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Abstract: Pine seed shells and yerba mate are common wastes leftover from the food and beverage
industry. This study presents the development of rigid polyurethane foams (RPUFs) filled with
pine seed shells and yerba mate at 5, 10 and 15 wt%. The fillers were characterized for chemical
properties using bench chemistry analyses, and the RPUFs were investigated in terms of chemical,
morphological, mechanical, thermal and colorimetric characteristics. The main results indicated that
yerba mate showed good compatibility with the polyurethane system, probably because its available
hydroxyl groups reacted with isocyanate groups to form urethane bonds, producing increases in
mechanical and thermal properties. However, pine seed shell did not appear to be compatible.
Anisotropy increased slightly, as there was an increase in the percentage of reinforcement. The
mechanical properties of the yerba mate reinforced foams proved stable, while there was a loss of
overall up to ~50% for all mechanical properties in those reinforced with pine seed shell. Thermal
properties were improved up to ~40% for the yerba mate reinforced foams, while those reinforced with
pine nuts were stable. It was possible to observe a decrease in the glass transition temperature (Tg) of
~−5 ◦C for the yerba mate reinforced foams and ~−14 ◦C for the pine seed shell reinforced ones.

Keywords: pine seed shells; yerba mate; RPUF; sustainable foams; characterization

1. Introduction

Among the most popular thermosetting plastics, rigid polyurethane foams (RPUFs) are
applied in a wide variety of industries, such as building engineering, transport and thermal
insulation [1,2]. This versatility is highly attributed to their closed-cell structure, which
confers low thermal conductivity, high compressive strength and low water absorption [3].
However, this material has negative environmental impacts due to petroleum consumption
and its low biodegradability. In this sense, recent research efforts have been focused on the
use of polyols based on vegetable oils [4,5], green chemical additives [6] and fillers based
on natural fibres [7,8] or particles [9].

The use of natural fillers from agricultural or forestry wastes has been successfully
incorporated in RPUFs, leading to satisfactory performances for maintaining and even
increasing the RPUF properties [10]. Increases in several mechanical and thermal properties
of RPUFs filled with natural fillers are commonly attributed to the free hydroxyl groups
(-OH) on the filler surface, which are available in these lignocellulosic materials and may
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react with the isocyanate groups (-NCO), generating urethane groups [11]. In addition, the
presence of carbonyl and phenolic groups on the filler surface is expected to contribute to a
favourable interaction with the polyurethane (PU) matrix, resulting in improvements in
several properties. Furthermore, forest and agricultural wastes stand out due to their high
availability, low price, high biodegradability and high renewability [12].

In this sense, Członka et al. [13] reported that the insertion of walnut shells in RPUFs
changed their cellular structure, resulting in increases in mechanical, thermal and insulating
properties. Similarly, Olcay et al. [14] achieved improved mechanical, thermal and sound
insulation properties by incorporating RPUFs with artichoke stem fibre wastes. The results
reported in both these studies corroborate Delucis et al. [15], who used six forest-based
resources (wood, bark, cones, needles, kraft lignin and recycled paper sludge) as fillers in
bio-based RPUFs. Based on the mechanical and hygroscopic performances achieved, these
authors reported that the wood flour was the most promising filler due to its high holocellu-
lose content. Finally, in the most recent research paper of the group [16], the incorporation
of two fruit peels (from banana and bergamot) as fillers in RPUFs yielded increases in cell
size and thermal stability. However, there are many residues from the food industry that
could be used as fillers in RPUFs, due to their high content of hydroxyls associated with
amorphous polysaccharides. The environmental impact of these wastes is a growing con-
cern, particularly in developing countries where inadequate waste management systems
can result in pollution and health hazards to both humans and wildlife.

In Brazil and other South American countries, pine seed shells and yerba mate are
commonly used for various purposes. Pine seed shells are a popular designation for the
seeds of several tree species, including both Pinaceae and Araucariaceae families, and
are a popular ingredient for typical dishes from Brazilian gastronomy. Similarly, yerba
mate is a traditional South American beverage prepared by infusion, which is widely
consumed in countries such as Argentina, Paraguay and Uruguay [17,18]. Although pine
seed shells and yerba mate leaves are important goods from the South American culture
and cuisine, their consumption also generates wet waste that needs to be managed [19].
In this sense, it is estimated that the annual Brazilian production of yerba mate is greater
than 240,000 cubic meters [20], while the production of pine seeds exceeds 30,000 cubic
meters per year [21]. This waste generation is even more harmful since both residues are
discarded after consumption in the wet form, wherein the high-water content may hinder
the recycling process of other residues, such as paper, bottles and cans. In fact, mixing
wet food waste can reduce the recyclability by 35% to 50%. Thus, this study aimed to
incorporate wastes from yerba mate leaves and pine seed shells in RPUFs.

2. Materials and Methods
2.1. Acquisition and Characterization of Fillers

Pine seeds (Araucaria angustifolia seeds) and yerba mate leaves (Ilex paraguariensis) were
acquired from local commerce in southern Brazil. Post-consumed yerba mate tea and pine
seed shells were oven-dried (at 50 ◦C until reaching constant mass) and ground in a Wiley
mill coupled to a 100-mesh screen (<150 mm). Both these wastes were prepared (Tappi
257 cm-02) using wet chemical analyses, and then the ashes (T211 om-93), ethanol–toluene
extractives (Tappi T204 om-97), acid-insoluble (Klason) lignin (Tappi T222 om-98) and
holocellulose (remaining mass up to 100%) contents were determined.

2.2. Rigid Polyurethane Foam Manufacturing

A bio-based polyol was produced with a simple mixture of castor oil and glycerol
at a 3:1 weight ratio. Isotane DM, a polymer methylene diphenyl diisocyanate (p-MDI),
was used as an NCO source. Moreover, poly-ethylene glycol (PEG-400), silicon oil and
dimethylbenzylamine were used as chain extender, surfactant and catalyst, respectively.
For the RPUFs manufacture, castor oil (24 parts/g), distilled water, glycerol (8 parts/g),
PEG-400 (3.5 parts/g), silicon oil (1 parts/g) and filler were mechanically mixed at 1000 rpm
for 120 s. Thereafter, p-MDI (63 part/g) and amine (0.4 part/g) were added to the other
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components, which were then mechanically stirred for an extra 60 s, keeping a constant
NCO/OH stoichiometric ratio of 1.2. The detailed formulation of the manufactured RPUFs
is presented in Table 1, according to others’ research from the group [16,22]. After this
process, the liquid reaction mixture was cast in an open mould to freely rise (Figure 1). After
its full expansion, the RPUF was cured at 60 ◦C for 2 h and post-cured at room temperature
for two weeks. Filler weight fractions of 5, 10 and 15% were tested.

Table 1. Content of the reagents used in the formulation of the foams.

Component Function Parts by Weight (php)

Castor oil Polyol 24.0
Glycerol Polyol 8.0
PEG-400 Chain extender 3.5
Amine Catalyst 0.4

Silicon oil Surfactant 1.0
p-MDI Polymeric MDI 64.4
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2.3. Morphology and Anisotropy Index

The morphology of the fabricated RPUFs was analysed perpendicular to the rise
direction by scanning electron microscopy (SEM) in an MA10 equipment (Zeiss Evo brand)
operating at 3 kV. ImageJ software was used to measure average cell width and length
using the SEM images. Anisotropy index of the RPUFs was calculated through Equation (1),
according to Kirpluks and coworkers [23], where h is cell length, l is the cell width and n is
number of measured cells.

R =
∑n

i=1
h
l

n
(1)

2.4. Chemical and Thermal Characterization

Fourier-transform infrared spectroscopy (FTIR) was used to identify chemical groups
of the fabricated RPUFs and the fillers. IRSpirit equipment (Shimadzu® brand) outfitted
with a diamond attenuated total reflection (ATR) accessory was used to record the spectra
in the range of 500–4000 cm−1 over 64 scans with a resolution of 4 cm−1. Moreover, the
thermal stability of the RPUFs was evaluated using a TGA-1000 thermogravimetric analyser
(TA Instruments, heated from 25 to 800 ◦C at a heating rate of 20 ◦C/min under a nitrogen
atmosphere). Differential scanning calorimetry (DSC) runs were performed using a Q20
calorimeter (TA Instruments) under a nitrogen atmosphere at a 50 mL/min flow rate from
room temperature to 240 ◦C. The second-order DSC curve, in the range between −25 and
0 ◦C, was used to determine the glass transition temperature (Tg) [5,24].
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2.5. Apparent Density and Compressive Stress

The RPUFs were tested under a compression load parallel to the rise direction using
seven prismatic samples (5.0 × 5.0 × 2.5 cm3) for each group. The tests were performed in a
23-5D universal testing machine (Emic brand) using a crosshead speed of 2.5 mm/min, and
the maximum compressive strength was determined at a 3.3 mm displacement, according to
ASTM D1622. Apparent density was determined for the same samples, using an analytical
scale (0.001 g resolution) and a digital calliper (0.01 mm resolution).

2.6. Colorimetric Patterns of the RPUFs

RPUF’s colour was evaluated using a CR-400 colourimeter (Konica Minolta brand),
which reported brightness (L*), green–red (a*) and blue–yellow (b*) coordinates, Chroma
(C*) and hue angle (h◦). The apparatus was configured to use a light source (illuminant)
D65 and a 10◦ viewing angle, according to the method known as CIELab.

2.7. Statistical Analyses

Chemical properties and thermal analysis were performed on one representative spec-
imen. All other data were subjected to ANOVA tests. Whenever the null hypothesis was
rejected, Tukey tests were used to compare the means. Before that, homogeneity of vari-
ances and data normality were verified using Leven and Shapiro–Wilk tests, respectively.
All statistical analyses were implemented at a significance level of 5%.

3. Results and Discussion
3.1. Chemical Properties

As expected, both vegetables presented high holocellulose contents (above 60%) [25],
indicating that they may have a high host compatibility with the PU system [26]. The
pine seed shells presented a slightly smaller holocellulose content when compared to the
yerba mate (Figure 2), which presented a higher ash content compared to the former waste.
According to the literature [25], among the main hemicelluloses of a typical pine seed
shell, the contents of xylans and galactoglucomannans may stand out. These amorphous
polysaccharides may have a high OH content free to bond to the PU system. In this sense,
Ben and coworkers [27] stated that cellulose, hemicellulose and lignin had 18.52, 3.72 and
3.83 mmol/g hydroxyl content, respectively. Since both residues achieved similar values on
holocellulose content (cellulose and hemicellulose), the difference in the hydroxyl content
between the two fillers was determined by the lignin content, wherein the pine seed shells
fillers had a higher number of these groups.
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Compared to the pine seed shell, Figure 3 shows that the yerba mate showed a
higher peak at 1720 cm−1, which can be attributed to the presence of polyphenols and
the -OH bending vibrations from absorbed water molecules [28,29]. Polyphenols are the
main active components in yerba mate tea, accounting for approximately 25% of its dry
weight [30]. All RPUFs showed similar FTIR spectra, which indirectly indicates chemically
similar structures, which are typical of a proper formation of polyurethane chains. These
founded chemical groups include C-O-C and C-N urethane linkages (at 900–1200 cm−1),
N-H amide II (at 1520 cm−1), H-C=O urethane linkages (at 1720 cm−1), and CH2 and CH3
groups (at 2850–2970 cm−1) [31]. In this sense, the peak in the carbonyl stretching region
(1600–1750 cm−1) included the free urethane and was lower in the pine seed shell samples.
The peak at 2800–3000 cm−1 is attributed to symmetric and asymmetric vibrations from
methyl (CH3) and methylene (CH2) groups, as well as C-H groups, associated with amor-
phous and crystalline polysaccharides [29], allowing for water binding through hydrogen
bonds [29,32,33]. These hydrogen bonds were observed by the peak at 3400 cm−1, while
the peak at 2400 cm−1 indicated the presence of NCO groups.
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In contrast to the RPUFs incorporated with pine seed shells, the ones filled with
yerba mate exhibited an increase in the intensity of the broad and intense peak in the
3200–3500 cm−1 region. According to Xu and coworkers [34], this broad peak in PU is
associated with the N-H stretching mode, and the absence of a shoulder peak in this region
implies the inexistence of unreacted OH groups. In this sense, a small shoulder is observed
in the yerba mate samples with 10 and 15% introduction. This behaviour points to a higher
number of unreacted contents between the filler and the PU matrix for the yerba mate-filled
RPUFs, possibly due to the presence of a high concentration of hydroxyl (-OH) groups
on the surface of the yerba mate particles. Therefore, the yerba mate particles contain a
variety of functional groups, such as hydroxyls (-OH), carbonyl groups (C=O) and phenolic
groups (-C6H4OH), which may be involved in the interaction with the PU system. Finally,
the appearance of a peak at 2270 cm−1 related to unreacted NCO groups from the p-MDI
was found for the RPUFs filled with 10 and 15 wt% of yerba mate. According to Acosta
and coworkers [16], this indicates that these groups were probably trapped in the cellular
structure of these RPUFs due to particular nucleation mechanisms conferred by this filler.
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3.2. Morphology and Anisotropy Index

The hygroscopic, thermal and mechanical properties of an RPUF are highly influenced
by its morphology (Table 2). SEM images (Figure 4) clearly showed that the cellular
structure of the neat RPUF was mainly composed of closed cells with an elliptical shape
oriented in the rise direction, indicating a successful foam formation [23]. As shown in
Table 2, this anisotropic behaviour was confirmed by a high anisotropy index of 1.34.
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On the other hand, the filled RPUFs presented a high number of open cells, probably
due to the disruption of some cells induced by the filler insertion. In fact, it is known that
the addition of fillers during the manufacture of RPUFs may cause a change in polymer
viscosity, which can negatively impact foam expansion reaction and hinder cell formation
and growth, ultimately resulting in an increase in heterogeneity and the emergence of open
cells in the filled foams [35].

In general, the insertion of the fillers yielded decreases in cell size, accompanied by
unchanged levels of the anisotropy index. The morphological properties of the RPUF
incorporated with 5% pine seed shells did not differ from those of the neat RPUF, which
indicates a good filler interaction with the PU system in this case. In the study reported by
Mosiewicki and coworkers [4], the results showed that decreases in cell size attributed to
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the incorporation of fillers led to increases in mechanical properties and thermal stability.
However, when fillers were incorporated without altering the morphological characteristics
of the RPUFs, their properties were similar to those of their respective RPUFs without fillers.

Table 2. Morphological properties of the studied RPUFs with yerba mate and pine seed shell. where
RPUF is the neat rigid polyurethane foam, and filler type and filler content are the numbers after the
bars and between parentheses, respectively.

Group Cell Length (µm) Cell Width (µm) Anisotropy Index

RPUF 569 (130 cd) 436 (95 c) 1.34 (0.31 ab)

RPUF/Yerba mate (5%) 659 (266 de) 565 (202 d) 1.20 (0.33 ab)

RPUF/Yerba mate (10%) 652 (164 de) 428 (101 bc) 1.54 (0.31 c)

RPUF/Yerba mate (15%) 723 (271 e) 572 (181 d) 1.37 (0.33 bc)

RPUF/Pine seed shell (5%) 508 (113 bc) 422 (132 bc) 1.35 (0.56 ab)

RPUF/Pine seed shell (10%) 397 (105 ab) 271 (66 a) 1.48 (0.30 ab)

RPUF/Pine seed shell (15%) 323 (83 a) 319 (66 ab) 1.07 (0.36 a)

Where: RPUF is the neat rigid polyurethane foam, and filler type and filler content are the numbers after the bars
and between parentheses, respectively. Different letters represent statistically different means.

In fact, when the cell size of one RPUF is reduced, its surface area increases, leading to
more contact points between the filler and the RPUF matrix. This increased contact may
lead to weak bonding between the RPUF matrix and the filler, resulting in low mechanical
performance [15]. On the other hand, when fillers are incorporated without altering the cell
size of the foam, the contact points between the filler and the foam matrix remain similar to
those without fillers. As a result, the bonding between the filler and the RPUF matrix is not
weakened, leading to similar mechanical properties [16]. Additionally, the thermal stability
of this RPUF is not affected since the surface area of its cells remains unchanged.

The SEM images also indicate that the RPUFs incorporated with yerba mate exhibited
a larger cell size than the ones filled with pine seed shells. This corroborates the results
obtained by FTIR, and therefore also indicates that there was a better interaction between
the yerba mate and its respective RPUF.

3.3. Apparent Density and Compressive Stress

As can be seen in Figure 5, the RPUFs’ apparent density is influenced by the amount
of filler incorporated, but this relationship is not always linear. According to Acosta and
coworkers [16], at low filler concentrations the density may increase as the filler particles
occupy space between the RPUF cells, leading to an increase in overall material density.
However, at higher filler concentrations, the filler particles can start to agglomerate and
form voids in the foam, resulting in a decrease in density. In addition, the incorporation
of fillers at high concentrations can also reduce the expandability of the RPUFs, leading
to an increase in apparent density. This effect occurs because the presence of the filler
particles can hinder the movement and growth of the RPUF cells during the foaming
process, leading to a denser and more compact foam structure. Therefore, the optimal filler
concentration for achieving the desired balance between RPUF density, cell size/shape
and expandability depends on various factors, such as the type of filler, RPUF formulation,
processing conditions and intended application [36].

The influences of the pine seed shell and yerba mate wastes on the compressive
strength of the RPUFs can be seen in Figure 6. The compression strength values of the RPUFs
filled with different mass fractions of pine seed shell and yerba mate wastes remained
constant in relation to the same property of the neat RPUF, except for those ones filled
with 15% yerba mate and 10% pine seed shell. These latter RPUFs showed significantly
lower levels of compression strength compared to the neat RPUF. There are competing and
sometimes opposing factors that influence this property, including effects of filler geometry,
content and chemistry [15].
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Regarding the compressive modulus (Figure 7), the introduction of different yerba
mate weight fractions did not alter this property. This result again indicates that this filler
is compatible with the PU system at a high level. Conversely, all the RPUFs with pine seed
shells added presented significant decreases in modulus. In the case of the RPUFs filled
with pine seed shells, the decreases in modulus can be attributed to the action of the fillers
as stress concentrators, which increases the likelihood of crack formation and propagation
within the RPUF structure. This can lead to a reduction in the RPUF modulus, although
the presence of these filler particles can also improve the RPUF’s compressive strength by
increasing the number of load-bearing points within the RPUF structure. This can offset
the negative effects of the stress concentrators and help to explain why the RPUF’s overall
strength was maintained.
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3.4. Thermal Characteristics

Figure 8 shows TG and DTG curves obtained for the studied RPUFs. Characteristic
temperatures were defined as T2% (temperature assigned to 2% of weight loss), T5%
(temperature assigned to 5% of weight loss) and T50% (temperature assigned to 50% of
weight loss) (Table 3).

Table 3. Main thermal events evaluated by TG analysis of the studied RPUFs with yerba mate and
pine seed shell, where RPUF is the neat rigid polyurethane foam, and filler type and filler content are
the numbers after the bars and between parentheses, respectively.

Group T2% T5% T50% Residue at 800 ◦C (%)

RPUF 160 262 404 12
Yerba mate 62 135 355 25

RPUF/Yerba mate (5%) 218 266 409 12
RPUF/Yerba mate (10%) 119 247 405 11
RPUF/Yerba mate (15%) 215 256 404 14

Pine seed shell 45 70 599 45
RPUF/Pine seed shell (5%) 103 241 398 12

RPUF/Pine seed shell (10%) 157 251 401 19
RPUF/Pine seed shell (15%) 121 252 402 21

In all, the shape of the neat RPUF curve remained unchanged after the insertion of
the different filler weight fractions, which means that the structural chemical composition
of the neat RPUF was almost unchanged. The first important downturn was observed
at 240–260 ◦C. This thermal event was probably due to filler/RPUF crosslinking, since
this temperature range is related to the breaking of urethane linkages [16]. In applications
such as when building flat roofing sealed with a bituminous roof covering, RPUFs must
withstand temperatures up to 250 ◦C for short periods without showing adverse effects [22].
After that, the T50% results indicate a possible association with the structural decomposition
of organic chains, which is governed mainly by the cleavage of urea groups and the
degradation of urethane groups, preferentially from side chains around 350 ◦C [22].

The high residue content observed at temperatures above 700 ◦C in pine seed shells is
associated with the presence of lignin and hemicelluloses, which may become fixed carbon
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until 600 ◦C [37]. This may explain the increases in residue content obtained for the RPUFs
filled with pine seed shells. This increase in the char content above 700 ◦C may also lead to
decreases in RPUF flammability, since the residue left after thermal degradation can act as
a protective layer to the underlying material after successive burning cycles. Therefore, the
higher the residue content, the more char will be formed upon thermal degradation, and
thus the more fire-resistant the material will be [22].
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Figure 9A,B show DSC curves for both the neat and filled RPUFs. All RPUFs produced
DSC curves with somewhat similar shapes, which implies a similar structure of their main
macromolecules, as reported for the TG results. The Tg of the filled RPUFs shifted to
slightly lower values compared with neat RPUF, which may indicate changes in phase
separation [38] and damping properties [35]. Although it is hard to find the Tg values, the
RPUFs filled with yerba mate presented values closer to the neat case, which suggests that
filler incorporation decreased the Tg values, but that crosslinking bonds had the contrary
effect. Additionally, the indicated Tg values were in the range found in the literature for
RPUFs [24]. The curve shape appears modified within 60–100 ◦C for RPUFs filled with
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pine seed shells (Figure 9B). This may be attributed to the release of gas trapped in the cell
structure or the volatilisation of some organic extractives, including fatty acids, resin acids,
terpenoids and phenolic compounds.
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Figure 9. DSC curves of the studied RPUFs with yerba mate (A) and pine seed shell (B), where RPUF
is the neat rigid polyurethane foam, and filler type and filler content are the numbers after the bars
and between parentheses, respectively.

Figure 10 shows the derived curves obtained by DSC. Each prominent peak may
represent a significant enthalpy change related to either phase transition or chemical
reaction. The shift of the −6 ◦C peak to a lower temperature (around −10 ◦C) suggests that
the filler may have altered the nucleation and growth behaviour of the RPUF cells, or it
may have acted as a nucleating agent, resulting in the formation of smaller cells and a more
uniform cell structure [39,40].
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Therefore, the addition of the filler in these cases probably changed the way the
foam cells formed and grew during the RPUF production process. These fillers may have
influenced the size, shape, and distribution of the cells. Additionally, these fillers may
have provided sites for the formation of new RPUF cells, resulting in the formation of a
more uniform cell structure. A filler that acts as a nucleating agent may also promote the
formation of new cells by lowering the energy required for cell formation, which can result
in the formation of smaller, more uniform cells.

3.5. Colorimetric Patterns

The photographs shown in Figure 11 indicate that, compared to the neat RPUF, there
were significant colour changes attributed to the insertion of both yerba mate and pine
seed shells. In general, the filled RPUF became similar to their respective fillers in terms
of colour, so the RPUFs filled with yerba mate became green, while the ones filled with
pine seed shells acquired brownish shades. In most fruits and vegetables, anthocyanins are
among the most known flavonoids that attract consumers because of their colours [41].
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seed shell, where RPUF is the neat rigid polyurethane foam, and filler type and filler content are the
numbers after the bars and between parentheses, respectively. Additionally, L* is brightness; a* is
green–red coordinate; b* is blue–yellow coordinate; C is chroma; and h◦ is hue angle.

All RPUFs incorporated with pine seed shells presented increases in a*, accompanied
by decreases in L*, C and h◦. On the other hand, the yerba mate being inserted led to
decreases in L* and h◦, accompanied by increases in a*, b* and C. These results can be
explained by the presence of specific compounds in both the pine seed shells and the yerba
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mate. These complexes may interact with the RPUF matrix, altering their colour properties.
For instance, the phenolic compounds (such as polyphenols, quinones and flavonoids) of
pine seed shells may be causing the shift in hue from green to red [41,42]. On the other
hand, the tannins present in yerba mate may be responsible for the intensification of the red
colour, which may explain the increases in a* found for the yerba-mate-filled RPUFs [43].
Regardless of the green–red and yellow–blue coordinates, the significant changes in C
found for all the filled RPUFs may represent notable aesthetical changes related to the
colour opacity [16].

4. Conclusions

RPUF composites incorporating different filler levels (5–15% wt.) of pine seed shells
and yerba mate were successfully manufactured. Yerba mate exhibited greater chemical
affinity compared to the pine seed shell filler, as confirmed by wet chemical and FTIR
results, resulting in more uniform cells found by SEM images. This difference in host
compatibility with the RPUF system also significantly affected DSC and mechanical results.
The hygroscopic properties, apparent density, compression strength and thermal stability
were only slightly influenced by both filler type and content. Although there were evident
gains in aesthetic characteristics due to the insertion of both fillers in the RPUFs, the ones
incorporated with yerba mate showed mechanical properties similar to neat RPUF, while
the RPUFs incorporated with pine seed shells showed losses in the compression modulus.
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