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ABSTRACT

The ability to (semi-)automatically obtain CAD models from physical installations has

two important benefits: (i) it can be used to identify, as soon as possible during a con-

struction process, any deviations from the original designs; and (ii) it can be used to

document complex installations for which CAD representations are outdated or inexis-

tent. Both scenarios have important practical and economic value. An ongoing project

in our research group aims to reconstruct CAD representations from point clouds of in-

dustrial sites. However, pose estimation of pipes and piping system components is not

perfect, resulting in misalignments in the reconstructed scene, which is unacceptable for

a CAD model. For this undergraduate thesis, I propose to use optimization techniques to

fix these misalignments. I also propose to convert the detected pipes and piping system

components into actual CAD model representations for a popular commercial CAD soft-

ware, namely AutoCAD Plant 3D.

Keywords: Reverse engineering. industrial plant sites. piping systems. CAD.
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1 INTRODUCTION

In the Architecture, Engineering and, Construction (AEC) industry, the process of

creating virtual models of existing buildings presents several benefits and has a variety of

applications. For instance, it can be used to monitor the construction of a building and

find deviations from the original design, or to document installations with inexistent or

outdated models. Figure 1.1 shows an industrial site modeled using AutoCAD Plant 3D.

Figure 1.1 – Screenshot of a sample project of an industrial site from Plant 3D.

Source: AutoCAD Plant 3D

Given the precision needed, one popular approach is using LiDAR scanners to

generate a point cloud representation of the real site (Figure 1.2). Then, this point cloud

needs to be processed to reconstruct the CAD model; this process is referred to as reverse

engineering (RAJA; FERNANDES, 2007). Most reverse engineering pipelines require

a lot of user interaction to reconstruct the scene. This is particularly problematic when

dealing with industrial plant sites, where the model can be extremely large and complex.

This work is part of an ongoing project that aims to recreate models of industrial

sites with as little as possible user interaction, increasing the efficiency of this process.

More specifically, we aim to improve the reconstruction of piping systems, which are

present in a large variety of industrial segments. Our contributions include:

• A procedure based on Non-linear Least Squares to improve the estimated poses of

piping components by finding pairs of connected components and minimizing the

distances of their ports and the sum of their orientations (Chapter 5);

• An interface to improve the components’ poses, where the user can, for example,

establish connections between ports and specify that pairs of pipes must be parallel,
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Figure 1.2 – Example of a point cloud captured from a real industrial site using a LiDAR scanner.

Source: The Authors

perpendicular or collinear (Chapter 5);

• A plug-in for AutoCAD Plant 3D to import the result of the reconstruction of a

scene (Chapter 6);

• A dataset of models of piping system components, compiled from CAD parts pro-

vided by TraceParts, as well as industrial site scenes containing components from

this dataset (Chapter 4);

• An algorithm to improve the delimitation of detected cylinders that extended through

other components, such as elbows and tees, by estimating their medial axis and find-

ing pairs of perpendicular intersecting pipes (Chapter 5);

• An algorithm for the automatic detection of the position and orientation of fittings’

and flanges’ ports (Chapter 4).

This thesis is structured as follows. Chapter 2 introduces the reverse engineering

pipeline of our system. Chapter 3 discusses related works. Chapter 4 presents our dataset

of piping system components and the scenes we created with them. In Chapter 5, we

will talk about the algorithms we propose to improve the detection of cylinders and our

procedure to improve the pose estimation of piping components. Chapter 6 is about the

integration of our dataset with AutoCAD Plant 3D and the plug-in we developed to import

the reconstructed scenes. In Chapter 7, we will show the results of our optimization-based

method to improve the pose estimation of piping components. Lastly, in Chapter 8, we

will talk about our conclusions and discuss potential future work.
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2 REVERSE ENGINEERING PIPELINE

In this Chapter, we describe the steps of the reverse engineering pipeline of our

software, which is an extension of (ARAUJO; OLIVEIRA, 2020c) and is named Point

Cloud Editor. These steps are illustrated in Figure 2.1.

Figure 2.1 – A diagram of our reverse engineering pipeline.

Source: The Authors

The first step is scanning the scene. In a real scenario, this would be performed by

scanning the industrial site using a LiDAR scanner. Since we do not have an actual laser

scanner available for the project as well as access to industrial installations, for this work

we scanned geometric models of industrial sites using a simulator of a LiDAR scanner, as

described in Chapter 4. Its interface is shown in Figure 2.2, and Figure 2.3 presents the

obtained point cloud.

Figure 2.2 – The geometric model of a scene in our simulator of LiDAR scanner.

Source: The Authors

The next step is the detection of primitives that are usually present in industrial

sites. These include planes, cylinders and structural elements, such as beams. Figure

2.4 shows an example of a structural element. After the automatic detection of these
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Figure 2.3 – The resulting point cloud after scanning the geometric model.

Source: The Authors

primitives, the user can still improve the results, for example, by selecting points and

fitting a primitive to them. Figure 2.5 shows the detected planes, cylinders and structural

elements in the point cloud shown in Figure 2.3.

Figure 2.4 – An example of a structural element.

Source: The Authors

After logically removing the points that belong to the detected primitives, the

points left are mostly part of piping system components, as shown in Figure 2.6. The

next step is to find clusters of points that represent the piping components. These clusters

are classified using a neural network into one of several classes, families, and sizes of
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Figure 2.5 – The detected planes (in blue), cylinders (in purple) and structural elements (in green)
of the scene, after user refinement.

Source: The Authors

piping components. This neural network was trained using point clouds sampled from the

geometric models of the components from our dataset, described in Chapter 4. Then we

need to estimate the pose of each component, represented by a translation and rotation

to be applied to the geometric model of the component. As the clustering, classification

and pose estimation steps have been developed in parallel with this work, they are not

integrated with our pipeline yet. Figure 2.7 shows preliminary results of the detection and

pose estimation of piping components.

As the pose estimation is not perfect, the detected components might not be prop-

erly connected. In order to fix this misalignment, first we automatically find connections

between ports and then optimize the components’ and pipes’ poses. Like in the primitive

detection step, it is also possible to manually improve the optimization step, for instance,

by establishing new connections between ports, or determining that a pair of cylinders

must be perpendicular. Lastly, the detected planes, pipes, piping system components and

beams are exported to AutoCAD Plant 3D, where the user can modify the reconstructed

scene as needed. The pose optimization and CAD generation are the focus of this work.
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Figure 2.6 – The remaining points after primitive detection, that belong mostly to piping system
components.

Source: The Authors

Figure 2.7 – The detected piping system components before optimization, using a preliminary
result of the pose estimation.

Source: The Authors
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3 RELATED WORK

This Chapter briefly discusses other works related to primitive detection, opti-

mization in computer graphics, image processing, and computational photography, and to

reverse engineering of CAD models.

3.1 Primitive Detection

Planes and cylinders represent a significant portion of industrial plant sites, so

primitive detection is an important step when reconstructing their models. There are sev-

eral techniques for the detection of planes and cylinders from point clouds, and they can

be divided into three categories: Hough Transform (LIMBERGER; OLIVEIRA, 2015)

(RABBANI; HEUVEL, 2005), RANSAC (SCHNABEL; WAHL; KLEIN, 2007) (JIN;

LEE, 2019), and region growing (ARAUJO; OLIVEIRA, 2020b) (TRAN; CAO; LAU-

RENDEAU, 2015). For the detection of planes, our system uses the algorithm proposed

in (ARAUJO; OLIVEIRA, 2020b), and for the detection of cylinders, the algorithm pro-

posed in (ARAUJO; OLIVEIRA, 2020a). For the detection of structural elements, our

system uses an algorithm developed in parallel with this work, which has not been pub-

lished yet.

3.2 Optimization in Computer Graphics

Optimization has been widely used in the fields of computer graphics, image pro-

cessing and computational photography for different purposes, such as Poisson image

editing (PEREZ; GANGNET; BLAKE, 2003), shape-from-shading (WU et al., 2014), as-

rigid-as-possible warping (SORKINE; ALEXA, 2007), blind deconvolution (FERGUS et

al., 2006), and image denoising (ZORAN; WEISS, 2011). It has also been used for tran-

sient imaging (HEIDE et al., 2013a) and to achieve high-quality computational imaging

while using simple lenses (HEIDE et al., 2013b). (DEVITO et al., 2017) and (HEIDE et

al., 2016) created Domain Specific Languages to model Graphics and Imaging optimiza-

tion problems while generating efficient implementation.
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3.3 CAD Related

In the context of reconstructing CAD models from point clouds, Li et al. (LI et

al., 2019) proposed a method for fitting primitives to point clouds scanned from individual

parts, based on supervised learning. Ivson and Celes (IVSON; CELES, 2014) use a shape

matching algorithm to identify repeated instances of geometry in CAD models to reduce

memory usage. However, their solution does not work when the topology of the meshes

of the repeated instances are different. To overcome this limitation, Figueiredo, Ivson,

and Celes (FIGUEIREDO; IVSON; CELES, 2021) uniformly samples point clouds from

the models and use a deep learning-based approach to find repeated geometry. (KOCH et

al., 2019) created a dataset of CAD models for geometric deep learning.

Figure 3.1 – Screenshot of the interface of FARO’s As-Built for AutoCAD Software.

Source: FARO

3.4 Other Reverse Engineering Software

There are a few available reverse engineering software for reconstructing CAD

models of industrial sites from point clouds. FARO’s As-Built for AutoCAD Software

(FARO, 2021) extends AutoCAD and provides several tools for reverse engineering, like

semi-automatic reconstruction of piping systems; Figure 3.1 shows its interface. They

also provide a similar tool for Autodesk Revit. ClearEdge3D’s EdgeWise (CLEAREDGE3D,

2021) can be used to automatically or semi-automatically detect several elements present

in an industrial site, including pipes and structural elements. However, the software does
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not handle some essential piping system elements, such as valves and tanks. Figure 3.2

shows a scene reconstructed using EdgeWise.

Figure 3.2 – Semi-automatically reconstructed scene using EdgeWise. Here we can see that tanks
and valves (shown in green) remain as point clouds, so the user can reconstruct them using

another method.

Source: ClearEdge3D

Autodesk ReCap Pro (AUTODESK, 2021d) is a scanning software that allows

importing point clouds into other CAD software from Autodesk, such as AutoCAD and

Revit. Besides, AutoCAD also provides some commands to help the user create geometry

from point clouds, like extracting the centerline of a cylinder or finding the edge between

two planar segments. 3DReshaper (TECHNODIGIT, 2020) is a software for processing

point clouds that also provide some tools for the reconstruction of surfaces and curves.

Lastly, there is also software to convert scans from a single object to a CAD model, such

as Geomagic (3DSYSTEMS, 2021), QUICKSURFACE (GOMEASURE3D, 2021) and

XTract3D (POLYGA, 2021).

3.5 Summary

This Chapter discussed related works in several fields, specially in reverse engi-

neering. As we saw, other works suffered from significant limitations, such as working

with individual components, and requiring a lot of user interaction.
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4 SYNTHETIC INDUSTRIAL SCENES

Manufacturers of piping system components in different countries follow different

standards. It would be desirable to reconstruct the CAD model of industrial sites regard-

less of standards. However, it would be considerably hard to determine what model is

being used in a scene. Because of that, we first collected models of piping system compo-

nents to create a dataset, and try to reconstruct scenes that contain only these components.

This Chapter describes our new dataset and the industrial sites we have modeled using it.

4.1 Piping Concepts

Before introducing our dataset, we briefly explain some concepts about piping

systems that are used throughout this thesis. First, pipes and piping components have

nominal diameters associated with them. A nominal diameter consists of the letters DN

followed by an unsigned integer that indicates the outside diameter of the end connections.

Figure 4.1 illustrates the outside diameter of a pipe, and Table 4.1 shows the nominal

diameters between DN10 and DN300 according to the ISO 6708 standard, obtained from

The Engineering Toolbox1. The nominal diameters of all components from our dataset

are inside this range.

Figure 4.1 – The outside diameter of a pipe.

Source: PVC Vent Screens

1https://www.engineeringtoolbox.com/nps-nominal-pipe-sizes-d_45.html
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Table 4.1 – List of classes of models with their respective type, number of families and number of
models.

DN Outside Diameter
DN10 17.2
DN15 21.3
DN20 26.9
DN25 33.7
DN32 42.4
DN40 48.3
DN50 60.3
DN65 76.1
DN80 88.9
DN100 114.3
DN125 139.7
DN150 168.3
DN200 219.1
DN250 273.0
DN300 323.9

Source: The Engineering ToolBox

Piping components can be classified into fittings, valves, reducers, and flanges.

Fittings control the direction of the piping system, and valves control their flow. Figure

4.2 shows examples of valves and fittings. Reducers are used when it is necessary to

reduce the nominal diameter of a pipe. Flanges are used to connect flanged components to

pipes; in our dataset, all valves are flanged. All fittings and reducers from our dataset are

butt-welded, that is, they are directly connected to pipes. Figure 4.3 shows the difference

between butt-welded and flanged connections.

Figure 4.2 – Simple piping systems showing examples of fittings (a) and valves (b).

(a) (b)

Source: The Authors
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Figure 4.3 – Examples of butt-welded connections (a), where the pipe is directly welded to the
component, and an example of flanged connection (b), where the pipe is connected to a valve

through a flange.

(a) (b)

Source: The Authors

4.2 Piping Components Dataset

For our dataset of piping system components, we have downloaded models from

TraceParts (TRACEPARTS, 2021), a digital library that contains CAD files from several

manufacturers of different areas. A few extra models, such as pumps and vessels, were

obtained from AutoCAD Plant 3D (Figure 4.6). Models can be hierarchically structured

into classes, which in turn are formed by groups of families. Inside each family the models

only differ by their sizes. Each class also has a type associated to it. For instance, gate

valve and 90º elbow are examples of classes, and their types are, respectively, valve and

fitting. Figure 4.4 shows examples of fittings and a flange from our dataset, and Figure

4.5 shows examples of valves from our dataset. Besides, to guarantee that the models

in our dataset would fit properly, we chose to include only models that follow DIN/ISO

standards. A list of the classes from our dataset can be seen in Table 4.2.

4.2.1 Detecting Component Ports

Another necessary piece of information for each component is the position and

orientation of its ports. A port is the point where these components are connected to a

pipe or another component. This information is used both in the optimization step and to

instantiate our models in a CAD software.

As manually detecting ports is very time consuming, we tried to automate this
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Figure 4.4 – Models of a 45º elbow (a), a tee (b), a cross (c) and a welding neck flange (d)
downloaded from TraceParts.

(a) (b)

(c) (d)

Source: TraceParts

process. In order to do that, we used geometry processing to find circles around the ports,

using the OpenMesh (BOTSCH et al., 2002) library to handle the data structure of the

mesh. The key idea is to find edges in which the normals of the faces that contain them

form an angle of 90º, which is shown in Figure 4.7. We then need to find cycles of edges

and check if these cycles are circles. To check if a cycle corresponds to a circle, we

first estimate a circle from three vertices, and then calculate the average squared distance

from the points of the edges of the cycle to the estimated circle; if this value is below a

threshold, the cycle is considered to be a circle.

Lastly, as there can be multiple circles around a single port, as seen in Figure 4.7,

we also need to merge circles whose centers are close. After that, every circle gives origin

to a port, where the port’s position is equal to the center of the circle, and its orientation

is estimated computing the normal of the triangle defined by three random points picked

from the circle. We also need to guarantee that the port’s orientation is pointing away

from the other ports. To ensure that a port p0 points away from the position of a port p1,

we need the angle between the orientation of p0 and the vector p0.position−p1.position

to be lower than 90º. If this is not the case, we need to flip the orientation of p0.

This algorithm worked well with most fittings, flanges, and reducers; we can see
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Figure 4.5 – Models of a gate valve (a), a two piece ball valve (b) and a wafer butterfly valve (c)
downloaded from TraceParts.

(a) (b)

(c)

Source: TraceParts

an example in Figure 4.8. However, as the variability between different models of valves

is significant, we were not able to automatically detect the ports for most of the valve

models. The ports of these models were manually detected using the software Blender

(COMMUNITY, 2018) to select the points of the circles around the ports. The result of

the port detection is saved to an XML file; Figure 4.9 shows an example of such a file.

4.3 The AutoCAD Plant 3D

There are a few software for AEC professionals specifically developed to model

industrial sites, such as AVEVA E3D Design (AVEVA, 2021) and Intergraph Smart 3D

(HEXAGON, 2021). In our project, we decided to use AutoCAD (AUTODESK, 2021a)

and, more specifically, its toolset to model industrial sites, AutoCAD Plant 3D (AU-

TODESK, 2021c). This software is widely used in industry, has a free educational license,

and provides an SDK for developing plug-ins to extend it.
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Figure 4.6 – Models of a pipe support (a) and a centrifugal pump (b) obtained from AutoCAD
Plant 3D.

(a) (b)

Source: AutoCAD Plant 3D

4.3.1 Modeling Scenes with AutoCAD Plant 3D

To test our pipeline of reverse engineering, we created five scenes containing the

components of our dataset using AutoCAD Plant 3D; in Chapter 6, we will explain how

we are able to instantiate the components from our dataset inside Plant 3D. Having scenes

built using components from our dataset is important as we can only properly reconstruct

them. Figure 4.10 shows two examples of synthetic scenes modeled by us. After modeling

the scenes with Plant 3D, we exported them to the Wavefront (.obj) file format using a

third-party plug-in (VISIONWORKPLACE, 2021), so that we could scan these scenes

using our simulator of LiDAR scanner.

4.4 LiDAR Scanner Simulator

There are several approaches to scan the geometry of a scene. For instance, one

could sample points on the surface of the faces of the models in the scene proportionally

to the area of each face. However, this approach does not handle occlusions between

objects and provides components regularly sampled throughout the scene, whereas in real

scenarios, components closer to the scanner are more densely sampled than those further

away.

To obtain a point cloud from the modeled scenes, we use the LiDAR Simulator,

initially developed as part of (ARAUJO; OLIVEIRA, 2020c). Using this software, one

can position scanners around the scene represented by its geometric model. This scene is

then rendered from the point of view of each scanner using OpenGL, and then sampled
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Table 4.2 – List of classes of models with their respective type, number of families and number of
models.

Class Type Number of Families Number of Models
Cap Fitting 1 15

Cross Fitting 1 12
Elbow 45 Fitting 1 15
Elbow 90 Fitting 1 13

Tee Fitting 1 14
Flanged Butterfly Valve Valve 1 6

Gate Valve Valve 2 19
Knife Gate Valve Valve 2 11

Three Piece Ball Valve Valve 2 14
Two Piece Ball Valve Valve 3 18

Wafer Ball Valve Valve 2 16
Wafer Butterfly Valve Valve 4 33

Blind Flange Flange 1 13
Flat Flange Flange 1 12

Welding Neck Flange Flange 1 14
Concentric Reducer Reducer 1 27
Eccentric Reducer Reducer 1 25

Reducing Tee Reducer 1 25
Pipe Support Others 2 3

Pump Others 2 5
Vessel Others 1 5

producing a 3D point cloud. Figure 4.11 shows the resulting point cloud after scanning a

scene using the LiDAR Simulator.

A few minor modifications were made in the scanner for this work. Before, we

were calculating the position of the point using the top left corner of the pixel. Because

of that, the observations of different scanners in the same scene would not be properly

aligned. To fix this issue, now we calculate the position of the point using the center of

the pixel. We also created a new file format to save the position of the scanners and the

configurations used to scan the scene, allowing us to reproduce how a point cloud was

scanned.

One last detail worth mentioning is that we also need the scene being scanned

to be in meters. When scanning a scene in millimeters, we noticed that the position of

the points further away from the scanner was not very precise. This happens because

the z-buffer has a larger precision for objects that are closer to the camera. However,

after scanning, we need to convert the scene back to millimeters, as the next steps of our

pipeline expect the scene to be in millimeters.
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Figure 4.7 – A 90º elbow, with the edges our algorithm searches for highlighted in light blue.
Notice how the highlighted edges define two circles centered at one of the component’s ports.

Source: The Authors

4.5 Summary

This Chapter described our dataset of piping system components, the modeling of

scenes using AutoCAD Plant 3D, and the generation of point clouds using our simulator

of a LiDAR scanner. We also presented an algorithm for detection of the position and

orientation of ports of the components of our dataset that only worked for fittings, flanges,

and reducers.
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Figure 4.8 – Automatically detected ports from a model of a 45º elbow; the edges highlighted in
blue define the circles used to estimate the position and orientation of the ports.

Source: The Authors

Figure 4.9 – Example of an XML file that contains the result of the port detection of an Elbow 45.

Source: The Authors

Figure 4.10 – Examples of scenes modelled with AutoCAD Plant 3D using our dataset of piping
system components.

Source: The Authors
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Figure 4.11 – Point cloud of a scene we have modelled using AutoCAD Plant 3D, scanned using
our LiDAR Simulator.

Source: The Authors
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5 OPTIMIZING THE ALIGNMENT OF PIPING SYSTEM COMPONENTS

After the detection and pose estimation of pipes and other piping system compo-

nents, these components might not connect properly, as pose estimation is not perfect and

the point clouds from which they are detected are inherently noisy. In this Chapter, we

introduce two refinement procedures for the cylinder detection step. Then, we present an

optimization-based method to improve the alignment of the piping system components.

Lastly, we explain how the user can further improve this result using our software.

5.1 Cylinder Detection Refinement

Using butt-welded fittings, we noticed that sometimes the detected pipes advanced

through some fittings. This happens because the transition between the pipe and the fitting

is smooth. We propose two improvements to the cylinder detection algorithm to delimit

the pipes better.

5.1.1 Cylinder Curvature Refinement

One recurring problem we noticed when detecting cylinders in our test scenes is

that a pipe would extend beyond its limit and into the elbow it is connected to. Two issues

emerge from this: there are fewer points in the remaining cluster to classify it as an elbow

and to estimate its pose; and the estimated orientation and length of the pipe become

slightly wrong.

To solve this problem, we developed an algorithm based on (JIN; LEE, 2019), that

detects spheres along the axis of the detected cylinders to estimate their medial axes and

use this information to determine where the cylinders should end. A pseudocode for this

procedure can be seen in Algorithm 1. Figure 5.1 illustrates the steps of the Algorithm.

This function is executed for every detected cylinder. First, the points detected as being

part of the cylinders are divided into partitions according to their projections into the

cylinder’s axis (Line 6). Then, in Line 9, we use RANSAC to detect a sphere in each

partition. To estimate the center and radius of a sphere from two points and their respective

normals, we use the method described in (SCHNABEL; WAHL; KLEIN, 2007).

After that, in Line 14, we apply a box filter to the centers of the spheres. Then we
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Figure 5.1 – The following images display a scene containing an elbow and two cylinders, but for
which the cylinder detection process returned two intersecting cylinders. The images illustrate
the steps of our algorithm applied to the blue cylinder. The detected spheres are represented by

their centers. Here we can see the original result of the cylinder detection (a), the partitions of the
blue cylinder (b), the detected spheres, after filtering (c), the valid spheres highlighted in green,
after estimating the curvature at their centers (d), the sets of valid spheres (e) and the result after

executing our algorithm (f).

(a) (b)

(c) (d)

(e) (f)

Source: The Authors

compute the curvature of the medial axis at each sphere by finding its neighborhood and

computing the sum of the distances of the centers of the spheres to the line between the

first and last sphere of the neighborhood. If this curvature is lower than the radius of the

original cylinder multiplied by a threshold, the sphere is added to the set of valid spheres

(Lines 16-21).

We then need to find sets of consecutive, valid spheres, and estimate the orientation

of each set by computing the PCA of the centers of the spheres. Then, we merge sets

whose orientations are approximately the same (Line 25). This step is necessary as the

sphere detection may produce a result that is significantly distant from the medial axis of

the cylinder, which would make some of the spheres around it invalid. If this happens in
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the middle of the cylinder, there would be two disjoint sets of valid spheres in the same

cylinder.

Lastly, if there is no set of valid spheres, the cylinder is removed. Otherwise, we

find the largest set and fit the cylinder to the points that belong to the partitions from

which the spheres of the set were detected (Lines 27 and 28). Figure 5.2 shows the result

of this algorithm.
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Algorithm 1: Cylinder Curvature Refinement
Input: pc ∈ RN×3 ▷ Point cloud of the cylinder

1 cc ∈ R3 ▷ Center of the cylinder

2 ca ∈ R3 ▷ Axis of the cylinder

3 cl ∈ R ▷ Length of the cylinder

4 cr ∈ R ▷ Radius of the cylinder

5 Function cylinderCurvatureRefinement(pc, cc, ca, cl, cr):

6 partitions←− createPartitions(pc, cc, ca, cl, cr);

7 spheres←− []; sphereSets←− [];

8 for i←− 0; i < len(partitions); i←− i+ 1; do

9 sc, sr ←− processPartition(part);

10 spheres.add(i, sc, sr);

11 end

12 filterSpheres(spheres);

13 validSpheres = [];

14 while i←− len(spheres)− 1; i >= 0; i←− i− 1; do

15 j, sc, sr ←− spheres[i];

16 neighbourhood←− getNeighbourhood(j, spheres);

17 if isStraightLine(neighbourhood, cr); then

18 validSpheres.add(spheres[i]);

19 end

20 end

21 sphereSets←− findSphereSets(spheres, validSpheres);

22 if len(sphereSets) = 0; then

23 removeCylinder();

24 else

25 largestSet←− findLargestSet(sphereSets);

26 fitCylinder(largestSet, cc, ca, cl, cr);

27 end

28 End Function
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Figure 5.2 – Before (a) and after (b) executing the curvature refinement of the blue cylinder. In
(b) we also have the detected spheres represented by their centers. The sphere centers in green
represent the points in which the curvature is below a specific threshold, whereas the sphere

centers in red represent points in which the curvature is above this threshold. Although there are
two disjoint sets of consecutive, valid spheres, our algorithm correctly selects the largest one to

delimit the cylinder.

(a) (b)

Source: The Authors

5.1.2 Perpendicular Cylinders Refinement

Another issue we noticed is that sometimes the detected pipes extended through

tees or crosses, which leads to similar problems to the previous case. To solve that,

we propose a simple algorithm that detects close perpendicular pipes and removes the

intersection points between them from both cylinders. A pseudocode for this procedure

can be seen in Algorithm 2. This function is executed once for the entire scene. First,

we find pairs of perpendicular cylinders, that is, cylinders in which the dot product of

their orientations is approximately zero, and push them into a queue (Lines 3-8). Then,

while this queue is not empty, we get the first pair of cylinders from the queue and, if

the distance between the axes of the cylinders is greater than a threshold, we continue to

the next element of the queue (Lines 11-13). Otherwise, in Lines 14 and 15 we remove

from both cylinders the samples close to the intersection point of the cylinders, that is,

the point in the axis of one of the cylinders closest to the axis of the other cylinder. If the

intersection point is approximately in the middle of one of these cylinders, it will be split

in two; if it is near one of the ends of a cylinder, it will result in a single cylinder; and

if one cylinder is small enough, it will be removed. Figure 5.3 shows examples of these

three scenarios.

To calculate the distance between the axes of the cylinders and obtain their in-

tersection points, we use the GeometricTools library (EBERLY, 2020). The size of the

intersection region is directly proportional to the largest radius between the two cylinders
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Figure 5.3 – A scene containing one tee and three cylinders. The cylinders in the left column
were manually detected, and the right column shows the result after executing our algorithm. In
the first row, the intersection point between the red and yellow cylinders is approximately in the

middle of the yellow cylinder, so it is split in two. In the second row, the intersection point is near
one end of the yellow cylinder, so it results in a single cylinder. In the last row, the yellow

cylinder is removed.

Source: The Authors

and inversely proportional to the cylinder’s length.

Lastly, we must traverse the queue of perpendicular cylinders, replacing the cylin-

ders being processed by the resulting cylinders after removing the points from the inter-

section region (Lines 16 and 17). This is necessary as one cylinder might initially be

perpendicular to more than one cylinder. Figure 5.4 shows the result of this algorithm.
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Algorithm 2: Perpendicular Cylinders Refinement
Input: cylinders ▷ Array with the parameters and inliers of the cylinders

1 Function perpendicularCylindersRefinement(cylinders):

2 perpendicularCylinders = [];

3 for i←− 0; i < len(cylinders)− 1; i+ = 1; do

4 for j ←− i; j < len(cylinders); j+ = 1; do

5 if areCylindersPerpendicular(cylinders[i], cylinders[j]);

then

6 perpendicularCylinders.add(cylinders[i], cylinders[j]);

7 end

8 end

9 end

10 while ¬perpendicularCylinders.empty(); do

11 c0, c1←− perpendicularCylinders.front();

12 perpendicularCylinders.pop_front();

13 if areCylindersClose(c0, c1); then

14 c00, c01←− removeIntersectionPoints(c0, c1);

15 c10, c11←− removeIntersectionPoints(c1, c0);

16 updateCylindersPairs(c0, c00, c01, perpendicularCylinders);

17 updateCylindersPairs(c1, c10, c11, perpendicularCylinders);

18 end

19 end

20 End Function

5.2 Detecting the Connection between Piping System Components

After having a better delimitation of the pipes and using the estimated poses of the

other components, we now need to find connections among the piping system components

in the scene. To achieve that, we developed a greedy algorithm that searches, for every

port, a corresponding port that is closest to it. Besides, the distance between the ports

must be below a certain threshold, and the angle between the orientations of the ports

must be above some angular threshold.
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Figure 5.4 – Before (a) and after (b) executing the perpendicular cylinders refinement of the blue
and purple cylinders; the green ellipse highlights the region where the cylinders intersect. As the
intersection point is near the end of both cylinders, after removing the intersection points, each

cylinder generates a single cylinder.

(a) (b)

Source: The Authors

5.3 The Ceres Solver

As an optimization library for our system, we chose the Ceres Solver (AGAR-

WAL; MIERLE et al., 2010). This library can be used to solve non-linear least squares

problems, which are represented as:

min
x

1

2

∑
i

ρi(∥fi(xi1 , . . . , xik)∥2)

s.t. lj ≤ xj ≤ uj, (5.1)

where fi(xi1 , . . . , xik) represents a cost function, {xi1 , . . . , xik} is the parameter block

of the cost function fi, lj is the lower bound of the parameter block xj , uj is the upper

bound of the parameter block xj , and ρi represents a loss function. As we use the identity

function as our loss function and we set no upper or lower bounds for any of our parameter

blocks, we have an unconstrained non-linear least squares problem. We used the default

options from Ceres for the solver. We also used automatic differentiation for our cost

functions.

5.3.1 Our Objective Function

We now describe the function that we try to minimize. Let C be the set of poses

of piping components, with (cp, cr) ∈ C, where cp ∈ R3 is the position of the component

and cr ∈ R4 is a quaternion that represents the rotation of the component. Let P be the
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set of pipes, with (pp, pa, pl) ∈ P , where pp ∈ R3 is the position of the pipe, pa ∈ R3 is

the axis of the pipe and pl ∈ R is the length of the pipe. Our objective function can be

represented as:

min
(cp,cr)∈C,(pp,pa,pl)∈P

∑
(p,c)∈CPC

∥CPCD(c.cp, c.cr, p.pp, p.pa, p.pl)∥2 + ∥CPOS(c.cr, p.pa)∥2

+
∑

(c0,c1)∈CCC

∥CCCD(c0.cp, c0.cr, c1.cp, c1.cr)∥2 + ∥CCOS(c0.cr, c1.cr)∥2

+
∑

(p0,p1)∈CollPR

∥CollP (p0.pp, p0.pa, p1.pp, p1.pa)∥2

+
∑

(p0,p1)∈PerPR

∥PerP (p0.pa, p1.pa)∥2

+
∑

(p0,p1)∈ParPR

∥ParP (p0.pa, p1.pa)∥2, (5.2)

where CPC ∈ C × P is the set of connections between components and pipes, CCC ∈

C × C is the set of connections between two components, CollPR ∈ P × P is the set

of collinearity restrictions between pipes, PerPR ∈ P × P is the set of perpendicularity

restrictions between pipes, and ParP ∈ P × P is the set of parallelism restrictions

between pipes.

CPCD, CPOS, CCCD and CCOS are the cost functions associated with the

connections between pipes and piping system components, which we describe in Section

5.4. CollP , PerP and ParP are the cost functions associated with restrictions between

pipes, which we describe in Section 5.5. As the Ceres library does not provide restrictions,

the orientation vectors and the rotation quaternions need to be normalized inside all cost

functions, but this was omitted from our notation for readability.

5.4 Connection Cost Functions

To ensure that the piping system elements are correctly aligned, we have imple-

mented cost functions that calculate the distance between the ports of two elements and

the sum of their orientations. Figure 5.5 shows an elbow disconnected from a pipe, and

the expected result after executing the optimization. As the position and orientation of a

pipe port are calculated differently from how they are calculated for a component port,

we also needed to implement different cost functions for the connection between pipe and

component, and the connection between component and component. However, as they
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are very similar, we will only present the cost functions associated with the connection of

a pipe and a component. They can be represented as:

CPCD(cp, cr, pp, pa, pl) = (cp+ cr ∗ CPP )− (pp+
PPD ∗ pl ∗ pa

2
), (5.3)

CPOS(cr, pa) = (cr ∗ CPO) + (PPD ∗ pa), (5.4)

where CPCD stands for Component Pipe Connection Distance, CPOS stands for Com-

ponent Pipe Orientation Sum, CPP stands for Component Port Position, CPO stands

for Component Port Orientation, and PPD stands for Pipe Port Direction. The PPD of

a pipe port is either 1 or -1, and it is already known for each port. The CPP and CPO

are the canonical position and orientation of the port, and were obtained as described in

Chapter 4.

Figure 5.5 – A scene containing an elbow and a pipe (a), and the result after optimization (b).
Notice that, for the components to be correctly aligned, the distance between their ports must be

zero, and the length of the sum of the orientations of their ports must also be zero.

(a) (b)

Source: The Authors

In Equation 5.3, the position of the component’s port is calculated by applying the

rotation of the component to the port’s canonical position and then adding the compo-

nent’s position. The position of the pipe’s port is calculated by adding the axis of the pipe

multiplied by half of its length to the position of the pipe.

Similarly, in Equation 5.4, the orientation of the component’s port is calculated

by applying the rotation of the component to the canonical orientation of the port. The

orientation of the pipe’s port is calculated by multiplying its axis by PPD.
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5.5 User Interaction

After executing our optimization method, the result might still not be perfect,

so we added some functionalities to help improve it. The user can manually add and

remove connections between pipes and piping system components, change the weight

that multiplies each type of cost function, and set the parameters of a pipe or a piping

system component constant.

Besides, the user can add restrictions between pipes to force parallelism, perpen-

dicularity, or collinearity, which are also implemented as Ceres cost functions. The cost

functions for perpendicular, parallel, and collinear pipe restrictions are, respectively:

PerP (pa0, pa1) = pa0 · pa1, (5.5)

ParP (pa0, pa1) = 1− (pa0 · pa1)2, (5.6)

CollP (pp0, pa0, pp1, pa1) = 1− [(pp1− pp0).normalized() · pa0]2

+ 1− [(pp1− pp0).normalized() · pa1]2. (5.7)

One interpretation for the perpendicular pipe restriction function is that two pipes

are perpendicular if the dot product of their axes is zero. If the dot product between the

orientation of two pipes is either 1 or −1, they are parallel. In the case of collinear pipes,

both axes must be parallel to the vector that starts at the center of one pipe and ends at the

center of the other pipe.

These cost functions were tested by applying them to pairs of cylinders with ran-

dom orientations and positions. In our tests, the perpendicular and parallel cost functions

worked consistently. However, when applying the collinearity restriction, our method

sometimes converged to a local minimum, where the cylinders were not collinear.

5.6 Summary

This Chapter discussed the algorithms we proposed to improve the cylinder de-

tection and how we used optimization to fix misalignments among piping system com-

ponents. We also described the actions one can perform to improve the result of the

optimization, which include determining that a pair of cylinders must be perpendicular,

parallel, or collinear.
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6 INTEGRATION WITH CAD SOFTWARE

One essential aspect of our system is the integration with a CAD software. The

user must be able to modify the reconstructed model as needed, and instead of imple-

menting all functionalities provided by a CAD software, we allow the user to export the

reconstructed CAD model to AutoCAD Plant 3D, a widely used software for this purpose.

This Chapter describes a plug-in we developed for AutoCAD Plant 3D and the necessary

steps to use our dataset inside this CAD software.

6.1 AutoCAD Plant 3D Catalog

In order to create scenes using our dataset described in Chapter 3, we first needed

to create a Plant 3D catalog of piping components that represents our dataset. To do

that, we imported all models from our dataset into Plant 3D using a third-party plug-in

(SYSTEMS, 2021), and used the information about the ports of the components, as also

described in Chapter 3, to add ports to the models and convert them to piping components.

After that, we created a catalog and piping spec from these piping components using

AutoCAD Plant 3D Spec Editor, a software from Autodesk that comes with AutoCAD

Plant 3D. Figure 6.1 shows AutoCAD Plant 3D’s interface, with a scene that uses models

from our catalog.

Figure 6.1 – The AutoCAD Plant 3D interface, with which the user can instantiate the models of
our dataset, displaying one of the scenes modelled by us.

Source: AutoCAD Plant 3D
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6.2 The Reverse Engineering Plugin

To integrate our results with the AutoCAD Plant 3D, we developed a C# plug-in

using the ObjectARX SDK (AUTODESK, 2021b). It provides two functionalities: import

an XML file that contains a description of a scene; and export a scene into an XML file.

An example of such a file can be seen in Figure 6.2, which can also be imported into or

exported from the Point Cloud Editor.

Figure 6.2 – Example of an XML file that represents the output of the reconstruction of a scene
using the Point Cloud Editor.

Source: The Authors

The pipes and piping system components are represented using the catalog we

created. Although there are plates, which could represent planes, and structural members

in Plant 3D, it is not possible to create them using the provided SDK. To represent planes

inside AutoCAD Plant 3D, we create a lofted surface between two nonconsecutive edges

of the plane. Structural elements (i.e., beams) are represented as three planes. Figure 6.3

shows a scene imported into Plant 3D using our plugin.

Another detail worth mentioning about this plug-in is that AutoCAD Plant 3D

uses a different world coordinate system’s convention than the Point Cloud Editor. As the

XML file that represents a scene adopts the Point Cloud Editor’s world coordinate system,

when importing the scene into Plant 3D, the plug-in must also convert everything into its

world coordinate system.

6.3 Summary

This Chapter discussed the integration of our reverse engineering system with

AutoCAD Plant 3D, allowing us to obtain CAD representations for scanned piping system

installations.
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Figure 6.3 – An industrial site reconstructed using our system, using a preliminary result of the
pose estimation, before applying the pose optimization.

Source: AutoCAD Plant 3D
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7 RESULTS

In this Chapter, we show the results of our proposed method for the alignment of

piping system components. The tests presented here were executed in a computer with a

Intel Core i5-9400F processor and 16GB of RAM.

Our tests were made using the scenes we modeled with Plant 3D and scanned with

our LiDAR simulator. The pipes were semi-automatically detected using our system. To

simulate the error in the pose estimation of piping system components, except for pipes,

we added Gaussian noise to their original positions and rotations. The standard deviation

of the noise added to the components’ positions was 50mm, and the standard deviation

of the noise added to the components’ rotations was 5º. Figures 7.1 and 7.2 show the

result after executing the optimization in two of our scenes, and Table 7.1 presents the

average execution time and average number of iterations of the optimization procedure

after executing our algorithm 10 times for each scene.

During our tests, we noticed that the algorithm for detecting connections would

frequently fail. Figure 7.3 shows an example where the detected connections are wrong.

Because of that, in the results shown here, we executed the optimization after manually

fixing the connections between the ports.

Figure 7.1 – The piping system of one of our scenes after adding noise to the pose of piping
components (left), and after executing optimization (right). In (a), (b) and (c) we highlight some
examples of misaligned components, and in (d), (e) and (f) we highlight their correctly aligned

counterparts after executing the optimization.

(a) (b) (c) (d) (e) (f)

Source: The Authors
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Figure 7.2 – Another scene after adding noise to the pose of piping components (left), and after
executing optimization (right). In (a), (b) and (c) we highlight some examples of misaligned

components, and in (d), (e) and (f) we highlight their correctly aligned counterparts after
executing the optimization.

(a) (b) (c) (d) (e) (f)

Source: The Authors

Another issue we noticed is that sometimes the orientation of a valve after the

optimization differs from the original orientation, even though the ports of the components

and pipes are properly aligned. Figure 7.4 shows an example of this issue. This happens

because if we rotate a valve around the vector that represents its flow, the position and

orientation of its ports do not change, so it does not affect the result of our optimization

problem.

In the tests previously described, the optimization step always produced results

similar to the original scenes. We also performed another test, in which we only added

a random value in the range [-45º,45º] to the Euler angles that represent the rotation of

the components. Similarly to the previous tests, the connections between the ports were

fixed manually. This test could be interpreted as the cylinder detection working perfectly,

but the pose estimation of components is almost random. In this case, even though the

alignment of the ports is corrected, the resulting scene differs from the original one, as

shown in Figure 7.5.

Table 7.1 – Average execution time and number of iterations until convergence for each scene, as
well as the number of pipes, components and connections.

Pipes Components Connections Iterations Execution Time (s)
Scene 1 19 35 53 62.0 3.75e-02
Scene 2 42 78 118 56.2 1.52e-01
Scene 3 80 116 195 46.6 2.19e-01
Scene 4 51 76 126 65.4 1.95e-01
Scene 5 44 63 107 76.8 2.12e-01
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Figure 7.3 – In the following images, ports with the same color are connected to each other, and
ports with the white color are not connected to any other port. Depending on how large is the
error of the pose estimation of pipes and components, the process of automatic detection of

connections between components might fail. Image (b) shows the result after the optimization
using the automatically detected connections, where the right flange is left disconnected from the

scene. Image (c) shows the result after manually fixing the connections between pipes and
components.

(a) (b)

(c)

Source: The Authors

7.1 Summary

This Chapter presented the results of the pose optimization step of our system.

When the connections between components were correctly established, the optimization

always resulted in correctly aligned components. However, depending on how large is

the error of the pose optimization, the connection detection algorithm might fail, and the

result of the optimization might be considerably different than expected.
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Figure 7.4 – The orientation of valves sometimes is different from the orientation before adding
noise to its pose. In (a), we have the original scene, in (b) the scene after adding noise to the pose

of the pipes and piping components, and in (c) the result after executing the optimization.
Although the orientation of the valve was not preserved, the result is still plausible.

(a) (b)

(c)

Source: The Authors

Figure 7.5 – Another example where the resulting scene after optimization differs from the
original scene. In (a) we have the original scene, in (b) the scene after adding noise to the rotation

of the piping components, and in (c) the result after executing optimization. Just like in the
previous example, the result is also plausible.

(a) (b)

(c)

Source: The Authors
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8 CONCLUSION

This work presented several contributions to the reverse engineering of CAD

models of industrial plant sites from point clouds. One of our main contribution is an

optimization-based procedure to fix the misalignment of the detected piping system com-

ponents. Another contribution of this work is the integration of our results with a CAD

software. Even though the resulting model is not a perfect reconstruction of the under-

lying industrial plant site, the user can still manually improve this result using either our

system or AutoCAD Plant 3D. These solutions contribute towards the goal of obtaining

an automatic reverse engineering system.

8.1 Future Work

Our system still has several limitations. First, we can only reconstruct industrial

sites that contain models in our dataset. In order to work with other datasets, one would

need to detect the position and orientation of the ports of the models in the dataset, which

currently is not entirely automatic. It would be desirable to improve the automatic port

detection, to minimize the user interaction needed in this step.

As we have seen in Chapter 7, the detection of connections between ports can also

fail if the error in the pose estimation or in the pipe detection is too large. The algorithm

should also avoid connecting ports of components with different nominal diameters.

Depending on the error in the pose estimation of components, the optimization

might still be able to align the components, but potentially modifying the poses of com-

ponents that were already well aligned. To determine whether this would be a problem in

practice, we need to test our solution on real data and use the result of the pose estimation.

Alternatively, it could be interesting to test the robustness of our method as the error in

the pose estimation is increased, which can be simulated as described in Chapter 7. In

this case, it would be necessary to measure how different the result after optimization is

from the original scene.

It is also necessary to test the scalability of our proposed method for the alignment

of piping system components using scenes with a larger number of connections. This is

particularly important as the pose optimization step is executed whenever the user of our

system performs any action described in Section 5.5.
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