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ABSTRACT

Electrostatic waves with frequencies that are integer multiples of the electron plasma frequency have been observed since the early days of
laboratory experiments on beam–plasma interactions, and also in experiments made in the space environment. These waves have also
appeared in numerical experiments, and can be explained in the context of weak turbulence theory. This paper presents results obtained by
numerical solution of the equations of weak turbulence theory, which show the coupled time evolution of the amplitudes of harmonic waves
and of the amplitudes of Langmuir and ion acoustic waves, and the time evolution of the electron distribution function. The results are
obtained considering a two-dimensional geometry, considering harmonics up to n¼ 5, and are consistent with earlier results obtained by
one-dimensional analyses.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065057

I. INTRODUCTION

It is common knowledge that two normal modes of electrostatic
oscillations occur in unmagnetized plasmas. At high frequencies, there
is a mode in which the electron population oscillates, while the ion
population, composed of much more massive particles, can be consid-
ered at rest. These high frequency oscillations are known as electron
plasma waves, or Langmuir waves. These waves can be excited by an
electron beam passing through the plasma, with frequency close to
the electron plasma frequency, xpe ¼ ð4pne0e2=meÞ1=2, where ne0 is
the electron number density at equilibrium, and e andme are the elec-
tron charge and mass, respectively. At low frequencies, there are oscil-
lations in which the ion population oscillates, carrying along the
electron population. Due to their much smaller inertia, the electron
population is almost at equilibrium with the ion population. These
oscillations bear resemblance with ion sounds in neutral gases, which
is why they are known as ion acoustic waves, or ion sound waves.
Langmuir waves and ion acoustic waves will be denominated as L
waves and S waves, respectively, in the present paper.

However, it has been observed that plasmas can exhibit other
electrostatic oscillations, which appear as high frequency waves with
frequencies that are integral multiples of the electron plasma

frequency. Such harmonic waves are not predicted by plasma analysis
based on the fluid approach, and are also not predicted by analysis
based on linear kinetic theory.

The occurrence of electrostatic harmonic waves has been
observed in laboratory experiments based on beam–plasma interac-
tions, since the 1960s.1–5 These waves have also been observed in
experiments in which electron beams have been inserted into iono-
spheric environments by equipment on board a rocket.6 Moreover,
computer simulations have also obtained such harmonic waves, in the
recent decades.7–15

Electrostatic harmonics has been addressed in the context of a
relatively recent formulation of weak turbulence theory (WT). The
basic formulation of WT theory has been mostly developed between
the decades of 1950 and 1970, with significant developments made by
researchers of the former USSR. Details about the development of the
early versions of WT theory have been collected in well-known text-
books.16–25 However, the WT theory has also been rediscussed in
more recent years, starting with the work of Yoon in the year 2000.26

The formulation has been developed starting from first principles, and
a variety of mechanisms have been discussed and incorporated into
the set of equations of the theory. The initial step in this recent
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development took into account the presence of L and S modes, and
also the presence of the first harmonic of L waves, with frequency close
to 2xpe. This harmonic of the L wave, not predicted by the dispersion
relation from linear theory, was obtained as an additional root by the
inclusion of nonlinear terms into the dispersion relation.26

Electrostatic harmonics of higher order, with frequencies close to inte-
ger multiples of the electric plasma frequency, nxpe, have also been
described, by more accurate approaches to the formulation.15,27–29

Other developments of the theory can be mentioned, such as the
incorporation of effects of single-particle fluctuations29 and the incor-
poration of effects due to binary particle interactions, both in the equa-
tions for particle distributions and in the equations for the time
evolution of wave amplitudes.30,31 These developments have been
hitherto restricted to an electrostatic formulation, but electromagnetic
oscillations also have been included into the formalism, up until now
in analysis that did not take into account the occurrence of electro-
static harmonics.32,33 A complete formulation, which simultaneously
takes into account electrostatic waves, both normal modes and nonlin-
ear harmonics, electromagnetic waves, effects due to single-particle
fluctuations, and effects due to binary collisions, has not yet been dis-
cussed and utilized in the literature.

The approach utilized in Ref. 26 was purely theoretical. As
far as we are aware, the first numerical solution of the equations
that appeared in the paper by Yoon (2000) was that of Ref. 34,
which contained a one-dimensional (1D) solution for the time
evolution of the spectra of L and S waves, and also of the harmonic
n¼ 2 of the L waves. The formulation utilized in Ref. 34 did not
include the effect of spontaneous fluctuations. These effects due to
spontaneous fluctuations were for the first time taken into account
in an analysis that included electrostatic harmonics in Ref. 35, still
in the context of a 1D formulation. Another instance of numerical
solution of the equations of WT theory in 1D can be found in Ref.
28, which discussed the evolution of multiple Langmuir harmon-
ics, still without taking into account the effects due to spontaneous
fluctuations.

The search for numerical solutions of the WT equations
developed according to the formulation presented in Ref. 26,
using a 2D geometry, can be traced back to the work by Ziebell
et al.36 Reference 36 presented an analysis of the evolution of elec-
trostatic L and S modes and of the electron velocity distribution,
with results obtained by taking into account quasilinear effects
and the effect of nonlinear scattering, as well as the effect of spon-
taneous fluctuations. The possibility of occurrence of Langmuir
harmonics was not taken into account. As far as we are aware, the
only instance of 2D analysis of WT equations accounting for the
electrostatic harmonics was that presented in Ref. 37, which dis-
cussed the beam–plasma instability taking into account the occur-
rence of the harmonic n¼ 2 of the Langmuir mode.

In the present paper, we further investigate the beam–plasma
instability using WT theory, considering a 2D geometry and taking
into account the occurrence of several electrostatic harmonics. As in
Ref. 37, we do not include in the formulation the occurrence of electro-
magnetic waves. The justification for this simplified approach is that
the nonlinear interaction between electrostatic waves and electromag-
netic waves is expected to become meaningful only after significant
growth of the wave amplitudes. Therefore, this interaction is not
expected to affect the early evolution of electrostatic harmonic modes,

which is the focus of the present work. The structure of this paper is as
follows: In Sec. II, we briefly present the theoretical formulation to be
utilized for the analysis. Section III presents the results of the numeri-
cal analysis. The results obtained are summarized in Sec. IV.

II. THEORETICAL FORMULATION AND NUMERICAL
SETUP

Details about the development of the equations of WT theory,
including those describing the evolution of electrostatic harmonics,
can be found in published papers in the literature. Here, we will only
reproduce the basic set of equations that will be utilized in the analysis.
This set of equations has already appeared in Ref. 37, but is reproduced
here for the sake of completeness. We present these equations using
nondimensional variables, which are more suitable for numerical anal-
ysis, as follows:

w � x
xpe

; s � txpe; q � kvte
xpe

; u � v
vte
;

where vte ¼ ð2Te=meÞ1=2 is the electron thermal speed, Te being the
temperature defined in energy unit. We also utilize normalized distri-
bution functions and wave spectra as follows:

UaðuÞ ¼ v3teFaðvÞ; Era
q ¼

ð2pÞ2g
mev2te

Ira
k

la
k

:

The equations of WT theory that will be utilized are a set of coupled
equations for the amplitudes of electrostatic waves (L and S waves and
harmonic modes) and for the velocity distribution functions for
plasma particles. Using the dimensionless variables, the equation for
the time evolution of the fundamental L wave can be written as
follows:

@ErL
q

@s
¼ lL

q
p
q2

ð
du dðrwL

q � q � uÞ
�

� g UeðuÞ þ ðrwL
qÞ q �

@UeðuÞ
@u

ErL
q

� ��
Lql

þ
(
2rlL

q w
L
q

X
r0 ;r00¼61

ð
dq0

lL
q0 l

S
q�q0 ðq � q0Þ

2

q2 q02 jq� q0j2

� rwL
q Er0L

q0 Er00S
q�q0 � r0wL

q0 Er00S
q�q0þr00wL

q�q0 Er0L
q0

� �
ErL
q

h i

� dðrwL
q � r0wL

q0 � r00wS
q�q0 Þ
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LdLS
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q

X
r0

ð
dq0
ð
du

lL
q lL

q0 ðq � q0Þ
2

q2 q02

(

� d rwL
q � r0wL

q0 � ðq� q0Þ � u
h i

�
�
g rwL

q Er0L
q0 � r0wL

q0 ErL
q

� �
UeðuÞ þ UiðuÞ½ �

þme

mi
Er0L
q0 ErL

q ðq� q0Þ � @UiðuÞ
@u

	)
LsLL

; (1)

where
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lL
q ¼ 1 ; lS

q ¼
q3

23=2

ffiffiffiffiffiffi
me

mi

r
1þ 3Ti

Te

� �1=2

;

g ¼ 1

23=2 ð4pÞ2 n̂ k3De
; k2De ¼

Te

4pn̂e2
¼ v2te

2x2
pe

:

In the above, kDe is the Debye length and 1=ðn̂k3DeÞ represents the
plasma parameter.

The first term on the right-hand side of Eq. (1), denoted by the
subscript Lql, describes the spontaneous and induced emission effects
for the L mode (the induced emission is also known as the quasilinear
effect). The second term, denoted as LdLS, describes the effect of
three-wave decay involving L and S mode waves. The third term,
denoted by LsLL, describes the scattering process involving L waves.

The equation describing the time evolution of the S mode is the
following:

@ErS
q

@s
¼ lS

q
p
q2

ð
du dðrwS

q � q � uÞ
�

� g UeðuÞ þ UiðuÞ½ � þ ðrwL
qÞ q � @UeðuÞ

@u

��

þme

mi
q � @UiðuÞ

@u

�
ErS
q

	�
Sql

þ
(

rwL
q

X
r0;r00

ð
dq0

lS
q lL

q0 l
L
q�q0 q0 � ðq� q0Þ

� �2
q2 q02 jq� q0j2

� rwL
q Er0L

q0 Er00L
q�q0 � r0wL

q0 Er00L
q�q0þr00wL

q�q0 Er0L
q0

� �
ErS
q

h i

� dðrwS
q � r0wL

q0 � r00wL
q�q0 Þ

)
SdLL

: (2)

The first term on the right-hand side of Eq. (2), denoted as Sql,
describes the spontaneous emission and quasilinear effects. The sec-
ond term, designated as SdLL, describes the three-wave decay process.

The equation for the time evolution of the amplitudes of the har-
monics of L waves can be written as follows:29,35

@ELnq
@s
¼

cLnq þ �Lnq
1þ gLnq

ELnq ; (3)

where

cLnq ¼ n2
p
q2

ð
duwLn

q q � @UðuÞ
@u

dðrwLn
q � q � uÞ; (4)

�Lnq ¼ n3
ð
dq0

anq;q0 l
Lðn�1Þ
q0 wLn

q � wLðn�1Þ
q0

� �
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q0 Þj2
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ð
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q� q0

jq� q0j2
� @Ue
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� d wLn
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; (5)

gLnq ¼
n3

p

ð
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0Lðn�1Þ
q ELðn�1Þq0

� Re ��2ðq� q0;wLn
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with the following auxiliary expressions:

anq;q0 ¼ ðn� 1Þq2 q0 � q� q0
 �� �

þ nq02 q � q� q0
 �� ��

þnðn� 1Þjq� q0j2 q � q0
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g2 � n2ðn� 1Þ2qq0jq� q0j
� ��2

;

(7)

� q�q0;wLn
q �wL n�1ð Þ

q0

� ���� ���2
¼ 4 wLn

q �wL n�1ð Þ
q0 �wL1

q�q0

� �2
þpn6q�q0e

�2n2q�q0

� 	
; nq�q0 ¼

wL1
q�q0

jq�q0j ;

(8)

Re ��2 q� q0;wLn
q � wLðn�1Þ

q0

� �
¼

wLn
q � wLðn�1Þ

q0 � wL1
q�q0

� �2
���� q� q0;wLn

q � wLðn�1Þ
q0

� ����2 :
(9)

In Eq. (3), the term with cLnq represents the quasilinear effect and
the term with �Lnq represents the effect of wave–particle scattering.29,35

The equations for the time evolution of velocity distribution
functions for the particles (a¼ e for electrons and a¼ i for the ions)
can be written as follows:

@UaðuÞ
@s

¼ e2a
e2
m2

e

m2
a

X
r

X
a¼L;S

ð
dq

q
q
� @
@u

� �

� la
q dðrwa

q � q � uÞ g
ma

me

rwL
q

q
UaðuÞþEra

q
q
q
� @UaðuÞ

@u

 !
:

(10)

The first term on the right-hand side describes the effects of spontane-
ous fluctuations, and the term with the velocity derivative describes
the process of quasilinear diffusion.

The dispersion relations for plasma normal modes L and S in
terms of nondimensional variables are given by the following
expressions:

wL
q ¼ 1þ 3

2
q2

� �1=2

; wS
q ¼

qA

ð1þ q2=2Þ1=2
; (11)

where

A ¼ 1ffiffiffi
2
p me

mi

� �1=2

1þ 3Ti

Te

� �1=2

:

For the harmonic waves, we utilize an approximate form of the disper-
sion relation as follows:

wLn
q ¼ nþ 3

4
q2? þ qz � ðn� 1Þq0½ �2
n o

þ 3
4
ðn� 1Þq20 þ eðnÞk ; (12)

where q0 ¼ vte=vf ¼ 1=uf , with vte ¼ ð2Te=meÞ1=2 being the thermal
speed of the background electrons and vf being the drift velocity of a
beam of electrons moving through the plasma.

For more details on the derivation of the above equations of WT
theory, the reader is referred to Refs. 29, 32, and 33. For details on the
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derivation of the approximate form of the dispersion relation, Eq. (12),
the reader is referred to Appendix.

III. NUMERICAL ANALYSIS

The objective of this paper is to investigate situations in which
the ions are considered stationary, and electrons as well as the waves
evolve in time. The ion distribution in 2D velocity space in dimension-
less form is assumed to be

UiðuÞ ¼
1
p
Te

Ti

mi

me
exp �mi

me

Te

Ti
u2

� �
: (13)

The initial electron distribution function is assumed to be made of a
Maxwellian background population and a forward-propagating beam
component, with number density assigned by nf. In 2D and using
dimensionless variables, the electron distribution is given as follows:

Ueðu; 0Þ ¼
1
p

1� nf
n0

� �
exp �u2? � uk �

vM
vte

� �2
" #

þ 1
p

nf
n0

Te

Tf
exp � Te

Tf
u2? þ uk �

vf
vtf

� �2
" #( )

; (14)

where uk and u? are the components of the normalized velocity along
the direction of the beam and perpendicular to the direction of the
beam, respectively. vtf ¼ ð2Tf =meÞ1=2 is the forward-beam thermal
speed and vM is the drift velocity associated with the background elec-
trons. The drift velocity for the background vM is chosen in such a way
that it guarantees zero net drift velocity for the total electron distribu-
tion, i.e., vM ¼ �ðnf vf Þ=ðn0 � nf Þ.

The initial spectra of the normal modes are given by the follow-
ing expressions, obtained from the balance between quasilinear and
spontaneous effects, assuming the initial plasmas at thermodynamic
equilibrium:

ErL
q ð0Þ ¼

g

2 ðwL
qÞ

2 ;

ErS
q ð0Þ ¼

g
2wL

q w
S
q

exp �f2q
� �

þ q1=2 exp �q f2q
� �

exp �f2q
� �

þ ðTe=TiÞ q1=2 exp �q f2q
� � ;

f2q ¼
ðwS

qÞ
2

q2
; q ¼ mi

me

Te

Ti
:

(15)

For the initial spectra of the harmonics of Langmuir waves, we
assume arbitrary levels, following the procedure adopted in Ref. 28. It
is assumed that the initial level of each harmonic n is described by a
Gaussian expression, centered at q ’ nqL1, with the width in normal-
ized wavenumber space given by D. The quantity qL1 is the normalized
wavenumber where the fundamental Lmode is located,

ILnðqÞ ¼ Inffiffiffi
p
p

D
exp �ðq� nqL1Þ2

D2

� �
; (16)

where In is given by In ¼ I1e�bðb�1Þn�a, and I1, a, and b are constants
that can be chosen arbitrarily. The combination of an exponential func-
tion and a power law expression allows for a variety of relative ampli-
tudes between the initial spectra of the harmonic modes. Of course, in
the normalized equations, we utilize the normalized spectra, given by

ErLn
q ¼ ð2pÞ

2g
mev2te

ILnk
la
k

; (17)

where lLn
k ¼ 1.

Equations (1)–(3) for the waves (L, S, and Ln), and Eq. (10) for
the electrons, are solved in the 2D wavenumber space and 2D velocity
space, by employing a splitting method with fixed time step for the
evolution of the distribution and a Runge–Kutta method with the
same fixed time step for the wave equations. The ion distribution is
assumed to be fixed during the time evolution of the system.

For all the numerical examples to be discussed subsequently, we
use the normalized time interval Ds ¼ 0:1. We employ 41� 41 grids
for the components of the normalized wave vector that are perpendic-
ular and parallel to the direction of the beam, q? and qk, respectively,
with 0 < q? ¼ k?vte=xpe < 2:0, and 0 < qk ¼ kkvte=xpe < 2:0. For
the velocities, we use a 53� 107 grid for the ðu?; ukÞ
¼ ðv?=vte; vk=vteÞ space, covering the velocity range 0 < u? ¼ v?=vte
< 12 and �12 < uk ¼ vk=vte < 12. For subsequent numerical solu-
tions, we assume the plasma parameter given by ðn̂k3DeÞ

�1 ¼ 5:0
�10�3, and assume that the beam velocity is vf =vte ¼ 5:0, with beam
temperature given by Tf =Te ¼ 1:0 and ratio of electron and ion tem-
perature Te=Ti ¼ 7:0. The relative density of the beam is assumed to
be nf =ne ¼ 2:0� 10�4.

For the definition of the arbitrary initial level of the harmonic
waves, given by Eq. (16), we utilize the following parameters:

a ¼ 4; b ¼ 5; D ¼ 0:2; I1 ¼ 2:0� 10�5: (18)

These values are not the same as those used in Ref. 28, where the initial
levels are also given by Eq. (16). The values used in the present paper
were chosen in order that the time evolution of the harmonics in 2D is
similar to the evolution seen in numerical simulations and in solutions
obtained with the 1D formulation.15,28,35

In the numerical analysis leading to the results that are shown in
the ensuing figures, we have used Eq. (10) for the electron distribution,
Eq. (2) including only the term Sql, Eq. (1) including the terms Lql and
LsLS, and Eq. (3) neglecting the influence of the term �Lnq , which repre-
sents the effect of wave–particle scattering.

Figure 1 shows the electron velocity distribution as a function of
the normalized parallel and perpendicular velocities (uk and u?,
respectively). Figure 1(a) shows the distribution at s¼ 0, with the pres-
ence of the beam added to the background plasma. Figure 1(b) shows
the distribution at s¼ 2000. It is seen that there is a plateau already
clearly formed in the region between the beam and the background
population. That means that by the time s¼ 2000, the positive deriva-
tives in the velocity distribution have already vanished, and the quasi-
linear growth of Langmuir modes, fundamental and harmonics, no
longer occurs.

Figures 2 and 3 depict the normalized intensity of the spectra of
Ln waves, in logarithmic scale, as a function of the components of the
normalized momentum, qk and q?. Figure 2(a) shows the spectra at
normalized time s¼ 500. In that figure, it is possible to see the growth
of the fundamental L wave, at qk ’ 0:2. In Fig. 2(b), the wave spectra
are shown at s¼ 1000, and it is possible to observe the growth of the L
mode, in comparison with Fig. 2(a), and also observe the appearance
of the first harmonic, at qk ’ 0:4.

In Fig. 3(a), one sees the spectra of waves for s¼ 1500. The figure
shows the presence of the fundamental mode and of all harmonics that

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 102302 (2021); doi: 10.1063/5.0065057 28, 102302-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


have been considered in the analysis, that is the peaks corresponding to
n¼ 2, 3, 4, and 5. One can also see the appearance of the peak corre-
sponding to backward-propagating Langmuir waves, which we denote
as L0. These backward waves occur due to scattering of waves in the fun-
damental mode. In Fig. 3(b), one sees the wave spectra at s¼ 2000. By
comparison with Fig. 3(a), it is noticed that the fundamental peak and
the harmonic peaks are already at the saturation level. The L0 peak rep-
resenting the backward waves is more prominent in Fig. 3(b) than in
Fig. 3(a), and a ring-like structure connecting the forward and the back-
ward peaks is also more noticeable in Fig. 3(b). Both the backward peak
and the ring-like structure are due to the effect of the scattering of the
fundamental mode. It is seen that the harmonic peaks are located at
positions such qk ’ nqL1k , as expected.

Another view of the wave spectra is seen in Fig. 4, which shows
contour plots of the wave spectra at s¼ 2000, in the plane formed by
coordinates qk and q?. Figure 4 represents the projection of Fig. 3(b),
and shows the fundamental and the harmonic modes, up to n¼ 5, as
well as the intensity of the peak corresponding to backward waves. As
pointed out in connection with Fig. 3(b), the peaks appearing in the
wave spectra are already at the amplitude of saturation. The level
curves indicate that the intensities ELnq decrease with the value of n,
displaying a behavior similar to that observed in previous 1D analy-
ses.28,35 It is also seen that the width of each harmonic peak along the
q? coordinate decreases with increase in the harmonic number n.

In Fig. 5, we show the maximum value of intensity of the peaks
corresponding to each harmonic, in logarithmic scale, as a function of
normalized time, from s¼ 0 up to s¼ 2000. Figure 5 shows the rapid
initial growth of the harmonic modes, which occurs due to resonance

FIG. 2. Normalized wave intensity ELn vs q? ¼ k?vte=xpe and qk ¼ kkvte=xpe,
at normalized times (a) s¼ 500 and (b) s¼ 1000. Results obtained taking into
account scattering effects and spontaneous and induced emissions, for n¼ 1, and
induced emission for harmonics n � 2.

FIG. 3. Normalized wave intensity ELn vs q? ¼ k?vte=xpe and qk ¼ kkvte=xpe,
at normalized times (a) s¼ 1500 and (b) s¼ 2000. Results obtained taking into
account scattering effects and spontaneous and induced emissions, for n¼ 1, and
induced emission for harmonics n � 2.

FIG. 1. Normalized electron distribution function vs u? ¼ v?=ve and uk ¼ uk=ve,
obtained taking into account the evolution of the fundamental mode and the follow-
ing four harmonics of Langmuir waves. (a) Initial distribution (s¼ 0); (b) distribution
at s¼ 2000.
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in the region of velocity space where there is a positive derivative of
the distribution function. For all modes, the growth becomes slower
along the time evolution, due to the formation of a plateau in the elec-
tron distribution function. Figure 5 shows that near s¼ 2000, the har-
monic modes are already near saturation, as already indicated by other
figures. It is observed in Fig. 5 that the rate of initial growth increases
with n, in agreement with the dependence on n that is seen in the
expression for the growth rate of the harmonic modes, Eq. (4). If the
results depicted in Fig. 5 are compared with those shown in Fig. 1 of
Ref. 28, it is seen that the behavior obtained is similar, although in our
2D analysis we had to use parameters a, b, and I1 of Eq. (16) with val-
ues different from those used in the 1D analysis made in Ref. 28.

It may be mentioned that, if the parameters a, b, and I1 are used
with the same values as those used in the 1D approach of Ref. 28, we

obtain for the maximum value of the amplitudes curves that cross each
other with the evolution of time. That is, with those values the results
obtained display maximum intensities of the harmonics that are crescent
with n, instead of decreasing with n, as in Fig. 5. These results indicate
that the question relative to the initial level of the harmonic modes is still
an unresolved issue, which deserves further investigation.

IV. SUMMARY

In the present paper, we have utilized a set of coupled equations,
derived in the context of the weak turbulence theory, in order to discuss
the time evolution of the spectra of waves that are harmonics of
Langmuir waves, coupled to the evolution of Langmuir and ion acoustic
waves and to the evolution of the electron velocity distribution. The
analysis has been made considering two-dimensional geometry.
The harmonic waves are not normal modes of the plasma, described by
the dispersion relation derived by linear theory, but can be described by
a dispersion relation that incorporates nonlinear effects. In the analysis
presented in this paper, we have considered harmonics up to n¼ 5,
assuming arbitrary initial levels, and obtained results that are consistent
with results obtained in 1D analysis that can be found in the literature.
The results obtained also can be qualitatively compared with simulation
studies performed by Rhee et al.13 In that work, the authors performed
a full electromagnetic simulation of the dynamical evolution of a
beam–plasma system. In spite of the fact that in our work we have con-
sidered only the evolution of the electrostatic modes, thereby not includ-
ing the nonlinear interaction with electromagnetic waves, our findings
can still be compared with the full electromagnetic simulation. For
example, Fig. 2(a) of Ref. 13 shows electrostatic emissions up to the sec-
ond harmonic that closely follow the theoretical dispersion relations we
are employing in our work. One of the reasons why Rhee et al. were not
able to detect emissions at higher harmonics of xpe can be related to the
finite time resolution invariably associated with numerical simulations.
Such limitations can artificially restrict the generation of higher fre-
quency modes. On the other hand, our numerical solutions do not suf-
fer from such constraints and we are thus able to reproduce an arbitrary
number of harmonic eigenmodes. Our results can also be qualitatively
compared with Fig. 5(a) of Rhee et al.13 In this figure, the simulation
results show that the harmonic modes underwent an exponential
growth during the linear phase of the evolution, with a subsequent satu-
ration at later times. These findings are in qualitative agreement with
our Fig. 5. Notwithstanding the differences between both approaches,
we conclude that our results are in general agreement with the numeri-
cal experiments performed by Rhee et al.
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FIG. 5. Maximum value of the normalized wave intensity ELnmaxðsÞ, for the modes char-
acterized by n ¼ f1; 2; 3; 4; 5g, as a function of normalized time s, 0 � s � 2000.
Initial values are given by Eq. (15) for n¼ 1 and Eqs. (16) and (17) for n>1.

FIG. 4. Surface projection of the normalized wave intensity ELn, in the plane formed
by coordinates q? ¼ k?vte=xpe and qk ¼ kkvte=xpe, at s¼ 2000. Results
obtained taking into account scattering effects and spontaneous and induced emis-
sions, for n¼ 1, and induced emission for harmonics n � 2.
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APPENDIX: APPROXIMATED DISPERSION
RELATION FOR ELECTROSTATIC HARMONICS

The dispersion relation for the Langmuir harmonic modes can
be written as follows:27,29

xLn
k ¼ xpe nþ eðnÞk þ

3
2
k2k2De þ 3

hðnÞk

eðnÞk

k2De

 !
; (A1)

where

eðnÞk ¼
n2

2ðn2 � 1Þ
e2

m2
ex

4
pe

ð
dk0aðnÞ

k;k0
ILðn�1Þðk0Þ;

hðnÞk ¼
n2

2ðn2 � 1Þ
e2

m2
ex

4
pe

ð
dk0ank;k0 I

Lðn�1Þðk0Þ

� k02 � k � k0 þ
hðn�1Þk0

eðn�1Þk0

0
@

1
A;

(A2)

with

ank;k0 ¼ f n� 1ð Þk2 k0 � k � k0ð Þ½ � þ nk02 k � k � k0ð Þ½ �

þn n� 1ð Þ k � k0j j2 k � k0ð Þg2

�
h
n2ðn� 1Þ2kk0 k � k0j j

i�2
: (A3)

For evaluation of the integrals that appear in Eqs. (A2), we
write the quantity ak;k0 in a different form. We start by writing k0 as
a function of the components parallel and perpendicular to k as
follows:

k0 ¼ k0kk̂ þ k0?k ¼
k � k0

k
k̂ þ k � k0 � kð Þ

k2
: (A4)

Using Eq. (A4), aðnÞk;k0 can be written as follows:

aðnÞk;k0 ¼
kk02 þ ðn2 � 1Þk2 þ nðn� 2Þk02 � 2nðn� 1Þkk0k

h i
k0k

n o2

n4ðn� 1Þ4 k2 � k02 � 2kk0k
� �

k02
:

Regarding the intensity of the harmonic waves, which appear
in the integrand of Eqs. (A2), we follow Ref. 28 and utilize the fol-
lowing argument, which applies to the case of beam–plasma insta-
bility: the growth of Langmuir waves occurs for k0 	 xpe=vf , where
k0 is the wavelength of the wave resonating with the beam particles,
with velocity near vf. In this case, the wave intensities of the funda-
mental and harmonic Langmuir waves can be written as follows:

ILk ¼
IL

p3=2d3
e� kz�k0ð Þ2=d2e�k

2
?=d

2

; (A5)

where IL is the intensity of the waves for unit volume; d is the width
of the wave spectrum; and kz and k? are, respectively, the compo-
nent of the wavevector along the z axis and the modulus of the

component perpendicular to the z axis. This expression can be fur-
ther approximated, considering very narrow spectrum, as follows:

e�ðkz�k0Þ
2=d2

p1=2d
’ dðkz � k0Þ;

k?
e�k

2
?=d

pd2
’ dðk?Þ:

Using these approximations in the equation for eðnÞk , which is
the first of Eqs. (A2), we obtain, for the case n¼ 2,

eð2Þk 	
p
12

ILe2

m2
ex

4
pe

ð1
�1

dk0z

ð1
0
dk0?

�
kk02 þ ð3k2 � 4kk0kÞk0k
h i2
ðk2 þ k02 � 2kk0kÞk02

dðk0z � k0Þdðk0?Þ: (A6)

The wave vectors can be written in terms of components paral-
lel and perpendicular to the z axis as follows:

k ¼ k? cos/x̂ þ sin/ŷð Þ þ kz ẑ ;

k0 ¼ k?
0 cos/0x̂ þ sin/0ŷ
 �

þ kz
0ẑ ;

kk
0 ¼ k?k?

0

k
cos /� /0
 �

þ kzkz
0

k
:

Moreover, the component of k0 perpendicular to k satisfies the
following expression:

k2k0?k ¼ kzðkzk0? cos /0 � k?k
0
z cos /Þþk2?k0? sin /�/0

 �
sin /

h i
x̂

þ kz kzk
0
? sin /0 � k?k

0
z sin /

 �
�k2?k0? sin /�/0

 �
cos /

h i
ŷ

þk? k?k
0
z � kzk

0
? cos /�/0

 �h i
ẑ:

Taking into account the conditions dðk0z � k0Þdðk0?Þ, we obtain

k0?k ! �
kzk?k0
k2

cos /x̂ þ sin /ŷð Þ þ k2?k0
k2

ẑ;

k02 ! k20; k0k !
kz
k
k0:

Using these results in the integrals appearing in the first of
Eqs. (A6), and performing the integrations, we obtain

eð2Þk 	
p
12

e2IL

m2
ex

4
pe

kk0 þ ð3k2 � 4kzk0Þ kzk
h i2

k2 þ k20 � 2kzk0
: (A7)

Similar approximations can be made in the evaluation of hð2Þk .
Using the second equation in Eqs. (A2), with hð1Þ ¼ 0, one obtains

hð2Þk 	
p
12

e2IL

m2
ex

4
pe

ð1
�1

dk0z

ð1
0
dk0?

kk02 þ ð3k2 � 4kk0kÞk0k
h i2
ðk2 þ k02 � 2kk0kÞk02

� k02 � kk0k
� �

dðk0z � k0Þdðk0?Þ;

which after integration leads to

hð2Þk ¼
p
12

e2IL

m2
ex

4
pe

k2k0 þ ð3k2 � 4kzk0Þk
� �2

k2 k2 þ k20 � 2kzk0
 � k20 � kzk0

 �
: (A8)
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Using Eqs. (A7) and (A8), the following relationship is
obtained:

h2k ¼ eð2Þk k20 � kzk0
 �

:

Using these results into Eq. (A1), the dispersion relation for
the case n¼ 2 can be written as follows:

xL2

xpe
¼ 2þ 3

2
k2De k2? þ ðkz � k0Þ2 þ k20

h i
þ eð2Þk :

We can write Eq. (A7) as a function of the plasma parameter
g, the volume of the Debye sphere VDe ¼ 4p

3 k3De, and the electron
temperature Te as follows:

eð2Þk ¼
p
12

e2IL

m2
ex

4
pe

k2k0 þ ð3k2 � 4kzk0Þk
� �2

k2 k2 þ k20 � 2kzk0
 �

¼ pffiffiffi
2
p g

VDeIL

Te
k2De

k2k0 þ ð3k2 � 4kzk0Þk
� �2

k2 k2 þ k20 � 2kzk0
 � :

It is seen that, if g 
 1 and ILVDe 
 Te, the quantity eð2Þk is very
small and can be neglected in the dispersion relation.

The analysis that has been made for the case n¼ 2, can be
applied to Langmuir harmonic modes of higher order, with the
wave intensities written as follows:

ILnk ¼
ILn

p3=2d3
e� kz�nk0ð Þ2=d2e�k

2
?=d

2

:

Therefore, considering very narrow spectra,

eðnÞk 	
ðn2 � 1Þ�1

pn2ðn2 � 1Þ
e2ILn

m2
ex

4
pe

ð1
�1

dk0z

ð1
0
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�
"
d k0z � ðn� 1Þk0
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dðk0?Þ

�
kk02 þ ðn2 � 1Þk2 þ nðn� 2Þk02 � 2nðn� 1Þkk0k

h i
k0k

n o2

n4ðn� 1Þ4 k2 � k02 � 2kk0k
� �

k02

#
:

Using the delta functions, the quantities k02 and k0k can be eval-
uated as k02 ¼ ðn� 1Þ2k20; k0k ¼ ðn� 1Þ kzk k0, and eðnÞk becomes the
following:

eðnÞk ¼
ðn2 � 1Þ�1
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pe
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: (A9)

Taking into account that gILðn�1ÞVDe=Te 
 1, it is seen that eðnÞk is a quantity much smaller than unity.
Applying similar procedures to the quantity hðnÞk gives
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which leads to
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@

1
A: (A10)

Using Eqs. (A9) and (A10), one obtains

hðnÞk

eðnÞk

¼ ðn� 1Þ ðn� 1Þk20 � kzk0
� �

þ
hðn�1Þk0

eðn�1Þk0

����
k0z¼ðn�1Þk0

: (A11)

Taking into account that hð1Þk0 ¼ 0, one obtains
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hð2Þk
eð2Þk
¼ �k20;

hð3Þk
eð3Þk
¼ 2 2k20 � kzk0
� �

þ
hð2Þk0

eð2Þk0

����
k0z¼2k0

¼ 3k20 � 2kzk0;
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eð4Þk
¼ 3 3k20 � kzk0
� �

þ
hð3Þk0

eð3Þk0

����
k0z¼3k0

¼ 6k20 � 3kzk0;

hð5Þk
eð5Þk
¼ 4 4k20 � kzk0
� �

þ
hð4Þ
k0

eð4Þk0

����
k0z¼4k0
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hð6Þk
eð6Þk
¼ 5 5k20 � kzk0
� �

þ
hð5Þk0

eð5Þ
k0

����
k0z¼5k0

¼ 15k20 � 5kzk0;…:

By induction, we obtain the following:

hðnÞk0

eðnÞ
k0

jk0z¼nk0 ¼ �
nðn� 1Þ

2
k20; (A12)

so that Eq. (A11) can be re-written as follows:

hðnÞk

eðnÞk

¼ 1
2
nðn� 1Þk20 � ðn� 1Þkzk0: (A13)

Therefore, the dispersion relation can be written as follows:

xLn

xpe
¼ nþ 3

2
k2De k2? þ kz � ðn� 1Þk0½ �2
n o

þ 3
2
ðn� 1Þk2Dek20 þ eðnÞk ; (A14)

where eðnÞk is given by Eq. (A9). Since eðnÞk is a small quantity, it
can be neglected in numerical analyses that utilize the dispersion
relation, and therefore one obtains the dispersion relation given
by Eq. (12).
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