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Algoritmos de decomposi¢cao QR para sistemas MIMO:mhpacto no
esforco computacional e implementacdes de hardware

RESUMO

Dentre as abordagens para se atingir altas taxdsademissdo em sistemas de
comunicacdo sem fio, uma se destaca como muitoigsoma: sistemas de multiplas
antenas (ou Multiple Input Multiple Output — MIMORos quais a informacdo €
transmitida e recebida por mais de uma antena.sigmsmas podem atingir altas taxas
de transmisséo usando, entre outras possibilidatigsjtmos desphere decodingara
decodificar os simbolos MIMO recebidos.

Para diversos algoritmos para detecgcao MIMO, tahasphere decoding, uma
variacdo do algoritmo de Fincke-Pohst (FINCKE, )9&5necessario ter um hardware
eficiente de decomposicdo QR, uma vez que essidizadd cada vez que a resposta
impulsiva do canal modifica-se significativameriiegpara obter-se uma implementacéo
eficiente € necessério utilizar uma representagéoponto fixo para as matrizes, tanto
por motivos de area quanto de laténcia.

Evidentemente, a perda de preciséo resultante @aeigponto fixo introduz erros
nas matrizes calculadas, e é provavel que issodaw®m aumento na taxa de erros de
quadros (FER). Um dos propdésitos deste trabalheteérminar a quantidade minima de
bits necessaria para manter esse aumento sufitiente baixo. Este trabalho também
avalia a redugcéo no esforco computacional paraugiecde deteccdo MIMO por
algoritmos baseados em busca em arvore resultantsal de versdes melhoradas do
algoritmo de decomposicdo QR. Mais especificameatsprted QR decomposition
(SQRD) e a minimum mean-square error SQRD saoaaiasi

O outro propésito deste trabalho é projetar artjuies de hardware capazes de
computar a decomposicdo QR e suas variacdes panaeagequenas, tipicamente de
22 e 42 ordem. Também é importante obter uma ¢éscem VHDL desse hardware e
comparar resultados de area e laténcia das diésrgrtsoes.

Palavras-Chave:Decomposicdo QR, SQRD, MMSE-SQRD, Sphere Decoding.



ABSTRACT

Among the approaches to achieve high data rat@greless systems, one rises as
very promising: multiple-antenna systems (or Mudtimput Multiple Output — MIMO),
in which the information is transmitted and receivsyy multiple antennas. Such systems
can achieve high data rates with using, among qibssible choices, sphere decoding
algorithms to decode the received MIMO symbols.

For many algorithms used for MIMO detection, sustsphere decoding, a variation
of the Fincke-Pohst Algorithm (FINCKE, 1985), itnsquired to have an efficient QR
decomposition hardware, since it is used each ftinge channel impulse response
changes significantly. And to achieve an efficidrdrdware implementation it is
necessary to use a fixed point representationhimiatrices, both for area and latency
purposes.

Evidently, the loss in precision resultant fromefikpoint precision introduces errors
in the output matrices, and this is likely to lgadan increase in the frame error rate
(FER). One of the purposes of this work is to datee the minimum amount of bits
both for fractional and integer parts that are seagy to keep this increase sufficiently
low. This work also evaluates the complexity redrctresultant from improved
versions of the QR decomposition in tree-basedckealgorithms. More specifically,
the sorted QR decomposition (SQRD) and the mininmugan-square error SQRD are
evaluated.

The other main purpose of this work is to come uth vimardware architectures
capable of computing the QR decomposition andntproved versions (SQRD and
MMSE-SQRD) for small matrices, typically of%and 4" order. It is also important to
have a fully functional VHDL description of this fdavare and compare the different
versions regarding area and latency.

Keywords: QR decomposition, SQRD, MMSE-SQRD, Sphere Decoding
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1 INTRODUCTION

1.1 Context and Motivation

Devices such as smart phones, laptops and othefaisimobile communication
gadgets are becoming growingly common. The apjpdieat heterogeneity is also
increasing, since such devices can be used frodicappns as simple as sending text
messages or reading e-mail up until watching livee® streams. Many of these
applications, especially those involving multimeditaeams, require high data rates to
be performed with satisfactory quality. Therefottegre is an increasing demand for
devices able to transmit and receive efficientlhigh speed and better techniques are
required to increase spectral efficiency, while uedg error rates and decoding
complexity.

In order to reach the expected data rates for duiuireless systems, multiple-input
multiple-output (MIMO) systems rise as one of thevsin promising techniques
(GIMMLER, 2007), (LUETHI, 2008). In MIMO systems, uttiple transmit antennas
send MIMO symbols over the channel in the sameufgaqy band, which are received
also by multiple antennas. Such systems are edlgeaisractive due to their high
spectral efficiency (TELATAR, 1999). On the otheankl, these systems have the
drawback of increased complexity in the receivergesit is responsible for determining
which modulation symbol was sent by each transnigrana.

Many different algorithms can be used to reducectitaplexity of detecting MIMO
symbols, such as sphere decoding and successeréenence cancellation. For many of
these algorithms, the QR decomposition is a ctitiperation to ensure a good quality
of the successive decoding steps. Also, improvesives of the QR decomposition can
be used to further improve the detection qualitgducing frame error rates or
computational effort, depending on the detectiogoathm used (WUBBEN, 2001),
(MENNENGA, 2009). A number of different QR decompia® architectures were
proposed in other works, such as (SALMELA, 2008) dhUETHI, 2008). In these
works, however, the results are presented regardey architecture itself, not
addressing the overall system performance.

1.2 Contributions

The extended versions of the QR decomposition atedi) namely the sorted QR
decomposition (SQRD) and the minimum mean-squarer §QRD (MMSE-SQRD)
can reduce the total computational effort assodiatgh detecting a MIMO symbol,
when tree-search based algorithms are used (MENNERG09). However, the actual
reduction that can be achieved must still be mealsand compared for each different
version, concerning the complete communicationrchalso, the cost of using these
algorithms must be evaluated, regarding increasega and decomposition latency.
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Therefore, in this work the computational effortiaarror rates of different versions
of the QR decomposition are measured using a conaadion chain model. In order to
obtain a fixed point implementation that is suficily precise, the error rates of
different quantizations is also analysed.

A new QR decomposition hardware architecture issgmied. The proposed
architecture is extended to perform the SQRD and#MSQRD. The implementation
results are presented, regarding total area arshdgt which is compared to the
requirements of a real system’s real time requirdmel he results are also compared to
those obtained from a high-level synthesis tod,NMentor Graphics Catapult C.

1.3 Report Structure

The remainder of this report is structured as fedlo Chapter 2 presents the
communication chain model and briefly describesheafcits components. Chapter 3
describes the chosen QR decomposition algorithmtlaadnvestigated improvements.
Chapter 4 explains the different simulation pararseeaind presents several simulation
results. In chapter 5 the QR decomposition hardveachitectures are presented and
each of the required components is described. €h&panalyses the area and timing
results of the hardware implementations for FPGAd ASICs. Finally, chapter 7
presents the conclusions.
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2 COMMUNICATION CHAIN MODEL

In order to evaluate the functionality and the hssobtained from modifications
applied to the system, a communication chain maslelequired. The used model
consists of: source, channel encoder, interlea@*M mapper, channel, sphere
decoder, de-interleaver and channel decoder.

Figure 2.1 shows the basic chain. The source gesesarandom bit sequenlogin
which each bit has an equal probability of beingr D. This generated sequence is the
input of the channel encoder, which can use mafigrdnt algorithms, such as LDPC
or convolutional codes. Since the evaluation otsalgorithms is not in the scope of
this work, only the latter is used. The used coutrohal code has 64 states, and it is
non-systematic, non-recursive and uses the Maxlog® MBCJR) algorithm. The
encoded sequenceis then interleaved. The interleaved sequensghen mapped into
a complex QAM symbols vect@ by the QAM mapper, and then transmitted by N
antennas over a noisy channel with Rayleigh fadm@pe received by Nantennas.

The received sequenges then decoded by the sphere decoder, de-invedeand
then decoded by the channel decoder. This prosespeated iteratively, in the called
big loop iterations. During this process, the sphand channel decoders exchange
logarithmic likelihood ratios (LLRsS), which expref®e belief of each decoder for each
bit being 1 or 0. The extrinsic information vectgp, generated by the sphere decoder,
is de-interleaved and then decoded by the charewd®r, which has two outputs: the

b bit vector, and the extrinsic information vec®gp. The latter is interleaved and
used by the sphere decoder in the next big looatiter. Both decoders are called soft-
input soft-output (SISO) decoders.

€cp e’CD
L n J
Source |25 Channell cy 1 QAM LS.l channel Y Sphere lesp ol Bsp Channel b s
Encoder Mapper Decoder Decoder

Figure 2.1: System model

2.1 Channel model

The channel model describes how the transmittedbslgrare modified before the
reception. Typically it involves the addition ofise and, for the multiple antennas case,
the multiplication by a channel impulse responsé&imél.

When compared to the one used in (GIMMLER, 200%g onportant change was
made in the channel model. Instead of
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y= SNR|—|s+n (2.1)
NT
was used the model
y= 1 Hs+—— 2.2
\= v SNR (2.2)

y : Nr X 1, received symbol vector

H : Nr x Nr, complex channel matrix

s: Nr x 1, transmitted symbol vector

n: Ng % 1, additive gaussian complex noise

This means that, instead of scaling thanatrix with the signal to noise ratio, the
noise vector is divided by this same ratio. Witls tthange we get a more predictable
range for the values iHl, since it is no longer scaled by the SNR. The rothain
difference caused by this change is the alteratidhe sphere radius (SIMHA S, 2009),
being much smaller than in (GIMMLER, 2007).

TheH matrix and the noise vectarare both constituted of complex random values,
with mean zero and unit variance. In the rest of Work it is assumed thatgN= Nt =
N.

2.2 The Sphere Decoding algorithm

The sphere decoder has the purpose of determihegpgarithmic likelihood ratio
Lo of each bit pin the received complex vectgr This numbers form a vector which
represents the belief of the sphere decoder fdr bdeing 1 or 0.

P(b, =0)
P(b, =1)

This means that, if 4(bj) > 0, the hard-decision is® 0 and it is p= 1 if Lp(b;) < O.
Accordingly, if Lp(by) = 0, no information can be extracted, as B(0) = P(pb=1).

L, (b;) =In (2.3)

To determine the probability of each bit being 10pa search has to be performed
through the solution space, where the distancesdeet the received vector and the
possible solutions in the discrete QAM constellatame considered. Assuming that the
receiver knows the channel matri, the squared Euclidean distance between the
receivedy vector and each possible solution vesta:

d(s) =|y-Hg’ (2.4)

This distance is then updated with the logarithmpiobabilities for each bit
calculated in the previous big loop iteration b tthannel decoder, and the sphere
decoder then tries to find the symbol vector whigsults in the minimum distance:

min(d(s) —Zlog P(b))) (2.5)
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Where P(P denotes the probability of th8 pit having the value that was assumed
for it in s. In other words, the purpose of this operatiotoiseduce the distance of the
symbols that the channel decoder agrees with. Hexyéivese logarithmic probabilities
are not used in this work. Instead, logarithmicelittood ratios (LLRs) are used to
approximate this value. The search performed bygpiere decoder then becomes:

min( d(s) + > LLR(a;,b;)) (2.6)

where @ is the a-priori information received from the chah decoder. The
straightforward approach to find these minimum ealis to try all possible values far
However, it is clear that the computational effagtjuired to analyse each possible
vector makes this approach very ineffective. Foanggle, in a system with 4x4
antennas and a 16-QAM constellation, we would hi§e= 65536 possibilities. A
variation of the Fincke-Pohst algorithm can be usededuce this problem, analyzing
through a tree search only the elements that resglde a sphere of a given radius.
This reduces the search space and makes it possit@eursively calculate the squared
Euclidean distance using partial Euclidean distan@EDs). In order to do so, the
equation for the distance needs to be modifiedygudie QR decomposition of matrix
H. This will be further discussed in section 2.2.1.

The output of the sphere decoder is also logarithiikelihood ratios. They are
calculated, however, as the difference of the mummdistance for this bit being 1 and
0:

A, =minl; —min0;, (2.7)

J
These values keep the properties described fdrghalues in equation 2.3.

Because during the big loop iterations only the mef@rmation discovered by the
sphere decoder should be sent forward to the chatesoder, the added a-priori
information aof bit b must be subtracted from the difference of the manvectors, to
form the outputsp.

€, =N\ — &, (2.8)

SinceA; is calculated as the mentioned difference, thei@ipnformation must be
added in a manner that maintains the property raggn 2.9, so that its subtraction
effectively removes its value from the result:

LLR(a;,b, =1) - LLR(a,,b; =0) = a, (2.9)
Therefore, the purpose of the LLR function in eqprat2.6 is to transform thg a
values received in a vector which respects the gtgpin 2.9. Several different

implementations for this function are discusse@MMMLER, 2007). In this work, the
version used adds only the a-priori informatiorbib$ that are 1.:

a;,b, =1
LLRla, by)=1 (2.10)
g

2.2.1 The usage of the QR decomposition

In order to simplify the calculation of the distanlbetween the received vector and
other constellation point vectors, the QR decontmoscan be employed:
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d(9) =|y-Hg’ 2.11)
d(s) =|y-QR¢’ (2.12)
d(s) =[Q"y-Rg’ (2.13)

The QR decomposition of a mattkis a mathematical operation that generates two
matrices, namel® andR, which have the following properties:

i) The columns of are orthogonal (corthonorma). That means the inner product
of any two columns 0@ is zero, and the inner product of a column witlelitis one
(for the orthonormal case). From this fact derithessuseful property that the inverse of
Q is its transpose (or Hermitian transpos&) i complex).

i) R is an upper-triangular matrix. That means that algynent under the main
diagonal is zero.

iii) Finally, the product of) andR must beH.
H=QR (2.19
Using these definitions, a tree search can theaordoca tree with N+1 levels, with
each level after the first standing for one elenwrihe solution vectos and with each

node having M children, where M is the number aégible constellation points in the
used QAM modulation, as in Figure 2.2.

Q T4(S(4)):O

+ey(s)|
OO & C
He )P
OO O G
e ()P
) OO O
*He(sO)P

Figure 2.2: Tree search for a system with 4-QAM 4rd antennas

Starting at the root with a PEDyE") = 0, it is possible do build the tree
downwards calculating the distance&®) recursively. Once a leaf node is reached, its
distance F<?) is actually the distance for the whole symbolusewe that connects it
to root node. The a-priori information from the yioais big loop iteration can also be
added during process.

The partial Euclidean distancegs’) are calculated recursively with the equation:
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'E@“)=ﬁﬂwmﬂrﬂawmﬂz (2.15)

The partial increases (&’)f, already adding the a-priori information for the
relevant bits, are obtained with:

e <[5 -ERs| +Turamn) 216)
y=Q"y (2.17)

Where k iterates the bits which form the curremhlygl 3. To emphasize the effect
of 5 in the partial Euclidean distance increase, equéil6 can be rewritten as:

‘ei (S(i))‘2 =

b,.(s")-R,s| + ¥ LLR(@,.by) (2.18)

_ Nz
b.(s™)=9, - YR s, (2.19)

j=i+l
Note that equation 2.19 is equal for all brothede®

The sphere radius can be applied during this searchntermediary node with a
high PED can have its whole sub-tree excluded fiteensearch, reducing the amount of
evaluated possibilities and saving computatiomaéfi

2.2.2 Sphere Shrinking

One important improvement that can be applied ¢ostthere decoding algorithm is
sphere shrinking. The main purpose of this techmiguo reduce the amount of visited
nodes by reducing the sphere radius as the treehsgiaceeds.

At any given stage of the tree search, it is pdsditodetermine the maximum value
of the distance of a leaf node that may cause tanaéibn in the minima vectors. The
sphere shrinking radius SSR is equal to the largalsie currently in a minima vector,
since that any distance larger than this will nodify any position in the vectors and is,
therefore, irrelevant for the output. Thus, if alageaches this value at any point of the
search, one can know that the entire sub-tree belmairrelevant — which is the same
as redefining the sphere radius. Evidently, if itngal radius ISR is smaller than this
new value, it is kept.

SR=min(ISR SSH (2.20]
SSR=maxXmaxmin, ), maxmin, )) (2.21,

At this point, however, it is important to considee manner in which the a-priori
information is added, as it can be negative. Thresums that an intermediate node which
lies outside the sphere can have a final pointg@ir node) under it which would cause
an update in a minima vector, since negative adgnéormation can cause the distance
of a given branch in the tree to actually decremsé¢he search proceeds, provided it
overcomes the positive PED. Even though this mayowith considerable frequency,
its influence in the final error rates is not sigrant.

Among the LLR functions presented in (GIMMLER, 200@ne ensures that the a-
priori information is always positive (equation 2)2 which does not happen when
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equation 2.10 is used. However, equation 2.10 hlasr advantages: the amount of
additions done is only the half of equation 2.22 @nneeds to visit fewer nodes to
achieve the same FER performance (GIMMLER, 2007).

aj,bj =104, >0
LLR(a,,b, )={-a,,b, =00a, <0 (2.22
0, otherwise

Other improvements can be applied to the spheiskshg. As the search proceeds
down the tree, decisions are made for the valusaoh bit. This means that leaf nodes
reached in the current sub-tree cannot affect tidnma of the other value for the
already decided bits. Hence, the definition of 8%®R in equation 2.21 can be further
improved to consider only the minima of the chogelues for the bits that lie upwards
in the tree. Bits that are still to have their vwchosen down the tree must have both
minima considered. Figure 2.3 illustrates this #osystem with 4x4 antennas and 4-
QAM. Consider that the tree search is currentlthim gray node, labelled;,Tand needs
to evaluate whether it is inside the sphere or fbe first six bits of the sequence
already have their values defined, and therefohg thiwse values can have their minima
changed. The last two, on the other hand, areuwtdefined. For this reason, only the
minima in gray need to be considered to deterntweecurrent radius, as they are the
only ones that are eligible to be changed. The mam value in the gray painted
positions will be used as the sphere radius.

Bits Mino  min;

Figure 2.3: Sphere shrinking example for a 4x4rame system with 4-QAM

The last improvement of the sphere shrinking tedresidered in this work is the
ordering of the child nodes. This is calleddered sphere shrinkingThe idea is to
always choose the node with the smallest PED a$irdtecandidate when descending
the tree. This is a greedy algorithm used to obdaiickly leaf nodes with reasonably
small distances and hence speed-up the shrinkadbeofree, further reducing the
average amount of visited nodes.
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3 QR DECOMPOSITION ALGORITHM

The QR decomposition of a matitkis defined as the matric€sandR, whereQ
has orthonormal columng® is upper-triangular ant=QR. There are many different
algorithms to compute the QR decomposition, suasayy the Gram-Schmidt process,
Householder reflections or Givens rotations andatians (GOLLUB, 1996). In this
work, the Gram-Schmidt process is used, due tsintglicity and vast use in previous
works, such as (SALMELA, 2008), (WUBBEN, 2001) gitETHI, 2008).

3.1 The Gram-Schmidt process
The Gram-Schmidt process initially orthogonalizese& of vectors by subtracting
the projection of one on the other. Figure 3.1 shtive process for two vectors.

Up=h,- projul(hz) h,

U1=h1

€ projul(hZ)
Figure 3.1: Gram-Schmidt process for two vectors

To perform the process, the definitions of inneydoaict and vector projection are
necessary. Since we are working in an Euclideaoesgihe inner product of two vectors
h andu is defined as the dot product:

{(h,u) = h[Zufa] + h[2]u[2] + ...+ h[N]u[N] (3.1)

If the vectors are complex, which is the case hedight alteration in this equation
is necessary, whew®nj denotes the complex conjugate of a number:
{h,u) = conj(h[1]).uf2] + conj(h[2]).u[2] + ... + conj(h[N]).u[N] (3.2]

The projection of a vectdr on a vectou can be defined as:

(u.y

proj, (h) = <u u) u (3.3

Given these definitions, the Gram-Schmidt processcomputed as follows,
iteratively subtracting the projection of each wean the others:
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W =h
u, = hz - projul(hz)
u; = h3 - projul(h3) - pI’Oju2 (hs)

k-1
u, =h, _z proj,; (h,) (3.4)
j=1
We can consider that the vectdisare the columns of the input matkik= (hy, hy,
..., hn), which were transformed into a set of orthogoreadtorsug. This set of vectors
can be then transformed into an orthonormal sedibiging each element by its own
modulus:

= i )
] (89

Since the inner product of two vectors is diregipportional to the norm of each
vector, and the inner product of a vector withlftgeits squared norm, the projections
in equation 3.4 can be rewritten as:

u,h u,h
<u$,»u2k - u'u.uk>% (e, e @

Equation 3.4 can be rewritten using equation 316 fact tha{tq h )q =u,, since e
has norm 1 and is collinear tg and isolating the elemertig:

h =(e.h)e
h, =(e,h,)e +(e,.h,)e,

proj, (h,) =

Kk
h = Z<ej " >ei (3.7)
Rewriting the above equations in matrices resalts i

(e.h) (e.h) .. {e.hy)
0 (e,h,) <ez,hN> (3.8)

H=lele lde)) o 70

0 (eyh)

As the vectors are orthonormal and the second matrix in the ahmeeuct is
upper triangular, it can be seen that the first saxbnd matrices in the right hand side
of equation 3.8 are, respectively,andR.

3.2 Modified Gram-Schmidt process

The direct application of the Gram-Schmidt proaess system with finite precision
(such as any computational system) vyields poor lteesiMore specifically, the
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orthogonality of the columns d is seriously damaged as the precision is reduced
(GOLLUB, 1996).

These results can be improved by an alterationh& drdering in which the
calculations are done, resulting in the algorithattedd Modified Gram-Schmidt (MGS)
(GOLLUB, 1996), which calculates, at each iteratodrits external loop, one column of
the Q matrix and one row of the matrix.

Let H denote the input matrishx denote the 'k column ofH andqy " denote the
Hermitian transpose @f. A pseudo-code for this algorithm is:

R=0
for k=0:N-1
R(k, k) = [l [l
ak = h / R(K, K)
for j=k+1:N-1
R(k, j) =ak "™ hy
hj =hj —ak.R(K, j)

end
end
Algorithm 1: Modified Gram-Schmidt Process (MGS)

This version of the algorithm, however, has sonsbie hardware implementation
issues. First, it requires the calculation of tleenm of a vector, which implies the need
of a square root hardware. Second, there is the foe@ division hardware. And, if this
vector division operation is ever to be paralledizéhen many instances of this hardware
would be required.

One approach to avoid these implementation isssiggasented at (SALMELA,
2008). Instead of calculating the norm of the vedtte inverse square root is calculated
directly. This allows the replacement of the diers by multiplications. The actual
square root, necessary to form the main diagongh®R matrix, can be calculated
using the mathematical property:

& =xY2 = yx V2 = Xi (3.9

Jx

This means that multiplying the input and the outpfithe inverse square root
hardware results in the square root of the inplé dain in area from this alteration can
be even larger if an approximation hardware is usather than an exact one, to
calculate the inverse square root. The hardwaral dse this purpose is further
discussed and presented in chapter 5. Howeverrder do keep this approximation
close enough to the correct result, numeric mettmtsh as the Newton-Raphson
method can be used.

Given a function f(y), its derivative f'(y) and anitial guess for a root gy the
Newton-Raphson method can be used to improve thasg iteratively finding a better
root approximation (PRESS, 1992):
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f(y
o=y - ) (3.0

f'(y;)

The equation for the inverse square root must bigerewritten:

1
X =Yy (3.11
iz =X (3.12
y
Then the function f(y) must be defined in a wayt then f(y) = 0, y =1/x:
_1_
fy=1zx (3.13
Its derivative is:
-2 ,
f'(y)=— (3.14
y
By applying 3.13 and 3.14 to 3.10, equation 3.1&b&gined:
Yi _ X ,
A 3.15
yl 1 y 2 2 (

This equation can be applied iteratively to maka petter approximation of the
inverse square root of x. In this work, only orexation was considered.

Let isgrt_i and isqrt_o denote, respectively, theuit and the output of the inverse
square root hardwardhe again modified algorithm, now using the invesgeare root
and multiplications, becomes:

R=0
for k=0:N-1
isgrt_i =h, . hy

isqrt_o = Misqrt_i
R(k, k) = isqgrt_i.isgrt_o

Ok =hg .isgrt_o
for j=k+1:N-1
R(K, ) =ak". by

hj =hj—ax. R, J)
end
end
Algorithm 2: MGS modified for hardware implementati

This algorithm has yet the undesired property that input matrixH is altered
during its execution and therefore it would needéocopied by the hardware to an
internal memory. However, after th& kolumn ofQ is calculated, the'kcolumn of the
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copy ofH is no longer used. For this reason, also as stegjes(GOLLUB, 1996), this
code can be further improved with the merge of dapy of the input matrix an@.
Therefore, Algorithm 3 is also functional, giveratlQ is initialized with the input
matrix:

R=0,0=H
for k=0:N-1
isqrt_i =g« . g

isqrt_o = lisqrt_i
R(k, k) = isqrt_i.isqrt_o
gk = Q(O:N-1, k).isqrt_o
for j=k+1:N-1

R(k, J) =ak". g

0 =0 —ak - R(k, )
end

end

Algorithm 3: MGS with improved memory usage

3.3 Sorted QR Decomposition

The order in which the transmitted signals are watald can affect the performance
of the sphere decoding algorithm (STUDER, 2008)s Tdrder can be modified using
the sorted QR decomposition (SQRD) algorithm.

The intent of the SQRD is to sort the elements @inmdiagonal ofR, Rk,
decreasingly in the order of evaluation of the sphi#ecoding algorithm, i.e. from the
bottom right corner to the top left corner. The d&fégs of doing so can be seen in
equation 2.18: the largdRyk is, the more different will the PED increases atle
brother node be, a3k can amplify the value of, &nd thus improve the range of the
search. This effectively increases the average BB average PED variance in the
layers closer to the root, which will result in radsranches reaching the sphere radius
in the top layers and therefore being left outhef $earch.

3 10000
2,5
1000
2
(] 0
2 g
015 o 100
o c
£ S
a1 =
w 2
o S 10
0,5 —&— Unsorted QR B Unsorted QR
¢ Sorted QR —— Sorted QR
0 1
3 2 1 0 3 2 1 0
Tree layer Tree layer

Figure 3.2: Average PED increase and average nuaibsited nodes per layer for
a 4x4 system, with 16-QAM and a SNR of 12dB
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Figure 3.3: Average PED increase variance per lmyea 4x4 system, with 16-
QAM and a SNR of 12dB

Also, as we get closer to the leaf nodes, the Pidbeases become smaller than
those of the unsorted QR decomposition system. [Eaids to the evaluation of almost
the same amount of leaf nodes, which are the dmasactually define the output.
Figure 3.2 shows the average partial Euclideamicst and amount of visited nodes per
tree layer for a 4x4 16-QAM system with 12dB of SNigure 3.3 shows the average
variance. Both variations use a constant spheriegad 0.8 and present similar frame
error rates.

The SQRD algorithm used in this work is based @nathe presented in (WUBBEN,
2001). As the elementyy are calculated in the inverse order of their usiagthe
sphere decoder, the algorithm tries to minimizeneslement it calculates. Inspecting
Algorithm 3, one can realize that these elemergscafculated from the norm of the
columns ofQ, which was initialized with the input matrix. ThEBQRD algorithm
chooses, before calculating eaRRy, the column ofQ with the smallest norm and
swaps it with the R column. The same exchange is doneRirand p, which is the
permutation vector. It is initialized with 0, 1, .N;1 and in the end of the computation
it will have a record of the swaps that were done.

R=0;Q=H
for k=0:N-1

. . 2
I =ar '
g min I1g

Exchange columns kandiin Q, R and p
R(k, k) = o [l
dk = dk / R(K, K)
for j=k+1:N-1
R(k, j) =ax". g
0j = 0j —ak-R(k, )
end
end
Algorithm 4: Sorted QR decomposition (SQRD)
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It is important to note that the ordering obtainbg Algorithm 4 is an
approximation, rather than the exact optimal ordgeriFor simplicity, the algorithm is
presented with the original mathematical definisiaf Algorithm 1.

In Algorithm 4, however, it is clear that the adlulit of sorting to the algorithm is
expensive. It involves calculating the squared n@irmer product with itself) of the'k
vector and all vectors to the right of it at eaehnation, instead of only the squared norm
of the K" vector. In a 4x4 system, for example, this me&as 6 extra squared norm
calculations are to be done.

However, Algorithm 4 can be improved to calculdte horm of each column &)
only once, and then only update this value as thggtions are subtracted in the inner
loop (WUBBEN, 2003). This is done with a norm vectwhich contains the squared
norm of each column d®. Let conj denotes the complex conjugate of a number. The
SQRD algorithm using the norm update method becomes

R=0;,Q=H
for k=0:N-1
norm(k) = |f ||*
end
for k=0:N-1
i =arg jDI;]:iNn—l norm(j)
Exchange columns k and i in Q, R, p and norm
R(k, K) = o [l
dk =k / R(K, K)
for j=k+1:N-1
R(k, ) =ak". q
g = 9 —ak-R(k, )
norm(j) = norm(j) -eonjR(K, j)).R(kK, j)
end
end

Algorithm 5: Improved sorted QR decomposition (SQRD

With this improvement, the amount of inner productde calculated remains the
same as in the unsorted QR decomposition, anddimplexity increase is reduced to
the ordering and norm updating steps.

Thep vector obtained after the computation of the SQ&Becessary to reorder the
output, so that it matches the values expectedhbychannel decoder, as shown in
Figure 3.4. The a-priori information obtained froine channel decoder also needs to be
reordered to match the new sorting of the tranamtg¢nnas.
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Figure 3.4: Receiver modified for SQRD usage

3.4 MMSE Pre-processing

As the SQRD algorithm, the minimum mean squaredrdMMSE) pre-processing
was initially developed to be used with linear dimrs (WUBBEN, 2003). For those
detectors, as the name suggests, it is used taedtea probability of errors, as is the
SQRD algorithm. The same modification happens wiés technique is brought to
sphere decoders, i.e. it can be used to reduceatheunt of visited nodes
(MENNENGA, 2009). It can also be coupled with tH@RD algorithm, thus achieving
further complexity reductions. Also as occurs WEQRD, the MMSE pre-processing
reduces the average amount of visited nodes byasorg the average PED and the
average PED increase variance in the top laye®yialg bad branches to be pruned
earlier in the tree, as shown in Figures 3.5 afd 3.

The MMSE pre-processing is done using an extenble@Ngr) X Nr matrix as the
input. In our particular case, the input matrix dmions become 2NxN. Le§ tlenote
the N-order identity matrix ansl denote the standard deviation of the noise vectue.
modified matrices then become:

| H_aps|Q | :
H _L-' J =Q R—[QJR (3.16;

WhereQ; andQ; are square matrices of order N.

It is important to note at this point that, fromuatjon 3.16,6l1\=Q2R’. From this
comes that:

L1
R 1:EQ2 (3.17

This means tha@Q, is the scaled inverse @&’'. SinceR’ is an upper-triangular
matrix, so i9Q,. This property will be used during the hardwarehdecture design.

The value ofc for the used channel model (equation 2.2) is aatamt with the
signal to noise ratio. Since tinevector has a standard deviation of 1 and it iteschy
the inverse square root of the SNR, the noise atdndkviation is:

o= 1 (3.18

v SNR
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Figure 3.5: Average PED increase and average nuaibsited nodes per layer for
a 4x4 system, with 16-QAM and a SNR of 12dB
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Figure 3.6: Average PED increase variance per leyea 4x4 system, with 16-
QAM and a SNR of 12dB

Aside from the different size and initialization @Qf the algorithm to perform the
MMSE-SQRD is almost equal to that of the origin@FD. The main difference is that
not all rows ofQ are swapped, only the first N+i. In order to matoh extended output
matrix Q’, the received vectoy also needs to be modified, becomiyig= [y O\]",
where @ denotes the N-order zero vector. This way, theltieg vector becomes:

y=Q".y=Q".y (3.19
They vector has the same dimension of the originadctor and is then used in the
same way by the sphere decoder.
The algorithm to perform the SQRD in the modifiedtrites is:
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R=0;Q=H; Q=ocly;p=]0,1, ..., N-1]
for k=0:N-1
norm(k) = |pi ||
end
for k=0:N-1
i=arg J_Erk1:iNn_l norm(j)
Exchange columns k and i in R, p and norm amd th
first N+i rows of Q
R(k, k) = [fu [l
ak =0k / R(K, K)
for j=k+1:N-1
R(k, ) =ai". g
dj = —ak-R(K, )
norm(j) = norm(j) -conjR(k, j)).R(k, ])
end
end

Algorithm 6: Sorted QR decomposition with MMSE gmecessing
3.4.1 Bias subtraction

As a result from the mentioned alterations in tharices and vectors, the MMSE
pre-processing introduces a bias in the distandeuledion metrics (MENNENGA,
2009):

ly=H'd" =ly-He" + o9’ (3.20;

This bias must be subtracted from the distanceulzdbd by the sphere decoder in
order to avoid an increase in the error rates. dhee many different ways to do so, and
in this work, three different approaches were eatad.

Aside from the bias, the distances themselves awified by the MMSE algorithm,
which means that the optimal values for the sphadeus that are used with the other
QRD algorithms may not apply directly in this caaged are also likely to be different
for each norm subtraction method. Further analysd simulation results on this matter
can be found in chapter 4.

3.4.1.1 Late subtraction

One of the possible approaches is to subtractiieds late as possible. This means
that the sphere decoding is executed completelprigg the bias and then it is
subtracted only when the LLRs are calculated:

A, =(min1; -biasl;) - (min 0, - bias0,) (3.21

This approach has, however, some disadvantages, iFils necessary to keep track
of the bias that was introduced in each bit whenrttnimum distance for it being 0 or
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1 was found, which requires two extra vectors. 8dcthe minima vectors update is
done with biased distances. Since the bias is dhe of the s vector, multiplied by,
this creates a preference for points that are clasethe origin of the QAM
constellation, which will have reflections in thesultant error rates.

3.4.1.2 Early subtraction

As the distances are calculated recursively by dlgorithm, so can the bias
subtraction be done. The module of the s vectorbmaseparated into the module of
each individual symbol, and this value can be sutéd directly as the PEDs are
calculated. The unbiased PEDs are calculated with:

N4
Yi = Z R] S;
j=i

The advantages of this approach are that, sinceuhtaction is done as early as
possible, the system is entirely bias-free. Al$aequires no extra storage elements.
However, it has a tendency of visiting more nodemtthe other approaches, since the
bias is always positive and therefore the PEDsioétawith this method are always
smaller. On the other hand, this may mean thatlemgphere radii are acceptable when
using early subtraction.

2
e (s = + ¥ LLR@,b) 073 (322
k

3.4.1.3 Intermediate subtraction

This method is an attempt to take the main advastad the two others. In order to
avoid a preference for points closer to the orithe, bias must be subtracted before the
minima vectors are updated. However, to reduceatheunt of visited nodes, the bias
must be subtracted after the PEDs are comparedetgghere radius. With these two
restrictions, the only sphere decoder step to parthe bias subtractions is when a leaf
node is reached, before the minima update.

To do so, whenever a leaf node is reached, thersmlexzoder must calculate the
bias associated with the symbols in the path tosvéind tree root and then subtract it
from the distance associated with the point that vemched. The unbiased distance is
then used to update the minima vectors.

This approach requires no extra storage elemenenwising a constant sphere
radius. However, when sphere shrinking is used, rtfieima vectors are used to
dynamically determine the sphere radius. Since RE®s are still biased and the
minima are not, this causes the comparison of sebiaistance with an unbiased sphere
radius, resulting in the early exclusion of manievant branches from the tree. To
avoid this problem, auxiliary vectors are necessarlgeep the biased minima vectors.
These vectors are used to determine the spheresradd the unbiased ones to calculate
the LLRs in the end of the execution.
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4 SIMULATION CHAIN AND RESULTS

The model described in chapter 2 was entirely cae@d C++ simulation model,
using the IT++ library for vector and matrix hamadji The main purpose of this model
was to analyse the effects that the changes ilQ&edlecomposition algorithm would
have in the resultant FER and computational effort.

To evaluate this changes, the QR decompositionriigo was coded with the
ac_fixed and ac_complex data types, provided witgntdr Graphics’ Catapult. These
types allow the definition of the amount of integerd fractional bits, signedness,
rounding and saturation. The rest of the chain meaetawith floating point precision.
With this approach it is possible to evaluate thelated effects of the fixed point
precision in the QR decomposition, since the régt@system remains equal.

In most graphs, the result with floating point Q&cdmposition is also plotted, for
comparison reasons. The format x.y denotes x inteig® including the sign bit, and y
fractional bits for fixed point implementations.

4.1 Simulation parameters

There are many different parameters that defindn eamulation. Regarding the
communication chain as a whole, there are the atmafuthfferent QAM symbols (and
the according amount of bits represented by eastbgl, the size of the frame word,
the amount of transmit and receive antennas (adioned, these two numbers are
considered always the same in this work), the $ignaoise ratios to be simulated and
the amount big loop iterations to be executed. Censg simulation-only parameters,
the most important is used to define the end okthmilation. The parameter used was a
limit of frame errors, typically 50, 100 or 150. Wever, aside from this frame error
limit, there was also a limit of frames sent, whiclall cases was 100000.

Another important fact is that early-stopping idigo accelerate the simulation.
This means that if the output is correct beforelétst big loop iteration, the process is
finished and the chain moves to the next frame.

Concerning the sphere decoder itself, the mainnpaters are the sphere radius to be
used and the usage of sphere shrinking, as distusstapter 2.

As for the QR decomposition, the most importantapaaters are the amount of
integer and fractional bits and the usage or nosatfiration and rounding. Another
important parameter is the usage or not of a NevRaphson iteration at the output of
the approximation inverse square root hardwares Tas a huge influence in the
resulting FER.

Some of these parameters are kept equal in alllaiions, since they are not a part
of the scope of analysis. It is used 5 big loopaiiens and an initial sphere radius of
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0.8, which is sufficient to allow a small loss (S S, 2009), unless stated otherwise.
Also the equation for addition of a-priori inform@t is not changed. All fixed point
operations were executed with rounding and saturafihe use of rounding means that
the quantization of the input matrix and the reaucof the output of the multipliers
consider the most significant bit left out of thesult. If this bit is 1, then 1 is added to
the least significant bit of the result. The usesafuration means that, whenever an
overflow would happen, the result is replaced witd largest number possible in the
used representation format. Unless stated othertfisevalues in table 4.1 are the ones
used in the simulations.

Table 4.1: Default parameters for simulations

Parameter Value
Initial sphere radius 0.8
M (QAM Symbols) 16
Frame word size 994 bits
Big loop iterations 5
Sent frames limit 100000

4.2 Simulation results
4.2.1 Effect of the quantization of the output

The effect of a fixed point output can be analysedated from the effect of the
whole algorithm running with fixed point precisiomhis allows the determination of
how many bits are needed in the output. The faolktthg point algorithm was executed
and then the output’s precision was limited acaagdio different amounts of bits.
However, these amounts are not necessarily retatéte amount of bits necessary in
the internal calculations.

1
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¢ Quant. (3.11)
0,001 Quant. (3.9)
—&— Quant. (3.7)
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—+— Quant. (3.3)
0,0001

5 6 7 8 9 10 11 12 13 14 15
SNR (dB)

Figure 4.1: Effect of the quantization of the outpua 4x4 antennas system
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Table 4.2: Parameters for simulations in Figure 4.1

Parameter Value
Number of antennas 4
Frame errors limit 50

In Figure 4.1 it is possible to see that 3 intdges and 5 fractional bits are enough
to represent the output without significant inceeasthe FER, compared to the floating
point output. However, when the number of fractldnits is further reduced to 3, this
increase becomes much greater.

4.2.2 Effect of a Newton-Raphson iteration

The application of Newton-Raphson iterations is allwknown method for
improving the approximation of a function. One $enigeration is used here to improve
the output of the inverse square root approximatamware. Figure 4.2 shows the FER
gain resultant from this, using a fixed point uiedrQR decomposition, compared to
the floating point version.
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Figure 4.2: FER improvement due the use of one biesRaphson iteration
Table 4.3: Parameters for simulations in Figure 4.2

Parameter Value
Number of antennas 4
Number format 4.9
Frame errors limit 100

As the FER is significantly increased when the NmwaRaphson iteration is not
used, all further simulations using fixed pointrf@ats consider that this optimization is
activated.
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4.2.3 Amount of bits necessary for 2x2 and 4x4 systems

As the system to be developed requires satisfagerfprmance with both 2x2 and
4x4 antennas, one must analyse the minimum amdupitsorequired for the integer
and fractional parts of both systems. Sectib2s3.1t0 4.2.3.4analyse separately how
many bits are required for each part of both systemfigurations, considering 16-
QAM modulation. Sectiod.2.3.5analyses the required precision for a system tiage
both configurations.

4.2.3.1 Amount of fractional bits for 4x4 antennas

To obtain the minimum amount of fractional bits @ssary to introduce only a
tolerable FER in a 4x4 antennas system, differmmbéts were tested.
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0,0001
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Figure 4.3: Different amounts of fractional bitsax4 antennas system
Table 4.4: Parameters for simulations in Figu& 4.

Parameter Value
Number of antennas 4
Frame errors limit 100

Simulations started with 9 fractional bits, valuieh was further decreased until
the introduced FER became significant. As can lem e Figure 4.3, 8 fractional bits
are enough to introduce little increase to the FER.

4.2.3.2 Amount of integer bits for 4x4 antennas

As was done for the fractional bits, different amisuof integer bits were tested
decreasingly until the introduced FER became togela
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Figure 4.4: Different amounts of integer bits i@ antennas system
Table 4.5: Parameters for simulations in Figure 4.4

Parameter Value
Number of antennas 4
Frame errors limit 100

As can be seen in Figure 4.4, the introduced FER @iiinteger bits could still be
considered tolerable. With 2 integer bits, the FRfRoduced is too large for any real
application.

4.2.3.3 Amount of fractional bits for 2x2 antennas

As for 4x4 antennas, the analysis for the optimad point format was done for a
2%2 antennas system.
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Figure 4.5: Different amounts of fractional bitsar2x2 antennas system
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Table 4.6: Parameters for simulations in Figure 4.5

Parameter Value
Number of antennas 2
Frame errors limit 150

As shown in Figure 4.5, the system exhibits sattsfy behaviour with 8 fractional
bits. The degradation with 7 fractional bits candoasidered tolerable, depending on
the application.

4.2.3.4 Amount of integer bits for 2x2 antennas

The same approach was applied to the amount afanteits in a 2x2 antennas
system.

—M#— Floating point

—&— Fixed Point 3.8

X— Fixed Point 4.8
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Figure 4.6: Different amounts of integer bits iR antennas system
Table 4.7: Parameters for simulations in Figure 4.6

Parameter Value
Number of antennas 2
Frame errors limit 150

Figure 4.6 shows that it is required to have 4getéits in a 2x2 antennas system in
order to not introduce a large degradation, contpate the floating point
implementation.

4.2.3.5 Total amount of bits

For the 4x4 system, it was determined that 3 intagd 8 fractional bits are enough.
However, for the 2x2 system, 4 integer and 7 ora8cdqrding to application
specifications) fractional bits are required. There, a QR decomposition hardware
that is intended for both systems should have égertand 8 fractional bits to ensure a
tolerable loss in precision for all cases. It iportant to emphasize that this results are
valid specifically for the 16-QAM modulation useBor higher order constellations,
more bits may be required.
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4.2.4 Effects of the sorted QR decomposition and spherésnking

The intent of the SQRD algorithm is to reduce thmant of visited nodes, as is the
intent of sphere shrinking (SS). For this reasanthie following sections, the average
amount of visited nodes is also plotted. Theselgansider only intermediate nodes
the lie inside the sphere. The FER graphs aremtdted to analyse the effects of this
alterations, since they may introduce significaarease in the loss, due to the fact that
the a-priori information can be negative.

The combination of these techniques was also stedila.e. SQRD with SS and
with ordered sphere shrinking (OSS). These algmstlare expected to combine their
gains in the amount of visited nodes, especiallgmvBQRD is used with OSS, as the
increase of the variance in the top layers alloesy\good branches to be found very
quickly, further accelerating the shrinkage of s§phere. The simulations in this section
use the original SQRD algorithm (Algorithm 4).

4.2.4.1 Results for 4x4 antennas

All combinations between SQRD, SS, OSS and CS tanhsphere) were simulated
with floating point precision at first, to analyske effects of these combinations
without the errors introduced by the fixed pointagtization. The results with 2x2
antennas and also with the 4.8 fixed point formatsamilar and can be found in the
Appendix.
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Figure 4.7: FER for different algorithms with flogg point in a 4x4 antennas
system

Figure 4.7 shows that there was no significant gban the frame error rate with
any combination of the algorithms. This confirme fact that the possible negative a-
priori information can be neglected when using sphshrinking. As for the average
amount of visited nodes in Figure 4.8, the restdisfirm that the usage of sorted QR
decomposition have significant impact. Also, sphehginking and ordered sphere
shrinking can further reduce this number, and tbakiction effectively stacks with that
of the SQRD.
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Figure 4.8: Average amount of visited nodes witlafing point and 4x4 antennas

Table 4.8: Parameters for simulations in Figur&satd 4.8

Parameter Value

Number of antennas 4

Frame errors limit 100
Number format Floating point

4.2.5 Effects of the usage of the norm update method

Algorithm 5, presented in chapter 3, reduces thepexity increase caused by the
sorting of the columns in the input matrix by updgtthe norms contained in the norm
vector instead of recalculating them at each it@mafThis alteration, however, has side
effects in the precision of the output when dealiiidp fixed point representations.
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Figure 4.9: FER for different number formats uding norm update (NU) technique
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Table 4.9: Parameters for simulations in Figure 4.9

Parameter Value

Number of antennas 4

Frame errors limit 100
Number format Fixed point

Figure 4.9 shows that the 4.8 bits format is indeedonger sufficient to accurately
perform the algorithm. On the other hand, it alsovgés that the addition of one single
fractional bit eliminates this issue, reaching picatly the same FER of the original
SQRD algorithm. The necessity of this extra bitlig to the accumulated error in the
norm vector, since the norm update used adds maetigation error at each iteration,
thus having great effects especially in the lastroos calculated. For this reason, a
hybrid architecture was also tested, having 9 iwaeal bits only in the norm vector and
in the norm update path. The results, however, veerg intermediary, not close
enough to the ones obtained with a full 4.9 haréwaience, and also due to the
increased complexity of dealing with different repentation formats in the same
hardware, this option is excluded from further gl

This problem is not observed in 2x2 antennas systeimce the norm update
hardware is used only once and the quantizatioor @cumulated does not become
significant.

4.2.6 Comparison of different bias subtraction methods foMMSE

In order to eliminate (or reduce) the increasénedrror rates caused by the usage of
MMSE pre-processing, different methods for subingcthe introduced bias in the
metrics were presented: namely, late subtractioB),(learly subtraction (ES) and
intermediate subtraction (IS). In this section, #EeR and average amount of visited
nodes with each method is compared. The resultsrsat with the original SQRD are
also plotted for comparison.
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Figure 4.10: FER for different bias subtractiorht@ques
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Figure 4.11: Average amount of visited nodes féfiedgnt bias subtraction
techniques

Table 4.10: Parameters for simulations in Figdrd® and 4.11

Parameter Value

Number of antennas 4

Frame errors limit 100
Number format Floating point

Figure 4.10 shows that, as expected, the late aethin method is not suitable for
our case, due to the significant increase in then& error rate. For this reason, it is
excluded from further simulations. Also, as can deen in Figure 4.11, the early
subtraction method presents no gain in the amouwisited nodes, when compared to
the original SQRD algorithm. On the other hand, ititermediate subtraction method
has almost identical FER when compared to the raalgbQRD and the MMSE-ES
algorithms and still achieves an amount of visitedes which is comparable to that of
the MMSE-LS method. All these simulations, howeveonsider a constant sphere
radius of 0.8.

4.2.7 Reduced sphere radii for MMSE-SQRD

Since the distance metrics are modified by the MMSERD algorithm, new
optimal values for the sphere radius, i.e. the Esflalue that causes no significant
increase in the error rates, are to be found. Alss likely that each subtraction method
has a different optimal sphere radius.

Figure 4.12 shows the FER associated with diffecenstant sphere radii, using the
early subtraction method and Figure 4.13 showstheunt of visited nodes associated
with each of these radii, considering a constahesp
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Figure 4.12: FER for different sphere radii in @searly bias subtraction
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Figure 4.13: Visited nodes for different spherdiradusing early bias subtraction

Table 4.11: Parameters for simulations in Figdrd2 and 4.13

Parameter Value
Number of antennas 4
Frame errors limit 100
Number format Floating point
Bias subtraction method Early subtraction
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Figure 4.12 shows that 0.4 is the smallest radias €nsures no significant FER
increase for all simulated SNRs. For higher SNRsydver, much smaller radii are
acceptable. In Figure 4.13 it is visible that teduction obtained in the average amount
of visited nodes is very significant when the restlicadii are used.

The same analysis was done for the intermediatedbilatraction.
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Table 4.12: Parameters for simulations in Figdrdd and 4.15

Parameter Value
Number of antennas 4
Frame errors limit 100
Number format Floating point
Bias subtraction method Intermediate subtraction

Also when using intermediate subtraction, a smadleinere is acceptable when
dealing with higher SNRs. However, considering astant sphere for all SNRs, the
minimum value would be around 0.6, as shown in fe@gul4, which is the value used
for further comparison with the early subtractioethod. In Figure 4.15 the associated
visited nodes can be seen for each radius.

Figure 4.15 also shows some points in which smaldreres visit averagely more
nodes than larger spheres. This is due to the s#olyping: when a larger sphere is
used, more frames are correctly decoded in thialitiig loop iterations, and this is also
reflected in the large difference between FERsc&the trees built in these iterations
tend to have much less nodes then in the last dhesalgorithm can actually visit
averagely more nodes with a smaller sphere, in seeng specific points for some
configurations.
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Figure 4.16: Normalized executions and averagéedsiodes for each big loop
iteration with 13dB and different constant sphexdir

Simulations in Figure 4.16 illustrate the variation the amount of nodes per
iteration, and the frequency each iteration is nedc It considers a constant sphere,
with MMSE pre-processing and intermediate biasrsghion, in the specific 13dB SNR
point. The amount of executions of each big loepaition is normalized to the amount
of frames sent. Also, it is important to emphasikat, even though perfect early
stopping in impossible, good approximations caruged in real systems (GILBERT,
2003).

4.2.8 Comparison between ES and IS with reduced sphere

In section 4.2.7 it was shown that both early anrmediate bias subtraction
methods allow a reduction in the sphere radiusawitlsignificant increase in the error
rates. The minimum sphere radii were determindukt0.4 for early subtraction and 0.6
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for late subtraction, considering that the sameusas used for all SNRs. The frame
error rates and average amount of visited nodesraat with each of these systems can
now be compared, as can the effects of spherekémgim each one of them.
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Figure 4.17: FER for each bias subtraction methibd & minimum sphere radius
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Figure 4.18: Visited nodes for each bias subtraatr@thod with its minimum
sphere radius

Table 4.13: Parameters for simulations in Figdrd3 and 4.18

Parameter Value

Number of antennas 4

Frame errors limit 100
Number format Floating point
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Figure 4.17 shows that, even with a smaller radhes early subtraction method has
a slightly better FER performance for 8 and 9dESHNIR. For the other SNRs, the FER
is nearly identical. In Figure 4.18, IS shows hefterformance for smaller SNRs and
ES for larger. The best results achieved without 88fegarding the amount of visited
nodes, which were with SQRD and OSS, are alsoguldtir comparison reasons. Early
subtraction could outperform these results eveh witonstant sphere, for high SNRs.
When ordered sphere shrinking is used, ES canlesstthan half the amount of nodes
visited by SQRD at 15dB.

4.2.9 Effects of error in the ¢ estimation for MMSE

Works on MMSE-SQRD so far, such as (WUBBEN, 2008) &MENNENGA,
2009), have considered that the receiver has pekieowledge of noise standard
deviationc. This, however, is an unreal assumption, sincer¢lceiver will only have
access to approximations of this value.

In this section we analyse how resilient to theserse are systems with MMSE-
SQRD. In order to make this analysis further réialis full fixed point system is used,
i.e. not only the QR decomposition is performedhwiked point, but also the sphere
and channel decoding. The system was simulatedeaitly subtraction and considering
the noise overestimated and underestimated by B8, for comparison reasons, the
results for the floating point and full fixed poisystems with constant sphere and
unsorted QR decomposition are plotted.

The QR decomposition is executed with 4.8 bits,levitine sphere and channel
decoders use different number formats for each tfpaumber (SIMHA S, 2009),
which range from 0.6 to 4.9. The sphere radius84d@ the simulations without MMSE
and 0.4 for the ones with it.
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Figure 4.19: FER for full fixed point systems wéilgma estimation error
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Figure 4.20: Average amount of visited nodes fdirfixed point systems with
sigma estimation error

Table 4.14: Parameters for simulations in Figdrd9 and 4.20

Parameter Value
Number of antennas 4
Frame errors limit 100
Number format Full fixed point
Sphere type Constant sphere

The system shows remarkable resilience to errothers estimation, presenting
almost no FER increase with the considered 3dBr.ea® can be seen in Figure 4.19.
The amount of visited nodes, however, suffers gration, visiting more nodes when
the noise standard deviation is overestimated aederf nodes when it is
underestimated, as shown in Figure 4.20.

Figure 4.19 also shows that a 4.8 bits format ficsent for MMSE-SQRD fixed
point implementations.

4.2.10 MMSE-SQRD with constante

The results in Figure 4.19 showed no significareases in the error rates when
considering an overestimation and an underestimati®dB. This raises the possibility
of using a constant for large SNR intervals, which would represent @ag
simplification in the receptor, since it would ontged a rough estimation of noise
variation.

The simulations in Figures 4.21 and 4.22 use amegntfixed point simulation
chain, as described in section 4.2.9, i.e. QR decsition with 4.8 bits and sphere and
channel decoders with different formats for eacimber type.
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Figure 4.21: FER for MMSE-ES with different condtarvalues
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Figure 4.22: Average visited nodes for MMSE-ES wdiffierent constans values
Table 4.15: Parameters for simulations in Figdr@4 and 4.22

Parameter Value

Number of antennas 4

Frame errors limit 100
Number format Full fixed point

The results show that using theassociated with an intermediate SNR value (0.1 is
the value associated with a SNR of 10dB) is endogénsure no increase in the FER
and no significant increase in the amount of vistedes in a 10dB SNR interval. The
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values of 0.3 and 0.03 are rounded in the figulegénds: they are actually 0.316228
and 0.0316228, which are the values associated5nathd 15dB of SNR, respectively.
The opposite end of the graph shows a small inertes error rate in both cases. Also,
the amount of visited nodes again shows that otieraBng the noise causes more
nodes to be visited. For all cases, all pointsraftat which has the associatetivalue
show increase in the average visited nodes amount.

The results witho?2=0 are also plotted, but show significant increasé¢he FER,
since this value would only be achieved with SNR=

4.3 Simulation results summary

From the simulations in section 4.2, several casiols were made. The Newton-
Raphson improvement at the output of the invers@rggroot hardware was determined
to be critical for a good FER performance of theedi point QR decomposition. Also,
the minimum quantization for internal representatiovhen using 16-QAM in the
chosen SNR interval, was shown to be 4.8 bits,idensg a system that runs both with
4x4 and 2x2 antennas. However, fewer bits are redjat the output.

It was also shown that SQRD can successfully retdueeamount of visited nodes
and that this reduction can be coupled with thataiolbd from sphere shrinking
techniques, ordered or not. The same occurs wherSEHEQRD is used, and it can
further increase the improvements obtained from dhginal SQRD. The average
reduction obtained by using MMSE-SQRD, when conmmgathe original system, is
57% less visited nodes. This value can be impra¥d when ordered sphere shrinking
is used together.

Specifically for the MMSE-SQRD case, different bisisbtraction methods were
tested. The early and intermediate methods wereottes that successfully avoided
increases in the FER. These techniques also all@aveztiuction in the initial sphere
radius, with the intermediate subtraction methaitivig fewer nodes then the early one
for lower SNRs but more for the higher ones. Aisayas shown that MMSE-SQRD
systems are highly tolerant to variations in théueaof o, presenting no significant
changes in the FER when a coarse approximatiosed.u
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5 HARDWARE ARCHITECTURES

In order to implement the desired QR decomposit@andware, the presented
algorithms must be translated into hardware detsonp. To do so, the first step is to
come up with data paths able to perform the reduierations and control finite state
machines to coordinate them. In this chapter, dugiired operations are presented, as
well as hardware schematics to perform each of tlzetop level schematic to connect
all of the required blocks and finally a finite t&tanachine to control all operations,
initially for the unsorted QR decomposition. Thensaapproach is then applied to the
sorted and MMSE sorted versions.

5.1 Unsorted QR Decomposition

Taking a look to the final version presented of algorithm, a few basic operations
are visible:

R=0;,Q=H
for k=0:N-1
isqrt_i =qx . g

isqrt_o = Wisqrt_i
R(k, k) = isqgrt_i.isqrt_o
Ok = Q(O:N-1, k).isgrt_o
for j=k+1:N-1

R(k, ) =ac ™. g

i =d; —k - R(K, j)
end

end

It is required to have a block able to perform iheer productof two complex
vectors, a block to compute tieverse square roodf a real scalar, oneultiplier for
two real scalars, @ector multiplier with one complex vector and one complex scalar as
operands, and\gector subtracterwith two complex vectors as operands. To builchsu
blocks other basic structures are required, suchcasiplex multipliers and
adders/subtractersStorage elements for the matrices are also redjuir
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5.1.1 Complex multiplier

The multiplication of two complex numbers is an igh@n that requires the use of
the distributivity of multiplication over additionThe full expression for two complex
numbers a and b becomes:

(aRe + almi )(bRe + blmi) = (aRebRe - almblm ) + (aRebIm + almbRe)i (5.1)

Figure 5.1 shows a simple hardware scheme to exglwe possible parallelism
available in this operation.
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Figure 5.1: Complex multiplier schematic

The operands and results sizes are also importahisapoint. If each part of the
operands have W bits, each part of the result shalgb have W bits, since it is going
to be used in subsequent parts of the algorithmcelerounding and saturation should
be used to discard, with reduced the loss in pgmtighe extra bits obtained from the
multiplication.

Considering a fixed point number with X integersbiand Y fractional bits
(X+Y=W), the result of its multiplication with anoér number in the same format has
2X integer and 2Y fractional bits. To fit the outpo the same format of the inputs, X
integer and Y fractional bits must be removed, la®sa in Figure 5.2. This should be
done after the addition and subtraction in Figufe &® achieve a better precision. For
this reason, those two operations are done witrbgV

=“111" or
“000" ?
| nteger - 550111111
bits —
<100007
> +

Fractiona, |
bits 03

Figure 5.2: Rounding and saturation schematic B8dormat
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Saturation consists of replacing the output with ¢losest value possible whenever
an overflow occurs (this can be either the largesitive or smallest negative available
in the representation).

Rounding consists of adding the most significahtdanoved from the factional part
to the result. This effectively divides by two theximum error caused by the removal
of the Y least significant bits, when compared itagde truncation, as can be seen in
Figure 5.3, wherd is the distance between two adjacent numberseimdpresentation
format (1/2). While the maximum error is given ky when truncation is used, it is
only A/2 when rounding is used.

A-A A A+A  A+2A

} *
T T T T
—

A-A A A+A  A+2A

: : o .

Figure 5.3: Comparison of truncation (top) and king (bottom)
5.1.2 Adder/Subtracter

The addition and subtraction of complex numbersmisch simpler then the
multiplication. The reasons are that the amounbitsf produced is the same as in the
input (if the carry out is ignored) and that direxgsociativity can be applied. The
expression for two complex numbers a and b is:

(e * i)+ (bie + Bii) = (@ +bee) + (@ +Dy )i (52

This means that two simple adders can be appliguetiorm this operation. The
result, however, must still be checked for overflamd replaced by the largest positive
or smallest negative available if necessary.

When an addition is calculated, an overflow canuoanly if the two inputs have
the same sign. In this case, an overflow happehtgisign of the output is different
from that of the inputs.

In the subtraction case, however, an overflow aaupoonly if the two inputs have
different signs. In this case, an overflow happeiede sign of the output is different
from that of the first input.

It is important to note that this overflow checkingust also be performed in the
adders and subtracters present in the complexphets. In this case, it can be done in
parallel to the rounding and saturation due to cado of the bit amount, presented in
Figure 5.2, provided the adders operate with theeased bit widths.

5.1.3 Inner product

The inner product (or dot product) of two complectors, as described by equation
3.2, is the summation of the product of the conjegd each'? element of input vector
h with the I element of input vector u. In order to obtain toajugate of the elements
of the first vector, sign change blocks would bguieed. However, swapping the adder
and the subtracter in the complex multiplier préseénn Figure 5.1 gives the same
result without the need of this extra block, asvahbdy equation 5.3. The multiplication
blocks used in this section have this alteration.
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(aRe - almi)(bRe + blmi) = (aRebRe *ta, blm ) + (aRebIm ~Q, bRe)i (5.3)

The inner product can be done in a full paralleywas in Figure 5.5, or in a
sequential manner, using only one complex multi@ied one adder, as in Figure 5.4.

ull— 4
vl —— + acc

Figure 5.4: Sequential inner product block

If the multiplication, the addition and the accuatol setup times could fit in a
period of the desired clock cycle then the inn@dprct done sequentially would take N
cycles. This is not likely, however, consideringasenable target frequencies. To
overcome this issue, timing barriers can be addethé¢ data path, pipelining the
execution, which would then take N+D-1 cycles, vehBris the pipeline depth.

The fully parallelized combinational version haschmplex multipliers and N-1
complex adders. The amount of cycles required tmpude the result is variable,
depending on the technology used and target frexyuen

u[0]— *

vio- | L] N

ufl]— *

V[1] —

+ —

uf2]— *

v[2]— L] N

u[3] %

V[3] —

Figure 5.5: Combinational inner product block, &KN=4 system
5.1.4 Inverse square root

The alterations done in the original MGS algorittommake it more suitable for a
hardware implementation create the necessity aheerse square root hardware. To
perform this, a polynomial approximation is usesipeesented in (SALMELA, 2008).

The original function to be approximate‘d,&, Is highly non-linear. To make the

approximation easier, the more linebv/1+u is used instead. The new input u is
obtained by shifting the input x laybits until it is in the format 1.u. If ¥ 2, then it will
have to be shifted right to fit the desired fornzatda will be negative.

x=(1+u)2™ (5.4)

Using this definition, the function to be calcukhtgan be modified:
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R S
NN T PR Y (5]

The multiplication by 2% can be performed by shifts only df is even. For this
reason, the approximation can be calculated bydifferent functions, thus allowing
only shifters to be used.

For even values of alpha, k is definech&

i:20/2 1 2k 1

For odd values of alpha, k is defined asl}/2. The function to be calculated then
becomes:

(5.6)

1 L, 1 -l 1 . 1
— =2 =222 =22 (5.7)
VX J1+u J1+u J1+u

The functions to be approximated can use firstiopdé/nomials, due to the reduced
non-linearity. The chosen polynomials’ coefficierdtan be described as shifts. This
eliminates the necessity for multipliers.

1 1 1
[0.96582- —u—-—u

Ji+u 4 32 (5:8)
1 1 1

J2 [11.385742- —u+—u (5.9)
A1+uU 2 16

The resultant hardware structure is shown in Figuge

2

» Rounding
Hleading <INT_BITS-1
—> parity
+ 0.98652

INT BITS-l—{ u/4_ N \T/
>
+ v
: | _| u/32 amount dir. [Output

w2 - Shifter [
+
v l u/16, g N
amount dir. | 1 R Remove u N
Shifter integer part 1.385742

Figure 5.6: Inverse square root approximation hardvstructure

Since 1 must be subtracted framonly when it is odd, the calculation of k can be
simplified to a simple one bit right shift. Howeyassa is treated in the hardware by its
modulus, accompanied by a shift direction bit, 1strioe added to k in the particular
case of the shift direction being right amdeing odd. This is due to the fact that the
subtraction of one from in the exponent would increase its modulus valugeasing
the amount of bits to be shifted right. This operatis implemented by rounding the
division by two in the shift right case.
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The output of the block in Figure 5.6 is a firsugh estimation of the desired value
for the inverse square root. This approximationas sufficiently precise to achieve a
reasonably small increase in the FER, when comparéke floating point version of
the QR decomposition, as can be seen in FigureTé2mprove this approximation,
one Newton-Raphson iteration is used, with the ggoualeduced in section 3.2. Also,
this block needs to be tested for possible ovedlomhich may occur when the input is
too small. The minimum input | required is that efhiwill produce the largest positive
number L available in the representation as output:

1

—==L 5.10)
I (5.10,
_1 ,
1z (5.11
The complete inverse square root block is showkigare 5.7.
>|7?
<0?
2 + 1
Input Basicinverse o+ Output
squareroot | | * [ ]
* 2
— = ]

Figure 5.7: Inverse square root with improved agipnation and overflow check

The original equation for the improvement of theule (equation 3.15) was slightly
modified to make it more suitable for a hardwarelementation:
2
Yi _Yi-¥X \
A (5.12
yl 1 yl 2 2
When the output is too large, the multiplier thakcalates its square will overflow.
Even if saturation is used, the fine adjustmerthefNewton-Raphson iteration is better
left out, since the loss in precision caused bydhtiration would actually make the
result worse. For this reason, the application tt¢é tmprovement is conditional,
determined by a maximum value O for the basic B&oktput:

0?=L (5.13

O=+L (5.14
This way the output of the inverse square rootvgldd into three intervals:

- If the input is too small, the largest positivespible is the output;

- If the output of the basic inverse square roochlis too large to be squared, the
Newton-Raphson method is bypassed;

- Otherwise the output used is that of the Newtapi&on approximation
improvement hardware.
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5.1.5 Vector operations

It is required to have a block for multiplying acter by a scalar and a block for
subtracting one vector from another. Both blocka perform these operations in
parallel or sequentially, using the basic complentiplier and complex subtracter, with
the trade-off between area and speed.

5.1.6 Matrices storage

The input matrix and output matrices need to beedtefficiently for computations.
With the alterations in the MGS algorithm, the ihmatrix H and the output matrifQ
can be stored in the same registers, \@tloverwritingH as the algorithm proceeds.
TheR matrix, however, still needs its own storage area.

col_sel

Full column
output

row_sel

Single element
output

T

Figure 5.8: Basic matrix storage block

Figure 5.8 shows a simple way to organize the tegido store the matrices. By
grouping the elements by line, it is possible tgilgacreate an output for a whole
column, which is very useful, as many computatiaresdone over columns. The single
element output, however, may still be necessasgdguential blocks are used, such as
the sequential versions of the inner product otoremperations.

The writing lines are omitted in Figure 5.8. Unl@ssentirely sequential hardware is
used, writings are going to be by columrQrand by single element R.

Evidently, the storage block f& does not require registers for the elements under
the main diagonal, as they are always zero.

5.1.7 Top level architecture

The basic blocks presented allow the creation dbm level architecture that
interconnects them to compute the unsorted QR degsition algorithm. Many
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different combinations of sequential and parallédcks are possible, specifically
regarding the inner product and the vector opemnatio

By analyzing the algorithm, it is possible to detare how many times each block
Is used. For the 4x4 antennas example, the extiroplis executed 4 times and the
internal 7. This means that both the inner produmct the vector multiplier are used 11
times, while the vector subtracter is used onlyHe first proposed architecture makes a
compromise in the selection of the type of eachchldhe inner product is fully
sequential and pipelined and the vector multipdied subtracter are parallel. This is an
attempt to create a design that is both sufficyefatst and with a reasonable area.

Rvectoroutput | Matrix
Vector input—_ ) R
\_3 L
v 1 —|—>
Vector |
[ Multiplier :- - Inner »| Scalar real
Matrix Product | Multiolier T
| Vector [ Q I ultiplier
Subtracter« . 12 Inverse
Q vector output Square Roo
4

Figure 5.9: Top level architecture for unsorted @gRomposition

Figure 5.9 shows the complete top level architectdine thick lines represent
columns; the thin ones are for scalar elements.

To increase the parallelism, the storage elementtife Q matrix has two full
column and two single element outputs. However, fthle column outputs actually
share multiplexers with the single element ones &sgure 5.8.

Multiplexers 1 and 2 are for bypassing. Whenever é¢iiecution is entering the
internal loop, the R column ofQ is going to be used in the first input of the inne
product block. However, this same column is beimgten, as it was just calculated in
the vector multiplier block. The bypass multipleXdeallows taking the first element of
the vector directly from the input of the matrixistge block, which, in this case, comes
from the vector multiplier. The other situationwhich bypassing is needed is when the
last iteration of the external loop is beginningthe last iteration of the inner loop, the
last column ofQ is written, and it is going to be used in the inpeduct of the external
loop. Both inputs must come from the output of Wieetor subtracter, in this case. For
both cases, only the first element of the vectdryisassed and all the others come from
the memory block, as it will already have writtéwe tvector correctly by then.

5.1.8 Finite state machine

To control all the operations required to compuite QR decomposition, a finite
state machine was obtained directly from the atgori
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In Figure 5.10, a simplified version of this FSiWhdae seen, showing the main steps
of the algorithm. During thelle state, the column selection is controlled by tkiemal
ports. This way, the output of the last executian be read and the input for the next
one can be written. The external pstart triggers the execution of the algorithm with
the matrix currently in th&€ matrix registersinner product 1lcalculates the squared
norm of the current column & andInv. Sqgrt yields the inverse square root of the
norm. During theMult state, the computation of the current elementhef main
diagonal ofR, which is the input of the inverse square rootcklonultiplied by its
output, is done in parallel with the calculationtleé current column d, which is the
product of itself with the output of the inversauate root. The transition to the internal
loop is done with the first bypass activated (npldtker 1 in Figure 5.9)nner product
2 calculates the elements Bfthat are not in the main diagonal and kelt and sub
state performs the subtraction of the projection;an qx. The return to thénner prod
1 state is done with both bypasses activated, biytibthe last iteration of the external
loop is beginning. The computation is finishedhe Mult state, since the internal loop
IS not executed in the last iteration of the exaeéome.

Figure 5.10: Slmp|lfled FSM for the unsorted QR a®position hardware

5.2 Sorted QR Decomposition

Most of the basic building blocks for the SQRD haade are the same as for the
unsorted version, with the exception of the mastorage elements. The main changes
in the data path and in the FSM are also presentia following sections.

5.2.1 Matrix storage elements

The storage elements need to be modified in ordeallbw efficient swapping
operations. These operations are performed inlgrivaleach storage element, due to
performance issues. The same signals that are ciaoht® the vector outputs (for the
case of th&) matrix) can be used as inputs for the registers,al swapping operations
can be performed in a single cycle, greatly redyitie added amount of time. For the
R matrix, extra column selection multiplexers wekded to allow this operation,
creating a second column output that is accessiiieinternally. Figure 5.11 shows the
basic swapping schematic for one matrix row.
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Figure 5.11: Swapping hardware for one row

5.2.2 Top level architecture

The main changes in the data path structure areéntheduction of the norm and
permutation vectors and the norm update hardwaoth Bectors are stored in elements
similar to the ones used for the matrices’ linaspiesented in Figure 5.11, to allow fast

swapping.

Permutation R vector outpuf
vector Matrix
Vector input—, N llj\lpodrgze_l R
2
\——/L » Normvector |— ﬂ
Vector
| Muttiplier N - Inner »| Scalar reaIJ
9 MatI'IX Product M Multioli
[ Vector - Q ultiplier
Subtractere -
Q vector output Inverse
3 g Square Roo

Figure 5.12: Top level architecture for sorted GRamposition

Figure 5.12 presents the resulting architectunecesall dot products are calculated
before the beginning of the external loop, the Bgpaultiplexer for the second port of
the inner product is no longer necessary (multglexin Figure 5.9).

The permutation vector is not connected to anyrdthaek, since it only records the
swaps that are done in the matrices and in the neator.
5.2.3 Finite state machine for SQRD

Figure 5.13 shows the FSM to perform the SQRDs erived from the one used
for unsorted version of the hardware and the altera that led to Algorithm 5.
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Norm
vec init

________________________________

Flgure 5.13: Simplified FSM to perform the SQRDalthm

The states that were added &lerm vec init Min norm and swap The first one
initializes the norm vector with the squared norireach column of the input matrix.
The second one searches for the column with thleshaorm among the ones that are
still left to be calculated and tlesvapstate activates the signals to perform the reduire
swap operations in th@ andR matrix, as well as in the norm and permutatiortmec

The norm update is performed in parallel with theltiplication and subtraction
already present in the internal loddu(t and substate). Once it is finished, it can return
to theMin normstate or skip directly to thav. Sqgrt.state, since in the last iteration no
minimum norm search or swap operations are required

5.3 MMSE Sorted QR Decomposition

As occurred for the original SQRD algorithm, mokthe basic blocks necessary for
the MMSE-SQRD are already defined. The finite statechine is also basically the
same used for the SQRD hardware, since the algoii$elf is almost the same. The
main challenge here is to develop a hardware thatot excessively larger and not
excessively slower, when compared to the otheriomess since we are now working
with vectors that have 2N elements. And it is alsoessary to create an efficient way to
store the modified) matrix, which has several different properties witempared to
the previous versions of the algorithm.

5.3.1 Storage element for the modified Q matrix

When using the MMSE-SQRD pre-processing, @ematrix is extended. More
specifically, it becomes a 2NxN matrix. Also, itpt(@Q1) and bottom Q,) parts have
several different properties. Whil®; is initialized with the input matrix,Q, is
initialized with oly. Also, Q2 is upper triangular, since it is the scaled ingen$R.
Another difference is that, when a swapping openais done, not all rows @, are
swapped, but only the first i. For all these reasamd also to allow a larger parallelism
in the required operations, tkla andQ, matrices are stored in separate blocks.

By storing these two matrices in two different lecone can easily explore the
main differences of the matrices for better resditee Q1 matrix is actually identical to
the Q matrix of the SQRD algorithm, since it is alsdtimlized with the input matrices
and, when a swap operation is done, all of its ramsexchanged. THg, matrix, on the
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other hand, does not need registers for the elemarder the main diagonal, as Re
matrix. The swap automatically exchanges only dguired columns and the reset port
loads the initial matrix in one single cycle.

5.3.2 Top level architecture

As mentioned, the MMSE-SQRD architecture needs dal dvith the extended
vectors in a way that does not increase excessthelyarea nor the amount of cycles
required.

In order not to introduce too many extra cyclesg extra inner product block is
used. Since these blocks are sequential, using amycomplex multiplier each, the
extra area is not too expensive. Each block oper@teone half of th® matrix, and in
the end the results are added, yielding the desiotgproduct. The vector operations,
namely multiplication and subtraction, however, doae in parallel, which means that
adding one extra block of each can be overly expenPipelining these operations, on
the other hand, adds little extra area and onlyexte cycle. Therefore, both the vector
multiplier and subtracter remained with the sanze sif the previous versions, i.e. N
elements in parallel, and operate in pipelinet fmocessing a column @;, then a
column ofQ,. Figure 5.14 shows the resultant hardware schemati
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Vector ‘ .
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Vector input Norm R
Vector ' > updatel
Subtracter
7 2
- Qvectoroutpd—f » Normvector — éi'l
Vector 11 L )
RALEL | Matrix " Inner —»Elj ScalarreaIJ
i—t:lx ™~ o1 > Product | L¢ s Multiplier
7 i Inner
Matrix Product
Q2 J
| Inverse )
3 "| Square Roo
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Figure 5.14: Top level architecture for the MMSEFQalgorithm

Note that the bypass multiplexer 1 now is requibaty in the input of the second
inner product block, since the vector operatiomsdame in pipeline, and the columns of
Q1 have one extra cycle to be written, therefore dp@wvailable at the input of the inner
product when required.

5.4 Reduced order matrices

One extra requirement for all QR decomposition Waré implementations is that
they must work with two different matrix sizes. dsifrom the maximum capacity,
when the hardware is used to its maximum, they mestble to work with matrices that
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have their order divided by two. For example, tlaedivare synthesized to work with
4x4 matrices must be able to work with 2x2 matraesvell.

This could be done, for the unsorted case, dydwmtiplacing the smaller matrix
on the top left corner of the larger input matrnddeaving the rest of the input with
zeroes, with the hardware completely unaware ofédeiced order. The desir€@dand
R matrices would come out automatically on the &fpdorner.

However, this would mean that many cycles are wiassce the decomposition
time is highly dependent on the matrices’ ordersoAlthe sorted versions would not
work, because the zeroed columns would interfeth thie sorting. For these reasons,
one external control port must be added to thegdssiWhen activated, this port
modifies all FSM cycle counts that are relatedh® matrices’ orders, which include the
external and internal loop iterations and also #meount of inputs expected by
sequential operators, more specifically, the irpreduct blocks, thus greatly reducing
the total execution time.
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6 HARDWARE IMPLEMENTATION RESULTS

The three main variations of the QR decompositilgorghm, i.e. unsorted QRD,
SQRD and MMSE-SQRD, were implemented in VHDL, fallog the architectures
described in chapter 5. These implementations wegn¢hesized and had their results
analysed for Xilinx FPGAs of the Virtex-5 family dralso using Synopsys Design
Compiler with STMicroelectronics 65nm library.

6.1 Timing results

All hardware variations were designed to achiew#oak frequency of 200MHz in
Xilinx Virtex-5 FPGAs. These same designs reachgtbul600MHz when implemented
for ASIC, using the mentioned library. In order dohieve these clock frequencies,
some timing barriers were added to critical comtiamal paths. Also, a multi-cycle
path was defined for the inverse square root hamlwahich takes 4 four cycles to
finish its computation in FPGA and 3 cycles in ASI@Gcluding the Newton-Raphson
approximation improvement. A multi-cycle path is veay to define that the
combinational path between two timing barriers doesneed to be executed in one
single cycle. This way, the tool can correctly cédte the resulting clock frequency and
also spend the appropriate optimization efforthat tpath. It is still, however, required
that the designer ensures that the correct amduryotes is given to the hardware to
perform its execution.

Aside from the clock frequency, the amount of cgclgpent for each QR
decomposition is important to determine the totahputation time. This number is
evidently different for each algorithm and for eavhatrix size. Figure 6.1 shows the
results for a 4x4 matrices hardware, also workinity @x2 matrices, when the reduced
order external port is activated.
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Figure 6.1: Amount of cycles for each QR decompasiversion
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The results in Figure 6.1 consider 3 cycles fotheiaverse square root execution,
l.e. the time taken by the ASIC implementation. To&al execution time for FPGA
versions is 4 cycles longer for 4x4 and 2 cyclegéy for 2x2.

6.1.1 Real time requirements

The real-time requirements are related to the tasgenmunication technology and
target speed of the receiver. They are calculasatyuhe coherence tinigy, which is
the time in which the channel impulse responsessgertially invariant (SALMELA,
2008). It is given by:

t :i 6.1
coh Vrf (]

Wherec is the speed of light (3x@/s),v; is the receiver speed ahis the carrier
frequency. Considering, for example, 3G LTE MIMOstgms, f is 2.4GHz.
Considering a maximum receiver speed of 250kmgéh= 1.8ms. However, bullet train
speeds can also be considered (SALMELA, 2009), ascsOOkm/h. This results tg
= 0.9ms. During this time, the QR decomposition dbrthe 1021 sub-carriers of the
OFDM modulation proposed for such systems mustoepcited (BACHL, 2007). This
leaves us with 1,76& for each decomposition, considering the firstst@mnt, and
0,881us, considering the second one.

The FPGA implementation takes 161 cycles to compuie 4x4 MMSE-SQRD,
which is the one that takes the longest. Sincengimum frequency is 200MHz, it
takes 0,80ps to perform this computation. Therefore, it isalalp of meeting even the
strictest constraint. Since the ASIC implementatiakes less cycles, it can obviously
also satisfy these constraints running at 200MHztufe research, however, may
require faster decompositions, as can systemswibikt with higher carrier frequencies.
For these reasons, the higher operation frequentitt&e ASIC implementation are also
analysed in sections 6.2 and 6.3.

6.2 Area results

The different algorithms to perform the QR deconmpms had their area results
analysed also with FPGA and ASIC synthesis todie fesults between each different
algorithm and different bit widths are presented emmpared in the following sections.
Also, for the ASIC implementations, different targicks are compared.

6.2.1 FPGA area results

Using Xilinx ISE to synthesize the different hardeavariations for a Virtex-5
XC5VFX30T FPGA, the total amount of used registétd s and multipliers can be
compared between each implementation.

Virtex-5 FPGAs use blocks called DSP48E for multiion. Each block contains
one 25x18 bits multiplier, one adder and one acdaimu Since all bit widths used are
under a total of 18 bits, the amount of DSP48E kdagsed is not bit width dependant.

6.2.1.1 Comparison between different algorithm versions

The three different algorithm variations are conggansing the specific amount of
bits required to not introduce significant degrawfatin the frame error rate. The
original QRD uses the 4.8 format, determined inptéia4. Figure 6.2 shows the results
in LUTs and registers. Since the SQRD algorithmlengented uses the norm update
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optimization, i.e. it initializes the norm vector the beginning of execution and then
only updates it, it requires 4 integer and 9 fiawdl bits, as shown in Figure 4.11. Even
though the MMSE-SQRD version also uses the normtoveao significant FER
increase was observed when using a 4.8 formati@i21). For this reason, this is the
chosen format for MMSE-SQRD versions.
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QRD 4.8 SQRD 4.9 MMSE-SQRD 4.8

Figure 6.2: Slice LUTs and registers for differafgorithms in FPGA

The amount of used DSP48E blocks also varies betwaeh implementation. The
QRD hardware uses a total of 24 multipliers: 1@ha vector multiplier (4 complex
multipliers with 4 multipliers each); 4 in the itTm@roduct block (one complex
multiplier); 3 in the inverse square root blockr(tbe Newton-Raphson method) and 1
to calculate the elements in the main diagonaRofThe SQRD version uses 26
multipliers, with the two extra ones being usectétculate the norm update, which is
done using half complex multiplier, since the inmagy part of the result is always zero.
Finally, the MMSE-SQRD uses 30 multipliers, whele extra 4 ones are used in the
second inner product block.

6.2.1.2 Comparison between different bit widths

The original QRD algorithm was synthesized for elint number formats to
evaluate the area progression as the precisiomcieased. Figure 6.3 shows this
progression for bit widths ranging from 11 to 1Kyays with 4 integer bits.
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Figure 6.3: FPGA area results for QRD using différeumber formats
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6.2.2 ASIC area results

As was done for FPGA, the area results can be cadpar different algorithm
versions and different bit widths for ASIC implentations. Also, the Synopsys Design
Compiler works with a target clock frequency, whichs significant impact on the
resultant area. Therefore, the area progressialsésevaluated for different target clock
frequencies. All results are using STMicroelectesnb5nm library and ium?, the
default output unit for this library.

6.2.2.1 Comparison between different algorithm versiong @lock frequencies

The three different algorithms were synthesized ddferent clock frequencies,
ranging from 200MHz to 500MHz. The main differermetween these results and the
ones obtained for FPGAs is that these include edlaain a single value, i.e.
combinational logic, memory units and multiplievghich are obtained as separated
values when using FPGAs. Again, the only algoritisimg the 4.9 format is the SQRD.
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Figure 6.4: ASIC area results for different alguomitversions and clock frequencies

Figure 6.4 shows that the ratio between the anetheoQRD and the MMSE-SQRD
versions is much more favourable for the latter nvimeplemented for ASIC then when
for FPGA. While the amount of LUTs used by MMSEnm®re than two times that
which was used by the original QRD, here the aseanly around 39% larger for
200MHz and 37% for 500MHz, for example. Aside fralifferent tool optimization
algorithms, which may have better results for oigerdhm than for the other, this can
be explained by the required amount of registeid rultipliers. These values are
counted separately for FPGAs, and have ratios riamaurable for the MMSE version
then that of the required amount of LUTSs.

Also, it can be seen that, when working with 500Mtte area for MMSE-SQRD is
actually smaller than that for SQRD. This due tk&raebit required by SQRD, which
has a more significant impact in the area when mgaach the clock frequency limit,
since the tool will need a larger effort to mees$ ttonstraint in all paths.

6.2.2.2 Comparison between different bit widths

The same bit widths used for FPGA analysis (frontdl14) were synthesized using
Synopsis DC, also using 4 integer bits. Figure ghéws the results for the original
QRD algorithm and frequencies ranging from 200M&l5@0MHz.
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Figure 6.5: ASIC area results for QRD using difféneumber formats and clock
frequencies

The result for the 4.10 format and 500MHz is adyudbr a frequency of
497.51MHz, which is the maximum frequency that dobk reached using this bit
width.

Again, it is visible that largest area increases aserved when we approach the
maximum frequency, especially when dealing witlydaurbit widths.

6.3 Comparison with high-level synthesis

For further evaluation of the obtained results, oae compare them with those of
an automatic high-level synthesis tool. Here, Me@maphics’ Catapult was used. This
tool transforms pure ANSI C++ code directly into WH and Verilog RTL
descriptions. It also identifies loops and allotws tiser to determine which ones will be
left rolled and which ones will be unrolled and gdbalized.

Using Catapult's unrolling functionality, the QR abenposition C code was
synthesized in the most similar way to that whichswdetermined for the manual
VHDL implementation: vector operations (multiplimats and subtraction) were
unrolled and inner products and the main loopsh(bioternal and external) were left
rolled. The ac_fixed and ac_complex types, the sames used in the simulation chain,
allow the definition of fixed point formats and ggaof rounding and saturation. All
results in this section are for the unsorted QR w&i4.8 fixed point format.

Aside from the RTL descriptions, Catapult also otgplatency and area results.
These results are based on a sample library chzefene synthesis, which is the same
one used by the tool to determine which operateamsbe executed in a clock period of
the target frequency.

The following graphics compare the results obtaméti Catapult's 65nm sample
library and the ones from sectiof.2.2.] obtained with Synopsys DC and
STMicroelectronics 65nm library. Also, for compais purposes, the latency-area
product is plotted. This product allows a quick g@amson of the quality of two
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solutions, since latency versus area trade-offs siscthe choice between parallel and
sequential hardware have little impact on it.
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Figure 6.6: Comparison between Catapult and mavild&IL implementations
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Figure 6.7: Latency-area product for Catapult ameshual VHDL implementations,
in millions of nsum?

Figure 6.6 shows that the area is smaller for tlaual implementation for all
frequencies except 400MHz, for which Catapult’ssi@n is slightly smaller. Catapult’s
versions are faster than the manual ones for 200&hdz300MHz. This is mainly due
to the fact that all manual implementations usedstme timing barriers, which were
positioned for a high frequency design, and theectake the same amount of cycles.
The high-level tool can reposition all barriers iopzing for the current target
frequency, thus greatly reducing the amount of irequcycles for lower frequencies.
Another interesting fact is that increasing thegéarfrequency in Catapult does not
necessarily reduce the delay.

The latency-area graphic, in Figure 6.7, shows @etlapult achieves its optimal
result for a target frequency of 300MHz, while thanual versions best results are for
400MHz and 500MHz, which yield the best latencyagseoducts among all variations.
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It is important to emphasize, though, that theselte use different libraries, which
may have different area and latency values, evenugin they both use 65nm
technologies. Perhaps a more accurate and fair @osop is to take the VHDL
generated by Catapult for each target frequencycdmain results from Synopsys DC
with the exact same library as used for the manesaions.

When trying to do this, however, one important obggon immediately comes to
hand: RTL descriptions generated for a given tafgequency by Catapult do not
always have their timing constraints successfullgt for the same frequency in
Synopsys DC. This means that Catapult's samplarbis probably more optimistic
about delays than a real library. Most notably, ahéstanding 300MHz version cannot
be synthesized for 300MHz.

Using Catapult-generated designs in Synopsys DOMRLx were successfully
reached with the code generated for this same dremyu Catapult designs targeting
300, 350 and 380MHz could not be successfully sgited for 300MHz. A design
targeting 400MHz had to be used, which takes 233esyinstead of 89 for a single
decomposition. Finally, 400MHz could not be reaghegen when using designs that
were synthesized for frequencies as high as 600MAklgo, for both successful
synthesis cases, the reported area was signifjcdatber than that informed by
Catapult. The following graphics show the comparibetween the results.
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Figure 6.8: Area, latency and latencyxarea comparietween manual VHDL and
Catapult versions synthesized with Synopsys DC

Figure 6.8 shows that Catapult’s inability to mainta low cycle count for higher
frequencies and the large area increase for 200Matzd both versions’ latency-area
products above those which were obtained for theualayHDL implementations.
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7/ CONCLUSIONS

The specific requirements for the QR decomposition sphere decoding were
analysed and the chosen algorithm, the Gram-Schynmidess, received the appropriate
modifications and improvements to make it more ah@ for a hardware
implementation. Also, two pre-processing improvetaemamely the sorted QR
decomposition and the minimum mean squared err&tC3@vere defined and had their
impacts analysed in the system. The analysis cereid both error rates and
computational effort, measured by the amount atedsnodes in the tree search of the
sphere decoder. The simulations showed that botinigues have beneficial effects in
the overall system, significantly reducing the amowf visited nodes without
significant changes in the error rates. Averageuctdns of up to 74% could be
reached, when coupling MMSE-SQRD and OSS, in asstem.

The three pre-processing variations had their hardwarchitectures specified,
considering the required data path and finite staéehine for each one. The proposed
architectures were implemented in VHDL and synttexs$ifor the required bit widths,
and were able to reach relatively high frequentieth in FPGAs (200MHz) and in
ASICs (500MHz). The amount of cycles necessary \ao reasonable, when
compared to other implementations, such as in (SELK, 2008). The increases when
using SQRD and MMSE-SQRD are tolerable, since yiseem was able to meet a real-
time constraint for a real projected technology, 8GE, even for the FPGA
implementation of the MMSE-SQRD version, considgrnreceiver at 500km/h.

The area increase when comparing the differentriéthgos is most expensive when
FPGA LUTs are taken for measure. Considering thiararesources, more specifically
registers and multipliers, are not increased bystrae factor, the comparison becomes
less unfavourable for the improved versions. Thisgarison is also less unfavourable
for the larger versions when ASIC area is consileespecially for MMSE-SQRD. In
this case, the average increase, when compardzt toriginal QRD, is under 40% for
the analysed clock frequencies.
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APPENDIX

A.1 Additional simulations with sphere shrinking ard SQRD
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Figure A.1: FER for different algorithms with fixgumbint in a 4x4 antennas
system
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Figure A.2: Average amount of visited nodes witte@l point in a 4x4 antennas
system
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Table A.1: Parameters for simulations in Figures @nd A.2

Parameter Value

Number of antennas 4

Frame errors limit 100
Number format Fixed point 4.8
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Figure A.3: FER for different algorithms with fload) point in a 2x2 antennas
system
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Figure A.4: Average amount of visited nodes withafing point in a 2x2
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Table A.2: Parameters for simulations in Figure3 @nd A.4

Parameter Value

Number of antennas 2

Frame errors limit 150
Number format Floating point

The results found for 2x2 antennas agree with ties dor 4x4. However, as the
amount of intermediate nodes in the tree is mucallsem the effects of most algorithm
combinations cannot be seen so clearly. Stillsieven clearer in this case that the
combination of SQRD with OSS has outstanding peréorce.
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Figure A.5: FER for different algorithms with fixgumbint in a 2x2 antennas system
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Figure A.6: Average amount of visited nodes wittel point in a 2x2 antennas
system
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Table A.3: Parameters for simulations in Figure’s @nd A.6

Parameter Value

Number of antennas 2

Frame errors limit 150
Number format Fixed point 4.8

A.2 Simulation results with 64-QAM
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Figure A.7: Required amount of fractional bits £64-QAM 2x2 antennas system
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Figure A.8: Required amount of integer bits forda@AM 2x2 antennas system
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Table A.4: Parameters for simulations in Figures @nd A.8

Parameter Value
Number of antennas 2
Frame errors limit 150

Figures A.7 and A.8 show that the 4.8 format usedL.6-QAM is not enough when
dealing with 64-QAM. For the chosen SNR intervalinfeger and 10 fractional bits
were sufficient. All simulations are with constapihere and unsorted QRD.



