massless particles may present cs as
high as 1/3. It is sometimes conjectured that the sound speed in any medium should be smaller than the
velocity of light in vacuum divided by

√
3. However it has been argued that there is a tension between this

view and the existence of neutron stars with masses 2M⊙ for all reasonable low density equations of state
[94]. Besides that, local mechanical stability imposes that the sound speed must be real, otherwise if it is
imaginary it will tend to collapse the matter instead of producing a wave [93].
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2.3.5 Tidal Deformability

The tidal response is the latest observable macroscopic property added to the set of astrophysical constraints
regarding compact stars [83]. This effect is strongly tied to the equation of state, as first observed by Flana-
gan and Hinderer [95]. Since relativistic stars are not point-like structures but rather finite size objects, they
are tidally deformed when exposed to the influence of an external tidal field, an effect expressed through
an induced quadrupole moment. The coalescence between compact binaries, detectable with gravitational
waves, sets a natural stage for this interaction, in which one member is subject to the gravitational field
of its companion. The induced quadrupole moment affects the binding energy of the system, increasing
the rate of emission of gravitational waves [83]. This deformation leaves a measurable imprint, quantified
through a single parameter termed the tidal deformability, on the form of the gravitational wave during the
inspiral phase, that is, even before the two neutron stars touch each other [23]. The desire of constraining
the equation of state of compact stars by measuring the tidal deformability via gravitational waves became
a reality in 2017, with the detection of the inspiral signal from the binary neutron star system GW170817
[96]. It initially set the dimensionless tidal deformability of a 1.4M⊙ star at Λ1.4 = 800 for low spin priors,
but later this result was improved for Λ1.4 = 190+390

−120 [96]. After several sophisticated analysis the overall
finding is that the event GW170817 constrains the radius of a 1.4M⊙ star R ⩽ 13.2− 13.7 km [23].

In order to discuss tidal effects a little further, consider a static and spherically symmetric star
placed in a static external quadrupolar tidal field εij . To linear order, the tidal deformability λ is defined
as the proportionality coefficient between the external quadrupolar tidal field and the induced quadrupole
moment Qij of the compact star [23]

Qij = −λεij. (2.40)

Both εij and Qij are symmetric and traceless, and defined to be coefficients in an asymptotic expansion of
the total metric at large distances from the star [82]. It is worth mentioning that the above expression is
quite general and valid irrespective of a Newtonian or relativistic approach [97].

The tidal deformability is related to the coefficient for the tidal quadrupole moment k2 (called
second Love number35) by

λ =
2

3
k2R

5 (2.41)

It is customary to define a dimensionless tidal deformability Λ by dividing both sides of the above expres-
sion by M5, yielding

Λ =
λ

M5
=

2

3
k2C−5, (2.42)

For a fixed equation of state the value of Λ can vary three orders of magnitude from ≈ 1M⊙ stars to the max-
imum mass configuration (neglecting other effects such as rotation and magnetic fields), therefore highly

35 The name is after Augustus Edward Hough Love who studied the deformability of Earth and the Moon in Newtonian theory.
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sensitive to the star’s composition [97]. Thus even with one event the tidal deformability can potentially
provide robust information about the equation of state.

Before providing the expression from which the second Love number is calculated, consider a
perturbation around the spacetime metric associated with the equilibrium solution of the TOV equation
[23],

gµν = g(0)µν + hµν , (2.43)

where hµν represents the metric perturbation. Its ansatz adopts spherical harmonics in such way that the
perturbed metric can be expressed as

hµν = diag
[
−eα(r)H0(r), e

β(r)H2(r), r
2K(r), r2 sin2(θ)K(r)

]
Y20 (θ, ϕ) , (2.44)

where both α(r) and β(r) are metric functions from the equilibrium solution [23]. The perturbations of the
energy-momentum tensor have components given by

δT 0
0 = −δεY20 (θ, ϕ) ; δT i

i = δpY20 (θ, ϕ) . (2.45)

By solving the perturbed field equations, namely

δG ν
µ = 8πδT ν

µ , (2.46)

using equation (2.44) and the perturbed energy-momentum tensor one is lead to the relations:

−H2(r) = H0(r) = H(r); K ′(r) = H ′(r) + 2H(r)α′(r). (2.47)

The second Love number is better expressed in terms of a radial function y(r), given by

y(r) =
rH ′(r)

H(r)
, (2.48)

which obeys the differential equation

ry′ + y2 + yF (r) + r2Q(r) = 0. (2.49)

Equation (2.49) has to be solved as part of a coupled system containing the hydrostatic equilibrium equa-
tions, alongside with the boundary condition y(0) = 2 [97, 23]. The auxiliary radial functions F (r) and
Q(r) are respectively given by

F (r) =
1− 4πr2

(
ε(r)− p(r)

)
1− 2m(r)

r

, (2.50)

Q(r) = 4π

(
1− 2m(r)

r

)−1
[
5ε(r) + 9p(r) +

ε(r) + p(r)

c2S
− 6

4πr2

]
− 4

[
m(r) + 4πr3p(r)

r
(
r − 2m(r)

) ]2 . (2.51)
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Finally, the Love number k2 can be computed using36

k2 =
8C5

5
(1− 2C)2

[
2 + 2C (yR − 1)− yR

]
{2C

[
6− 3yR + 3C (5yR − 8)

]
+ 4C3

[
13− 11yR + C (3yR − 2) + 2C2 (1 + yR)

]
+ 3 (1− 2C)2

[
2− yR + 2C (yR − 1)

]
ln (1− 2C)}−1 (2.52)

where yR = y(r = R)37.

The Love number vanishes for C = 1/2, therefore for a Schwarzschild black hole k2 = 0. The
incompressible fluid sets the upper limit for the value of k2, since by definition it can not be compressed, it
is squished and flows in reaction to the external quadrupole potential [23]. On the other hand, for a highly
compressive fluid a high density core can be formed with a low density mantle. By increasing the energy
density in the core the fluid can then react to an external potential and only a small quadrupole moment
is induced [23]. So the Love number provides information about the compressibility of the fluid, in other
words, the softness or stiffness of the equation of state. Regarding size, a larger compact star is more likely
to be deformed by its companion, since the gravitational bound is relatively weaker when compared to a
smaller compact star with the same mass [96].

36 The Love number in general relativity, as expressed in equation 2.52, will be smaller than the newtonian case, given by
kNewton
2 = 1

2

(
2−yR

yR+3

)
, due to the correction terms from the compactness of the star [23].

37 In the case of self-bound configurations, like strange stars, yR needs a correction to account for the energy discontinuity
between the star’s surface and its outside, namely, yR → yR − 4πR3εS

M , in which εS is the energy density on the surface [97].



Chapter 3
Ultracompact Stars

This chapter aims to explore the ultracompact regime for relativistic stars by studying some of its interesting
physical properties, as well as its perspectives regarding gravitational wave astronomy. A pleasing starting
point is to investigate the rich visual features that emerge as compactness increases, taking a typical neutron
star as a basis. If a regular neutron star could be somehow compressed, as the compactness grows more
and more surface would be visible, due to gravitational lens effects. Through this process some interesting
effects would appear, for instance, at R ≃ 1.76RS

(
RS ≡ 2M ≃ 2.953 M

M⊙
km
)

the whole surface of the
star becomes visible [36]. The opposite point on the neutron star’s surface with respect to the observer is
now mapped onto a circle centered on the neutron star. This circle is called an Einstein ring38, or to be
more precise, the “first surface Einstein ring”. If compactness is increased even further, another Einstein
surface ring is possible, which is associated with light from the point just below the observer that would be
visible after circling the neutron star once again. An ultracompact star is the limit case because it exhibits
infinitely many surface Einstein rings to any observer. With enough resolution all surface features of an
ultracompact star would be visible, even the back [36].

Another interesting optical consequence of the ultracompact regime is that any star with proper
radius R ⩽ 1.5RS actually resolved telescopically would appear to have the same radius of a R = 1.5RS

star [36]. However, Einstein himself tried to refute the possibility of compact objects whose radius were
less than 1.5 times the critical radius [99]. The idea was to study the circular orbits of massive particles
in the Schwarzschild spacetime. As the orbits get smaller, the velocity of the particle increases, until the

38 Rudi Mandl, a Czech engineer, approached many scientists in 1936 (including Einstein) to share his idea that a foreground
star may act as a “gravitational lens” for light corning from a background star. Einstein wrote an article on the subject, which
said that at perfect alignment a background star undergoing lensing by a foreground one will appear as a very bright ring, hence
the name “Einstein ring”. However, Einstein concluded that the ring would not be resolvable, being pessimistic about a possible
detection. Fortunately, history ended up favoring Mandl [98].
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speed of light is reached at R = 1.5RS and no object could, according to his conclusion, get smaller
than this. Although the reasoning is correct, Einstein neglected radial motions which are inevitable for
all particles orbiting below 1.5 times the critical radius [99]. In addition, the aforementioned uncertainty
underlying the equation of state leaves space for interesting theoretical scenarios. One cannot rule out a
priori the existence of ultracompact neutron stars that are smaller than their photon spheres39. However,
in reality this possibility seems unlikely at first sight since it cannot be realized by viable equations of state
for neutron stars [38].

3.1 Photons in the Schwarzschild Metric

According to the physicist Vladimir Fock the basic idea of general relativity is that the spacetime sur-
rounding massive bodies is non-Euclidean [56]. With this spirit in what follows photon orbits in the
Schwarzschild metric are considered to illustrate some visual properties of ultracompact stars [100]. The
Schwarzschild solution is the metric in vacuum outside a spherical mass distribution, in our case repre-
sented by a relativistic star. It depends on a single parameter, the Schwarzschild radius of the central mass
distributionM , defined byRS = 2M . In the usual Schwarzschild coordinates (t, r, θ, ϕ) the metric is given
by

gµν = diag

(
−
(
1− RS

r

)
,

(
1− RS

r

)−1

, r2, r2 sin2(θ)

)
. (3.1)

Spherical symmetry implies that orbits are confined to a single plane. One can choose the polar coordinates
θ and ϕ in such a way that this plane is the equatorial plane, then θ = π

2
is constant along the orbit, which

implies pθ = dθ
dλ

= 0. Photon orbits are null geodesics, in other words, the photon four-momentum satisfies
the geodesic equation and is null [100]

dpµ

dλ
+ Γµ

νκp
νpκ = 0; gµνp

µpν = 0. (3.2)

It follows that the geodesic equations for the momentum components are

dpt

dλ
+

RS

r2
(
1− RS

r

)ptpr = 0; (3.3)

dpr

dλ
+
RS

(
1− RS

r

)
2r2

(
pt
)2 − RS

2r2
(
1− RS

r

) (pr)2 − r

(
1− RS

r

)(
pϕ
)2

= 0; (3.4)

dpϕ

dλ
+

2

r
pϕpr = 0. (3.5)

39 Photons traveling at the photon sphere are not in a stable orbit. Any small perturbation will cause them to spiral either in or
out [37].
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The above equations can be integrated analytically, which yields

pt =
kt(

1− RS

r

) ; (3.6)

pr = ±

√√√√
(kt)2 −

(
kϕ
)2 (1− RS

r

)
r2

+ kr
(
1− RS

r

)
; (3.7)

pϕ =
kϕ

r2
; (3.8)

where kt, kr and kϕ are constants of integration, which parameterize the photon orbits [100]. Since pµ is a
null vector it follows that

0 = gµνp
µpν = kr. (3.9)

Now consider a measurement of the photon energy by a local inertial observer momentarily at rest. Its
four-velocity is given by

uµ =

 1√(
1− RS

r

) , 0, 0, 0
 . (3.10)

Using equations (3.6), (3.7) and (3.8) it follows that

E = −gµνuµpν =
kt√(

1− RS

r

) . (3.11)

When r → ∞ the above equation reduces to E∞ = kt, therefore the constant kt can be seen as the photon
energy at infinity. The third constant of integration, kϕ, can be more easily understood by looking at the
ratio b := kϕ

kt
, which is called the impact parameter of the photon trajectory [100]. This fact becomes more

evident at the limit of vanishing central mass RS → 0. The photon orbit depends on three functions: t(λ),
r(λ) and ϕ(λ). If one is not interested in the lapse of the time coordinates along the orbit, the trajectory
ϕ(r) is sufficient, that is, the set of all points (r, ϕ) that the photon passes through, which can be expressed
by

dϕ

dr
=
dϕ/dλ

dr/dλ
=
pϕ

pr
. (3.12)

Using the expressions for pϕ and pr and setting RS = 0 yields

dϕ

dr
= ± b

r2
√
1− b2

r2

. (3.13)

The above equation can be integrated, which gives

sin (ϕ− ϕ0) = ± b
r
, (3.14)
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which is the equation for a straight line in polar coordinates. The impact parameter can be visualized by
assuming that if the photon is far from gravitating objects it travels following a straight line, in that case
the impact parameter is the distance between the closest approach of the continuation of this straight line
and the center of the gravitating body [36].

The photon trajectory is defined by

dϕ

dr
=
pϕ

pr
= ± b

r2
√

1− b2

r2

(
1− RS

r

) =⇒ (3.15)

ϕ(r) = ϕ0 ±
∫ r

r0

bdr

r2
√

1− b2

r2

(
1− RS

r

) , (3.16)

which is an elliptic integral of the first kind with no analytic solutions, but numerical integration is straight-
forward. Since in our case the central mass is a star, then only those parts of the orbits that are outside
the star are relevant [100]. An important case in (3.16) is found when ∆ϕ, that is, (ϕ− ϕ0) diverges to
infinity. In this situation the photon will circle the massive star in a region called photon sphere, located at
r = 1.5RS [37].

Photons emitted from infinity with impact parameters slightly greater than a certain critical value,
bc = 3

√
3RS/2, will spiral around the compact star near the photon sphere and then spiral out [37]. On

the other hand, photons emitted from infinity with impact parameters slightly less than the critical value
will spiral around the compact star near the photon sphere and then spiral in, eventually colliding with the
compact star. The photon can also be emitted from the compact star surface, orbit near the photon sphere
and then spiral back in again impacting the surface. In other words the three cases of photon orbits near
a gravitational body can be classified as [37]: “always outside the photon sphere”, “crossing the photon
sphere” and “always inside the photon sphere”. The first case is the case of a photon passing a compact
object, reaching some critical radius Rc and then escaping towards infinity. In this case the photon does
not reach or cross the photon sphere. Its distance from the object decreases monotonically until Rc and
monotonically increases thereafter. The second case is that of a photon continuing to come toward the
compact object until it impacts the surface and the distance decreases monotonically. The third case is that
of a photon emitted from the surface of the compact object, reaching a critical radius Rc and then falling
back and returning to its surface. As a matter of curiosity this critical radius is given by

Rc =
2b√
3
cos

1
3
arccos

(
−
√
27RS

2b

)
+

2nπ

3

 , (3.17)

where n = 0 corresponds to the first case and n = 2 to the third case [37].

Figure (3.1) depicts the photon orbits coming from a compact star surface and reaching an ob-
server [100]. The impact parameter varies from b = 0 (radial emission) to some bmax. In the picture,
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the compact star is larger than its photon sphere, in this case the impact parameter is maximum when
emitted in the tangential direction. Substituting pr = 0 at r = R in equation (3.7) it follows that

bmax = R
(
1− RS

R

)−1/2

. If the compact star is smaller than its photon sphere, a photon emitted tan-
gentially to the stellar surface remains confined within the photon sphere and does not reach the observer.
The photon will only leave the photon sphere if its impact parameter is smaller than the critical parameter
bc = 1.5

√
3RS .

Figure 3.1: Orbits of photons reaching an observer from a compact star surface. The dashed line marks
the photon sphere.

Light deflection is particularly important for objects whose radius is not too large compared
to its Schwarzschild radius, which is precisely the case found in ultracompact stars. Two of the main
consequences of light deflection are enhanced surface visibility and increased angular size. Consider, for
example, an observer that is close enough to resolve some compact star but at the same time many compact
star radii away [100]. If R ≫ RS light deflection can be neglected and only the near side is visible. The
far side is hidden from view. If this is not the case, light deflection means that photons emitted on the far
side may be accessible to the observer, hence a larger part of the surface is visible. Table 3.1 depicts the
surface visibility for different values for the ratio R/RS , where the last case, R/RS = 1.5, corresponds
to an ultracompact star [100]. Note that compact stars with R/RS ⩽ 1.75 can not eclipse anything at

R/RS ∞ 3 2 1.75 1.509 1.5
Visible part of the surface 50% 74% 94% 100% 200% ∞

Table 3.1: Surface visibility for different values of R/RS .

all. Consider now the same observer, but now at an intermediate distance. The angular size of the star
as determined by the outermost photon orbit, α = bmax/d, where d is the observer’s distance can be
summarized as in Table 3.2 [100]. For stars smaller than its photon sphere, the angular size is a function of
mass only and completely independent of the geometric size.
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R/RS ∞ > 1.5 < 1.5

bmax R R/
√

1−RS/R 1.5
√
3RS

α α = α(R) α = α(M,R) α = α(M)

Table 3.2: Angular size of the star as determined by the outermost photon orbit.

The effects discussed so far are explored through information carried by electromagnetic waves.
In practice, testing the nature of compact objects through electromagnetic radiation has always been chal-
lenging. Complications arise, for example, due to the incoherent nature of electromagnetic radiation in
astrophysics (as well as the modeling uncertainties associated with such emissions). Another important
example is the absorption by interstellar medium [32]. With this in mind, the rest of the chapter discusses
why gravitational waves are ideal for probing the strong gravity regime, and how they are renewing the
interest in theoretical scenarios where new classes of highly compact objects could emerge.

3.2 Gravitational Waves

As previously observed, in Newtonian theory gravitation acts instantaneously, a feature that excludes the
possibility of gravitational waves. Even though the mathematician and physicist Pierre Simon de Laplace
studied the consequences of a gravitational force that does not travel instantaneously, but rather at a finite
speed [101]. Laplace was dealing with the onerous problem of describing the Moon’s orbit, which differs
from planetary orbits since it is subject to many additional influences [101]. In the end Laplace concluded
that the Newtonian description was sufficient, asserting that the speed of propagation of the gravitational
force had to be at least 100 million times the speed of light. This idea came back later with Poincaré in
a work entitled “Sur la dynamique d’ l’électron.”, which summarizes his views on Relativity. He applied
his notion of a onde gravifique to tackle the problem of the anomaly in the perihelion shift of Mercury,
although he deduced that the effect was not sufficient to explain the anomaly [101, 102].

The modern view on gravitational waves begins just a few months after the publication of general
relativity, when Albert Einstein predicted the existence of curvature perturbations on a flat and empty
spacetime, called gravitational waves [103]. The notion of a gravitational wave in general relativity is,
at least conceptually, intuitive. It reserves some analogy with electromagnetic wave theory, introduced
when the Coulomb theory of electrostatics was replaced by the theory of electrodynamics, predicting that
waves transport information through space about the dynamics of charged systems. Similarly, mass-energy
distributions changing in time should provide information about its dynamics in the form of waves [104].
However, differently from electromagnetic waves, gravitational waves are metric waves [104]. When a
gravitational wave propagates it perturbates the geometry, as well as the proper distance between spacetime
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points. Therefore gravitational waves do not propagate in spacetime, instead they are precisely waves of
spacetime [104].

Einstein’s gravitational wave solutions were obtained via a linearized gravitational wave theory,
treating weak waves as perturbations of a flat background. In addition, general relativity is consistent
with special relativity regarding the fact that nothing travels faster than light. Therefore these changes in
the gravitational field can not be felt everywhere instantaneously, actually they propagate at exactly the
same speed as vacuum electromagnetic waves, the speed of light. Some physicists had serious doubts
about their existence, similar to what happened when electromagnetic waves were first predicted40. Arthur
Eddington, for instance, thought that these weak-field solutions in general relativity were just coordinate
changes which were propagating with the speed of thought [103]. Surprisingly, even Einstein himself for
some time nurtured doubts about his own proposal, as can be observed in a letter wrote to Max Born [105]:

Together with a young collaborator [Rosen], I arrive at the interesting result that gravita-
tional waves do not exist, though they have been assumed a certainty to the first approximation.

Eventually Einstein became fully convinced of the existence of gravitational waves, although his collab-
orator on the subject, Nathan Rosen, always thought that they were just a formal mathematical construct,
without any physical meaning.

The linearized theory is an approximation since it is not valid for sources where gravitational self-
energy is not negligible. A gravitational wave description valid for self-gravitating systems with slowly
moving bodies was provided by Landau and Lifshitz in 1941. Moreover, as previously observed, Gen-
eral relativity is a nonlinear theory and in general a sharp distinction between the parts of the metric that
represent the waves and the rest is not possible. Only in specific situations is it possible to clearly define
gravitational radiation [103].

The skepticism about the reality of gravitational waves strongly persisted until 1957 when Her-
man Bondi did a gedanken experiment showing that gravitational waves indeed carry energy [103]. Imagine
that a system is composed of two beads sliding on a stick and consider that the friction opposing their mo-
tion is small. If a plane gravitational wave reaches this system, the beads will move back and forth because
the proper distance changes due to the metric perturbation. This change obeys the geodesic equation and
the proper displacement between the two beads is a function of the gravitational wave metric perturbation.
So the friction between the beads and the stick heats the system, increasing its temperature. Since there
was an energy transfer from the gravitational waves to the system in the form of a temperature increase,

40 Lord Kelvin said: “The so-called “electromagnetic theory of light” has not helped us hitherto . . . it seems to me that it is
rather a backward step . . . the one thing about it that seems intelligible to me, I do not think is admissible . . . that there should
be an electric displacement perpendicular to the line of propagation” [103].
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the experiment successfully demonstrates that gravitational waves indeed carry energy, thus being a real
physical entity [103].

Nevertheless there was little hope for a real detection of the phenomenon, and in the 1960s Joseph
Weber started the experimental side of this research field, essentially alone [103]. Weber even claimed to
have detected gravitational waves by measuring the energy they transfer to large metal cylinders, but there
is a consensus that it was a false detection [78]. In face of this experimental status Steven Weinberg wrote
[17]: gravitational radiation would be interesting even if there were no chance of ever detecting any, for
the theory of gravitational radiation provides a crucial link between general relativity and the microscopic
frontiers of physics. The first strong, although indirect, evidence for the existence of gravitational waves
came from the observation of the energy loss from the binary pulsar system PSR 1913+16, discovered in
data from the Arecibo radio telescope by Hulse and Taylor in 1974. The observed orbital decay was in full
agreement with Einstein’s General Theory of Relativity. For this discovery they earned the Nobel prize
in physics in 1993. More recently another compact binary system, PSR J0737-3039, provided additional
indirect evidence, also in agreement with general relativity [7].

The Laser Interferometer Gravitational-Wave Observatory (LIGO) project was initiated in the
early 1990s with the goal of opening the field of gravitational-wave astrophysics through a direct detection.
LIGO’s first version operated from 2002 to 2010 and reported no gravitational waves [78]. Then the project
was succeeded by an advanced version. In the first observing run of Advanced LIGO, almost a century after
Einstein’s prediction, two LIGO detectors picked a signal which matched the predictions from numerical
simulations of the merger of a pair of black holes with 36M⊙ and 29M⊙, forming another black hole with
62M⊙ [7]. The missing mass was radiated in the form of gravitational waves. The so expected detection
was made on the 14th of September 2015 and was announced to the world in February 2016. It was the
first verification of general relativity in a dynamical strong-field system, allowing the identification of more
massive black holes than so far found in X-ray binaries [7]. Prior to the discovery it was expected that
the first gravitational wave signal at Advanced LIGO would be from coalescing neutron stars, however,
this type of detection had to wait until August 2017. The analysis showed that the signal GW170817 was
compatible with coalescence of orbiting bodies with individual masses (1.36–1.60)M⊙ and (1.17–1.36)M⊙,
and total mass 2.74+0.04

−0.01 M⊙. These direct detections of gravitational waves mark a pathway for a new kind
of astronomy, supplementing the traditional electromagnetic, cosmic ray and neutrino observations. The
rate of discoveries has increased to the extent that one could soon expect about a hundred compact object
coalescences per year [106].
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3.3 A New Kind of Astronomy

Most of our understanding about the Universe is ultimately connected to observations made through elec-
tromagnetic signals. Therefore, even though from the theoretical point of view electromagnetic and gravi-
tational waves share some similarities (for example, both types of waves are multipolar and oscillate trans-
verse to the direction of propagation), it is natural to compare them in order to comprehend how the later
can provide a new window to observe the Universe in a complementary direction, opening the modern
period of multi-messenger astronomy [7, 53, 106].

First let is describe some basic properties of electromagnetic waves. They are oscillations of
electric and magnetic fields propagating in a given spacetime, created when individual particles are accel-
erated. The electromagnetic radiation generated by the motion of a large number of microscopic charges
gives rise to an incoherent superposition of waves with a dipolar structure in the wave zone, useful to infer,
for instance, the thermodynamics of the source [7, 53]. The typical wavelengths of electromagnetic waves
are much smaller than the size of their sources in coherent motion. In this case light can be approximated as
a null particle following geodesics on a stationary background and the associated information is normally
used to produce images. Also, electromagnetic waves interact strongly with matter and in general they
are scattered many times as they propagate away from the sources before they reach our telescopes. This
intense interaction guarantees that the power in the field, which decays proportionally to the inverse dis-
tance squared to the source, can be easily detected [53]. Particularly, observations of compact objects are
typically performed in situations where spacetime fluctuations are negligible, either due to the timescales
involved or because the backreaction of the environment on the object is irrelevant [32]. In electromagnetic
observations one can find sources that are so strong for each waveband, so they can be detected without a
deep understanding about them [106]. In other words, one does not need to understand nuclear fusion to
see the Sun.

On the other hand, gravitational waves are oscillations of the spacetime itself, varying on a length
scale which is much smaller than that of the ‘background’ curvature (gravity as experienced on a daily
basis) [7]. In this case spacetime fluctuations are therefore relevant. Gravitational waves are generated by
asymmetric bulk motion of macroscopic masses (for example, the motion of neutron stars in a binary), with
the most prominent gravitational waves coming from very dense sources. Gravitational radiation produces a
coherent superposition of waves with a quadrupolar structure in the wave zone. Regarding their coherence,
gravitational waves are similar to laser light. Differently from electromagnetic waves, their gravitational
counterparts are usually larger than the size of their sources and the associated information are more similar
to stereo sound. In this case the geodesic approximation is not appropriate, although it can be used as a
guide [32]. A fundamental property of gravitational waves is that they barely interact with matter and their
propagation is practically absorption free, therefore they provide the cleanest signatures of the nature of
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compact objects, complementing the information furnished by telescopes and particle detectors. Apart from
compact objects, the weak nature of gravitational waves are also expected to improve our understanding of
other phenomena difficult to study by traditional means, for instance, the internal dynamics of supernova
explosions and the quantum fluctuations in the very early Universe. The weakness of gravitational radiation
also requires sophisticated statistical techniques. This involves a matching between templates of expected
waveforms and the observed data stream. So, differently from the electromagnetic case, gravitational
radiation demand some previous understanding about the associated waves and the sources that produce
them [106]. Therefore, at the same time that gravitational waves carry key information that would otherwise
remain hidden, it also makes its detection so challenging. Nevertheless the typical frequency is sufficiently
low so the wave’s amplitude, decaying like the inverse distance, can be tracked in time [53]. Fortunately,
gravitational waves are subjected to less modeling uncertainties because they depend on fewer parameters
than electromagnetic probes [40].

Even with such differences, gravitational and electromagnetic astronomy will establish a syner-
gistic relationship. In electromagnetic astronomy one usually obtains a large amount of information about
sources on a small region on the sky [107]. Gravitational wave astronomy has the potential to cover almost
all the sky. An obvious drawback is that sources are poorly localized in comparison with traditional astro-
nomical standards, but on the other hand more sources will be detectable, not only those sources to which
the detectors are pointing. So electromagnetic and gravitational astronomy present some similarity with
sight and hearing, respectively, enhancing their complementary character [107]. Besides that, sophisti-
cated tools for data analysis used in gravitational wave observations are expected to be beneficial for X-ray
and radio astronomy [7]. For example, gravitational wave inspired techniques are being adapted to detect
gamma-ray pulsars in Fermi data [7].

3.4 Gravitational Wave Echoes and Ultracompact Stars

Fortunately, nowadays gravitational waves are a solid reality and their historical detection made by LIGO
has opened exciting possibilities of testing the strong gravitational fields with unprecedented accuracy
[40]. This brings hope for testing many models of compact objects in a regime in which they are expected
to exhibit different predictions than its general relativistic counterparts. However, the gravitational wave
signal is accurately known only for some special configurations, under very specific assumptions on the
matter content [32]. For this reason a very rich phenomenon known as gravitational wave echoes, which is
largely influenced by the underlying theory and the dynamics of the object, is gaining ground and different
techniques have been proposed to model it [32].

The preferred systems for gravitational wave detection are compact binaries. The gravitational
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wave signal from compact binaries can be naturally divided in three stages, corresponding to different
cycles in their evolution. The first is the inspiral stage corresponding to large separations, which can
be approximated by post-Newtonian theory. The merger phase comes when the two objects coalesce.
This stage can only be accurately described by sophisticated numerical simulations. The last stage is the
ringdown phase when the merger end-product relaxes, becoming a stationary equilibrium solution of the
field equations [40]. All three stages are important in the sense that they provide independent, unique tests
of gravity and of compact gravitational wave sources. Here the last stage is particularly important, since
ringdown waveforms may contain “echoes” that encode new physics in the strong gravity regime [49].

Black holes, bizarre objects predicted by general relativity, are the ones responsible for the most
intense gravitational fields. A detailed knowledge of their gravitational radiation emitted as a response to a
perturbation will improve our understanding about the properties of the horizon, as well as their mass and
spin [108]. Although black holes are indeed the most extreme astrophysical objects, relativistic stars are
comparable to black holes in the sense that their compactness has the same order. Naturally black holes and
relativistic stars are fundamentally distinct objects because the second has a surface and an interior structure
which is not causally disconnected from the exterior spacetime [108]. Similar to black holes, relativistic
stars can respond to perturbations and emit gravitational waves, but their gravitational radiation is extremely
rich in details, with vital physical information. Imprinted in these gravitational waves is possible to find a
detailed map of their internal structure, which can be used to deduce the properties of matter at conditions
not attainable in terrestrial laboratories, therefore this information will be very useful in order to investigate
the equation of state of matter at high density [108].

At the dawn of this fascinating gravitational wave era in astronomy, ultracompact stars may play
an important role, in particular for the characterization of the signal emitted in the final state of a compact
binary merger [38]. It has been argued that the gravitational echoes mentioned earlier (secondary pulses
of gravitational radiation after the main burst of radiation related to the post-merger ringdown waveform)
are not, as commonly assumed, a unique prerogative of deviations from general relativity at the horizon
scale. Similar signals may arise from a large class of horizonless ultracompact stars, thus featuring a photon
sphere [109, 110]. Echoes would be a powerful physical property to distinguish different compact objects,
possibly revealing a new branch of stable configurations [31]. First, echoes imply that the remnant is more
compact than a neutron star with an ordinary equation of state [109]. In addition to that, although the post-
merger ringdown waveform of an ultracompact star is initially identical to that of a black hole, the echoes
in the late-time ringdown would present significant differences [38, 40]. Besides being a possible smoking-
gun signature of exotic compact objects, from the theoretical perspective echoes are a rich phenomenon
to study quantum corrections at this scale [111]. Recently some evidence for echoes have been reported,
with controversial results [109]. In particular, a tentative detection of echoes in the post-merger signal of
the neutron-star binary coalescence GW170817 has been claimed at a frequency of about 72 Hz with 4.2σ

significance level. The typical echo time can be described as the light time from the center of the star to the
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photon sphere, namely [112]

τecho =

∫ 3M

0

dr√
e2Φ
(
1− 2m

r

) , (3.18)

and the respective echo frequency can be approximated by fecho ≈ π/τecho. Low frequency echoes like the
one associated with the event GW170817 would require a compact star far deep in the ultracompact regime
[109].

This scenario regarding gravitational echoes has motivated several studies, most of them aiming
to predict low frequency signals (see for instance Refs. [38, 40, 109, 110, 111, 113]). However, it is a
well known fact that viable equations of state for neutron stars are not generally compatible with echoes,
and since the first study most analyses have considered constant-density stars as a toy model [32, 38]. For
constant-density stars it is possible to find stable configurations arbitrarily close to the Buchdahl limit41. It
is trivial to see such stars are unphysical because an incompressible fluid violates causality (the speed of
sound is infinite as in any other ideal incompressible fluid or medium) [38].

Urbano and Veermäe tried to study echoes under what they considered to be more proper physical
conditions. Aiming to circumvent undesired aspects that plague previous models, Urbano proposed to
restrict the analysis to perfect fluids obeying the following physical assumptions [38]:

1. Matter must satisfy the weak energy condition

ε ⩾ 0; ε+ p ⩾ 0. (3.19)

Energy violations are a common side effect of many models of ultracompact stars that traces back their
early studies [36, 37]. Besides that, this condition is also a way to exclude stars made of exotic matter, like
traversable wormholes [38].

2. It is also assumed that matter is microscopically stable, which can be mathematically stated as42

p ⩾ 0;
dp

dε
⩾ 0. (3.20)

Negative pressure energetically favors the collapse, and if p ⩾ 0 but dp
dε
< 0 the system is unstable with

respect to volume fluctuations since a contraction would induce a decrease in pressure and consequently
generate a further contraction. Note that ε + p ⩾ 0 and p ⩾ 0 are equivalent when dp

dε
⩾ 0 and ε ⩾ 0

are assumed. This second condition excludes, for example, gravastars which require a negative pressure

41 Maximum compactness of static fluid spheres of arbitrary density profile as long the density does not increase outwards
[80].
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anisotropy in order to avoid the presence of a pressure discontinuity at the junction between the inner core
and the crust [38].

3. The speed of sound of the fluid, that is the speed at which pressure disturbances travel in the fluid,
have to respect the causality constraint

cs =

(
dp

dε

)1/2

⩽ 1. (3.21)

Causality, together with general relativity, set important constraints to the compactness of relativistic stars
[22].

Under these three conditions, the Linear equation of state (LinEos hereafter) given by

p = ω (ε− ε0) , (3.22)

is the stiffest possible equation of state since the speed of sound takes the maximal value throughout the
star, and also is the one able to achieve the highest compactness [38]. In equation (3.22), the parameter ω
is related to the speed of sound through c2S = ω and ε0 is a positive nonzero constant. We emphasize that
the case ε0 = 0 is excluded because the subsequent equation of state is not able to support stable stars [38].
If we set ω = 1/3 and ε0 = 4B, the MIT bag model equation of state is obtained, which was invented to
try to account for hadronic masses in terms of their quark constituents [1, 114]. Considering a bag constant
of B = 145− 235MeVfm−3, general relativity predicts maximum masses of Mmax = 2.01− 1.57M⊙ and
radii of R = 10.9−8.56km, respectively [23]. Such values are similar to the ones produced by neutron star
models using nucleonic matter. Focusing on the mass limit of 2.01M⊙ for B = 145MeVfm−3 (for larger
values of B, the maximum mass gets smaller), the pulsar mass measurement PSRJ0740+6620 sets a mass
limit of 2.14+0.10

−0.09M⊙. This implies that B must be smaller than 145MeVfm−3. On the other hand, there are
reasonable constraints that demand B > 145MeVfm−3 in order to absolutely stable strange quark matter
to exist [23]. Therefore the MIT bag model, at least in general relativity, does not provide stellar solutions
compatible with modern pulsar mass measurements.

The LinEos, differently from constant-density models, is not able to support an infinitely high
pressure, in other words, when pressure is increased above some critical value the system becomes unsta-
ble. The maximal compactness of constant-density models and the LinEos are obtained by different mech-
anisms: for the LinEos it is set by the star’s stability and for the constant-density models it follows from the
positivity of the gtt component of the metric. However it was concluded that the LinEos is not able to gen-
erate gravitational echoes like those that characterize the relaxation phase of a black hole mimicker. Under
general relativity, the LinEos is only able to generate significant gravitational echoes considering values

42 The condition dp
dε ⩾ 0 is also known as the Le Chatelier’s principle [1].
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of ω which are unphysical according to the aforementioned premises of the work [38]. Since gravitational
echoes may be related with quantum properties in the strong gravity regime, a semiclassical analysis may
provide a different and more accurate picture. The linear equation of state will be the first equation of state
employed in the numerical analysis presented in Chapter 5. This choice may sound an oversimplification if
compared with the highly sophisticated models applied in the equations of state for neutron stars, but since
it is the one that maximizes compactness it is actually desirable. In fact, the LinEos is also used to model
very exotic phases of dense baryonic matter like abnormal matter and Q-matter [81].



Chapter 4
Semiclassical Gravity

Classical physics is an accurate approximation in almost all situations, working so well that quantum
physics was not discovered until the 20th century. Nevertheless, it is now definitely clear that the micro-
scopic domain of atomic, nuclear and particle physics obeys quantum principles, and the standard model
of strong and electroweak interactions is a fully quantum theory of nature. However, gravitational phe-
nomena are still described in general relativity in a completely classical fashion [67]. In fact, Einstein
himself was aware that quantum effects would demand modifications in his theory [115]. This formal gap
between gravitational and quantum principles is not restricted to their respective theories, as significant
as this is the fact that most of our intuitions about gravity remain essentially classical, particularly in the
macroscopic domain [67]. Although it is a general consensus that at the fundamental microscopic Planck
scale a theory of gravitational interactions must be in harmony with the quantum aspects of matter, it is
often assumed that quantum effects should amount only to negligible, subdominant contributions in the
macroscopic scale, at astrophysical or cosmological distances, where general relativity is presumed to hold
unquestionably. Such view seemed to be endorsed by the seminal results obtained over the last decades in
the context of renormalization of quantum fields in curved spacetimes [116].

Therefore it appears that the reason why quantum phenomena are difficult to observe is that they
are solely relevant on microscopically small scales, that is, when only a relatively small number of quanta
is involved. This does not always need to be the case. If we take a look at non-gravitational physics, it is
possible to find large systems which can not be described classically, revealing that quantum effects can
permeate a wide range of scales in a variety of ways, some of them evident, others more subtle and less ap-
preciated, at least at a first glance. Macroscopic quantum phenomena can be found in systems with a large
number of states or in a quantum state occupied by a large number of particles. Semiconductors, super-
fluids, superconductors and atomic Bose-Einstein condensates are undeniably macroscopic manifestations
of the underlying quantum world. These are examples of quantum objects that can maintain quantum co-
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herence at macroscopic scales [117]. The aforementioned degeneracy pressure of fermions at first thought
as an esoteric feature of quantum statistics, is now fully accepted as the basis for stability of observed
macroscopic objects like white dwarfs and neutron stars, therefore fundamental at the astrophysical scale
[67].

Among the direct consequences of quantum statistics we can cite the periodic table, hence the
foundations of chemistry itself and also, as a byproduct, the basis of biological processes. In this realm it
is possible to find examples in ordinary experiences and structures that seem far less exotic than compact
stars or superfluidity. Nonetheless chemical bonding, the structure and function of hemoglobin and DNA
in the human body, as well as the overall stability of matter itself at ordinary temperatures and densities are
a consequence of quantum principles justly as a sample of superfluid helium-4 climbing up the walls of its
dewar [67].

Even looking from a historical perspective, it was not only in the microscopic world of the atom
but experiments on macroscopic matter and the tough challenges they generated for classical mechanics,
such as the ultraviolet problem of blackbody radiation and the specific heat of solids, that eventually led
to the development of quantum mechanics. Whereas quantum effects play a crucial role in the properties
of bulk matter of macroscopic phenomena in most every other area of physics, there is no reason why
gravity, which couples to the energy content of quantum matter at all scales, should be immune from
quantum effects on macroscopic scales [67]. If true, quantum-gravitational states could remain coherent at
astrophysical, galactic and cosmological scales, playing a fundamental role in understanding macroscopic
gravitational phenomena [117]. In fact there are reasons to believe that quantum-gravitational effects may
soon be accessible. For instance, some works have shown that the quantization of a black hole’s area can
predict non-negligible effects already at the classical level [32].

4.1 Merging Two Worlds

In the early days of quantum theory, before a full theory of quantum electrodynamics was available, many
problems were approached considering a classical electromagnetic field interacting with quantized matter
[46]. Some results of this semiclassical approximation were later checked to be in complete accordance
with quantum electrodynamics. One could ask, as a full theory of quantum gravity is not available yet,
if it is possible to apply a similar reasoning to study the influence of the gravitational field on quantum
phenomena. In order to properly explore those physical systems where the quantum nature of the fields and
the effects of gravitation are both important, one has to consider a fusion between two pillars of modern
physics. At one hand quantum field theory describes the microscopic constituents of matter and the other,
general relativity, deals with the large scale structure of spacetime [42, 44]. The merger of these two



Chapter 4. Semiclassical Gravity 48

theories is called quantum field theory in curved spacetime and remains valid as long as the quantum nature
of gravity itself does not play a crucial role. Quantum field theory in curved spacetime can be considered
now a well defined theory for both free and interacting fields43 [118].

However, one must not infer that this combination is trivial. For instance, standard treatments of
quantum field theory in Minkowski spacetime rely extensively on Poincaré symmetry44 (usually entering
the analysis implicitly via plane-wave expansions). In this case, Poincaré symmetry is used to pick out a
preferred representation, which is mathematically equivalent to a selection of a preferred “vacuum state ”.
This, in turn, is mathematically equivalent to the selection of a preferred definition for the notion of “parti-
cles ” in the theory. Neither Poincaré (or other) symmetry nor a useful notion of particle exists in a general,
curved spacetime. Therefore some familiar tools and concepts of field theory must be “unlearned” in order
to grasp quantum field theory in curved spacetime [44]. In the past, much effort has been devoted to the
issue of how to generalize the notion of “particles” to curved spacetime. However one should remember
that quantum field theory is a quantum theory of fields, not particles45. Although in appropriate circum-
stances a particle interpretation of the theory may be available, this notion plays no fundamental role in the
formulation or interpretation of quantum field theory in curved spacetime [44].

In quantum field theory in curved spacetime, a quantum matter field treated as a test field, prop-
agates in a specified classical background spacetime, as in general relativity. Thus, the spacetime behavior
is still described by a manifold M, on which is defined a classical, Lorentzian metric, gµν [44]. Given
the above assumptions, quantum field theory is expected to have a limited range of validity. As mentioned
earlier is generally believed that it should break down when spacetime curvatures reach Planck scales. In
this case the theory must be replaced by a quantum theory of gravitation coupled to matter [44]. However
it is worth noticing that the precise criteria for the validity of quantum field theory in curved spacetime can
only be obtained when a quantum theory of gravity is available [44]. Despite of this, the theory is expected
to embrace a wide range of interesting phenomena, such as quantum field process in the early universe,
Casimir effect of quantum fields in spacetimes with boundaries, and the well-known Hawking and Unruh
effects [44, 42].

The formulation of quantum field theory in curved spacetime assumes that the spacetime geom-

43 A significant simplification comes from considering quantum fields interacting only with classical backgrounds, but not
with other quantum fields. These fields are also called free fields, although they are coupled to the background [119].

44 The Poincaré group is in fact the group of isometries of a flat Lorentzian 4-manifold, the Minkowski spacetime. This
isometry group plays an important role in the analysis of the behavior of physical fields on Minkowski spacetime, particularly in
the proof of conservation laws [2, 3].

45 However, when dealing with the interaction between some quantum field with other systems to which it is coupled, an inter-
pretation in terms of “particles” naturally arises. This is essential in order for quantum field theory to be described by observed
phenomena, which commonly have a “particle-like” behavior. Experiments designed to explore quantum field phenomena are
usually called “particle physics ” experiments [44].
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etry is given, therefore the theory deals with quantum fields propagating in a fixed background spacetime
[44]. Nevertheless, it is evident on physical grounds that the quantum field must have a backreaction effect
upon the spacetime geometry. In the absence of a full quantum gravity theory, the next structural level
towards understanding the interaction of quantum fields with gravity is precisely to develop an approxima-
tion capable of including the effect of backreaction, that is, the effects of quantum matter fields exerted on
the spacetime, therefore impacting on both its structure and dynamics [42, 116].

The resulting theory is called semiclassical gravity, a framework that provides quantum correc-
tions into general relativity in a “minimal” way, in which matter (and other interaction) fields are quantized
in some appropriate state on a classical strong external field called the background [27, 119]. In fact this
construction is very useful since there is no absolute certainty that the metric itself should be quantized be-
cause, after all, it is different from all other fields [120]. However it may be argued that, due to the character
of its foundations, it is unlikely that such a program reflects an exact description of nature since it combines
interactions between quantum fields which are treated in probabilistic terms, with a classical gravitational
field relying on well determined values [121]. Regarding field equations, the backreaction problem deals
with the search for self-consistent solutions of both matter field equations and the Einstein field equations
[42]. In the presence of gravitation the notions of “vacuum” and “particles” are also inherently ambigu-
ous (in fact one observer’s particle may be another observer’s vacuum). Conversely, quantities defined
directly through the field expectation values in some appropriate state are unambiguous. In this sense field
observables are more fundamental than particle occupation numbers [119]. Hence in this framework the
stress-energy tensor, with the expectation value of the matter field as source, is the central object to assess
the importance of quantum fields on the dynamics of the gravitational field itself [46].

4.2 Semiclassical Field Equations

This section discusses how the ideas mentioned so far can be translated into the field equations. In what
follows only situations where the fluctuations of the gravitational field are negligible will be considered.
In this case a classical metric gµν = ⟨ĝµν⟩ is assumed just as in general relativity [122]. Now suppose
that this classical spacetime is populated by a collection of quantum fields Φ(x) (called matter fields)
assumed to be in a given quantum state |ψ⟩. In this context a semiclassical version of the Einstein field
equations is proposed replacing the classical energy-momentum tensor by the expectation value of the
energy-momentum tensor of the relevant quantized fields in the chosen state [123], that is

Gµν

(
gαβ
)
= 8π⟨ψ|T̂µν

(
Φ, gαβ

)
|ψ⟩ (4.1)
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The field equations are assumed to hold as long as the fluctuations on the stress-energy tensor are suffi-
ciently small and curvatures are small compared with the Planck scale46, where quantum gravity effects
are expected to dominate and the theory of quantum fields in classical spacetime breaks down [44, 119].

As frequently done in ordinary quantum mechanics47, classical solutions are usually obtained in
the limit ℏ → 0, namely

Tµν ≡ lim
ℏ→0

⟨ψ|T̂µν
(
Φ, gαβ

)
|ψ⟩. (4.2)

Therefore it makes sense to define

Qµν ≡ ⟨ψ|T̂µν
(
Φ, gαβ

)
|ψ⟩ − Tµν , (4.3)

which implies that Qµν has order O (ℏ). Solving the semiclassical equations is a challenging task because
even for simple spacetimes, the evaluation of the stress-energy tensor is not straightforward [119]. Besides
that some solutions, although consistent, are not physically relevant. For instance, there are known cases of
“runaway” solutions when gravity generates a large expectation value for the stress-energy tensor, giving
rise to more curvature and to an even stronger vacuum polarization, ad infinitum [119]. In fact, all exact
solutions available are trivial [123]:

• Minkowski space with all the quantum fields in the vacuum state (imposing a cosmological constant
renormalized to zero).

• de Sitter space with all the quantum fields in the vacuum state (imposing a fine tuned renormalized
cosmological constant).

• Starobinsky inflation, which is a special case of de Sitter space with all the quantum fields in the vac-
uum state. Limiting the calculations to massless conformally-coupled quantum fields, one can then
obtain the renormalized cosmological constant in a self-consistent manner via the trace (conformal)
anomaly.

• Classical solutions obtained by taking the limit ℏ → 0.

One might be skeptical about the semiclassical approximation48, arguing that the fluctuations of
the gravitational sector should be considered. In this case the metric should be treated as an operator ĝµν

46 Nevertheless one should be careful with this association between quantum gravity effects and the Planck scale, since it is
only reasonable in the absence of matter [124]. Even though it seems to leave much scope for a semiclassical theory since the
Planck length is about twenty powers of ten below the size of an atomic nucleus [46].

47 In the early days of quantum mechanics it was perceived that the limit ℏ → 0 should play some role in connecting the
classical and the quantum realm (although strictly speaking it is a dimensional constant). As observed by Landau and Lifshitz,
this brings a curious aspect of quantum mechanics: it contains classical mechanics as a limiting case, yet at the same time it
requires this limiting case for its own formulation [125].

48 It is worth mentioning that this has nothing to do with the WKB approximation, which is also sometimes referred to as the
semiclassical approximation [126].
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and the wave-functional as a tensor product |ψ, g⟩ ≡ |ψ⟩ ⊗ |g⟩. In this case the field equations assume the
form

⟨ψ, g|Gµν

(
ĝαβ
)
|ψ, g⟩ = 8π⟨ψ, g|T̂µν

(
Φ, gαβ

)
|ψ, g⟩. (4.4)

In general ⟨ψ, g|Gµν

(
ĝαβ
)
|ψ, g⟩ ̸= Gµν

(
ĝαβ
)

since Gµν

(
ĝαβ
)

is a non-linear function of the metric oper-
ator [127]. Even so it is legitimate to consider an expansion around a classical solution such as

ĝµν = gµν1+ γ̂µν . (4.5)

Then it is possible to express the difference between ⟨ψ, g|Gµν

(
ĝαβ
)
|ψ, g⟩ and Gµν [ĝ] (keeping only terms

quadratic in γ̂µν) as
Gµν

(
ĝαβ
)
− ⟨ψ, g|Gµν

(
ĝαβ
)
|ψ, g⟩ = 8π⟨t̂µν

(
γ̂αβ
)
⟩, (4.6)

where t̂µν is responsible for taking into account the contribution to the stress-energy tensor due to quantum
fluctuations of the metric. The operational version of the field equations can then be written as49

Gµν

(
⟨ĝαβ⟩

)
= 8π

(
⟨T̂µν⟩+ ⟨t̂µν

(
γ̂αβ
)
⟩
)
. (4.7)

Therefore in situations in which the matter-gravitational state is highly populated (in the sense that macro-
scopic values of the fields can be well approximated by coherent states), ⟨γ̂⟩ can be neglected and the
assumption that gµν = ⟨ĝµν⟩ is justified [127]. Since developing exact solutions for the semiclassical field
equations is an arduous task, most investigations rely on approximation techniques. The most common are
[123, 127]:

• Linearization: The metric is expanded around a flat Minkowski space as gµν = ηµν + hµν , where hµν
represents a small perturbation. The quantum field Φ is considered to be in some vacuum state |0⟩,
so that Tµν = 0. Keeping only linear terms, the perturbation obeys the equation

□

(
hµν −

1

2
hηµν

)
= −16πQµν +O

(
h2
)

(4.8)

So the perturbation hµν behaves as a usual quantum field in flat space. This method can be used,
for instance, to calculate graviton-matter scattering. A disadvantage of this approach is the non-
renormalizability of general relativity, so not every Green function is well defined.

• Test field limit: This technique is similar to what is done in quantum field theory in curved spacetime.
The background metric assumes the form of any solution of the classical vacuum Einstein equations.
As in the previous case, the quantum field is also in a vacuum state with Tµν = 0. Then Qµν is
calculated after performing a quantization of this field of the background, ignoring its backreaction
on the background metric.

49 The validity of this operatorial expression can not be properly addressed without a full theory of quantum gravity [127].
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• Backreaction: One starts with a background field which is any solution of the Einstein equations in
vacuum. From the classical metric Qµν is computed. Then the metric is allowed to fluctuate, and
the fluctuations are computed from the linearized field equations with Qµν as source. After this, one
can re-compute Qµν using the classical metric plus the perturbations and re-iterate the previous steps
until convergence is obtained.

The discussion made so far does not mention a prescription on how to calculate Qµν . The most
undesirable property regarding its calculation is that it often diverges [127]. This is not a novelty of curved
spacetime, in fact this is also the case in Minkowski spacetime. In order to illustrate the origin of these
divergences, consider the stress-energy tensor of a scalar field, namely [127]

Tµν(x) =
1

2
∇µϕ(x)∇νϕ(x)−

1

2
gµνV

(
ϕ(x)

)
. (4.9)

Quantum fields are, mathematically speaking, operator-valued distributions and a product between two dis-
tributions is not a well-defined mathematical concept [127]. The usual approaches for dealing with these
issues in ordinary quantum field theory (namely normal ordering or Casimir subtraction) do not work in
curved spacetime. Hence other techniques should be used to compute ⟨T̂µν⟩. The three most common are
dimensional regularization, Riemann-zeta function renormalization and Point-splitting renormalization50

[127]. For instance, in the Point-splitting renormalization one deals with terms like ϕ(x)ϕ(x) by introduc-
ing an auxiliary point and a geodesics γ0 connecting the points x and x′. Hence the stress-energy tensor in
the vacuum state assumes the form [127]:

⟨0|T̂µν(x)|0⟩ := lim
x′→x

⟨0|T̂µν
(
x, x′; γ0

)
|0⟩ (4.10)

Since the energy-momentum tensor is quadratic in the fields, it is assumed that one of them is evaluated at
x and the other at x′ [127]. It can be demonstrated that locally (that is, considering small distances between
x and x′) this approach does not depend on the particular choice for γ0.

The outcome of this procedure is the following structure51 [127]

⟨0|T̂µν(x)|0⟩ = Dµν

(
x, x′; γ0

)
G(1)

(
x, x′; γ0

)
; (4.11)

G(1)
(
x, x′; γ0

)
:= ⟨0|{ϕ(x), ϕ(x′)}|0⟩. (4.12)

In the above expression G(1) (x, x′; γ0) is the Hadamard Green function for the field ϕ(x). This function is
is to have the Hadamard form whenever it can be expressed as [128]

G(1)
(
x, x′

)
=
U(x, x′)

σ
+ V (x, x′) lnσ +W (x, x′), (4.13)

50 The point-splitting technique has the advantage of being valid beyond Riemannian manifolds [127].
51 Under the assumption that the energy-momentum tensor is constructed with products of two fields and contains second-order

derivatives [127].
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where U , V and W are regular functions for all choices of x and x′. The function W is responsible
for carrying the information about the quantum state, while U and V are geometrical quantities, therefore
independent of the particular quantum state [128]. A state is called a Hadamard state if the singular behavior
of the associated Green function is the natural generalization for a curved spacetime of its singular structure
in Minkowski spacetime. Such states are the ones usually considered as physical [129]. The question for
which spacetimes and for what states the Hadamard Green function has the Hadamard form is still open,
nevertheless it is usually believed that it acquires this form for a wide class of systems [46]. The expectation
value of the energy-momentum tensor can be constructed as a limit of derivatives of the Hadamard Green
function. For instance consider a massless, minimally coupled scalar field written as

Tµν = ∂µϕ∂νϕ− 1

2
gµν∂αϕ∂

αϕ. (4.14)

So the formal expectation value of the above expression is [128]

⟨Tµν⟩ =
1

2
lim
x′→x

{[
∂µ∂ν′ −

1

2
gµν∂α∂

α′
]
G(1)

(
x, x′

)}
, (4.15)

where ∂µ represents a derivative with respect to xµ and ∂ν′ represents a derivative with respect to x′ν .
Equation (4.15) is only formal since it diverges when x = x′. When these two quantities are different
however, the above equation can be taken as a regularized form of the expectation value of the energy-
momentum tensor [128].

In equation (4.11), Dµν (x, x
′; γ0) is some second-order derivative operator constructed upon co-

variant derivatives at x and x′. At x′, the covariant derivatives must be parallel transported back to x in order
for the differential operator to qualify as a proper geometrical object [123]. In other words, Dµν (x, x

′; γ0)

depends on the particular geodesic employed. Therefore it is exclusively determined by the background
geometry (as a consequence it is regular) and in general is described by very complicated expressions. As
a matter of curiosity, in the particular case of a conformally-coupled massless scalar field, Dµν (x, x

′; γ0)

assumes the form [123]:

Dµν

(
x, x′; γ0

)
≡1

6

(
∇x

µg
α
ν

(
x, x′; γ0

)
∇x′

α + gαµ
(
x, x′; γ0

)
∇x′

α ∇x
ν

)
− 1

12
gµν(x)

(
gαβ

(
x, x′; γ0

)
∇x

α∇x′

β

)
− 1

12

(
∇x

µ∇x
ν + gαµ

(
x, x′; γ0

)
∇x′

α g
β
ν

(
x, x′; γ0

)
∇x′

β

)
+

1

48
gµν(x)

(
gαβ(x)∇x

α∇x
β + gαβ(x′)∇x′

α ∇x′

β

)
−Rµν(x) +

1

4
gµν(x)R(x). (4.16)

It is evident by looking to equation (4.11) that the renormalization of the energy-momentum
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tensor will be dependent on the success in renormalizing the Green function, yielding [127]

⟨0|T̂µν(x)|0⟩ren = Dµν

(
x, x′; γ0

)
G(1)

ren

(
x, x′; γ0

)
. (4.17)

It is also desirable to restrict the expectation value of the stress-energy tensor to obey Wald’s physical
axioms [42, 44, 122, 127]:

1. Covariant conservation: ∇µ⟨ψ|T̂µν
(
Φ, gαβ

)
|ψ⟩ren = 0 (All states must be compatible with the con-

tracted Bianchi identity in general relativity).

2. Causality: For a fixed “in” (“out”) state, ⟨ψ|T̂µν
(
Φ, gαβ

)
|ψ⟩ren at a point p must depend only on the

spacetime geometry to the past (future) of p.

3. Standard results for off-diagonal matrix elements: The value of ⟨ψ|T̂µν
(
Φ, gαβ

)
|ξ⟩ must be pre-

served for two orthonormal states (that is, ⟨ψ|ξ⟩ = 0) |ψ⟩ and |ξ⟩ for which this quantity is finite.

4. Standard results in Minkowski spacetime: In the absence of curvature, the expectation value of the
energy-momentum tensor must converge consistently to its normal ordered version in Minkowski
spacetime.

Wald demonstrated that any ⟨T̂αβ⟩ that satisfies the first three axioms is unique up to the addition of a local,
geometrical conserved tensor. Such a tensor can always be decomposed and the coefficient associated with
each term can be interpreted as providing the renormalization for the bare quantities in the left side of
the field equations [127]. Consequently, the renormalization of the energy-momentum tensor provides a
renormalization for the matter and gravitation couplings, inducing higher order curvature terms even if they
are absent in the bare action [127]. From the action point of view one is left with

S = Sgrav +W =
(
Sgrav

)
ren

+Wren, (4.18)

where W represents the one loop effective action for the matter fields and the divergent parts of the two
actions cancels.

4.2.1 Semiclassical Action

Similarly to what is done in general relativity, the semiclassical field equations can also be motivated
through an action principle. Fortunately, the divergent parts of ⟨Tαβ⟩ discussed earlier can be absorbed by
the renormalization of counterterms in the gravitational action [128]. The first step is to show how the idea
of a classical energy-momentum tensor can be replaced by its quantum expectation value.
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For this purpose consider, as frequently done in quantum mechanics, the propagator for a “par-
ticle” to go from the position x′ at time t′ to position x′′ at time t′′, which can be formally expressed as a
sum over all possible paths connecting these position [126],

⟨x′′, t′′|x′, t′⟩ =
∫

Dx(t)eiS[x(t)]/ℏ. (4.19)

This approach can be formally generalized for quantum field theory. Consider now a scalar field ϕ(x). In
this case, instead of the above expression, one has (setting ℏ = 1) [126]

Z
[
ϕ(x)

]
=

∫
Dϕ(x)eiS[ϕ(x)], (4.20)

where Z
[
ϕ(x)

]
is the usual notation to abbreviate the path integral in the field-theoretical approach, which

may refer, for instance, to in-out transition amplitudes or to partition sums [126].

In many calculations it is appropriate to work in the four-dimensional Euclidean space. Equa-
tion (4.20) can be translated into the Euclidean formulation through a Wick rotation t → −iτ , leading to
iS
[
ϕ(x)

]
= −SE

[
ϕ(x)

]
. For a quantum system with a coordinate q̂ interacting with a classical back-

ground field J , the Euclidean effective action ΓE

[
J(τ)

]
can be determined through the expression [119]

e−ΓE[J(τ)] =

∫
Dqe−SE[q(τ),J(τ)], (4.21)

where SE [q, J ] is the Euclidean classical action for the variable q including its interaction with the back-
ground, and τ is called the Euclidean time. Obviously, obtaining a Lorentzian analogue is straightforward.
One needs to perform an analytic continuation that involves replacing τ = it, where t is the Lorentzian
time. The Lorentzian effective action is simply defined as the analytic continuation of the Euclidean effec-
tive action with an extra imaginary factor, that is

ΓL

[
J(t)

]
≡ iΓE

[
J(τ)

]
τ=it

. (4.22)

Formally this allows one to replace previous Euclidean path integral by its Lorentzian analogue and write

eiΓL[J(t)] =

∫
eiS[q(t),J]Dq. (4.23)

The above relation consists in a merely symbolic representation of the analytic continuation of the Eu-
clidean path integral, since the Lorentzian path integral is ill-defined. On the other hand it is intuitively
easier to manipulate the Lorentzian path integral directly, as if it were well-defined, computing, for ex-
ample, functional derivatives of ΓL or changing variables in the path integral. These operations should
be understood as the respective manipulations on the Euclidean path integral, followed by the analytic
continuation to the Lorentzian time [119].
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Now consider a quantum field ϕ̂ and the role of the background is played by the metric gµν . The
backreaction on the metric can be found through the effective action ΓL

[
gµν
]

via [119],

eiΓL[gµν] =

∫
eiS

(m)[gµν ,ϕ]Dϕ, (4.24)

where the action on the right hand side is associated with the matter field in the presence of gravitation.
The backreaction modifies the vacuum Einstein field equations in the following way:

δSEH

δgαβ
+
δΓL

[
gµν
]

δgαβ
=

√
−g

16π
Gαβ +

δΓL

[
gµν
]

δgαβ
= 0. (4.25)

and the term carrying the functional derivative of ΓL

[
gµν
]

describes the quantum corrections in the theory
[129]. Now, using the expression for the stress-energy tensor in general relativity, namely52

Tαβ = − 2√
−g

δSm

δgαβ
, (4.26)

it is convenient to express the expectation value of the quantum stress-energy tensor as [119]

⟨Tαβ⟩ = −
∫
Tαβe

iSDϕ∫
eiSDϕ

= −e−iΓL
2

i
√
−g

δ

δgαβ
eiΓL = − 2√

−g
δΓL

δgαβ
. (4.27)

The next step in the study of the semiclassical field equations is to analyze the gravitational part
of the semiclassical action, which has the generic form [42]

S =
1

16π

∫
d4x

√
−g
[
R− 2Λ +

(
aR2 + bRαβRαβ + cRαβµνRαβµν

)]
, (4.28)

where a, b and c are constants. These quantities before renormalization are bare53 and their observable
physical counterparts are renormalized and fixed by experimental data [42, 119]. The semiclassical action
differs from the standard Einstein-Hilbert action by extra higher order curvature terms that are needed in
order to cancel ultraviolet differences which arise in the matter quantum fields. These extra terms lead
to a much larger number of solutions than those of classical general relativity, and often they also lead to
solutions which may follow the classical solution for a while but after some time they become unstable and
substantially deviate from it [42].

In four dimensional spacetime, using the generalized Gauss-Bonnet theorem, it is possible to find
a relation between the constants a, b and c. It can be demonstrated that general relativity is reobtained by
setting a = b = 0 [42].

52 See Appendix E.
53 The bare coupling constants are never observable since the quantum field is always present and the backreaction can not be

“switched off” [119] .



Chapter 4. Semiclassical Gravity 57

The action can be alternatively expressed in terms of the Weyl tensor as [42]

S =
1

16π

∫
d4x

√
−g
[
R− 2Λ +

(
aR2 + α2RαβRαβ + γCαβµνCαβµν

)]
, (4.29)

where α2 = b+ c and γ = 3c/2. The field equations are obtained by taking the functional derivative of the
action with respect to gαβ . The quantities R2, RαβRαβ and CαβµνCαβµν give rise to the following terms
respectively [42]

(1)Hαβ = − 1√
−g

δ

δgαβ

∫
d4x

√
−gR2 (4.30)

= −2gαβ□R+ 2∇α∇βR− 2RRαβ +
1

2
gαβR2; (4.31)

(2)Hαβ = − 1√
−g

δ

δgαβ

∫
d4x

√
−gRαβRαβ (4.32)

=
1

2
gαβRµνRµν −□Rαβ −

1

2
□Rgαβ +∇α∇βR−RµνRµανβ; (4.33)

(C)Hαβ = − 1√
−g

δ

δgαβ

∫
d4x

√
−gCαβµνCαβµν (4.34)

= −∇µ∇νCαβµν + 2RµνCαβµν . (4.35)

It is useful to group the sum of these terms

Hαβ = a (1)Hαβ + α2
(2)Hαβ + γ (C)Hαβ. (4.36)

In conformally flat spacetimes in four dimensions, where the Weyl tensor vanishes, (1)Hαβ and (2)Hαβ no
longer remain linearly independent. It follows that (1)Hαβ = 3 (2)Hαβ and a new quantity appears [42]

(3)Hαβ = − 1

12
R2gαβ +RµνRµανβ (4.37)

= −R µ
α Rµβ +

2

3
RRαβ +

1

2
RµνR

µνgαβ −
1

4
R2gαβ, (4.38)

which is conserved only in conformally flat spacetimes (not as a consequence of a variational derivation).
In this case Hαβ can be rewritten as

Hαβ = aℏ (1)Hαβ + α2ℏ (2)Hαβ + βℏ (3)Hαβ +O
(
ℏ2
)
, (4.39)

where α = a+ α2/3. Since in the presence of (3)Hαβ , (1)Hαβ and (2)Hαβ are not linearly independent one
can put the above equation in the form [42]

Hαβ = αℏ (1)Hαβ + βℏ (3)Hαβ +O
(
ℏ2
)
. (4.40)

All things considered, the semiclassical field equations have the generic form

Gαβ + Λgαβ = 8π
(
⟨Tαβ⟩+Hαβ

)
. (4.41)
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Although Hµν does not vanish in general, in static situations, like the stellar applications to be discussed
next, its contribution is negligible [39]. Since Hαβ arises from new curvature terms, it can be reasonably
considered as a geometrical part of the field equations, and so be written in its left-hand side. So, if one
wishes, the field equations can be conveniently rewritten as:

Gαβ + Λgαβ + Ξαβ = 8π
(
Tαβ +Qαβ

)
, (4.42)

where Ξαβ := −8πHαβ . In the right hand side the quantum expectation value is separated in its classical
and quantum contributions. In this way the field equations can be interpreted as providing quantum correc-
tions to the classical theory [99]. To summarize, a self-consistent semiclassical theory can be formulated in
the following way. A quantum field has a nonzero vacuum expectation of the stress-energy tensor induced
by the metric. Then one computes the value of the stress-energy tensor for this metric, requiring that this
metric must satisfy the semiclassical field equations sourced by expectation value of the same stress-energy
tensor [119].

There are different ways to justify the semiclassical Einstein equations, the two most common
are [42, 43, 44, 130, 131, 132, 133]:

• Axiomatic: Having in mind Wald’s axioms mentioned earlier, it is the only consistent way to couple
quantum matter to a classical metric.

• LargeN expansion54: Consider gravity coupled withN identical and independent scalar matter fields
(each coupled to gravity with a coupling proportional to 1/N ), all of which are in the same quantum
state. In the limit in which N goes to infinity and the gravitational constant is appropriately rescaled,
the leading order55 theory reproduces semiclassical gravity.

Regarding the large N expansion, the value of N is essentially arbitrary, as pointed out by
Tomboulis, it is there just to classify graphs in a gauge invariant way [133]. Nonetheless, a few com-
ments are pertinent. As previously mentioned, the limit ℏ → 0 is traditionally used as a guide to study the
emergence of classical physics from quantum theory. Although formalizing the transition from quantum to
classical physics is a highly non-trivial issue, an analogous discussion can be made considering a quantum
system when it becomes large, symbolically represented by limit N → ∞. In this sense, strictly classical

54 This expansion has also been successfully used in other contexts, for instance, in quantum chromodynamics, to compute
some non-perturbative results [130].

55 As a matter of curiosity, the next order provides another formalism, known as stochastic gravity [42]. In this formalism, the
symmetrized stress-energy bitensor and its expectation value known as the noise kernel, plays a similar role to the one played by
the quantum expectation value in semiclassical gravity. The theory can be used to investigate how the noise associated with the
fluctuations of quantum matter fields seed the structures of the universe, how they affect fluctuations of the black hole horizon
and the backreaction of Hawking radiation on the black hole dynamics, as well as the implications on trans-Planckian physics
[42].
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behavior would be an idealization obtained in the limit where the size is infinite. However, this notion
is not problematic and shares some similarities with discussions about the derivation of thermodynamics
from statistical mechanics. For instance, in theory phase transitions only happen in infinite systems, but
in reality they can be observed in ordinary phenomena, making it reasonable to approximate 1023 boiling
water molecules by an infinite number of such molecules [134]. The underlying idea is that without infinite
systems as an idealization, the differentiation between microscopic and macroscopic systems is unclear.
Likewise, classical behavior does not emerge from quantum theory associated with finite systems (with
ℏ > 0 fixed), but only in infinite ones [134].

This discussion about the transition between quantum and classical physics is fundamental, and
may involve both limits, for instance, when dealing with black holes, which can be described as quantum
critical systems but at the same time they are also solutions in general relativity and therefore must have a
classical interpretation [117].

4.2.2 The Semiclassical Source

As pointed out in the previous section, the expectation value of stress-energy tensor is the quantity respon-
sible to incorporate the backreaction of the quantum fields on the metric [119]. Now it is time to introduce
the expectation value of the energy-momentum tensor that is applied to deduce the hydrostatic equilibrium
equations in semiclassical gravity. Aiming to simplify the calculations in what follows it is assumed that
the field does not depend on angular variables, reducing the system to a (1 + 1)-dimensional spacetime
[119, 135].

In order to set up the problem, consider a massless scalar field ϕ defined over a globally hyper-
bolic56 (1 + 1)-dimensional spacetime manifold M, obeying the Klein-Gordon equation [122, 129]

□ϕ ≡ 1√
−g

∂µ
[√

−ggµν∂νϕ
]
= 0. (4.43)

Equation (4.43) is invariant under conformal transformations of the metric which leaves the field un-
changed. This equation can be deduced from the action

S [ϕ, g] = −1

2

∫
d2x

√
−ggµν∂µϕ∂νϕ. (4.44)

In order to see that the above action is conformally invariant, observe that under the substitution [119]

gαβ → g̃αβ = Ω2gαβ, (4.45)

56 A globally hyperbolic spacetime is one which admits a Cauchy surface Σ and consequently it is diffeomorphic to the product
R×Σ. A Cauchy surface is a spacelike hypersurface with the property that any causal curve (non-spacelike) intersects Σ exactly
once [57].
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then it follows that:
√
−g → Ω2

√
−g, gαβ → Ω−2gαβ. (4.46)

Therefore dependence in Ω is canceled. This invariance implies a major simplification in the subsequent
theory which does not happen in (3 + 1) dimensions, allowing exact calculations to be performed [136].

Taking advantage that in (1 + 1) dimensions all metrics are conformal to the flat metric [46], that
is

gµν = C(x)ηµν , (4.47)

the line element can be written in null coordinates (u, v) as [129]

ds2 = −C (u, v) dudv = −C
(
dt2 − dx2

)
. (4.48)

In null coordinates, the equations of motion for a massless scalar field are simply [136]

∂2ϕ

∂u∂v
= 0. (4.49)

While searching for solutions and listing a complete set of normal modes, it is important to distinguish the
various types of boundary conditions [136]. When there are no boundaries (that is, x, u and v vary from
−∞ to ∞), a set of positive-norm mode solutions is given by (running waves) [136, 129]

ϕu
ω :=

1√
4πω

e−iωu, ϕv
ω :=

1√
4πω

e−iωv, ω ∈ R+. (4.50)

These are positive-norm solutions with respect to a complexified space where it is possible to define a
pseudo-inner Klein-Gordon product57, namely [129]

(ϕ1, ϕ2)KG := i

∫
Σ

dΣµ
(
ϕ∗
1∂µϕ2 − ϕ2∂µϕ

∗
1

)
, (4.51)

with Σ denoting a Cauchy surface. By applying a null Cauchy surface in the integral (4.51), it is straight-
forward to observe that the mode solutions (4.50) satisfy(

ϕa
ω, ϕ

b
ω′

)
= δ

(
ω − ω′) δab; (4.52)(

ϕa∗
ω , ϕ

b∗
ω′

)
= −δ

(
ω − ω′) δab; (4.53)(

ϕa
ω, ϕ

b∗
ω′

)
= 0. (4.54)

So the general solution of the Klein-Gordon equation can be written as

ϕ =

∫ ∞

0

dω (auωϕ
u
ω + avωϕ

v
ω +H.c.) . (4.55)

57 This product is not positive defined. If ϕ has a positive norm, then ϕ∗ has a negative norm [129].
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These orthonormal modes have positive frequency with respect to the timelike vector field ∂t := ∂u + ∂v

[129]
i∂tϕ

a
ω = ωϕa

ω. (4.56)

Now the two main approaches available in the literature to obtain an expression for the renor-
malized energy-momentum tensor of a massless scalar field in (1 + 1)-dimensional will be briefly outlined
[129]. The details are unnecessary because all that is needed to study hydrostatic equilibrium in semiclas-
sical gravity is a covariant tensorial expression closely connected to one of these methods.

The first method consists in a direct construction of an exact solution of the scalar wave equation
in normal modes [136]. In this case one uses (4.10) with the expectation value as written in equation
(4.11). To eliminate the divergent behavior at x → x′, one simply subtracts a function with the same
divergent behavior in this limit [129]. The Hadamard Green function can be constructed using equation
(4.50) and the renormalized energy-momentum tensor takes the form [46, 129]

⟨T̂uu⟩(2) = − 1

12π
C

1
2∂2uC

− 1
2 =

1

24π

(
− 3

2C2
(∂uC)

2 +
1

C
∂2uC

)
;

⟨T̂vv⟩(2) = − 1

12π
C

1
2∂2vC

− 1
2 =

1

24π

(
− 3

2C2
(∂vC)

2 +
1

C
∂2vC

)
;

⟨T̂uv⟩(2) = ⟨T̂vu⟩(2) =
1

96π
R(2)guv = −RC

96π
. (4.57)

where C = C(u, v) is the conformal factor in null coordinates as expressed in equation (4.48).

Another path is to obtain the quantum expectation value through an effective action. As a starting
point, consider the Polyakov action [119]

ΓE

[
γµν
]
=

1

96π

∫
d2x

√
γR□−1

γ R (4.58)

=
1

96π

∫
d2x
√
γ(x)d2y

√
γ(y)R(x)R(y)GE(x, y), (4.59)

where γµν is the positive defined metric. The Lorentzian metric and the positive defined metric are related
by an analytic continuation:

γµν = −g(E)
µν = −gµν |t→−iτ . (4.60)

So the idea is to perform an analytic continuation of ΓE

[
gµν
]

back to the Lorentzian time and use the
Feynman Green function58 instead of the Euclidean one. The result is the Lorentzian effective action, as
expressed in (4.27) [119]. The first step is to return to the original Euclidean metric g(E)

µν before applying
the analytic continuation. This requires:

√
γ =

√
g(E), R(γ) = −R

(
g(E)

)
, □γ = −□g(E) . (4.61)

58 The Feynman Green function is given by iGF (x, y) ≡ ⟨0|Tϕ(x), ϕ(y)|0⟩ = θ (y0 − x0)G
−(x, y) + θ (x0 − y0)G

+(x, y)

[127].
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The overall effect is a sign change in the action [119]

ΓE

[
γµν
]
=

1

96π

∫
d2x

√
−γR(γ)□−1

γ R(γ) (4.62)

= − 1

96π

∫
d2x(E)

√
g(E)R

(
g(E)

)
□−1

g(E)R
(
g(E)

)
. (4.63)

Now, the standard procedure is to replace the Euclidean Green’s function by the Feynman Green’s function,
resulting in the Lorentzian effective action [119]

ΓL

[
gµν
]
=iΓE

[
g(E)
µν

]
τ=it

(4.64)

=− i
1

96π

∫
id2x1

∫
id2x2

√
−g(x1)R(x1)

1

i
GF (x1, x2)

√
−g(x2)R(x2) (4.65)

=
1

96π

∫
d2x

√
−gR□−1

g R. (4.66)

Similarly one can simply notice that the analytic continuation involves the replacement of □−1
g(E) by □g−1 ,

therefore

ΓL

[
gµν
]
=iΓE

[
g(E)
µν

]
τ=it

(4.67)

= − i

96π

∫
id2x

√
−gR□−1

g R =
1

96π

∫
d2x

√
−gR□−1

g R. (4.68)

As expressed in equation (4.27), the quantum energy-momentum tensor is obtained by functionally differ-
entiating ΓL, which yields [129]

⟨T̂µν⟩ =
1

24π

(
Rgµν −∇µ∇ν

(
□−1R

)
+

1

2
∇µ

(
□−1R

)
∇ν

(
□−1R

)
− 1

4
gµν∇α

(
□−1R

)
∇α

(
□−1R

))
,

(4.69)
which is a nonlocal expression. However, it can be converted into a local form by introducing a scalar field
[129]

φ(x) := −
(
□−1R

)
(x) = −

∫
d2x′GF

(
x, x′

)
R(x′). (4.70)

Therefore

⟨T̂µν⟩φ =
1

24π

(
∇µ∇νφ− gµν□φ+

1

2
∇µφ∇νφ− 1

4
gµν∇αφ∇αφ

)
, (4.71)

where the subindex φ indicates that choosing a specific solution of the inhomogenous equation (obeying
some physical requirements)

□φ = −R (4.72)

is equivalent to selecting a specific Feynman Green function, as well as its respective vacuum state whose
quantum energy-momentum tensor is given by equation (4.71).
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Now the two results (equations (4.57) and (4.71)) from both approaches will be confronted. The
first step is to build a covariant expression that reduces to equation (4.57) when evaluated in normal coordi-
nates [129]. A possible path is to search for a geometric quantity that could be associated with the vacuum
selection. Now, consider the timelike Killing vector field59 ξ := ∂t = ∂u + ∂v. Its norm (which enters the
positive-frequency condition 4.56) is given by

g (ξ, ξ) = −|ξ|2 = −C (u, v) . (4.73)

This identity allows one to rewrite equation (4.57) as

⟨T̂ab⟩(2)ξ =
1

48π

(
1

2
R(2)gab + Aab −

1

2
gabA

)
, (4.74)

where
Aab := −4|ξ|∇a∇b|ξ|−1. (4.75)

Observing that it is convenient for calculations, equation (4.74) will be used for treating hydrostatic equi-
librium in the next section. For completeness, aiming to show that equation (4.74) is equivalent to (4.57) it
is important to express to write the Christoffel symbols in normal coordinates, that is

Γu
uu =

1

C
∂uC, Γv

vv =
1

C
∂vC. (4.76)

It follows that

R = −2□ lnC(u, v). (4.77)

Therefore the relation
φ = ln |ξ|2, (4.78)

guarantees that equation (4.72) is satisfied [129]. The above relation implies that:

1

2
∇µ∇νφ = − 1

|ξ|2
∇µ∇ν |ξ|+

1

|ξ|
∇µ∇ν |ξ|, (4.79)

and
1

4
∇µφ∇νφ =

1

|ξ|2
∇µ|ξ|∇ν |ξ|. (4.80)

Therefore
1

|ξ|
∇µ∇ν |ξ| =

1

2
∇µ∇νφ+

1

4
∇µφ∇νφ. (4.81)

By combining this expression with equation (4.72) it follows that

24π⟨T̂ab⟩(2)ξ =
1

2
Rgµν +∇µ∇νφ+

1

2
∇µφ∇νφ− 1

2
gµν

(
□φ+

1

2
∇αφ∇αφ

)
= 24π⟨T̂ab⟩(2)φ . (4.82)

That is, the two expressions for the quantum energy-momentum tensor are actually equal [129].
59 Killing vector fields are the ones which satisfy the equation ∇αξβ +∇βξα = 0, called the Killing equation.
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4.3 Semiclassical Hydrostatic Equilibrium

It is a natural guess to imagine that semiclassical gravity, being an extension of general relativity, must
lead to a generalization of the usual TOV equations. One should expect that at low densities the classical
equations are recovered, but in principle at high densities semiclassical effects (which although negligible in
most situations are widely expected to have a physical reality) could not be disregarded. Aiming to fill a gap
since, except for cosmological problems, studies of the backreaction in spacetime originated by the effects
of quantum vacuum polarization in the presence of a gravitational field were practically non-existent, Raúl
Carballo-Rubio has proposed to analyze hydrostatic equilibrium in semiclassical gravity [39]. The main
result is that the polarization of the quantum vacuum is able to produce new static configurations, acting as
a new kind of pressure of quantum mechanical origin (analogous to the degeneracy pressure).

First, consider the semiclassical field equations

Gµν = 8π⟨ψ|T̂µν |ψ⟩. (4.83)

If the characteristic radius of curvature L in a given spacetime region is much greater than the Planck
length LP =

√
ℏ, the quantum expectation value of the stress-energy tensor can be expanded using a small

parameter κ =
(
LP/L

)2 ≪ 1, keeping only terms up to first order in κ [122]. In this case, the first term is
simply the energy-momentum tensor for a classical field, while the next order term (containing a factor ℏ)
carries the main contribution due to quantum effects [122]. In this linear approximation the contributions
of all fields are additive and thus can be studied independently.

All things considered, in this context the semiclassical field equations can be expressed as

Gµν = 8π
(
Tµν + ℏNQµν

)
. (4.84)

The classical source is treated at the same manner as in general relativity and the phenomenon of quantum
vacuum polarizations are encoded via the expectation value of the renormalized energy-momentum tensor
of N non-interacting scalar fields.

The solution is obtained under two assumptions:

1. Spherical Symmetry: This is the same assumption that was made for deriving the TOV equations
(see Appendix A).

The second approximation is related to the fact that in order to include backreaction effects in the Boulware
vacuum, an expression for the renormalized stress-energy tensor is needed, and there are no such expres-
sions available in four dimensions [137, 138]. In this context the following approximation, which preserves
all qualitative features of all relevant vacuum states, is very useful [139, 140]
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2. s-wave Polyakov approximation60: A well known approximation in black-hole physics that basically
neglects quantum fluctuations that are not spherically symmetric, as well as effects of backscattering
by means of a projection to a two-dimensional manifold.

It is useful to write the spherically symmetric line element as

ds2(4) = ds2(2) + r2dΩ2 = gab(y)dy
adyb + r2(y)dΩ2(θ, ϕ), (4.85)

where the ds2(2) is the two-dimensional projection that is used to evaluate the effects from quantum vacuum
polarization. For spherically symmetric spacetimes the projected line element can always be put in the
form [39]

ds2(2) = −C(r)dt2 + dr2

1− 2m(r)/r
. (4.86)

Obviously the whole theory could not be developed in two dimensions, since in this case the Einstein
tensor vanishes identically [136]. A two-dimensional stress-energy tensor can be defined analogously to
the four-dimensional case, namely [142]

T
(2)
αβ = − 2√

−g(2)
δSm

δgαβ(2)
. (4.87)

It follows that the renormalized stress-energy tensor and its two-dimensional projection are related by
[39, 137]

Qµν =
δaµδ

b
ν

4πr2
Q

(2)
ab (4.88)

The two-dimensional projection Q(2)
ab , under the aforementioned assumptions, is computed via the closed

tensorial expression (4.74), alongside with equation (4.75) [39, 129]. The Killing vector ξ can be associated
with the Boulware state, which for (4.86) is given by ξ = ∂t, therefore ξ =

√
C. Equation (4.74) provides

the following components

Q(2)
rr = − 1

96π

(
C ′

C

)2

, (4.89)

Q
(2)
tt = − 1

24π

[(
1− 2m

r

)
C ′′ − C ′

(
m

r

)′

− 3

4

(
1− 2m

r

)
C ′2

C

]
, (4.90)

Q
(2)
tr = Q

(2)
rt = 0, (4.91)

60 For the spherical symmetric case a decomposition in terms of spherical harmonics effectively allows the reduction from a
four-dimensional theory to a set of two-dimensional theories characterized by different values of the angular momentum. These
two-dimensional theories are an interesting scheme to infer general features of sophisticated systems, hard to analyze in the
four-dimensional case. In some spherically symmetric systems the main effects come from the “s-wave sector”, that is, the l = 0

mode [141].
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where the prime denotes f ′ = df
dr

for any function f . It can be checked that the semiclassical source is
identically conserved [39]. So the Bianchi identities imply the conservation of the classical source, which
furnishes the usual continuity equation (equivalent to the respective equation obtained in Appendix A)

p′ = −1

2
(ε+ p)

C ′

C
, (4.92)

The (t, t) component of the semiclassical field equation yields

2m′

r2
= 8πε+

ℓ2P
r2

[(
1− 2m

r

)
C ′′

C
− C ′

C

(
m

r

)′

− 3

4

(
1− 2m

r

)(
C ′

C

)2
]
, (4.93)

where ℓP is a “renormalized ” Planck length defined by ℓ2P = ℏN/12π. The (r, r) component, at the other
side gives

C ′

rC
− 2m

r2 (r − 2m)
=

8πp

1− 2m
r

− ℓ2P
4

(
C ′

rC

)2

. (4.94)

The above equation when combined with the continuity equation provides 61:

p′

(
1− ℓ2P

2r

p′

ε+ p

)
= −

(ε+ p)
(
m+ 4πr3p

)
r (r − 2m)

, (4.95)

which is the hydrostatic equilibrium equation for relativistic stars in semiclassical gravity, with modifica-
tions induced by vacuum polarization. If one wishes, this equation can be written in a reduced form in
terms of enthalpy, through the relation h′/h = p′/(p+ ε) [39].

4.4 The Role of Quantum Vacuum Polarization Effects

As stated previously, although general relativity is a completely classical theory, beyond some energy scale
quantum-gravitational effects are expected. It is often assumed that such effects should only take place
near the Planck scale. This idea comes from the fact that near the Planck length, the Schwarzschild ra-
dius is of the order of the Compton wavelength of a black hole and classicality is lost [32]. Nevertheless,
it has consistently been argued that between the Planck scale and the ones accessible by current experi-
ments, new physics can hide. For instance, if gravity is fundamentally a higher-dimensional interaction,
the Planck length can be significantly larger. Besides that, compact objects may present some effects with
a logarithmic dependence on the Planck length [32]. Even when restricted to moderate curvature where the
semiclassical theory is justified, effects such as particle production and vacuum polarization may contribute
substantially to the curvature of spacetime.

61 The derivation of the semiclassical TOV equation is outlined in Appendix C.
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The vacuum does not present any inherent structure in classical physics. Nevertheless the vacuum
has been revealed to be incredibly crowded by all sorts of processes in relativistic quantum physics [143].
From the early Dirac sea of negative-energy states to the picture of virtual particles constantly being created
and annihilated, the vacuum has acquired fundamental conceptual importance for a consistent description
of nature [143]. Unfortunately its direct effects are usually so subtle that its structure remains almost
as evasive as in classical physics, demanding careful experiments. Nevertheless, for instance the Casimir
effect, according to which objects experience a force between them solely due to the fact that their presence
changes the vacuum energy in a position-dependent way, has been successfully observed in laboratory
[143].

Semiclassical gravity incorporates the effects of quantum matter field process such as the vacuum
fluctuation (e.g., particle creation) exerted on the classical background spacetime [119]. However, more im-
portant to our purposes, is the effect known as gravitational vacuum polarization [140, 144, 145, 146, 147].
Gravity changes the properties of the vacuum state of the quantum fields. Whether or not particles are being
produced, the local field observables such as the vacuum expectation value of the stress-energy tensor at
some point x differ from their Minkowski values. This modification of the vacuum state induced by the
influence of the classical background is called the polarization of vacuum [119]. It should be emphasized
that this effect can not be removed by a coordinate transformation [67]. As mentioned earlier, the expec-
tation value of the stress-energy tensor is able to describe the backreaction of the quantum fields on the
metric through the semiclassical field equations. This backreaction affects the metric and it follows that
the vacuum polarization also changes. Vacuum polarization effects in strong gravity can lead to important
phenomena even in the absence of actual particle creation, a scenario similar to what is found in quantum
electrodynamics [46].

Although in flat spacetime normal ordering gives an entirely satisfactory prescription for defining
an stress-energy tensor on a suitable class of states using the standard Fock representation, no satisfactory
generalization is available for curved spacetimes [44]. As emphasized earlier, in curved spacetime there
is no preferred “vacuum state”. Vacuum polarization complicates this situation a bit further. Even for
cases where a natural vacuum state can be picked out, one would not expect ⟨T̂αβ⟩ = 0 for this state since
vacuum polarization effects would be expected to make ⟨T̂αβ⟩ ≠ 0. Now consider that the gravitational
field (distorting the quantum vacuum and shifting the expectation value of the stress-energy tensor) contains
an event horizon. In that case there are at least four different natural definitions of the quantum mechanical
vacuum state [144]:

• Hartle–Hawking vacuum [thermal equilibrium at infinity].

• Boulware vacuum [empty at infinity].

• Unruh vacuum [evaporating black hole].



Chapter 4. Semiclassical Gravity 68

• Vacuum cleaner vacuum [accreting black hole].

These different states correspond to different definitions of normal ordering on the spacetime. If the space-
time does not possess an event horizon (like in a star or planet) then a more clear scenario rises where you
only have one vacuum state to deal with, the Boulware vacuum (which corresponds to normal ordering
with respect to the usual static time coordinate)[148].

Semiclassical gravity has been invoked in the astrophysical context to write another chapter in the
history of the confrontation between general relativity and quantum physics [29]. This history has already
shown that quantum mechanical effects in matter can prevent the formation of black holes in situations
in which classically such formation would seem unavoidable. As observed earlier, without quantum me-
chanics, objects such as white dwarfs and neutron stars would have never been predicted in the first place.
This reinforces the idea that any fundamental description of Nature has to include quantum effects. Guided
by the notion that the vacuum, being a dynamical entity, gravitates, some fascinating studies have been
developed to include vacuum effects to investigate the ultimate fate of relativistic stars, accumulating inter-
esting results [77, 116, 143, 149]. For example, that such effects can play an unexpected central role in the
formation of these stars, possibly leading the vacuum energy density of a quantum field to an exponential
growth [143]. In particular the gravitational collapse in semiclassical gravity is extremely rich, possibly
allowing alternative end points in which new stable configurations of compact stars could emerge [27, 29].

The picture of a semiclassical collapse governed by its field equations, being relevant whenever
the expectation value of the stress-energy tensor becomes comparable with its classical counterpart, goes
as follows [29]. Imagine that at some point a star begins to collapse. Initially the evolution proceeds as in
general relativity, but with some extra contributions since, as pointed out previously, spacetime dynamics
may disturb the behavior of the vacuum associated with the quantum fields present, giving place to both
particle production and additional vacuum polarization effects. It can be shown that the quantum state
corresponding to the physical collapse is indistinguishable from the Boulware vacuum [29]. However in
order to this quantum effects to prevent further collapse, a state where the horizon formation is approached
sufficiently slowly is necessary [29]. This slow down of the collapse is attributed to matter-related high
energy physics, providing an interval long enough for the vacuum polarization to grow and finally modify
the evolution of the collapse [29]. Having this in mind a new compact object was proposed, which can be
considered the most compact and quantum mechanical kind of star, called black star. These horinzoless
objects are filled with matter, instead of being simply voids in space, and therefore completely accessible
to astrophysical measurements [124]. The Newtonian counterpart of these black stars, usually called dark
stars, have a very long history in astrophysics, dating back to Michell and Laplace [29]. It should also be
emphasized that the black star is not the same as the object called in the literature as gravastar, since the
former consists in a compact aglomerate of matter and the latter has a de Sitter-like interior [29].
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Thus after the degeneracy pressure of electrons (giving birth to white dwarfs), and the degeneracy
pressure of neutrons (giving birth to neutron stars), quantum vacuum effects would be the last process able
to produce stable horizonless compact objects. Since the understanding of the physics of matter for objects
of such densities is not available, it is not possible to reliably assert anything about the details with respect to
the stability of black stars. Gravitational wave observations can rule out the existence of such hypothetical
compact stars as data from scenarios where these effects should have been triggered become available. In
particular the aforementioned gravitational wave echoes in the post-merger signal can offer evidence of
quantum corrections at the relevant scale [109].



Chapter 5
Ultracompact Stars in Semiclassical Gravity

As discussed in the last chapter, semiclassical gravity is an approximate theory. Nevertheless the gravi-
tational collapse of a star seems to be an appropriate environment to apply semiclassical gravity, where
quantum fields are found in a classical curved spacetime and quantum gravity effects are expected to be
relatively small62 [127]. The purpose of this chapter is to elucidate if the semiclassical solutions are able
to provide an alternative scenario, with significant deviations in comparison to general relativity, producing
ultracompact stellar configurations. It is worth mentioning that for 1.4 M⊙ neutron stars (the type that
seems to be favored by observations) different equations of state predict values for R/RS between 2 and
3.8. Thus already in this regime a neutron star although larger than its photon sphere, is not necessarily by
very much [100].

It is valid to review the range of systems where the semiclassical treatment is pertinent. In order
to clarify this consider a star of mass M and density ρ in hydrostatic equilibrium. As mentioned in the
previous chapter, in this case the appropriate quantum state is called the Boulware vacuum (a state with
zero particle content for static observers and regular everywhere in the absence of an event horizon, also
known as static or Schwarzschild vacuum) [29]. For sufficiently dilute stars (with R ≫ 2M ) this state
is virtually indistinguishable from the Minkowski vacuum and the renormalized stress energy tensor will
be negligible throughout the entire spacetime [29]. On the other hand, David Boulware has shown, by
studying a stationary compact star, that the closer the star gets to its gravitational radius, the larger the
vacuum renormalized stress energy tensor near its surface [29, 151]. In other words, quantum corrections
become significant if the star is not much larger than its gravitational radius. The basic idea is that matter
alters the zero-point energy density of the quantum fields present, which is no longer exactly canceled and
the excess amount is said to be caused by vacuum polarization [29]. In more extreme scenarios, most

62 Even so, some authors have explored the possibility that quantum gravity effects might take place at densities exceeding the
nuclear one, as found in neutron stars and other exotic compact stars [150].
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believe that if ρ reaches the Planck density ρP (which is defined by c5

ℏG2 = 5× 1093g/cm3), spacetime must
be treated from the point of view of a quantum theory and the semiclassical approach (where spacetime
remains classical) is no longer valid [68]. So, the gravitationally-induced quantum effects considered in
what follows take place far away from the Planck regime.

One might ask how these semiclassical effects might evade the traditional analysis employed to
model compact stars. It turns out that the semiclassical configurations are highly dependent on the details
of the gravitational collapse, which is very difficult to explore and the models available strongly rely on
approximations. So, for instance, although some compact star can be well described by a simple self-
gravitating perfect fluid, its formation process is way more complex than the gravitational collapse of a
perfect fluid. Such collapses inevitably involve intricate microphysics and quantum effects. The point is
that although an equilibrium solution may be well described by simple matter fields, it does not imply that
its formation process is equally simple, where new physics can hide [32].

It may also be argued that the collapse associated with most compact star models is too quick
to produce strong semiclassical corrections. However it has been shown that the timescale for a particular
semiclassical effect, known as gravity-induced vacuum dominance, is of tiny fractions of a second in certain
astrophysical scenarios (differently from cosmological problems where it could require a few billion years)
[116]. Moreover, in realistic collapses, it is reasonable to believe that widely neglected effects like dissipa-
tion might affect the search for new equilibrium configurations [124]. Since each new recollapsing phase
starts from a position closer to its Schwarzschild radius than the previous one, at some point semiclassical
effects should star being relevant, inducing the formation of new (stable or metastable) equilibrium objects
[124].

All things considered, our current understanding concerning compact objects leaves space to
propose a pleasant theoretical scheme, where the appropriate formalism is delimited by transitions which
are attached to physical properties, that is:

• General Relativity =⇒ objects without photon spheres or event horizons (for instance, regular
neutron stars);

• Semiclassical Gravity =⇒ objects with photon spheres but no event horizons (ultracompact stars);

• Quantum Gravity =⇒ objects with both photon spheres and event horizons (black holes).

The rest of the chapter is dedicated to the novelty in this work, namely, to analyze the semiclassical stel-
lar output for different equations of state available in the literature, verifying the possibility of achieving
ultracompact solutions.
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5.1 LinEos in Semiclassical Gravity

The goal of this section, as a first attempt to produce ultracompact configurations, is to study hydrostatic
equilibrium in semiclassical gravity using the LinEos as presented in Chapter 3, namely

p = ω (ε− ε0) , (5.1)

and compare the results with the ones produced in general relativity. As mentioned in Chapter 3, the LinEos
has been used to model very exotic phases of baryonic matter like abnormal matter and Q-matter [81].

The analytical expression for the LinEos permits one to rewrite equation (4.95) in the form:

p′ = −
(ε+ p)

(
m+ 4πr3p

)
r (r − 2m)

+
ℓ2P
2r

ω2ε′2

ε+ p
. (5.2)

and use the last term as a semiclassical correction to the usual TOV equation.

The results will be displayed using units frequently adopted in the astrophysical literature, where
energy density is expressed in g/cm3 and pressure in dyne/cm2 [1]. Radius and mass are expressed in km
and M⊙, respectively. Compactness will be expressed as a dimensionless quantity, so it’s worth mentioning,
as pointed out earlier, that 1M⊙ = 1.4766 km. We have also used the energy density of normal symmetric
nuclear matter εS = 2.51× 1014 g/cm3 (saturation density63 of nuclear matter) as a reference value [1].

Figures 5.1-5.4 illustrate the pressure and energy density inside the star, for both general relativity
and semiclassical gravity, as a function of radius for different values of the ω parameter.
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Figure 5.1: Energy density profiles in general relativity for different values of ω and ε0 = εS . A central
energy density εc = 5 εS was adopted.

63 The saturation density is the one at which the binding energy is minimized [16].
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What should be noticed here, is that the semiclassical solutions preserve the monotonically de-
creasing behavior for such functions. In fact, maintaining the general behavior found in general relativity
is desirable for the semiclassical solutions regarding all physical quantities, avoiding the unphysical “run-
away” solutions mentioned in the last chapter [119]. Differently from regular neutron stars, which satisfy
ε (r = R) = 0, the energy density does not vanish at the surface. This is a well known behavior of self-
bound64 configurations [22].
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Figure 5.2: Energy density profiles in semiclassical gravity for different values of ω and ε0 = εS . A central
energy density εc = 5 εS was adopted.
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Figure 5.3: Pressure profiles in general relativity for different values of ω and ε0 = εS . A central energy
density εc = 5 εS was adopted.

64 A self-bound star is a star that would be bound even in the absence of gravity [1].
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Figure 5.4: Pressure profiles in semiclassical gravity for different values of ω and ε0 = εS . A central
energy density εc = 5 εS was adopted.

In Figure 5.5 we compare the gravitational total mass versus the total radius for different values of
the ω parameter. Each point represents a different star corresponding to some initial central energy density,
unlike Figures 5.1-5.4 where each line depicts the interior of a single star.
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Figure 5.5: Total gravitational mass and total radius in general relativity and semiclassical gravity for
different values of ω and ε0 = εS . The interval [1.25− 10.0] εS for the central energy density
was adopted.
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The semiclassical solutions provide stars with a greater mass and smaller radius, in other words,
the stars are more compact. The impact on the radius is more prominent, therefore it is the main responsible
for the increase in compactness. The semiclassical solutions preserve the well known behavior for self-
bound equations of state, where the radius increases as mass increases for stable solutions. Regular neutron
stars present the opposite property in general, the radius decreases as mass increases [152]. Figure 5.6
compares the mass functions inside the star between the two frameworks for εc = 3.0 ϵS and ω = 1.0.
Although the two mass functions converge as one gets close to the center, at some point the semiclassical
solution overcomes, providing more mass than the classical solution.
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Figure 5.6: Mass function comparison between general relativity and semiclassical gravity for ω = 1.0

and ε0 = εS . A central energy density εc = 3.0 εS was adopted.
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Figure 5.7 depicts compactness against the central pressure, indicating that the semiclassical
solutions allow higher central pressures. Although the TOV equations (either in general relativity or semi-
classical gravity) assure hydrostatic equilibrium, they do not assure dynamical stability65 [153]. Dynamical
instabilities forbid stable stars with central densities in the range about 109 − 1014g/cm3, thus separating
the white dwarf from the neutron star regime [153]. It can be proved that along the sequence of equilibrium
configurations of the Tolman-Oppenheimer-Volkoff equations, perfect fluid stars can pass from stability to
instability with respect to any radial mode of oscillation only at a value of the central density at which the
equilibrium mass is stationary, that is [1]

∂M (εc)

∂εc
= 0, (5.3)

which is a fundamental result in the discussion of stability.

In addition it can also be shown that a necessary condition for stability is given by

∂M (εc)

∂εc
> 0. (5.4)

Figure 5.8 depicts the total mass as a function of the central energy density for some values of ω. Regions
that satisfy the condition (5.4) can be found for all allowed values of ω. Therefore despite the increase in
compactness, the semiclassical solutions present roughly the same behavior found in general relativity, at
least for the LinEos.

Tables 5.1 and 5.2 compare the solutions given by general relativity and semiclassical gravity for
the configurations where the maximum gravitational mass is obtained for different values of ω and ε0 = εS .
This reinforces the systematic increase in compactness provided by the semiclassical solutions since they
have higher masses and smaller radius. This increase in compactness is sufficient to expand the range of
ultracompact solutions, which can be obtained starting from about ω ≈ 0.3.

It is important as a consistency check to confront those results with the literature. Fortunately
the LinEos is a well documented equation of state, especially on the case saturating the causality bound,
the so called maximally compact equation of state obtained when the ω parameter in the LinEos is set to
unity [154]. The maximum compactness found, C = 0.354, is a well known upper bound for fluid stars
constrained by causality [38]. In addition, for the maximally compact equation of state, Urbano pointed
out the following approximate relations for the maximum mass and its respective radius [38]

M ≃ 3×
(

ε0
5× 1014g/cm3

)− 1
2

M⊙, (5.5)

R ≃ 12.5×
(

ε0
5× 1014g/cm3

)− 1
2

km, (5.6)

65 To prove dynamical stability an additional evaluation of the radial vibrational modes (acoustical modes) of the star is
required. This type of analysis is not going to be performed here.
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which for the case treated in Table 5.1 gives respectively 4.23M⊙ and 16.94 km. Therefore for both cases
it was found a reasonable agreement keeping in mind that the above expressions are approximate relations.
Also, another article shows that this maximum mass should occur at an energy density of 3.034 εs, which
is precisely the value that provided the maximum mass in Table 5.1 [154].

Although it is most likely a coincidence, it is an interesting property of the semiclassical solutions
that the transition to ultracompact stars occurs close to ω = 1/3, which is potentially applicable to quark
stars or stars with quark cores [154]. The semiclassical configurations are also promising for gravitational
echoes, although the direct evaluation is certainly needed for further investigations. The reason for this is
that semiclassical solution for ω = 0.4 already presents higher compactness than the maximally compact
case in general relativity. The corresponding maximum compactness found for the maximally compact
case in semiclassical gravity, C = 0.407, is only obtained in general relativity using unphysical values of ω
[38].
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Figure 5.8: Total gravitational mass versus central energy density in general relativity and semiclassical
gravity for different values of ω and ε0 = εS . The interval [1.25− 7.5] εS for the central energy
density was adopted.

One could argue that the analysis made with respect to the compact parameter is misleading be-
cause the exterior state in semiclassical gravity is associated with the Boulware state outside the star, so
the description of the photon orbits made using general relativity in Chapter 3 is no longer valid. Fortu-
nately the exterior semiclassical solution is well understood and the geometry can be approximated by the
Schwarszchild geometry until very close to the Schwarszchild radius [137, 142]. Therefore it makes sense
to apply the same compactness condition to define ultracompact stars in both formalisms. All things con-
sidered, semiclassical gravity is capable of producing a class of stable solutions which are compact enough
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to accommodate the presence of a photon sphere, opening the possibility of trapping gravitational radiation
and affecting the ringdown phase of a merger event [38].

Table 5.1: Results for the maximum gravitational mass configurations for different values of ω with ε0 =
εS using general relativity.

ω εc(ε0) MMax(M⊙) R(km) C
0.1 8.15 0.982 9.556 0.152
0.2 6.1 1.808 12.090 0.221
0.3 5.1 2.401 13.578 0.261
0.4 4.5 2.845 14.603 0.288
0.5 4.0 3.192 15.408 0.306
0.6 3.7 3.473 16.019 0.320
0.7 3.5 3.706 16.505 0.331
0.8 3.3 3.903 16.933 0.340
0.9 3.2 4.072 17.265 0.348
1.0 3.034 4.220 17.590 0.354

Table 5.2: Results for the maximum gravitational mass configuration for different values of ω with ε0 = εS

using semiclassical gravity.
ω εc(ε0) MMax(M⊙) R(km) C

0.1 8.6 1.086 7.398 0.217
0.2 6.0 1.943 9.731 0.295
0.3 4.8 2.532 11.213 0.333
0.4 4.1 2.961 12.292 0.356
0.5 3.75 3.290 13.017 0.373
0.6 3.3 3.553 13.827 0.379
0.7 3.1 3.770 14.338 0.388
0.8 2.9 3.952 14.831 0.393
0.9 2.75 4.108 15.244 0.398
1.0 2.75 4.242 15.403 0.407

In the next section, a more specific type of self-bound configuration, namely, strange stars in the
color flavor locked phase, will be analyzed from the semiclassical point of view.
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5.2 Semiclassical CFL Strange Stars

The LinEos studied in the last section has among its subcases the well-known MIT bag model equation of
state. In this section, a model will be constructed relying on strange-quark matter explicitly. Strange stars,
being completely made of quark matter, are the most extreme scenario for quark matter in compact stars
[16]. They are held together by both the strong interaction and gravity, although the first has the major role
in bounding such systems [7]. They are motivated by the so-called strange matter hypothesis, developed
independently by Bodmer and Witten, which asserts that the true ground state of the strong interaction
is strange quark matter, composed of an approximately equal proportion of up, down, and strange quarks
[88, 89]. Since Witten’s work the MIT bag model with unpaired strange quark matter has been widely used
to study strange stars. The model considers a gas of free relativistic quarks where confinement is achieved
through a vacuum pressure, called the bag constant B.

The MIT bag model can be generalized, introducing a more sophisticated quark dynamics, by
applying the BCS mechanism to quark matter. The strong interaction among quarks is very attractive in
some channels and quarks are expected to form Cooper pairs66 easily (which in quark matter always implies
color superconductivity) [155, 156, 157]. Although many pairing schemes have been proposed, if central
densities in compact stars are sufficient to support quark matter, it will probably manifest itself through
the most symmetrical state, namely the color flavor locked (CFL) phase. In this phase all three quarks
composing strange quark matter are paired on an approximately equal footing and form a color condensate.

Quark matter in the CFL phase has been applied in different astrophysical contexts, including
the possibility of supporting exotic structures like wormholes [158]. When applied to strange stars, it has
been shown that the CFL state affects the mass-radius relationship considerably, allowing configurations
with large maximum masses [159]. Although CFL strange stars may not be as extreme as the hypothetical
models for black-hole mimickers available in the literature (like black stars), they still offer a high density
environment combined with a solid theoretical background, avoiding the problems usually found in more
extreme proposals [39]. Also, it has been argued that the low mass companion (about 2.6 M⊙) of the black
hole in the source of GW190814 could be a strange star [51, 160].

In what follows, the model will be constructed differently from what was made using the LinEos
in the last section. The semiclassical TOV equation, being quadratic with respect to the pressure gradient,
has two distinct ways of expressing hydrostatic equilibrium. This certainly opens new possibilities regard-
ing compact stellar models. The idea is to develop a simple model which associates to each hydrostatic

66 Cooper pairs are a microscopic explanation for superfluidity and superconductivity originated in BCS theory (abbreviation
for Bardeen–Cooper–Schrieffer). Cooper pairs emerge when an arbitrarily small interaction produces an instability of the Fermi
surface. Compact stars could, at least in principle, produce Cooper pairs of neutrons, protons, hyperons and quarks [16].
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equilibrium solution an appropriate source. In addition, the semiclassical equations for stellar equilibrium
have two quantities which are not present in the respective equations in general relativity, namely, ℏ and
N . It was observed in Chapter 4 that the limits ℏ → 0 and N → ∞ can be viewed as alternative measures
of classicality. It is interesting to investigate if it is possible to construct a model taking advantage of these
limits, with non-trivial contributions surviving this “classicalization” process. Nevertheless, before going
into details, in the next section the equation of state for CFL quark matter will be discussed.

5.2.1 The Color Flavor Locked Equation of State

The CFL equation of state is a nonlinear generalization of the unpaired version of the MIT bag model,
proposed in the context of color superconductivity. Different parametrizations are possible depending on
the values of B (the bag constant), ∆ (the gap of the QCD Cooper pairs) and mS (the strange quark mass),
which are not accurately known and are taken as free parameters. All results that will be presented in this
section use the set of parametrizations presented in Ref. [159], which are also displayed in Table 5.3.

It is customary to use a semi-empirical model in which the thermodynamic potential to order ∆2

can be expressed as [161, 162]

ΩCFL = Ωfree −
3

π2
∆2µ2 +B

=
6

π2

∫ ν

0

[p− µ] p2dp+
3

π2

∫ ν

0

[(
p2 +m2

s

) 1
2 − µ

]
p2dp− 3

π2
∆2µ2 +B, (5.7)

where Ωfree represents the non-paired state, µ is the chemical potential and ν is the common Fermi mo-
mentum, given by

ν = 2µ−

(
µ2 +

m2
s

3

) 1
2

. (5.8)

Pressure and energy density can be obtained using the relations [161]

pCFL = −ΩCFL, (5.9)

εCFL = ΩCFL − µ
∂ΩCFL

∂µ
. (5.10)

From the above equation, pressure and energy density can be analytically expressed to order m2
s as

pCFL =
3µ4

4π2
+

9αµ2

2π2
−B, (5.11)

εCFL =
9µ4

4π2
+

9αµ2

2π2
+B, (5.12)
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with

α = −m
2
S

6
+

2∆2

3
. (5.13)

Although this semi-empirical model is enough for the present purposes, it is important to mention that other
effects may be included, for instance, a pQCD contribution from one-gluon exchange for gluon interaction
[163].

Parametrization B
(
MeV/fm3

)
∆(MeV) mS(MeV)

CFL1 60 50 0
CFL2 60 50 150
CFL3 60 100 0
CFL4 60 100 150
CFL5 60 150 0
CFL6 60 150 150
CFL7 80 100 0
CFL8 80 100 150
CFL9 80 150 0

CFL10 80 150 150
CFL11 100 50 0
CFL12 100 100 0
CFL13 100 100 150
CFL14 100 150 0
CFL15 100 150 150
CFL16 120 100 0
CFL17 120 150 0
CFL18 120 150 150
CFL19 140 150 0

Table 5.3: Set of parametrizations for CFL matter.

It is straightforward to express pressure and energy density as a one parameter equation of state
of the form ε(p), namely

εCFL = 3pCFL + 4B − 9αµ2

π2
, (5.14)

with the chemical potential expressed by

µ2 = −3α +

[
4π2

3
(B + pCFL) + 9α2

] 1
2

. (5.15)
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Alternatively, in a similar fashion p(ε) is given by

pCFL =
εCFL

3
− 4B

3
+

3αµ2

π2
, (5.16)

where the chemical potential is now expressed in terms of the energy density, namely

µ2 = −α +

[
4π2

9
(εCFL −B) + α2

] 1
2

. (5.17)

Also, the speed of sound can be obtained straightforwardly,

c2s ,CFL =
dpCFL

dεCFL

=
1

3
+

2α

3

(
1

µ2 + α

)
. (5.18)

The gap parameter plays a central role in the CFL phase because as the parameter increases the
equation of state gets stiffer, allowing configurations with higher maximum masses when compared with
regular strange stars [161]. The CFL matter is also significantly more bound than ordinary quark matter,
being a candidate for the true ground state of hadronic matter for a much wider range of the parameters of
the model than the state without any pairing [159, 162].

5.2.2 Introducing Semiclassical Effects in CFL Strange Stars

The structure equation for semiclassical stars, under the conditions discussed in Chapter 4, are given by

p′

(
1− ℓ2P

2r

p′

ε+ p

)
= −

(ε+ p)
(
m+ 4πr3p

)
r (r − 2m)

, (5.19)

2m′

r2
= 8πε+

ℓ2P
r2

[(
1− 2m

r

)
C ′′

C
− C ′

C

(
m

r

)′

− 3

4

(
1− 2m

r

)(
C ′

C

)2
]
. (5.20)

It follows from equation (5.19) that the pressure gradient has two solutions in semiclassical gravity, namely

p′± =
r (ε+ p)

ℓ2P

1±

√
1 +

2ℓ2P
r3

m+ 4πr3p

1− 2m/r

 . (5.21)

After a “classicalization process” taking advantage of the limits ℏ → 0 and N → ∞, these equations
assume the following form67

m′ = 4πr2ε, (5.22)

p′± = ± (ε+ p)
m+ 4πr3p

r (r − 2m)
. (5.23)



Chapter 5. Ultracompact Stars in Semiclassical Gravity 83

So, the p′− solution recovers the TOV equation at the limit ℏ → 0 [39]. This equation will be
associated with CFL quark matter and treated just as in general relativity. Even though a classicalization
process was performed, the resulting structure equations differ from the system obtained in general rela-
tivity. Since the only modification in the semiclassical field equations is a source associated with vacuum
polarization effects, one is lead to concluded that the additional equation in the system, namely, the p′+
solution, are ultimately connected to this physical effect. In the same way that in general relativity the
equation of state is a phenomenological representation of the quantum physics of matter, the equation of
state associated with this new solution can be seen as a phenomenological representation of the semiclassi-
cal effects in the macroscopic system. Therefore, additionally, it will be hypothesized that the environment
produced by CFL matter is able to ignite a semiclassical correction, absent in general relativity, with a
pressure gradient obeying the p′+ solution. This solution differs only by a sign change with respect to the
usual TOV equation. Even so, the forms of matter that can be applied in this case must be analyzed.

Exactly like the usual TOV equation, the equation describing p′+ has also to fulfill the condition
r > 2m at any point inside the star, thus forbidding the presence of a Schwarzschild black hole at any
radius r. Now observe that, for ordinary forms of matter with ε > 0 and p > 0, the TOV equation describes
a negative pressure gradient and the pressure is a monotonically decreasing function of the radius which
eventually vanishes. It is not difficult to realize that in order to have a similar picture regarding p′+, an
unconventional equation of state should be employed. Consider, for instance, a linear equation of state
with negative pressure (also called tension),

p̃ = −ωε̃, (5.24)

where ω is a positive parameter smaller than unity. For configurations where m > |4πr3p| the pressure gra-
dient is positive and assures that the absolute value of the pressure (and also the energy density) decreases
as the radius increases.

The presence of a negative pressure component may sound unphysical, but this is certainly not
the case. For example, in a rubber band, the component of the stress tensor along the band is negative [69].
The mechanical action of a negative pressure is that the internal volume forces in the matter are attractive,
instead of repulsive (which is the usual situation for an observational media consisting of particles), thus
allowing more compact configurations [64]68. It has been long ago proposed that such an effect may have
a role in ultradense matter, possibly reached through a gravitational collapse, providing additional attrac-
tion between material elements [64]. This idea couples very well with the possible unconventional sources
that one may introduce via the new root in which the semiclassical effects are dominant. Also, as exposed

67 See Appendix C.
68 Eventually, this might bring confusion when one thinks of gravitationally repulsive fluids with negative pressure, like dark

energy. It is important to observe that there is no contradiction between a particular type of fluid being gravitationally repulsive
while presenting an attractive mechanical action [164]. These aspects are two separate matters.
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in Chapter 2, one of the main differences between Newtonian gravity and general relativity, is that in the
latter is that pressure not only opposes gravity but also enhances its effects. This phenomenon is called
regeneration of the pressure [104]. Here, in the semiclassical scenario proposed, the negative pressure may
be a continuation of this phenomenon, but now it is physically attributed to vacuum effects. So, concep-
tually the present model explores the hypothesis that the usual repulsive fields between material elements
are affected by an additional component with a semiclassical origin, phenomenologically described via a
negative pressure fluid, which is reached during the gravitational collapse of the ultradense matter present
in CFL strange stars, allowing ultracompact configurations to emerge.

It is worth mentioning that the negative pressure fluid introduced by equation (5.24) is a subclass
of what is sometimes called a γ-fluid, which satisfies the γ-law equation of state [165]

p = (γ − 1) ε, 0 ⩽ γ ⩽ 2. (5.25)

In this sense, the semiclassical solutions treated hereafter can be seen as describing γ-CFL strange stars.
Other important subclasses of the γ-law equation of state include stiff matter (γ = 2), blackbody radiation
(γ = 4/3) and vacuum energy (γ = 0). The thermodynamical properties can easily be derived by consid-
ering γ-fluids as some kind of generalized radiation [165]. It can be shown, for instance, that such fluids
obey generalized versions of the usual Wien and Stefan-Boltzmann laws. Moreover, if fluids with γ < 1

could be somehow confined in a vessel, they would try to pull the walls inwards, instead of outwards as it
happens with an ordinary gas.

5.2.3 Minimal Geometric Deformation

The proposed scenario to describe γ-CFL strange stars ultimately demands a decoupling of the gravitational
sources. Such a simplification may seem absurd due to the highly nonlinear structure of the field equations.
Fortunately this can be achieved, at least for the spherically symmetric and static case, through a technique
called minimal geometric deformation. So, before numerically implementing the model outlined in the
last subsection, it is worth to show how the CFL sector and the semiclassical one can be decoupled, as
long as the sources interact only gravitationally [166, 167]. Therefore, aiming to incorporate more intricate
gravitational sources to CFL strange stars, consider the field equations in the following form

Gµν = 8π
(
T CFL
µν + βθµν

)
, (5.26)

where θµν describes geometrical or physical contributions of any additional source that may arise due to
the presence of extra interactions whose coupling to gravity is proportional to the constant β [168]. Here it
will describe a sector where the semiclassical effects are dominant, namely

θ ν
µ = T̃ ν

µ + ℏNQ ν
µ +

δ a
µ δ ν

a

8πr2
. (5.27)
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This new source includes a perfect fluid obeying equation (5.24), represented by T̃µν . The last term in
the right hand side is a geometrical factor (evaluated with respect to ds2(2) in a similar fashion to Qµν)
introduced in order to preserve the spherically symmetric form of the Einstein tensor (thus respecting the
Bianchi identities) in both sectors after the geometrical deformation is performed [166, 167].

It can be identified by inspection that the combination of the two fluids provide an effective energy
density and a effective pressure specified by the relations

ε =εCFL + βε̃, (5.28)

p =pCFL + βp̃. (5.29)

The minimal geometric deformation can be introduced via a linear decomposition of the form
[166, 167]:

e−2λ(r) = C(r) + βD(r) (5.30)

The linear decomposition splits the system into two sets. The first, with β = 0, is obviously the CFL strange
star solution as obtained using general relativity. The other set corresponds to the additional source, with
(t, t) and (r, r) components obeying

D − 1

r2
+
D′

r
= 8πT̃ t

t + 8πℏNQ t
t ,

D − 1

r2
+ 2D

Φ′

r
= 8πT̃ r

r + 8πℏNQ r
r . (5.31)

These are simply the (t, t) and (r, r) components obtained through equation (4.84) under spherical symme-
try, from which the semiclassical hydrostatic equilibrium is directly derived. Since this is the sector where
semiclassical effects are assumed to be dominant, it is logical to choose the p′+ solution in equation (5.23)
to represent its hydrostatic equilibrium.

5.2.4 γ-CFL Strange Stars

Hydrostatic equilibrium, as expressed in equations (5.22) and (5.23), will be applied to CFL quark matter
and to an additional γ-fluid with negative pressure, producing a γ-CFL strange star where both contribu-
tions interact only gravitationally [166, 167]. Numerical solutions are obtained similarly to the standard
procedure in general relativity, keeping in mind that here each fluid satisfies its own hydrostatic equilibrium
equation. The system is solved from the center, with m(r = 0) = 0 for both contributions, and the energy
densities are needed as input. The integration stops when the effective pressure vanishes, defining the final
mass (which is the total gravitational mass from its two contributions) and radius. It is worth mention-
ing that although the CFL strange star will be embedded in a negative pressure environment, all solutions
considered have an non-negative effective pressure and energy density.
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Figure 5.9 illustrates the impact of the β parameter on the effective equation of state using the
CFL5 and CFL15 parametrizations. The cases with β ̸= 0 adopt ω = 0.05, while the β = 0 case is
simply the CFL equation of state as expressed in equation (5.14). A dashed green line corresponding to
the ultrarelativistic limit p = ε/3 was added to the figure as a reference. The initial nonlinear behavior
(associated with the µ2 term in equation (5.14)) is preserved in the effective equation of state, as well as the
asymptotic linear behavior [159]. Increasing β translates into a lower pressure for a given energy density. In
other words, the γ-fluid reduces the effective pressure of the system, softening the equation of state. From
this, however, one must not infer that configurations with β ̸= 0 will necessarily produce solutions with
lower maximum masses, when compared with general relativity, since in this case hydrostatic equilibrium
is expressed differently. Hereafter, in order to restrict the role of semiclassical effects in the model, the
value of βε̃ at the center is taken to be 10% of the main contribution coming from the CFL phase.
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Figure 5.9: Impact of the β parameter on the effective equation of state for the CFL5 and CFL15
parametrizations. The slashed green line denotes the ultrarelativistic limit p = ε/3.

Since semiclassical stellar models are still in their early days, a detailed comparison with re-
cent astronomical observations may not be a primary concern. Even though, in order to provide some
perspective, a few comments are pertinent. In a combined effort by the North American Nanohertz Ob-
servatory for Gravitational Waves (NANOGrav) and the Canadian Hydrogen Intensity Mapping Exper-
iment (CHIME)/Pulsar, the mass of the PSR J0740+6620 pulsar has been updated to the range M =

2.08 ± 0.07M⊙, which is the highest reliably determined mass for a pulsar so far [169]. Also, by com-
bining datasets from the X-ray telescopes NICER and XMM-Newton, in Ref. [84] the radius of PSR
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J0740+6620 has been constrained to be R = 12.39+1.30
−0.98 km.

Another important value for constraining equations of state is the radius of a 1.4M⊙ neutron star.
The analysis made in Ref. [85] found R1.4 = 12.18+0.56

−0.79 km, adopting a model based on the speed of
sound in a neutron star. These values were included in Figures 5.10 and 5.11 as reference. However, the
confrontation between those numbers and the strange star solutions presented here may not be immediate.
For example, some works have discussed the idea that neutron and strange stars could coexist as two
separate families, obviously resulting in distinct mass-radius relations [160]. Besides that, NICER data has
also been used to study configurations at the threshold which marks the ultracompact regime [87]. Although
such stars are not currently an observational reality, they may become important in the near future.

As illustrated in Figures 5.10 and 5.11, the main feature of introducing the semiclassical cor-
rection is the possibility of finding ultracompact configurations (defined by C > 1/3) throughout all
parametrizations without imposing significant deviations in the low mass-radius region. Besides that, all
semiclassical solutions present an upper bound to the mass of stable configurations. In Figures 5.10 and
5.11, a grey line corresponding to C = 1/3 was added to demarcate the ultracompact region. Specif-
ically, Figure 5.10 confronts the mass-radius curve obtained using general relativity and semiclassical
gravity for some parametrizations of the CFL equation of state, while the ω parameter is fixed in 0.05

(in G = c = 1 units where the parameter is dimensionless). The semiclassical configurations are more
massive and smaller, crossing to the ultracompact region.

On the other hand, in Figure 5.11 the ω parameter is varied while the parametrization is fixed.
The goal is to illustrate that the maximum mass can not be increased indefinitely within the model. Due
to the negative pressure associated with the component carrying the semiclassical corrections, after some
value of ω that depends on the inputs for the central energy densities, the solutions become less massive.
Also, the physically acceptable solutions found are restricted to the subset of equation (5.24) where ω ≪ 1.
In another context, this equation of state has also been used to describe the total effect of a mixture of cold
dark matter and dark energy [170].

Figures 5.12-5.17 compare some internal functions for the maximum mass configurations when
using general relativity and semiclassical gravity with ω = 0.05. A subset of the parametrizations presented
in Table 5.3 was chosen aiming for a better visualization. The semiclassical solutions for the energy density
and pressure (Figures 5.13 and 5.15) preserve the characteristic monotonically decreasing behavior found
in general relativity (Figures 5.12 and 5.14), although they possess higher central energy densities and
pressures. Besides that, just as in the previous model, the energy density does not vanish at the surface,
since strange stars are also self-bound configurations69.

69 The surface density in strange stars is equal to the value for strange quark matter at zero pressure. It is about fourteen orders
of magnitude larger than the surface density of regular neutron stars [81].
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Figure 5.10: Comparison of the mass-radius relationship obtained in general relativity and semiclassi-
cal gravity for some parametrizations of the CFL equation of state. The rectangular region
corresponds to mass and radius constraints for the pulsar PSR J0740+6620. The green hor-
izontal line denotes radius constraints for a 1.4M⊙ neutron star. The gray line demarcates
the threshold for the ultracompact region (C = 1/3).
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Figure 5.11: Impact of the ω parameter on the mass-radius curve for the CFL3 parametrization. Other
elements displayed are the same as those exhibited in Figure 5.10.
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Figure 5.12: Energy density profiles for different CFL parametrizations using general relativity.
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Figure 5.13: Energy density profiles for different CFL parametrizations using semiclassical gravity
(ω = 0.05).



Chapter 5. Ultracompact Stars in Semiclassical Gravity 90

0 2.9 5.8 8.7 11.6 14.5

r (km)

0

1

3

5

7

9

p
(1

0
3

5
d

y
n

e
/c

m
2
)

CFL3

CFL5

CFL6

CFL7

CFL10

CFL12

CFL15

CFL18

CFL19

Figure 5.14: Pressure profiles for different CFL parametrizations using general relativity.
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Figure 5.15: Pressure profiles for different CFL parametrizations using semiclassical gravity (ω = 0.05).

The pattern for the mass function inside the star, as illustrated in Figures 5.16 and 5.17, is also
preserved within the model. In both situations the mass continuously increases with increasing radius, but
the γ-CFL stars are about 1 km smaller and 0.3M⊙ heavier.
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Figure 5.16: Mass function profiles for different CFL parametrizations using general relativity.
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Figure 5.17: Mass function profiles for different CFL parametrizations using semiclassical gravity
(ω = 0.05).

In order to check that the causality constraint is not violated, in Figure 5.18 the sound speed
squared is plotted as a function of the pressure, for different values of the ω parameter, using the CFL5
parametrization (which is the one with the highest sound speed [159]).



Chapter 5. Ultracompact Stars in Semiclassical Gravity 92

34 34.5 35 35.5 36

log
10

(P [dyne cm-2])

0.3

0.35

0.4

0.45

0.5

c
s2

CFL5 ( =0)

CFL5 ( =0.01)

CFL5 ( =0.03)

CFL5 ( =0.05)

Figure 5.18: Sound speed squared as a function of pressure for different values of the ω parameter using
the CFL5 parametrization.

The sound speed squared associated with equation (5.24) is simply −ω (strictly valid only for
constant ω [171]), therefore the sound speed of CFL matter inevitably constraints the ω parameter, provid-
ing an upper limit, namely

ω <
1

3
+

2α

3

(
1

µ2 + α

)
. (5.32)

The reason behind this condition is that the effective sound speed squared must be non-negative, otherwise
the composition of the compact star would be microscopically unstable [38].

Table 5.4 summarizes the results for the nineteen parametrizations of the CFL equation. The
data corresponds to the maximum mass configurations. In order to interpret the implications of such solu-
tions, it is interesting to observe that semiclassical gravity and general relativity can produce, for different
parametrizations, similar results for mass and radius (compare for example the CFL9 parametrization in
general relativity and the CFL1 parametrization in semiclassical gravity). Probably a mass measurement
would not be able to distinguish among such objects, even though they would be physically different, since
the semiclassical solutions would present the physical signatures associated with the ultracompact regime.



Chapter 5. Ultracompact Stars in Semiclassical Gravity 93

Parametrization General Relativity Semiclassical Gravity
(M(M⊙), R(km), C) (M(M⊙), R(km), C)

CFL1 (2.051, 11.08, 0.27) (2.375, 10.43, 0.34)
CFL2 (1.830, 10.09, 0.27) (2.120, 9.47, 0.33)
CFL3 (2.357, 12.38, 0.28) (2.725, 11.68, 0.36)
CFL4 (2.127, 11.41, 0.27) (2.462, 10.75, 0.34)
CFL5 (2.842, 14.24, 0.29) (3.278, 13.51, 0.36)
CFL6 (2.631, 13.46, 0.29) (3.039, 12.74, 0.35)
CFL7 (1.994, 10.52, 0.28) (2.309, 9.95, 0.34)
CFL8 (1.821, 9.79, 0.27) (2.111, 9.22, 0.34)
CFL9 (2.365, 11.98, 0.29) (2.735, 11.36, 0.35)

CFL10 (2.202, 11.36, 0.29) (2.548, 10.76, 0.35)
CFL11 (1.571, 8.51, 0.27) (1.823, 8.01, 0.34)
CFL12 (1.754, 9.29, 0.28) (2.034, 8.79, 0.34)
CFL13 (1.616, 8.70, 0.27) (1.875, 8.20, 0.34)
CFL14 (2.055, 10.49, 0.29) (2.379, 9.95, 0.35)
CFL15 (1.922, 9.98, 0.28) (2.227, 9.44, 0.35)
CFL16 (1.582, 8.40, 0.28) (1.835, 7.95, 0.34)
CFL17 (1.834, 9.42, 0.29) (2.125, 8.94, 0.35)
CFL18 (1.722, 8.98, 0.28) (1.997, 8.51, 0.35)
CFL19 (1.667, 8.60, 0.29) (1.934, 8.16, 0.35)

Table 5.4: Comparison between the maximum mass configurations using general relativity and semiclas-
sical gravity. For the semiclassical solutions it was adopted ω = 0.05.

In Ref. [160] it was discussed the possible tension between the evidence of the existence compact
stars satisfying R ≲ 11.6 km at 1.4M⊙ (suggested by some analyses on thermonuclear bursts and X-ray
binaries), and the possibility of very massive stars with M ∼ 2.6M⊙. None of the parametrizations can
accommodate, using general relativity, a family satisfying R1.4 ≲ 11.6km and also stars with masses as
high as 2.6M⊙. For the semiclassical solutions this is not necessarily the case. The CFL3 parametrization,
for instance, predicts a radius of 11.40km for a star with M = 1.4M⊙ and a maximum mass of 2.725M⊙,
being able to deal with both conditions at once.

In order to further explore the model in a complementary direction it is important to consider the
dimensionless tidal deformability Λ as presented in Chapter 2, namely

Λ =
2

3
k2C−5, (5.33)
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which is strongly dependent on the star composition. In the above equation, k2 is a dimensionless quan-
tity called the Love number. The configurations with ω ̸= 0 are computed using the standard procedure
for self-bound stars (see for example Ref. [97]), just replacing the physical quantities by their effective
counterparts70.
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Figure 5.19: Dimensionless tidal deformability as a function of the total mass using different values of the
ω parameter for the CFL3 parametrization. Full circle: Λ1.4 = 190+390

−120.

Analysis based on the gravitational-wave event GW170817 implies that 70 < Λ1.4 < 580, pro-
viding an important upper limit on stiffness [172, 173]. All parametrizations, except the four with the
largest maximum masses (i.e, CFL3, CFL5, CFL6 and CFL9), satisfy 70 < Λ1.4 < 580 already in general
relativity. As a consequence, it is not possible to establish a minimum value for ω in such cases, since the
referred range is also satisfied for arbitrarily small ω. However, differently from general relativity, it is also
possible to find compatible semiclassical solutions for CFL3 and CFL9, but ω must be at least 0.034 and
0.003, respectively. No physically acceptable solutions were found for the CFL5 and CFL6 because they
would violate the maximum value for ω as expressed by the inequality (5.32).

Figure 5.19 shows the dimensionless tidal deformability as a function of the total mass M for
the CFL3 parametrization. So, for example, the previously discussed result for ω = 0.05 has also the
virtue of being within the limits imposed by the event GW170817, since in this case Λ1.4 = 564. It is
not difficult to visualize why the semiclassical configurations present smaller tidal deformabilities for the
proposed model. The Love number is, roughly speaking, inversely proportional to the compactness for
the range C = 0.1 − 0.3, hence the tidal deformability dependence on the compactness is about Λ ∝ C−6

70 This procedure is only valid when δθµν ≈ δT̃µν is assumed. In these situations the effective source can be directly substi-
tuted in equation 2.46.
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[23]. Considering that the semiclassical solutions presented here have higher compactness than its general
relativistic counterparts, the tidal deformability decrease is expected.

Therefore, results have shown the possibility of horizonless ultracompact configurations, a class
that has received much attention in the literature [38, 39, 40, 109]. These results were achieved without
imposing drastic modifications on the low mass-radius regime. Within the semiclassical framework it is
also possible to find families of stars satisfying R1.4 ≲ 11.6 km, 70 < Λ1.4 < 580 and masses as high as
2.6M⊙, which is very difficult within regular neutron star or even strange star models [160].

5.3 Relaxing Isotropy in Semiclassical Gravity

In order to motivate a final application, observe that spherical symmetry does not require an isotropic source
[26]. In fact, the most general source compatible with spherical symmetry has the form

T µ
ν = diag{−ε, pr, p⊥, p⊥}, (5.34)

which describes an anisotropic fluid, as discussed in Chapter 2. The number of physical processes from
which anisotropy might emerge is quite large. Such deviations from local isotropy could occur, for instance,
in exotic phase transitions that may take place in the gravitational collapse of highly dense systems [174].
Further motivation comes from the observation that nuclear matter has a tendency to become anisotropic
at densities of order 1015 g/cm3 [175]. Anisotropy could also take place in low density systems, like in the
processes of stellar formation.

The rest of this section is dedicated to construct a simple semiclassical anisotropic model, relying
on the nonlocal equation of state (NLES), in which the components of the energy-momentum tensor at a
given point have a functional dependence throughout the enclosed configuration, instead of being simply a
function at that point [176].

This differs from the traditional analysis in classical continuum theories, where one relies on the
premise that the state of an object is completely determined by the behavior of an arbitrary infinitesimal
neighborhood centered at any of its material points [176]. There is also the assumption that any section of
the material can be extrapolated as a representation of its totality and the underlying physics is valid for
every part of body, independently of how small.

This non-local character can dominate the macroscopic behavior of matter under many circum-
stances found in modern classical continuum mechanics and fluid dynamics, being vital to tackle many
problems in science and engineering. Just to cite a few examples in which a non-local approach is useful:
to study damage and cracking in materials, surface phenomena between two liquids or two phases, blood
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flow and colloidal suspensions [176]. It has also been shown that under particular circumstances, a general
relativistic spherically symmetric bounded distribution of matter could obey a non-local equation of state
[177].

5.3.1 Non-local Equation of State

In the static limit, the non-local equation of state can be written as [176, 177]

pr(r) = ε(r)− 2

r3

∫ r

0

u2ε(u)du. (5.35)

It is not difficult to see that the above equation describes a collective relation between the radial
pressure and energy density. The radial pressure is not simply a function of the energy density at a given
point, it is a functional that depends on the entire configuration, indicating the non-local behavior of these
variables. Any change in the radial pressure considers the effects associated with the variations of the
energy density within the entire volume [176, 177].

Equation (5.35) can alternatively expressed as a differential equation, namely

ε(r)− 3pr(r) + r
(
ε′(r)− p′r(r)

)
= 0. (5.36)

By looking at the above equation is easy to see that causality can be stated as:

c2s < 1 =⇒ ε− 3pr
rε′

< 0. (5.37)

For further purposes, it is interesting to state the following energy conditions:

Strong energy condition : ε+ pr + 2p⊥ ⩾ 0; (5.38)

Trace energy condition : ε+ pr + 2p⊥ ⩾ 0. (5.39)

In particular, the trace energy condition is more restrictive than the strong energy condition for imperfect
fluids [178].

5.3.2 The Tangential Pressure

As mentioned in Appendix A, employing an anisotropic source demands an additional relation. The usual
procedure is to consider an ansatz to express the tangential pressure. Similarly to what was assumed in
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Ref. [39], let is consider that the quantity inside the square root in the differential equation for the radial
pressure is equal to a constant. Therefore one can writes

p′r =
2∆

r
+
r (ε+ pr)

ℓ2P

1−

√
1 +

2ℓ2P
r3

m+ 4πr3pr
1− 2m/r

 =
2∆

r
+
r (ε+ pr)

ℓ2P
τ. (5.40)

where τ is some constant. By combining the above result with the non-local equation of state (5.36) one
finds

p⊥ =
1

2

[
ε− pr + rε′ − r2τ

ℓ2P

(
ε(r) + pr

)]
(5.41)

This implies that at the center p⊥c = (εc − prc) /2. Regarding the ansatz, throughout this section it will be
assumed that τ = −1/N .

5.3.3 Semiclassical Solutions Using the NLES

Now it is time to verify if the proposed model is able to produce credible solutions. The possibility of
ultracompact solutions is already verified in Figure 5.20. The compactness function is displayed as a func-
tion of the radius, presenting two solutions entering the ultracompact region. The final radius is practically
constant for configurations with central energy densities in the range 1εS − 6.5εS , being about 12.40 km.
It is worth noticing that despite the simplicity of the model, the typical size of the solutions presented is
compatible with regular compact stars. The total mass, on the other hand, varies from 0.64M⊙ to 4.17M⊙.
So the maximum mass overcomes the usual limits considered for compact stars.

Figure 5.21 exemplify the behavior of the function that describes the causality constraint for the
NLES, using εc = 6εS , starting from a point very close to the center. The relevant function remains negative
throughout the entire configuration, as demanded by (5.37). Figure 5.22 shows that the same configuration
also satisfies both the strong and the trace energy conditions at all radii. All things considered, bounded
ultracompact gravitational sources can also materialize in semiclassical gravity when anisotropic sources
are considered, expanding the range of hydrodynamic scenarios available.
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Figure 5.20: Compactness function versus radius using different values for the central energy density. The
green dashed line represents the ultracompact limit C = 1/3.

0 2 4 6 8 10 12 14

r (km)

-0.46

-0.44

-0.42

-0.4

-0.38

-0.36

Figure 5.21: Relevant quantity to verify the causality condition for the NLES using εc = 6εS .
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Figure 5.22: Relevant quantities to verify the Strong (dashed) and Trace (solid) energy conditions using
εc = 6εS .

5.4 Forthcoming Research

Many different paths might be taken to explore more deeply the impacts of the semiclassical formalism
on the ultracompact regime. First, the anisotropic results presented here are only preliminary and a more
detailed study is needed. Also, a semiclassical study of gravitational wave echoes requires a careful ex-
amination that has not yet been done. Such study is fundamental to investigate if these solutions are able
to generate gravitational echoes like those that characterize the relaxation phase of a putative black hole
mimicker [38].

However, to evaluate this properly it is important to generalize our results beyond the spheri-
cally symmetric static configurations, which is an idealization. The presence of rotation breaks spherical
symmetry and the configurations become axisymmetric. Through rotation it is possible to verify, among
other issues, if the solutions are not plagued with ergoregion instability [38]. In that sense, to develop a
Hartle-Thorne semiclassical solution would be a natural and interesting sequence for this work. The solu-
tion is basically a perturbed solution of the Schwarzschild metric. In that case the spherical symmetric line
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element is replaced by [72]

ds2 =− e2Φ
{
1 + 2

[
h0(r) + h2(r)P2

(
cos(θ)

)]}
dt2

+

[
1− 2m(r)

r

]−1
{
1 +

2
[
m0(r) +m2(r)P2

(
cos(θ)

)]
r − 2m(r)

}
dr2

+ r2
{
1 + 2

[
v2(r)− h2(r)

]
P2

(
cos(θ)

)}{
dθ2 + sin2(θ)

[
dϕ2 − ω(r)dt

]2 }
+O

(
Ω3
)
. (5.42)

In the above equation the functions m(r) and Φ(r) are the same of the non-rotating case, Ω is an uniform
angular velocity, ω is the dragging potential, h0(r) and m0(r) are associated with monopole deformations
and h2(r), m2(r), v2(r) describe the radial dependence of the quadrupole deformations. The quantity
P2(cos(θ)) is the second order Legendre polynomial, defined by [21]

P2(x) =
3x2 − 1

2
. (5.43)

Regarding the classical source, the energy density and the pressure can be written as [72]

p(r, θ) = p(r) + (ε+ p)
[
p0(r) + p2(2)P2(cos(θ))

]
+O

(
Ω4
)
; (5.44)

ε(r, θ) = ε(r) + (ε+ p)
dε

dp

[
p0(r) + p2(r)P2(cos(θ))

]
+O

(
Ω4
)
. (5.45)

Unfortunately, the closed tensorial expression used so far for the expectation value of the stress-
energy tensor to include backreaction is deeply attached to the spherical symmetry and an equivalent ex-
pression suitable for the Hartle-Thorne approximation can be incredibly hard to find. Anticipating future
problems it may be useful to develop the semiclassical effects for this purpose under an alternative formal-
ism. An interesting choice is to consider an algebraic extension of general relativity using pseudo-complex
numbers, defined by [77]

P = {X = x1 + I x2; x1, x2 ∈ R, I /∈ R; I2 = 1}, (5.46)

and the subsequent theory is called pseudo-complex general relativity. It can be shown that this algebraic
extension demands a modified variational principle that translates into an extra source term in the field
equations, which may be physically interpreted as the average contribution of the quantum vacuum. Ac-
cording to the authors: the main point is that pseudo-complex general relativity predicts that mass not only
curves the space but also changes the vacuum structure of the space itself. The similarity with semiclassi-
cal gravity is evident. The advantage of this framework is that the Hartle-Thorne solution can be obtained
straightforwardly [179]. So a major simplification of the rotational problem can be achieved via a direct
mathematical connection between semiclassical gravity and the pseudo-complex general relativity.

Another necessary improvement is to expand our analysis to other types of horizonless ultracom-
pact objects. Another two candidates can be found in Rubio’s original work about stellar equilibrium in
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semiclassical gravity. The exact solutions developed apparently combine aspects of the black star (stars
with an interior made of extremely dense matter supported by quantum vacuum polarization) and gravastar
(empty interior with a large vacuum polarization) proposals [39, 27, 180, 181, 67], being therefore natural
candidates for future studies.



Chapter 6
Concluding Remarks

In this thesis, the possibility of achieving ultracompact configurations was investigated by analyzing hy-
drostatic equilibrium as portrayed in semiclassical gravity. This program is ultimately related with one of
the greatest open problems in gravitational physics, namely, the outcome of extreme gravitational collapse,
as well as possible deviations from general relativity, a theory that has remained unmodified in more than
a century. Central in this discussion is the scope of the gravitational influence on quantum phenomena.
The generalization studied here is in some sense in tune with Einstein’s doubts about the reality of his field
equations in the face of quantum physics, particularly the right hand side (a phenomenological representa-
tion of matter), while he believed that the left hand side (obtained from first principles using geometrical
quantities) contained a deeper truth. To express this contrast he even used to say that the first was made of
low grade wood and the second of fine marble.

Quantum effects are often quite subtle and it is commonly assumed that in gravity they only
play relevant roles at the Planck scale, but current challenges presented to the theory of quantum effects
in black holes, as well as cosmological spacetimes, suggest otherwise [67]. In particular, there are at least
two macroscopic systems where quantum effects may be crucial towards its understanding, cosmological
dark energy and the gravitational collapse, which are the main obstacles to reconcile general relativity with
quantum mechanics on macroscopic scales [67]. This work adds to many efforts in awakening the vacuum
to investigate the fate of some relativistic stars [29, 39, 77, 116, 143, 149]. This fate crucially depends on
how the vacuum backreacts on spacetime. With this in mind, the study was developed using the phenomena
of quantum vacuum polarization as a new type of stabilizing effect, analogous to the degeneracy pressure,
thus imposing quantum corrections to general relativity. This framework was applied in equilibrium solu-
tions with interesting properties situated between regular neutron stars and black holes.

Three distinct models were proposed in Chapter 5. The results presented support that, in general,
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semiclassical solutions have higher compactness, which can be seen as a measure of the strength of its grav-
ity. All discussed models have horizonless ultracompact objects as a viable byproduct. The first model was
a simple evaluation of the LinEos under semiclassical gravity, in which the range of ultracompact solutions
was substantially expanded when compared with general relativity. The second model took advantage that
in semiclassical gravity there are two solutions for the pressure gradient and these equations were com-
bined to study a CFL strange star with an extra component, described by a negative pressure fluid, carrying
the semiclassical effects. Some solutions were not only ultracompact, but also able to fit some up-to-date
observational data. The last model has shown that it is also possible to explore more general sources, being
a preliminary attempt to produce anisotropic solutions. Such solutions may sound too exotic, with no place
in real astrophysical phenomena. It is interesting to remember that until the 1960s (with the discovery of
quasars and pulsars) this was the general view regarding black holes and neutron stars [182]. In face of
the results obtained it is legitimate to pursue a more detailed study of ultracompact stars in semiclassical
gravity.

Gravitational waves are providing a new window to observe the Universe, particularly in the
strong gravity regime. As pointed out in the Introduction, discoveries like the one recently announced
by the LIGO collaboration of an object inside the mass gap (with ≈ 2.6M⊙) are very stimulating [51].
Although it is usually assumed that the object must be the lightest known black hole or the heaviest known
neutron star, it could as well be a new kind of compact object since there are no shortage of theoretical
proposals in the field. Whether or not ultracompact stars or any other theoretical proposal actually exist in
nature is an issue to be settled ultimately by observation. Even so, the mere mathematical possibility of
such interesting objects is in itself fascinating. Besides that, models are getting refined as our knowledge
about the details regarding the equation of state for matter at the relevant pressures and densities, as well
as the relevance of other quantum effects, improves. All things considered, the future seems promising
towards new observational evidence able to elucidate the influence of gravity on quantum phenomena,
revolutionizing the general view of such effects.



Appendix A
Schwarzschild Stars

A.1 Derivation of the Tolman-Oppenheimer-Volkoff Equations

This appendix is devoted to the derivation of the general relativistic stellar structure equations. The analysis
is valid for static and spherically symmetric stars. Under these assumptions the spacetime can be expressed
as [10]

ds2 = −e2Φ(r)dt2 + e2λ(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (A.1)

a line element71 with just two unknown radial functions, Φ(r) and λ(r).

Due to the highly symmetric character of the Schwarzschild spacetime, the calculations will be
relative to the local orthonormal one-form basis, which is naturally attached to the metric element

Θ0 = eΦ(r)dt, Θ1 = eλ(r)dr, (A.2)

Θ2 = rdθ, Θ3 = r sin θdϕ. (A.3)

Since the basis is orthonormal, the associated connection forms satisfy [10]

ωab + ωba = 0, ωab = ηacω
c
b, a, b = 0, 1, 2, 3. (A.4)

The external derivatives are given by

dΘ0 = Φ′eΦdr ∧ dt, (A.5)

dΘ1 = 0, (A.6)

71 These coordinates are called Schwarzschild coordinates (or curvature coordinates), where the basic idea in a nutshell is:
(Schwarzschild r-coordinate)=(proper circumference)/2π [54].
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dΘ2 = dr ∧ dθ, (A.7)

dΘ3 = sin θdr ∧ dϕ+ r cos θdθ ∧ dϕ. (A.8)

By expressing the above equations in terms of the orthonormal frames we obtain

dΘ0 = Φ′e−λΘ1 ∧Θ0, (A.9)

dΘ1 = 0, (A.10)

dΘ2 = r−1e−λΘ1 ∧Θ2, (A.11)

dΘ3 = r−1
[
e−λΘ1 ∧Θ3 + cot θΘ2 ∧Θ3

]
. (A.12)

Comparing this with the first Cartan structure equation

dΘa = −ωa
b ∧Θb, (A.13)

it is immediately to see that
ω0
2 = ω2

0 = ω0
3 = ω3

0 = 0. (A.14)

The other connection coefficients are

dΘ0 = −ω0
1 ∧Θ1 =⇒ (A.15)

−Φ′e−λΘ0 ∧Θ1 = −ω0
1 ∧Θ1 =⇒ (A.16)

ω0
1 = Φ′e−λΘ0; (A.17)

dΘ2 = −ω2
1 ∧Θ1 =⇒ (A.18)

−r−1e−λΘ2 ∧Θ1 = −ω2
1 ∧Θ1 =⇒ (A.19)

ω2
1 = r−1e−λΘ2; (A.20)

dΘ3 = −ω3
1 ∧Θ1 − ω3

2 ∧Θ2 =⇒ (A.21)

−r−1
[
e−λΘ3 ∧Θ1 + cot θΘ3 ∧Θ2

]
= −ω3

1 ∧Θ1 − ω3
2 ∧Θ2 =⇒ (A.22)

ω3
1 = r−1e−λΘ3 =⇒ (A.23)

ω3
2 = −r−1 cot θΘ3. (A.24)

and (A.4) yields
ω0
1 = ω1

0; ω1
2 = −ω2

1; ω1
3 = −ω3

1; ω2
3 = −ω3

2. (A.25)

From the second Cartan structure equation we obtain the curvature two-form Ωa
b, which is also an element

of the Lie algebra of the Lorentz group [10]. It follows that:

Ω0
1 = dω0

1 (A.26)

=
(
Φ′′e−λ − λ′Φ′e−λ

)
dr ∧Θ0 + Φ′e−λdΘ0 (A.27)

=
(
Φ′′e−λ − λ′Φ′e−λ

)
e−λΘ1 ∧Θ0 +

(
Φ′e−λ

)2
Θ1 ∧Θ0 (A.28)

= −e−2λ
(
Φ′′ − λ′Φ′ + Φ′2)Θ0 ∧Θ1; (A.29)
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Ω0
2 = ω0

1 ∧ ω1
2 (A.30)

= −e−2λΦ
′

r
Θ0 ∧Θ2; (A.31)

Ω0
3 = ω0

1 ∧ ω1
3 (A.32)

= −e−2λΦ
′

r
Θ0 ∧Θ3; (A.33)

Ω1
2 = dω1

2 (A.34)

=
(
r−2e−λ + r−1λ′e−λ

)
dr ∧Θ2 − r−1e−λdΘ2 (A.35)

= e−2λ
(
r−2 + r−1λ′

)
Θ1 ∧Θ2 − r−2e−2λΘ1 ∧Θ2 (A.36)

= e−2λ
(
r−1λ′

)
Θ1 ∧Θ2; (A.37)

Ω1
3 = dω1

3 + ω1
2 ∧ ω2

3 (A.38)

= e−2λ
(
r−1λ′

)
Θ1 ∧Θ3 − r−2e−λ cot θΘ2 ∧Θ3 + r−2e−λ cot θΘ2 ∧Θ3 (A.39)

= e−2λ
(
r−1λ′

)
Θ1 ∧Θ3; (A.40)

Ω2
3 = dω2

3 + ω2
1 ∧ ω1

3 (A.41)

=
(
e−λr−2 cot θ − e−λr−2 cot θ

)
Θ1 ∧Θ3 + r−2

(
1

sin2 θ
− cot2 θ + e−2λ

)
Θ2 ∧Θ3 (A.42)

= r−2
(
1− e−2λ

)
Θ2 ∧Θ3. (A.43)

Having the above results it is straightforward to obtain the components of the Riemann tensor using

Ωa
b =

1

2
Ra

bcdΘ
c ∧Θd. (A.44)

It follows that

R0
101 = −R1

010 = −e−2λ
(
Φ′′ − λ′Φ′ + Φ′2) ; (A.45)

R0
202 = −R2

020 = −e−2λΦ
′

r
; (A.46)

R0
303 = −R3

030 = −e−2λΦ
′

r
; (A.47)

R1
212 = R2

121 = e−2λ
(
r−1λ′

)
; (A.48)

R1
313 = R3

131 = e−2λ
(
r−1λ′

)
; (A.49)

R2
323 = R3

232 = r−2
(
1− e−2λ

)
. (A.50)

The components of the Ricci tensor can be obtained via Rbd = Ra
bad

R00 = R1
010 +R2

020 +R3
030 = e−2λ

(
Φ′′ + Φ′

(
2

r
− λ′

)
+ Φ′2

)
; (A.51)

R11 = R0
101 +R2

121 +R3
131 = −e−2λ

(
Φ′′ − λ′

(
2

r
+ Φ′

)
+ Φ′2

)
; (A.52)
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R22 = R0
202 +R1

212 +R3
232 = −e

−2λ

r

(
Φ′ − λ′ +

1

r

)
+

1

r2
; (A.53)

R33 = R0
303 +R1

313 +R2
323 = −e

−2λ

r

(
Φ′ − λ′ +

1

r

)
+

1

r2
. (A.54)

One further contraction gives the scalar of curvature

R = −2e−2λ

(
Φ′′ − λ′Φ′ + Φ′2 +

2

r

(
Φ′ − λ′

)
+

1

r2

)
+

2

r2
. (A.55)

Now the components of the Einstein tensor can now be easily calculated using

Gab = Rab −
1

2
ηabR. (A.56)

This yields the following non-zero components

G0
0 = e−2λ

(
1

r2
− 2

λ′

r

)
− 1

r2
; (A.57)

G1
1 = e−2λ

(
1

r2
+ 2

Φ′

r

)
− 1

r2
; (A.58)

G2
2 = G3

3 = e−2λ

(
Φ′′ + Φ′2 − λ′Φ′ +

1

r

(
Φ′ − λ′

))
. (A.59)

As pointed out in Chapter 2, to high precision the matter inside the star can be approximated by a perfect
fluid. The static condition implies that [54]:

ur = uθ = uϕ = 0. (A.60)

The energy-momentum components in the fluid’s orthonormal frame are given by

T a
b = diag{−ε, p, p, p}. (A.61)

Therefore the Einstein field equations
Ga

b = 8πT a
b, (A.62)

assume the explicit form

e−2λ

(
1

r2
− 2

λ′

r

)
− 1

r2
= −8πε; (A.63)

e−2λ

(
1

r2
+ 2

Φ′

r

)
− 1

r2
= 8πp; (A.64)

e−2λ

(
Φ′′ + Φ′2 − λ′Φ′ +

1

r

(
Φ′ − λ′

))
= 8πp. (A.65)

Observe that equation (A.63) can be put in the form

r−2 d

dr

[
r
(
1− e−2λ

)]
= 8πε. (A.66)
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It is useful to define the quantity

2m(r) := r
(
1− e−2λ

)
, e2λ =

(
1− 2m

r

)−1

, (A.67)

so (A.66) can be rewritten as
2

r2
m′ = 8πε. (A.68)

Integrating the above equation gives

m(r) =

∫ r

0

4πεr2dr +m(0). (A.69)

Since it is desirable to have a smooth space geometry at the origin we assign a zero value to the constant of
integration72. The quantity m(r) represents the “total mass-energy inside the radius r”73.

Replacing e−2λ by
(
1− 2m

r

)
and solving for Φ′ one obtains

Φ′ =
m+ 4πpr3

r (r − 2m)
. (A.70)

It is useful to define some auxiliary quantities based on the Ricci tensor in order to obtain the hydrostatic
equilibrium equation:

α0 = Φ′′ + 2
Φ′

r
− λ′Φ′ + Φ′2; (A.71)

α1 = Φ′′ − 2
λ′

r
− λ′Φ′ + Φ′2; (A.72)

α2 =
e−2λ

r

(
Φ′ − λ′ +

1

r

)
− 1

r2
. (A.73)

The components of the Einstein tensor can be rewritten as:

G0
0 = −1

2

(
e−2λα0 − e−2λα1 − 2α2

)
; (A.74)

G1
1 =

1

2

(
e−2λα0 − e−2λα1 + 2α2

)
; (A.75)

G2
2 =

1

2

(
e−2λα0 + e−2λα1

)
. (A.76)

A few manipulations are necessary. First, observe that

α0 − α1 =
2

r

(
Φ′ + λ′

)
=⇒ Φ′ + λ′ =

r

2
(α0 − α1) . (A.77)

72 A non-zero value produces a geometry with a singularity at the origin and there is no local Lorentz frame at r = 0 [54].
73 For a Newtonian star m(r) is simply the “the mass inside radius r”, but for a relativistic star m(r) splits into a combination

of three factors: rest-mass energy, internal energy and gravitational potential energy [54].
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From the above equation it is immediately to see that

Φ′′ + λ′′ =
1

2

[
(α0 − α1) + r

(
α′
0 − α′

1

)]
. (A.78)

Therefore α1 can be rewritten as

α1 =
1

2

[
(α0 − α1) + r

(
α′
0 − α′

1

)]
− λ′′ − 2

λ′

r
− λ′

[
r

2
(α0 − α1)− λ′

]
+

[
r

2
(α0 − α1)− λ′

]2
(A.79)

=

[
α0 − α1

2
+
r

2

(
α′
0 − α′

1

)
− 3

2
λ′r (α0 − α1) +

r2

4
(α0 − α1)

2

]
−
(
λ′′ − 2λ′2 +

2

r
λ′
)
. (A.80)

Now observe that
e2λ

r

(
re2λ

)′′
= −2

(
λ′′ +

2

r
λ′ − 2λ′2

)
, (A.81)

but since (
re2λ

)′
= e−2λ

(
1− 2λ′r

)
(A.82)

= r2α2 + 1− r2

2
e−2λ (α0 − α1) , (A.83)

it is also true that

e2λ

r

(
re2λ

)′′
= 2e2λα2 + re2λα′

2 − (α0 − α1) + λ′r (α0 − α1)−
r

2

(
α′
0 − α′

1

)
. (A.84)

Therefore

−
(
λ′′ +

2

r
λ′ − 2λ′2

)
= e2λα2 +

r

2
e2λα′

2 −
(α0 − α1)

2
+
r

2
λ′ (α0 − α1)−

r

4

(
α′
0 − α′

1

)
. (A.85)

So equation (A.80) assumes the form:

α1 =
r2

4
(α0 − α1)

2 + e2λα2 − rλ′ (α0 − α1) +
r

4

(
α′
0 − α′

1

)
+
r

2
e2λα′

2. (A.86)

The Einstein field equations implies the following relations

(α0 − α1) = 8πe2λ (p+ ε) ; (A.87)(
α′
0 − α′

1

)
= 16πλ′e2λ (p+ ε) + 8πe2λ

(
p′ + ε′

)
; (A.88)

α2 = 4π (p− ε) ; (A.89)

α′
2 = 4π

(
p′ − ε′

)
; (A.90)

α1 = 4πe2λ (p− ε) . (A.91)

Substituting the above results in (A.86) we obtain

4πe2λ (p− ε) =
r2

4
64π2e4λ (p+ ε)2 + 4πe2λ (p− ε)− 8πλ′re2λ (p+ ε)

+
r

4

(
16πλ′e2λ (p+ ε) + 8πe2λ

(
p′ + ε′

))
+
r

2
e2λ4π

(
p′ − ε′

)
.
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The above equation can be reduced to

−p′ = 4πre2λ (p+ ε)2 − λ′ (p+ ε) . (A.92)

Considering that

e2λ =

(
1− 2m

r

)−1

=⇒ λ′ =

(
1− 2m

r

)−1(
m′r −m

r2

)
, (A.93)

and substituting in (A.92) the above relations results

dp

dr
= −

(ε+ p)
(
m+ 4πr3p

)
r (r − 2m)

= − (ε+ p)
dΦ

dr
(A.94)

which is the general relativistic hydrostatic equilibrium equation. The above equation can be easily rear-
ranged to

dp(r)

dr
= −m(r)ε

r2

[
1 +

p(r)

ε(r)

][
1 +

4πr3p(r)

m(r)

] [
1− 2m(r)

r

]−1

(A.95)

as presented in Chapter 2.

Regarding the behavior of the mass function and pressure gradient when r → 0, observe that
their expressions can be expanded as [183]

m→4π

r
ε0r

3 (A.96)

dp

dr
→− 4π

3
ε20r

(
1 +

p0
ε0

)(
1 +

3p0
ε0

)
(A.97)

Since both expressions are proportional to r they vanish at the origin.

For a given equation of state, responsible for describing the quantum physics of matter (i.e. the
non-gravitational part), the hydrostatic equilibrium equation can be integrated (usually numerically) from
the origin with initial conditions and an arbitrary value for the central density (or pressure), until the pres-
sure vanishes at some radius R [23]. Regarding the matter properties, the TOV equations depend only on
bulk quantities, namely the energy density and pressure. Other properties like the number density or the
composition of matter are not relevant for modelling Schwarzschild stars in general relativity [23]. It is also
important to emphasize that to each possible equation of state there is a unique family of stars parametrized
by the central density, in other words, a sequence of stellar models is obtained [10].

A.2 Exterior Solution

For radii exceeding the mass distribution, r ⩾ R, the pressure vanishes and m(r) = M . It follows from
applying these relations on the results obtained on the previous section that

e−2λ = 1− 2M

r
; (A.98)
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Φ′ =
M

r2
(
1− 2M

r

) . (A.99)

It is reasonable to impose, since the solutions represent bounded systems, that the spacetime must be
asymptotically flat. This fact can be mathematically expressed by the asymptotic regularity conditions [69]

lim
r→∞

λ(r) = lim
r→∞

Φ(r) = 0. (A.100)

The above equation implies that e2Φ → 1 when r → ∞. With this in mind, equation (A.99) can be
integrated, which yields

e2Φ = 1− 2M

r
. (A.101)

This is the famous Schwarzschild solution

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θϕ2

)
, (A.102)

uniquely determined by the central mass of the object. The quantity RS = 2M is called the Schwarzschild
radius. In terms of the Schwarzschild radius the above line element can be rewritten as

ds2 = −
(
1− RS

r

)
dt2 +

(
1− RS

r

)−1

dr2 + r2
(
dθ2 + sin2 θϕ2

)
, (A.103)

as presented in Chapter 3.

A.3 Anisotropic Case

As a matter of completeness, the perfect fluid solution for hydrostatic equilibrium can be easily generalized
for the anisotropic case. As presented in Chapter 2, in this case the source acquires the form

Tµν = (ε+ p⊥)uµuν + p⊥gµν + (pr − p⊥) kµkν , (A.104)

The modifications are restricted to the source, so the components of the field equations are

e−2λ

(
1

r2
− 2

λ′

r

)
− 1

r2
= −8πε; (A.105)

e−2λ

(
1

r2
+ 2

Φ′

r

)
− 1

r2
= 8πpr; (A.106)

e−2λ

(
Φ′′ + Φ′2 − λ′Φ′ +

1

r

(
Φ′ − λ′

))
= 8πp⊥. (A.107)
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For an isotropic fluid it was obtained that p′ +Φ′ (ε+ p) = 0. For an anisotropic source this equation is no
longer valid, but its counterpart can be easily computed. First observe that:

8πp′r = −2λ′e−2λ

(
1

r2
+

2Φ′

r

)
+ e−2λ

[
− 2

r3
+ 2

Φ′′r − Φ′

r2

]
+

2

r3
(A.108)

= e−2λ

(
−2

λ′

r2
− 4

Φ′λ′

r
− 2

r3
+ 2

ϕ′′

r
− 2

Φ′

r2

)
+

2

r3
. (A.109)

From the components of the field equations it is also possible to express the relation

8πΦ′ (ε+ pr) = e−2λ

(
2
Φ′λ′

r
+ 2

Φ′2

r

)
. (A.110)

So

8π
[
p′r + Φ′ (ε+ pr)

]
= e−2λ

(
−2

λ′

r2
− 2

Φ′λ′

r
− 2

r3
+ 2

Φ′′

r
− 2

Φ′

r2
+ 2

Φ′2

r

)
+

2

r3
. (A.111)

Now observe that

8π

[
2

r
(p⊥ − pr)

]
= e−2λ

(
2
Φ′′

r
+ 2

Φ′2

r
− 2

λ′Φ′

r
− 2Φ′

r2
− 2λ′

r2
− 2

r3

)
+

2

r3
. (A.112)

Noticing that the two last results are equal it follows that

p′r = − (ε+ pr) Φ
′ +

2∆

r
, (A.113)

Finally, observing that Φ′ is computed by combining the (t, t) and (r, r) components of the field equations,
which preserve the same form of the perfect fluid case, it follows that:

p′r = −
(ε+ pr)

(
m+ 4πr3pr

)
r (r − 2m)

+
2 (p⊥ − pr)

r
(A.114)

Obviously the isotropic case is recovered when p⊥ = pr = p. The radius of the star is determined by
the condition pr(R) = 0. It is not necessary to have a vanishing tangential pressure [26]. Moreover, the
last term in the above equation can be seen as representing a “force”, which is directed outward when
(p⊥ − pr) > 0 and inward when (p⊥ − pr) < 0. Therefore one should expect more massive configurations
in the former case and less massive in the latter [184]. Besides that, the introduction of the tangential
pressure requires the specification of an additional equation of state, such as p⊥(ε) [26]. Since a detailed
microscopic description of anisotropy is not available, several authors often use ansatzes to model scenarios
with different principal stresses. Usually the presence of anisotropy affects the compactness and the surface
redshift of the configurations [26].



Appendix B
Spacetime of a Relativistic Star

In this appendix a heuristic demonstration of the spacetime of a static and spherically symmetric relativistic
star, sufficient for our purposes, is presented74. Consider, as a starting point, the spherically symmetric line
element in special relativity

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (B.1)

The idea is to modify the above expression to allow curvature induced by the gravitational influence of the
star, while preserving spherical symmetry. The simplest proposal is to vary the metric components that are
non-zero already in (B.1), that is,

ds2 = −e2Φdt2 + e2λdr2 +R2
(
dθ2 + sin2 θdϕ2

)
, (B.2)

where θ is the polar angle, ϕ is the azimuthal angle and the radial coordinate r is defined such that the
circumference of a circle about the origin at that space location is 2πr [79]. Note that because of the
underlying symmetries the functions Φ, λ and R depend only on r, measured from the star’s origin75 [21].
One could object that (B.2) is not the most general metric possible under our assumptions and propose, for
example

ds2 = −a2dt2 − 2abdrdt+ c2dr +R2
(
dθ2 + sin2 θdϕ2

)
. (B.3)

However this expression is not more general in any physical sense. Consider a time coordinate transforma-
tion defined by

eΦdt′ = adt+ bdr (B.4)
74 For a more rigorous proof see [54, 57].
75 The static assumption imposes that ∂gµν

∂t = 0 must be satisfied.
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Inserting the above equation in (B.3) yields

ds2 = −a2
(
eΦdt′ − bdr

a

)2

− 2ab

(
eΦdt′ − bdr

a

)
dr + c2dr +R2

(
dθ2 + sin2 θdϕ2

)
(B.5)

= −
(
e2Φdt′2 + b2dr2 − 2beΦdt′dr

)
− 2beΦdrdt′ + 2b2dr2 + c2dr2 +R2

(
dθ2 + sin2 θdϕ2

)
(B.6)

= −e2Φdt′2 +
(
b2 + c2

)
dr2 +R2

(
dθ2 + sin2 θdϕ2

)
. (B.7)

Defining e2λ = b2 + c2 allow us to rewrite the line element as

ds2 = −e2Φdt′2 + e2λdr2 +R2
(
dθ2 + sin2 θdϕ2

)
, (B.8)

which apart from prime on the t is the equation (B.2)76. Therefore the reason why grt = 0 (B.2) comes
from an adequate choice of time coordinate. An advantageous choice can also be made for r coordinate, as
long as the spherical symmetry is respected. So it is possible to define

r = R(r). (B.9)

Inserting this new coordinate in (B.8) and dropping the primes results

ds2 = −e2Φdt2 + e2λdr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (B.10)

which is the line element used to derive the structure equations for the stellar configurations considered
throughout this work.

76 Equation (B.4) is successful in defining a new time coordinate as long as t′ is integrable as a differential equation for t′. By
choosing the integration factor eΦ to be just eΦ = a(r) implies that t′ = t+

∫ b(r)
a(r)dr is the integral of (B.4). Therefore the new

time coordinate always exists, no matter the forms that the functions a, b, c and R may assume.



Appendix C
Hydrostatic Equilibrium in Semiclassical Gravity

C.1 The Semiclassical TOV Equation

This appendix is dedicated to outline the procedure for obtaining and analyzing the semiclassical structure
equations, assuming the results of the Appendix A. The idea is to solve the semiclassical field equations
expressed as

Gµν = 8π
(
Tµν + ℏNQµν

)
, (C.1)

with respect to the line element presented in Chapter 4, namely

ds2 = ds2(2) + r2dΩ2 = gab(y)dy
adyb + r2(y)dΩ2(θ, ϕ). (C.2)

Taking advantage that in (1 + 1) dimensions all metrics are conformal to the flat metric [46], that is

gµν = C(x)ηµν . (C.3)

The line element can be written in null coordinates as [129]

ds2(2) = −C(u, v)dudv, (C.4)

which makes the computations much easier. The Christoffel symbols of the “second kind” are given by

Γτ
µβ =

1

2
gατ
(
∂gαµ
∂xβ

+
∂gβα
∂xµ

− ∂gµβ
∂xα

)
. (C.5)

Its non-zero components are

Γu
uu =

1

2
gvu
(
2
∂guv
∂u

)
(C.6)

=
1

C
∂uC; (C.7)
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and

Γv
vv =

1

2
guv
(
2
∂guv
∂v

)
(C.8)

=
1

C
∂vC. (C.9)

From the Christoffel symbols the components of the Ricci tensor can be obtained using

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓ

β
µν − Γα

βnuΓ
β
µα, (C.10)

which yields

Ruv = Rvu = −Γu
uu,v = −∂v

(
1

C
∂uC

)
. (C.11)

Therefore the scalar of curvature is

R = Rµνg
µν (C.12)

= 2Ruvg
uv (C.13)

= −2gµν∂v

(
1

C
∂uC

)
(C.14)

= −2gµν∂v∂u lnC (C.15)

= −2□ lnC(u, v). (C.16)

As discussed in Chapter 4, the evaluation of the renormalized stress-energy tensor is a crucial
problem in semiclassical gravity, which usually can not be obtained analytically. However when the space-
time has some degree of symmetry it can be calculated explicitly [129]. Fortunately, considering the s-wave
Polyakov approximation under spherical symmetry, the computations are rather simple because the com-
ponents can be expressed in a tensorial way as [39, 129]:

Qµν =
δaµδ

b
ν

4πr2
Q

(2)
ab ; (C.17)

Q
(2)
ab =

1

48π

(
1

2
R(2)gab + Aab −

1

2
gabA

)
. (C.18)

In the above expression Aab is given by

Aab := −4|ξ|∇a∇b|ξ|−1, (C.19)

where |ξ| =
√
C. The components of (C.18) are

Q(2)
uu =

1

48π
Auu = − 1

12π
C

1
2∂2uC

− 1
2 =

1

24π

(
− 3

2C2
(∂uC)

2 +
1

C
∂2uC

)
; (C.20)
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Q(2)
vv =

1

48π
Avv = − 1

12π
C

1
2∂2vC

− 1
2 =

1

24π

(
− 3

2C2
(∂vC)

2 +
1

C
∂2vC

)
; (C.21)

Q(2)
uv = Q(2)

vu =
1

96π
R(2)guv = −RC

96π
. (C.22)

Now it is useful to rewrite these components in (t, r) coordinates associated with the line element

ds2(2) = −C(r)dt2 + dr2

1− 2m(r)/r
, (C.23)

which yields [39]

Q(2)
rr = − 1

96π

(
C ′

C

)2

; (C.24)

Q
(2)
tt =

1

24π

[(
1− 2m

r

)
C ′′ − C ′

(
m

r

)′

− 3

4

(
1− 2m

r

)
C ′2

C

]
; (C.25)

Q
(2)
tr = Q

(2)
rt = 0. (C.26)

Through these components, it can be checked that the semiclassical source is identically conserved77 [39].

Having in mind the results presented in Appendix A it is immediate to obtain

e2Φ = C =⇒ Φ′ =
C ′

2C
; (C.27)

p′ = − (ε+ p) Φ′; (C.28)

p′ = − C ′

2C
(ε+ p) . (C.29)

Now, returning to the whole line element (C.2) and taking into account that the Einstein tensor of the semi-
classical field equations and that both the classical and semiclassical sources are diagonal, this amounts in
principle to five differential equations: the diagonal components (t, t), (r, r), (θ, θ), (ϕ, ϕ) of the semiclas-
sical field equations, plus the equation (C.29) [39]. Nevertheless, as in general relativity, only three of these
five equations are independent. So it is sufficient to proceed the equation (C.29) and the (t, t) and (r, r)

components, where the latter two are given respectively by [39]:

2m′

r2
= 8πε+

ℓ2P
r2

[(
1− 2m

r

)
C ′′

C
− C ′

C

(
m

r

)′

− 3

4

(
1− 2m

r

)(
C ′

C

)2
]
; (C.30)

C ′

rC
− 2m

r2 (r − 2m)
=

8πp

1− 2m
r

− ℓ2P
4

(
C ′

rC

)2

. (C.31)

77 A commentary is useful to avoid possible confusions. The 4-dimensional conservation law for the energy-momentum tensor,
∇µ⟨T̂µν⟩ = 0 can be expressed in terms of the two dimensional energy-momentum tensor as ∇a⟨T̂ab⟩(2) − ∂a⟨T̂ θ

θ⟩ = 0, which
violates in general the naive 2-dimensional conservation law ∇a⟨T̂ab⟩(2) = 0 [142].
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Using (C.29) the above equation can be rewritten as

1

r

(
−2p′

ε+ p

)
− 2m

r2 (r − 2m)
=

8πp

1− 2m
r

− ℓ2P
4r2

(
4p′2

(ε+ p)2

)
. (C.32)

Rearranging this equation it follows

p′

(
1− ℓ2P

2r

p′

ε+ p

)
= − (ε+ p)

(
m+ 4πr3p

)
r (r − 2m)

, (C.33)

which is the semiclassical Tolman-Oppenheimer-Volkoff equation. The right hand side is the same obtained
in general relativity, but the left hand side contains a new contribution related to the modifications due to
semiclassical effects [39].

Regarding the exterior geometry, since the grr metric function, as expressed in equation (C.23)
is the same found in general relativity, equation (A.98) remains valid in the semiclassical case. The gtt
metric function can be analyzed by rewriting the semiclassical TOV equation in terms of Φ(r). In this case,
considering r ⩾ R, one is lead to

Φ′

(
1 +

ℓ2P
2r

Φ′

)
=

M

r (r − 2M)
. (C.34)

In the limit ℏ → 0 (reasonable since the quantum stress-energy tensor outside a static star is extremely weak
for a distant observer) the above expression recovers equation (A.99), therefore in this case the exterior
geometry matches the exterior Schwarzschild solution found in general relativity [142].

C.2 Evaluating Classicality

This subsection is dedicated to what could be seen as the classical counterparts of the structure equations
in semiclassical gravity. Such limits are employed in the γ-CFL presented in Section 5.2. Here, it will
be useful to restore some constants and work only with c = 1. In many approaches to modify general
relativity, the gravitational constant G associated with different sources is allowed to differ [168]. With
this in mind, here the gravitational constant coming from classical energy-momentum tensor and the one
coming from the quantum expectation value the first will be denoted by G and Θ respectively.

The semiclassical hydrostatic equilibrium equation, being quadratic with respect to the pressure
gradient, has two roots given by

ℏΘp′± =
r (ε+ p)

N

1±

√
1 +

G

r3
ℏΘN
6π

m+ 4πr3p

1− 2Gm/r

 . (C.35)
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It is interesting to analyze the classical limit of the semiclassical structure equations. First, for better
visualization, consider the p′− solution expanded in a taylor series as

Θℏp′− =
1

2

(
12πr (ε+ p)

N

)(
ΘN

6πr (ε+ p)
Ξ

)
ℏ+

1

8

(
12πr (ε+ p)

N

)(
ΘN

6πr (ε+ p)
Ξ

)2

ℏ2 (C.36)

+
1

16

(
12πr (ε+ p)

N

)(
ΘN

6πr (ε+ p)
Ξ

)3

ℏ3 +O
(
ℏ4
)
, (C.37)

where, for simplicity, it was defined

Ξ(r) := −G
r

(ε+ p)
(
m+ 4πr3p

)
r − 2Gm

. (C.38)

Matching both sides in powers of ℏ and taking the limit ℏ → 0 yields [39]

p′− = −G
r

(ε+ p)
(
m+ 4πr3p

)
r − 2Gm

(C.39)

Therefore, at the classical limit the general relativistic picture for hydrostatic equilibrium is recovered [39].
Additionally, since the semiclassical mass function adds a term proportional to ℏ to the expression known
from general relativity, it also recovers the classical expression when ℏ → 0.

On the other hand, the ℏ → 0 limit is not suitable to evaluate classicality in the p′+ solution,
in which the semiclassical effects are dominant [39]. In this case, due to the first term in the right hand
side, the limit ℏ → 0 is not sufficient to satisfy the conditions demanded by the matching. Nevertheless it
would be interesting for astrophysical applications to obtain some expression that operationally resembles
a classical limit. As mentioned in Chapter 4, the N → ∞ can be used as an alternative measure of
classicality. Let is see how this applies to both solutions for the pressure gradient. For example, looking
at the factors multiplying each power of ℏ in the Taylor expansion, it is clear that the (C.39) result could
be obtained using the limit N → ∞ with NΘ = constant (the semiclassical coupling is rescaled in such a
way that NΘ is finite even when N goes to infinity [42]).

Similar to what was done with the previous root, the Taylor expansion gives for p′+ can be written
as:

Θℏp′+ =2

(
12πr (ε+ p)

N

)
− 1

2

(
12πr (ε+ p)

N

)(
ΘN

6πr (ε+ p)
Ξ

)
ℏ

− 1

8

(
12πr (ε+ p)

N

)(
ΘN

6πr (ε+ p)
Ξ

)2

ℏ2

− 1

16

(
12πr (ε+ p)

N

)(
ΘN

6πr (ε+ p)
Ξ

)3

ℏ3 +O
(
ℏ4
)

(C.40)

Matching both sides and taking the limit N → ∞ with NΘ = constant gives

p′+ =
G

r

(ε+ p)
(
m+ 4πr3p

)
r − 2Gm

. (C.41)
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which is the result obtained in general relativity, except for a sign change. So, a formal approach able to
deal with all semiclassical structure equations at once is to take the N → ∞ limit followed by the usual
limit ℏ → 0.

C.3 Anisotropic Case

The anisotropic version of equation (C.35) can be easily obtained. Equation (A.113) still applies and can
be rewritten as:

Φ′ =
1

ε+ pr

(
2∆

r
− p′r

)
(C.42)

Substituting this into equation (C.31) having in mind equation (C.27) yields

2

r (ε+ pr)

(
2∆

r
− p′r

)
− 2m

r2 (r − 2m)
=

8πpr
1− 2m

r

− ℓ2P
4

(
2

r (ε+ pr)

(
2∆

r
− p′r

))2

. (C.43)

Solving for p′r

p′r =
2∆

r
+
r (ε+ pr)

ℓ2P

1±

√
1 +

2ℓ2P
r3

m+ 4πr3pr
1− 2m/r

 (C.44)

which obviously recovers equation (C.35) when pr = p⊥.



Appendix D
Mathematical Supplementary Material

This appendix is a supplementary material to some mathematical notions exposed throughout the text.
A good starting point is the definition of an affine space, the structure that describes the spacetimes in
Newtonian physics and special relativity [52].

■ Definition 1. An affine space A is a subspace of a linear space V whose elements may be written in the
form a = k + v0, with k in a linear subspace of V and v0 a fixed point of V .

Therefore, roughly speaking, it is a vector space V in which the origin (the zero vector) is not
fixed, or at least not relevant. In that sense vectors are differences between points in the affine space.
Physics relies on affine spaces whenever invariance under translations holds, cases where the true position
of the origin is irrelevant. [52].

As mentioned in the main text, in general relativity the general notion of a manifold, not reduced
to affine spaces, has to be invoked. A topological manifold (which will be called simply manifold) can be
described by the following conditions [60]:

■ Definition 2. A manifold of dimension n (n is an integer equal or greater to one) is a topological space
M obeying the following properties

1. M is a separated space (also called Hausdorff space): Any two distinct points of M admit disjoint
open neighbourhoods.

2. M has a countable base: there exists a countable family (Uk)k∈N of open sets of M such that any
open set of M can be written as the union (possibly infinite) of some members of the above family.
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3. Around each point of M, there exists a neighbourhood which is homeomorphic to an open subset of
Rn.

The first property excludes manifolds with “forks” (it allows to distinguish between two points
even after a small perturbation) which are unpleasant from the physics point of view. Property 2 permits to
establish a theory of integration on manifolds by excluding “too large” manifolds. Property 3 contains the
essence of a manifold. They can be, at least in a domain around each one of its points, approximated by
Euclidean spaces. They are, consequently, spaces on which coordinates make sense [52].

As mentioned in Chapter 2, general relativity unites space and time through a manifold M en-
dowed with a pseudo-Riemannian metric g of Lorentzian signature. So the next natural mathematical
object to be discussed is the metric, which can be seen intuitively as the “infinitesimal squared distance ”
associated with an “infinitesimal displacement” [2]. Mathematically, the notion of an “infinitesimal dis-
placement ” can be translated into the concept of a tangent vector, seen as a directional derivative78 [2].
Since “infinitesimal squared distance” should be quadratic in the displacement, it is reasonable to infer
that the metric g should be a linear map from Mp × Mp (where Mp is the tangent space at point p of a
manifold) into numbers, that is, a tensor of type (0, 2). Besides that, the metric is also required to be sym-
metric and nondegenerate. Symmetric means that for all v1 and v2 ∈ Mp we have g (v1, v2) = g (v2, v1).
Nondegenerate means that the only case in which g (v, v1) = 0 for all v ∈ Mp is the case v1 = 0 [2]. To
summarize, a metric g on a manifold M is a symmetric, nondegenerate tensor field of type (0, 2). Alterna-
tively, a metric can be viewed as a (not necessarily positive definite) inner product on the tangent space at
each point.

In a coordinate basis the metric is usually expanded in terms of its components,

g = gµνdx
µ ⊗ dxν . (D.1)

Sometimes the quadratic form ds2 is used in place of g to represent the metric tensor, in which case we
write equation as

ds2 = gµνdx
µdxν . (D.2)

The next fundamental concept is curvature. Intuitively this notion arises mainly from two-
dimensional surfaces that are embedded in ordinary Euclidean space, associating curvature with the way it

78 In non-relativistic physics it is assumed that space has the natural three-dimensional vector space once one has chosen the
origin. The rules for adding and scalar multiplying then satisfy the vector space axioms. In special relativity the situation is
similar and one still has a natural structure of a four-dimensional vector space. In curved geometries the situation is different
and this vector space structure is lost. In that case there is no natural notion to “add ” two points on a sphere, resulting in a third
point on the sphere. Still, the vector space structure can be recovered in the limit of “infinitesimal displacements” about a point.
It is upon the notion of “infinitesimal displacement”, or tangent vector that the calculus on manifolds is based [2].
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bends in R3. This extrinsic curvature will not be our primary interest here. Rather, the goal is to investigate
the curvature of spacetime, which is not naturally embedded (as far as we know) in a higher dimensional
space. Thus it is useful to construct an intrinsic notion of curvature that can be applied to a manifold with-
out any reference to a higher dimensional space in which it might be embedded [2]. The first step is to
discuss the meaning of a derivative when applied to a manifold. Partial derivatives acting on components
of tensor fields can not be intrinsically defined on a manifold [3]. An intrinsic derivation is possible by
endowing the manifold with a structure called a connection. This operator is called a covariant derivative
and usually denoted by ∇. A covariant derivative maps differentiate vector fields into tensor fields obeying
to the following rules [3]:

• Linearity: ∇ (v + w) = ∇v +∇w

• Leibnitz Rule: ∇ (fv) = f∇v + df ⊗ v

In general relativity the derivative operator is also torsionless, that is, the second derivatives of scalar
functions must commute, namely

∇a∇bf = ∇b∇af. (D.3)

The disagreement between two derivative operators on dual vector fields can be measured through
a tensor field Cc

ab such that [2]
∇aωb = ∇̃aωb − Cc

abωc. (D.4)

A symmetry property of Cc
ab follows from the torsionless condition D.3. Considering ωb = ∇bf = ∇̃bf

yields
∇a∇bf = ∇̃a∇̃bf − Cc

ab∇cf. (D.5)

Since equation D.3 has to be satisfied for both derivative operators, it follows that

Cc
ab = Cc

ba. (D.6)

Obviously the above condition will not hold in general if the torsionless condition is dropped [2]. In Chapter
2 it was discussed that given a metric, there exists a unique torsionless connection which preserves it, that
is, ∇agbc = 0. In order to see this observe that:

0 = ∇agbc = ∇̃agbc − Cd
abgdc − Cd

acgbd, (D.7)

which implies that
Ccab + Cbac = ∇̃agbc, (D.8)

or equivalently through index substitution

Ccba + Cabc = ∇̃bgac; (D.9)

Cbca + Cacb = ∇̃cgab. (D.10)
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By adding equations D.8 and D.9 and then subtracting D.10, alongside with the symmetric property D.6 it
is found that

2Ccab = ∇̃agbc + ∇̃bgac − ∇̃cgab, (D.11)

that can be rewritten as
Ca

bc =
1

2
gcd
(
∇̃agbc + ∇̃bgac − ∇̃cgab

)
, (D.12)

which is obviously unique.

Therefore the metric is sufficient to determine the derivative operator [2]. Specifically, in terms
of an ordinary derivative operator D.12 can be written as

Γτ
µβ =

1

2
gατ
(
∂gαµ
∂xβ

+
∂gβα
∂xµ

− ∂gµβ
∂xα

)
, (D.13)

which is called the Levi-Civita connection. This is the curvature applied in general relativity [52]. Mathe-
matically, curvature signals the non-commutativity of covariant derivatives [3]. In non-infinitesimal terms
it indicates the non-identity of a vector and the vector parallelly transport along a closed loop. The defini-
tion goes as follows. Consider the commutation of two covariant derivatives applied to some dual vector
field vγ ,

(
∇α∇β −∇β∇α

)
vγ . there exist coefficients R δ

αβγ such that for all dual fields vγ:(
∇α∇β −∇β∇α

)
vγ = R δ

αβγ vδ, (D.14)

which are the components of the Riemann curvature tensor. In a coordinate component method the com-
ponents can be expressed as [2]

Rα
βµν = Γα

νβ,µ − Γα
µβ,ν + Γα

µδΓ
δ
νβ − Γα

νδΓ
δ
µβ. (D.15)

It can be proved that the vanishing of the Riemann tensor on a domain of a manifold implies that the metric
is locally flat in this region [3].

Below it is listed the main properties of the Riemann tensor:

1. R α
βγδ = −R α

γβδ ;

2. R α
[βγδ] = 0;

3. For the Levi Civita connection holds: Rαβγδ = −Rαβδγ;

4. Bianchi Identity: ∇[αR ϵ
βγ]δ = 0.
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In the above equations it was used a common notation for totally symmetric and totally antisymmetric
tensors, that is [2]

T(a1...al) =
1

l!

∑
π

aπ(1) . . . aπ(l); (D.16)

T[a1...al] =
1

l!

∑
π

δπaπ(1) . . . aπ(l). (D.17)

For example, in the case of a tensor of type (0, 2) the above equations assume the form:

T(αβ) =
1

2

(
Tαβ + Tβα

)
; (D.18)

T[αβ] =
1

2

(
Tαβ − Tβα

)
. (D.19)

It follows from properties 1, 2, and 3 that the Riemann tensor also satisfies another symmetry property,
namely

Rαβγδ = Rγδαβ. (D.20)

It is useful to decompose the Riemann tensor into a “trace part ” and a “trace-free part ”. Note
that, by the antisymmetry properties (1) and (3), the trace of the Riemann tensor over its first two or last
two indices vanishes [2]. At the other hand, its trace over the second and fourth (or the first and third),
indices defines the Ricci tensor, with components:

Rαγ = R β
αβγ . (D.21)

By equation (D.20) its components satisfy the symmetry property

Rαγ = Rγα. (D.22)

The scalar curvature, R, is defined as the trace of the Ricci tensor:

Rα
α = R (D.23)

Another important tensor is the Weyl tensor or conformal tensor. In some sense, it is considered that
this tensor embodies the non-Newtonian properties of the gravitational field, in particular its radiation
properties. The reason for this is the fact that the equations for massless fields, at least in four-dimensional
spacetimes, are conformally invariant [3]. The Weyl tensor is also used in global existence proofs, for
instance, the proof of the non-linear stability of the Minkowski spacetime. The Weyl tensor has the same
symmetries as the Riemann tensor and they are equal in Ricci-flat space. In addition it also has zero trace.
Its components, Cαβγδ, for manifolds with dimension n ⩾ 3 are defined by:

Rαβγδ = Cαβγδ +
2

2− n

(
gα[γRδ]β − gβ[γRδ]α

)
− 2

(n− 1) (n− 2)
Rgα[γgδ]β. (D.24)
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Now consider the contraction of the Bianchi identity,

∇αR α
βγδ +∇βRγδ −∇γRβδ = 0. (D.25)

Raising the index δ with the metric and contracting over β and δ yields

∇αRα
γ +∇βRβ

γ −∇γR = 0, (D.26)

or,
∇αGαβ = 0, (D.27)

where
Gαβ = Rαβ −

1

2
Rgαβ. (D.28)

are the components of the Einstein tensor.

Cartan’s structure equations, a technique used in Appendix A to derive the hydrostatic equilibrium
equations, will be our final topic.

First, the metric tensor allows the use of observer fields, ea, that is, an orthonormal tetrad satisfy-
ing [10]

g (ea, eb) = ηab. (D.29)

The dual elements of ea, denoted by Θa, serve as a basis of the cotangent space and define the metric as

g = ηabΘ
a ⊗Θb. (D.30)

The antisymmetric character of both curvature and torsion tensors allow the natural definition of its corre-
sponding two-forms:

T (X,Y) = T a (X,Y) ea, (D.31)

R (X,Y) eb = Ωa
b (X,Y) ea. (D.32)

The Cartan’s structure equations are

Ωa
b = dωa

b + ωa
d ∧ ωd

b , (D.33)

T a = dΘa + ωa
b ∧Θb. (D.34)

In the above expression ωa
b represents the components of the connection form given by

deb = eaω
a
b . (D.35)

In this language the compatibility between g and ∇ can be expressed as [54]

dgab = ωab + ωba. (D.36)



Appendix D. Mathematical Supplementary Material 127

For an orthonormal frame, dgab = 0, thus ωab = −ωba.

Locally the two-forms of the Cartan’s equations can be written as:

Ωa
b =

1

2
Ra

bcdΘ
c ∧Θd; (D.37)

T a =
1

2
T a
bcΘ

b ∧Θc. (D.38)

Nevertheless, since general relativity is constructed without the notion of torsion the respective Cartan’s
equation can be written as:

−dΘa = ωa
b ∧Θb. (D.39)

Local expressions are useful to connect these mathematical objects with the ones traditionally
used in general relativity. The Christoffel symbols can be related to the connection forms via [10]

ωα
β = Γα

µβdx
µ. (D.40)

Therefore

dωα
β = Γα

µβ,νdx
ν ∧ dxµ (D.41)

=
1

2

(
Γα
µβ,ν − Γα

νβ,µ

)
dxν ∧ dxµ. (D.42)

Consider also

ωα
δ ∧ ωδ

β = Γα
νδΓ

δ
µβdx

ν ∧ dxµ (D.43)

=
1

2

(
Γα
νδΓ

δ
µβ − Γα

µδΓ
δ
νβ

)
dxν ∧ dxµ. (D.44)

The above relations express the fact that the Cartan’s curvature equation is equivalent to the conventional
definition of the Riemann tensor in local coordinates, given by (D.15).



Appendix E
Einstein Field Equations

This chapter discusses how the field equations of general relativity can be obtained through a variational
principle, a program developed simultaneously by Einstein and Hilbert (although strictly speaking Hilbert
was the first to obtain the correct result). This is also the approach in other theories, for instance, in the
construction of the Standard Model, one does not start with the equations of motion but instead seeks for
the simplest possible lagrangian with the desired field content and symmetries [185].

Specifically, for a gravitational theory, Hilbert proposed the following axioms [186]:

1. The gravitational field equations should follow from a variational principle with the components of
the metric tensor acting as independent variables in the action integral.

2. The action functional should be a scalar.

3. The field equations should be second order differential equations with respect to the metric.

Some comments on these axioms are pertinent. Assuming a four-dimensional spacetime, the first axiom
says that the action integral should have the form

∫
V Fd

4x, where V is some four-dimensional region in
spacetime and F is a function that depends on the metric and its derivatives. From the second axiom, if∫
V Fd

4x should be a scalar, then F should be a scalar density of weight −1 (since d4x is a scalar density of
weight +1). The simplest option for a scalar density of weight −1 is

√
−g, therefore it seems reasonable

to assume F =
√
−gF , where F is a proper scalar. The only scalar that can be constructed without using

higher derivatives of the metric, as specified in Axiom 3, is the Ricci scalar R. All things considered, in
the following sections it will be demonstrated how these insights can be used to obtain the Einstein field
equations.
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E.1 Einstein Field Equations in Vacuum

In the light of the previous comments, consider as a starting point the following action:

SEH =
1

16π

∫
V
L
[
gµν
]√

−gd4x =
1

16π

∫
V
(R− 2Λ)

√
−gd4x, (E.1)

where a constant Λ, known as the cosmological constant, was included. Gravitational theories are said to
be of the Einstein-Hilbert type whenever the underlying Lagrangian is linear on curvature [63].

Now, consider a variation of the metric tensor [187]

gµν → gµν + δgµν , (E.2)

where δgµν and its first derivative are assumed to vanish on the boundary ∂V of the region V79. Therefore
the variations of action integrals and the subsequent field equations are obtained from the requirement that
δSEH = 0 for arbitrary variations of the metric80. The variation of the action can be written as

δSEH =
1

16π

∫
V

(
gµν

√
−gδRµν +Rµνδ

(
gµν

√
−g
)
− 2Λδ

√
−g
)
d4x. (E.3)

Aiming to compute the variation δRµν in terms of δgµν it is useful to consider the variation of the connec-
tion coefficients [187]

Γσ
µν → Γσ

µν + δΓσ
µν . (E.4)

It is noteworthy to observe that the variation δΓσ
µν , being the difference between two connections, is a tensor

[187]. As commonly done when proving tensor identities, it is useful to consider geodesic coordinates at
some arbitrary point P where Γσ

µν vanishes. It follows that

δRσ
µνρ = ∂ν

(
δΓσ

µρ

)
− ∂ρ

(
δΓσ

µν

)
. (E.5)

Since partial and covariant derivatives coincide at P it is possible to rewrite the above expression as

δRσ
µνρ = ∇ν

(
δΓσ

µρ

)
−∇ρ

(
δΓσ

µν

)
. (E.6)

The above equation is valid not only when adopting geodesic coordinates at P , but in any coordinate
system. That is a direct consequence of the fact that the quantities on the right hand side are tensors. In

79 Einstein’s field equations follow from (E.1), if and only if the surface term vanishes. Having in mind Axiom 3, an appropriate
Dirichlet boundary value problem fixes the values of the metric at the boundary of the spacetime region. Nevertheless, the
corresponding condition on the variations of the metric, δgµν |∂V = 0, is not sufficient in general to assure a vanishing surface
term [63]. The exceptions are the asymptotically flat spacetimes associated with isolated matter configurations, which fortunately
are the only class of physical systems considered in this work.

80 Some might wonder if one could obtain the field equations via the subsequent Euler-Lagrange equations. Unfortunately this
approach, albeit straightforward, demands cumbersome computations and will not be pursued in this work.
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addition, remembering that P was chosen arbitrarily, the above result holds generally and is known as the
Palatini equation [187]. The respective variation for the components of the Ricci tensor is obtained through
contraction, namely

δRµν = ∇ν

(
δΓσ

µσ

)
−∇σ

(
δΓσ

µν

)
. (E.7)

Therefore

1

16π

∫
V

(
gµν

√
−gδRµν

)
d4x =

1

16π

∫
V

(
gµν

√
−g
(
∇ν

(
δΓσ

µσ

)
−∇σ

(
δΓσ

µν

)))
d4x

=
1

16π

∫
V
∇ν

((
gµνδΓσ

µσ

)
− gµσ

(
δΓν

µσ

))√
−gd4x. (E.8)

This integral contains a total divergence, thus Stoke’s theorem dictates that this term will only contribute
as a surface integral over the boundary ∂V [70, 187]. The assumption that the variations of the metric and
its first derivatives vanishes on the boundary implies that the connection also vanishes, yielding

1

16π

∫
V

(
gµν

√
−gδRµν

)
d4x = 0. (E.9)

In order to proceed it is needed to evaluate the expression

δ
(√

−ggµν
)
=

√
−gδgµν + gµνδ

√
−g. (E.10)

First considering the identity gµαgαβ = δµβ , as well as the fact that the constant tensor δµβ does not change
under a variation it follows that [187]

δ
(
gµαgαβ

)
= 0. (E.11)

The above equation implies that
δgαβ = −gαµgβνδgµν . (E.12)

Moreover, observe that

δ
√
−g =

(
∂
√
−g

∂gαβ

)
δgαβ = − 1

2
√
−g

(
∂g

∂gαβ

)
δgαβ. (E.13)

The partial derivative above can be performed using the formula [70]

g =
Cofαβ

gαβ
, (E.14)

where Cofαβ is the cofactor matrix of gαβ with respect to the matrix constructed using the components of
the metric tensor. The above relation implies that

∂g

∂gαβ
= Cofαβ = ggαβ. (E.15)
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Therefore
δ
√
−g = 1

2

√
−ggαβδgαβ. (E.16)

Combining the above results equation (E.10) can be rewritten as

δ
(
gµν

√
−g
)
=

√
−g
(
δgµν +

1

2
gµνgαβδgαβ

)
=

√
−g
(
δgµν − 1

2
gµνgαβδg

αβ

)
. (E.17)

Inserting equations (E.16) and (E.17) into (E.3)

δSEH =
1

16π

∫
V

√
−g
(
Rµν −

1

2
Rgµν + Λgµν

)
δgµνd4x. (E.18)

The deduction is concluded from the requirement that the variation of the action must vanish for any metric
variation, so [70]

δSEH = 0 =⇒ Gµν + Λgµν = 0. (E.19)

These are called the vacuum field equations of general relativity.

E.2 Einstein Field Equations in the Presence of Matter and Energy

This section completes the deduction of the field equations by allowing the presence of non-gravitational
fields. This generalization is achieved by simply adding an extra term to the action, namely [187]

S = SEH + SM =
1

16π

∫
V
L
[
gµν
]√

−gd4x+
∫
V
LM

[
gµν , ϕ

]√
−gd4x. (E.20)

One observation is pertinent. The variation of the matter action with respect to the matter fields will provide
covariant equations of motion of the matter fields [185]. However, if the goal is to derive the coupled
gravity-matter equations from a variational principle, then the source contribution to the gravitational field
equations must be given by variation of the matter action with respect to the metric [185]

δS = 0 =⇒ 1

16π
δL+ δLM = 0. (E.21)

The energy-momentum tensor, that is, the source of the gravitational field equations, can be defined as

Tµν := − 2√
−g

δLM

δgµν
. (E.22)

It follows that
Gµν + Λgµν = 8πTµν , (E.23)

which are the Einstein field equations. Setting the cosmological constant to zero the field equations assume
the form expressed throughout the main text.
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E.3 Energy-momentum Tensor for Perfect Fluids

Aiming to provide an example of energy-momentum tensor, motivated by (E.22), the perfect fluid seems to
be a natural choice due to its importance throughout the main text. The derivation will be developed under
the constraint that the rates of entropy and particle production are conserved under variation of the metric
[70].

As a starting point consider the number flux vector density given by

nµ = n
√
−guµ. (E.24)

Consequently

n =

√
gµνnµnν

g
. (E.25)

The Lagrangian density for a perfect fluid can be written in terms of its energy density through the relation

LM = −ε. (E.26)

Before proceeding, observe that the Lagrangian does not contain any derivatives of the metric, therefore

Tµν = − 2√
−g

δLM

δgµν
= −2

∂LM

∂gµν
− LM

g

∂g

∂gµν
. (E.27)

Remembering equation (E.15) it is immediate to write

∂g

∂gµν
= −gαµgβν

∂g

∂gαβ
= −ggµν . (E.28)

So the energy-momentum tensor in this case can be written as

Tµν = −2
∂LM

∂gµν
+ gµνLM . (E.29)

The proposed constraints are:

δs = 0, (E.30)

δnµ = 0. (E.31)

The thermodynamical identity (where h is the specific enthalpy given by ε+p
n

) [70](
∂ε

∂n

)
s

= h, (E.32)

provides that
δε = hδn. (E.33)
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Combining equations (E.24), (E.25) and (E.31) it is possible to write

δn =
1

2n

(
nµnν

g
δgµν − nµnν gµν

g
δg

)
=
n

2

(
−uµuνδgµν +

uµuµ
g

δg

)
. (E.34)

Remembering that the four-velocity satisfies uµuµ = −1 and using equations (E.15), (E.12) and (E.28)

δn =
n

2

(
uµuν + gµν

)
δgµν . (E.35)

Moreover, from equations (E.26), (E.33) and (E.35) it follows that

∂LM

∂gµν
= −nh

2

(
uµuν + gµν

)
= −1

2
(ε+ p)

(
uµuν + gµν

)
. (E.36)

Substituting the expression for the specific enthalpy in the above relation and combining with equations
(E.29), (E.26) yields

Tµν = (ε+ p)uµuν + pgµν , (E.37)

which is the expression for the energy-momentum tensor of a perfect fluid as expressed in Chapter 2.

E.4 Uniqueness and the Lovelock Theorem

Now that the field equations are motivated, it is worthy to dedicate a few words on how uniquely they are
determined. It is natural to postulate that the metric components gµν satisfy some equation of the form [57]

Aµν [g] = Tµν , (E.38)

where Aµν [g] is a tensor field constructed from gµν and its first and second derivatives. In order to assure
that ∇νT

µν = 0 as a consequence of the field equations, Aµν must obey the equation

∇νAµν = 0. (E.39)

It is a fantastic result that in four spacetime dimensions the following theorem holds [57]:

▲ Theorem 2. (Lovelock) A tensor Aµν [g] with the required properties is in four dimensions a linear
combination of the metric and the Einstein tensor

Aµν [g] = aGµν + bgµν , a, b ∈ R. (E.40)

The above theorem deeply constrains the possible forms of the field equations in general relativ-
ity. It is interesting to observe that this theorem makes it unnecessary to postulate linearity in the second
derivative only in four dimensions [57]. It also does not require the symmetry of Aµν , showing that a grav-
itational field which obeys equation (E.38) can not be coupled to some non-symmetric energy-momentum
tensor.
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[107] Éanna É Flanagan and Scott A Hughes. The basics of gravitational wave theory. New Journal of
Physics, 7:204–204, Sep 2005.

[108] Luciano Rezzolla. Gravitational waves from perturbed black holes and relativistic stars, 2003.

[109] Paolo Pani and Valeria Ferrari. On gravitational-wave echoes from neutron-star binary coalescences.
Classical and Quantum Gravity, 35(15):15LT01, Jun 2018.

[110] Vitor Cardoso, Edgardo Franzin, and Paolo Pani. Is the gravitational-wave ringdown a probe of the
event horizon? Physical Review Letters, 116(17), Apr 2016.

[111] Vitor Cardoso, Seth Hopper, Caio F. B. Macedo, Carlos Palenzuela, and Paolo Pani. Gravitational-
wave signatures of exotic compact objects and of quantum corrections at the horizon scale. Physical
Review D, 94(8), Oct 2016.

[112] Massimo Mannarelli and Francesco Tonelli. Gravitational wave echoes from strange stars. Physical
Review D, 97(12), Jun 2018.

[113] Roman A. Konoplya, Zdenek Stuchlı́k, and Alexander Zhidenko. Echoes of compact objects: New
physics near the surface and matter at a distance. Phys. Rev. D, 99:024007, Jan 2019.



Bibliography 142

[114] Takeshi Kodama, Kai C. Chung, Sergio J.B. Duarte, and Maria C. Nemes. Relativistic Aspects Of
Nuclear Physics - Rio De Janeiro International Workshop. World Scientific Publishing Company,
1990.
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