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RESUMO 

 

O monômero 10-MDP (10-metacriloiloxi-decil-di-hidrogenofosfato) tem sido o mais 

utilizado na formulação de sistemas adesivos autocondicionantes (SAA), porém, 

estudos de revisão com meta-análise comparando o seu desempenho adesivo ao 

dente quando comparado aos adesivos contendo monômeros acídicos alternativos 

ainda não existem, sendo o objetivo desta dissertação. Para isso, duas revisões 

sistemáticas com meta-análise foram realizadas seguindo-se as recomendações do 

PRISMA 2021. O estudo 1 está registrado no PROSPERO sob nº CRD42020175715, 

cujo objetivo foi responder a seguinte pergunta: SAA contendo 10-MDP resultam em 

melhor desempenho adesivo imediato à dentina e ao esmalte quando comparados 

aos SAA sem 10-MDP? A busca (última data: 30/06/2021) foi realizada no PubMed, 

Scopus, Web of Science, LILACS, SciELO, IBECS e BBO. Por sua vez, o estudo 2 

está registrado no Open Science Framework (osf.io/urtdf), tendo o objetivo de 

responder a seguinte pergunta: SAA contendo 10-MDP resultam em maior 

estabilidade adesiva à dentina e ao esmalte após envelhecimento simulado, quando 

comparados aos SAA sem 10-MDP? A busca (última data: 30/09/2021) foi realizada 

no PubMed, Scopus e Web of Science. Os critérios de elegibilidade para ambos os 

estudos foram: 1) desenho de estudo in vitro; 2) avaliação da resistência de união à 

dentina e/ou ao esmalte usando-se testes de microtração, microcisalhamento, 

cisalhamento ou tração; 3) condição do substrato dentário (humano ou bovino) livre 

de cárie; e 4) presença de pelo menos um grupo de adesivo contendo 10-MDP 

(controle) e de pelo menos um grupo contendo outros tipos de monômeros acídicos. 

Para o estudo 2, um critério de inclusão adicional foi utilizado: disponibilização de 

dados de resistência de união após envelhecimento simulado das amostras, 

independentemente do método. Os estudos incluídos foram analisados de forma 

qualitativa e por meio de análises quantitativas usando-se o programa RevMan 5.3.5 

(para as meta-análises pareadas) e o programa MetaInsight V3 (para as meta-

análises em rede). Relativo aos resultados do primeiro estudo, os dados de 206 

artigos e de um total de 64 SAA foram analisados na meta-análise. O potencial 

adesivo imediato foi favorecido na presença de 10-MDP, em ambos dentina e 

esmalte. Contudo, nas análises de subgrupo foi possível identificar que o monômero 

GPDM (dimetacrilato de glicerol fosfato) contribuiu com valores de resistência de 

união significativamente maiores do que o 10-MDP. De maneira geral, o desempenho 

adesivo dos SAA dependeu do tipo de teste mecânico, tipo de substrato, composição 

acídica do adesivo, bem como da categoria de aplicação do material. Quanto aos 

resultados do segundo estudo, as meta-análises envolveram os dados de resistência 

de união oriundos de 72 artigos e de um total de 56 SAA. O desempenho adesivo dos 

SAA após envelhecimento simulado foi semelhante entre os grupos, com os adesivos 

contendo 10-MDP demonstrando capacidade de resistir à degradação similar à 

maioria das composições acídicas alternativas. A exceção se deu com 4 grupos em 



 
 

específico: monômeros fosfatados sem identificação, 4-META (4-metacriloiloxietil 

anidrotrimelítico), monômeros derivados do ácido sulfônico, e vários monômeros 

acídicos misturados entre si (grupo misto). O desempenho adesivo dos SAA foi 

favorecido na presença de 10-MDP somente após períodos maiores de 

envelhecimento das amostras. O método de envelhecimento teve um efeito 

importante na resistência adesiva dos SAA à dentina, com o armazenamento em meio 

úmido sendo mais prejudicial para as formulações derivadas do ácido fosfórico ou do 

ácido fosfônico, bem como da mistura entre vários monômeros acídicos. Quanto aos 

demais métodos de envelhecimento testados (termo ciclagem, ciclagem mecânica e 

combinação entre vários métodos de envelhecimento), todos influenciaram os grupos 

de maneira semelhante, apesar de se perceber uma leve tendência desfavorecendo 

os adesivos com composição acídica mista. Em esmalte, não houve diferença 

significativa entre os grupos, embora os SAA contendo derivados do ácido carboxílico 

ou do ácido sulfônico tenham demonstrado uma tendência a serem os piores agentes 

adesivos para a formação de interfaces adesivas resistentes à degradação. A 

estabilidade adesiva obtida com SAA depende da composição acídica do material, 

sendo os sistemas constituídos por 10-MDP tão adequados quanto à maioria dos 

adesivos livres de 10-MDP. O método de envelhecimento parece ter um efeito 

importante na durabilidade adesiva aos tecidos dentários. Como conclusão da 

presente dissertação, é possível perceber que a composição acídica dos SAA 

influencia diretamente na resistência adesiva à dentina e ao esmalte, tanto em 

períodos imediatos como após envelhecimento simulado, demonstrando ser um 

tópico complexo e dependente de vários fatores associados ao protocolo adesivo. 

Assim, a escolha de um agente adesivo deve ser realizada com cuidado, para assim 

se obter o máximo desempenho possível durante a restauração dentária com 

materiais adesivos. 

 

Palavras-chave: sistemas adesivos autocondicionantes; adesão dentária; monômero 

ácido funcional; adesivos universais; dentina; esmalte 

 

 

 

 

 

 

 



 
 

ABSTRACT 

 

The monomer 10-MDP (10-methacryloyloxydecil dihydrogen phosphate) has been the 

most frequently used in the formulation of self-etch adhesive systems (SEAS), 

although review studies with meta-analysis comparing their dental bonding potential 

as compared with adhesives containing alternative acidic monomers is yet missing, 

being the purpose of this work. To that end, two systematic reviews with meta-analysis 

were conducted following the PRISMA 2021 statement. The study 1 is registered at 

PROSPERO under protocol nº CRD42020175715, which aimed to answer the 

following question: SEAS based on 10-MDP result in greater immediate bonding 

performance to dentin and enamel than SEAS without 10-MDP? The search (last date: 

06/30/2021) was performed in PubMed, Scopus, Web of Science, LILACS, SciELO, 

IBECS and BBO. Concerning the study 2, it is registered at Open Science Framework 

(osf.io/urtdf), aiming to answer the following question: SEAS based on 10-MDP result 

in greater bonding stability to dentin and enamel after simulated aging as compared 

with 10-MDP-free SEAS? The search (last date: 09/30/2021) was conducted in 

PubMed, Scopus, and Web of Science. The eligibility criteria for both studies were: 1) 

an in vitro study design; 2) the evaluation of bond strength to dentin and/or enamel 

using the microtensile, microshear, shear or tensile mechanical tests; 3) the sound 

condition of dental substrates (human or bovine teeth without caries); and 4) presence 

of at least one adhesive group based on 10-MDP (control) and one group comprised 

of other types of acidic monomers. For study 2, an additional inclusion criterium was 

considered: the availability of bond strength data derived from simulated aging of the 

samples, regardless of the aging method. The included studies were analyzed with 

qualitative and quantitative (RevMan 5.3.5 software for pairwise meta-analysis; and 

MetaInsight V3 software for network meta-analysis) analyses. Regarding the results 

from the first study, the data from 206 articles and a total of 64 SEAS were analyzed. 

The immediate bonding potential was benefited from the presence of 10-MDP, at both 

dentin and enamel substrates. However, in the subgroup analyses it was verified that 

the monomer GPDM (glycero-phosphate dimethacrylate) contributed with bond 

strength values significantly higher than 10-MDP. Overall, the bonding performance of 

SEAS relied on the type of mechanical test, type of substrate, acidic composition of 

adhesive, as well as of the application category of materials. Concerning the findings 

from the second study, the meta-analyses consisted of bond strength data derived 



 
 

from 72 articles and a total of 56 SEAS. The bonding performance of SEAS after 

simulated aging was similar among the groups, with adhesives containing 10-MDP 

showing an ability to resist degradation as similar as that from alternative acidic 

compositions. The exception was observed with 4 specific groups: non-identified 

phosphate monomers, 4-META (4-methacryloxyethyl trimellitate anhydride), 

monomers derived from sulfonic acid, and varying acidic monomers mixed between 

each other (mixed group). The bonding performance of SEAS was benefited under the 

presence of 10-MDP only after longer aging of samples. The aging method showed 

an important effect on the bond strength of SEAS to dentin, with the wet storage 

demonstrating the most harming condition to formulations based on phosphoric acid 

or phosphonic acid, as well as upon the mixture of varying acidic monomers. 

Considering the aging methods tested (thermal-cycling, cyclic-loading and the 

combination of varying aging methods), all methods influenced similarly the groups, 

although it was verified a slight tendency non-favoring the adhesives with mixed acidic 

composition. In enamel, there was not any significant difference between the groups, 

although the SEAS based on carboxylic acid or sulfonic acid demonstrated a tendency 

to be the worst bonding agents in terms of resistance to bond strength degradation. 

The adhesive stability obtained with SEAS depends on the acidic composition of 

materials, with the systems comprised of 10-MDP being as adequate as most of 10-

MDP-free adhesives. The aging method seems to have an important effect on the 

bonding durability to dental substrates. In conclusion to the present work, it is possible 

to observe that the acidic composition of SEAS may largely influence on the bonding 

potential to dentin and enamel, even at shorter periods (immediate testing) as well as 

after simulated aging, suggesting that this is a complex topic relying on several factors 

associated to the bonding protocol. Therefore, the choice of a bonding agent should 

be considered with caution, aiming to obtain the best performance during dental 

restorative procedures involving the use of adhesive materials. 

 

Keywords: self-etch adhesive systems; dental adhesion; acidic functional monomer; 

universal adhesives; dentin; enamel 
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1 INTRODUÇÃO 

 

Os sistemas adesivos autocondicionantes (SAA) representam um dos mais 

recentes avanços em adesão, compreendendo as 6ª, 7ª e 8ª gerações de adesivos 

dentários. Estes diferem dos sistemas adesivos convencionais pois eliminam a etapa 

de condicionamento com ácido fosfórico prévio do substrato, já que a presença de 

monômeros ácidos garante o condicionamento dental. De fato, o monômero acídico 

pode ser incluído tanto no primer como no agente adesivo, sendo então responsável 

por desmineralizar o substrato e realizar a concomitante infiltração resinosa (SOFAN 

2017). De maneira geral, os SAA são materiais fáceis de aplicar, menos sensíveis 

quanto à técnica operatória, e, não menos importante, resultam em menos 

sensibilidade pós-operatória se comparados à estratégia convencional (VAN 

MEERBEEK, 2020; VAN MEERBEEK, 2011). 

Os SAA têm mostrado desempenho clínico favorável e bons resultados de 

durabilidade, principalmente quando aplicados em dentina. Por outro lado, a sua 

capacidade adesiva no esmalte é mais complexa devido ao maior conteúdo mineral 

presente neste substrato. Quando comparados à acidez dos adesivos convencionais 

e ao padrão de condicionamento obtido em esmalte, os SAA apresentam-se menos 

acídicos, e, por isso, possuem um potencial de desmineralização diminuído. Além 

disso, eles apresentam uma composição química geralmente mais hidrofílica, o que 

pode favorecer a ocorrência dos fenômenos de degradação e a hidrólise da camada 

adesiva (BOUSHELL, 2016; DE ASSIS, 2020; PEUMANS, 2010). Dentre todos os 

ingredientes pertencentes à composição química dos SAA, o monômero ácido parece 

ser o fator chave, já que é responsável por um mecanismo de adesão tripla, que 

consiste em molhamento satisfatório da superfície, desmineralização do substrato, e, 
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por fim, da ligação química à hidroxiapatita (VAN MEERBEEK, 2020). Os monômeros 

ácidos mais frequentemente encontrados na formulação dos SAA derivam do ácido 

carboxílico, como no caso dos monômeros META, 4-AET ou MAC-10, bem como do 

ácido fosfórico, tendo como exemplos os monômeros 10-MDP, MEP, PENTA, MAP 

ou GPDM (SALZ, 2005; YOSHIHARA, 2018). Além disso, outros tipos de monômeros 

também podem compor os sistemas adesivos contemporâneos, dentre eles os 

monômeros derivados dos ácidos fosfônico e sulfônico. 

De acordo com o estudo de Feitosa e cols. (2014), características como a 

hidrofilicidade e o comprimento da cadeia espaçadora dos monômeros funcionais 

desempenham um papel significativo na efetividade adesiva dos SAA, sendo estas 

características variáveis conforme o tipo de monômero. Atualmente, o monômero 

funcional popularmente conhecido por 10-MDP (10-metacriloiloxi-decil-di-

hidrogenofosfato) é o mais utilizado em formulações autocondicionantes, 

principalmente devido ao seu confirmado efeito na durabilidade adesiva ao dente 

(PEUMANS, 2010) e, também, devido à sua adequada interação química com a 

hidroxiapatita, sendo capaz de formar um sal estável de 10-MDP-Ca (FEITOSA, 2014; 

YOSHIDA, 2004; YOSHIHARA, 2013). Acredita-se que o excelente desempenho 

deste monômero acídico se deve à sua capacidade de desmineralização suave e à 

sua cadeia espaçadora longa e relativamente hidrofóbica, a qual separa o metacrilato 

polimerizável do grupo funcional fosfato (YOSHIDA, 2004; IONUE, 2005; VAN 

LANDUYT, 2008). Mesmo que o uso do 10-MDP esteja associado ao aumento da 

resistência de união, não há na literatura revisões sistemáticas que realizem uma 

síntese efetiva dos estudos in vitro acerca do seu desempenho adesivo imediato e 

após envelhecimento simulado. Além disso, não há qualquer estudo de meta-análise 
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comparativa entre materiais contendo 10-MDP e adesivos constituídos com outros 

tipos de monômeros funcionais, sendo um tópico merecedor de investigação. 

Desse modo, o objetivo da presente dissertação foi revisar a literatura por meio 

de estudos de revisão sistemática com meta-análise para se averiguar o efeito do tipo 

de monômero ácido na resistência de união dos SAA à dentina e ao esmalte, focando 

na comparação entre adesivos contendo 10-MDP com aqueles constituídos de 

monômeros acídicos alternativos. 
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2 ARTIGOS 

 

Esta dissertação é composta por dois artigos científicos. O artigo I teve como 

foco investigar o desempenho adesivo de sistemas adesivos autocondicionantes 

contendo monômeros acídicos alternativos ao 10-MDP, em comparação com aqueles 

adesivos constituídos pelo 10-MDP. Ainda, este primeiro artigo avaliou apenas os 

resultados de resistência de união imediatos à dentina e ao esmalte. Por sua vez, o 

artigo II teve como foco investigar o efeito da composição acídica de sistemas 

adesivos autocondicionantes apenas com resultados obtidos após o envelhecimento 

simulado das interfaces adesivas. 

O artigo I foi submetido ao periódico Dental Materials e encontra-se publicado 

(doi: 10.1016/j.dental.2021.08.014) (FEHRENBACH et al., 2021). O artigo II ainda não 

foi submetido para apreciação em qualquer periódico, tendo a previsão de ser 

submetido ao periódico Journal of Dentistry. Os artigos foram formatados de acordo 

com as normas dos respectivos periódicos. 
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Abstract 

Objective. The purpose of this systematic review and meta-analysis was to analyze 

the literature on the bond strength of self-etching (SE) adhesives containing 10-MDP 

or other acidic functional monomers, comparing the bonding performance of both 

compositions. 

Methods. This study is registered in PROSPERO (CRD42020175715) and it followed 

the PRISMA Statement. The literature search was performed in PubMed, Web of 

Science, SciELO, Scopus, LILACS, IBECS, and BBO from the starting coverage date 

through 30 June 2021. Study eligibility criteria consisted of in vitro studies that 

evaluated the bond strength (microtensile, microshear, tensile or shear testing) to 

sound dentin/enamel of a minimum of two distinct SE systems, with at least one 

material containing 10-MDP and one other being comprised of a distinct acidic 

composition. Statistical analyses were carried out with RevMan 5.3.5 and using 

random-effects models with the significance level at p < 0.05. Also, Bayesian network 

meta-analysis (NMA) was conducted using MetaInsight V3 tool. 

Results. From 740 relevant studies evaluated in full-text analysis, 210 were 

incorporated to the systematic review and 206 in meta-analysis. The majority of 

studies was classified as having medium risk of bias (56.7%), followed by low (35.2%) 

and high (8.1%) risk of bias. Data from a total of 64 adhesive systems were collected, 

which favored the 10-MDP-based group at both dentin (overall effect: 6.98; 95% CI: 

5.61, 8.36; p < 0.00001) and enamel (overall effect: 2.79; 95% CI: 1.62, 3.96; p < 

0.00001) substrates. Microtensile testing was more frequently used (73.4%) in the 

included studies. Adhesives based on 10-MDP showed greater bonding performance 

than adhesives comprised of monomers such as PENTA, 6-MHP, 4-META, 4-MET, 

pyrophosphate esters, mixed composition or monomers derived from sulfonic acid 

(p≤0.01); whereas similar bond strength values were verified between 10-MDP-based 

materials and those containing PEM-F, acrylamide phosphates, 4-AET, MAC-10, or 

monomers derived from polyacrylic and phosphonic acids (p≥0.05). Adhesives based 

on GPDM were the only ones that resulted in greater bonding potential than the 10-

MDP-based group (p=0.03). Dental bonds in dentin were favored with the application 

of 2-step 10-MDP-based adhesives; whereas in enamel the dental bonds were favored 

for both 2-steps versions of adhesives, regardless of the presence of 10-MDP. Indirect 

evidence from NMA revealed that 1-step 10-MDP-free and universal 10-MDP-free 

adhesives seemed to perform worst in dentin and enamel, respectively. 
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Significance. Adhesives containing 10-MDP showed higher bonding performance than 

materials formulated with other acidic ingredients, although this result relied on the 

type of mechanical testing, type of the substrate, acidic composition of the adhesive, 

and the application category of the SE system. This review summarized the effects of 

the foregoing factors on the adhesion to dental substrates. 

 

Keywords: Dental bonding; Functional acidic monomer; Universal adhesives; Dentin; 

Enamel 
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1. Introduction 

Self-etching (SE) adhesives represent one of the most recent advancements in 

adhesive dentistry, comprising the 6th, 7th, and 8th generations of bonding systems [1]. 

Overall, SE adhesives differ from the older versions (i.e., the 4th and 5th generation 

systems – etch-and-rinse) since they incorporated the etching ingredients into the 

chemistry of the primer solution or adhesive resin, resulting in the so-called acidic 

primers and all-in-one adhesives, respectively. Notably, by eliminating the separate 

etching step of enamel and dentin and the consequent rinsing and drying clinical 

procedures typical of the etch-and-rinse strategy, SE adhesives are user-friendly, less 

technique-sensitive, and importantly associated to the lesser occurrence of post-

operative pain [2, 3]. Despite their excellent bonding performance to dentin, the 

adhesion ability of SE adhesives to enamel is more challenging, first because these 

adhesives present lower acidity than the etch-and-rinse approach, reducing 

demineralization and hybridization events; and second due to their more hydrophilic 

composition (i.e., greater amount of solvent and functional monomers), increasing 

degradation and hydrolysis phenomena. In light of increasing their bonding 

performance to enamel, a new class of SE adhesives has been launched with the 

promise of guaranteeing both chemical and micromechanical adhesion to any dental 

substrate, namely the “universal”, “multipurpose” or “multimode” adhesives [4]. By 

concept, universal adhesives can be applied following the etch-and-rinse or self-etch 

approaches, depending on the clinical condition and type of substrate. According to 

recent studies [5-7], the clinical service of restorations bonded with SE adhesives is 

adequate and comparable to those placed with etch-and-rinse bonding agents. 

Among all the ingredients pertaining the chemical composition of SE adhesives, 

the acidic monomer seems to be the key factor, since it is responsible for a triple 

bonding mechanism that consists of surface wetting, etching, and chemical bonding 

to hydroxyapatite [3]. Of note, the bond strength created with SE adhesives relies 

directly on the type of acidic monomer, which may vary from polymerizable carboxylic 

acids to acidic methacrylate phosphates [8, 9]. According to the study by Feitosa et al. 

[10], features such as hydrophilicity and the length of spacer chains of acidic functional 

monomers play a significant role on the bonding performance of SE adhesives. 

Currently, the monomer 10-methacryloyloxy-decyl-dihydrogen-phosphate (10-MDP) is 

the most relevant functional monomer used in SE formulations due to its confirmed 

effects on the longevity of dental bonds [7] as well as due to its adequate and stable 

17 



 
 

chemical interaction with hydroxyapatite, i.e., it is capable of forming a water-insoluble 

10-MDP-Ca salt [10-12]. It is believed that the excellent performance of 10-MDP as a 

functional monomer relies on its mild-etching ability and the long and relatively 

hydrophobic spacer separating the polymerizable methacrylate from the phosphate 

functional group [11, 13, 14]. Even though the use of 10-MDP is associated with 

increased bond strengths, it would be of utmost interest to systematically compare the 

bonding performance of 10-MDP-based adhesives to other SE adhesives consisting 

of different acidic monomers, especially targeting the application of meta-analysis. 

From the best of our knowledge, there is not such study available in literature. 

The purpose of this systematic review and meta-analysis was to analyze the 

literature on the bond strength of SE adhesives containing 10-MDP or other acidic 

functional monomers, comparing the bonding performance of both compositions. The 

hypothesis was that adhesives based on 10-MDP would demonstrate greater bonding 

potential to dentin/enamel as compared with 10-MDP-free adhesives. 

2. Materials and methods 

This review and meta-analysis was registered in PROSPERO under protocol number 

CRD42020175715 and it was conducted in accordance with the guidelines of the 

PRISMA Statement [15]. The research question was “Do self-etching adhesive 

systems containing 10-MDP resin monomer as the acidic ingredient show greater 

bonding performance to dentin and enamel than 10-MDP-free adhesives?” 

2.1. Literature search and information sources 

The literature search strategy was performed by two independent reviewers (J.F. and 

C.P.I.) in seven electronic databases: PubMed/MEDLINE, Scopus, ISI Web of 

Science, LILACS, SciELO, IBECS, and BBO (Biblioteca Brasileira de Odontologia). 

The search strategy was created based on Medical Subject Heading terms and 

adapted for the other databases (Table 1). The last search was performed on 30th 

June 2021, without any restriction of year of publication. The grey literature was not 

searched in this review. The reviewers also hand-searched for this topic in the principal 

periodicals specific to the area. 

2.2. Eligibility criteria 

For inclusion in this review, the in vitro studies must have evaluated the bond strengths 

(to sound dentin and/or enamel) of at least two distinct SE adhesive systems, with at 

least one of the materials containing 10-MDP and one other material being comprised 

of a distinct acidic composition. Only studies that assessed the microtensile, 
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microshear, tensile or shear bond strengths of adhesives, in MPa, were included; 

studies that used human and animal (i.e., bovine teeth) substrates were included. 

Studies focusing on deciduous and caries-affected teeth as well as material-based 

substrates (e.g., resin composites, ceramics, metals) were not included. Studies 

investigating the adhesion between orthodontic brackets and enamel or the bonding 

performance of self-etch/-adhesive resin cements were also excluded. Lastly, studies 

that presented bond strength data derived from aged conditions only, i.e., after 

thermal-cycling or long-term water storage, as well as the evaluation of experimental 

compositions only, were also excluded. 

2.3. Study selection and data extraction 

Duplicates were removed in EndNoteX9 (Thomson Reuters), followed by the 

screening of titles and abstracts for relevance based on the eligibility criteria. In case 

of disagreement, a third reviewer (E.A.M.) was recruited to reach consensus. Data of 

interest from the manuscripts included were tabulated using Microsoft Office Excel 

2013 spreadsheets (Microsoft Corporation, Redmont, WA, USA). The extracted 

information were as follow: year of publication, sample size, substrate, surface 

treatment prior adhesive application, bond strength test, materials with or without 10-

MDP, bond strength results (mean and standard deviation/SD values), mode of failure, 

and additional tests performed (e.g., SEM evaluation). Partially missing data were 

retrieved by contacting the corresponding author of the study via e-mail. 

2.4. Quality assessment 

The methodological quality of each included study was assessed by two reviewers 

(J.F. and E.A.M.) based on the parameters suggested in a previous study [16]: random 

sequence generation, sample size calculation, and attendance to the manufacturer’s 

directions of use. Moreover, the coefficient of variation (CV) of the presented data was 

calculated for each study and classified as low, medium and high, as demonstrated 

elsewhere [4]. If the studies presented the parameter, the article received a “+”; if the 

parameter was not mentioned, the article received a “–”; when there was a doubt 

whether the presence or absence of the parameter, the article received a “?”. Articles 

that reported on one item only were classified as having a high (H) risk of bias, 

regardless of the CV rating; two items or three items associated to medium (20-40%) 

or high CV (>40%), respectively, the article was classified as having a moderate (M) 

risk of bias; last, the presence of two or three items associated to low CV (<20%) 

resulted in the classification of the article as having a low (L) risk of bias. 
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Disagreements between the reviewers in relation to quality assessment were resolved 

by consensus. 

2.5. Statistical analysis 

The meta-analyses were performed using Review Manager Software version 5.3.5 

(The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark). 

The analyses were conducted using a random-effect model, and pooled-effect 

estimates were obtained by comparing the mean difference between bond strength 

values of 10-MDP-based and 10-MDP-free adhesives. The studies were grouped 

according to the bond strength method (microtensile [µTBS], microshear [µSBS], 

tensile [TBS], or shear [SBS]) and type of substrate (dentin or enamel); data derived 

from different sources of substrates (i.e., human or animal) were grouped together 

within the same substrate condition. One additional set of meta-analysis was also 

performed by comparing the bond strength data of adhesive systems containing 10-

MDP with those comprised of other functional acidic monomers, which were allocated 

into six main groups: 1) phosphoric acid-derived; 2) carboxylic acid-derived; 3) 

phosphonic acid-derived; 4) sulfonic acid-derived; 5) mixed composition; and 6) 

unknown composition. 

Bayesian network meta-analysis (NMA) was performed on bond strength data 

of distinct adhesives comprised of 10-MDP or other acidic ingredients and classified 

within the “two-step” (2-st), “one-step” (1-st) or “universal” application categories. To 

that end, six subgroups of adhesives were designed: 10-MDP (2-steps; control); 10-

MDP (1-step); 10-MDP (universal); 10-MDP-free (2-steps); 10-MDP-free (1-step); and 

10-MDP-free (universal). Separated analyses were conducted for dentin and enamel. 

Network plots and league tables were derived using MetaInsight V3 [17] and using the 

Markov Chain Monte Carlo method simulation [18], with 20,000 iterations for 

adaptation. The Bayesian NMA was created using the random-effects model and the 

estimates were given as mean difference (MD) with 95% confidence intervals (95%–

CI). A p-value < 0.05 was considered statistically significant. Statistical heterogeneity 

of the treatment effect among studies was assessed using the Cochran Q test and the 

inconsistency I2 test [19]. 

3. Results 

3.1. Search strategy 

Figure 1 summarizes the article selection process according to the PRISMA 

Statement [15]. The literature search yielded 7,355 titles and abstracts in 30 th June 
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2021. After duplicates were removed and analysis of titles and abstracts was 

conducted, 770 articles were selected to access the full-text. In total, 560 studies were 

not included in the qualitative analysis based on eligibility criteria (503); no access to 

the article (30); unavailability of data (20); and due to same data derived from other 

included study (7). Two-hundred and ten studies fulfilled the eligibility criteria and were 

included in the review [8, 20-228]. However, meta-analyses were conducted with a 

total of 206 studies, whose main data (i.e., bond strength means, standard deviation 

and number of samples/specimens tested) could be retrieved or were derived from 

methacrylate-based materials [8, 20-33, 35-77, 79-94, 96-107, 109-228]. Additional 

articles were not found from manual search of the principal periodicals specific to the 

area. 

3.2. Descriptive analysis 

The studies included in the review were published between 1998 and 2021. Most 

studies (68%) evaluated the bonding performance of adhesives using the microtensile 

bond strength test. Human dentin accounted for 61.6% of the substrates gathered in 

the review, followed by human enamel (17.3%), bovine dentin (12.2%), and bovine 

enamel (8.9%). The majority of studies (54.3%) applied a #600-grit SiC abrasive paper 

at the surface of dentin/enamel prior adhesive application; the other studies 

considered a wider range of grit sizes of SiC, ranging from #80-grit to #1200-grit or a 

sequence of SiC at varying final grits. Concerning the resin composites used to 

prepare the restorations, the materials most frequently employed were purchased from 

3M ESPE industry (e.g., Filtek Z250, Filtek Z350, and Filtek Z100), followed by Kuraray 

(Clearfil A-PX), Ivoclar-Vivadent (Tetric Ceram), Kulzer (Charisma), Dentsply (TPH), 

VOCO (Grandio), and FGM (Opallis). Ten studies (4.8%) did not report on the 

restorative material used. Most studies (52.9%) stored the samples in distilled water 

at 37°C for 24 h, although other variants of this protocol were also reported, varying 

the storage medium (tap water, deionized water, artificial saliva) or the 

temperature/duration of storage. The majority of included studies reported on the 

failure modes of the fractured adhesive interfaces (81%) and 67% performed 

microscopic analyses in addition to the bond strength test. The results for the foregoing 

aspects can be fully verified in Appendix A. 

Figure 2 depicts the adhesive systems mostly used in this review, which were 

allocated according to their acidic composition. Clearfil SE Bond (Kuraray) was the 

adhesive most frequently investigated. From the list of adhesives containing 10-MDP, 
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11 materials were used in total: five proprietary from Kuraray (Clearfil SE Bond, Clearfil 

S3 Bond, Clearfil Protect Bond, Clearfil Liner Bond, and Clearfil Universal), two from 

GC (G-Bond and G-Premio Bond), two from Ivoclar (AdheSE Universal and Tetric N-

Bond Universal), one from 3M ESPE (Scotchbond Universal), and one from Bisco (All 

Bond Universal). The other adhesive systems were comprised of alternative acidic 

monomers, derived from phosphoric acid, carboxylic acid, sulfonic acid, and 

phosphonic acid monomers, or from a mixture of distinct acidic ingredients. Some 

adhesive systems were classified within the “unknown composition” since the 

information on their main acidic composition was not clearly supplied by the 

manufacturer. In total, 52 adhesive systems were used and reported in at least two 

distinct studies, whereas 12 bonding agents were reported only once in the review. 

3.3. Risk of bias 

According to the parameters considered in the analysis of bias (Figure 3), the majority 

of studies were classified with low risk of bias in the items concerning sample 

randomization (68%) and attendance to the protocols/instructions of the 

manufacturers (95.7%); whereas in the other items of sample size calculation and 

coefficient of variation, most of studies were classified with moderate risk of bias, i.e., 

96.7% and 51.4%, respectively. Overall, the majority of studies was classified as 

having medium risk of bias (56.7%), followed by low (35.2%) and high (8.1%) risk of 

bias, as presented in the Appendix B. 

3.4. Meta-analyses 

A global meta-analysis was not performed with all the 206 studies due to their 

heterogeneous distribution, so that they were first allocated into subgroups according 

to the type of bond strength test (microtensile, microshear, tensile or shear) as well as 

per the type of substrate (dentin or enamel). Figures 4 and 5 show the meta-analysis 

results obtained in dentin and enamel, respectively, having the mechanical test as 

main variable factor. Overall, there was a significant difference between groups, 

showing evidence that adhesives containing 10-MDP produced greater resin-dentin 

and resin-enamel bonds than 10-MDP-free adhesives (p<0.00001). In dentin, the 

mean differences between 10-MDP-based and 10-MDP-free adhesives were higher 

when tested using µTBS and µSBS methods (p≤0.0002), but not using TBS and SBS 

tests (p≥0.06). In enamel, the groups presented similar bond strengths when tested 

with µTBS (effect size: 2.20, 95% CI: -0.68, 5.08; p=0.13), whereas the bonds were 
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favored with the presence of 10-MDP when the µSBS, TBS, and SBS tests were used 

(p≤0.01). The heterogeneity was high for both set of analyses (I2 ≥ 89%). 

Meta-analysis according to the acidic composition of adhesives (Figure 6) 

showed a significant difference between groups, favoring 10-MDP (p<0.00001). 

Considering phosphoric acid-derived monomers, adhesives comprised of PENTA 

(dipentaerythritol penta-acrylate phosphate), 6-MHP (6-methacryloyloxyhexyl 

dihydrogen phosphate), pyrophosphate esters and unspecified phosphate esters 

displayed lower bonding potential than the 10-MDP-based adhesives (p≤0.01). 

However, similar dental bonds were verified for materials based on PEM-F 

(pentamethacryloxyethyl cyclophosphazen mono fluoride) or acrylamide phosphates 

(p≥0.05), and the presence of GPDM (glycero-phosphate dimethacrylate) resulted in 

greater mean difference values than the 10-MDP group (effect size: 2.78, 95% CI: 

0.20, 5.36; p=0.03). For adhesives containing monomers derived from carboxylic acids 

such as 4-AET (4-acryloyloxyethoxycarbonylphthalic acid), MAC-10 (11-

methacryloyloxy-1, 10-undecanedicarboxylic acid) and polyacrylic acid, similar bond 

strengths were verified as compared with 10-MDP (p≥0.48), and significant lower 

bonding potential for adhesives based on 4-META (4-methacryloxyethyl trimellitate 

anhydride) and 4-MET (4-methacryloxyethyl trimetellitic acid) monomers (p≤0.0002). 

Concerning the other pairwise analyses in this set, phosphonic acid-derived materials 

and 10-MDP-based adhesives performed similarly to each other (p=0.06), although 

adhesives based on sulfonic acids, mixed composition and unspecified acidic 

ingredients demonstrated lower bonding potential than those containing 10-MDP 

(p≤0.0001). Heterogeneity was considered high in this set of analyses (I2 = 94%). 

The NMA was conducted on studies grouped according to their acidic 

composition (with or without 10-MDP) and application category (2-steps, 1-step or 

universal), so that a total of 6 arms were compared to each other. Two sets of NMA 

were created (Figure 7), one for data collected at dentin (Panel A) and one at enamel 

substrate (Panel B). Most of the pairwise comparisons were between “10-MDP (2-

steps)” and “10-MDP-free (1-step)” groups, for both dentin and enamel. Direct 

comparisons were performed with all arms in the dentin subgroup, whereas for enamel 

there was a lack of four direct comparisons: two between “10-MDP (2-steps)” and 

universal adhesives; and two between “10-MDP-free (universal)” and 1-step 

adhesives (Figure 7 – images a). The forest plot comparing individual adhesive 

groups to “10-MDP (2-steps)” demonstrated that the latter was associated to 
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significantly greater resin-dentin and resin-enamel bonds, ranging from 4.93 to 11.32 

MPa increment at dentin and from 1.05 to 7.26 MPa increment at enamel (Figure 7 – 

images b); the only exception was verified with “10-MDP-free (2-steps)” group, which 

resulted in similar resin-enamel mean difference to the control (effect size: -1.05, 95% 

CI: -3.31, 1.21). 

The league-tables derived by the Bayesian model comparing the six adhesive 

groups at both dentin and enamel substrates are shown in Figure 7 – images c. The 

dental bonds were significantly greater with the application of 2-step 10-MDP-based 

adhesives as compared to the other systems, except when bonding to enamel with 2-

step 10-MDP-free adhesives, which resulted in similar bonding potential than the 10-

MDP-based counterpart. Considering the findings from indirect comparisons, 10-

MDP-free adhesives categorized in the “1-step” and “universal” conditions seemed to 

result in the lowest resin-dentin and resin-enamel bonds, respectively. Overall, node-

split model demonstrated statistical consistency between the estimates from direct and 

indirect comparisons (p≥0.06 for dentin and p≥0.13 for enamel), which results are 

shown in Appendices C and D; inconsistent results were verified only in comparisons 

made at dentin and between the control and the “10-MDP (universal)” and “10-MDP-

free (1-step)” groups (p≤0.03). 

4. Discussion 

This is the first meta-analysis study comparing the bonding performance of SE 

adhesives containing 10-MDP to materials comprised of other acidic monomers. Here, 

our main goal was to verify whether 10-MDP would be an essential ingredient for the 

predictable adhesion to dental substrates, as suggested by several studies in literature 

as well as by the common sense of worldwide researchers. Information of a 

considerable number of studies was gathered, making our findings solid and relevant 

to the scientific community. Overall, dental bonds were favored under the presence of 

10-MDP, although this result relied on the type of mechanical testing, substrate, acidic 

composition, and application category, thus partially accepting the study’s hypothesis. 

4.1. Effects of the type of bond strength test 

Most of the analyzed bond strength data were derived from microtensile testing 

(~65%), followed by shear (~20%), microshear (~12%), and tensile (3%) tests. It is 

already known that microtensile testing gained popularity throughout the last two 

decades due to its better accuracy in detecting differences between the bonding ability 

of adhesive systems as well as because of its larger discriminative power than 
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traditional shear test [229]. Taking into consideration microtensile data only, adhesives 

containing 10-MDP presented greater bond strengths to dentin as compared to their 

10-MDP-free counterparts (Figure 4), probably due to some inherent characteristics 

that allow the formation of a strong hybrid layer with dentin. For instance, 10-MDP is 

capable of establishing an intense chemical interaction with hydroxyapatite (HAp), 

forming stable water-insoluble MDP-Ca salts, which protect collagen fibers from 

degradation [230]. Remarkably, 10-MDP seems to possess three desirable properties 

that may favor dental bonds: (i) the ability to form stable calcium salts; (ii) an 

equilibrium between hydrophilic and hydrophobic domains, producing adequate 

wetting of the substrate; and (iii) copolymerization capacity [231]. Differently from the 

results collected in dentin, the microtensile bond strengths to enamel were similarly 

distributed between the two groups of adhesives (Figure 5), regardless of the 

presence of 10-MDP. Enamel is indeed a more challenging substrate to achieve 

effective resin-enamel bonds with SE systems, first because of the less acidic 

composition of these adhesives, reducing the etching mechanism and the possibility 

of forming adequate mechanical interlocking with the substrate; and second because 

SE adhesives possess a hydrophilic composition that creates a physical unbalance 

with the typically hydrophobic structure of enamel [3]. Our findings corroborate with 

the literature since the bonding performance of SE adhesives in enamel is expected 

to be lower than dentin [230], regardless the presence of 10-MDP, which seems to 

result in less predictable bonds when applied to the highly mineralized enamel [9]. 

One interesting aspect of our findings relies on the higher resin-enamel bonds 

when the 10-MDP-based adhesives were tested using tensile, shear and microshear 

testing (Figure 5). In this case, essential characteristics inherent to the latter tests 

should be considered before extrapolating our findings. First, “macro” tests like the 

shear and tensile methods may result in a higher incidence of cohesive failures [232], 

limiting the acquisition of data that are properly related to the adhesive interface zone. 

Second, shear testing has no apparent value in the prediction of clinical performance 

of dental adhesives [233], differing from microtensile data that shows well correlation 

to clinical findings. Last, microshear testing has a less discriminating ability in 

evaluating the adhesive performance of bonding agents than microtensile [234]. Thus, 

from the pooled estimates of microtensile data, which seems to be the most relevant 

condition when evaluating the bonding performance of dental adhesives, we can 
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suggest that SE adhesives containing 10-MDP may perform better than the 10-MDP-

free counterparts if applied to dentin, but not when applied to enamel. 

4.2. Effects of the source of the substrate 

Most of the analyzed bond strength data were derived from human substrates (~79%), 

followed by animal (bovine teeth) substrates. Despite the questionable reliability of 

using animal teeth in bond strength experiments, a systematic review and meta-

analysis study [235] has already demonstrated the appropriateness of bovine teeth as 

substitutes of human ones, for both enamel and dentin experimental designs. Worth 

mentioning, subgroup meta-analysis comparing the bonding performance of 10-MDP-

based adhesives was favored as compared to the 10-MDP-free counterparts at both 

human and bovine substrates (Appendix E), reinforcing the idea that bovine teeth are 

adequate and may correlate well to human teeth. 

4.3. Effects of the type of functional acidic monomer 

From the 209 studies included in this review, a total of 64 different adhesive systems 

were investigated (Figure 2), with Clearfil™ SE Bond representing the material most 

frequently reported in the studies (~67%). This adhesive is a 2-step 10-MPD-based 

system, and it was one of the first bonding agents containing 10-MDP launched in the 

dental market, thus explaining its vast usage in several in vitro and clinical studies. 

The patent on the original 10-MDP monomer was applied by Kuraray in 1981 [236], 

and since then several products (e.g., dental adhesives, resin cements) were launched 

having this monomer as the special acidic ingredient. The second adhesive system 

most frequently reported in our review was Clearfil™ S3 Bond (~26% of the studies), 

which is also manufactured by Kuraray; this adhesive represents a 1-step version of 

SE systems, and it is also comprised of 10-MDP [237]. Meanwhile, other functional 

monomers have been considered in the formulation of SE adhesives, especially those 

derived from phosphoric acid (e.g., GPDM, PENTA, 6-MHP, PEM-F) or carboxylic acid 

(e.g., 4-META, 4-MET, 4-AET, MAC-10, polyacrylic acid); no less important, other 

functionalities such as phosphonic acid or sulfonic acid derivatives as well as a mixture 

of distinct acidic moieties were also observed in this review. 

Phenyl-P (2-methacryloxyethyl phenyl hydrogen phosphate) was one of the 

pioneers in SE chemistry; it possesses a very acidic behavior (pH = 1.4), resulting in 

enamel-prism contours that slightly resemble the keyhole enamel-prism structures 

created by phosphoric acid (etch-and-rinse systems) [9]. Despite its higher etching 

efficacy as compared to other monomers, Phenyl-P is capable of releasing enormous 
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amounts of Ca+2 ions from HAp, resulting in deep demineralization of dental substrates 

[9, 238]. It is well understood that by using functional monomers with lower acidic 

behavior (mild adhesives), the hybridization process may be benefited, since the 

formation of water insoluble monomer-Ca salts are more prone to occur [3]. 

Considering the diverse acidic composition of adhesives identified in our review, 

subgroup meta-analyses were performed on data derived from materials with 

functional monomers that appeared more frequently in the studies. 

One subgroup meta-analysis compared the bond strengths between 10-MDP-

based adhesives to those based on varying acidic ingredients (“mixed composition” 

group). As shown in Figure 6, the results favored 10-MDP. Again, 10-MDP is 

considered a unique monomer that combines etching ability to an intense chemical 

bonding potential to HAp, forming 10-MDP-Ca salts that are hydrolysis-resistant, 

making the adhesive interface stable over time (nano-layering mechanism) [239]. 

According to the study by Salz et al. [231], each acidic monomer has a specific pKa 

value, and consequently specific etching efficacy and ability of dissolving HAp-based 

tissues. Depending on the foregoing characteristics, functional monomers may 

chemically interact with HAp following either an adhesion or decalcification route, a 

process broadly known as adhesion-decalcification (AD) concept [2, 240]. Simply 

speaking, acidic monomers with soluble Ca salts (e.g., Phenyl-P) tend to form hybrid 

layers in the same fashion to the etch-and-rinse adhesive systems, creating 

moderately thick interfaces with abundant collagen exposure, i.e., a consequence of 

an intense decalcification process without adequate resin infiltration and chemical 

bonding into the demineralized tissue. On the other hand, acidic monomers resulting 

in stable Ca salts (e.g., 10-MDP) seem to produce less thick hybrid layers due to a 

less pronounced etching mechanism, keeping collagen fibrils protected by HAp; this 

process allows a “true” adhesion, adding strength to the adhesive interface [241]. 

Having this in mind, one may suggest that the mixture of several acidic monomers into 

the same adhesive solution may result in a more heterogeneous composition, perhaps 

potentiating the etching efficacy of the material and the decalcification process of HAp, 

thus resulting in lower dental bonds. In our review, the SE adhesives allocated into the 

“mixed composition” group were mainly comprised of resin monomers derived from 

phosphoric and carboxylic acids. Besides the possible higher etching efficacy obtained 

with the combination of those monomers, we may also suggest that hydrophilicity of 

the adhesive is probably greater in heterogeneous mixtures like that [3], with 
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hydrolysis being more feasible to occur, favoring the bond strength results towards the 

10-MDP-based group. 

In light of verifying the bonding effects of more homogeneous acidic 

compositions, additional subgroup meta-analyses were conducted by comparing 10-

MDP-based adhesives to those comprised of one main acidic monomer. When the 

adhesive was based on phosphoric acid derivatives, the bond strength results were 

largely dependent on the type of monomer (Figure 6). For instance, the presence of 

GPDM resulted in greater bonding potential than 10-MDP, being the only comparison 

of our review that non-favored the latter class of adhesive; conversely, monomers such 

as PENTA, 6-MHP, pyrophosphate, and unspecified phosphate esters produced lower 

dental bonds than 10-MDP, whereas monomers like PEM-F and acrylamide 

phosphates created similar mean difference values as compared with 10-MDP. 

One may suggest that GPDM has the ability to form stable monomer-Ca salts 

when applied to dentin/enamel, allowing an adequate hybridization and a better 

bonding performance than 10-MDP. However, the etching efficacy of the former was 

revealed to be higher than the latter [10, 242], which would impair the formation of 

water-insoluble Ca salts; additionally, the inherent hydrophilic behavior of GPDM 

would probably induce decalcification events to occur [10]. Thus, there is something 

related to the chemistry of GPDM that makes this monomer interesting, as suggested 

in the study by Wang et al. [242], in which an adhesive system based on GPDM 

(Optibond XTR; Kerr) resulted in considerably greater immediate bond strength values 

(~65% higher microtensile resin-dentin bonds) when compared to Clearfil SE Bond. It 

was demonstrated that the former bonding agent created resin tags of 15-30 µm in 

length extending into dentinal tubules, probably due to its intense etching ability 

resembling the resin tags obtained with etch-and-rinse systems. Here, hydrophilicity 

of GPDM allowed its deep penetration into dentin, producing adequate resin infiltration 

and the formation of a strong micromechanical interlocking [3]. No less important, 

GPDM possesses two polymerizable groups capable of cross-linking with other resin 

monomers, improving mechanical properties and polymerization of the adhesive layer 

[243]. 

The other phosphate-based monomers analyzed in this review produced lower 

bond strength values (in the case of PENTA, 6-MHP, pyrophosphate, and unspecified 

phosphate esters) or an almost significantly lower bonding potential (in the case of 

PEM-F) than 10-MDP.   PENTA and 6-MHP are both mildly acidic monomers (like 10-
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MDP) [114, 244]. While 6-MHP has a linear structure, PENTA possesses a 3D spatial 

molecule, having a shorter main chain with five vinyl groups that inherently increases 

steric hindrance and viscosity characteristics [245, 246]. In theory, these monomers 

were expected to chemically interact with HAp, since the presence of hydroxyls within 

their phosphate groups could form coordinate bonds with cationic compounds derived 

from HAp [245]. In this aspect, the lower bonding effectiveness of the latter monomers 

may be related to the chemistry of the other adhesive ingredients rather than the acidic 

monomers. Of note, acetone is a solvent typically found in the composition of PENTA- 

and 6-MHP-based adhesives, and it may prevent chemical bonding of acidic 

monomers to HAp, as suggested elsewhere [148, 247]. Concerning pyrophosphate 

esters, they have a strong acidic behavior due to the presence of more than one 

phosphate moiety per molecule and several hydroxyls, which may turn the resin 

monomer hydrophilic and less capable of forming stable Ca+2 salts [248]. PEM-F has 

also a specific configuration, including 5 methacrylate-alkyl chains grafted onto a ring 

structure (i.e., cyclophosphazene) and a fluoride functionality that aids in the 

scavenging of Ca+2 to intensify demineralization effects [248]. The only exception 

occurred for the adhesives containing acrylamide phosphates, which demonstrated 

similar dental bonds to the 10-MDP counterparts (Figure 6). Acrylamides have an 

amide group in lieu of an ester group, impacting positively on the hydrolytic resistance 

of materials [8, 249]. 

Concerning adhesives based on carboxylic acid derivatives, they were 

allocated into five main acidic groups: 4-META, 4-MET, 4-AET, MAC-10, and 

polyacryic acid. Compared to 10-MDP, statistically lower dental bonds were verified in 

the presence of 4-META and 4-MET monomers, differing from the other monomers 

that contributed for similar bonding mean values (Figure 6). 4-META and 4-MET are 

both characterized by the presence of two carboxylic groups in each molecule, 

rendering these monomers the ability to form Ca salts with HAp [250, 251]. They share 

a similar molecular structure, although the molecular mechanics and molecular orbital 

characteristics may largely differ between each other, owing these monomers with 

intrinsic and unique abilities to interact with HAp-based tissues [252]. One would 

suggest that adhesives containing 4-META and 4-MET would perform properly as 

bonding agents; however, several studies demonstrated their inferior bonding 

performance to dentin and enamel [11, 131, 143, 148, 158, 206, 211], indicating a 

lesser capability to create stable monomer-Ca salts, as verified by our findings. One 
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main aspect should be considered here: 4-META and 4-MET are more hydrophilic 

than 10-MDP [10], and taking into consideration that hydrophilicity increases the 

acidity of SE resins [2, 3, 14], it is possible to assume that the etching efficacy of 

carboxylic-based adhesives is greater than the 10-MDP-based counterparts, thus 

limiting their adhesion ability to HAp [114]. On the other hand, the monomer 4-AET is 

also a carboxylic acid-derived molecule with a divalent –(COOH)2 group, similarly to 

the monomers discussed earlier, but due to its mild solubility in water this monomer 

may penetrate beyond the superficial smear layer, establishing a chemical interaction 

with dentin apatite and formation of Ca-carboxylate salts [253], and the similar bonding 

performance with 10-MDP group. 

The two other carboxylic acid-derived monomers that guaranteed similar 

bonding potential to 10-MDP were as follows: MAC-10 and polyacrylic acid-

derivatives. The former resembles the molecular structure of 10-MDP, i.e., both 

monomers have a spacer group containing 10 carbon atoms [254]; in turn, MAC-10 is 

hydrolytically stable due to the hydrophobic behavior of the long carbon chain 

separating the polymerizable group and the divalent –(COOH)2 groups [248], which 

may increase the possibility towards the formation of stable Ca-MAC-10 salts, in the 

same fashion to 10-MDP. The latter class of monomers are derived from acrylic acids, 

which are typically weak acids (pH > 3.0) [255], so that they have lower acidic potential 

than other carboxylic acid monomers. One should note that acrylic acid derivatives are 

capable of chelating with HAp, as it happens with the application of glass ionomer 

cements to mineralized substrates [256]. It is noteworthy to suggest that the lower 

etching ability of these monomers as well as their chelating ability to calcium can both 

allow the formation of intricate hybrid layers (i.e., adhesion process prevailing over 

decalcification), perhaps explaining their similar bond strength results as compared 

with the 10-MDP group. 

Despite all rationale discussed up to here, three last subgroup meta-analyses 

in this set were also conducted. Some adhesive systems analyzed in this review were 

comprised of sulfonic acid-derivatives or unknown acidic ingredients, which 

demonstrated a lower bonding potential than 10-MDP-based adhesives. While we may 

not give explanations regarding the “unknown composition” group due to the lack of 

information supplied by the manufacturers on their acidic ingredients, we may tough 

suggest that in the case of sulfonic acids, their high acidity would have contributed for 

decreasing the bonding potential of the adhesives, since their etching aggressiveness 
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is substantially greater than phosphonic acids, phosphorics acids and carboxylic acids, 

in this order [249, 257]; of note, sulfonic acids have a greater capability to dissociate 

into more protons while in solution [258]. Concerning adhesives based on phosphonic 

acids, they did not differ from the 10-MDP group. Of note, phosphonic acids have been 

interestingly considered for the formulation of SE systems over the past decade, 

probably due to their superior hydrolytic stability and improved bonding potential to 

mineralized tissues, as suggested elsewhere [249]. Originally, this type of acidic 

monomer displayed low solubility in water, reducing its bonding ability to dentin, but 

several efforts were made to improve solubility properties, enabling phosphonic acids 

to perform their adhesion-promoting function with HAp [259]. It is worth mentioning 

that monomers based on this acidic moiety have a ligand characteristic [260], since 

the phosphonic acid group may undergo ionization in water, forming oxygen anions 

that enhance bonding effectiveness [261], and according to our findings, in the same 

fashion to 10-MDP. 

4.4. Effects of the steps of application 

It has been broadly accepted that 2-step SE adhesives perform better than the 1-step 

versions, since the separate application of primer and resin bond solutions may create 

a more appropriate etching and resin infiltration, contributing to stronger dental bonds 

[229]. Despite some clinical studies demonstrate similar success and survival rates 

when bonding composite restorations with both 2-step and 1-step SE systems [262], 

laboratory data show almost unanimously a distinct trend, with the former adhesives 

resulting in considerably greater bonding performance than the latter [263-265]. In our 

review, we allocated all the bond strength data into six different groups aiming a 

network meta-analysis, varying the groups in terms of the presence/absence of 10-

MDP as well as on their classification into a 2-step, 1-step, or universal modes of 

application. Overall, we considered the 2-step 10-MDP-based materials as the gold 

standard, as widely accepted in the SE approach [229], and according to data shown 

in Figure 7, we confirmed the superiority of these adhesives when compared to the 

other classes of materials, especially in dentin. This is an important finding that 

highlights the enhanced bonding mechanisms achievable with the use of materials 

that combine a 10-MDP composition with the separate application of primer and resin 

bond, thus contrasting to the more simplified all-in-one systems. Here, the creation of 

less permeable hybrid layers by using 2-step agents may guarantee an even resin 

penetration within dentin as well as the formation of a homogeneous adhesive 
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interface [3]; more importantly, the possibility of removing residual solvent molecules 

during drying of the primer and before the application of the hydrophobic adhesive 

coating layer, seems to strengthen the hybrid layer. This aspect was also observed 

when comparing the 2-step 10-MDP-free adhesive group to the all-in-one groups, in 

which the former resulted in overall greater resin-dentin and resin-enamel bonds, 

suggesting that not only the presence of 10-MDP plays a significant role in dental 

bonding, but also the type/classification and application protocol of adhesives. 

Concerning the all-in-one materials, the adhesives based on 10-MDP 

performed similarly to each other at both dentin and enamel, but they demonstrated 

better bonding ability to dentin than the 1-step MDP-free group. Notably, the latter 

displayed the worst bond strength potential of the study, so that 1-step adhesives that 

lack in 10-MDP may not create the best scenario when bonding restorations to dentin 

that require the most of adhesiveness (e.g., the case of non-retentive Class IV and 

Class V tooth cavities). It is possible to understand that the highly hydrophilic content 

of one bottle adhesives combined to their low acidic potential and possible immiscibility 

between polar and nonpolar ingredients, make them the least reliable SE systems 

available for use [3]. 

Interestingly, the groups consisting of universal adhesives demonstrated similar 

bonding potential to dentin and enamel when compared to each other. However, and 

different from findings collected in dentin, the universal 10-MDP-free adhesives 

seemed to perform worst in enamel than in dentin, probably due to their more 

heterogeneous composition and hydrolytic instability [255]. While at the one hand SE 

adhesives are expected to work poorly in enamel due to an insufficient etching ability 

as compared to the total-etch approach using phosphoric acid (i.e., the gold standard 

in terms of enamel bonding [4]); at the other hand our findings reveal that universal 

adhesives may benefit from the presence of 10-MDP. Nevertheless, estimates 

comparing the bonding potential of 10-MDP-free universal adhesives to other versions 

of adhesives relates to indirect comparisons obtained with the network meta-analysis, 

since there is a lack of direct evidence comparing the foregoing groups. Thus, 

interpretation of our findings should be considered with caution. As shown in previous 

studies, other aspects can be also associated to greater bonding performance of SE 

adhesives in enamel, including but not limited to the application of an extra 

hydrophobic layer [266] and the selective etching of enamel with phosphoric acid prior 

the application of the SE bonding agent [4, 267, 268]. Even so, enamel is still a 
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challenging substrate when bonding dental restorations with SE adhesives [269], 

regardless of the presence of 10-MDP, and this acidic resin monomer does not seem 

to act as a determinant ingredient in this type of substrate. 

4.5. Quality analysis of included studies 

In our review, the majority of studies scored as having medium risk of bias (56.7%), 

and this may be explained by the non-standardized protocols used in the bonding 

procedures and due to the enormous variety of materials (e.g., adhesive systems, 

resin composites) (Figure 2 and Appendix A). Concerning the surface treatment of 

dentin/enamel prior bonding, most of studies (54.3%) prepared the substrate using a 

#600-grit SiC paper, although the study by De Munck et al. [229] recommends the use 

of a dental bur in order to simulate a clinically prepared smear layer. It is worth 

mentioning that 18.1% of studies prepared the substrates prior bonding by using a 

sequence of SiC papers, with the last grit size used varying from the #600- to the 

#4000-grit; and 4.3% of studies did not mention any surface treatment before 

application of adhesives. A similar trend was also observed during the storage of 

bonded restorations before testing. Indeed, the protocols ranged from immersion in 

distilled water (52.9%) or tap water (14.3%) at 37°C for 24 h to other protocols varying 

the storage temperature or storage medium (e.g., humid condition, deionized water, 

artificial saliva, dry storage).  

Considering all the range of surface treatment protocols and storage conditions 

verified in our review, future studies should prepare their samples by using more 

standardized instruments and protocols, aiming to minimize variability of data. 

Heterogeneity was high in this review, probably explained by the variety of mechanical 

tests, tooth substrates, surface treatment, adhesive systems, resin composites, and 

storage conditions reported in the studies. However, subgroup analyses were, as 

much as possible, conducted by allocating the bond strength data into more 

homogenous group sets, perhaps allowing a proper statistical analysis and 

comparisons between groups.  

Last, it is also important to highlight that the majority of studies performed 

additional qualitative analyses of the adhesive interfaces, e.g., verification/calculation 

of the failure mode of resin-dentin and resin-enamel bonds and/or the conduction of 

scanning electron microscopy analysis to evaluate the hybrid layer or the fracture 

pattern of tested samples. While the mechanical bond strength test quantifies the 

bonding potential of different adhesives to dental substrates, the foregoing qualitative 
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analyses offer additional clues to the interpretation of data, which may aid in the 

establishment of adequate conclusions. 

4.6. Fields requiring further investigation 

From all meta-analyses performed in the present review, some pairwise comparisons 

were not possible to conduct due to the inexistence of sufficient data. This was 

especially true for data collected in enamel, in which studies comparing the bonding 

performance of 2-step 10-MDP-based materials to that from universal adhesives 

applied in SE mode are still lacking, as well as for comparing 1-step adhesives to 10-

MDP-free universal adhesives (Figure 7B-c). Also, all blank cells shown in table c 

correspond to a lack of direct evidence comparing the interconnected groups, thereby 

guaranteeing further studies. 

5. Conclusion 

Despite the moderate-to-high heterogeneity of studies, and based on this meta-

analysis, we demonstrated the overall superiority of adhesives containing 10-MDP 

when compared to materials formulated with other acidic resin monomers, although 

this result relied on the type of mechanical test, type of the substrate, acidic 

composition of the adhesive, and the application category of the SE system. In dentin, 

the dental bonds were benefited from the use of 2-step 10-MDP-based adhesives, 

reinforcing the positive effect of this acidic monomer as well as of the separate 

application of acidic primer and resin adhesive solutions. In enamel, the dental bonds 

were benefited from the use of 2-step adhesive systems, regardless of the presence 

of 10-MDP. From the list of available acidic functional monomers used in the 

formulation of SE adhesives and gathered in this review, GPDM was the only 

ingredient that demonstrated greater bonding potential to dentin/enamel as compared 

with 10-MDP, whereas all other acidic monomers contributed to reduced or statistically 

similar bond strengths to 10-MDP.  
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Tables 

 

Table 1. Search strategy and search date (initial and final) for the electronic databases. 

Database First and final searches Search strategy 

MEDLINE/PubMed April 1st 2020; June 30th 2021 (bond strength OR µSBS OR microshear bond strength OR µTBS OR microtensile bond strength) 
AND (dentin OR enamel) AND (self-adhesive resin cement OR self-adhesive composite OR self-
adhesive composite resin OR self-etching adhesive OR self-etch adhesive OR universal adhesive OR 
acidic monomer OR acidic resin monomer OR monomer acid OR functional monomer OR acidic 
functional monomer) 

Scopus April 1st 2020; June 30th 2021 “bond strength” OR “µSBS” OR “microshear bond strength” OR “µTBS” OR “microtensile bond 
strength” AND “dentin” OR “enamel” AND “self-adhesive resin cement” OR “self-adhesive composite” 
OR “self-adhesive composite resin” OR “self-etching adhesive” OR “self-etch adhesive” OR “universal 
adhesive” OR “acidic monomer” OR “acidic resin monomer” OR “monomer acid” OR “functional 
monomer” OR “acidic functional monomer” 

Web of Science April 1st 2020; June 30th 2021 (“bond strength” OR “µSBS” OR “microshear bond strength” OR “µTBS” OR “microtensile bond 
strength”) AND (“dentin” OR “enamel”) AND (“self-adhesive resin cement” OR “self-adhesive 
composite” OR “self-adhesive composite resin” OR “self-etching adhesive” OR “self-etch adhesive” 
OR “universal adhesive” OR “acidic monomer” OR “acidic resin monomer” OR “monomer acid” OR 
“functional monomer” OR “acidic functional monomer”) 

Lilcas, SciElo, 
BBO, IBECS 

April 1st 2020; June 30th 2021 “bond strength” OR “resistência de união” OR “fuerza de unión” OR “µSBS” OR “microshear bond 
strength” OR “resistência de união ao microcisalhamento” OR “resistencia al cizallamiento” OR 
“µTBS” OR “microtensile bond strength” OR “resistência de união à microtração” OR “resistencia a la 
tracción” AND “dentin” OR “dentina” OR “enamel” OR “esmalte” AND “self-adhesive resin cement” OR 
“cimento resinoso autoadesivo” OR “cemento de resina autoadhesivo” OR “self-adhesive composite” 
OR “compósito autoadesivo” OR “composite autoadhesivo” OR “self-adhesive composite resin” OR 
“resina composta autoadesiva” OR “compuesto de resina autoadhesiva” OR “self-etching adhesive” 
OR “adesivo autocondicionante” OR “adhesivo autograbante” OR “self-etch adhesive” OR “universal 
adhesive” OR “adesivo universal” OR “adhesivo universal” OR “acidic monomer” OR “monômero 
acídico” OR “monómero ácido” OR “acidic resin monomer” OR “monômero resinoso acídico” OR 
“monómero resinoso ácido” OR “monomer acid” OR “monômero ácido” OR “monómero ácido” OR 
“functional monomer” OR “monômero funcional” OR “monómero funcional” OR “acidic functional 
monomer” OR “monômero funcional acídico” OR “monómero funcional ácido” 
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Figures 

 

Figure 1. Search flowchart of the study selection according to the PRISMA statement. 
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Figure 2. Graph showing the list and frequency of adhesive systems used in the included studies, allocated by the acidic composition. 
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Figure 3. Review authors’ judgments about each risk of bias item for each included in 

vitro study, classified as having low, moderate or high risk of bias. 
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Figure 4. Summary of meta-analysis findings comparing the bond strength of 10-

MDP-based and 10-MDP-free adhesives in dentin. The analyses were conducted 

using the mean difference (MD) estimate and using random-effects models with 95% 

confidence intervals (CI). 
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Figure 5. Summary of meta-analysis findings comparing the bond strength of 10-

MDP-based and 10-MDP-free adhesives in enamel. The analyses were conducted 

using the mean difference (MD) estimate and using random-effects models with 95% 

confidence intervals (CI). 
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Figure 6. Summary of meta-analysis findings comparing the bond strength of 10-

MDP-based and adhesives containing different acidic composition, as follows: mixed 

composition; monomers derived from phosphoric acid (GPDM, PENTA, 6-MHP, PEM-

F, pyrophosphate esters, acrylamide phosphate, and unspecified phosphate esters); 

monomers derived from carboxylic acid (4-META, 4-MET, 4-AET, MAC-10, polyacrylic 

acid); monomers derived from phosphonic or sulfonic acids; and unknown 

composition. The analyses were conducted using the mean difference (MD) estimate 

and using random-effects models with 95% confidence intervals (CI). 
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Figure 7. Network meta-analysis comparing bond strengths among 6 adhesive/group 

arms, in dentin (Panel A) and enamel (Panel B). (a) Network plot where each node 

indicates a direct comparison [10-MDP (2-steps), 10-MDP (1-step), 10-MDP 

(universal), 10-MDP-free (2-steps), 10-MDP-free (1-step), and 10-MDP-free 

(universal)] with connecting lines between nodes representing number of studies 

making each comparison. (b) Bayesian random effect consistency model forest plot of 

the pooled effects estimates of bond strengths expressed in mean difference (MD) and 

respective 95% confidence interval (95% CI) for different adhesive groups compared 

with 10-MDP (2-steps) – control. (c) League table showing Bayesian comparison of all 

adhesive pairs: the table displays the results for all adhesive pairs in both the upper 

(direct comparisons) and lower (indirect comparisons) triangles, but with the 

comparison switched over; for both above and below the leading diagonal, the results 

are for the adhesive group at the top of the same column vs. adhesive group at the 

left hand side of the same row.  
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Appendices 

 

 

Appendix A. Graphs showing the list and frequency of (a) the surface treatment 

protocols performed on dental substrates prior bonding; (b) the resin composites used 

to prepare the restorations after bonding; (c) the storage protocols applied to the 

bonded specimens prior bond strength testing; and total amount (%) of studies that 

performed failure mode (d) and microscopy (e) analyses as additional qualitative 

measures in the included studies. 
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Appendix B. Risk of bias results for each included study of the review. 
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Appendix C. Assessment of inconsistency for all studies included in the review having 

dentin as the adhesive substrate and the following comparative groups: [10-MDP (2-

steps), 10-MDP (1-step), 10-MDP (universal), 10-MDP-free (2-steps), 10-MDP-free (1-

step), and 10-MDP-free (universal)]. 
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Appendix D. Assessment of inconsistency for all studies included in the review having 

enamel as the adhesive substrate and the following comparative groups: [10-MDP (2-

steps), 10-MDP (1-step), 10-MDP (universal), 10-MDP-free (2-steps), 10-MDP-free (1-

step), and 10-MDP-free (universal)]. 
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Appendix E. Summary of meta-analysis findings (forest plot) comparing the bond 

strength of 10-MDP-based and 10-MDP-free adhesives in dentin/enamel of human or 

bovine teeth. The analyses were conducted using the mean difference (MD) estimate 

and using random-effects models with 95% confidence intervals (CI). 
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Abstract 

Objectives: This review aimed to evaluate the long-term bond strength of self-etch 

(SE) adhesives containing 10-MDP (control) or other acidic monomers. 

Data: This report is registered at OSF (osf.io/urtdf) and it followed the PRISMA 

Statement. In total, 72/76 studies were included for meta-analysis.  

Sources: Two reviewers conducted a literature search (30 September 2021) in 

PubMed, Web of Science, and Scopus. 

Study selection: The articles should have evaluated bond strength data of aged 

samples bonded to sound dentin/enamel and using different SE adhesives, with at 

least one group based on 10-MDP and other on alternative acidic composition. 

Statistical analyses were carried out with RevMan 5.3.5 and Bayesian network meta-

analysis. 

Results: In total, 15/56 adhesive systems were based on 10-MDP. Most groups of 

adhesives demonstrated a similar bonding stability as compared with the control 

(p≥0.07), although the presence of 10-MDP resulted in greater resistance to 

degradation than, 4-META, sulfonic acid, unspecified phosphates, or mixed monomers 

(p≤0.04). Overall, the dental bonds were benefited from the presence of 10-MDP upon 

longer periods of aging (> 6 months). Adhesives based on 10-MDP ranked better in 

dentin after wet storage than the other compositions, whereas adhesives with mixed 

composition ranked as the worst materials. In enamel, adhesives containing carboxylic 

acid or sulfonic acid resulted in less stable dental bonds than the control. 

Conclusion: The presence of 10-MDP in SE adhesives has an overall positive effect 

in the durability of resin/enamel-dentin bonds after aging, although the aging condition 

and duration influenced on the bond strength results. 

 

Clinical significance. The acidic composition of self-etch adhesives affects the 

durability of dental bonds after simulated aging, with 10-MDP showing an overall better 

performance than other compositions. However, while adhesives based on 

phosphonic acids ranked better upon thermal-cycling, cyclic-loading and mixed aging 

conditions, 10-MDP-based adhesives resisted better to wet storage. 
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1. Introduction 

Self-etch (SE) adhesive systems are more user-friendly than the etch-and-rinse 

systems, reducing the chances for errors during the operative procedure,1, 2 thus 

representing a class of bonding agents with great importance in dental restoration. 

Notably, SE adhesives offer exceptional bonding potential to dentin substrate, 

although their performance is directly dependent on compositional factors, especially 

with regards to the type of the acidic functional monomer, which is the very ingredient 

responsible for the adhesion mechanism consisting of substrate demineralization, 

surface wetting and chemical bonding to hydroxyapatite crystals.1 Several acidic 

monomers are commonly used in the formulation of SE adhesives, deriving from 

phosphoric acids as well as from other acidic functionalities (e.g., carboxylic acids, 

sulfonic acids, and phosphonic acids) or a mixture of distinct moieties.3 

There are some inherent characteristics that may directly influence on the 

bonding potential of acidic monomers to the tooth, including the length of spacer chain, 

the etching capacity, pH, hydrophilicity, and the ability of the monomer to form stable 

calcium salts with the substrate.4 The resin monomer 10-methacryloyloxy-decyl-

dihydrogen-phosphate (10-MDP) is considered the gold standard in adhesive 

dentistry, and it has been broadly used in the formulation of contemporary SE 

systems.5 According to a recent review study by Fehrenbach et al.,3 the presence of 

10-MDP demonstrated an overall superior bonding performance than the presence of 

alternative acidic monomers. However, the latter study considered only bond strength 

data obtained at the immediate moment, and to the best of our knowledge, there is no 

previous study that revised the literature on the effects of 10-MDP at the longer-term 

and considering the results after simulated aging, thereby deserving a careful revision 

on the topic. 
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According to some previous studies,6-8 the main failures that may result in the 

replacement of composite resin restorations consist of marginal staining, debonding 

of the restoration, and secondary caries, which are all related to the quality of the 

adhesive interface created during the application of bonding agents.9 Indeed, the 

quality and the stability of resin-dentin/enamel bonds may be compromised over time 

due to several processes such as the enzymatic degradation of the collagen fibrils 

found within the hybrid layer,10, 11 the hydrolytic degradation of the adhesive 

components,12 and due to mechanical fatigue and the constant temperature change 

(i.e., thermal shocking) typical of the oral environment.13 In light to simulate these 

different adverse scenarios, several in vitro tests have been proposed, with the wet 

storage representing the most frequently used in laboratory research. Storage in 

distilled water, artificial saliva or even into organic solutions like sodium hypochlorite 

can all accelerate hydrolysis of the adhesive interface.14 Concerning thermal-cycling, 

this method can stimulate hydrolysis of the hybrid layer due to the repeated application 

of hot and cold water, inducing repetitive contraction/expansion stress at the adhesive 

interface.15 Last, cyclic loading applies mechanical stresses at the bonded restoration, 

causing fatigue in the same fashion to the masticatory forces created during oral 

function.16 

In summary, the effects of different aging conditions on the stability of dental 

bonds created with SE adhesives is an interesting topic that may contribute to the 

better understanding of the bonding potential of these adhesives over time. Moreover, 

the role of 10-MDP as the main acidic ingredient and its relation to the aging condition 

of bonded restorations is still poorly understood, needing investigation. Hence, this 

study aimed to conduct a systematic review with meta-analysis to elucidate on the 

bonding stability of self-etch adhesive systems with varying acidic composition. 
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2. Materials and Methods 

A protocol of this review was registered at the Open Science Framework (osf.io/urtdf) 

and this report followed the directions of the PRISMA Statement.17 The research 

question was “Can self-etch adhesive systems containing 10-MDP result in more 

stable dental bonds than 10-MDP-free counterparts? A network meta-analysis review 

study”. 

2.1 Literature search 

The search strategy was created using Medical Subject Heading (MeSH) terms and 

free terms found in articles of the research topic (Table 1), in accordance with each 

database. The search was performed by two independent reviewers (J.F. and E.A.M), 

in the following electronic databases: PubMed/MEDLINE, Scopus and ISI Web of 

Science. Also, the reviewers carried out a hand-search in the reference list of included 

studies to identify further articles. The search in the gray literature was not performed 

in this review. 

2.2 Eligibility criteria 

The present review included only in vitro studies, which analyzed immediate and long-

term bond strength data of commercial SE adhesives containing 10-MDP and with 

different acidic compositions. To be included, the articles should have evaluated bond 

strength data using the microtensile, microshear, shear or tensile mechanical 

methods; to have at least one group of adhesives containing 10-MDP and at least 

another group containing a distinct acidic composition (i.e., alternative monomer); and 

to have used only sound dentin and enamel substrates (from human or bovine origin) 

for bonding. The exclusion criteria were as follow: studies evaluating the bonding 

potential of adhesives to caries-affected dentin, to primary teeth, and to substrates 

such as composite resin, dental ceramics and metals. Articles that reported on bond 
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strength data involving orthodontic brackets or that used experimental adhesives were 

also excluded, as well as those that presented immediate bond strength data only 

without aging. 

2.3 Study selection and data extraction 

The retrieved references were imported into software EndNoteX9 (Thomson Reuters), 

where the duplicates were removed. In sequence, the screening of titles and abstracts 

was performed according to the eligibility criteria by two independent reviewers (J.F. 

and E.A.M). In case of disagreement, the reviewers discussed until reaching 

consensus. After the selection process, the relevant data from each study were 

extracted and tabulated using Microsoft Office Excel 2013 spreadsheets (Microsoft 

Corporation, Redmont, WA, USA). The following data was extracted: the first author, 

year of publication, the type of substrate, the surface treatment performed prior 

adhesive application, the bond strength test, the adhesive systems allocated 

according to their acidic composition (10-MDP or other functional monomers), the 

immediate and the long-term bond strength data (mean and standard deviation/SD 

values), the number of specimens used in each group tested, and the type and 

duration of the aging process. Partially missing data were retrieved by contacting the 

corresponding author of the study via e-mail; only two attempts were made with a one-

month space duration. 

2.4 Quality assessment  

The quality analysis was performed by two independent reviewers (L.S.M. and L.L.M.) 

using a pre-established methodology,18 evaluating the following parameters: (i) 

sample randomization, (ii) application of materials following the manufacturer's 

directions of use, (iii) sample size calculation, and (iv) the coefficient of variation (CV) 

of the bond strength data. For the CV criteria, the study was categorized as having 
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low CV (<20%), medium CV (20-40%) or high CV (>40%). The articles that reported 

on only one of the three former items were classified as having a high risk of bias, 

regardless of the CV category; when they reported on two or three items combined 

with a medium or high CV, the article was classified as having a moderate risk of bias; 

last, the reporting of two or three items combined with a low CV was used to classify 

the study as having a low risk of bias.3 

2.5 Statistical analysis 

The bond strength values derived from the aged samples of included studies were 

used for meta-analysis. The analysis was carried out using two statistical methods: 

standard pairwise meta-analysis (SMA) and network meta-analysis (NMA). For both 

methods, superiority was defined if the groups comprised of the alternative acidic 

monomer(s) resulted in significantly higher bond strength than the groups based on 

10-MDP (control). 

The SMA was performed in Review Manager version 3.5.3 (The Nordic 

Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark) using the 

Inverse Variance method, a random-effects model, and having the mean difference 

(MD) estimate with 95% confidence interval (95% CI). Two sets of meta-analyses were 

performed allocating studies according to the acidic composition (phosphoric acid-

derived, carboxylic acid-derived, phosphonic acid-derived, sulfonic acid-derived, or 

mixed composition) and the total period of aging (3, 6, 12 or 24 months). Subgroup 

analyses were also conducted by grouping studies according to the type of acidic 

monomer, when applicable. 

The NMA was performed in MetaInsight V3 tool19 using Bayesian random 

effects models and a Markov chain Monte Carlo simulation with 20,000 iterations for 

adaptation.20 Convergence was assessed by trace plots and inconsistency by split 
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node method.21 After inspection for transitivity and statistical inconsistency, the 

networks were constructed by plotting different treatments (as nodes) and 

comparisons (as edges) and having the effect size measure estimated as mean 

difference (MD) with 95% credible intervals (95% Crl). The baseline treatment 

consisted of 10-MDP group, which was compared to the other treatments allocated by 

the acidic composition. Four independent analyses were conducted with values 

collected from dentin substrate, which were allocated according to the method of aging 

(wet storage, thermal-cycling, cyclic-loading, or mixed aging). For data collected from 

enamel substrate, only one analysis was conducted, which estimated the relative 

ranking of each treatment to be the best, so all combinations were ranked according 

to their probability of having the highest versus the lowest values.22 

 

3. Results 

3.1 Search strategy 

A total of 4870 potentially relevant records were identified in the search strategy. After 

duplicates removal, 1982 records were screened by their titles and abstracts, and 1 

new record was identified from the reference lists of 133 articles accessed during full-

text analysis. In total, 58 studies were excluded due to eligibility criteria 

(Supplementary Table – S1). Seventy-six studies were included in this review for 

quality analysis.23-98 Four studies were excluded from meta-analysis due to the 

unavailability of any data,58 the existence of only pooled data,24 the existence of only 

shelf-life data,34 and the use of a non-standardized protocol during the aging of the 

samples.74 The meta-analysis was conducted with 72 studies in total.23, 25-33, 35-57, 59-73, 

75-98 The flowchart summarizing the article selection process according to the PRISMA 

2020 Statement is shown in Fig. 1. 
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3.2 Descriptive analysis 

The studies included in the review were published between 2005 and 2021. The bond 

strength test mostly reported was the microtensile (82.9%), followed by shear (13.2%) 

and microshear (3.9%) tests. Human dentin was more frequently used (72.5%), 

followed by human enamel (15%) and bovine dentin (12.5%); three studies 

investigated both the dentin and enamel substrates.23, 81, 89 Concerning the surface 

treatment applied to dentin/enamel prior bonding, the majority of studies used a #600-

grit SiC abrasive paper (47.4%) or a sequence of SiC grits (18.4%); the other studies 

used distinct methods, including the application of diamond burs of medium, fine or 

extra-fine grit size (13.2%), other SiC grits (#60-, #180-, #320-, #400, #620- or #4000-

grit), or the study did not report on the surface treatment protocol (5.3%). From the list 

of resin composites used to restore the tooth samples, Filtek Z250 (3M ESPE) was 

the most frequently employed (26.3%). The other restorative materials were 

purchased from the following industries: 3M ESPE (Filtek Z350, Filtek Z100, Valux 

Plus), Kuraray (Clearfil AP-X), Ivoclar-Vivadent (Tetric Ceram, Tetric N-Ceram Bulk 

Fill), Kulzer (Charisma), Dentsply (TPH3, TPH Spectrum), FGM (Opallis), VOCO 

(GrandioSO), Kerr (Herculite XRV Ultra), and Itena Clinical (Reflectys). Two studies 

used several types of resin composites,58, 62 whereas only one study did not report on 

the restorative material that was used.84 

The adhesive systems reported in this review are listed in Fig. 2. Clearfil SE 

Bond (Kuraray) was the material most frequently tested (68.4%). Other 14 adhesives 

based on 10-MDP were also reported in the studies: three from Kuraray (Clearfil S3 

Bond, Clearfil Universal, and Clearfil Protect), two from GC (G-Bond and G-Premio 

Bond), two from Ivoclar-Vivadent (Tetric N-Bond Universal and AdheSE Universal), 

one from 3M ESPE (Scotchbond Universal), one from Bisco (All Bond Universal), one 
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from Dentsply (Prime&Bond Active), one from Coltene (OneCoat7 Universal), one 

from Itena Clinical (Iperbond Max), one from VOCO (Futurabond M+), and one from 

FGM (Ambar Universal). The other bonding agents (41 in total) were based on different 

acidic ingredients, which were derived from phosphoric acids (Optibond All-In-One, 

Optibond XTR, Prime&Bond Elect, Adper SE Plus, Bond Force, AdheSE ONE, Xeno 

IV, Go!, Futurabond M, Optibond Versa, Optibond Universal, and Xeno III), carboxylic 

acids (iBond, Adper Easy One, G-aenial Bond, Peak Universal, AQ Bond, Bond-1 SF, 

Imperva Fluorobond, Hybrid Bond, Mac-Bond II, iBond Universal, Brush&Bond, and 

Unifil Bond), sulfonic acids (Tyrian SPE), phosphonic acids (AdheSE), varying acidic 

monomers with mixed composition (Adper Prompt L-Pop, One Up Bond F, Adper Easy 

Bond, G-Bond Plus, Xeno V, AdheSE One F, Absolute, and Beautibond Multi), or an 

unknown acidic composition (Optibond Solo Plus, Futurabond, Futurabond Universal, 

Iperbond Ultra, Futurabond NR, Ybond Universal, and Solist). 

3.3 Risk of bias 

According to the parameters considered in the analysis of bias (Fig. 3), most of studies 

randomized the samples prior bonding (67.1%) and attended to the manufacturer’s 

instructions during the application of the bonding agents (98.7%). In terms of sample 

size calculation, this information was not mentioned in most of studies (94.7%). 

Overall, the studies included in the review were classified as having moderate risk of 

bias (39.5%), followed by low (35.5%) and high (25%) risk of bias (Supplementary 

Table – S2). 

3.4 Meta-analyses 

A global meta-analysis was not performed since the collected data varied in terms of 

the type of substrate, the type of the bond strength test, the composition of adhesives, 

the method used during aging of samples, as well as regarding the total period used 
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during aging. Thus, subgroup analyses were conducted allocating studies with similar 

characteristics and using up to two analytical methods: standard meta-analysis (SMA) 

and network meta-analysis (NMA). 

Concerning the SMA findings, two sets of analyses were conducted. The first 

considered the acidic composition and the type of acidic monomer of adhesives as the 

main variable factor, which results are shown in Supplementary Figures – S3, S4, S5, 

S6 and S7. The dental bonds created using 10-MDP-free adhesives were more 

negatively affected after aging as compared to the control, although this effect relied 

on the main acidic composition of the bonding agent. A statistically lower dental bond 

was verified when adhesives based on unspecified phosphate resin monomers, 4-

META, sulfonic acids, or a mixed acidic composition were applied to dentin/enamel 

(p≤0.04). Conversely, the bonds created with adhesives containing phosphonic acids, 

polyacrylic acids or phosphate monomers such as GPDM, PENTA, MHP, and 

acrylamide phosphates, were reduced similarly to the bonds obtained with the 

application of 10-MDP-based adhesives (p≥0.07). Heterogeneity ranged from low (I2 

= 5%) to high (I2 = 96%) in this set of analyses. The second set of the SMA considered 

the total period of aging as the main variable factor, and the results are presented in 

Supplementary Figure – S8. Overall, aging for up to 3 months did not result in 

significant differences between the two groups of adhesive systems (alternative 

monomers vs. 10-MDP; p=0.17), although at longer periods of aging, the dental bonds 

created under the presence of 10-MDP were higher than that obtained with the 

application of 10-MDP-free adhesives (p≤0.003). Heterogeneity ranged from low (I2 = 

0%) to high (I2 = 95%) in this set of analysis. 

The results from the NMA were separated according to the type of substrate 

(dentin or enamel) and the method used during aging. In dentin (Fig. 4), the aging 
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method most frequently reported was wet storage, followed by thermal-cycling, cyclic-

loading, or a combination of the latter methods (mixed aging). Wet storage reduced 

more significantly the resin-dentin bonds created with phosphonic acid-derived 

adhesives (MD -31.5, 95% Crl -45.8, -17.5) or those based on phosphoric acids (MD 

-8.76, 95% Crl -12.8, -4.73), mixed acidic monomers (MD -11.8, 95% Crl -15.8, -7.84) 

or an unknown composition (MD -8.11, 95% Crl -15.7, -0.586), as compared with 10-

MDP group (Fig. 4 – images b). Thermal-cycling affected more intensively the bonds 

created with adhesives of mixed composition (MD -8.84, 95% Crl -15.7, -2.17), 

whereas cyclic-loading and mixed aging influenced similarly the resin-dentin bonds 

when comparing both groups of adhesives between each other. Adhesives containing 

10-MDP ranked as best dentin bonding agents upon wet storage conditions (Fig. 4 – 

images c). On the other hand, adhesives based on phosphonic acids ranked better 

than the others upon thermal-cycling, cyclic-loading and mixed aging conditions. 

Overall, adhesives containing mixed acidic ingredients ranked as the worst bonding 

agents regardless of the aging method. 

Considering the NMA findings obtained in enamel, which results are shown in 

Fig. 5, aging affected similarly the resin-enamel bonds regardless of the acidic 

composition of adhesives (Fig. 5b). Adhesives based on phosphonic acids, 10-MDP 

or a mixture of acidic ingredients ranked slightly better than the other compositions 

(Fig. 5c), especially for the sulfonic acid-derived adhesives, which tended to be the 

worst options to resist the effects of aging. Overall, adhesive systems containing 10-

MDP can resist bond degradation better than carboxylic acid-derived (MD 3.68, 95% 

Crl 0.3, 7.1) and sulfonic acid-derived (MD 7.52, 95% Crl 1.7, 13.4) systems (Fig. 5d). 
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4. Discussion 

The positive role of 10-MDP in the immediate bond strength of SE adhesives to dentin 

has been already demonstrated elsewhere,3 but to the best of our knowledge, its 

effects on the long-term adhesion to dentin and enamel has never been revised, 

becoming the purpose of this review. It is well known that the dental bonds tested in 

in vitro studies are highly influenced by several factors, including but not limited to the 

type and origin of the substrate, the acidic composition and pH of adhesives, the 

application category of the system, and the type of mechanical method used during 

testing.3 However, considering that most of the analyzed data in this review consisted 

of human dentin samples tested with the microtensile bond strength method, we 

focused the analyses on factors such as the acidic composition of materials and the 

method and duration of the aging process. 

Only four acidic compositions showed a lower ability to resist bond degradation 

as compared with 10-MDP: the groups based on (i) unspecified phosphate monomers, 

(ii) 4-META, (iii) sulfonic acids, and (iv) a mixture of distinct functional monomers. 

Resin monomers derived from phosphoric acids are important ingredients used in the 

formulation of SE adhesives,2 but without knowing exactly the molecular structure of 

the monomer turns it difficult to properly understand on the bonding durability potential 

of the materials after aging. According to the study by Fehrenbach et al.,3 it was 

revealed that while some types of phosphate monomers may perform similarly or 

better than 10-MDP at the immediate moment (i.e., after minor wet storage – up to 24 

h), other phosphoric acid-derived monomers may result in lower bonding potential to 

dentin. Of note, characteristics such as the length of spacer chains, hydrophilicity, and 

the total amount of functional moieties of the acidic monomer, can influence on the 

adhesion-decalcification process,4 which is crucial for a stable hybridization between 
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resinous materials and the tooth. While at the one hand it is a benefiting right of the 

manufacturer to keep the compositional information of adhesives secret from the 

dental community, at the other hand it may prevent the complete understanding of 

which aspects could be influencing on the higher bond degradation suffered by the 

adhesives categorized into the unspecified phosphate monomers subgroup. 

Fortunately, we can suggest more clear explanations concerning to the other 

acidic ingredients. 4-META is a carboxylic acid-derived monomer that contains two 

carboxylic groups in each molecule, rendering this monomer the ability to form Ca 

salts with hydroxyapatite crystals. However, 4-META is more hydrophilic than 10-

MDP,4 increasing the etching ability of the adhesive and making the decalcification 

process more prone to occur, prevailing over the adhesion process, and ultimately 

decreasing the formation of stable Ca salts.99 Regarding the other acidic monomers 

that resulted in less stable dental bonds over time, both groups (“sulfonic acid” and 

“mixed composition”) consist of highly acidic adhesives. Besides, sulfonic acids may 

result in higher amounts of protons while in solution,100 presenting one of the greatest 

etching aggressiveness among SE formulations.101, 102 Similarly, adhesives based on 

a mixture of acidic resin monomers are hydrophilic in nature and they may display a 

more acidic behavior, reaching pH values as low as the etchants used during the 

application of etch-and-rinse systems (i.e., 37% phosphoric acid).2 Within this 

scenario, dentin may get extensively etched, leaving areas poorly infiltrated by the 

resinous monomers, so hydrolysis is more feasible to occur, inducing to bond strength 

degradation. Worth mentioning, adhesives of mixed composition are typically 

formulated with phosphoric acid- and carboxylic acid-derived monomers,3 especially 

phosphate esters and 4-META, reinforcing the idea that the foregoing monomers 
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contribute to the formation of less durable bonds, at least having 10-MDP as the main 

comparator. 

The ability of 10-MDP to form a water-insoluble 10-MDP-Ca salt with the 

mineral phase of the tooth has been already demonstrated. First, 10-MDP possesses 

an etching ability that dissolves dentin at the nano extent, so only minor Ca+2 ions are 

released from the hydroxyapatite crystals. Second, the less acidic behavior of 10-MDP 

(i.e., mild acidity) allows chemical bonding to the superficial Ca+2 ions of the substrate, 

resulting in the formation of 10-MDP-Ca salts. The combination of the foregoing events 

is recognized as a nano-layering mechanism that contributes for the excellent bonding 

performance of 10-MDP-based adhesives.103 Nonetheless, hydrolytic degradation is 

not always prevented upon the presence of 10-MDP since other factors rather than 

hydrolysis can also explain the reduction of dental bonds. For instance, enzymatic-

driven degradation caused by matrix metalloproteinases (MMPs) and endogenous 

cathepsins is an additional reason affecting the stability of the adhesive interface.10 

Despite their significant contribution to the loss of adhesiveness, the latter enzymes 

are more involved in collagen degradation, which is not the focus of this review, so we 

concentrated our results on the hydrolysis-driven degradation at the adhesive layer. 

The storage time was a significant factor influencing the effects of the adhesive 

interfaces investigated in this review. At shorter periods of aging (e.g., 3 months) there 

was not any significant difference between adhesives regardless of the presence of 

10-MDP, whereas adhesives based on 10-MDP resisted better after long-term aging. 

Overall, the hydrolytic degradation of dental bonds depends on the hydrophilic 

components of the adhesive, which are more prone to undergo the negative effects of 

hydrolysis than the hydrophobic counterparts. We can suggest that the better 

resistance associated to the presence of 10-MDP was due to its structural 
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characteristics and the adequate balance between hydrophilic and hydrophobic 

functionalities.4, 8 10-MDP has a long spacer chain separating the polymerizable 

moiety to the acidic phosphate group, conferring hydrophobicity to its molecule and 

ultimately a lower susceptibility to undergo hydrolysis. It is also noteworthy that the 

hybrid layers created with adhesives based on monomers with distinct structure and 

functionalities to 10-MDP (e.g., carboxylic acids), may suffer more negatively from the 

enzymatic-driven degradation, as demonstrated elsewhere,104 in which water was 

revealed as a critical factor for the activation of bound MMPs, so hydrophilic adhesives 

can accelerate hydrolysis in a faster fashion than upon the use of more equilibrated 

adhesives. More importantly, 10-MDP is a unique monomer capable of keeping 

collagen fibrils protected by hydroxyapatite crystals during adhesive application, 

probably due to its mild etching aggressiveness,103 thereby allowing the formation of 

more stable bonds over time. Despite all the foregoing discussion, it is important to 

highlight that in vitro aging of adhesive interfaces may underestimate the in vivo 

durability of bonded restorations,105, 106 so the results of this review should be 

interpreted with caution.  

As verified from the data collected in this review, there are several methods 

used by researchers to simulate the aging of resin-dentin and resin-enamel bonds, so 

the studies were grouped according to their similar aging condition. Considering 

dentin, it was possible to observe that the reduction in the bond strength results was 

more intense for some acidic compositions when the wet storage was used as main 

aging condition. Of note, the presence of 10-MDP contributed to stronger dental bonds 

than the groups based on phosphate monomers, mixed composition, or phosphonic 

acids. Storage in water or other humid conditions (i.e., artificial saliva, tap water) was 

the method most commonly used for the aging of samples, probably due to its 
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easiness and confirmed effects in the degradation of dental bonds. Comparing the 10-

MDP group to the phosphoric acid counterpart, it is unanimous to admit that from the 

list of different phosphate-based monomers used in SE formulations, the 10-MDP is 

the gold standard. Notwithstanding, it should be mentioned that from the review study 

by Fehrenbach et al.,3 GPDM phosphate monomer contributed to improved immediate 

dental bonds than 10-MDP, so the mechanisms involved in the hydrolytic degradation 

of adhesives seems to depend largely on the acidic composition factor, with minor 

differences between the resin monomers playing a significant role on their overall 

dental bonding potential. 

Regarding the comparisons made with the mixed group, it is already understood 

that bonding agents comprised of a mixture of distinct acidic monomers are highly 

acidic, so they are more aggressive in terms of dentin etching, perhaps reducing the 

possibility to create stable chemical bonding to hydroxyapatite crystals during 

hybridization.3 This idea is reinforced by the ranking probability graph shown in Fig. 

4c, in which the bonding agents containing mixed composition ranked mostly as the 

worst options, especially after thermal-cycling, cyclic-loading and mixed aging 

conditions, indicating their less feasible composition to resist bond strength 

degradation. Last, phosphonic acids have been used in adhesive dentistry since they 

may show a superior hydrolytic stability than other contemporary monomers,101 but as 

verified in the network meta-analysis, the dental bonds created using phosphonic acid-

based adhesives were considerably affected by wet storage, resulting in nearly 31.5 

MPa (95% Crl 17.5, 45.8) lower bond strengths than the control. Chemically speaking, 

phosphonic acids possess a ligand characteristic that undergoes ionization in water, 

forming oxygen anions that could contribute to the chemical bonding to dentin.107, 108 

This is indeed corroborated at the immediate testing condition, in which adhesives 

86 



 
 

based on this type of monomer resulted in similar resin-dentin bonds as compared 

with 10-MDP.3 However, at the long-term analysis demonstrated here, we can infer 

that something related to the chemistry of phosphonic acids may suffer more 

intensively from direct water aging, perhaps a consequence of their acidic functionality 

which differs from phosphate-based monomers. While phosphoric acids have a 

phosphate moiety containing three hydroxyls per molecule, phosphonic acids have 

only two hydroxyls connected to the phosphate group and a pendant linkage 

commonly replaced with amino groups, so it is possible to infer that the presence of 

the latter can intensify water-driven hydrolysis. In addition to the lower dental bonds 

verified for the phosphonic acid group, the cumulative probability analysis has also 

confirmed that this very group ranked as the worst option of bonding agent under the 

circumstances of wet aging. This topic should be further investigated in future studies, 

aiming to better understand on the higher susceptibility of this class of adhesives to 

suffer from hydrolysis. 

Considering the other aging methods tested in this review, it was possible to 

observe that there were not considerable differences among the groups for the 

thermal-cycling, cyclic-loading and mixed aging methods. In enamel, we could not 

perform a subgroup analysis having the aging condition as main variable due to a 

lower amount of data testing different aging methods on enamel, warranting further 

studies that investigate the durability of SE adhesives on this substrate. Despite all 

aging methods tested here consisted of a wet storage protocol (i.e., in all methods the 

bonded samples were immersed into a humid environment), there are some 

peculiarities of each test. In cyclic-loading tests, specimens are subjected to 

mechanical stress aiming to lead to material fatigue, leading to failure through cracks, 

scratches and cracks that will cause fracture. In thermal-cycling aging, the samples 

87 



 
 

are submerged in intermittent baths with varying temperature (5ºC and 55ºC), causing 

thermal shocks at the adhesive interface, leading to thermal expansion of the different 

materials of the restorative complex, causing stress and perhaps leading to failures in 

the hybrid and adhesive layers. 

Last, the network meta-analysis performed only with enamel data revealed that 

there was no statistical difference between the monomers of different derivations, but 

the ranking probability of being the best material suggests that the compositions based 

on 10-MDP are more likely to create more stable dental bonds. Despite the higher 

ability of some phosphate esters and 4-META to dissociate into H+ ions, showing 

greater etching potential to enamel (i.e., an essential aspect to increase mechanical 

interlocking and the formation of stronger resin tags), the foregoing compositions 

tended to undergo more degradation of the resin-enamel bonds after aging as 

compared with 10-MDP. This may be explained since 10-MDP possesses a high 

affinity with the mineral phase of the tooth, forming stable 10-MDP-Ca salts that 

chemically bond to dentin/enamel, favoring bond stability. The same trend does not 

seem feasible to occur upon the presence of 4-META and other phosphate monomers. 

From the results evidenced in the present study, it is possible to observe that 

the storage in water demonstrated a more effective and more sensitive method for 

aging restorations made with self-etching adhesives. The thermal and mechanical 

cycling does not seem to have a significant effect on the durability of dental bonds, but 

it was not possible to perform the analysis according to the number of cycles 

performed because there were not sufficient studies to run the analyses. Therefore, it 

is essential that other studies are designed to evaluate the possible effects of different 

aging methods and protocols on the bonding stability of SE adhesives to dentin and 

enamel. 
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Conclusion 

From the results evidenced in the present study, it was possible to conclude 

that 10-MDP has an important effect on the adhesive durability while using self-etching 

adhesives in dentin. Aging affects differently the resin-dentin bonds, depending on the 

method used to simulate the hydrolytic degradation of adhesive interfaces. In enamel, 

10-MDP does not seem to have a significant effect on long-term results, showing 

similar bonding stability as compared with other alternative acidic monomers. 
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Tables 

Table 1. Search strategy and final search date for the electronic databases. 

Database Final searches Search strategy 

MEDLINE/PubMed September 30th 2021 (bond strength OR aging OR bond durability OR long-
term OR water storage OR thermal-cycling) AND 
(dentin OR enamel OR tooth) AND (self-etch 
adhesive OR universal adhesive OR acidic monomer 
OR functional monomer) 

Scopus September 30th 2021 "bond strength" OR "aging" OR "bond durability" OR 
"long-term" OR "water storage" OR "thermal-cycling" 
AND "dentin" OR "enamel" OR "tooth" AND "self-etch 
adhesive" OR "universal adhesive" OR "acidic 
monomer" OR "functional monomer" 

Web of Science September 30th 2021 ("bond strength" OR “aging” OR “bond durability” OR 
“long-term” OR “water storage” OR “thermal-cycling”) 
AND (“dentin” OR “enamel” OR “tooth”) AND (“self-
etch adhesive” OR “universal adhesive” OR “acidic 
monomer” OR “functional monomer”) 
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Figures 

 

Figure 1. Search flowchart of the study selection according to the PRISMA statement. 
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Figure 2. Graph showing the list and frequency of adhesive systems used in the included studies, allocated by the acidic composition. 
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Figure 3. Review authors’ judgments about each risk of bias item for each included in 
vitro study, classified as having low, moderate or high risk of bias. 
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Figure 4. Network meta-analysis comparing the long-term resin-dentin bond strengths 
obtained with the application of adhesives based on 10-MDP (control) or alternative 
acidic monomers (carboxylic acids, phosphoric acids, phosphonic acids, sulfonic 
acids, mixed composition, or an unknown composition). The analyses were separated 
according to the aging condition as follows: wet storage, thermal-cycling, cyclic-
loading, and mixed aging. (a) Graphs showing the network plots where each node 
indicates a direct comparison with connecting lines between nodes representing the 
total amount of studies making each comparison; the greater the size of nodes and 
the thickness of lines indicate that the respective groups are contributing with a higher 
weight and more direct evidence to the statistical analysis, respectively. (b) Graphs 
showing the results from the Bayesian random effect consistency model forest plots 
of the pooled effects estimates of bond strengths expressed in mean difference (MD) 
and respective 95% credible interval (95% Crl) for different adhesive groups compared 
with 10-MDP. (c) Graphs showing the ranking of adhesive groups according to their 
probability of being the best option to resist better to bond strength degradation after 
aging. 
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Figure 5. Network meta-analysis comparing the long-term resin-enamel bond 
strengths obtained with the application of adhesives based on 10-MDP (control) or 
alternative acidic monomers (carboxylic acids, phosphoric acids, phosphonic acids, 
sulfonic acids, or mixed composition). The analyses gathered the data regardless of 
the aging condition. (a) Graph showing the network plots where each node indicates 
a direct comparison with connecting lines between nodes representing the total 
amount of studies making each comparison; the greater the size of nodes and the 
thickness of lines indicate that the respective groups are contributing with a higher 
weight and more direct evidence to the statistical analysis, respectively. (b) Graph 
showing the results from the Bayesian random effect consistency model forest plot of 
the pooled effects estimates of bond strengths expressed in mean difference (MD) and 
respective 95% credible interval (95% Crl) for different adhesive groups compared 
with 10-MDP. (c) Graph showing the ranking of adhesive groups according to their 
probability of being the best option to resist better to bond strength degradation after 
aging. (d) League table showing Bayesian comparison of all adhesive pairs: the table 
displays the results for all adhesive pairs in both the upper (direct comparisons) and 
lower (indirect comparisons) triangles, but with the comparison switched over; for both 
above and below the leading diagonal, the results are for the adhesive group at the 
top of the same column vs. adhesive group at the left hand side of the same row. 
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S2. Distribution of each item evaluated during the quality analysis of the included 
studies and the overall rating of their risk of bias (R), categorized as low (L), moderate 
(M) or high (H). 

 
Items investigated: #1 – Sample randomization; #2 – Attendance to the manufacturer’s 
instructions; #3 – Sample size calculation; and #4 – Coefficient of variation (CV). 
Codes within the items #1, #2, and #3: (+) the item was informed; (?) the item was not 
informed in the study. 
Codes within the item #4: (+) low CV (<20%); (~) moderate CV (20-40%); (–) high CV 
(≥40%). 

Study 1 2 3 4 R Study 1 2 3 4 R 

Ageel 2019 + + + + L Luque-Martinez 2018 + + ? ~ M 

Amaral 2015 + + ? ~ M Malaquias 2020 + + + ~ L 

Batista 2015 ? + ? ~ H Maravic 2019 ? + ? ~ H 

Belli 2009 + + ? + L Marchesi 2013 + + ? ~ M 

Belli 2010 + + ? + L Mousavinasab 2009 ? + ? ~ H 

Bravo 2017 + + ? ~ M Muñoz 2015 + + ? + L 

Cardoso 2014 ? ? ? ~ H Osorio 2008 + + ? - M 

Cardoso 2019 + + ? ~ M Pashaev 2017 + + ? + L 

Cavalcanti2008 + + ? + L Peralta 2013 + + ? ~ M 

Chen 2015 + + ? + L Reis 2005 + + ? + L 

Cruz 2015 + + ? ~ M Reis 2008 + + + + L 

Cuevas-Suárez 2019 + + ? + L Reis 2009 + + ? ~ M 

De Munck 2006 + + ? - M Roman 2014 + + ? - M 

Dokumacigil 2021 + + ? ~ M Salz 2005 ? + ? + M 

El-Deeb 2013 ? + ? + M Sampaio 2013 + + ? + L 

Erhardt 2008a ? + ? - H Sampaio 2017 + + ? ~ M 

Erhardt 2008b ? + ? - H Sangwichit 2016 + + ? ~ M 

Erhardt 2011 ? + ? - H Sezinando 2015 + + ? + L 

Erickson 2011 ? + ? ~ H Sismanoglu 2019 + + ? + L 

Fabião 2020 + + ? + L Suda 2018 ? + ? + M 

Farias 2016 + + ? ~ M Takamizawa 2018 + + ? + L 

Fernandes 2014 + + ? - M Taschner 2014 ? + ? ~ H 

Follak 2018 + + ? ~ M Tekce 2015 + + ? + L 

França 2007 + + ? ~ M Tian 2014 + + ? + L 

Fukuoka 2011 ? + ? ~ H Ting 2018 + + ? ~ M 

Gomes 2020 + + + ~ L Toledano 2007 ? + ? ~ H 

Gotti 2015 + + ? + L Tsujimoto 2017 ? + ? + M 

Guan 2016 + + ? + L Ulker 2010 + + ? ~ M 

Han 2020 + + ? + L Van Laduyt 2010 ? + ? ~ H 

Hashimoto 2007 ? + ? ~ H Wakwak 2020 ? + ? + M 

Hass 2012 ? + ? ~ H Walter 2012 + + ? + L 

Hoshika 2018 + + ? ~ M Wang 2017 + + ? + L 

Inoue 2005 ? + ? ~ H Wong 2020 ? + ? + M 

Itoh + + ? + L Yildirim 2016 + + ? ~ M 

Kharouf 2021 ? + ? ~ H Zander-Grande 2011 + + ? - M 

Li 2019 - + ? ? H Zeidan 2017 ? + ? ~ H 

Loguercio 2008 + + ? + L Zheng 2020 ? + ? ~ H 

Loguercio 2011 + + ? ~ M Zhou 2015 + + ? + L 

107 



 
 

 
S3. Summary of meta-analysis findings comparing the bond strength of 10-MDP-
based and 10-MDP-free adhesives containing acidic monomers derived from 
phosphoric acids, allocated by the type of functional monomer. The analyses were 
conducted using the mean difference (MD) estimate and using random-effects models 
with 95% confidence intervals (CI). 
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S4. Summary of meta-analysis findings comparing the bond strength of 10-MDP-
based and 10-MDP-free adhesives containing acidic monomers derived from 
carboxylic acids, allocated by the type of functional monomer. The analyses were 
conducted using the mean difference (MD) estimate and using random-effects models 
with 95% confidence intervals (CI). 
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S5. Summary of meta-analysis findings comparing the bond strength of 10-MDP-
based and 10-MDP-free adhesives containing acidic monomers derived from 
phosphonic acids. The analyses were conducted using the mean difference (MD) 
estimate and using random-effects models with 95% confidence intervals (CI). 
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S6. Summary of meta-analysis findings comparing the bond strength of 10-MDP-
based and 10-MDP-free adhesives containing acidic monomers derived from sulfonic 
acids. The analyses were conducted using the mean difference (MD) estimate and 
using random-effects models with 95% confidence intervals (CI). 
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S7. Summary of meta-analysis findings comparing the bond strength of 10-MDP-
based and 10-MDP-free adhesives containing acidic monomers derived from a 
mixture of distinct functional monomers. The analyses were conducted using the mean 
difference (MD) estimate and using random-effects models with 95% confidence 
intervals (CI). 
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S8. Summary of meta-analysis findings comparing the bond strength of 10-MDP-
based and 10-MDP-free adhesives allocated by the period of aging (3, 6, 12, and 24 
months). The analyses were conducted using the mean difference (MD) estimate and 
using random-effects models with 95% confidence intervals (CI). 
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3. CONSIDERAÇÕES FINAIS 

 

O papel dos sistemas adesivos autocondicionantes e universais é fundamental 

para os procedimentos de reabilitação oral, sendo o seu desempenho diretamente 

relacionado com o sucesso das intervenções restauradoras. Portanto, é essencial que 

o mecanismo de adesão ao dente e a durabilidade obtida com diferentes composições 

químicas seja melhor elucidados. A partir dos estudos realizados nesta dissertação, 

foi possível averiguar a influência que o tipo de monômero funcional ácido tem no 

potencial adesivo imediato e a longo prazo. 

O monômero 10-MDP obteve o melhor desempenho adesivo imediato quando 

comparado aos demais monômeros ácidos utilizados na composição de adesivos 

autocondicionantes. Isto confirma o que a literatura vem apresentando sobre este 

monômero em especial, o que é reconhecido como o padrão ouro da adesão 

odontológica autocondicionante. Por sua vez, os resultados a longo prazo após 

envelhecimento demonstraram que o 10-MDP teve um efeito menos crucial, 

apresentando resultados de resistência de união semelhantes às demais 

composições acídicas. Contudo, o método de envelhecimento parece ter tido um 

efeito na estabilidade adesivas dos diferentes adesivos, com o armazenamento em 

água tendo afetado menos significativamente as interfaces adesivas obtidas sob a 

presença do 10-MDP. Assim, aprece existir uma relação entre a composição acídica 

dos sistemas adesivos e o tipo/meio de envelhecimento oral simulado, demonstrando 

que a adesão aos tecidos dentais envolve um mecanismo complexo e que ainda 

necessita ser melhor elucidado para permitir a utilização do melhor produto para cada 

situação clínica. 
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De maneira geral, a presença do monômero 10-MDP pode influenciar 

positivamente a resistência de união dos adesivos autocondicionantes, 

principalmente em momentos de avaliação inicial, porém, em relação à durabilidade 

e estabilidade adesiva, o seu efeito pode ser semelhante ao obtido com outras 

formulações acídicas, sendo também dependente do método de envelhecimento 

utilizado.  

Embora esta dissertação tenha investigado apenas estudos laboratoriais, o 

resultado que ela traz é confirmatório acerca do efeito da presença do 10-MDP na 

adesão aos tecidos dentários. Outros tipos de estudo ainda são necessários, como 

por exemplo, uma meta-regressão considerando-se os mesmos critérios de 

elegibilidade aplicados aqui. Sabendo-se que novos sistemas adesivos surgem no 

mercado a cada novo ano, torna-se importante verificar quais aspectos do protocolo 

adesivo e combinação de materiais pode resultar em maio potencial adesivo ao dente 

através da utilização de sistemas adesivos autocondicionantes, cada vez mais 

populares no meio clínico odontológico. 
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