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Abstract: Hydrological modeling is an important tool for water resources management, providing
a feasible solution to represent the main hydrological processes and predict future streamflow
regimes. The literature presents a set of hydrological models commonly used to represent the rainfall-
runoff process in watersheds with different meteorological and geomorphological characteristics.
The response of such models could differ significantly for a single precipitation event, given the
uncertainties associated with the input data, parameters, and model structure. In this way, a correct
hydrological representation of a watershed should include the evaluation of different hydrological
models. This study explores the use and performance of five hydrological models to represent
daily streamflow regimes at six hydropower plants located in the Tocantins river basin (Brazil). The
adopted models include the GR4J, HYMOD, HBV, SMAP, and MGB-IPH. The evaluation of each
model was elaborated considering the calibration (2014–2019) and validation period (2005–2010)
using observed data of precipitation and climatological variables. Deterministic metrics and statistical
tests were used to measure the performance of each model. For the calibration stage, results show that
all models achieved a satisfactory performance with NSE values greater than 0.6. For the validation
stage, only the MGB-IPH model present a good performance with NSE values greater than 0.7. A bias
correction procedure were applied to correct the simulated data of conceptual models. However, the
statistical tests exposed that only the MGB-IPH model could preserve the main statistical properties
of the observed data. Thus, this study discusses and presents some limitations of the lumped model
to represent daily streamflows in large-scale river basins (>50,000 km2).

Keywords: hydrological model; water balance; hydropower plant; water resources

1. Introduction

Reservoirs are an important infrastructure for water resources management, providing
social and economic benefits such as hydropower production, water supply, drought and
flood control, irrigation, and recreation. A suitable reservoir operation requires inflow
forecasting procedures in order to achieve better operational policies and reduce the risk
derived from hydrological extreme events [1,2]. Among many water reservoir operation
methodologies, the use of simulation models has the advantage to provide a more detailed
and realistic representation with lower computational demands as well as being more
readily accepted by operators in practice [3,4].

Hydrological models have been an important tool for assessing future streamflow
conditions in water reservoirs and evaluating the impact of climate and for land-use change
in watersheds [5,6]. Hydrological models help in making decisions, particularly where data
are scarce and the understanding of a hydrological system is incomplete [7]. Three main

Water 2022, 14, 3013. https://doi.org/10.3390/w14193013 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14193013
https://doi.org/10.3390/w14193013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-5444-3996
https://orcid.org/0000-0002-3900-4821
https://orcid.org/0000-0001-6634-1105
https://orcid.org/0000-0003-0371-7851
https://doi.org/10.3390/w14193013
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14193013?type=check_update&version=2


Water 2022, 14, 3013 2 of 21

classifications of hydrological models are found in the literature: data-driven empirical,
conceptual, and physical models [8]. The selection of each approach commonly depends on
data availability, the complexity and heterogeneity of the watershed, and the application
of the model itself [9]. Empirical models seek to characterize the system response only
from the available data by an input–output relationship [10]. The simplicity of such models
allows us to apply them in ungauged catchments by regional analysis, relating model
properties to physical and climatic descriptors of the catchment [11]. Examples of empirical
models commonly applied in water resources are Artificial Neural Networks (ANN) [12,13],
autoregressive models [14], copula functions [15] and fuzzy logic models [16].

Conceptual models employ simplified mathematical conceptualization of a watershed
with the use of several interconnected storages to represent different components of the
hydrological processes. This kind of model generally has a lumped configuration and
assumes the same values of each parameter for the whole watershed, ignoring the spatial
variability [17]. In that way, conceptual models strongly rely on observed data, and the
quality of results depends highly on the calibration process. Finally, physical models
represent the main hydrological processes through mass, momentum, and energy conser-
vation equations. In this modeling approach, the involved partial differential equations are
solved by finite difference or finite computation schemes. Physical models take account
of the spatial variability of land use, and soil to deal with the hydrological processes in
a semi or fully distributed nature. Parameters of physical-based models are measurable
and can provide a continuous simulation of the runoff response without a calibration
process [18]. Additionally, hybrid models combine, for example, a conceptual structure
with physical-based equations. This kind of model has been developed to combine the
strengths of different approaches. For instance, the rainfall-runoff process can be repre-
sented by a simple conceptual loss function, and the routing component is estimated by
the Saint-Venant equations.

The use of distributed and/or semi-distributed models have been considerably increas-
ing in water resources sciences as an alternative of implementing management strategies for
flood control, land use and climate change impact assessments, pollution control, and hy-
dropower operation [19]. This type of model can incorporate sub-grids to represent the
spatial variability of soil characteristics, vegetation, land use and precipitation [20,21]. Such
capacity can bring more detailed information about the hydrological condition and help to
define integrated strategies for climate change impacts [22,23]. However, a suitable imple-
mentation of a fully distributed hydrological model required a lot of information, such as
input data that can be scarce in large-scale watersheds and could present a high quantity
of uncertainty [24]. Alternatively, semi- and fully distributed models present a higher
number of parameters that are commonly increased with the number of the sub-catchments.
This situation requires the use of more robust optimization techniques or multiobjective
calibration functions in order to avoid converging in a bad local minimum. In that way,
a correct hydrological modeling approach should be both robust and parsimonious in the
representation of the main hydrological variables for the study area.

In the conceptual approach, selecting a specific model relies on whether the structure
can adequately reflect the main hydrological characteristics of the study area [25]. Thus,
errors in the modeling results may arise from the sum of three types of uncertainties in-
cluding [26]: (1) uncertainty due to simplification and approximation in conceptualization;
(2) parameter uncertainty, and (3) the numerical scheme and solution uncertainty. In par-
ticular, the uncertainties caused by the elements (2) and (3) rely on the adoption of an
adequate calibration algorithm and the numerical method used to solve the governing
model equations [27,28]. As the structure of a specific hydrological model remains fixed,
many flexible approaches could be adopted in order to represent the hydrological con-
ditions for a specific watershed. The authors of [26] comment on the emerging flexible
hydrological modeling frameworks, such as the SUPERFLEX [29], the Framework for Un-
derstanding Structural Errors (FUSE) [30] and the Structure for Unifying Multiple Modeling
Alternatives (SIMMA) [31]. In such cases, the authors argued that a single hydrological
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model structure could limit the representation of all hydrological processes in a watershed.
Therefore, either the implementation of a flexible framework or the use of more than one
single structure could bring a better understanding of hydrological processes and help
for better water resource management. This concern increases in the study of large-scale
watersheds, given the spatial variability and heterogeneity of soil and climate.

This study aims to analyze and compare the performance of four lumped hydrological
models (GR4J, HYMOD, SMAP and HBV), and one semi-distributed model (MGB-IPH),
as for characterizing daily streamflow regimes in six hydropower plants, in a large-scale
and tropical river basin located in the North, Central West, and Southeast regions of
Brazil. Deterministic metrics and probabilistic tests were executed to determine the more
suitable and parsimonious hydrologic modeling approach for this region. Post-processing
analysis based on statistical bias correction was applied to reduce the systematic error
between observed and simulated data. Results show that all hydrological models can
well represent the streamflow regimes at the six hydropower plants, with an excellent
performance in the deterministic metrics. However, bigger differences were exposed when
comparing the statistical properties between the observed and simulated data of each
model. This study reflects that multiple modeling approaches should be considered in
order to guarantee a better characterization of the daily streamflow regimes in large-scale
watersheds as well as for dealing with the uncertainties associated with hydrological model
structures. The remainder of this paper is organized as follows: Section 2 describes the
methodology and hydrological models used for this study. Section 3 presents the case
study, main results, and discussions. Finally, Section 4 draws conclusions and presents
future research directions.

2. Methodology

The methodology used in this study is based on the evaluation of five hydrological
models to represent the daily streamflow regimes in six hydropower plants located in the
Tocantins river basin (Figure 1). Four lumped rainfall-runoff models (GR4J, HBV, HYMOD,
and SMAP) and one semi-distributed model (MGB-IPH) were used for this purpose. The
selection of these models aims to compare numerical approaches that have been used to
characterize the hydrological conditions in Brazilian river basins (SMAP and MGB-IPH
model), with other models that have been developed and are commonly used in regions
with different hydrological and climatological conditions (GR4J, HYMOD, and HBV).
For instance, the SMAP model was adopted by the Brazilian National Electrical System
Operator (ONS) [32] to simulate daily and monthly inflows for all hydropower reservoirs
in Brazil, and the MGB-IPH model was developed and broadly apply to represent different
Brazilian and South American watersheds [33–35]. This work also reinforces the analysis
initially made by previous studies [9,36,37] that compare the use of hydrological models
with different structure and parameter complexities. Table 1 summarizes the the main
different characteristics of the structures of each hydrological model. Each one possess
distinct complexities that are reflected by the number of parameters that varies based on
their corresponding number of hydrologic processes and descriptions. For isntance, note
that the conceptual models only consider two types of flows, mainly represented by a
surface and a base flow, whereas the MGB-IPH also include a subsurface or interface flow.
The following sections present a brief explanation of each hydrological model.
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Table 1. Characteristics of the model structure of the hydrologic models used in this study.

Model Calibrated
Parameters Conceptual Storage Type of Flows Input Data Routing Method

GR4J 4 Production soil storage Fast flow Precipitaiton Triangular
weighting function

Routing soil storage Slow flow PET

HYMOD 5 Soil moisture layer Surface flow Precipitation Triangular
weighting function

Quick flow reservoirs Groundwater flow PET
Slow Flow Reservoir

HBV 11 Soil moisture layer Surface flow Precipitaiton Triangular
weighting function

Upper zone storage Base flow Temperature

Lower zone storage Long-term monthly
temperature

Long-term monthly
PET

SMAP 11 Upper soil reservoir Surface flow Precipitation Triangular
weighting function

Second upper soil
reservoir Base flow PET

Lower soil reservoir
Groundwater storage

MGB-IPH 27 Soil layers Surface runoff Digital Elevation
Model (DEM) Muskingum-Cunge

Surface flow reservoir Subsurface flow Precipitation
Interflow reservoir Base flow Climate variables

Groundwater reservoir Hydrological
response units (GRU)

MGB-IPH GR4J HYMOD HBVSMAP/ONS

Precipitation PETSTRM imagesGRU

Conceptual modelSemi-distributed model

Calibration stage
(SCE-UA; MOCOM-UA) 

Input data 

Observed daily 

streamflow

NSE, NSElog, Bias %, DM

Mann-Kendall test; Levene test; KS test

Quantile analysis

Model evaluation

Simulated daily 

streamflowValidation stage
(Quantile bias correction) 

NSE, NSElog, Bias %, DM

Mann-Kendall test; Levene test; KS test

Quantile analysis

Model evaluation

Temperature

Figure 1. Flow chart of the hydrological modeling procedure.

Lumped models only use precipitation and potential evapotranspiration time series
as input data, except for the HBV model, which also requires temperature information.
Additionally, the MGB-IPH model also requires a geoprocessing analysis that incorporates
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digital elevation models and hydrological response units information. The evaluation of
each model was performed by using deterministic metrics including the Nash-Sutcliffe
(NSE), the NSE of the logarithm of the streamflows (NSElog), the percent bias (PBIAS),
and the Multi-criteria distance (DM). Probabilistic tests were also used to compare the
mean, variance, and probability distribution between the observed and simulated data.
For the calibration stage, we consider daily streamflow data observed between 2014 and
2019, which is longest period with observed continuous data in the selected watershed.
Moreover, we look to adjust the parameters of each hydrological model with the most
recent hydrological conditions observed in the river basin. For the validation stage, we
selected the years between 2005 and 2010 with the aim of evaluating each model in an
independent and far enough period of time of the calibration stage.

The SCE-UA method [38] was employed to calibrate the parameters for all lumped
rainfall-runoff models, considering the NSE coefficient as the objective function. This
method was employed given its flexibility and robustness, being broadly used by prac-
titioners in water resources management and hydrology for modeling purposes [39,40].
Alternative, the MGB-IPH model employs the MOCOM-UA technique [41] for calibrating
the parameters of each sub-watershed. In this case, the NSE, the NSElog and the Q90 are
used as objective functions. Finally, for all lumped models we adopted a triangular weight-
ing function for routing the hydrograph between sub-watersheds, whereas the MGB-IPH
model uses the Muskingum–Cunge method.

2.1. HYMOD Model

HYMOD (The HYdrological MODel) is a parsimonious conceptual hydrological model
with 5 parameters that simulate runoff on a daily scale [42]. The HYMOD allows represent-
ing different excess generation processes, as well as percolation and streamflow routing
functions that can be put together in different combinations to describe a wide range of
hydrological behaviors. The input data are daily precipitation and potential evapotranspira-
tion time series. Figure 2 presents the structure of the HYMOD model and Table 2 describes
the main parameter of this conceptual model. The excess precipitation is estimated based
on the potential evapotranspiration (PET), and the soil moisture capacity, which is esti-
mated according to the maximum soil moisture capacity (FC) and the degree of spatial
variability of the soil moisture capacity (β). A portion of the excess precipitation (α) goes
directly to the quick flow reservoirs, represented by three quick-flow tanks, that simulate
surface flow. The rest of the excess precipitation flows to the slow reservoir to generate
slow runoff. The sum of the slow and quick compose the total runoff of the watershed.
More information about the HYMOD model is presented in [42].

𝑄1 𝑄3

R
U
N
O
F
F

𝐶𝑚𝑎𝑥

𝑃𝐸𝑇

𝛽𝑒𝑥𝑝

Slow Flow Reservoir

Quick Flow Reservoir

Soil moisture (SM) 1 − 𝛼

𝛼

Precipitation

𝐾𝑠

𝐾𝑞 𝐾𝑞 𝐾𝑞

𝑄2

Figure 2. Conceptual diagram of the HYMOD model.
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Table 2. Description of main parameters of HYMOD model.

Parameter Units Limits Description

Cmax mm 50 to 3000 Maximum moisture (storage in the soil layer)
βexp - 0 to 2 Distribution of soil moisture store

α - 0.2 to 0.99 Factor of flow distribution between quick and slow reservoirs
Kq day 0.5 to 1.2 Quick response reservoir residence time
Ks day 0.001 to 0.5 Slow response reservoir residence time

2.2. GR4J Model

The GR4J (The Génie Rural à 4 paramètres Journalier) is a four-parameter lumped
rainfall-runoff model developed by [43], being well recognized to be a parsimonious and
robust approach for rainfall-runoff simulation. The GR4J has shown good performance on
a wide range of catchments in Europe [44], China [45], Africa [46], and South America [47].
The GR4J model transforms the rainfall into runoff by the use of two reservoirs and two unit
hydrographs, employing a daily time-step discretization of the water balance equations
(Figure 3). The GR4J model firstly estimates the effective precipitation based on the daily
evapotranspiration (PET), and through the interception, a portion of the net rainfall goes
into the production storage [45]. In the production storage, the actual evaporation is
calculated and percolation occurs. The flow routing occurs both by leakage of percolated
water and direct precipitation. The flow component is split into 90% runoff routed by the
unit hydrograph (HU1) and then into a non-linear routing store, and the other 10% runoff
is routed by a single unit hydrograph (HU2). The total runoff is obtained by adding these
to runoff components. Table 3 describes the four parameters considered in the GR4J model,
as well as the limits employed in the calibration procedure.

Routing 

reservoir

Production 

reservoir

R

S

𝐻𝑈1

𝐻𝑈2

𝑃𝑒𝑟𝑐 𝑃𝑟

𝑃𝑛 − 𝑃𝑠

𝑄𝑟

𝑃𝑠

𝑃𝑠

𝑋4

2 ⋅ 𝑋4𝑄9

𝑋1

𝑋3

0.9 0.1

𝑄1

𝑄𝑑

RUNOFF

𝐹(𝑋2)

Interception

𝐸𝑠

𝐸𝑛

𝑃𝐸

𝐹(𝑋2)

Figure 3. Conceptual diagram of the GR4J model.
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Table 3. Description of main parameters of GR4J model.

Parameter Units Limits Description

X1 mm 50 to 3000 Maximum capacity of the production store
X2 mm/day −10 to 10 Inter-catchment exchange coefficient
X3 mm 10 to 200 Maximum capacity of the routing store
X4 mm 0.7 to 10 Base time of the unit hydrograph

2.3. SMAP Model

SMAP (Soil Moisture Accounting Procedure) is a conceptual hydrological model based
on the application of the Stanford Watershed IV and the Mero model [48]. The SMAP model
uses as input data series of daily precipitation and potential evapotranspiration to simulate
streamflow at the outfall of the watershed. The original version of the SMAP model
considers a simple structure with three linear reservoirs, employing the Soil Conservation
Service (SCS) method for the separation of runoff. Looking for a better representation of
different watersheds, the Brazilian National Electrical System Operator (ONS) [32] modified
the SMAP model by increasing the number of linear reservoirs by four (Figure 4) and adding
some coefficients to adjust the temporal representation of daily precipitation, potential
evapotranspiration as well as the recession curves for the base and superficial flows.
The SMAP model is broadly employed for operational purposes in the Brazilian National
Interconnected System (SIN) and has been used for different applications including flash
flood prevention [49,50], daily inflow forecast for hydropower generation [51], and water
resources management in coastal watersheds [52]. Table 4 describes the main parameters
of the SMAP/ONS model.

𝑅𝑠𝑜𝑙𝑜

𝑅𝑠𝑢𝑝2

𝑅𝑠𝑢𝑏

𝑅𝑠𝑢𝑝

𝑸𝒄𝒂𝒍𝒄

𝐾𝑘𝑡
𝐸𝑏

𝐸𝑑2

𝐸𝑑

𝐸𝑑3

𝐾2𝑡

𝐾2𝑡2

𝐾3𝑡
𝑅𝑒𝑐

𝐶𝑟𝑒𝑐

𝐶𝑎𝑝𝑐

𝑆𝑡𝑟

𝐻1𝐻

𝐸𝑚𝑎𝑟𝑔

𝐾1𝑡

𝐸𝑟 𝑃 − 𝐸𝑠

𝐸𝑠

𝑃𝐸𝑝

Figure 4. Conceptual diagram of the SMAP/ONS model.
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Table 4. Description of main parameters of the SMAP/ONS model

Parameter Units Limits Description

H mm 0 to 500 Representative height for the overflow in the Rsup reservoir
H1 mm 0 to 500 Representative height for the second flow in the Rsup reservoir

Capc % 0 to 200 Soil field capacity
Crec % 0 to 50 Parameter that regulates the underground recharge
K1t day 0 to 10 Overflow recession coefficient in the Rsup reservoir
K2t day 0 to 10 First flow recession coefficient in the Rsup reservoir
K2t2 day 0 to 10 Second flow recession coefficient in the Rsup reservoir
K3t day 0 to 10 Flow recession coefficient in the Rsup2 reservoir
Kkt day 0 to 10 Base streamfow recession coefficient in the Rsub reservoir
Str mm 0 to 500 Maximum volume stored in the soil reservoir

Eco f - 0 to 1.5 Adjustment coefficient of potential evapotranspiration
PBASMAX day 1 to 10 Routing time

2.4. HBV Model

The HBV (Hydrologiska Byrans Vattenbalansavdelning) model is a semi-distributed
conceptual snow–rain water balance model proposed by [53]. The HBV model simulates
daily runoff based on daily precipitation and temperature records, and long-term evap-
otranspiration and temperature time series. This model includes a snow routine, a soil
routine, and a response routine (Figure 5). Precipitation can be presented as snow or
rain, depending on the temperature on the corresponding day above or below a threshold
temperature (TT). If the actual temperature is greater than TT, there will be snowmelt.
For the study area presented in this paper, snowmelt is seldom presented, and therefore
the snow routine is not included in the HBV model. The total precipitation goes to the
soil routine, where the actual evapotranspiration (Ea) is estimated by a linear function
which decreases as the soil moisture drops. The HBV model includes two runoff reservoirs.
The upper reservoir generates the quick flow expressed by a non-linear function and the
other reservoir estimates the baseflow expressed by a linear function. The total runoff is
generated from these two reservoirs and then routing through a transformation function.
In this study, the simplified version of the original HBV model developed by [54] was
used. Table 5 describes the parameters considered in the HBV model, as well as the limits
employed in the calibration procedure.

Table 5. Description of main parameters of HBV model

Parameter Units Limits Description

TT °C 0 Temperature threshold for snowmelt
DD mm°C−1 2 to 15 Degree-day factor
FC mm 100 to 300 Maximum soil storage capacity
β - 0 to 4 Distribution of soil moisture sotre
C °C−1 0 to 0.4 Temperature correction factor
K0 day−1 0.01 to 0.2 Quick response coefficient (upper deposit)
L mm 0 to 5 Quick runoff response threshold

K1 day−1 0.01 to 0.1 Slow reponse coefficient (upper deposit)
K2 day−1 0.01 to 0.1 Lower deposit response coefficient
Kp day−1 0.01 to 0.1 Maximum flow for percolation coefficient

PWP mm 90 to 200 Soil Permanent Wilting Point
PBASMAX day 1 to 10 Routing time
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𝐿
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𝐾0

𝐾1

𝐾2

𝑄1 = 𝑈𝑍 ⋅ 𝐾1

𝑄2 = 𝐿𝑍 ⋅ 𝐾2
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𝑄𝑝𝑒𝑟𝑐 = 𝑈𝑍 ⋅ 𝐾𝑝𝐾𝑝

RUNOFF

Snow Store

Snow Routine
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Δ𝑃

Precipitation

Routing
q=outflow

Figure 5. Conceptual diagram of the HBV model.

2.5. MGB-IPH Model

The MGB-IPH (Large Basins Model—Modelo de Grandes Bacias) is a large-scale and
semi-distributed hydrological model that uses physical- and conceptual-based equations to
simulate continental hydrological cycles [55]. This model has been developed with a focus
on large South American basins, considering the typical low spatial density and limited
duration of hydrological records available in the region [34,35,56]. The MGB-IPH has been
previosly applied to represent the hydrological of different tropical river basins [57,58], as
well for the implementation of operational flood forecasting systems [59,60].

The MGB-IPH model employs land use, topography, vegetation cover, and soil types
as guides to select parameter values, and divided the main hydrologic processes into
modules, which are used to determine the groundwater, evapotranspiration, superficial,
sub-superficial, and subterranean flow, as well as total discharge. Differently from con-
ceptual the models previously presented, the MGB-IPH requires an initial geoprocessing
analysis to estimate the spatial characteristics of soil, land use, vegetation, and elevation of
the study area. The MGB-IPH model presents three main geospatial discretization units:
unit-catchments, sub-basins, and the whole basin itself. Moreover, the unit-catchments are
further divided into hydrological homogeneous regions termed grouped response unit
(GRU) or hydrological response units, which are generally defined from a combination of
soil and vegetation type maps [61].

The hydrological simulation of the MGB-IPH model begins from the balance of ground-
water analysis of each individual cell accounting for the rainfall and its respective GRUs.
The evapotranspiration is calculated through the Penman–Montheit equation and can
occur in both intercepted water and the water in the soil through the vegetation. Deter-
mining the superficial and internal runoff as well as the subterranean flow takes into
consideration the total accumulated in each cell and response time parameters. Finally,
the Muskingum–Cunge or inertial flow equations can be used for routing hydrographs
between interconnected sub-basins. The MGB-IPH employs three independent linear reser-
voirs to route the flow through the cell. Those reservoirs are used to represent each flow
generation type: surface, interflow, and groundwater. The linear reservoirs collect the
flow generated in every GRU of the cell, as represented schematically in Figure 6 for an
example of a cell with two GRUs [55]. The variables Dsupi,j, Dinti,j and Dbasi,j are the
surface, interflow, and groundwater flow, respectively, generated in the soil layer of the
GRU. Further information about the governing model equations of the MGB-IPH model is
presented in [55,62].
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Figure 6. Schematic diagram of linear reservoirs used by the MGB-IPH model. Adapted from: [55].

2.6. Performance Metrics

Four performance metrics were used in this study to compare the simulated and
observed streamflow time series for both calibration and validation periods. The employed
metrics included the Nash–Sutcliffe (NSE), the logarithmic version of the NSE (NSElog),
the percent bias (PBIAS), and the Multi-criteria distance (DM).

The Nash–Sutcliffe coefficient (NSE) is used to test the predictive power of hydrological
models. The NSE has a range between −∞ and 1. When NSE is equal to 1, the model
achieves a perfect representation for the observed data, whereas a value of 0 suggests that
the predictions of the models are as accurate as the mean of observed data [63]. Since
greater streamflow values are more weighted in the NSE coefficient, the logarithmic values
of the streamflows are used to estimate the corresponding NSElog. The NSElog is useful to
evaluate the performance of the models in dry periods. Hence, this metric takes importance
in regions with significant dry periods. The NSE is calculated using Equation (1) as:

NSE = 1− ∑T
t=1(Qsim(t)−Qobs(t))2

∑T
t=1(Qobs(t)−Qobs)2

(1)

where Qobs(t) is the observed streamflow at the tth time step; Qsim(t) is the simulated
streamflow at the tth time step; and Qobs is the mean of the observed data.

The percent bias (PBIAS) measures the average tendency of the simulated values to be
larger or smaller than their observed ones. The optimal value of PBIAS is 0. Positive values
of PBIAS indicates an underestimation of simulations and negative values represent the
overestimation of simulations [64]. The PBIAS is estimated by the Equation (2) as:

PBIAS =
∑T

t=1(Qsim(t)−Qobs(t))

∑T
t=1 Qobs(t)

(2)

In addition, metrics that use the average streamflows, such as the NSE (1), are useful
to evaluate the long-term hydrological conditions in a watershed, whereas metrics that
compare each individual realization are focused on evaluating the short-term hydrological
response in the watershed. In that way, the Multi-criteria distance (DM) is considered in this
study and is defined as the Euclidean distance between the inverse of the NSE coefficient
and the mean absolute percentage error (MAPE), which is estimated by Equation (3) as:

DM =
√
(1− NSE)2 + MAPE2 (3)
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where the mean absolute percentage error (MAPE) is calculated as:

MAPE =
T

∑
t=1

∣∣∣∣Qobs(t)−Qsim(t)
Qobs(t)

∣∣∣∣ (4)

2.7. Statistical Tests

The Mann–Whitney U test is a non-parametric statistical method that can be used to
compare the mean of two independent samples [65]. In this case, the null hypothesis states
that H0 : ∆ = 0, where ∆ is the difference between both sample means. To perform this test,
we first ranked each sample as x1 < x2 < · · · < xn and sum the ranks of each sample T1
and T2. The values T1 and T2 are used to compute U, which is the lowest value obtained by
the two expressions presented in the Equation (5).

U1 = n1n2 +
n1(n1 + 1)

2
− T1 or U = n1n2 +

n2(n2 + 1)
2

− T2 (5)

The test statstic can be approximated by the normal distribution and calculated using
the Equation (6) as:

Z =
U − n1n2

2√
n1n2(n1+n2+1)

12

(6)

Finally, H0 is rejected for a significance level α if Z exceeds the 1− α quantil.
Heteroscedasticity was assessed with the non-parametric Levene test, under the

assumption that k subgroups of the same variable Y have equal variances [66]. For a given
k subgroups, where Ni is the sample size of the ith subgroup, the Levene test statistic W is
estimated by the Equation (7) as:

W =
(N − k)∑k

i=1 Ni(Ni − Z)2

(k− 1)∑k
i=1 ∑Ni

j=1(Zij − Zi)2
(7)

where N is the total number of values in all subgroups; Yij is the jth value of the ith
subgroup; Zij = |Yij − Ȳi|; Ȳi is the mean of the ith subgroup; Z is the mean of all Zij;
Zi is the mean of the Zji subgroup. The null hypothesis of the Levene test is rejected if
W > Fα,k−1,N−k, where Fα,k−1,N−k is the upper critica value of the F distribution with k− 1
and N − k degrees of freedom at a significance level of α.

The Kolmogorov–Smirnov test (K-S) quantifies the vertical distance between the
empirical distribution of a sample and the cumulative distribution function of the reference
distribution [67]. Given n increasing ordered data points, x(·), the K-S test stastistic is
estimated using the Equation (8) as:

T = sup
x
|F∗(x)− Fn(x)| (8)

where F∗(x) stands for the specified distribution; Fn(x) represents the empirical distribu-
tion; and sup is the supremum function. The null hypothesis Ho is: F(x) = F∗(x) for all x
from −∞ to ∞. For a significance level α, the null hypothesis is rejected if T exceeds the
1− α quantil [68].

2.8. Bias Correction

For the validation period, a bias-correction methodology based on the work of [69] was
applied as a post-processing analysis for the streamflow simulation. For each month, a sin-
gle probability distribution function was fitted for both the observed and simulated time
series. The non-exceedance probability is estimated for every simulated value and related to
the observed streamflow value with the same non-exceedance probability. The implemen-
tation of this method can improve the accuracy of hydrological models in the prediction
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of future events. In this study, we adopted the Gamma probability distribution function.
More details about this bias-correction method are presented in [70].

3. Case Study
3.1. Overview

For the case study, we selected the Tocantins river which is one of the most important
water bodies in terms of hydropower production for Brazil [60,71]. The Tocantins river
basin has a drainage area of 306,200 km2, and it is located in the North, Central-West,
and Northeast regions of Brazil, covering the states of Tocantins, Goiás, Maranhão, Pará,
and Distrito Federal (Figure 5). This basin is characterized by its high potential for electricity
generation, and the presence of many reservoirs for electricity production. According to
the [72], the Tocantins river basin achieves 74% of the hydroelectric potential inventoried
in the country. Furthermore, the reservoirs located in this region are also used to control
and regulate water resources, providing water supply for irrigation, fishing, and recreation.
For instance, the reservoir of the Serra da Mesa hydropower plant has a surface area of
1.784 km2 and a storage capacity of 54.4 km3, being the largest reservoir in Brazil.

The predominant biome of the region is the Cerrado (Brazilian Savanna), correspond-
ing to 97.8% of its area. Based on the Köppen type-climate classification [73], the climate in
this basin is Aw (tropical with predominant summer precipitation and dry winter). The av-
erage annual temperature is 26 °C and the average annual precipitation is approximately
1770 mm [74]. The wet period extends from October to April, with a short dry period
between January and February. The dry season is commonly presented between May and
September. Figure 7 presents the localization of the Tocantins river basin, the localization
of the hydropower plants, the rain gauges, and climatic stations as well as the results of
the geoprocessing analysis included the digital elevation model, grouped response units
(GRUs), and unit-catchments, used to construct the MGB-IPH hydrological model.

Figure 7. Location of the Tocantins river basin and the main hydropower plants.

3.2. Data

Precipitation and potential evapotranspiration (PET) are two major inputs for the
selected conceptual models. Acummulated daily precipitation data were obtained from
83 rain gauges located the Tocantins river basin for the period 2005–2019. The data were
provided by the Brazilian National Agency of Waters (ANA). The days with missing data
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were infilled using the inverse distance weighting interpolation method (IDW). Daily PET
is calculated using the Pennam-Monteith equation [75], which considers climatological
records of sunshine, temperature, humidity, and wind speed. The variables were extracted
from 10 climatic stations located in the Tocantins river basin, and the data were provided
by the Brazilian National Institute of Meteorology (INMET). For the MGB-IPH model, we
used STRM (shuttle radar topography mission) images with 90 × 90 m resolution. The data
are available from the Consultative Group in Internation Agriculture Research (CGIAR) in
GeoTiff format. The drainage area was subdivided in square cells containing information
on both land use and soil type and classified according to the grouped response unit (GRU).

Daily streamflow records from the period 2005-2019 were used in this study. The stream-
flow data was provided by the Brazilian National Electrical System Operator (ONS) and
consists of naturalized streamflows, i.e., without the influence of the dams nor consumptive
water uses. The drainage area, total anual rainfall, and descriptive statistics of observed
daily inflows at each hydropower plant are presented in Table 6. It is worth mentioning that
the smallest incremental drainage area considered in this study is greater than 5700 km2

(São Salvador UHE). Additionally, the data depicts a high variability of the streamflow
regimes, represented by coefficient of variations greater than 100%. In fact, this river
presents a strong periodicity, characterized by drought periods in the middle of the year
and wet periods at the beginning and end of the year.

Table 6. Descriptive statistics of observed daily streamflow and precipitation for the period 2010–2019.

UHE
Total Drainage

Area (km2)
Incremental Total

Area (km2)
Total Annual
Rainfall (mm)

Daily Streamflow (m3/s)

Mean SD CV Max Min

Serra da Mesa 50,678 50,678 1324 529 528 99 4690 53
Cana Brava 57,979 7301 1454 585 581 99 4840 70

Sao Salvador 63,695 5716 1627 640 635 99 4970 79
Peixe Angical 126,995 63,300 1137 1071 1093 102 8210 127

Lajeado 183,608 56,613 1441 1526 1567 102 11,700 173
Estreito 285,778 102,170 1652 2750 2395 87 14,600 269

3.3. Results Analysis

Figure 8 presents the results of the deterministic metrics obtained for each hydrological
model in the calibration period (2014–2019). Based on the NSE metric, the results in this
stage show that all modeling approaches present a satisfactory performance to represent
the hydrological regime for all hydropower plants, and the results of more parsimonious
models, such as the GR4J, are comparable with those obtained by the MGB-IPH model.
In this stage, the HBV model exhibits the best adjustment to the observed data at all
hydropower plants. Furthermore, it is also noted that the SMAP, GR4J, and HYMOD
models exhibited a poor performance at the Estreito UHE, mainly exposed by the NSElog
and the bias percentage. This result could indicate a limitation for representing lower
streamflows in downstream areas, which could be associated with propagation errors of
the modeling process along the watershed.

For the validation stage, a post-processing methodology based on correcting the non-
exceedance probabilities of simulated data was applied to reduce the systematic error or
bias between the simulated and observed data. To avoid overfitting, the observed data of
the target year was excluded from the probability distribution fitting. Figure 9 compares
the boxplots of the obtained deterministic metrics for both original and bias-corrected data.
Results show a significant improvement after bias correction, mainly exposed by the DM
and bias percentage values. Additionally, negative NSElog values were removed from the
simulated data. However, it is worth mentioning that for the original valdation results,
only the MGB-IPH model presents a satisfactory performance for all deterministic metrics.
For instance, the NSE values are greater than 0.7, and the bias percentages are lower than
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10%. For conceptual models, the HBV and the HYMOD exhibit bias percentages close to
30%, and negative NSElog values are observed for the SMAP, and GR4J models. Those
differences show that the adopted conceptual models fail to represent daily streamflow
conditions for another period of time, and exposed limitations that lumped hydrological
models could have to represent hydrological regimes in large-scale river basins, mainly
characterized by its spatial variability and heterogeneity conditions.
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Figure 8. Results of deterministric metrics in the calibration stage.

Figure 10 compares the observed and simulated hydrographs obtained for each hy-
drological model at the Estreito UHE in the validation stage. The first year was burned
to set the initial conditions of each hydrological model similar to the observed data. Bias
correction results show a significant improvement to represent the recession curves in the
dry periods, specially for the simulated hydrographs of the SMAP, GR4J and HYMOD
models. The figure also show that after bias correction, the peak flows were corrected in
most of the cases. However, for the MGB-IPH model, an underestimation is observed in
the peaks flow when compared to the observed and original simulated data.

Figure 11 compares the flow duration curves between the observed and simulated
data obtained for the validation period after applying the bias correction. The results
show that all hydrological models have a good performance to represent daily streamflows
that are below 10% of the exceedance flow duration curve. However, for the highest
quantiles (<10%), the models exhibit some different behaviors. For instance. the GR4J model
tends to overestimate the streamflow values and the MGB-IPH tends to underestimate
the observed data. Meanwhile, the HBV, the HYMOD, and the SMAP models showed a
better representation to achieve the observed peak flows of the hydrograph. Those results
are derived in part from the uncertainties associated to each hydrological model structure,
the calibration process, the routing method, and the bias correction method.
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Figure 9. Boxplots of deterministic metrics for the original and corrected simulated data for the
vaildation period.

Figure 10. Hydrographs for the validation stage comparing the observed and the simulated stream-
flows by different hydrological models at the Estreito UHE.

Figure 12 presents the results of different statistical tests, including the Kolmogorov–
Smirnov test, the Mann–Whitney test, and the Levene test, in order to compare the proba-
bility distribution, the mean, and the variance between the observed and simulated data.
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In this case, we present the estimated p-value for each hydrological model in the valida-
tion stage, after applying the bias correction procedure. For a significance level α = 0.05,
expressed by a horizontal line, the results show that only the MGB-IPH model fails to
reject the null hypothesis in all statistical tests, evidencing that this model follows the
same statistical properties of the observed data in each hydropower plant. In the case of
conceptual models, only the variance of the observed data were preserved, mainly derived
from the capacity of representing the seasonal hydrological regime in the study area. Those
results diverge significantly from those obtained for the deterministic evaluation after the
bias correction, in which all conceptual hydrological models achieved a similar or better
performance than the MGB-IPH model.

Figure 11. Curves describing the duration of daily streamflow in the Tocantins river basin for the
validation period (2005–2010).
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Figure 12. Statistical tests of each hydrological model in the validation stage. The horizontal line
indicates the significance level α = 0.05.

Finally, Figures 13 and 14 present the violin plots that evaluate the capability of
the models to simulate different quantiles of flows as low (Q95 and Q75), median (Q50),
and high (Q25 and Q10) in the Tocantins river basin for the calibration and validation
periods, respectively. For the calibration period (Figure 13), the results show that all hydro-
logical models can well represent the highest quantiles (Q10, Q25), maintaining a similar
density curve in comparison with the observed data. However, greater differences are
presented for lower streamflows (Q75, Q95), where simulated data present an underestima-
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tion for all cases. In the validation stage, and after applying the bias correction procedure,
the results indicate an improvement in the representation of lower streamflow values.
For dry periods, the MGB-IPH model presented a better representation of the inflow for
all hydropower plants, whereas for the highest quantiles, the better representation was
achieved by the SMAP model.

Figure 13. Violin plot describing the low, median, and high flows simulated in the Tocantins river
basin by multiple hydrological models. Calibration period.

Figure 14. Violin plot describing the low, median, and high flows simulated in the Tocantins river
basin by multiple hydrological models. Validation period.
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4. Conclusions

This study evaluated five hydrological models to represent daily streamflow time se-
ries at six hydropower plants located in the Tocantins river basin. The modeling approaches
included four lumped conceptual models (GR4J, HBV, SMAP, and HYMOD) and one semi-
distributed model (MGB-IPH). The selection of such models was based on covering a wide
range of numerical schemes with different complexity that have been used in different
regions around the world. For conceptual models, the data encompass daily rainfall records
from 83 rainfall stations and climatic variables from 10 stations. The MGB-IPH model also
required geospatial information, which was provided by satellite information. The per-
formance indicators NSE, NSElog, PBIAS, and DM were computed by comparing model
simulated streamflows against observed daily streamflows for calibration and validation
periods of 2014–2019 and 2005–2010, respectively. Additionally, statistical tests including
the Mann–Whitney, Levene, and Kolmogorov–Smirnov tests were estimated to validate the
statistical significance of the mean, variance and probability distribution of simulated data.

For the calibration period, the deterministic metrics indicated that all of the employed
models can well represent the daily streamflow regimes in the study area, with NSE values
greater than 0.6, and mean NSElog values equal to 0.82. Additionally, the simulated data
do not present a significant bias in comparison with the observed data. According to
deterministic metrics, the HBV model achieved the best adjustment with the observed data
in the calibration stage, whereas the GR4J show a lower performance.

For the validation period, only the MGB-IPH model preserved a satisfactory perfor-
mance to represent daily streamflows for another period of time, whereas the conceptual
hydrolological models exibited worse metrics when compared to the calibration stage.
Those differences could be related to the optimization algorithms used to calibrate the
parameters of each hydrological model, being the MOCOM-UA superior to the SCE-UA
for considering more than one metric as objective functions, or even by the structure of the
model itself, given that the MGB-IPH contains a more robust representation of different
types of flows in the catchment. On the other hand, the results may indicate some limita-
tions of lumped hydrological models to represent daily streamflows in large-scale river
basins, considering that the greater spatial variability and heterogeneity of such drainage
areas are commonly represented only by a set of parameters. For a better comparison,
a bias-correction procedure was executed to reduce the systematic errors of all adopted
hydrological models. A first evaluation showed that deterministic metrics of conceptual
models improved significantly for the validation stage, presenting in some cases a similar
or better performance than the MGB-IPH model. However, after applying statistical tests to
the corrected simulated data, the results show that only the semi-distributed model could
preserve the same statistical properties of the observed data at each hydropower plant.

Based on the obtained results, we highlight the importance of considering multiple
hydrological approaches to simulate daily streamflow regimes. The results show some
limitations that lumped and more simple hydrological models, such as the GR4J, could have
for representing hydrological conditions in large-scale river basins, mainly characterized by
their spatial heterogeneity. Considering the importance of this river basin for hydropower
generation, the performance of all hydrological models was addressed in this study by only
comparing daily streamflow data for two periods of time. However, based on different
water uses, the comparison of hydrological models should include other variables of the
water cycle. For future studies, the suggested directions are: (i) include and compare
the performance of fully distributed hydrological models, as well as other conceptual
and semi-distributed hydrological models in the selected river basin; (ii) expand the
presented analysis to other river basins with different hydrological and climatological
conditions; (iii) explore the use of more efficient optimization algorithms, such as the DSS,
to calibrate the parameters of conceptual models and; (iv) Include uncertainty analyses in
the calibration process.
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