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- Resumo -  

  

A luz fornece uma entrada para o processo de fotossíntese e influencia diretamente o 

crescimento e desenvolvimento das plantas. O crescimento das raízes, em condições 

naturais, ocorre abaixo do solo na ausência de luz. Análises prévias demostram que, embora 

as raízes cresçam abaixo do solo na escuridão, a iluminação da parte aérea é essencial para 

que as raízes se desenvolvam normalmente. Plântulas de Arabidopsis cultivadas sob luz 

apresentam padrão de desenvolvimento fotomorfogênico, apresentando hipocótilo curto 

e raízes longas. As respostas transcricionais iniciais à luz que estimulam a comunicação 

entre a parte aérea e a raiz ainda não estão completamente esclarecidas. A correta 

regulação da expressão gênica é um dos mecanismos que possibilitam respostas nas 

plantas. Esta tese teve como objetivo o estudo dos mecanismos de sinalização 

fotomorfogênica envolvendo a comunicação entre parte aérea e raízes em Arabidopsis 

thaliana. Os apontamentos relatados nos capítulos II à IV mostram que à luz desempenha 

um papel chave no desenvolvimento da planta e na comunicação entre parte aérea e raiz. A 

presença de luz na parte aérea leva a alterações significativas no transcriptoma de plântulas , 

promovendo a montagem da maquinaria fotossintética, sinalização e respostas redox.  

Utilizando mutantes de perda de função, identificamos que a regulação da transcrição da 

resposta à luz precoce pode estar envolvida com o fator de transcrição ABA-Insensível 5 

(ABI5) juntamente com os fatores bZIP responsivos a ABA (ABFs). Propomos que esta 

expressão gênica inicial reaproveita a transcrição de fatores bZIP ligados ao ABA, 

expressos na escuridão, para ativar respostas fotomorfogênicas. 
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- Abstract -  

 

Light provides an input to the process of photosynthesis and directly influences the 

growth and development of plants. Root growth, under natural conditions, occurs 

below ground in the absence of light. Previous analyzes show that, although roots grow 

underground in the dark, shoot illumination is essential for roots to develop normally. 

Arabidopsis seedlings grown under light show a photomorphogenic pattern of 

development, with a short hypocotyl and long roots. The initial transcriptiona l 

responses to light that stimulate communication between the shoot and the root are not 

completely understood. The correct regulation of gene expression is one of the 

mechanisms that enable responses in plants. The work presented in this thesis aimed 

to study the photomorphogenic signaling mechanisms involving the communicat ion 

between shoots and roots in Arabidopsis thaliana. The appointments presented in 

Chapters II to IV show that light plays a key role in plant development and in 

communication between shoots and roots. The presence of light in the shoot leads to 

significant changes in the transcriptome of seedlings, promoting the assembly of 

photosynthetic machinery, signaling and redox responses. Using loss-of-function 

mutants, we identified that transcriptional regulation of the early light response may be 

involved with the ABA-Insensitive transcription factor 5 (ABI5) along with the ABA-

responsive bZIP factors (ABFs). We propose that this initial gene expression reuses 

the transcription of ABA-linked bZIP factors, expressed in the dark, to activate 

photomorphogenic responses.  
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Capítulo I  

  

- Introdução - 

  

  

1. Morfogênese Vegetal 

As plantas desenvolveram várias estratégias e mecanismos para perceber as 

mudanças nas condições ambientais e adaptar-se a elas. Respostas rápidas, em âmbito 

arquitetônico e morfológico, são desencadeadas quando as plantas são expostas a luz 

ou escuridão. Durante a germinação, no escuro, as plântulas apresentam um padrão de 

desenvolvimento estiolado ou escotomorfogênico, guardando reservas de energia 

contidas nas sementes para o alongamento do hipocótilo em contrapartida ao 

desenvolvimento dos cotilédones e do sistema radicular. As dicotiledôneas como a 

Arabidopsis thaliana, alongam os hipocótilos, os cotilédones permanecem fechados, 

há a formação do gancho plumular (este facilita a passagem pela barreira do solo e 

protege o meristema apical e cotilédones), e a etapa de esverdeamento das folhas 

iniciada, todo esse processo é denominado fotomorfogênese (Figura 1). À medida que 

essas plantas vão se desenvolvendo, emergindo do solo e o hipocótilo é exposto à luz, 

alterações fotomorfogênicas ocorrem, como a parada do alongamento do hipocótilo, 

abertura dos cotilédones e esverdeamento das folhas. Essas características contribuem 

para o crescimento, desenvolvimento das plântulas jovens e o início do processo 

fotossintético (Lee et al. 2017a). 

 

Figura 1. O efeito da luz em plântulas  de Arabidopsis thaliana – Escotomorfogênese x 

Fotomorfogênese (Modificado de Mallappa et al. 2008). 
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O desencadeamento das respostas fotomorfogênicas depende da ativação de 

fotorreceptores específicos nas plantas. Sabe-se que as plantas captam a luz em 

diferentes comprimentos de onda, e estes ativam fotorreceptores específicos capazes 

de detectar com eficiência comprimentos de onda das faixas do vermelho, vermelho 

distante, azul e UV. Os fitocromos (PHYs) detectam luz vernmelha (R) e vermelha 

distante (FR), a luz causa mudanças conformacionais nos mesmos e estes passam a 

interagir com outras proteínas. Os criptocromos (CRYs), as fototropinas (PHOTs) e 

as proteínas ZEITLUPE detectam UV-A e luz azul, e estão associados com os 

processos de alongamento do hipocótilo, fototropismo e floração, respectivamente. Já 

o fotorreceptor de UV UVR8 também está presente nas plantas, sendo específico para 

UV-B e dando início a respostas fotomorfogênicas UV-B clássicas, como a indução 

da biossíntese de flavonóides e supressão do crescimento de hipocótilo. Os 

fotorreceptores estão em maior quantidade na parte aérea e também exercem função 

nas raízes (Lee et al. 2017; van Gelderen et al. 2018; Sanchez et al. 2020). 

 

 

Figura 2. Ações e mecanismos pelos quais os fotorreceptores interagem e desencadeiam processos 

fisiológicos na planta (Figura retirada do paper Ponnu and Hoecker 2021). 
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2. Transdução da sinalização luminosa da parte aérea para as raízes  

O desenvolvimento das raízes ocorre abaixo do solo com pouco acesso à 

iluminação direta. Entretanto, o drástico efeito da iluminação das folhas sobre o 

crescimento das raízes sugere que sinais à jusante da luz são enviados às raízes para 

promover seu crescimento. 

São conhecidas três rotas dessa transdução de sinal na fotomorfogênese radicular: 

A primeira seria a transmissão de mensageiros de sinalização móvel para as raízes. Várias 

moléculas e metabólitos  como fitohormônios, sacarose, RNAs e proteínas, são produzidas 

na parte aérea e translocadas para as raízes em resposta à luz e ativam respostas 

fotomorfogênicas tais como, crescimento da raiz primária, formação de nódulos 

radiculares e emergência das raízes laterais (revisado por Lee et al. 2017). A segunda seria 

pela percepção direta da luz pelas raízes, uma vez que essa luz pode penetrar no solo em 

condições ambientais normais. A passagem da luz pelo sistema caulinar do corpo da planta 

para as raízes seria a terceira proposta, este efeito conhecido como “light piping” ocorre 

quando a luz acima do solo é conduzida através do sistema vascular para as raízes em 

curtas distâncias. Este efeito foi sugerido como responsável por ativar a resposta  

gravitrópica de raízes laterais em um mecanismo dependente de phyB e HY5 (Lee et al. 

2016; Lee et al. 2017; Lacek et al. 2021). 

Apesar de muitas moléculas serem transportadas da parte aérea para a raiz, 

somente algumas foram relacionados à sinalização sistêmica do desenvolvimento de 

raízes, dentre os quais se destacam os açúcares derivados da fotossíntese (como a 

sacarose)  e transportados através do floema, hormônios vegetais (auxina, ácido 

giberélico) e o fator de transcrição ELONGATED HYPOCOTYL 5 (HY5) (van 

Gelderen et al. 2018b). 

 

3. Genes envolvidos na sinalização por luz  

Independentemente de seu mecanismo de percepção, a luz desencadeia 

mudanças conformacionais nas proteínas fotorreceptoras, levando a eventos de 

sinalização a jusante. A partir da identificação de mutantes de resposta à luz em 

triagens mutagênicas destinadas a identificar fenótipos estiolados em plantas, os 

mutantes hy (hipocótilo longo) auxiliaram na caracterização de genes codificadores de 

reguladores positivos da fotomorfogênese, como fitocromos, criptocromos e o fator de 

transcrição HY5 (Möglich et al. 2010).  
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Os fotorreceptores ativados pela luz foram descritos como ativadores das 

respostas fotomorfogênicas tanto de forma sinérgica quanto antagônica (Jiao et al. 

2007a), com componentes de sinalização a jusante convergindo para dois hubs 

principais compostos por CONSTITUTIVE PHOTOMORPHOGENIC/DE-

ETIOLATED (COP1) (Deng and Quail 1992; Podolec and Ulm 2018) e 

PHYTOCHROME-INTERACTING FACTORS (PIFs) (Ni et al. 1998; Pham et al. 

2018). Fenótipos mutantes e análises moleculares indicaram que fotorreceptores e 

fatores de transcrição atuam como reguladores fotomorfogênicos positivos com sua 

estabilidade e/ou atividade regulada por um conjunto de repressores 

fotomorfogênicos, compreendendo genes repressor  CONSTITUTIVE 

PHOTOMORPHOGENIC/DE-ETIOLATED / FUSCA (COP/DET/FUS) (Chamovitz 

et al. 1996) e PIFs (Hellmann and Estelle 2002; Xu et al., 2015). 

Os loci COP/DET/FUS estão associados a três complexos proteicos distintos : 

o COP1-SPA, as ligases COP10-DET1-DDB1 (CDD) Ubiquitina E3 e o sinalossoma 

CSN/COP9 (Lau and Deng 2012). Todas as fortes mutações cop/det/fus levam à 

letalidade das plântulas logo após a germinação, indicando que esses módulos são 

centrais para o desenvolvimento da planta (Kwok et al. 1996). 

A caracterização molecular de DET1 mostrou que ele interage com COP10 e 

uma ligase CUL4-DDB1 Ub-E3 (conhecida como CUL4-CDD1) (Lau and Deng 

2012). O complexo CUL4-CDD1 mostrou aumentar a atividade de ubiquitinação de 

outras ligases E3. Ele pode ter seus próprios alvos de ubiquitinação diretos (Lau and 

Deng 2012). Uma das atividades mais diretas do DET1 no controle da 

fotomorfogênese é a estabilização de proteínas PIF no escuro por meio de interação 

direta (Dong et al. 2014). Curiosamente, esta estabilização não envolve degradação 

proteassomal de PIFs, sugerindo que DET1 atua por uma via diferente. Isso coloca o 

DET1 como um repressor direto da fotomorfogênese tanto quanto um promotor de 

crescimento estiolado. O DET1 também pode interagir e reprimir a atividade de fatores 

de transcrição associados ao relógio circadiano (Lau et al. 2011), bem como estabiliza r 

proteínas reguladoras do relógio inibindo sua ubiquitinação (Park et al. 2010).  

Recentemente, foi identificado que DET1 interage com COP1 e promove sua 

degradação e atividade. O DET1 também favorece a interação COP1-HY5, de forma 

independente da luz, evitando a hiperacumulação de HY5 (Cañibano et al. 2021). 
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Desenvolvemos alguns experimentos com mutantes de fitocromos (phyA, 

phyB, phyC, phyD, phyE) e criptocromos (cry1 e cry2) crescidos sob diferentes fontes 

de açúcar (glicose e sacarose) no meio e em condições de luz branca constantes, afim 

de investigar o comportamento destes mutantes (Anexo 1 A-D). Mutantes para phyB 

apresentaram maior comprimento de hipocótilo e raiz em todos os tratamentos e o 

oposto ocorreu com os mutantes cry1 (Anexo 1 C). Esses resultados indicam que a 

ativação de fotorreceptores (fitocromos e criptocromos) em plântulas são necessários 

para desencadear o desenvolvimento tanto caulinar quanto radicular adequados. 

 

4. O fitohormônio ABA 

 

O crescimento e o desenvolvimento das plantas são influenciados por diversos 

fatores, tais como, luz, radiação solar, temperatura, umidade, ventos, nutrientes 

presentes na água e no solo, fitohormônios e outros. A luz interage com diferentes vias 

hormonais e em conjunto desempenha uma participação significativa no processo de 

crescimento e desenvolvimento que afeta a planta (Ullah et al. 2018). O fitohormônio 

ABA (Ácido Abscísico) é um dos fitohormônios que são alterados quando a planta 

entra em contato com a luz, sua sinalização regula a biossíntese de flavonóides. Isto é 

consistente com a alta integração do ABA e das vias de sinalização luminosa, que 

ocorre ao nível dos principais componentes de sinalização (Brunetti et al. 2019; Agurla 

et al. 2020).  Os papéis da luz e ABA nos processos fisiológicos das plantas parecem 

ser contrários, pois por exemplo, a luz promove o crescimento das raízes por um curto 

período, enquanto o ABA em algumas quantidades suprime o crescimento das raízes 

(Wang et al. 2019). 

Sabe-se que o ABA está presente em diversos processos nas plantas, na 

germinação e desenvolvimento de sementes, na resposta ao estresse abiótico, sendo 

acompanhado por alterações no padrão de expressão dos genes ligados a ele (Brocard 

et al. 2002). 

Por meio de uma via central de sinalização, onde o estresse é percebido pela 

planta, o ABA se liga ao PIRABACTIN-LIKE RESISTANCE RECEPTOR 1 (PYL1), 

reprimindo assim a ação das CONSTITUTIVE PROTEINS OF TYPE 2C 

PHOSPHATASES (PP2C), que atuam a jusante das NON-FERMENTING SUGAR 

PROTEIN KINASES (SnRK2) (Brunetti et al. 2019b; Chen et al. 2020). Devido ao 

estresse enfrentado durante o desenvolvimento da planta, o ABA acaba se acumulando 
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nas células e desencadeia a ligação do complexo receptor-ABA, inibindo a fosfatase 

PP2C, permitindo que SnRK2s fosforilem e controlem a atividade de fatores a jusante, 

causando respostas fisiológicas. Fatores de transcrição de domínio básico de zíper de 

leucina (bZIP), incluindo proteínas de ligação ABRE (AREBs), fatores de ligação 

ABRE (ABFs) e ABA INSENSITIVE 5 (ABI5) são alguns exemplos de elementos 

que podem se ligar a proteínas responsivas a ABA (Finkelstein 2013; Dejonghe et al. 

2018; Agurla et al. 2020). 

 O ABA foi associado há muito tempo apenas com respostas ao estresse biótico 

e abiótico e como um inibidor do crescimento vegetal. Porém, algumas outras funções 

lhe foram atribuídas, como sendo um promotor no crescimento da parte aérea em 

várias situações fisiológicas e de desenvolvimento, levando a um novo conceito geral 

de controle químico, onde em baixas doses causa estimulação e em altas doses inibição 

(Zhang et al. 2010; Humplík et al. 2017).  

A conexão entre a luz e o metabolismo do ABA já foi observada na inibição 

inicial da germinação dependente de PHYB por FR, onde ela é mediada no 

endosperma e envolve um sinal inibidor de ABA para o embrião evitar a germinação 

dependente de PHYA. A alta integração entre este fitohormônio e a luz explica a 

multiplicidade de funções reguladas pela via de sinalização do ABA. Essa relação tem 

sido relativamente bem estudada em nível molecular, especialmente no 

desenvolvimento inicial da semente. (De Wit et al. 2016).  

Os papéis de alguns genes ligados à sinalização por luz como HY5, COP1, 

DET1 estão também ligados à sinalização ABA atuando na modulação no nível 

transcricional e pós-transcricional de ABI5 (Chen et al. 2008a; Yadukrishnan et al. 

2020a). Estudos apontam que COP1 é co-localizado com ABI5 e os substratos do 

primeiro (HY5 e BBX21) influenciam os níveis de expressão de ABI5 ao se ligarem a 

seu promotor (Wang et al. 2019). 

Nos últimos tempos, diversas pesquisas mostraram que a sinalização mediada 

por fotorreceptores envolve participação dos fitohormônios nas vias de a interação da 

luz com vias de sinalização mediadas por fitohormônios (Wang et al., 2013). 

A interação de fitocromos e seus parceiros PIF1 ou PIL5 facilita a germinação 

após a ativação da luz, regulando a sinalização de ABA e GA através de seus alvos a 

jusante (Oh et al., 2009; Seo et al., 2009; de Wit et al., 2016). A degradação mediada 
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por fitocromo de PIF1 é proposta como o mecanismo crucial que controla a 

germinação de sementes induzida pela luz, alterando o metabolismo de ABA e GA 

nas sementes. 

. 

 

5. Interações entre ABA e a sinalização de luz  

Nos últimos tempos, diversas pesquisas mostraram que a cascata da sinalização 

por luz mediada por fotorreceptores envolve também a participação da via dos 

fitohormônios. A luz parece influenciar significativamente a sensibilidade ao ABA em 

plântulas durante o desenvolvimento pós-germinação e a inibição causada por ele 

neste período é maior no escuro em comparação com condições de luz (Wang et al. 

2019; Yadukrishnan and Datta 2021). Todos esses processos envolvem mudanças 

transcricionais e traducionais, a expressão de genes responsivos ao ABA é regulada 

pela ligação de fatores de transcrição à elementos de ação cis conservados, tais como 

o fator de ligação responsivo ao ABA (ABRE). Diferentes classes de genes 

reguladores ligados ao ABA foram identificados em Arabidopsis, dentre estes estão: 

o fator de transcrição ABA INSENSITIVE 5 (ABI5) que faz parte da subfamília de 

fatores de transcrição de domínio básico do tipo zíper de leucina (b-ZIP); os fatores 

de ligação ABRE (ABF1-4) e proteínas de ligação responsivas ao ABA (AREB1-3) 

que são induzidas após a exposição ao ABA (Agurla et al. 2020). 

ABA promove a ligação de HY5 à ABI5, ou seja, o fator de transcrição HY5 

liga-se ao promotor do gene do fator de transcrição ABI5 e é necessário para a 

expressão de ABI5 (Brunetti et al. 2019). Estudos demonstraram também, que o ABA 

vindo da parte aérea promove o crescimento das raízes. Níveis aumentados de auxina 

radicular (IAA) em enxertos de plantas deficientes em ABA sugerem que o mesmo, 

quando derivado das folhas, inibe o crescimento das raízes através da IAA (McAdam 

et al. 2016a). 

O ABI5 desempenha um papel crucial na germinação e crescimento de 

sementes mediado por ABA, sua expressão é controlada no nível transcricional e pós-

traducional (Skubacz et al. 2016). HY5 é conhecido por promover a fotomorfogênese, 

controla cerca de 300 genes alvo-verdadeiros no genoma da Arabidopsis  thaliana 

(Burko et al. 2020) e, também atua como um importante fator de integração para as 
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vias de luz e ABA, apesar de ter efeitos contrastantes sobre o ABA (Xu et al. 2014). 

Ele está envolvido na sinalização de ABA ativando diretamente a expressão de ABI5 

e é necessário para a expressão de ABI5 e seus genes alvo nas sementes (Osterlund et 

al. 2000; Chen et al. 2008; Xu et al. 2014). 

Estudos observaram que a superexpressão de ABI5 restaura a sensibilidade do 

ABA em mutantes hy5 e aumenta as respostas à luz em plantas (Chen et al. 2008). Em 

contraste, outros experimentos demonstraram que o HY5 suprime a inibição do 

desenvolvimento pós-germinação mediado pelo ABA e é altamente influenciado pelos 

níveis de dormência em diferentes lotes de sementes (Yadukrishnan e Datta 2021). 

HY5 e ABI5 interagem fisicamente e formam heterodímeros no núcleo, 

afetando assim a sinalização por luz e processos relacionados ao ABA. Linhagens que 

superexpressam HY5 apresentam alta sensibilidade ao ABA durante o estágio de 

germinação, bem como uma maior repressão do alongamento do hipocótilo em 

resposta à luz. A linhagem knockout para ABI5 exibe hipocótilo ligeiramente mais 

curto do que Col-0 e hy5, indicando que este gene intensifica as respostas à luz. Isto 

dá maior robustez ao papel de HY5 na regulação positiva mediada por ABI5 nos 

processos de sinalização do ABA e no envolvimento de ABI5 na fotomorfogênese 

(Bhagat et al. 2021a). 

Embora HY5 seja controlado em diferentes níveis, a abundância da proteína é 

altamente controlada pelas proteínas COP/DET/FUS, que atuam negativamente na 

fotomorfogênese (Osterlund et al. 2000; Huang et al. 2014). COP1 funciona como um 

dos mais importantes controladores do desenvolvimento fotomorfogênico interagindo 

com várias proteínas alvo diferentes.  Ele atua como uma ubiquitina E3 ligase 

mediando a degradação de várias proteínas envolvidas na luz (Lau e Deng 2012; Kim 

et al. 2017). 

COP1 promove a via de sinalização do ABA atuando a jusante de ABI5, 

reforçando a estagnação do crescimento que é mediada pelo ABA. Considerando a 

função canônica de COP1 como uma ubiquitina E3 ligase, estudos recentes indicaram 

que ele pode modular a função de outras proteínas por meio de interações físicas não 

proteolíticas ou poderia de fato interagir fisicamente com ABI5 (Sharma et al. 2019; 

Yadukrishnan et al. 2020b). Um estudo interessante relatou que o COP1 regula 

positivamente ABA promovendo a parada do desenvolvimento das plântulas, 

facilitando a ligação de ABI5 ao seu próprio promotor (Yadukrishnan et al. 2020). O 
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mutante para este gene apresenta pouca sensibilidade ao fitohormônio ABA e 

apresenta dificuldades na germinação em comparação a planta selvagem quando o 

meio contém adição de ABA (Balcerowicz et al., 2011). Entretanto o mecanismo 

molecular dessa interação ainda precisa ser melhor compreendido e estudado. 

Outro fator importante na via de sinalização luminosa é DET1, que 

desempenha um papel direto na repressão transcricional (Lau e Deng 2012).  DET1 é 

parceiro de COP1 durante a escotomorfogênese e tem um papel divergente na via 

ABI5. No escuro, DET1 promove a expressão de ABI5 estabilizando os fatores de 

transcrição PIFs. Enquanto que, na luz, DET1 interage com HYPOCOTYL FAR-RED 

ELONGATED 3 (FHY3) e se associa a regiões de seus alvos diretos, como ABI5, 

onde regula a transcrição dele e inibe a sua expressão (Agurla et al. 2020; Xu et al. 

2020). 

DET1 regula a expressão de ABI5 através de múltiplos mecanismos, além de 

interagir com FHY3, reduz a transcrição de ABI5 através de PHYA 

(PHYTOCRHOME A) e a consequente diminuição da inibição do greening mediada 

por ABA. O promotor ABI5, recruta uma histona desacetilase, promovendo mudanças 

na cromatina, que prejudicam a transcrição (Wang e Xing 2002; Tang et al. 2013; 

Yadukrishnan e Datta 2021). De fato, DET1 forma um complexo com uma proteína 

DAMAGED DNA BINDING 1A/B (DDB1A) /B) e outro com um complexo DDB1 

contendo DWA1 e 2 (DWD 1/2 hipersensível ao ABA), ambos demonstraram regular 

negativamente a resposta do ABA. Além disso, a ação de DET1 sobre HY5 e sua 

degradação podem gerar alguma complexidade na inibição do greening mediado por 

ABA, uma vez que HY5 é envolvido na expressão de genes de biossíntese de clorofila 

ao mesmo tempo que regula ABI5 (Agurla et al. 2020). DET1 influencia a transcrição 

de ABI5 e outros aspectos das respostas ABA de diferentes maneiras. Todos esses 

estudos sugerem um importante papel regulador de ABI5 com sinalização luminosa 

no processo de fotomorfogênese. 

 

6. Elementos cis ABRE e TFs AREB/ABF para expressão gênica dependente de 

ABA 

Análises de promotores de genes induzidos por ABA, permitiram a descoberta 

de um elemento cis conservado, denominado elemento responsivo a ABA (ABRE); os 
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elementos cis-regulatórios responsáveis pela regulação da expressão gênica de ABA 

compartilham um motivo conservado, ACGTGGC. Existem cerca de 78 genes da 

família bZIP em todo o genoma de Arabidopsis thaliana, fatores de transcrição bZIP 

(TFs) ligam-se a G-boxes (CACGTG) com sequências centrais de ACGT como hetero 

ou homodímeros. A subfamília ABFs/AREB e ABI5 são homólogas e desempenham 

papéis específicos e redundantes durante o crescimento e desenvolvimento das plantas 

(Choi et al. 2005; Kurihara et al. 2020). 

As proteínas b-ZIP induzíveis por ABA (ABFs) podem se ligar às caixas G e 

C e são induzidas por vários tipos de tratamentos de estresse. Existem 9 AREB/ABFs 

em Arabidopsis, e eles abrigam três domínios conservados N-terminal e um C-termina l 

(Choi et al. 2005; Yoshida et al. 2010). ABF1, AREB1/ABF2, ABF3 e AREB2/ABF4 

são os TFs a jusante mais importantes envolvidos na sinalização do estresse osmótico 

mediado por ABA em tecidos vegetativos. ABF1–4 que atuam no núcleo da 

sinalização ABA de maneira parcialmente redundante (Hwang et al. 2019). 

A sinalização de ABA leva à fosforilação de ABF1-4 pelas quinases SnRK 

ativando sua ligação aos elementos de resposta ao ABA (ABRE). A PROTEIN 

FOSFATASE 6 (PP6) é conhecida por interagir com ABI5. Onde, proteínas Ser/Thr 

FOSFATASE 1 (FyPP1) e FyPP3 associadas ao fitocromo codificam PP6 que por sua 

vez interage fisicamente com ABI5 e regula negativamente sua atividade de 

transativação. Assim, supõe-se que talvez a ação de PP6 possa ser modulada pela luz 

em função da participação de genes ligados ao fitocromo (Yoshida et al. 2015; 

Banerjee e Roychoudhury 2017). 

A maioria dos estudos atualmente tem focado no desenvolvimento dos órgãos 

acima do solo e de certa forma acabam deixando de lado partes essenciais como as 

raízes formando um gap na compreensão do ciclo de crescimento das plântulas. A raiz 

abaixo do solo é fortemente influenciada pela presença de luz na parte aérea e, o 

esclarecimento destes processos a nível molecular e como se dá esta comunicação é 

imprescindível para o entendimento completo do desenvolvimento vegetal. Tendo em 

vista a falta de informação com relação ao envolvimento/efeito da luz na parte aérea e 

consequente crescimento das raízes na escuridão e buscando uma melhor compreensão 

dos mecanismos moleculares participantes nesta sinalização entre parte aérea e raízes, 

entra a presente pesquisa e respectiva tese. 
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- Objetivos -  

  

1. Objetivo geral  

  

A presente tese de doutorado se propôs a investigar/identificar sinais 

fotomorfogênicos móveis (fatores de transcrição, mRNAs, proteínias), oriundos da 

parte aérea, reguladores do desenvolvimento de raízes na planta modelo Arabidopsis 

thaliana.  

   

2. Objetivos específicos  

  

2.1 Identificar genes diferencialmente expressos em raízes em diferentes bases de 

dados de RNAseq coletados de plântulas cultivadas sob diferentes condições de luz 

2.2 Identificar os potenciais fatores de transcrição que regulam os genes 

diferencialmente expressos; 

2.3 Selecionar potenciais sinais móveis entre a parte aérea e as raízes; 

2.4 Avaliar se a superexpressão e/ou o nocaute dos genes candidatos na parte aérea 

influencia o crescimento das raízes; 
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Glossary  

Photomorphogenesis – A developmental growth pattern of seedlings grown in light. 

This involves inhibition of the hypocotyl elongation, opening of the apical hook, 

cotyledon expansion, chloroplast differentiation and development of the shoot and 

root apical meristems. Photomorphogenic seedlings display a short and green shoot 

with expanded leaves and a well-developed root system. 

Skotomorphogenesis – from the greek word “skotos” meaning darkness. A 

development pattern of seedlings germinated in the dark that triggers etiolated growth 

consisting of strong elongation of the embryonic stem (hypocotyl), formation of an 

apical hook and a repression of the expansion of the embryonic leaves (cotyledons), 

apical meristems, and root system. This strategy ensures that limited seed reserves are 

used for the quest for light, a prerequisite for photoautotrophic survival. 

Etiolation - the developmental process triggered by skotomorphogenesis. 

Photoreceptors – the plant photoreceptors are comprised of light sensitive proteins 

activated by a wide range of wavelengths: UVR8 for UV-B light (280–320 nm), 

cryptochromes CRY1 and CRY2, phototropins PHOT1 and PHOT2, F-box containing 
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Flavin binding proteins (e.g., ZEITLUPE, FKF1/LKP2) for blue/UV-A light (320–

500 nm) and phytochromes phyA-E for red/far-red light (600–750 nm). 

PIFs (Phytochrome Interacting Factors) – a class of basic helix- loop-helix (bHLH) 

transcription factors comprised of eight members (PIF1-8) in arabidopsis. PIFs act as 

negative regulators of light responses by repressing photomorphogenesis in darkness. 

DELLA proteins - a group of GRAS transcription regulators that acts as repressors 

of gibberellin signaling as well as other signaling responses. They modulate gene 

expression via interaction with several proteins, mostly transcriptional factors, such 

as PIFs. 

Cotyledons – embryonic leaves first emerged from the seed. 

Meristem – a group of undifferentiated stem cells capable of cell division that control 

organ formation. The young germinating seedling grows from the mitotic activity of 

the shoot apical meristem (SAM) and the root apical meristem (RAM). 

Hypocotyl – the stem of a germinating seedling, found below the cotyledons and 

above the radicle (root) 

D-Root – “dark-root” system. An in vitro growing system for seedlings first described 

by Silva-Navas, et al. 2015, which allows the roots to be protected from direct 

illumination. 

 

Abstract 

A germinating seedling incorporates environmental signals such as light into 

developmental outputs. Light is not only a source of energy, but also a central 

coordinative signal in plants. Traditionally, most research focuses on 

aboveground organs’ response to light, therefore our understanding of 

photomorphogenesis in roots is relatively scarce. However, root development 

underground is highly responsive to light signals from the shoot and 

understanding these signaling mechanisms will give a better insight into early 

seedling development. Here we review the central light signaling hubs and their 

role in root growth promotion of Arabidopsis thaliana seedlings. 

 



24  

  

Light signaling and photomorphogenesis  

Photomorphogenic development drastically affects the entirety of plant architecture. 

By activating photosynthesis and enabling autotrophy, the early developmenta l 

program of a plant is centered in optimizing light capture. When grown in darkness, 

arabidopsis (Arabidopsis thaliana) seedlings favor hypocotyl elongation over root 

displaying an etiolated development, named skotomorphogenesis, which is 

energetically dependent on the seed’s energy storage and is characterized by 

unexpanded cotyledons, a closed apical hook, and a short and thin root with a reduced 

apical meristem. Light, however, affects the morphology of all sections of the 

seedling, as it transitions to autotrophic growth by promoting hook opening, cotyledon 

expansion and primary root growth, while strongly inhibiting hypocotyl growth 

(Arsovski et al. 2012a; De Wit et al. 2016). A large amount of knowledge has 

accumulated over the past decades regarding the signaling events that control the shoot 

responses during photomorphogenesis (Arsovski et al. 2012a; Gommers and Monte 

2018) as well as other adaptative light responses such as shade avoidance, 

phototropism and circadian rhythms which have been covered by excellent 

reviews(Mo et al. 2015b; Lee et al. 2017a; van Gelderen et al. 2018b; Wan et al. 2019; 

Sanchez et al. 2020; Fernández-Milmanda and Ballaré 2021). Shoot illumination 

stimulates primary root growth through shoot-to-root signaling. In this review, we 

highlight how photomorphogenesis regulates the growth of the primary root during 

early seedling development. 

Photoreceptor signaling cascade 

Besides fueling photosynthesis, light effects on plant development are largely 

dependent on the activity of cellular photoreceptors. Regardless of their perception 

mechanism, light triggers protein conformational changes in the photoreceptor protein 

leading to downstream signaling events (Möglich et al. 2010). The signaling outputs 

downstream of photoreceptor activation converge to suppress the activity/abundance 

of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) (Deng and Quail 1992; 

Podolec and Ulm 2018a) and PHYTOCHROME-INTERACTING FACTORS (PIFs) 

(Ni et al. 1998b; Hellmann and Estelle 2002a; Xu et al. 2015a; Pham et al. 2018b), 

which results in the stabilization of positive transcriptional regulators (e.g. 

ELONGATED HYPOCOTYL 5, HY5; HY5 HOMOLOG, HYH, DELLA proteins  
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among other COP1 degradation targets) which are otherwise actively degraded by 

COP1 in darkness (Figure 1).  

 

 

Figure 1 Shoot light signaling components and their effect on root growth. Seedlings grown in the dark (left 

panel) display skotomorphogenic development with elongated hypocotyls, a closed apical hook and a short primary 

root. COP1-SPA Ubiquitin-E3 ligase actively represses photomorphogenesis by targeting positive transcriptional 

regulators to proteasome dependent degradation. The main positive regulators of skotomorphogenesis are the 

PHYTOCRHOME INTERACTING FACTORS (PIFs) which activate hypocotyl elongation in the dark in 

association with the BR-responsive TFs BRASSINAZOLE-RESISTANT 1 and 2 (BZR1/2). PIFs are stabilized by 

COP1 which fine-tunes both PIFs and BRZ1 levels. BZR1/2 levels are also negatively regulated by COP1(Kim et 

al. 2014) but the root effects of this regulation are unknown.  The ethylene response regulator ETHYLENE 

INSENSITIVE3/EIN3 acts alongside PIFs to maintain etiolated growth (An et al. 2012; Liu et al. 2017) both in 

the shoot and root and its levels are regulated by the SCFEBF1/2 Ubiquitin-E3 ligase whose activity is repressed by 

COP1. Light grown seedlings (right panel) engage photomorphogenesis through activated photoreceptors that lead 

to opening of the apical hook, cotyledon expansion, repression of hypocotyl elongation and elongation of the 
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primary root. Activated phytoreceptors (PHYs and CRYs) strongly repress COP1 complexes via direct association 

and promote PIFs Ubiquitin-mediated degradation. SPA1-dependent phosphorylation of HY5 occurs both in light 

and dark conditions to fine tune its activity (Wang et al. 2021). Activated photoreceptors also enhance SCFEBF1/2 

Ubiquitin-E3 ligase activity towards EIN3 and PIFs promoting their destruction. Repression of the COP1 complex 

by light enhances the abundance of photomorphogenesis positive regulators (HY5, HYH, DELLAs among others) 

leading to transcriptional reprogramming in the whole seedling. Light stabilizat ion of shoot HY5 leads to its shoot-

to-root transport where it can self-activate and promote root growth. Processes unknown to operate in roots are 

labeled with a question mark. Abbreviations: BZR1/2, BRASSINAZOLE-RESISTANT1 and 2; CONSTITUTIVE 

PHOTOMORPHOGENIC1; COP1 TARGETS, COP1/SPA Ubiquitination targets (for an updated version see 

Ponnu 2021); CUL4-CCD1, CUL4–DDB1 Ubiquitin-E3 ligase; DELLAs, DELLA proteins; EIN3, ETHYLENE 

INSENSITIVE3; HY5, ELONGATED HYPOCOTYL 5; HYH, ELONGATED HYPOCOTYL 5-HOMOLOG; 

SCFEBF1/2, EIN3-BINDING F BOX PROTEIN  1 AND 2 Ubiquitin-E3 ligases; PIFs, PHYTOCHROME 

INTERACTING FACTORS;  PHOTORECEPTORS (cry1, cry2, phyA, phyB), SPA, SUPRESSOR OF PHYA; 

Created with BioRender.com 

 

COP1 acts in the dark as a main repressor of photomorphogenesis. It was origina lly 

identified as a mutation leading to a constitutive photomorphogenic phenotype 

regardless the light condition (Deng et al. 1991; Deng and Quail 1992). From early 

observations, it was noted that the cop1 mutants were affected in most photoreceptor-

dependent responses consisting in a major switch from skoto- to photomorphogenic 

developmental programs. Mutant cop1 seedlings display elongated roots in darkness 

(McNellis et al. 1994; Sassi et al. 2012), reinforcing that light signaling activates root 

growth. 

COP1 functions along SUPPRESSOR OF PHYA-105 (SPA) proteins as the 

COP1/SPA Ubiquitin E3 ligase (Seo et al. 2003; Saijo et al. 2003; Han et al. 2020) 

complex that promotes the dark degradation of light response regulators through 

protein ubiquitination (Ang Lay Hong and Deng Xing Wang 1994; Ang et al. 1998; 

Osterlund et al. 2000; Ponnu and Hoecker 2021b). SPAs bridge activated 

photoreceptors to COP1 to repress its activity (Hoecker et al. 1999; Chen et al. 2010; 

Ponnu and Hoecker 2021b). Light-activated photoreceptors repress the COP1/SPA 

complex by promoting nuclear exclusion of COP1, disruption of the COP1/SPA 

interaction, and promoting SPA protein degradation (von Arnim and Deng 1994; 

Osterlund and Deng 1998; Pacín et al. 2014; Podolec and Ulm 2018b). More 

importantly, activated blue-light photoreceptors CRYPTOCHROME 1 and 2 (CRY1, 

CRY2) and the UVB activated receptor  UV RESISTANCE LOCUS 8 (UVR8) 

directly inhibit COP1 by displacing its substrates, which seems to be the major 
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inhibitory mechanism for its ubiquitin ligase activity (Lau et al. 2019; Ponnu et al. 

2019). 

PIFs function in darkness and shade promoting etiolated growth as negative regulators 

of light responses (Leivar and Quail 2011; Leivar and Monte 2014; Pham et al. 2018b). 

PIFs are stabilized in the dark whereas phytochrome activation leads to repression of 

PIF activity through protein phosphorylation, protein-protein interactions and 

proteasome-dependent degradation (Xu et al. 2015b). The quadruple mutant 

pif1pif3pif4pif5 (pifQ) has a cop-like phenotype (Leivar et al. 2008a; Shin et al. 

2009a).  The gene expression profiles of cop1 and spa1234 (spaQ) mutants overlaps 

with pifQ in the dark, with an overrepresentation of PIF direct target genes, suggest ing 

that the cop1 phenotypes are partially due to a reduced level of PIFs (Pham et al. 

2018c). 

Although roots are not usually studied in photomorphogenesis experiments, many 

COP1/SPA targets as well as the remaining components of the light signaling cascade 

are actively expressed in roots, which suggest roots have their own light sensing 

mechanisms. The expression of all the central photomorphogenic signaling genes in 

roots raises the question of what are the regulatory mechanisms acting in underground 

organs. In order to place the relative expression of photoreceptors and COP1 among 

root tissues, we plotted an heatmap derived from a root-specific expression atlas (Li 

et al. 2016) (Figure 2). Interestingly, COP1, PHYB, PHOTOTROPIN 2 (PHOT2), 

CRY1 and CRY2 are mainly expressed in mature endodermis cells. It is hence 

tempting to speculate that the endodermis may comprise a major site for light 

responses in the root. Notably, PHYA and PHYTOCHROME C (PHYC) display 

increased expression in columella and quiescent center (QC) cells. Notably, some PIFs 

show preferential expression in the root endodermis and columella (PIF3), vasculature 

(PIF2, PIF4, PIF8) and cortex (PIF1, PIF7) (see online supplemental information 

Figure S1B). 
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Figure 2 Root expression pattern of photoreceptors and COP1. Heat map of averaged expression for selected 

genes from a high-resolution root expression map of arabidopsis seedlings. Each column represents a root tissue 

and each line a single gene listed on the right. The color indicates the fold change average expression of each gene. 

The analysis was performed in Clustvis (Metsalu and Vilo 2015) with default settings and raw data from Table S5 

from (Li et al. 2016). 

 

A detailed description of all the genes mentioned in this review and their reported 

effects on root growth is listed on Table 1 and their root-specific expression patterns 

are depicted in online supplemental information Figure S1. 

 

Root responses to illumination  

Direct root illumination is usually perceived as a stress by roots as direct blue light 

exposure affects root morphology and behavior leading to bursts of ROS and negative 

tropism (Yokawa et al. 2011; Yokawa et al. 2014; Mo et al. 2015a). Furthermore, root 

illumination represses root elongation through phytochromes (Correll and Kiss 2005a; 

Costigan et al. 2011a) and blue/UV-B light receptors cryptochromes (CRY1 and 

CRY2) and UVR8 (Kurata and Yamamoto 1997; Yokawa et al. 2011; Silva-Navas et 

al. 2016). UV-B has a strong inhibiting effect on root growth, either when supplied to 

the whole seedling or only to the root (Tong et al. 2008; Leasure et al. 2009; Silva-

Navas et al. 2015; Li et al. 2017; van Gelderen et al. 2018b) whereas the lack of phyB 
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reduced root growth regardless the light condition (Silva-Navas et al. 2015). Except 

for the phyd mutant, all other phytochrome mutants display lower LR number 

suggesting an important role of phytochrome signaling for the adaptative development 

of the root (Salisbury et al. 2007a; Lee et al. 2016a). The responses downstream of 

specific wavelengths are complex as phyB inhibits root elongation in response to red 

light (Costigan et al. 2011b), whereas phyA promotes root elongation under red, far-

red and blue light (Kurata and Yamamoto 1997). Interestingly, under far-red 

illumination, activation of root elongation is resistant to photosynthesis inhibito rs, 

suggesting that a phyA also promotes root growth independently of photosynthes is 

(Kurata and Yamamoto 1997).  The root activity of phyA and phyB seems is essential 

for proper root development (Correll and Kiss 2005b; Molas et al. 2006; Salisbury et 

al. 2007a; Costigan et al. 2011b) influencing responses to signals other than light such 

as jasmonic acid (JA) (Costigan et al. 2011b). Studies on shade-avoidance response 

(SAR) have been helpful in elucidating some long-distance shoot-to-root signaling 

(van Gelderen et al. 2018a; Rosado et al. 2021). Shaded light (low R:FR ratio) stimulus 

in shoots represses LR emergence through a shoot phyA and HY5 dependent 

mechanism (van Gelderen et al. 2018a). Shoot shade also promotes the root-specific 

expression of stress related WRKY transcription factors affecting primary and lateral 

root growth via ethylene signaling, suggesting that shade translates into a stressful 

signal for roots (Rosado et al. 2021). 

In order to determine better experimental setups for evaluating how light perception 

is transduced to the roots grown in the darkness, different growing conditions were 

developed to reduce direct light exposure to roots, such as D-Root (Silva-Navas et al. 

2015; van Gelderen et al. 2018b; Miotto et al. 2019a; Cabrera et al. 2022) dark-

protected roots (Sassi et al. 2012; Xu et al. 2013; Yokawa et al. 2013; Novák et al. 

2014; Lee et al. 2016a; Sakaguchi and Watanabe 2017a) and improved plant-growing 

method-IPG (Qu et al. 2017) which have been thoroughly reviewed recently (Lacek 

et al. 2021a; Cabrera et al. 2022). Shoot-only illumination promotes root growth and 

suggests that shoot-to-root signaling occurs in a photosynthesis-dependent fashion 

(Kurata and Yamamoto 1997; Kircher and Schopfer 2012; Sassi et al. 2012; Silva -

Navas et al. 2015; Miotto et al. 2019a). Interestingly, monochromatic red light inhib its 

primary root growth solely in dark-grown roots (shoot illumination only) suggest ing 

that, in arabidopsis, red light represses root growth  by activation of shoot-localized 
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photoreceptors that influences shoot-to-root transport of signaling molecules 

(Spaninks et al. 2020). Moreover, shoot-localized phytochromes exhibit long-distance 

effects on root elongation (Salisbury et al. 2007a; Costigan et al. 2011b).  Root phyB 

is necessary for HY5 protein accumulation in the root, whereas root illumination 

represses the main root growth via HY5 whose abundance is also regulated by light in 

decapitated seedlings, which suggest a root-autonomous process (Zhang et al. 2019). 

This effect is probably regulated by phytochromes, although recent data suggests that 

root-only light exposure is not sufficient to enhance HY5 accumulation in seedlings 

roots (Gao et al. 2021) which opens the question whether other factors than light could 

lead to root stabilization of HY5. The mechanisms leading to the activation of 

photoreceptors in roots shielded from direct light are still unclear as the penetrance of 

light in root tissues is limited. Some works suggest that phytochromes could be 

activated through stem light-piped light (Lee et al. 2016a; Lee et al. 2017a; Ko and 

Helariutta 2017). The significance of the light-pipe mechanism on the activation of 

root phytochromes is still debated as root-only illumination seems to affect shoot 

hypocotyl responses. Direct exposure of roots to red light did not counteract the far-

red shoot effect in reducing lateral root (LR) emergence as well as it did not affect 

PHYB-GFP photobody accumulation (van Gelderen et al. 2018a). Nevertheless, it is 

feasible that various chemical signals (peptides, RNAs, hormones, metabolites, etc.) 

downstream of shoot-activated photoreceptors many transduce long distance 

information to promote root growth (Buer et al. 2007; Notaguchi et al. 2012; 

Matsubayashi 2014; Oh et al. 2018; Binenbaum et al. 2018; Kondhare et al. 2021). 

Shoot illumination was shown to activate the translocation of the positive 

photomorphogenic regulator HY5 to roots where it induces NITRATE 

TRANSPORTER 2.1 (NRT2.1) expression, enhancing nitrate uptake to 

counterbalance photosynthetic carbon (Chen et al. 2016a). The interplay between 

carbon and nitrogen demand for plant growth is linked to photosynthetic capacity and 

photomorphogenic signaling. Sucrose alone does not activate NRT2.1 expression, 

which is dependent on light and HY5. Evidences support the hypothesis that shoot 

HY5 is transported to the roots both in arabidopsis and tomato (Solanum 

lycopersicum) where local activity of HY5 in the root promotes root gravitropism, 

strigolactone biosynthesis and activation of light-responsive genes (Chen et al. 2016a; 

Lee et al. 2016a; Sakuraba et al. 2018; Guo et al. 2021; Ge et al. 2022). In parallel, Pi 
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starvation response is dependent on shoot-to-root HY5 mobility activated downstream 

of shoot cryptochromes (Gao et al. 2021). 

The hypothesis of root dependency on mobile, shoot-derived HY5 was challenged by 

the observation that a shoot-restricted version of HY5 (CAB3p::DOF-HY5) was able 

to complement root elongation, but not the LR phenotype of hy5 mutants (Burko et al. 

2020a). Accordingly, a shoot signal downstream of HY5 might be needed for shoot-

to-root communication. The sugar-insensitive and abscisic acid (ABA) deficient 

mutant sis4/aba2 has reduced NRT2.1 activation by HY5 (Chen et al. 2016a), 

suggesting a converging point between light, sugar, and ABA. HY5 activates the 

production of flavonoids to counterbalance reactive oxygen species (ROS) 

accumulation (Stracke et al. 2010; Silva-Navas et al. 2016; Zhang et al. 2019). 

Flavonoids are phloem mobile and highly abundant in root tissues (Buer et al. 2007) 

which might also participate in long distance signaling. Although the importance of 

HY5 connecting shoot-to-root light signaling is well documented, its role as a primary 

activator of root photomorphogenesis is still uncertain. 

 

Metabolic demand and photomorphogenesis 

The growth of the hypocotyl and the primary root compete for sucrose as an energy 

source (Kircher and Schopfer 2012; Lilley et al. 2012). Sucrose sustains the root 

primary metabolism and also functions as a major shoot-to-root signal, regulat ing 

nutrient uptake to counterbalance the shoot photosynthetic carbon input (Lejay et al. 

2008; Li and Sheen 2016). The light effect on roots goes beyond photosynthetic sugar 

availability (Kircher and Schopfer; Kurata and Yamamoto 1997; Xiong et al. 2013) as 

sugar alone cannot fully activate root growth independently of an active 

photomorphogenic program (Kurata and Yamamoto 1997; García-González et al. 

2021; Miotto et al. 2021).Although the photomorphogenic signaling networks are 

mainly regulated by light in shoots, it is feasible that they could be regulated by other 

signals in roots growing underground as several photoreceptor mutants are affected in 

root growth (Correll and Kiss 2005a; Canamero et al. 2006; Costigan et al. 2011b). 

Since the positive effect of sugars on root growth is not observed in excised roots, it 

has been suggested that additional mobile signals from the shoot are needed for root 

elongation (Kurata and Yamamoto 1997). Therefore, the activation of the root 

competence to act as an energy sink might be a central part of photomorphogenesis.   
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During germination, sucrose increases hypocotyl elongation (Stewart et al. 2011) via 

the sucrose dependent stabilization of PIFs leading to increased auxin transport and 

synthesis. This response is impaired in the pifQ mutant, as PIFs were shown to 

integrate growth with metabolic demands during photomorphogenesis (Lilley et al. 

2012). Alongside sugars, light enhances shoot-derived auxin transport (Bhalerao et al. 

2002b), which promotes root growth by activating GA responses (Fu and Harberd 

2003). Whereas light reduces GA levels in hypocotyls, roots highly depend on GA to 

establish photomorphogenic growth (Ubeda-Tomás et al. 2008; Ubeda-Tomás et al. 

2009). Photosynthesis derived sugars transported from shoots affect DELLA root 

responses as sucrose inhibits DELLA degradation and promotes anthocyanin 

accumulation (Li et al. 2014), a common phenotype observed in cop, spaQ and pifQ 

mutants. The developmental trade-off between shoot/root growth during the transit ion 

from skoto- to photomorphogenesis places PIFs as essential players for the primary 

root growth, as seen for PIF4 in the control of root thermomorphogenesis (Gailloche t 

et al. 2020). 

Photosynthetic carbon fixation by the shoots must be coordinated with water and 

mineral uptake by the roots (Forde 2002; Liu et al. 2009), this way DELLA and PIF 

counterbalance sugar-hormone cross-regulation networks (de Lucas et al. 2008; Feng 

et al. 2008; Ljung et al. 2015), adjusting growth rates in shoots according to the carbon 

input. Therefore, PIFs repress the sucrose- and glucose-induced auxin biosynthes is, 

which promotes root growth (Sairanen et al. 2013a). Interestingly, the root responses 

to compensate for the nutrient acquisition in higher C/N ratios are not PIF-dependent 

(Lilley et al. 2012), indicating that shoots and roots operate separate carbon sensing 

mechanisms. The higher sugar/auxin transport to the roots induces N-uptake to 

equilibrate the C/N balance [52] in response to shoot light. Although PIFs play a 

central role mediating hypocotyl elongation in the dark, their roles in root 

photomorphogenic development are still unknown. For one part, PIFs are about 5-fold 

less expressed in roots when compared to shoot tissues (Jeong and Choi 2013).  

While photomorphogenesis drastically affects both shoot and root growth, there is a 

major representation of hypocotyl over root growth measurements in the published 

literature, so the root-specific effects of light signaling remain largely to be elucidated. 

A detailed description of the signaling events triggered by light in the seedling’s root 

are depicted in Figure 3. 
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Figure 3.  Effects of shoot illumination for the control of primary root growth.  Shoot illumination activates 

the main photomorphogenesis photoreceptors: Phytochromes (phyA and phyB) and cryptochromes (cry1 and 

cry2), that suppress the activity of the photomorphogenic repressor COP1 (Podolec and Ulm 2018b). Suppression 

of COP1 enhances the stability of its degradation targets such as HY5 and SCAR1 which act as positive regulators 

of root growth (Dyachok et al. 2011; Zhang et al. 2019; Ponnu and Hoecker 2021b). In the shoot, activated phyB 

enhances HY5 stability that activates ABI5 leading to the to the production of a mobile signal (ABA?) to the roots 

that activate ABI5-dependent expression of a hydrogen peroxidase (PER1) that detoxifies ROS (Ha et al. 2018b). 

HY5 also directly induces root accumulation of flavonoids (Stracke et al. 2010) alongside the auxin-responsive 

WRKY23 transcription factor that promotes root growth by ROS detoxification and regulation of polar auxin 

transport (PAT) (Grunewald et al. 2012; Prát et al. 2018). One centralizing effect of shoot illumination is the 

enhancement of PAT and the stabilization of PINs in the plasma membrane (PM -PINs)(Laxmi et al. 2008a; Sassi 

et al. 2012), which is promoted by HY5 (Laxmi et al. 2008a), KAI2 (Hamon-Josse et al. 2022) and BR (Bao et al. 

2004; Li et al. 2005) and induces GA root responses through DELLAs degradation in the endodermis(Fu and 

Harberd 2003; Ubeda-Tomás et al. 2008; Ubeda-Tomás et al. 2009; Shani et al. 2013). DELLAs enhance SCL3 

transcription which stimulates root growth (Zhang et al. 2011b; Heo et al. 2011). Shoot blue light, acting via 

cryptochromes (CRY1/2), induces the root expression of DWF4, a BR biosynthetic gene, via an unknown mobile 

signal (Sakaguchi and Watanabe 2017a; Sakaguchi et al. 2019). Activation of photosynthesis increases sucrose 

transported to the root to fuel heterotrophic metabolism and growth. Sucrose is hydrolyzed in roots by invertases 

(CNIV) activating glucose sensing mechanisms that suppress EIN3 expression via HXK1 (Meng et al. 2020) and 

promote BZR1/2 stabilization via TOR (Zhang et al. 2016; Wu et al. 2019). TOR also activates E2Fa via EIN2-

repression leading to RAM activation (Fu et al. 2021). Glucose enhances root auxin biosynthesis by promoting 

YUCCAs expression (Sairanen et al. 2013b). Shoot expressed CYP38 increases root IAA biosynthesis downstream 

of photosynthetic output (Duan et al. 2021). Processes unknown to operate in roots are labeled with a question 

mark. Abbreviations: ABI5, ABA INSENSITIVE5; BR, brassinosteroids; BZR1, BRASSINAZOLE-
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RESISTANT1;  COP1, CONSTITUTIVE PHOTOMORPHOGENIC 1; cry1 and cry2, CRYPTOCHROME 1 and 

2; CYP38, CYCLOPHYLIN38; CINV, CYTOSOLIC INVERTASE; DELLAs, DELLA proteins; DWF4, 

DWARF4; E2Fa, TRANSCRIPTION FACTOR E2FA; EIN2, ETHYLENE-INSENSITIVE PROTEIN2; EIN3, 

ETHYLENE INSENSITIVE3; GA, gibberellins; HY5, ELONGATED HYPOCOTYL 5; HXK1, 

HEXOKINASE1; KAI2,  KARRIKIN INSENSITIVE2;  PER1, PEROXIDASE1; phyA and phyB, 

PHYTOCHROME A and B; PM -PINs, plasma membrane PINs; ROS, reactive oxygen species; SCAR1, 

Suppressor of cAMP receptor; SCL3, SCARECROW-LIKE3; TOR, TARGET OF RAPAMYCIN; WRKY23, 

WRKY DNA-binding protein23;  YUCCAs, Flavin Monooxygenase-Like Enzymes. 

Seedlings germinated in photosynthesis-constrained and sugar-free conditions can 

activate photomorphogenesis but such conditions trigger the root meristem to enter a 

mitotic quiescent state with arrested meristematic activity. Growth reactivation is 

dependent on photosynthesis-derived sugars (sucrose, glucose, fructose) and 

TARGET OF RAPAMYCIN (TOR) kinase but are uncoupled from glucose-sens ing 

HEXOKINASE 1 (HXK1) signaling (Xiong et al. 2013). Sugar also promotes BR 

signaling through TOR-dependent stabilization of BZR1 (Zhang et al. 2016). In 

addition, sugar represses ETHYLENE INSENSITIVE 2 (EIN2) signaling in roots to 

allow activation of the root apical meristem (RAM) via E2F TRANSCRIPTION 

FACTOR 3 (E2Fa) (Fu et al. 2021) (Figure 3). The reactivation of mitotic activity in 

the root meristem after glucose depletion in so called “mitotic quiescent seedlings” 

seems to be dependent of light and auxin in shoots but only dependent on glucose in 

roots (Xiong et al. 2013; Li et al. 2017). The stimulation of the TOR kinase that leads 

to shoot meristem activation was shown to be dependent on auxin activation of the 

RHO-RELATED PROTEIN FROM PLANTS 2 (ROP2) GTPase (Li et al. 2017; 

Schepetilnikov et al. 2017). Moreover, auxin activation of TOR is repressed by COP1 

in the darkness leading to an overall suppression of translation, restraining 

photomorphogenesis in the shoot (Chen et al. 2018). It is however unknown whether 

a similar pathway operates for the activation of root growth during deetiolation. 

Considering that glucose seems to be sufficient for TOR activation in the RAM, the 

direct light effects on TOR remains to be addressed in roots. In roots, TOR shows 

localized enhanced expression in the QC and columella cells (see online supplementa l 

information Figure S1B). Transcriptomic analysis of roots from photomorphogenic 

seedlings (Miotto et al. 2019a) shows ~25% common upregulated genes with Glucose-

TOR target genes (Xiong et al. 2013), suggesting that TOR signaling in roots is an 

important step for the activation of the photomorphogenic developmental program.  
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It is also tempting to hypothesize that shoot-derived sugars activate root growth via 

suppression of ETHYLENE INSENSITIVE 3 (EIN3), which acts repressing the 

primary root growth and promoting skotomorphogeneis (An et al. 2012; Jeong et al. 

2016; Liu et al. 2017; Harkey et al. 2018; Vaseva et al. 2018). EIN3 acts in the root as 

a transcriptional repressor of CYTOSOLIC INVERTASE 1 (CINV), which is 

essential for sucrose assimilation (Meng et al. 2020). EIN3 expression is further 

repressed by glucose accumulation, creating a sugar sensing loop (Figure 3). Ethylene 

seems to be central for root growth repression under shade conditions (Rosado et al. 

2021) and its signaling also feedbacks with auxin in the root epidermis (Vaseva et al. 

2018) although this relationship to photomorphogenic root growth remains to be 

evaluated.  

 

BOX 1 - Phytohormones as promoters of root photomorphogenic growth  

Light grown seedlings activate auxin synthesis in young leaves which is polarly 

transported to the roots activating the primary and lateral root development (Bhalerao 

et al. 2002b; Salisbury et al. 2007a; Swarup et al. 2008). Shoot-synthesized auxin 

promotes RAM activity, induces PIN-FORMED 1 (PIN1) and PIN-FORMED 2 

(PIN2) transcription and the plasma membrane (PM) stabilization of their proteins in 

the root tip. Seedlings grown in increasing shoot light intensities progressive ly 

attenuated auxin transport chemical inhibition effects supporting that shoot light 

increases auxin polar transport to induce primary root growth (Miotto et al. 2021). 

PIN2 stabilization is impaired in hy5-1 mutants and enhanced in cop9-1 (Laxmi et al. 

2008a). Light repression of COP1 increases PINs gene expression to sustain shoot-

derived auxin as a mobile signal to stabilize root PIN1 and PIN2 in dark grown roots, 

showing that light-dependent root growth depends on shoot signals (Sassi et al. 2012). 

The cop1 mutants display higher PIN1 hypocotyl and root expression in darkness as 

well as stabilization of PM PIN2 in a proteasome-dependent fashion. Furthermore, 

cop1 RAM size is more sensitive to auxin transport inhibitors than WT, suggest ing 

that COP1 affects auxin-dependent responses (Sassi et al. 2012). These observations 

place COP1 in a central role in the root regulation of auxin transport to sustain RAM 

activity and primary root growth (Figure 3). Although the hypothesis that shoot-

derived polar transported auxin would have a major role as a signal to trigger root 

growth, accumulated evidence suggests that root derived auxin might be even more 
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important for the promotion of root development (Ljung et al. 2001; Ljung et al. 2005; 

Petersson et al. 2009; Chen et al. 2014) and meristem maintenance (Brumos et al. 

2018) as the root becomes progressively independent from the shoot on its own auxin 

synthesis during early development (Bhalerao et al. 2002b; Ljung et al. 2005). Both 

sucrose and glucose promote IAA root biosynthesis, where the auxin biosynthet ic 

gene YUCCA9 (YUC9) acts as a PIF-repressed, sugar-induced converging point for 

auxin accumulation in roots in response to shoot light (Sairanen et al. 2013a). High 

endogenous auxin levels in the yucca-D mutant partially phenocopies sucrose 

treatment on root elongation (Lilley et al. 2012) whereas inhibition of auxin transport 

blocks sucrose induced hypocotyl elongation. The shoot-expressed CYCLOPHYLIN 

38 (CYP38) was found to be involved in shoot-to-root signaling downstream of 

photosynthetic activity by increasing root IAA levels (Duan et al. 2021) and 

KARRIKIN INSENSITIVE 2 (KAI2) was identified promoting light- induced PIN-

dependent activation of rootward auxin transport (Hamon-josse et al. 2021). 

Paclobutrazol inhibition of gibberellin (GA) biosynthesis drastically represses root 

growth (Zhang et al. 2011b) and the GA-DELLA response in the root endodermis was 

demonstrated to be crucial for root meristem size and growth (Ubeda-Tomás et al. 

2008; Ubeda-Tomás et al. 2009; Shani et al. 2013) acting partially through 

SCARECROW-LIKE3 (SCL3) (Heo, 2011; Zhang 2011) a GRAS-type transcript ion 

factor. PIF3 and PIF4 are major activators of GA transcriptional responses, and their 

activity in hypocotyls is specifically repressed by DELLA proteins (de Lucas et al. 

2008; Feng et al. 2008). DELLAs, in its turn, are highly expressed in roots (see online 

supplemental information Figure S1A). Although their repressive action on PIFs 

during shoot etiolation places DELLAs as promoters of photomorphogenesis (Achard 

et al. 2007), their roles on light dependence of root GA-responses are not clear. A 

possible link might lie on the DELLA repression of BZR1-dependent BR responses 

(Bai et al. 2012; Li et al. 2012; Li et al. 2014), as BZR1 is highly expressed in root 

tissues and its activity is counterbalanced by auxin and other factors (Chaiwanon and 

Wang 2015; Chaiwanon et al. 2016). SINA OF ARABIDOPSIS THALIANA 

(SINAT) Ubiquitin E3 ligases promote degradation of BZR1/2 in the light to reduce 

hypocotyl elongation (Yang et al. 2017a).  However, the light responsive BR effect 

on root growth is opposite to hypocotyls as local BR biosynthesis and signaling was 

described to be essential for primary root growth (Chaiwanon and Wang 2015; 
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Vukašinović et al. 2021). BR signaling induces GA biosynthesis (Unterholzner et al. 

2015), possibly linking both hormones to root growth in response to light. DWARF 4 

(DWF4), a BR biosynthetic gene, shows root-specific expression which is controlled 

by shoot-perceived blue light, acting though cryptochromes to promote BR 

accumulation in roots (Sakaguchi and Watanabe 2017b; Sakaguchi et al. 2019). 

 

Figure S1: Root expression pattern of COP1 targets and light signaling genes. Heat map of averaged 

expression for selected genes from a high-resolution root expression map of arabidopsis seedlings. Each column 

represents a root tissue and each line a single gene listed on the right. The color indicates the fold change average 

expression of each gene. (A) COP1/SPA Ubiquitination-targets, (B) Selected light signaling genes. The analysis 

was performed in Clustvis (Metsalu and Vilo 2015) with default settings and raw data from Table S5 from (Li et 

al. 2016). 

Shoot-produced abscisic acid (ABA) was described as a mobile promotor of root 

growth in many species (McAdam et al. 2016b; Gil et al. 2018). Interestingly, a shoot-

to-root mobile signal might be produced downstream a phyB-dependent ABA 

INSENSITIVE 5 (ABI5) signaling module that represses ROS production in the 

primary roots to promote root elongation (Ha et al. 2018b). Altogether, this suggests 

that ABI5 or other ABA-related signals might also play a role in the root responses to 
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shoot illumination. hy5 mutants show ABA hypersensitivity whereas cop1 mutants 

show ABA hyposensitivity during postgermination development (Yadukrishnan et al. 

2020a), with COP1 acting as an enhancer of the ABA signal (Yadukrishnan et al. 

2020b) during early seedling establishment. The role of ABA as a promoter of growth 

is still debated (Humplík et al. 2017) as it has essential roles both to sustain etiolat ion 

and photomorphogenesis.  

 

Concluding Remarks and Future Perspectives  

The past decade has been extremely exciting for plant photobiology and remarkable 

discoveries have been made on shoot photomorphogenic responses and its underlying 

photoreceptors. On the other hand, the signaling events controlling root photomorphogenesis 

have been largely overlooked and are just now surfacing. Recent findings have shown that 

long distance communication plays a major role for photomorphogenesis, abiotic and biotic 

stresses, nutrient signaling, thermomorphogenesis, and circadian entrainment between shoots 

and roots. Tissue specific expression of light signaling components can now be evaluated in 

a single cell context. Tissue-specific gene knockouts and targeted gene ablation techniques 

allow for unprecedented discoveries without the need for more invasive experimentation such 

as grafting or cotyledon excision. We encourage the community of photomorphogenesis to 

extent their focus on unlighted aspects of root development.  
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Table 1. Root effects of light signaling components  

Gene AGI code  Protein identity  Signaling 

role 

Processes involved in roots Refs 

CRY1 AT4G08920 cryptochrome 1(CRY1) Photoperc

eption 

Shoot activated CRY1 positively 

controls primary root growth and 

restrains lateral root growth by 

inhibiting auxin transport. Blue 

light promotes DWF4 expression 

and BR biosynthesis in root tips 

(Zeng et al.; Canamero et al. 2006; Sakaguchi et al. 2019) 

CRY2 AT1G04400 cryptochrome 2(CRY2) Photoperc

eption 

CRY2 negatively controls primary 

root elongation under higher blue 

light intensity 

(Canamero et al. 

2006) 

 

CRY3 AT5G24850 cryptochrome 3(CRY3) Photoperc

eption 

N/A  

PHOT1 AT3G45780 phototropin 1(PHOT1) Photoperc

eption 

PHOT1 is expressed in the root 

elongation zone stele and 

cortex. PHOT1 is involved in 

negative root phototropism and 

suppresses lateral root growth 

(Sakamoto and 

Briggs 2002; Galen 

et al. 2007; Wan et 

al. 2008; Wan et al. 

2012; Silva-Navas 

et al. 2015; Moni et 

al. 2015) 

PHOT2 AT5G58140 phototropin 2(PHOT2) Photoperc

eption 
N/A  

PHYA AT1G09570 phytochrome A(PHYA) Photoperc

eption 

Shoot activated PHYA induces 

shoot-derived auxin transport to 

promote LR growth  

(Salisbury et al. 

2007a; Silva-
Navas et al. 2015; 

Kumari et al. 2019) 

PHYB AT2G18790 phytochrome B(PHYB) Photoperc

eption 

Both shoot and root-activated 

PHYB promote primary root growth 

(Salisbury et al. 
2007a; Silva-

Navas et al. 2015; 

Kumari et al. 2019) 

PHYC AT5G35840 phytochrome C(PHYC) Photoperc

eption 

PHYC attenuates the positive red-

light phototropic response in roots. 

(Kumar et al. 2008) 

 

PHYD AT4G16250 phytochrome D(PHYD) Photoperc

eption 

PHYD acts in root growth inhibition 

in response to direct red light 

alongside PHYA and PHYB 

(Correll and Kiss 

2005a) 

 

PHYE AT4G18130 phytochrome E(PHYE) Photoperc

eption 

N/A  

UVR8 AT5G63860 Ultraviolet-B receptor (UVR8) Photoperc

eption 

UVR8 inhibits auxin responses in a 

tissue‐autonomous manner and 

thereby regulates lateral root 

growth. 

(Yang and Liu 

2020)(Yang et al. 

2020) 

 

COP1 AT2G32950 Transducin/WD40 repeat-like 

superfamily protein(COP1) 

Photoperc

eption 

COP1 represses root growth by 

inhibiting PIN1 and PIN2 in the root 

as well as maintaining low levels of 

positive photomorphogenic 

transcriptional regulators in the dark 

(Sassi et al. 

2012)(Bhatnagar et 

al. 2020)(Ponnu 

and Hoecker 

2021b) 

 

DET1 AT4G10180 deetiolated1 Ubiquitin-

Proteaso

me 

Represses photomorphogenesis 

maintaining low levels of positive 

photomorphogenic transcriptional 

regulators in the dark  

(Cañibano et al. 

2021) 

 

BBX21 AT1G75540 salt tolerance homolog2 

(STH2/BBX21) 

COP1 

Ub-target 

HY5 positive regulator, represses  

the formation of lateral roots 

(Xu et al. 2016)(Xu 

et al. 2018)(Job et 

al. 2018) 

 

BBX32 AT3G21150 B-box type zinc finger protein 

32(BBX32) 

COP1 

Ub-target 

BBX32 is a HY5 negative regulator 

and suppresses blue-light dependent 

Pi starvation responses.  

(Yeh et al. 

2020)(Holtan et al. 

2011)  
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BBX24 AT1G06040 B-box type zinc finger protein 24 COP1 

Ub-target 

HY5 negative regulator. BBX24 is a 

negative regulator of UV-B 

inhibition of root growth.  

(Job et al. 

2018)(Lyu et al. 

2019)  

BBX25 AT2G31380 B-box type zinc finger protein 25 

, salt tolerance homolog1 

(STH/BBX25) 

COP1 

Ub-target 

BBX25 acts as a negative regulator 

of photomorphogenesis enhancing 

COP1 and suppressing HY5 

functions. 

(Gangappa et al. 

2013b)(Gangappa 

et al. 2013a) 

 

BBX4/C

OL3 

AT2G24790 B-box type zinc finger protein 4 

(CONSTANS-LIKE3) 

COP1 

Ub-target 

BBX4/COL3 is a positive regulator 

of photomorphogenesis that acts 
downstream of COP1 and can 

promote lateral root development 

independently of COP1  

(Datta et al. 2006) 

GAI AT1G14920 GRAS family transcription factor 

family protein (DELLA protein 

GAI) 

COP1 

Ub-target 

DELLAs reduce ROS and promote 

flavonol accumulation in roots 

(Achard et al. 

2008)(Tan et al. 

2019) 

 RGA1 AT2G01570 GRAS family transcription factor 

family protein (DELLA protein 

RGA1) 

COP1 

Ub-target 

RGL1 AT1G66350 GRAS family transcription factor 

family protein (DELLA protein 

RGA-like 1) 

COP1 

Ub-target 

RGL2 AT3G03450 GRAS family transcription factor 

family protein (DELLA protein 

RGA-like 2) 

COP1 

Ub-target 

RGL3 AT5G17490 GRAS family transcription factor 

family protein (DELLA protein 

RGA-like 3) 

COP1 

Ub-target 

GATA2 AT2G45050 GATA transcription factor 

2(GATA2) 

COP1 

Ub-target 

GATA2 is a positive regulator of 

photomorphogenesis and key player 

in the specification of the root 

transition domain 

(Luo et al. 

2010)(Jiang et al. 

2017) 

 

GBF1 AT4G36730 G-box binding factor 1(GBF1) COP1 

Ub-target 

GBF1 interacts and heterodimerizes  
with HY5 and HYH proteins to 

regulate photomorphogenic growth 

(Singh et al. 
2012a)(Ram et al. 

2014) 

 

HY5 AT5G11260 Basic-leucine zipper (bZIP) 

transcription factor family 

protein(HY5) 

COP1 

Ub-target 

Main photomorphogenesis 

regulator, induces primary root 
growth and represses lateral root 

growth under shade. Activates 

nitrate uptake via NRT2.1 

(Oyama et al. 

1997)(Burko et al. 
2020a)(Zhang et al. 

2017b) 

 

HYH AT3G17609 HY5-homolog(HYH) COP1 

Ub-target 

HY5 activates HYH expression in 

roots and contributes to root growth 

under different light conditions 

(Zhang et al. 

2017b) 

 

BIN2 AT4G18710 Protein kinase superfamily 

protein 

COP1 

Ub-target 

Represses root growth via inhibition 

of BR siganling. BIN2 activates 

UPB1 via direct phosphorylation, 

which represses the expression of 

root peroxidases. 

(Li et al. 

2020)(Peng et al. 

2008) 

 

EBF1 AT2G25490 EIN3-binding F box protein 1 COP1 

Ub-target 

Repressor of ethylene responses and 

PIF3 

(Binder et al. 2007; 

Shi et al. 2016; Pan 

and Shi 2017; 

Dong et al. 2017a)  

 

EBF2 AT5G25350 EIN3-binding F box protein 2 COP1 

Ub-target 

Repressor of ethylene responses and 

PIF3 

GI AT1G22770 gigantea protein (GI) COP1 

Ub-target 

GI integrates circadian oscillation in 

roots  

(Bouché et al. 

2016) 

 

FAR1 AT4G15090 FRS (FAR1 Related Sequences) 

transcription factor family 

COP1 

regulation 

FAR1 promoter main root growth 

and represses lateral roots 

(Tang et al. 2013) 



67  

  

FHY3 AT3G22170 FRS (FAR1 Related Sequences) 

transcription factor family 

COP1 

regulation 

FAR1 and FHY3 contribute to 

ABA-dependent inhibition of root 

elongation. 

(Tang et al. 2013) 

 

RPS6 AT4G31700 ribosomal protein S6 COP1 

regulation 

RPS6 acts downstream of TOR to 

enhance translation triggered by 

light. No root effect described yet. 

(Chen et al. 2018) 

 

TOR AT1G50030 Target of Rapamycin kinase COP1 

regulation 

COP1 represses TOR activity in 

dark-grown seedlings. TOR 

integrates auxin-ROP2 and glucose 

energy signals to activate E2Fa, 

leading to cell proliferation in the 

root. TOR phosphorylates and 

stabilizes PIN2 and influences the 

gradient distribution of PIN2 in the 

Arabidopsis primary root. 

(Li et al. 

2017)(Yuan et al. 

2020)(Xiong et al. 

2013)(Xiong and 

Sheen 2012)(Fu et 

al. 2021) 

  

 

BRI1 AT4G39400 BRASSINOSTEROID 

INSENSITIVE 1, Leucine-rich 

receptor-like protein kinase 

family protein 

COP1 

regulation 

BRI1 activity in the epidermis 

promotes root meristem size. BRI1 

is required for root vascular cell-fat e 

maintenance. 

(Vukašinović et al. 

2021)(Hacham et 

al. 2011)(Jaillais 

and Vert 

2016)(Cosme et al. 

2021)(Cosme et al. 

2021)(Cosme et al. 

2021)(Caño-

Delgado et al. 

2010; Ranjan et al. 

2011) 

 

ROP2 AT1G20090  RHO-related protein from plants 

2. Rho GTPase family 

COP1 

regulation 

Light promoted auxin signaling in 

roots activates ROP2-dependent 

TOR activation of translation 

(Schepetilnikov et 

al. 2017)(Li et al. 

2017) 

 

SPA1 AT2G46340 SPA (suppressor of phyA-105) 

protein family(SPA1) 

COP1 

regulation 

Photomorphogenesis repressor (Xu et al. 

2014b)(Balcerowic

z et al. 2011)(Saijo 

et al. 

2003)(Hoecker and 

Quail 2001; 

Sheerin et al. 

2015a; 

Balcerowicz et al. 

2017; Paik et al. 
2019; Pham et al. 

2020; Lee et al. 

2021) 

 

SPA2 AT4G11110 SPA1-related 2(SPA2) COP1 

regulation 

Photomorphogenesis repressor 

SPA3 AT3G15354 SPA1-related 3(SPA3) COP1 

regulation 

Photomorphogenesis repressor 

SPA4 AT1G53090 SPA1-related 4(SPA4) COP1 

regulation 

Photomorphogenesis repressor 

MSBP1 At5g52240 membrane steroid binding 

protein 1 

HY5 

signaling 

MSBP1 is a direct HY5/HYH target. 

Stimulates PIN2 cycling under 

gravi-stimulation.  

(Yang et al. 

2008)(Shi et al. 

2011) 

 

CAM7 AT3G43810 calmodulin 7(CAM7), 

transcription factor 

HY5 

signaling 

CAM7 and HY5 genetically 

interact to control lateral root 

growth and ABA responses. The 

cam7 mutant suppresses the lhy5 

lateral root phenotype. 

(Senapati et al. 

2019)(Kushwaha 

et al. 2008; Abbas 

et al. 2014) 

 

PKL AT2G25170 chromatin remodeling factor 

CHD3 (PICKLE)(PKL) 

HY5 

signaling 

Repressor of HY5 expression. 

Negatively regulates auxin-

mediated LR formation via 

ARF7/ARF19 

(Jing et al. 

2013)(Fukaki et al. 

2006; Jing and Lin 

2013) 

 

SHW1 AT1G69935 short hypocotyl in white 

light1(SHW1) 

HY5 

signaling 

SHW1 promotes COP1-mediated 

degradation of HY5. 

The shw1 mutants display shorter 

main roots and suppress the 

gravitropic defects of hy5 roots.  

(Bhatia et al. 

2008)(Srivastava et 

al. 2015) 
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TCP2 AT4G18390 TEOSINTE BRANCHED 1, 

cycloidea and PCF transcription 

factor 2(TCP2) 

HY5 

signaling 

CRY1 interactor, positive regulator 

of HY5/HYH 

(He et al. 2016) 

 

PIF1 AT2G20180 bHLH transcription factor , 

phytochrome interacting factor 3-

like 5 (PIL5/PIF1) 

PIF 

signaling 

N/A (Shin et al. 2009a; 

Pham et al. 2018c; 

Paik et al. 2019) 

PIL1/PI

F2 

AT2G46970 bHLH transcription factor , 

phytochrome interacting factor 3-

like 1 (PIL1/PIF2) 

PIF 

signaling 

N/A  

PIF3 AT1G09530 bHLH transcription factor , 

phytochrome interacting factor 

3(PIF3) 

PIF 

signaling 

PIF3 is involved in the inhibition of 

root growth induced by nitric oxide 

(NO) in light. PIF3 interacts with 

EIN3 in a interdependent regulatory 

module. 

(Liu et al. 

2017)(Bai et al. 

2014) 

 

PIF4 AT2G43010 bHLH transcription factor , 

phytochrome interacting factor 

4(PIF4) 

PIF 

signaling 

PIF4 promotes Al-inhibition of 

primary root growth by repressing 

YUCCAs. 

(Liu et al. 2016) 

 

PIF5 AT3G59060 bHLH transcription factor,  

phytochrome interacting factor 3-

like 6 (PIL6/PIF5) 

PIF 

signaling 

N/A (Hornitschek et al. 

2012; Pham et al. 

2018c) 

PIF6 AT3G62090 bHLH transcription factor,  

phytochrome interacting factor 3-

like 2 (PIL2/PIF6) 

PIF 

signaling 

N/A (Khanna et al. 

2004) 

PIF7 AT5G61270 bHLH transcription factor,  

phytochrome interacting factor 

7(PIF7) 

PIF 

signaling 

N/A (Li et al. 2012; 

Willige et al. 2021) 

PIF8 AT4G00050 bHLH transcription factor,  

phytochrome interacting factor 

8(PIF8) 

PIF 

signaling 

N/A  

BOP1 AT3G57130 Ankyrin repeat family protein / 

BTB/POZ domain-containing 

protein 

PIF 

signaling 

BOP1/2 control root secondary 

growth through activation of KNOX 

boundary genes and promote the 

expression of lignin biosynthetic 

genes 

(Woerlen et al. 

2017)(Zhang et al. 

2017a) 

 BOP2 AT2G41370 Ankyrin repeat family protein / 

BTB/POZ domain-containing 

protein 

PIF 

signaling 

LRB1 AT2G46260 BTB/POZ/Kelch-associated 

protein, Light Responsive BTB 

protein1 (LRB1) 

PIF 

signaling 

lrb12 mutants display longer main 

roots 

(Christians et al. 

2012) 

 

LRB2 AT3G61600 BTB/POZ/Kelch-associated 

protein, Light Responsive BTB 

protein2 (LRB2) 

PIF 

signaling 
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Abstract 

Following germination, seedlings grown in light show a photomorphogenic d evelopment with open and 

green cotyledons and a robust root system. The light perception by the photoreceptors activate autotrophic 

photosynthetic metabolism to sustain growth of the whole plant. Several studies have evaluated 

transcriptional responses to light signals. Nevertheless, evaluating a single source experiment might bias 

the identificationof general, reproducible light responses.  In order to identify widespread light-dependent 

signaling events that control early seedling photomorphogenesis we performed a survey comparing  

commonly regulated genes in transcriptomic public datasets derived from etiolated seedlings exposed to 

short light treatments. By compiling commonly regulated genes from different datasets, we obtained 

broadly representative regulated processes concerning general light transcriptional response. Our analysis 

shows that light primarly affects shoot gene expression promoting the assembly of photosynthetic 

machinery, signaling and redox responses. We observed that Transcriptograms allowed a better comparison 

among different experiments than DEseq analysis. We also identified that, transcriptional regulation of 

early light response is centered in the transcription factor ABA-Insensitive5 (ABI5) along with other bZIP 

transcription factors suggesting a mechanism by which dark expressed transcription factors guide the 

activation of early photomorphogenic genes. 

 

Keywords: Abscisic acid, photomorphogenesis, deetiolation, transcriptogram, bZIP 
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Abstract 

Following germination, seedlings grown in light show a photomorphogenic development 

with open and green cotyledons and a robust root system. The light perception by the 

photoreceptors activate autotrophic photosynthetic metabolism to sustain growth of the 

whole plant. Several studies have evaluated transcriptional responses to light signals. 

Nevertheless, evaluating a single source experiment might bias the identification of 

general light responses.  In order to identify widespread light-dependent signaling events 

that control early seedling photomorphogenesis we performed a survey comparing 

commonly regulated genes in transcriptomic public datasets derived from etiolated 

seedlings exposed to short light treatments. By compiling commonly regulated genes 
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from different datasets, we obtained broadly representative regulated processes 

concerning general light transcriptional response. Our analysis shows that light primarly 

affects shoot gene expression promoting the assembly of photosynthetic machinery, 

signaling and redox responses. We also identified that transcriptional regulation of early 

light response is centered in the transcription factor ABA-Insensitive5 (ABI5) along with 

other bZIP transcription factors suggesting a mechanism by which dark expressed 

transcription factors guide the activation of early photomorphogenic genes. 

 

1 Introduction 

Light is one of the most important enviromental factors that controls plant growth and 

development. Plants have evolved multiple ways to perceive light-related changes, such 

as quantity, quality, period and direction, adapting to ajust their development accordingly 

(Mancini et al. 2016; Dong et al. 2017; Oh et al. 2019; Lacek et al. 2021). The signaling  

system consists of photoreceptors for blue/UV-A light (phototropins, cryptochromes and 

‘Zeitlupes’), red/far-red (phytochromes), and UV-B (UVR8)  (Yu, 2010; Arsovski et al. 

2012;Tilbrook et al. 2013; Christie et al. 2015; Galvão and Fankhauser 2015; de Wit M, 

Keuskamp DH, Bongers FJ 2016; Yang et al. 2017; Pham et al. 2018).  

Photomorphogenic development is dependent on a large transcriptional reprogramming 

downstream of photoreceptor signaling. Photomophogenesis is actively repressed by 

many regulators such as the CONSTITUTIVE PHOTOMORPHOGENIC/DE-

ETIOLATED/FUSCA (COP/DET/FUS) and PHYTOCRHOME INTERACTING 

FACTOR (PIF) signaling modules   (Chory 1993; Hellmann and Estelle 2002; Lau and 

Deng 2012; Xu et al. 2015). The main receptors that control photomorphogenesis are the 

Phytochromes (phy) and Cryptochromes (cry) that upon light activation promote 

degragation of PIFs and supression of COP1/SPA ubiquitin ligase complexes, allowing 

the accumulation of light response transcrition factors such as ELONGATED 

HYPOCOTYL 5 (HY5), ELONGATED HYPOCOTYL HOMOLOG (HYH),  LONG 

AFTER FAR-RED LIGHT1 (LAF1), among others that trigger de-etiolation (Lau and 

Deng 2012; Xu et al. 2015; Zhong et al. 2021). 

Arabidopsis seedlings display contrasting developmental phenotypes when grown under 

light or in the darkness. In the light, the seedlings present a photomorphogenic 

development with green and open cotyledons, a short hypocotyl and a long primary root) 

(Wei et al. 1994). In darkness, however, the skotomorphogenic development produces 
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seedlings with closed cotyledons and an apical hook, a long hypocotyl and a short root 

(Pham et al. 2018a). Under the ground, the seedling protects the apical meristem keeping 

closed cotyledons and stimulate hypocotyl elongation. When exposed to  light, the 

cotyledons open, expand and start to perform photosynthesis allocating resources for root 

growth (Lau and Deng 2012). The shoot usually consists of the primary light responsive 

organ in the plant, but it also controls the developmental responses of the roots 

underground (Van Gelderen et al. 2018). However, the shoot-derived signals that promote 

root photomorphogenic growth are still under debate, such as sugars, phytohormones, the 

HY5 transcription factor, among others (Marchant et al. 2002; Salisbury et al. 2007; 

Laxmi et al. 2008; Kircher and Schopfer 2012; Regnault et al. 2015; Chen et al. 2016; 

Yang et al. 2020; Bhagat et al. 2021).  

A large amount of transcriptomic data is available from Arabidopsis seedlings exposed 

to different light conditions. Although these datasets have been evaluated individually, a 

cross comparison of these data may help to find common genes involved in light 

perception and signaling with higher confidence. In order to explore genes and pathways 

involved in early shoot light responses, we aimed for integrating expression profiling 

studies in Arabidopsis performing a survey in published public transcriptomic databases 

from light-treated young Arabidopsis etiolated seedlings. 

Our analysis allowed us to identify ABA-response factors as putative primary regulators 

of photomorphogenic gene expression linking dark-expressed transcription factors to 

guide the activation of early photomorphogenic genes. 

 

2 Materials and methods 

Plant materials 

Arabidopsis Columbia (Col-0) was used as wild-type (WT) and the mutant hy5 

(SALK_056405C) were obtained from the European Arabidopsis Stock Centre (NASC, 

http://arabidopsis.info/). Seeds from abi5-7, 35ScMyc:ABI5 (35S:ABI5) and pABI5:ABI5-

GUS were previously described (Albertos et al. 2015). Seeds from 35S:HY5 

(35S:FLASH-HY5ox) (Burko et al. 2020c) were kindly donated by Yogev Burko (The 

Salk Institute, USA). Mutants abf1 (SALK_043079), abf3 (SALK_075836), and abf4 

(SALK_069523) (Fernando et al. 2018) were kindly donated by Dana F. Schroeder 

(University of Manitoba, Canada). 

http://arabidopsis.info/
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Data Mining 

For data collection, the NCBI GEO functional genomics repository was queried. 

Experiments were searched using keywords, “Arabidopsis”,  “light” AND “shoot”. The 

microarrays selected were, GSE5617 (AtGenExpress  database, 

http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) (Kilian et al. 2007); GSE29657 (Liu et al. 

2012) as well as the RNA-seq GSE79576 (Sun et al., 2016). These datasets were selected 

because of their similar growth conditions, similar age of seedlings and wild ecotype 

(Col-0). Supplementary Table 1 summarizes the experimental conditions of the data sets.  

Individual preprocessing and differential expression analysis of the datasets  

For the microarray samples, the raw data was normalized with RMA method and 

expression values (Robust Multi-Array Average Expression Measure) were retrieved 

with affy R/Bioconductor package (Gautier et al. 2004). Differential expression analysis 

was performed using limma R/Bioconductor package. Genes were considered 

differentially expressed  when p value ≤ 0.001 with FDR adjustment (Ritchie et al. 2015).  

For the RNA-seq databases, the raw reads were aligned and annotated to Arabidopsis 

thaliana reference genome v10 using STAR aligner (Dobin et al. 2013). Counts from 

aligned reads were obtained with featureCounts (Liao et al. 2014) and normalized into 

log-2-counts-per-million. Differential expression analysis was performed using limma 

R/Bioconductor package protocol for RNA-seq experiments, considering only the 

differentially expressed genes with p value ≤ 0.001 with FDR adjustment (Ritchie et al. 

2015). 

Arabidopsis thaliana transcriptogram 

The transcriptogram is based on an ordered gene list retreived from protein-protein 

association information built in such a way that the probability of two gene products to 

be associated exponentially decays with their distances on the list. The fold-change 

expression pattern compared to a control sample is plotted according to this list forming 

peaks and valleys indicating the gene sets that are differentially expressed. 

To build the transcriptogram, protein-protein interaction data for Arabidopsis thaliana 

was obtained from the STRING v.10.5 database (Szklarczyk et al. 2017) using an 

associated cutoff score of 0.700. The Transcriptogramer v1.0 (Rybarczyk-Filho et al. 

2011; da Silva et al. 2014) software was used for protein ordering. The Transcriptogramer 

package (Morais DA 2017) was applied to generate the transcriptograms of all datasets 

http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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and their treatments, these were plotted as: for each position i of the indexes of ordering 

in the transcriptograms, the relative expression value assigned to such position will be 

given by 

𝐿𝑜𝑔2 (
𝑇𝑖

𝑡𝑟𝑎𝑡𝑎𝑚𝑒𝑛𝑡 1

𝑇𝑖
𝑡𝑟𝑎𝑡𝑎𝑚𝑒𝑛𝑡  2 ),  

Where Ti is the average expression of the genes encoding for proteins belonging to the 

90th -windowed range. The reading counts mapped to each individual gene determined the 

values of gene expression. The Monte Carlo sampling process allowed the localization of 

significant peaks and valleys in transcriptograms, in which random sets of permutations 

and sorting indexes were designed and used to randomly generate transcriptograms, from 

which zero distributions of peaks and lengths of valleys were inferred. These null 

distributions served as a basis for determining critical values for statistically significant 

peaks and valleys (p <0.001) and the number of permutations for each of the tests was 

established after convergence of the critical values. In order to perform this statistica l 

analysis, internal scripts were used in the R programming environment. Functiona l 

enrichment was performed through the topGO package (Fisher test with Benjamini-

Hochberg correction; Alexa and Rahnenfuhrer, 2016) and the GO annotations for the 

genes of the species studied were performed by the biomaRt package (Durinck et al. 2009) 

obtained from the ENSEMBL Plant database.  

GO terms funcional enrichment 

The gene enrichment analysis on the significant peaks and/or valleys of the 

transcriptograms and DEseq was performed by aggregation ontology for the terms of 

biological processes (BP) using the website agriGO (v2.0) (Tian et al. 2017). The 

ReViGO (Supek et al. 2011) was used for remove redundant terms, calculate and 

summarize the list of GO terms according to the biological process.  

Transcription factor investigation 

The list of DEGs and peaks/valleys at the intersection between the datasets GSE5617, 

GSE79576 and GSE29657 was evaluated for putative regulating transcription factors. 

Each of the four lists (DEseq up / down and Transcriptomic peaks/valleys) was analysed 

in TF2Network (http://bioinformatics.psb.ugent.be/webtools/TF2Network/)  (Kulkarni et 

al. 2018) and the transcrption factors ranked with a Protein-DNA(PD) score ≥10% were 

selected for generating their interaction network with GeneMania plug-in (Mostafavi et 
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al. 2008) in Cytoscape software (Shannon et al. 2003). 

 

Growth conditions for mutant phenotyping  

Plants were grown on half-strength sucrose-free Murashige and Skoog medium 

(Murashige and Skoog 1962) supplemented with 1.5% agar (w/v; KASVI) and 0.05% 

MES hydrate (w/v; Sigma-Aldrich, M8250), pH 5.7, on vertically oriented square plates. 

Seeds were surface-sterilized and stratified at 4 °C for 2 days in complete darkness. 

Seedlings were grown at 21 °C ±   2 °C under completely darkness for 4 days and 

transferred to 1 and 4 hours of white light illumination (94 μmol m−2 s−1, white 6500k 

Led lamps). For dark grown plants, the plates were covered with aluminum foil. Similar ly 

grown seedlings were used for RNA isolation. For root and hypocotyl length 

measurements, seedlings were growth for 14 days in LD condition (LD - Shoot light, 

Dark root, as Miotto et al. 2019), and the measurements were performed at 4, 7, 10 and 

14 days. Organ length was measured with ImageJ (Fiji). 

 

Analysis by qRT‑PCR 

Total RNA was isolated from 4 days-old Arabidopsis seedlings grown as above using 

TRIzolTM Reagent (Thermo Fischer, #15596026). The cDNA was synthesized using M-

MLV reverse transcriptase (Promega, # M5313) following the manufacture r’s 

instructions. qRT-PCR was performed in a StepOne™ Real-Time PCR System using 

Platinum Taq DNA Polymerase (Thermo Fischer, # 10966) according to the 

manufacturer’s protocol. Three independent biological samples were analyzed for each 

datapoint with three independent technical replicates each. The transcript levels were 

normalized against ACTIN2 (AT3G18780) as a reference gene, and relative expression 

was calculated by the ddCt method (Livak and Schmittgen, 2008) (Supplementary table 

6). 

 

Chlorophyll quantification 

Chlorophyll measurement was performed essentially as described (Holm et al. 2002). 

Briefly, 3-DAG seedlings harvested in darkness and after exposure to ligth for 1h, 4h, 6h, 

8h and 24h were weighed, frozen in liquid nitrogen, and ground to a fine powder. Total 

chlorophyll was extracted with 80% acetone, and chlorophyll a and b contents were 

calculated using MacKinney’s specific absorption coefficients in which chlorophyll a = 
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12.7(A663) − 2.69(A645) and chlorophyll b = 22.9(A645) − 4.48(A663). The total 

specific chlorophyll content is expressed as micrograms of chlorophyll per gram of 

seedlings. 

 

Protochlorophyllide assay 

The protochlorophyllide measurements were performed essentially as described (Job and 

Datta 2021). In total, 50 seedlings of were grown as above for 5-DAG in the dark (plates 

were covered in layers of aluminum foil). Seedlings were immediately frozen in liquid 

nitrogen and extracted with  90% acetone with 0.1 M NH4OH and incubated at 4°C for 1 

h. Samples were centrifuged at 14000 g for 10 min and the supernatant was collected. 

Fluorescence spectra was measured with excitation at 440 nm and the emission spectra 

was recorded from 600 nm to 750 nm. 

 

GUS staining and microscopy analysis 

Seedlings were fixed in 80% acetone for 20 minutes at -20ºC, washed 3 times in water 

and incubated overnight in GUS staining buffer [10 mM EDTA, 100 mM sodium 

phosphate (pH 7.0), 0.1% (v/v) Triton X-100, 1 mM K3Fe(CN)6 , 1 mM K4Fe(CN)6, 1 

mg/ml 5-bromo-4-chloro-3-indolyl-D-glucuronide] at 37 ℃. Subsequently, samples were 

washed in water once and cleared in 70% (v/v) ethanol at room temperature before 

imaging. 

 

3 Results 

Transcriptogram analysis of early and late light responses 

We generated a transcriptogram considering a window of 70 genes ordered according to 

function (Miotto et al., 2019) and later these genes form groups/clusters (Fig. 1a). After 

we plotted the transcriptogram with all datasets (Fig. 1b), and further separated samples 

of early  light responses (up to 1 hour after light exposure) (Fig. 1c) and late response (4 

to 6 hours of light exposure)  (Fig. 1d). Individual transcriptograms for each datasets are 

presented in Supplementary Figure 2. When overlaid, most transcriptograms showed a 

similar distribution profile of peaks and valleys (Fig. 1b), although with some clear 

amplitude variations. Most of  peaks and valleys encompass GOs terms such as “cellular 

nitrogen compound metabolic process”, “response to light stimulus”, “photosynthes is”, 

“protein transport”, “protein import into nucleus”, “glutathione metabolic process ” (Fig. 
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1a, b). When we compared the light response profile over time, we could observe an 

increase in the amplitude of significant peaks and valleys in the late responses when 

compared to early responses, suggesting that the general expression profiles are 

maintained over time and are mostly quantitatively affected by prolonged light exposure.  
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Figure 1 Arabidopsis thaliana transcriptogram comparison among three light response datasets. a 

Arabidopsis thaliana transcriptogram. The x-axis relative to gene position have been divided by the total 

number of proteins retrieved from STRING. Projection of Gene Ontology terms is color-coded. b Overlay  

of all transcriptograms for GSE5617, GSE29657 and GSE79576 datasets, c early responses GSE5617 (1 h 

WL), GSE29657 (0.5 h WL) and GSE79576  (1  h WL, coty - cotyledons and hypo - hypocotyls) and d late 

light responses GSE5617 (4 h WL), GSE29657 (4 h WL), and GSE79576  (6 h WL, coty - cotyledons and 

hypo - hypocotyls). Average transcriptograms signifcant peaks (up-regulation) or valleys (down-regulation) 

are represented by colors. Grey lines show non-signifcant regions  

 

Identification of common light regulated genes  

In order to compare the similarity between the datasets, an intersection with the common 

modulated genes present in the significant peaks and valleys of all the transcriptograms 

as well as differentialy expressed according to DEseq was generated (Fig. 2). From the 

comparison of these datasets, 920 genes overlaped in significant peaks (Fig. 2a) whereas 

619 genes overlapped in significant valleys (Fig. 2b). When we compared the same 

datasets by DESeq analysis we found an overlap of 214 up-regulated (Fig. 2c) an 456 

down-regulated genes among the three datasets listed above (Fig. 2d). Based on these 

observations, we conclude that the two approaches are able to identify a larger set of 

regulated genes, allowing a broader analysis of physiological responses. In order to 

compare the similarity between the datasets, an intersection with the commonly 

modulated genes present in the significant peaks and valleys of all the transcriptograms 

as well as differentially expressed according to DEseq was generated (Fig. 2). From the 

comparison of these datasets, 920 genes overlapped in significant peaks (Fig. 2a) whereas 

619 genes overlapped in significant valleys (Fig. 2b). When we compared the same 

datasets by DESeq analysis we found an overlap of 214 up-regulated (Fig. 2c) an 456 

down-regulated genes among the three datasets listed above (Fig. 2d). Based on these 

observations, we conclude that the two approaches are able to identify a larger set of 

regulated genes, allowing a broader analysis of physiological responses. 
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Figure 2 Intersection of commonly regulated genes in shoot light responses for a Transcriptome peaks, b 

Transcriptome valleys, c DEseq up and d DEseq down genes among the five datasets.  

 

GO term enrichment in transcriptional shoot light responses  

The list of significantly enriched GO terms for the genes identified as induced in the 

Transcriptogram peaks of the three datatsets (GSE5617, GSE29657 and GSE79576) 

highlights “photosynthesis” followed by “single-organism metabolic process”, 

“oxidation-reduction process”, “metabolic process”, “cellular metabolic process” along 

with pigment and cofactor related terms (Fig. 3a), suggesting strong activation of 

photosynthesis and photoautotrophy. In addition, significantly overrepresented categories 

in valleys were related to “drug transmembrane transport”, “peptidyl-pro line 

modification”, and “cellular response to auxin stimulus” among others, in agreement with 

the overall repression of hypocotyl growth triggered by photomorphogenesis in shoots. 

On the other hand Differential Expression (DESeq) upregulated genes were enriched in 

GO terms “carboxylic acid metabolic process”, “small molecule metabolic process”, 

“single-organism cellular process”, “single-organism process” and others. The GO terms 

“single-organism metabolic process”, “oxidation-reduction process”, “cofactor metabolic 

process”, “small molecule metabolism processes” and “photosynthesis” were the main 

categories down-regulated in shoot illumination (Fig. 3b). The complete list of GOs terms 

is listed on Supplementary Table 3. These results suggest that the two approach seems to 



82  

  

have a different coverage related to GO term assessment when comparing different 

datasets. However, this might be a consequence of the larger number of genes considered.  

 

Figure 3 GO term enrichment for light responsive genes from the three datasets (GSE5617, GSE79576 and 

GSE29657) a Functional enrichment analysis of transcriptogram peaks and valleys.  The top 15 enriched 

terms were listed. b Functional enrichment analysis of up and down regulated genes identified through 

DEseq. The top 10 up and 15 downregulated enriched terms were listed. A detailed list of the data is shown 

in Supplementary Table 3.  

 

Association of light regulated genes with photoreceptor signaling pathways  

Light perception by plant photoreceptors CRY1, CRY2, and phytochromes is the main 

trigger for seedling photomorphogenesis (Podolec and Ulm, 2018) which leads to PIF 

degradation and supression of skotomorphogenesis (Pham et al., 2018). We compared 

light regulated genes identified by our analysis to differentially expressed genes 

identified for pif1pif3pif4pif5 (pifq) (Sun et al., 2016), cry1 cry2 (He et al. 2015) an 

constitutively active form of phyB (YHB) (Hu et al. 2009) (Fig. 4). A detailed list of 

the intersections are presented in Supplementary Table 4. Interestingly, many of the 

genes identified by DEseq (34 DEseq up and 21 DEseq down) and the majority 

identified by Transcritogram (311 Peak genes and 232 Valley genes) are not listed as 

differentially expressed in these light signaling mutant backgrounds neither returned 

enriched regulators based on cis-regulatory elements by the TF2Network analysis 

(Kulkarni et al., 2018). However, the majority of the DEseq downregulated (DEseq 

down) genes (48) were affected in all three mutants (Fig. 4b). The largest single 

intersection happened with cry1 cry2-regulated genes regardless of the analysis 
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procedure (DEseq or Transcriptogram), followed by pifq and phyB affected genes. 

The only exception was for DEseq down, where phyB-dependent genes were more 

represented than pifq in the comparison. Although the larger overlap observed with 

the cry1 cry2 responsive genes suggests that blue light responses, mediated by 

cryptochromes, act as an important signal for transcriptional change in early 

photomorphogenesis, the pifq- and phyB-responsive genes belong in a shared 

signaling pathway where PIF activity is negatively regulated by active phyB (Shin et 

al. 2009; Leivar et al. 2009). In this context, the majority of differentially expressed 

genes we identified fall under phyB-PIF regulation. 

The HY5 transcription factor is one of the main promoters of photomorphogenesis; its 

expression and protein accumulation increase in response to light and HY5 activates 

its expression and many downstream responsive genes, functioning as a converging 

hub to many light signals (Podolec and Ulm, 2018). So, we also crossed our data with 

the a refined list of HY5-direct targets (Burko et al., 2020). (Supplementary Figure 1, 

Supplementary Table 5). There was a small overlap between the genes present in Trans 

peaks (34), followed by DEseq down (17) and Trans valleys (3). Strikingly, there were 

no genes in common between the DEseq up and HY5 targets list (Supplementary 

Figure 1a) as one would expect in a list of light- induced genes. This suggests that, the 

transcriptogram comparison was more robust than DEseq in identifying common 

llight-responsive genes and/or, although HY5 is essential to many light responses, it 

does not seem to act as the main early response transcription factor to the light 
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stimulus, suggesting that other factors might be acting upstream or in parallel to HY5.

 

Figure 4 Intersection of common light modulated genes from three datasets (GSE5617, GSE79576 and 

GSE29657) identified by Differential Expression (DESeq) and Transcriptomic Analysis (Trans) 

overlapping with pif1pif3pif4pif5 (pifq)  (Sun et al., 2016), cry1 cry2 (He et al., 2015) and phyB-YHB (Hu 

et al., 2009) differentially expressed genes. a DEseq up,  b DEseq down, c Trans Peaks, d Trans Valleys 

 

Light regulated gene expression networks overlap with ABA-responsive signaling 

During photomorphogenic development, the earliest signaling events downstream of 

photoreceptor activation do not involve de novo protein synthesis. The signaling cascade 

involves protein stability/activity regulation through protein-protein interactions as well 

as targeted protein degradation by the 26S proteasome (Hellmann and Estelle 2002). So, 

transcriptomic analysis alone fails to identify the primary response regulators acting 

upstream of transcriptional control. To identify the putative cis-acting regulators of the 

light-responsive identified, we searched their promoter cis-elements with the 

TF2Network (Kulkarni et al. 2018) tool. We selected the top putative regulators based on 

higher Protein-DNA interaction scores and retreived their known PPI regulatory networks 

from both DEseq and Transcriptogram gene sets (Fig. 5). Interestingly, the ABA-response 

bZIP transcription factor ABI5 stood out in both networks (Fig. 5a-c) associated with 
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both up and down regulated genes.  Besides, HY5 was present in the DEseq network, 

reinforcing the possible relationship of HY5 and ABI5 (Bhagat et al. 2021a). ABF1, PIF4, 

GBF3 and ABF4 were found as major regulators for the DEseq up and Trans peaks and 

Trans valleys genesets (Fig. 5c). Other putative regulator identified for the Trans valleys 

gene set comprise ABF3, GBF2, PIF3, PIF5, CCA1, BES1, AGL9 and AGL20. Putative 

regulators for the genes exclusively identified for the DEseq up gene set are EIN3, DIV2,  

LFY and AP3 whereas for the DEseq down, only ABI5 showed up as a putative regulator. 

From this analysis, stands out the abundance of the bZIP-type transcription factors GBFs 

(G-box binding factor 1-3), the ABFs AREB (ABA Responsive Element Binding Factors  

1, 3 and 4) and ABI5 (ABA Insensitive 5) along with bHLH PIFs (PIF3, PIF4 and PIF5). 

This suggests that modulation of ABA responses mediated by bZIP transcription factors 

might be a central signaling trigger for photomorphogenesis in Arabidospsis shoots. 

 

 

Figure 5 Putative TF networks involved in the regulation of early light responsive gene expression. a 

TF network identified for genes ideintifed by Transcriptogram and b Differential Expression (Deseq) 

analysis. Black circles are transcription factors retrieved from TF2Network and the gray circles 

represent connections provided by GeneMania, c Venn diagram of overlaping putative transcription 

factors identified for DESeq up and down and Transcriptogram peaks and valleys. 

 

To validate these analysis and to investigate whether the identified transcript ion 

factors are involved in light responsiveness, we evaluated the transcriptional response 

of the ABI5 and HY5 genes in the following genotypes: abi5-7, abf4, hy5 and 



86  

  

35S:ABI5 (Supplementary Figure 4) as well Chalcone Synthase (CHS) as a HY5 

target gene described as light responsive in seedlings (Zhang et al. 2011a). In the dark 

grown seedlings (0 h), HY5 expression was lower in abi5-7 and 35S:ABI5 when 

compared to WT. The 1h light- induced HY5 induction observed in the WT, abi5 and 

abf4 was reduced in the ABI5 overexpression line (35S:ABI5), and absent in the hy5 

mutant. Interestingly, the dark (0h) expression of ABI5 was lower in the hy5 mutant , 

in contrast with the lower dark expression of HY5  in abi5-7 . These results indicate 

that HY5 and ABI5 counteract each other expression in the dark and ABI5 

overexpression supresses HY5 induction. It is noticeable the significant decrease of 

the ABI5 expression in the 35S:ABI5 background after transition to light, suggest ing 

that ABI5 mRNA might be post-transcriptionally regulated after exposure to light. The 

expression of CHS was more induced after 4 hours of light exposure in the abi5-7 

mutant than in WT (Supplementary Figure 4). In the abf4 mutant, this gene was more 

expressed in the dark and shows less light inducibility than in WT.  

As we observed that the assembly of the photosynthetic machinery was the top induced 

process in the trasncriptomic analysis (Fig. 3a), we decided to evaluate whether the 

ABA-responsive transcriptional regulators influence this transition. For that purpose, 

we measured the chlorophyll content during deetiolation in seedlings of WT, abi5-7, 

abf3, abf4 and 35S:ABI5 exposed to light over 24h (Figure 6a). Total chlorophyll 

content increased progressively in most genotypes. After 24h of light exposure the 

abi5-7, abf3 and abf4 mutants accumulated almost double the chlorophyll of wild-type 

suggesting a repressive role over longer light exposures. The 35S:ABI5 line had a 

lower content than the WT after 8-hours of light exposure, also suggesting ABI5 has 

a repressive role in chlorophyll accumulation. The precursor of chlorophyll, 

protochlorophyllide (Pchlide), is synthesised in the dark and its levels need to be 

tightly controlled to avoid photobleaching upon illumination. We quantified Pchlide 

levels in 3 DAG dark grown seedlings, where Pchlide was higher in abi5-7 and abf4, 

followed by abf1 and abf3 and lower in wild-type and 35S:ABI5 (Figure 6b). 

Transcriptional analysis of some core genes leading to protochlorophyllide 

accumulation  (CHLH, BBX11 and HEMA1) (Job and Datta 2021) (Supplementa ry 

Figure 5) also showed that abi5-7, abf4 and 35S:ABI5 mutants have misregula ted 

expression of chlorophyll biosynthetic genes during deetiolation, with 35S:ABI5 

showing similar expression patterns as hy5. These data suggest that these ABI5 and 
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ABFs act in the dark repressing photochlorophyllide production.

 

Figure 6 Chlorophyll and  protochlorophyllide quantification in Abrabidopsis seedlings. a Total 

Chlorophyll A/B content in 3-DAG WT (Col-0), abi5-7, abf3, abf4 and 35S:ABI5 seedlings grown in the 

dark (0h) and after exposure to white light for 1h, 4h, 6h, 8h and 24h. . Error bars indicate SE. n = 3. 

Statistical significance was determined by ordinary one-way ANOVA with Kruskal-Wallis post-test (**p 

≤ 0.01). b Fluorescence emission spectra (Arbitrary Units) of acetone extracts indicating 

protochlorophyllide accumulation of Col-0, abi5-7, abf3, abf4 and 35S:ABI5 seedlings, grown in the dark 

for 5 d. 

 

Light controls the spatial expression of ABA response regulators 

In order to evaluate the expression pattern of ABA responsive factors during 

deetiolation, we tested reporter constructs for pABI5:ABI5-GUS, pABI5:GUS, 

pABF4:GUS, 6XABRE_A:GUS. Seedlings were grown for 4 DAG in dark conditions 

and then exposed to 0, 1, and 4 h white light. After 4 days in the dark, ABI5:GUS 

staining shows that the promoter is active in most tissues. However, the ABI5p:ABI5-

GUS staining is restricted to the cotyledon at first (0h) and rapidly disappears upon 

light exposure (1h and 4h) with the signal only remaining in the SAM  showing that 

ABI5-GUS protein accumulation decreases in cotyledons. Interestingly, a strikingly 

different expression pattern was observed for the promoter GUS reporter fusions 

pABI5:GUS, pABF4:GUS, 6XABRE_A:GUS (Fig.7a). The ABI5 promoter is highly 

expressed in shoots and roots in the dark, this expression decreases specifically in roots 

at 1h of light exposure and increasing after 4h again. On the other hand, the 

pABF4:GUS and the synthetic ABA response reporter 6xABRE_A:GUS (Wu 2018) 

show weak cotyledon and vascular expression and a increasing root expression that is 
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further enhanced by light. These results suggest that the ABI5 protein abundance is 

repressed by light in the whole seedling during deetiolation except in the SAM. 

Furthermore, ABF4 and 6xABRE are transcriptionally activated by light in roots 

possibly to trigger root photomorphogenic development. Therefore, our results suggest 

that the ABA transcriptional responses are modulated by light, but ABI5 protein 

accumulation appears not to be quickly repressed by light in the shoot. This suggests 

that the shoot responses depends of the reprogramming of the ABA response to 

activate photomorphogenesis. 

 

Figure 7 a β-glucuronidase assay in pABI5:ABI5-GUS, pABI5:GUS, pABF4:GUS and 6XABRE_A:GUS  

seedlings in darkness 0h and after 1h and 4h of white light exposure. Panels represent side by side the 

primary root and shoots of each timepoint. Scale bar= 1mm. b Hypocotyl and primary root lengths of single 

knockout and overexpression mutants (n ≥ 20) after 4, 7, 10 and 14 days of growth. Statistical significance 

was determined by Kruskal–Wallis test with Dunn’s -test (*p ≤ 0.05; **p < 0.01). Error bars indicate SE. 

 

ABA responsive regulators are important for seedling photomorphogenesis  



89  

  

In order to evaluate the role of ABA response regulators during seedling 

photomorphogenic development, we compared the hypocotyl and primary root length 

of loss-of-function and overexpression genotypes. Both abi5-7, abf4 and 35S:ABI5 

showed shorter hypocotyls at 4 DAG similar to 35S:HY5 (Fig. 7b), indicating a 

stronger photomorphogenic response. All tested genotypes had shorter main roots than 

WT at 10 dag (Fig. 7b) whereas both knockout mutants abi5 and hy5 displayed 

comparable shorter roots (Fig. 7b). Interstingly, the localized strong cotyledon and 

apical hook expression of the pABI5:ABI5-GUS  reporter (Fig. 8a) reflected in the 

early apical hook opening response of 35S:ABI5 was accelerated in comparison to 

WT and abi5-7 (Supplementary Figure 6) suggesting a localized promoting role for 

ABI5 in deetiolation. These results suggest that ABA responsive factors perform both 

promoting and repressive effects during seedling photomorphogenesis. 

4 Discussion 

A large amount of transcriptomic studies have been performed for the model species 

Arabidopsis thaliana. In this work, we integrated data from published transcriptomic 

databases to identify common regulated genes and process that comprise early shoot 

light responses. Gene expression profiles from five distinct datasets were examined in 

order to look for common regulated genes. We report an increase of amplitude of the 

same transcriptograms peaks and valleys in longer light exposures which suggests that 

gene expression patterns are sustained qualitatively during photomorphogenesis being 

quantitatively increased over time (Fig.1b, c). Kilian et al. (2007) (GSE5617) and 

Miotto et al. (2019) also reported a large number of gene sets in roots affected by 

shoot‑illumination in transcriptogram analysis and a quantitative temporal increase in 

gene expression patterns in response to light treatment. Hu et al. (2009), comparing 

the transcriptomes of a constitutive active form of PhyB (YHB) also reported 

“qualitatively similar to but quantitatively greater” gene expression profiles compared 

to WT seedlings treated with low red light. These observations suggest that light 

transcriptional responses are qualitatively specific and quantitatively proportional to 

the light reatment. Liu et al. 2012 (GSE29657) reported that translational control is 

central to early photomorphogenesis responses and genes linked to biogenesis of 

ribosomes and translational machinery are preferentially regulated by translationa l 

control, whereas genes related to photosynthetic machinery, chlorophyll and pigments 

biosynthesis are preferentially regulated at the transcriptionally level. Nevertheless, 
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once our survey was restricted to transcriptionally regulated processes based on steady 

state mRNA, our results reinforce his observations. Although we could observe a large 

amount of similarities from the datasets evaluated, we observed an inversed pattern in 

the GSE79576 dataset transcript profile related to cotyledon specific samples (light 

blue line in Figs. 1b, d). One possibility raised by Jiao et al. (2007), is that due to the 

smaller vacuoles of cotyledons in comparison to hypocotyls, the observed expression 

patterns might be enriched for the light- induced responses of the apical hook and 

cotyledons. In the original publication that generated this data, Sun et al., (2016) 

identified a group of genes (lirSAURs) that were oppositely regulated by light in 

cotyledons and hypocotyls and these were related to the contrasting light effects in 

different organs, which may explain this pattern. This observation highlights concerns 

about evaluting whole seedling expression profiles for cellular processes that might 

have strong tissue specificities.  

Being aware of the restraints imposed by transcritomic analyses, our approach focused 

on common regulated genes in the different datasets to identify broadly regulated 

genes for photomorphogenic development. A larger number differentially expressed 

genes appeared in the Transcriptogram analysis compared to Differential Expression. 

This is due to the fact that the Transciptogram method groups genes due to the 

"neighborhood" between them. The transcriptogram is a method that encompasses the 

genome to analyze genetic expression data, it calculates the average expression of a 

set of genes with similar functions, allowing a global view of the metabolic pathways 

which are coordinately regulated. It consists of an one-dimensional rearrangement of 

the genome based on protein-protein associations (Franceschini et al. 2012). This 

reordering clusters genes associated with the same pathways, allowing to globally 

compare if a pathway is repressed or induced (Rybarczyk-Filho et al. 2011; da Silva 

et al. 2014). Functional enrichment demonstrated that the categories of GOs terms 

identified for the DEseq gene set were not very informative (Fig. 3b) when compared 

to those obtained for the Transcriotogram (Fig. 3a) where terms “Photosynthesis”, 

“Tetrapyrrole metabolic process”, “Protein chromophore linkage” and “Pigment 

metabolic processes” were over-represented in the induced peaks.  The GO terms of 

the Trans valleys indicate the repression of “Peptidyl-proline modification”  which is 

an essential modification for the expansion of the cell wall (Zdanio et al. 2020) and 

“response to auxin” which is essential for hypocotyl elongation (Du et al. 2022) (Fig. 
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3b), are more logical than the unespected list of repressed processes we identified by 

DEseq terms which find “Photosynthesis” and “Pigment metabolic processes” , 

“Response to light stimulus” as putatively down regulated by light. Our results with 

the Transcriptogram tool showed enrichment terms not identified by DEseq, 

reinforcing the idea that different approaches to data analysis can lead to different sets 

of genes and processes. From our point of view, for comparison of different datasets, 

the Transcriptogram appears to select for more robust expression patterns, allowing 

better identification of core commonly regulated processes than DEseq. 

Photomorphogenic responses are dependent of photoreceptor activation, mostly 

through the action phytochromes and cryptochromes repressing COP1 and PIFs 

activities. Previous works have identified transcriptomic responses that are altered in 

pifq, cry1cry2 and phyb(YHB) mutants, allowing us to evaluate which signaling 

components are required for the light signaling that regulated these datasets. We found 

that many light-regulated genes belong in the cry1cry2-dependent dataset, suggest ing 

that blue light, acting through cryptochromes plays a central role as a trigger for early 

photomorphogenic transcriptional control. Although cryptochrome activation 

represses hypocotyl growth, the most represented GO categories in CRY1-regulated 

genes (He et al. 2015) are “Photosynthesis” and “Chloroplast organization” followed 

by growth related terms such as “Cell wall organization” and “Hormonal responses”, 

reinforcing that the establishment of the photosynthetic machinery is the main 

transcriptionally activated process in early photomorphogenesis. Cryptochromes also 

mediate blue-light dependent cell expansion in cotyledons and chloroplast 

development (Yu et al. 2010). This allows identification of the hypocotyl and 

cotyledon blue light responses which were identified in our datasets. CRY1, along 

with phyB, acts on repression of auxin signaling through light-induced interation with 

AuxIAA proteins to inhibit hypocotyl elongation (Xu et al. 2017). We found GO terms 

“Cellular response to auxin stimulus” and “Response to auxin” enriched in the 

Transcriptogram valleys of light repressed genes, which associated the suppression of 

auxin response downstream of photoreceptors as a central photomorphogenic 

response.  

Phytochrome activation is also central to photomorphogenic transcriptional responses 

to red/far-red light (Tepperman et al. 2001; Tepperman et al. 2004; Quail 2007). 

Activated phytochromes modulate gene expression through direct interaction with 
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nuclear localized PIFs leading to their proteasomal destruction and supression of dark-

induced genes (Al-Sady et al. 2006; Leivar et al. 2009; Pham 2018) as well as 

supression of COP1-SPA complexes by protein-protein interactions (Sheerin et al. 

2015b; Zhu et al. 2015). We found the largest overlap of light modulated genes in 

common with pifq (Sun et al., 2016), and phyB (Hu et al. 2009) affected genes. This 

observation is consistent with the major role of the PhyB-PIF signaling pathway in 

controlling early seedling light transcriptional responses (Shin et al. 2009; Leivar et 

al. 2009; Zhang et al. 2013). PIFs are important repressors of light responses (Shin et 

al. 2009) and their light-dependent degradation is essential for the initial steps of 

photomorphogenesis. The pifq mutant displays a constitutive photomorphogenic 

phenotype in the dark (Leivar et al. 2008b), with a high expression of chlorophyll 

biosynthetic genes and photosynthetic apparatus proteins, similar to plants 

overexpressing a constitutively active form of phyB (YHB) (Hu et al. 2009). 

By analyzing the transcription factors binding sites overrepresented in the promoters 

of the light responsive genes identified in our analysis, we were surprised not to find 

classical photomorphogenic activators such as HY5 or HYH (Oyama et al. 1997; 

Holm et al. 2002) but many to be involved with Abscisic Acid (ABA) response. The 

ABA-responsive A-type bZIPs (ABFs, ABI5) and G-type bZIPs (GBF2 and GBF3) 

were all centrally located in the PPI networks of putative TFs controlling dark-to-light 

transcriptional changes. Plant bZIP proteins preferentially bind to the cis-elements 

with a ACGT core sequence, such as G-box (CACGTG), C-box (GACGTC), Z-box 

(ATACGTGT), and A-box (TACGTA). The Transcriptogram network (Fig. 5b, c) 

also linked members of the PIF family (PIF3, PIF4 and PIF5) in a cooperative network. 

PIFs are activators of the ABA response, which is usually induced in the dark in 

cotyledons, and are degraded in light. It has been reported that much of the 

photomorphogenic response involves suppressing the ABA response via PIFs and 

phyB (Ha et al. 2018a). PIF1 interacts physically with ABI5 and other A-type bZIP 

transcription factors to enhance PIF1 binding to a set of target sites in vivo (Kim et al. 

2016). PIF4 activates ABI5 expression in the dark (Qi et al. 2020). Part of the PIFs 

control of seedling growth, involves ABA signaling (Qi et al. 2020; Liang et al. 2020). 

The G-box binding factors (GBF1-3), also appeared  largely connected to the PPI 

network (Fig. 5a, b, c). GBFs are ABA-responsive genes regulated by PIFs  (Oh et al., 

2009). GBF1 is a blue-light responsive TF acting downstream of the cryptochromes 
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controlling blue-light specific responses. GBF1 overexpression reduces blue-light 

repression on hypocotyl elongation (Mallappa et al. 2006). GBF1 is degraded in the 

dark by the proteasome in a COP1-independent manner, and GBF1-COP1 interact ion 

stabilizes GBF1 in the light (Mallappa et al. 2008b). GBF1 interatcs with both HY5 

and HY5 balancing their regulatory effects (Singh et al. 2012). On the other hand, 

GBF3 is more abundantly expressed in darkness and roots, and it can heterodimerize 

with other GBFs (Schindler et al. 1992). GBFs share many co-regulated genes with 

HY5 and HYH and change their interaction partners depending on the tissue and light. 

Although some are constitutively expressed (GBF1 and GBF2), their partners can 

change reprogramming the developmental output (Schindler et al. 1992; Kurihara et 

al. 2020). We suggest a scenario were, in the dark and absence of HY5, GBFs control 

a set of dark-response genes and, upon illumination, GBFs can physically interact with 

HY5 which accumulates and displaces GBFs to different promoters activating 

photomorphogenesis (Singh et al. 2012).  

ABA INSENSITIVE 5 (ABI5) was the only common transcription factor putative ly 

regulating up- and down-regulated sets of genes (Fig. 6a, b, c). In this same Research 

Topic edition, (Bulgakov and Koren 2022) reviewed the centrality of ABI5 in light 

signaling networks based on protein-interactios. Our work reinforces their 

observations by linking ABI5 and ABA responsive genes to control seedling 

photomorphogenesis gene expression. ABI5 is a positive regulator of ABA signaling, 

expressed in cotyledons, hypocotyls, and roots of young seedlings, it is involved in 

postgermination developmental arrest, repression of germination and early seedling 

development (Collin et al. 2021). From our results from young seedlings using ABI5 

reporter lines (Fig. 7a), we observed that transcription from the ABI5 promoter is high 

in all tissues but ABI5-GUS protein abundance was very light sensitive. We saw litt le 

light effect to repress transcription from the ABI5 promoter (ABI5p:GUS line) in 

cotyledons at 1h and 4h light treatments. In Supplementary Figure 4B transcriptiona l 

analysis of ABI5 shows that the light treatment reduces mRNA abundance only after 

4h in Col-0. However, we found very interesting that in the 35S:ABI5 line (with a 

constitutive promoter) a significant reduction of mRNA abundance was observed for 

ABI5, which in an accordance with the reduction observed in the ABI5p:ABI5-GUS 

signal (Fig. 7a) suggests also there might be a light induced post-transcriptiona l 

control of ABI5 mRNA abundance and/or a repression of ABI5 translation.    
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ABI5 regulates genes both during seed development, germination and post 

germination growth (Skubacz et al. 2016 ) and enhances the binding of PIF1 to target 

promoters to inhibit seed germination (Cheng et al. 2014; Kim et al. 2016). Several 

previous studies have identified factors that promote photochlorophilide accumulat ion 

in the dark as pif1 and pif3 mutants have higher levels of photochlorophilide (Job and 

Datta 2021). Our studies show that ABI5, ABF3 and ABF4 can act as potential 

repressors, since their mutants showed a higher levels of photochlorophilide in the 

dark compared to wild type (Figure 6b).  

ABI5 is positively regulated by HY5 (Chen et al. 2008)  and also promotes its own 

expression which represents an integration light and ABA signaling process (Xu et al. 

2014a; Jing and Lin 2020). It has been identified that HY5 and ABI5 interact and 

integrate light and ABA responses, indicating that ABI5 can act as a negative regulator 

in photomorphogenesis and HY5 acts as a positive regulator of ABA signaling (Bhagat 

et al. 2021). The overexpression of ABI5 inhibits hypocotyl elongation under blue, 

red, or far-red light in Col-0 (Chen et al. 2008; Xu et al. 2014), which places ABI5 as 

a component of photomorphogenic responses. Based on our observations that many 

of early light transcriptional responses might depend on ABA response factors which 

are already present in the dark grown seedling, we propose a model where light 

signaling repurposes part of this available transcriptional machinery to activate the 

early responsive genes upon PIF inactivation and later on, the stabilization of positive 

regulators of light responses (e.g. HY5, HYH, LAF1, GBFs, among others) takes over 

to sustain photomorphogenic growth (Fig.8). This effect might occur by direct 

interaction with ABA-responsive bZIPs, as HY5 and ABI5 have recently been found 

to physically interact (Bhagat et al. 2021). Other recently study demostrated that, 

COP1 modulates ABA signaling during seedling growth in dark conditions by 

regulating ABA-induced ABI5 accumulation, suggesting that plants adjust their 

signaling machinery to the ABA according to luminosity in which they find 

themselves (Du et al. 2022). In summary, through a survey of transcriptomic datasets, 

the transcriptogram method allowed us to identify common light regulated processes 

central to early seedling photomorphogenesis and propose a novel transitory 

transcription cascade for deetiolation dependent on ABA-responsive bZIP trancript ion 

factors guiding photomorphogenic development. 
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Figure 8 Proposed working model for the activation of early photomorphogenesis. PIFs, ABI5/ABFs and 

GBFs regulate the expression of skotomorphogenic genes the dark (Dark Gen es) where PIFs and 

ABI5/ABFs act cooperatively to regulate ABA responses. ABI5 and PIFs protein abundance is 

progressively reduced after exposure to light whereas HY5 abundance increases. During the induction of 

early light responsive genes, the decaying transcription factors ABI5/ABFs and PIFs interact and cooperate 

with light responsive regulators GBFs and HY5 to initiate photopmorphogenesis (Early Light Genes). GBFs  

are continuosly expressed. After prolonged light exposure ABI5/ABFs and PIFs are degraded  and positive 

photomorphogenic regulators overtake transcriptional control (Late Light Genes). Figure created in 

Biorender. 
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Supplementary Figure 1 Venn diagram of genes from Differential Expression (DESeq) a up, b down and 

Transcriptomic Analysis (Trans) c peaks, d valleys, from three datasets (GSE5617, GSE79576 and 

GSE29657) of light modulated genes and HY5 target genes (Burko et al., 2020) 
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Supplementary Figure 2  Arabidopsis thaliana transcriptogram of dataset GSE79576. The x-axis relative 

to gene position have been divided by the total number of proteins retrieved from STRING. Average 

transcriptograms for r=90, signifcant peaks (up-regulation) or valleys (down-regulation) are colored in blue. 

Grey lines show non-signifcant regions. 
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Supplementary Figure 3  Arabidopsis thaliana transcriptogram of dataset GSE29657 and GSE5917. The 

x-axis relative to gene position have been divided by the total number of proteins retrieved from STRING. 

Average transcriptograms for r=90, signifcant peaks (up-regulation) or valleys (down-regulation) are 

colored in blue. Grey lines show non-signifcant regions. 
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Supplementary Figure 4 RT-qPCR analysis of gene expression in light treated seedlings. a HY5, b ABI5,  

c CHS.  Four-day old dark grown seedlings (0 h) were exposed to white light for 1 (1h) and 4 hours (4h).  

Statistical significance was determined by ordinary one-way ANOVA with Tukey´s post-test (letters 

represent the statistical significance between the time within the genotype) and the means were compared 

by unpaired test t (asterisks denote differentially expressed genes with  *p ≤ 0.05; **p ≤ 0.01) in the same 

light condition against the wild-type genotype. Error bars indicate SE. 
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Supplementary Figure 5 RT-qPCR analysis of gene expression of chlorophyll related genes in seedlings. 

a CHLH, b BBX11, c HEMA1. Four-day old dark grown seedlings (0 h) were exposed to white light for 1 

(1h) and 4 hours (4h). Statistical significance was determined by ordinary one-way ANOVA with Tukey´s 

post-test (letters represent the statistical significance between the time within the genotype) and the means 

were compared by unpaired test t (as terisks denote differentially expressed genes with *p ≤ 0.05; **p ≤ 

0.01) in the same light condition against the wild-type genotype. Error bars indicate SE. 
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Supplementary Figure 6  Apical hook opening response of WT (Col-0), abi5-7 and 35S:ABI5. Four-day 

old dark grown seedlings (0 h) were exposed to white light for 0.5h, 1h, 4h and 6h. Statistical significance 

was determined by Shapiro-Wilk normality test and Kruskal-Wallis post-test (**p < 0.01).  

 

Supplementary tables available in: 

https://www.biorxiv.org/content/10.1101/2022.07.24.501316v1.supplementary-

material 

Supplementary Table 1. Datasets used in this work 

Supplementary Table 2  Differentially expressed genes and genes present in peaks or 

valleys of transcriptogram, in common between the three datasets (GSE79576, 
GSE28657 and GSE5617) in their conditions. 

Supplementary Table 3 Functional enrichment analysis of list of genes present in DEseq 
up or down and peaks or valleys from three datasets select (GSE5617, GSE79576 and 

GSE29657). Bold terms were those plotted Fig. 3. 

Supplementary Table 4 Differentially expressed genes and genes present in peaks or 

valleys of transcriptogram, in common between the three datasets (GSE79576, 
GSE28657 and GSE5617), with expression value in datasets associated the pifq (Sun et 

al., 2016), cry1 cry2 (He et al., 2015) and phyB-YHB (Hu et al. 2009). 

Supplementary Table 5 Differentially expressed genes in common between the three 

datasets (GSE79576, GSE28657 and GSE5617) compared to HY5 targets (Burko et al., 
2020). 

Supplementary Table 6 RT-qPCR primers. List of RT-qPCR primers used for gene 
expression analysis of Figure 7.  
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Capítulo IV  

  

- Screening of putative mobile transcription factors controlling seedling 

photomorphogenesis- 
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Introduction 

 

Seedlings show contrasting developmental phenotypes when grown in light or 

darkness. In light, seedlings show a photomorphogenic pattern of development with 

green, open cotyledons, a short hypocotyl and a long root. In the dark, however, 

skotomorphogenic development produces seedlings with closed cotyledons and apical 

hook, a long hypocotyl, and a short root. This survival strategy allows the seedling to 

invest in the elongation of the hypocotyl and to protect the shoot apical meristem while 

it is buried. Once the seedling emerges from the soil, it opens its cotyledons, begins to 

perform photosynthesis and develops leaves that start to allocate resources for root 

growth (Lau and Deng 2012). The light-dependent signaling cascade that induces root 

growth from the shoot is still unknown. Potential signaling molecules may be the 

sugars produced in the shoot  (Rolland et al. 2002) but auxins may also play an 

essential role. It has been shown that shoot-derived auxin is necessary for emergence 

of lateral root primordia and therefore for root development (Bhalerao et al. 2002a).  

In plants, several macromolecules, including non-coding RNAs, mRNAs and 

proteins act as important long-distance signals, regulating physiological and 

morphological processes such as transitions to flowering, growth and stress responses 

(Ham and Lucas 2017a). Therefore, it is plausible that macromolecules such as 

proteins and RNAs act as mobile signals activated in the shoot capable of inducing 

root growth. 

Several studies have identified some molecules with a crucial role in activating 

root growth, such as auxins and sucrose. Auxins are involved in several processes of 

plant development. They are synthesized in young shoots and transported polarly 

towards the roots. Some studies have shown that the spatio-temporal division of auxin 

synthesis during early seedling development involves a differential contribution of 

auxin produced in the cotyledons and subsequent to the activation of its synthesis at 

the root apex (Bhalerao et al. 2002a). Activation of auxin synthesis at the root apex is 

essential for maintaining root growth.  The majority of signals from the shoot capable 

of inducing root growth remain unknown. 

Transcriptomic studies have identified several mobile RNAs (mRNAs and 

miRNAs) translocated between root and shoot in Arabidopsis, some even 

bidirectionally (Thieme et al. 2015). Thus, a wide possibility of regulatory effects 

triggered by these molecules can be unraveled through the functional analysis of their 
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gene products. Recently, it was demonstrated that the transcription factor HY5, one of 

the main activators of photomorphogenesis, is translocated from leaves to roots where 

it induces its own expression and promoters the expression of nitrate transporter genes 

in response to elevated C/N ratios (Chen et al. 2016b).  

Light can penetrate root tissues underground through a stem light-p ipe 

mechanism (Lee et al. 2016) that activates root-expressed phytochrome B (phyB) and 

induces local HY5 stabilization, promoting root growth and root gravitropism. Despite 

having a central role in photomorphogenesis in both shoots and roots, the transcript ion 

factor HY5 does not explain all light-triggered events in root growth.  

Proteins and RNAs have been identified as mobile signals in the phloem acting 

in the communication between leaves and stem meristems, as in the case of the 

flowering promoter protein FT (Corbesier et al. 2007) as well as signals exchanged 

between leaves and roots to trigger growth (Hannapel et al. 2013; Spiegelman et al. 

2015) SAR (Carella et al. 2016) nitrogen uptake (Tabata et al. 2014)  among others 

(Ham and Lucas 2017). Although some signaling molecules have already been 

identified as important long-distance signals, few transcription factors were identified 

as mobile signals in the communication between shoots and roots. 

Our research group performed an RNAseq experiment comparing 4- and 7- 

day-old plant roots that were grown with shoot-illumination only or completely in the 

dark. Numerous genes and cellular processes differentially expressed in roots were 

identified in this experiment (Miotto et al., 2019), however, the long distance singals 

that modulate this vast transcriptional reprogramming remain to be identified.   

Considering that numerous transcriptomic databases on Arabidopsis are 

publicly available, we can compare the genes regulated by light in the shoots with our 

root data directly to select for putative long-distance acting candidate genes. 

Therefore, this chapter aims to identify candidate genes encoding transcription factors 

that potentially regulate the photomorphogenic response of roots acting in the 

communication between shoots and roots. 
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Materials and methods 

 

Screening of public datasets  

We dedicated our search in public transcriptome depositories for samples of 

young Arabidopsis seedlings. We searched the Gene Expression Omnibus Database 

(GEO) database with keywords: Arabidopsis thaliana, light, shoot and selected among 

the retrieved results samples from seedlings of 4 days of age. The raw data from 

microarray experiments were selected through accession codes GSE5617 (Kilian et al. 

2007), GSE28297 (Leivar et al. 2012), GSE29657 (Liu et al. 2012); and Expression 

Atlas Database through accession code E-MEXP-1784 (Zhang et al. 2008). All 

microarray datasets considered here used the same platform (Affymetrix Arabidopsis 

ATH1 Genome Array – ATH1-121501). RNA-seq data from shoots (hypocotyl and 

cotyledons) exposed to light were downloaded from Sequence Read Archive database 

under accession code SRP072300, GEO code GSE79576 (Sun et al. 2016) (Table 1).  

 

Table I Datasets used in the meta-analysis. 

Dataset Plant 

part 

Exposure conditions Technology Reference 

GSE5617 Seedlings Seedlings were kept for 4 days in dark. Then, were 

exposed   to   1   hour  and   4   hours   of  white   

light. Exposed seedlings were compared to non-

exposed 

controls. 

Microarray Kilian et 

al. 2007 

GSE29657 Shoot Seedlings were kept for 4 days in dark. Then, were 

exposed  to  30  minutes  and  4  hours  of  white  

light. Exposed   shoot   was   compared   to   non-

exposed 

controls. 

Microarray Liu et al. 

2012 

GSE28297 Seedlings Seedlings were grown in 2 and 3 days of white 

light exposure. 

Microarray Leivar et 

al. 2012 

E-MEXP-

1784 

Seedlings Seedlings   were   kept  for  4   days  in  dark.  

Then, seedlings were exposed to 1 hour  of blue  

light and compared to non-exposed controls. 

Microarray Zhang et 

al. 2008 

GSE79576 Shoot Seedlings were kept for 4 days in dark. Then, were 

exposed   to   1   hour  and   6   hours   of  white   

light. Exposed hypocotyls and cotyledons 

separately were compared to non-exposed controls. 

RNA-seq Sun et al. 

2016 

 

 

Individual preprocessing and differential expression analysis of the datasets  

For the microarray samples, the raw data was normalized with RMA method 

and expression values (Robust Multi-Array Average Expression Measure) were 
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retrieved with affy R/Bioconductor package (Gautier et al. 2004). Differentia l 

expression analysis was performed using limma R/Bioconductor package. Genes were 

considered differentially expressed when p value ≤ 0.001 with FDR adjustment 

(Ritchie et al. 2015).  For the RNA-seq databases, the raw reads were aligned and 

annotated to Arabidopsis thaliana reference genome v10 (versão 10 do genoma de 

Arabidopsis Thaliana no TAIR) using STAR aligner (Dobin et al. 2013). Counts from 

aligned reads were obtained with featureCounts program (Liao et al. 2014) and 

normalized into log-2-counts-per-million. Differential expression analysis was 

performed using limma R/Bioconductor package protocol for RNA-seq experiments, 

considering only the differentially expressed genes with p value ≤ 0.001 with FDR 

adjustment (Ritchie et al. 2015). 

 

Selection of candidate genes and filtering 

Light regulated genes common to the five public datasets were selected. Then, 

this list was filtered in some databases, as Plant Transcription Factor Database 

(Banerjee and Roychoudhury 2017), a list of identified mobile mRNAs (Thieme et al. 

2015), PlaMoM (database compiling plant mobile macromolecules), and light-

regulated genes in roots (Miotto et al. 2019) - although this is not an excluding factor, 

and in addition to information of the Gene Description and Biological Process (Figure 

1).  

 

Plant material and growth conditions 

Arabidopsis Col-0 was used as wild-type (WT), and all the mutants used are 

listed in Table II. Seeds were surface-sterilized and stratified at 4 °C for 2 days in 

complete darkness. Seedlings were grown at 21 °C ±   2 °C under LD condition (LD - 

Shoot light, Dark root, as Miotto et al. 2019) or D (completely darkness) for 7 days-

old and exposure white light illumination (94 μmol m−2 s−1). Plants were grown on 

half-strength sucrose-free Murashige and Skoog media supplemented with 1.5% agar 

(w/v; KASVI) and 0.05% MES hydrate (w/v; Sigma-Aldrich, M8250), pH 5.7, on 

vertically oriented square plates in LD (dark roots) or D grown plants (complete 

darkness). Similarly grown seedlings were used for RNA isolation. For root and 

hypocotyl length measurements, seedlings were growth in LD condition (LD - Shoot 

light, Dark root, as Miotto et al. 2019), and the measurements were performed at 7 and 

14 days. Organ length was measured with ImageJ (Fiji) and plotted into graphs in 
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GraphPad Prism 8. For nitrate experiment, seedlings were grown at 21 °C ±   2 °C 

under L condition (68 μmol m−2 s−1) for 8 and 12 days in MS media without KNO3, 

0.2mM KNO3 and 1mM KNO3 (Krouk et al. 2010a). 

 

DNA isolation and genotyping 

DNA extraction and PCR were performed as described in Miotto et al. (2019).  

Primer sequences can be found in the Supplementary Table 1. Single T-DNA insertion 

knockout lines were requested from ABRC and the presence of the mutation was 

confirmed by PCR.  

  

Results  

Aiming to identify among light regulated genes common to the selected 

transcriptomic databases, we crossed the common light regulated transcripts coding 

for transcription factors to those of root regulated genes (Miotto et al., 2019). After all 

filtering steps, 20 genes were selected as putative candidates for light regulated 

transcription factors and mobile mRNAs (Figure 1, Table II and Table III).  

 

 

 

 

Figure 1 - Flowchart of candidate gene selection steps. 
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Table II List of Arabidopsis thaliana genes in common between the six datasets. 
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Gene ID Name Description 

AT1G67810 SUFE2 SufE-like protein 2, chloroplastic  

AT4G25580 AT4G25580 At4g25580/M7J2_50  

AT1G44446 CAO CH1  

AT4G14130 XTH15 Xyloglucan endotransglucosylase/hydrolase protein 15  

AT1G26270 PI4KG5 Phosphatidylinositol 4-kinase gamma 5  

AT4G36930 SPT SPT  

AT1G31850 AT1G31850 Probable methyltransferase PMT20  

AT5G17050 UGT78D2 Glycosyltransferase (Fragment)  

AT5G25810 TINY Tny  

AT5G24850 CRYD Cryptochrome DASH, chloroplastic/mitochondrial  

AT5G66650 AT5G66650 Calcium uniporter protein 3, mitochondrial  

AT5G57660 COL5 Zinc finger protein CONSTANS-LIKE 5  

AT5G48880 KAT5 PKT2  

AT5G44110 ABCI21 ABC transporter I family member 21  

AT5G37550 AT5G37550 At5g37550  

AT5G23730 RUP2 WD repeat-containing protein RUP2  

AT5G18650 MIEL1 MIEL1  

AT5G13930 CHS Chalcone synthase family protein  

AT5G13630 CHLH Magnesium-chelatase subunit ChlH, chloroplastic  

AT5G13650 AT5G13650 Elongation factor family protein  

AT5G09590 HSP70-10 Heat shock 70 kDa protein 10, mitochondrial  

AT5G08640 FLS1 Flavonol synthase/flavanone 3-hydroxylase  

AT5G05270 CHI3 Probable chalcone--flavonone isomerase 3  

AT5G05100 AT5G05100 Single-stranded nucleic acid binding R3H protein  

AT5G02270 ATNAP9 Non-intrinsic ABC protein 9  

AT3G60140 BGLU30 Beta-glucosidase 30  

AT3G56290 AT3G56290 Potassium transporter  

AT3G54770 ARP1 Probable RNA-binding protein ARP1  

AT3G48350 CEP3 KDEL-tailed cysteine endopeptidase CEP3  

AT3G45300 IVD Isovaleryl-CoA dehydrogenase, mitochondrial  

AT4G36040 ATJ11 At4g36040  

AT4G34830 MRL1 Pentatricopeptide repeat-containing protein MRL1, chloroplastic  

AT4G33010 GLDP1 Glycine cleavage system P protein  

AT4G32770 VTE1 Tocopherol cyclase, chloroplastic  

AT4G30290 XTH19 Xyloglucan endotransglucosylase/hydrolase  

AT4G29590 AT4G29590 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein  

AT4G28250 EXPB3 EXPB3  

AT4G27520 ENODL2 Early nodulin-like protein 2  

AT4G27560 UGT79B2 UDP-glycosyltransferase 79B2  
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AT4G26400 AT4G26400 AT4G26400 protein  

AT4G17840 AT4G17840 At4g17840  

AT4G11570 PYRP2 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase, chloroplastic  

AT4G02920 AT4G02920 Uncharacterized protein At4g02920  

AT4G02290 AtGH9B13 Endoglucanase 17  

AT1G16720 HCF173 high chlorophyll fluorescence phenotype 173 [Source:TAIR 

AT2G33250 AT2G33250 At2g33250/F25I18.1  

AT1G34000 OHP2 OHP2  

AT1G18060 AT1G18060 AT1g18060/T10F20.23  

AT3G12610 DRT100 DRT100  

AT3G12320 LNK3 LNK3  

AT1G69526 AT1G69526 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein  

AT1G55020 LOX1 Linoleate 9S-lipoxygenase 1  

AT3G27170 CLC-B CLC-B  

AT3G23990 CPN60 Chaperonin CPN60, mitochondrial  

AT3G23810 SAHH2 Adenosylhomocysteinase  

AT3G23510 AT3G23510 Cyclopropane-fatty-acyl-phospholipid synthase  

AT3G23530 AT3G23530 AT3g23510/MEE5_5  

AT3G26570 PHT2 ORF02, PHOSPHATE TRANSPORTER 2;1, low affinity phosphate transporter 

AT3G20340 AT3G20340 At3g20340  

AT3G27380 SDH2-1 Succinate dehydrogenase [ubiquinone] iron-sulfur subunit 1, mitochondrial  

AT3G21560 UGT84A2 UGT84A2  

AT3G21690 DTX40 Protein DETOXIFICATION 40  

AT3G22840 ELIP1 ELIP1  

AT3G15500 NAC055 NAC3  

AT3G02730 TRXF1 TRXF1  

AT3G02830 ZFN1 Zinc finger CCCH domain-containing protein 33  

AT3G08030 AT3G08030 F17A17.37 protein  

AT5G04130 GYRBM DNA gyrase subunit B, mitochondrial  

AT3G10270 GYRB1 DNA gyrase subunit B  

AT3G07770 HSP90-6 Heat shock protein 90-6, mitochondrial  

AT1G52870 AT1G52870 At1g52870/F14G24_14  

AT1G70560 TAA1 L-tryptophan--pyruvate aminotransferase 1  

AT1G10960 FD1 Ferredoxin-1, chloroplastic  

AT2G43400 ETFQO Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial  

AT1G55960 AT1G55960 Polyketide cyclase/dehydrase and lipid transport superfamily protein  

AT1G05840 AT1G05840 Eukaryotic aspartyl protease family protein  

AT1G53090 SPA4 SPA4  

AT1G07700 AT1G07700 Thioredoxin superfamily protein [Source:TAIR 
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All tested seedlings grown in LD condition showed normal 

photomorphogenesis as well as normal etiolation in complete darkness (D condition) 

(Figure 2). However, we observed significant deviations from the WT in bbx4 and 

ccd4 that showed longer shoots in LD and ccd1 that displayed longer shoots in the 

dark (Figure 2a). The mutant jaz9 displayed longer roots in darkness and longer shoots 

in LD. Interestingly, penta1 presented longer shoots and roots in LD condition (Figure 

2b) while mutants expb3, gk064h04, salk011787, salk202632, tny and nap had longer 

primary roots in darkness (Figure 2c-d). These results suggest that these genes may 

influence shoot and root growth in response to light. 

AT1G49660 CXE5 Probable carboxylesterase 5  

AT1G33110 DTX21 Protein DETOXIFICATION  

AT1G30530 UGT78D1 Glycosyltransferase (Fragment)  

AT1G65060 4CL3 4-coumarate--CoA ligase 3  

AT1G21680 AT1G21680 DPP6 N-terminal domain-like protein  

AT1G28570 AT1G28570 GDSL esterase/lipase At1g28570  

AT1G54100 ALDH7B4 ALDH7B4  

AT2G16500 ADC1 Arginine decarboxylase 1  

AT2G42570 TBL39 Protein trichome birefringence-like 39  

AT2G16430 PAP10 Purple acid phosphatase  

AT2G36900 MEMB11 Membrin  

AT2G21880 RABG2 RAB7A  

AT2G36290 AT2G36290 Alpha/beta-Hydrolases superfamily protein  

AT2G42870 PAR1 Transcription factor PAR1  

AT1G60270 BGLU6 Putative beta-glucosidase 6  

AT1G09570 PHYA phytochrome A [Source:TAIR 

AT2G15970 COR413PM1 WCOR413-like protein  

AT2G05620 PGR5 Protein PROTON GRADIENT REGULATION 5, chloroplastic  

AT2G25530 AT2G25530 AFG1-like ATPase family protein  

AT2G37330 ALS3 ALS3  

AT2G35260 AT2G35260 At2g35260/T4C15.7  

AT2G46260 AT2G46260 BTB/POZ domain-containing protein At2g46260  

AT2G46140 AT2G46140 Desiccation-related protein At2g46140  

AT2G25900 ATCTH Zinc finger CCCH domain-containing protein 23  

AT2G34460 AT2G34460 Uncharacterized protein At2g34460, chloroplastic  

AT2G38230 PDX11 Pyridoxal 5'-phosphate synthase subunit PDX1.1  

AT2G40000 HSPRO2 Nematode resistance protein-like HSPRO2  

AT2G30570 PSBW PSBW  
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Table III List of Arabidopsis thaliana candidate genes and respective mutants requested from ABRC.  

Gene ID Name Germplasm 

AT3G15500 NAC055 SALK_014331 

AT5G57660 COL5 SALK_096361 

AT2G24790 ATCOL3, BBX4, COL3, CONSTANS-LIKE 3 SALKSEQ_60825.1/ cs926382 

AT1G69490 NAP SALK_005010 

AT5G04410 ANAC078, NAC2, NAC78, NTL11 SALK_025098 

AT4G28250 ATEXPB3, EXPB3 SALK_124760 

AT5G25810 TINY, TNY SALK_206788 

AT2G31790 unknown SALK_202632 

AT5G11790 NDL2 SALK_013645 

AT4G19170 CCD4 SALK_097984 

AT2G14878 unknown SALK_030214 

AT1G46554 unknown SALK_011787 

AT4G39675 unknown SALK_111156 

AT5G24880 unknown GK064H04 

AT3G23810 SAHH2 GK139A1201 / cs314094 

AT4G36930 SPATULA, SPT WISCDSLOX466B7 

AT1G30530 UGT78D1 SAIL_568_F08 

AT1G70700 JAZ9/TIFY7 SALK_004872 

AT3G02830 PENTA 1, PNT1, ZFN1 GABI_676A09 / cs374793 

AT3G63520 CCD1 SAIL 390 C01/  cs878019 

 

 

 

Figure 2 Shoot and primary root growth lengths of single knockout mutants (n≥ 15). Statistical 

significance was determined by Kruskal-Wallis test with Dunn’s post-test (* p≤ 0.05). Error bars 

indicate SD. 

 

Seedlings were further grown in LD and the number of lateral roots was 

quantified after 14 DAG. Some mutants showed a higher number of lateral roots when 
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compared to the wild type, such as tny, salk011787 and gk064h04 (Figure 3). These 

results possible suggest that these genes, specially AT1G46554 (salk011787), act as 

repressors of lateral root development in response to shoot light.  

 

 

Figure 3.  Lateral root density of single knockout mutants at 14 days in LD condition (n≥ 15). Statistical 

significance was determined by Kruskal-Wallis test with Dunn’s post-test (* p≤ 0.05). Error bars 

indicate SD. 

 

Low nitrate concentrations stimulate lateral root formation whereas high nitrate 

represses lateral root growth (Bulgakov and Koren 2022), so we decided to carry out 

another experiment only with the mutants that showed significant differences in lateral 

root growth. Seedlings were grown as Krouk et al. 2010 in medium without N, 0.2 mM 

or 1 mM KNO3 Evaluations were performed at 8 and 12 DAG. At 8 DAG, hy5 mutants 

showed a higher amount of LR when compared to Col-0 in 1 mM KNO3. On the other 

hand, tny showed less LR in 0.2 mM of NO3 (Figure 4a). In the absence of NO3, 

mutants salk011787, GK06H04, exp3, nrt2-12 all showed a strong reduction of LR 

compared to the WT. Interestingly, salk011787 displayed much longer LRs than the 

WT in 0,2 mM and 1 mM KNO3 which suggests a repressive role for the gene 

AT1G46554 both for LR emergence and growth in response to NO3. LR was restored 

in higher (1mM NO3) concentrations for all genotypes at 8 DAG but exp3 and nrt2-12 

did not increase LRs at 12 DAG. These two genotypes behaved similarly in all NO3 

concentrations and timepoints tested, suggesting they might operate in a similar 

pathway. 
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Figure 4 Lateral root density of single knockout mutants with 0 mM, 0.2mM and 1 mM of NO3, a 8 

days in LD condition (n≥ 1), b 12 days in LD condition (n≥ 15) and c growth ratio (%) of 12 days in 

LD condiction. Statistical significance was determined by Kruskal-Wallis test with Dunn’s post-test (* 

p≤ 0.05) and (** p≤ 0.01). Error bars indicate SD. 

 

Discussion  

Previously, phytohormones, sugars, mobile RNAs and proteins were once 

considered mobile signals produced by the shoot and mobilized to the roots, where 

they promote the development of the root system (Lee et al. 2017; Van Gelderen et al. 

2018). Although these studies had a great importance in the elucidation of the genetic 

and molecular mechanisms involved in light responses, there are still many gaps to 

fulfill. In this work we searched for some possible candidates for light-respons ive 

shoot-to-root mobile signals. 

By comparing root expressed light-regulated genes from photomorphogenic 

seedlings with other available transcriptomic data, we found a list of candidate genes 

expressed in shoots that might act in root responses.  

Some of the identified mutants displayed more pronounced root growth as well 

as lateral roots when compared to Col-0. Among them we can highlight AT1G46554 

(salk011787) which is identified as a non-coding RNA and the loss of function mutant 

displays more LR formation and elongation, which suggests it might act as a repressor 

of lateral roots. The fact that these genes produces a light- inducible and phloem-mob ile 
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non-coding RNA suggests that a putative long acting post-transcriptional and/or 

epigenetic mechanism might act to control light-responsive lateral root development. 

Another gene, AT5G24880 (GK06H04), is described as a "chromo domain 

cec-like protein" expressed specifically in root hairs, stamens, and pollen in the eFP-

Browser expression atlas. Although there is no further functional information 

regarding this protein, our results suggest that this gene acts as a negative regulator for 

the emergence of lateral roots, although this remains to be evaluated further. 

Another interesting mutant is tny (AT5G25810), which showed more LR 

formation in control conditions and more LR growth in high NO3 conditions. TNY 

encodes a member of the DREB A-4 subfamily of the ERF/AP2 family of TFs and is 

also known as ERF40. This gene is induced by ethylene and light and appears to 

stimulate cytokinin biosynthesis (Wilson et al. 1996; Sakuma et al.  2006). TINY was 

described to reduce cell expansion when overexpressed. Recently, it was described to 

inhibit plant growth and promote drought response via a repressive effect on BR 

signaling in drought conditions (Xie et al. 2019). Our results reinforce the repressive 

effect of TNY in root growth, especially regarding LRs. Nevertheless, its role in shoot-

to-root signaling could be accessed via grafting or tissue specific gene-ablation. 

The mutant exp3 stood out in our analysis displaying reduced root growth in 

most of the tested conditions. EXP3 encodes EXPANSINβ3, first identified more than 

a decade ago as the main cell wall factors responsible for “acid growth” (Wieczorek 

et al. 2006). Expansins comprise two major gene families: α-expansins (EXPA) and β-

expansins (EXPB). Most isoforms are expressed in both shoots and roots, which 

include EXPB3 (Wieczorek et al. 2006). Our results suggest that the mutation affects 

the cellular expansion and thus compromising the growth of the roots. 

These four genes are promising candidates for studies on how light affects main 

root and lateral root growth. Here, we show that root growth responses are affected by 

light and this affects primary and lateral root development in Arabidopsis. Our results 

indicate that the majority mutants did not show differences related to shoot and root 

growth. However, the development of experiments with a greater number of plants 

evaluated and with different light intensities will allow a more accurate analysis of the 

effect on the behavior of mutants. In addition to enabling the evaluation of the 

participation of these genes in long-distance signaling when the aerial part is 

illuminated. 
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- Considerações finais -  

  

Os últimos 10 anos foram bastante esclarecedores quanto ao estudo da luz no 

desenvolvimento das plantas. Embora descobertas notáveis tenham sido feitas sobre 

as respostas fotomorfogênicas da parte aérea a jusante dos fotorreceptores, os eventos 

de sinalização que controlam a fotomorfogênese da raiz foram deixados um pouco de 

lado. Descobertas recentes mostraram que a comunicação de longa distância 

desempenha um papel importante na fotomorfogênese, estresses abióticos e bióticos, 

sinalização de nutrientes, termomorfogênese e ciclo circadiano entre parte aérea e 

raízes. As plantas vêm desenvolvendo ao longo de toda a evolução inúmeros 

mecanismos para se proteger de condições adversas impostas pelo meio ambiente, ou 

seja, estão em um processo constante de adaptação. A relação luz x crescimento 

radicular, está bastante atrelada a comunicação que se dá entre parte aérea e raiz, esta 

comunicação é complexa e desencadeada por um ou vários sinais de longa distância.  

Avaliamos nos Capítulos II a IV o efeito da iluminação da parte aérea na 

regulação de genes e processos que ativam o crescimento das raízes. As considerações 

do Capítulo II se baseiam na tentativa de esclarecer os mecanismos de sinalização no 

desenvolvimento inicial das plântulas de Arabidopsis thaliana revisando os hubs 

centrais de sinalização luminosa. A luz não é apenas uma fonte de energia, mas 

também um sinal de coordenação nas plantas e a maioria das pesquisas se concentra 

na resposta dos órgãos acima do solo apenas. No entanto, o desenvolvimento radicular 

subterrâneo é altamente responsivo aos sinais de luz da parte aérea e a compreensão 

desses mecanismos de sinalização fornecerá uma melhor visão do desenvolvimento 

inicial das plântulas.  

No capítulo III, nos utilizamos da análise de datasets públicas de 

transcriptomas para avaliar de forma abrangente o efeito da iluminação da parte aérea 

na regulação da fotomorfogênese. Visando melhor aproveitar o número de genes 

diferencialmente expressos que encontramos, acabamos por optar pela utilização de 

duas ferramentas/metodologias distintas na análise destas datasets, o DEseq e o 

Transcriptograma. Apesar de serem abordagens com estratégias diferentes, ambas nos 

remeteram um pequeno conjunto de genes (fatores de transcrição) possivelmente 

envolvidos no processo de sinalização por luz. A combinação dos dados obtidos por 

essa análise (dados de bancos de dados públicos) possibilitou o levantamento da 



148  

  

participação de fatores de transcrição relacionados ao ABA na transmissão do sinal 

recebido da parte aérea.   

O fitohormônio auxina e os açúcares fotossintetizados eram os principa is 

candidatos a sinais de longa distância enviados pela parte aérea iluminada para as 

raízes, abaixo do solo. A participação de genes da rota do ABA apareceram em nossas 

análises, como estando envolvidos neste processo. Com base em nossas observações 

de que a maioria das respostas precoces transcricionais à luz pode depender de fatores 

de resposta ao ABA que já estão presentes na plântula cultivada no escuro, propomos 

um modelo em que a sinalização de luz reaproveita parte dessa maquina r ia 

transcricional disponível para ativar os genes responsivos precoces na inativação de 

PIF e mais tarde, a estabilização de reguladores positivos de respostas à luz assume 

para sustentar o crescimento fotomorfogênico, esse efeito pode ocorrer por interação 

direta com bZIPs responsivos a ABA (interação entre HY5 e ABI5). São necessárias, 

porém, novas análises envolvendo fusão com outras proteínas e RNAs para 

investigação mais aprofundada do comportamento e mecanismos dos fatores de 

resposta ao ABA na via de sinalização luminosa. 

A diversa gama e disponibilidade de mutantes perda-de-função permite avaliar 

geneticamente o papel de genes de interesse. No Capítulo IV, realizamos diversas 

filtragens baseadas em artigos publicados, datasets e bancos de dados e definimos um 

conjunto de genes candidatos como sendo responsivos à luz. A avaliação fenotíp ica 

dos mesmos nos conduziu a quatro genes promissores para esse estudo. Porém, os 

dados não foram totalmente explorados e torna-se necessário o desenvolvimento de 

mais experimentos para garantir este envolvimento. 

Com base nos apontamentos relatados nesta tese fomos capazes de corroborar 

alguns aspectos da nossa hipótese inicial, assim como inserir novas possibilidades 

nesse modelo de desenvolvimento. Inúmeras questões no que diz respeito a como e de 

que forma determinados genes participam da fotomorfogênese permanecem não 

respondidas e necessitam de investigação aprofundada. 
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1. Fenótipos de mutantes estudados na condição LD = 7 e 10 dias com MS, ou MS + 1% SUC, ou MS + 

1% GLUCOSE. WL (109,84 umol). Mensurações: a Comprimento de hipocótilo; b Comprimento da raiz;  

c Comprimento de hipocótilo e raiz de Col-0, phyA, phyB e cry1. d Proporção de crescimento (%) (relação  

raiz/hipocótilo). A significância estatística foi determinada pelo teste de Kruskal-Wallis com pós-teste de 

Dunn (* p≤ 0,05) e (** p≤ 0,01). As barras de erro indicam SD. As letras indicam comparações (ANOVA) 

dentro do genótipo, n = 20 ou mais. 
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