
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

DEPARTAMENTO DE INFORMÁTICA TEÓRICA
CURSO DE CIÊNCIA DA COMPUTAÇÃO

BRUNO MENEGOLA

An External Memory Algorithm for
Listing Triangles

Trabalho de Graduação

Luciana Salete Buriol
Orientadora

Marcus Ritt
Co-orientador

Porto Alegre, 2 de Julho de 2010



UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Pró-Reitor de Coordenação Acadêmica: Prof. Rui Vicente Oppermann
Pró-Reitora de Graduação: Profa. Valqúıria Link Bassani
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do Curso de Ciência da Computação: Prof. João César Netto
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

RESUMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 STATE OF THE ART . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 A Model For I/O Complexity Analysis . . . . . . . . . . . . . . . . 12
2.1.1 Hard Disks Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Parallel Disk Model . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Libraries For External Memory Algorithms . . . . . . . . . . . . . 14
2.2.1 STXXL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Current Algorithms For Counting And Listing Triangles . . . . 15
2.3.1 Main Memory Solutions . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 External Memory Solutions . . . . . . . . . . . . . . . . . . . . . 18

3 EXTERNAL MEMORY TRIANGLES LISTING . . . . . . . . . . 20

3.1 External Memory Vertex-Iterator Analysis . . . . . . . . . . . . . 20
3.2 External Memory Compact-Forward . . . . . . . . . . . . . . . . . 21

3.2.1 I/O Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Sorting the buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



4 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



LIST OF FIGURES

Figure 2.1: Hard Disk drive schema . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 3.1: Bipartite graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 3.2: Page loading scheme without any optimization . . . . . . . . . . . 25
Figure 3.3: Page loading scheme with reordered edges . . . . . . . . . . . . . 26



LIST OF TABLES

Table 2.1: PDM fundamental operations I/O bounds . . . . . . . . . . . . . 14
Table 2.2: Main memory algorithms complexities . . . . . . . . . . . . . . . 16

Table 4.1: Instances used in experiments and ther properties . . . . . . . . . 28
Table 4.2: Time results for EMCF with different configurations . . . . . . . 28
Table 4.3: I/O results for EMCF using different configurations . . . . . . . . 28
Table 4.4: Time an I/O comparison of EMCF and EMVI . . . . . . . . . . . 29



ABSTRACT

In this work, we propose a new external memory algorithm for counting and list-
ing triangles in huge graphs. Another major contribution is a better analysis of the
external memory algorithm for listing triangles proposed by Roman Dementiev [8].
Besides that, there is a review of solutions (in internal and external memory) for
the problems of finding, counting and listing triangles.

Many real world applications need to process a large amount of data. Dealing
with massive data is a challenge for algorithm design. The goal for external memory
algorithms, or I/O-efficient algorithms, is to reduce the number of reads and writes
(I/Os) to external devices, typically a hard disk, wich has a huge cost per I/O when
compared to another made for internal memory. The external device is used to store
informations that the main memory, usually a RAM (Random Access Memory), can
not deal because it lacks of space.

In a graph, a triangle is a set of three vertices such that each possible edge be-
tween them is present. Usually, the number of triangles, for example, is not an useful
information by itself. However, they can be used for other purposes like the cal-
culation of graph properties, for example, the clustering coefficient and transitivity
coefficient; analysis of complex networks; finding special subgraphs, for example, in
protein interaction networks; and also intrusion detection, spamming or community
detection.

In a graph with m edges, the I/O complexity of our proposed algorithm is

O(Scan(m
3
2 )). With this algorithm is possible to count the number of triangles

in a graph with 800 million edges in about 9 hours using only 1.5 GiB of main
memory.

Keywords: Algorithms, external memory, triangles, triangle problems, counting
triangles, listing triangles.



RESUMO

Um Algoritmo de Memória Externa para Listagem de Triângulos

Este trabalho propõe um novo algoritmo de memória externa para contagem
e listagem de triângulos em grafos massivos. Outra grande contribuição é uma
melhor análise do algoritmo de listagem de triângulos de memória externa proposto
por Roman Dementiev [8]. Além disso, há uma revisão bibliográfica das soluções
(tanto para memória interna, quanto para memória externa) para os problemas de
busca, contagem e listagem de triângulos.

Muitas aplicações atuais precisam processar uma quantidade imensa de dados.
Lidar com esse problema é um desafio para a área de projeto de algoritmos. Algorit-
mos de memória externa, ou algoritmos I/O-eficientes, objetivam reduzir o número
de leituras e escritas (I/Os) na mı́dia externa, tipicamente um disco ŕıgido, pois o
custo de um I/O para um dispositivo esterno é muito maior que um I/O realizado
em memória interna. A mı́dia externa é utilizada para armazenar as informações
que a memória principal, normalmente uma RAM (Random Access Memory), não
consegue lidar por falta de espaço.

Em grafos, Triângulos são conjuntos de 3 vértices tal que cada posśıvel aresta
entre eles está presente. Usualmente, o número ou a lista de triângulos em um grafo
não é uma informação útil por si só. Entretanto ela pode ser utilizada para outros
propósitos como o cálculo de propriedades do grafo, por exemplo, o coeficiente de
clustering ou o coeficiente de transitividade; análise de redes complexas; busca de
outros subgrafos especiais, por exemplo, em redes de interação entre protéınas; e
também detecção de intrusão, de comunidades e de atividades de spam.

Em um grafo com m arestas, a complexidade de I/O do algoritmo que propomos é

O(Scan(m
3
2 )). Com o algoritmo proposto, é posśıvel calcular o número de triângulos

em um grafo com 800 milhões de arestas em pouco mais de 9 horas usando apenas
1.5GiB de memória principal.

Palavras-chave: Algoritmos, memória externa, triângulos, contagem de triângulos,
listagem de triângulos.



9

1 INTRODUCTION

Many real world applications need to process a large amount of data. Examples
of such applications are indexing of web pages, books, images, videos and all the
terabytes of media produced every year; processing information from sensor networks
with ambiental parameters in a production process control and storing, compressing
and searching in biological databases for study of proteins. However, if a large
amount of data cannot be properly explored, there is no reason for storing it. Dealing
with massive data is a challenge for algorithm design.

In the last few years it became common, and in many cases mandatory, to design
algorithms based on machine models that were proposed for dealing with large data
sets. This is the case of external memory algorithms (also referred to I/O-efficient
algorithms) [23, 22], cache oblivious algorithms [18], and streaming algorithms [1].

The first two models explore the memory hierarchy of computers. External
memory (EM) algorithms are the ones that explicitly manage data placement and
transfer from and to EM devices. Since the main memory is not enough to store
massive data, one must use a secondary storage – a hard disk, for example – to store
it. However, all systems require that the information is processed in main memory.
Thus, the main memory may serve as a cache for the external device. When some
data is required, it is read from disk to main memory. When altered data is no
longer needed, it is stored back on disk again. The goal for an EM algorithm is to
reduce the number of reads and writes to external devices. The inputs and outputs
(I/Os) cost a lot more time than a read and write to a Random Access Memory, for
example. EM algorithms design aims to reduce those I/Os by increasing locality of
processing. This way the main memory can be efficiently used. Increased locality
means that, once data is loaded into main memory, it should be processed as much
as possible with no other or few I/Os.

External memory algorithms store massive data in external devices. There is a
special case, semi-external memory algorithms, that classifies algorithms that uses
some data structure in main memory for potential massive data. For example, in
a graph processing algorithm, very often some structure of size proportional to the
number of vertices can be stored in main memory, but not one proportional to the
number of edges.

Cache oblivious algorithms aim to minimize communication between RAM and
cache. External memory and cache oblivious algorithms are very similar, since both
handle two levels of memory, but usually the later use a recursive approach for
problem solving.

Streaming algorithms, on the other hand, estimate properties of data that is so
large that it cannot be stored, and that arrives continually element by element.



10

Many problems can be modeled by graphs, and if the application requires massive
processing, the algorithms have to be designed using a proper model. Among the
three cited models, external memory algorithms are the ones which has frequently
been used on graphs. Many EM algorithms for graphs have low I/O complexity,
while maintaining the time complexity of the best algorithm known for internal
memory. Particularly in the last decade, the research in this field brought many
important contributions. We refer to [16] for data structures and basic graph prop-
erties in external memory. Moreover, more advanced graph problems were efficiently
solved in external memory, such as graph search [15], minimum spanning trees [3, 10],
single source shortest paths [3], among others.

Some algorithms have not been studied much in external memory yet. This is
the case of the basic triangles problems. In a graph, a triangle is a set of three
vertices such that each possible edge between them is present. The basic triangles
problems are finding, counting and listing. They compute, respectively, if there is
a triangle in the graph, how many triangles exist and which nodes compose each
triangle.

Usually, the number of triangles, for example, is not an useful information by
itself. But they are the basis for other graph informations and properties. Their
computation plays a key role in the analysis of complex networks. Important sta-
tistical properties such as the clustering coefficient and the transitivity coefficient
of graphs depend on the number of triangles. Triangles are also used to find spe-
cial subgraphs in large graphs, like in protein interaction networks. Tsourakakis
[21] cites other applications, like finding patterns in large networks for intrusion
detection, spamming or community detection.

The best known methods for counting the number of triangles in a general graph
use matrix multiplication (O(nω) in time complexity, where ω is the exponent for
the best known algorithm for matrix multiplication. Currently, ω = 2.376). Even on
graphs of medium size this is not computationally feasible because of the large main
memory usage required to store the whole graph (an adjacency matrix requires O(n2)
in space). Schank and Wagner [19] gave an experimental study of algorithms in main
memory for counting and listing triangles and computing the clustering coefficient in
small and medium size graphs. Their algorithms work in main memory and report
results for graphs up to 668 thousand nodes. More recently, Latapy [12] presented
new algorithms for finding, counting and listing triangles, which perform better on
power-law-graphs. Computational results are presented for graphs up to 39.5 million
nodes.

Among the three cited models for dealing with massive data, the data stream
model is applied for estimating the number of triangles [6]. We are not aware of
any cache oblivious algorithm for this problem. An external memory algorithm was
proposed by Dementiev [7] as part of his doctoral thesis [8].

In this thesis we propose a new external memory algorithm for listing all triangles
in an undirected graph. Our algorithm is based on the main memory algorithm
named compact-forward proposed by Latapy [12].

The main contributions of this thesis are:

1. A better analysis of Dementiev’s external memory algorithm for listing trian-
gles.



11

2. A new external memory algorithm for counting and listing triangles in a graph.
With an implementation of the algorithm, we also present an experimental
comparison with Dementiev’s algorithm and Latapy’s compact-forward main
memory algorithm as a baseline for the tests.

1.1 Notation

Throughout the paper, we consider a graph G = (V,E) with a set of vertices V
and a set of edges E. We denote the number of vertices by n = |V | and the number
of edges by m = |E|. G is unweighted, has no self-loops and we make no distinction
between two edges (u, v) and (v, u), so the graph is undirected. We denote by
N(u) = {v ∈ V |(u, v) ∈ E} the neighborhood of vertex u ∈ V and by d(u) = |N(u)|
the node degree. The maximum degree of the graph is represented by ∆.

A bipartite graph is a graph G whose vertices can be partitioned into two
sets: V1 ⊆ V and V2 ⊆ V . The set of edges E must fullfil the following criterion:
∀(u, v) ∈ E : u 6= v =⇒ u ∈ V1 ∧ v ∈ V2.

The clustering coefficient is defined as the normalized sum of the fraction of
neighbor pairs of a vertex v of the graph that form a triangle with v, while the
related transitivity coefficient of a graph is defined as the ratio between three times
the number of triangles and the number of paths of length two in the graph.

1.2 Overview

This thesis is organized as follows. In Chapter 2 we review the state of the art for
external memory algorithms analysis and development. We also review the current
solutions for main and external memory algorithms for listing triangles, including
Roman Dementiev’s EM algorithm in Section 2.3.2. In Chapter 3 we present the
first part of the above mentioned contributions: Dementiev’s algorithm analysis and
our new triangles listing algorithm. In Chapter 4 we expose the experimental results
of our algorithm and the comparison with the others. In Chapter 5 is concludes and
discusses future works.



12

2 STATE OF THE ART

In this chapter we will briefly review key subjects, that will be used in the con-
struction of our algorithm, such as the Parallel Disk Model (Section 2.1) and libraries
of external memory data structures (Section 2.2). Also, the current solutions for the
triangles problems will be presented in Section 2.3.

2.1 A Model For I/O Complexity Analysis

External memory algorithms usually make use of hard disks (HDs) to store the
data that does not fit in main memory. It is important for algorithm designers to
have a model of those disks such that different algorithms can be compared and
optimized properly. The model must capture the essence of the media to create a
simple but accurate way to analyze algorithms. To understand the source of the
I/O problem that external memory algorithms attempt to address, Section 2.1.1
remembers the functional aspects of hard disks. The model used for I/O complexity
analysis will be presented in Section 2.1.2.

2.1.1 Hard Disks Aspects

As shown in Figure 2.1, a hard disk is composed of several platters rotating at
constant angular velocity and movable arms, which hold heads to read and write
data. A circle of sectors on each platter is called a track. The virtual set of tracks
from different platters but at the same distance from the center is called a cylinder.
Usually more platters are used to increase available disk space, not to improve the
transfer rate through read/write parallelism, since only one track is read or written
at a time [22].

When some data is requested from or written to the HD, the device must locate
the correct place to load or store it. The movement of the arm to the correct cylinder
is called a seek. The time waiting for the correct sector to pass below the arm head
is called rotational latency. The average latency is half of the time needed for a full
disk revolution.

The latency of accessing data is the combination of seek time and rotational
latency. A seek time is on the order of 3 to 10 milliseconds. The rotational latency
depends on the rotational speed of the disk. For example, a 7.200 rpm disk makes
a revolution every 8.34 milliseconds and so the rotational latency is about 4.17
milliseconds. It is important to note that, while the latency of accessing data in
a hard disk is in the order of milliseconds, the access time in a Random Access
Memory (RAM) is in the order of nanoseconds. So, HD accesses are a million times



13

(a) (b)

Figure 2.1: Hard Disk drive schema [22]. (a) Platters spin synchronously while data
is read/written by arms’ heads from sectors in each track. (b) A cylinder is a virtual
set of concentric tracks, one track per platter.

slower than in main memory [22].
To complete a data transfer from the hard disk to main memory, as soon as the

initial sector is found, the data is retrieved as fast as the disk rotates. For state-of-
the-art HDs, this speed is about 70 to 100 megabytes per second, this is also slower
than in main memory which achieves transfer rates up to 52.8 GB/s.

To amortize the initial delay of seeking, one can transfer a large contiguous group
of data at a time. A block is the amount of data transferred to or from the disk
in a single I/O operation. The block size may vary, but since I/Os are in units of
blocks, the algorithms that explore locality in item accesses, as opposed to a random
distribution, will perform better.

2.1.2 Parallel Disk Model

The goal of external memory algorithms is to minimize the number of I/Os.
As seen in Section 2.1.1, the number of I/Os is directly related to the number of
transferred blocks. This is one key aspect of the Parallel Disk Model (PDM), the
most used model for design and analysis of EM algorithms. The PDM has the
following main properties:

• N = problem size (in units of data items);

• M = internal memory size (in units of data items);

• B = block transfer size (in units of data items);

• D = number of independent disk drives;

• P = number of CPUs.

Locality of reference and parallel disk access are important mechanisms for I/O
efficient algorithms. Locality is achieved partially through the concept of block
transfers. Processors and disks are independent and the model assumes that, if
P ≤ D, a CPU can drive about D/P disks; if D < P , each disk is shared by about
P/D processors. The disks run in parallel, so D blocks can be transferred in one
operation. It is also common to measure the size of the data in units of blocks



14

and not in units of data items. Data size in blocks is expressed using a lower case
notation:

n =
N

B
, m =

M

B
.

The main performance measure for the EM algorithms analysis is the number of
I/Os it performs rather than its time complexity, since the transfer of a block from a
disk, for example, is millions times slower compared to main memory. This critical
point is the basis of EM algorithms design because they aim to reduce those I/Os.

Table 2.1 shows I/O bounds for some of the fundamental external memory op-
erations: scan, sort and search. They perform, respectively, data read, sorting and
a search for a specific element in a sorted array. These operations are often used
and the complexity of most EM algorithms can be expressed in the number of Scan,
Sort and Search operations.

Table 2.1: I/O bounds for some of the fundamental operations [22].

I/O bound

Operation D = 1 D ≥ 1

Scan(N) Θ
(
N
B

)
= Θ(n) Θ

(
N
DB

)
= Θ

(
n
D

)
Sort(N) Θ

(
N
B logM/B

N
B

)
= Θ(n logm n) Θ

(
N
DB logM/B

N
B

)
= Θ

(
n
D logm n

)
Search(N) Θ(logB N) Θ(logDB N)

Output(Z) Θ
(

max
{

1, ZB

})
= Θ(max{1, z}) Θ

(
max

{
1, Z

DB

})
= Θ

(
max

{
1, zD

})

There exist other models, besides PDM, for working not only with EM, but all
kinds of algorithms that make use of a memory hierarchy. Those models, however,
add or remove some parameters that are important from their perspective. For a
complete listing of models and their characteristics, we refer the reader to [22].

2.2 Libraries For External Memory Algorithms

For EM implementations, one must care about how the I/Os will be made.
The implementation of a generic library that handles the transfer of data between
main and external memory is very time consuming. One public available library is
the Standard Template Library for Extra Large Data Sets (STXXL) [20], initially
developed by Roman Dementiev [9].

2.2.1 STXXL

As the C++ Standard Library (STL), STXXL implements data structures like
vectors, maps, stacks, priority queues, and also algorithms like sort, merge and
others. It also has transparent support for parallel disk accesses.

In the algorithm that we propose in Section 3.2, the only used structure are
vectors. It is important for the reader unfamiliar with STXXL to know how the



15

library handles data. This way it is possible to understand the mapping to the
PDM that is the basis for the complexity analysis. The next paragraphs will briefly
explain the available parameters for vectors and how data is swapped between main
and external memory.

STXXL splits data in blocks and allows the user to define their size in bytes.
Blocks are loaded in pages, which can consist of one or more blocks. Only pages are
loaded from or stored in external memory. Vectors have these two parameters plus
the type of the elements, the maximum number of pages that can be held in main
memory at once and the type of the pager. The pager is the object responsible for
replacing pages in main memory by those requested from external memory.

The pager works with the value of the maximum number of pages in memory.
Every page in memory fills a slot. When a page is requested and it is not in main
memory, the pager loads it from external memory to main memory. If all slots are
filled, the pager replaces some of them with the new page. The default pager for
vectors of STXXL implements the Least Recently Used (LRU) strategy, which drops
the page that had its last access earlier in time.

The minimum block size is 4096 bytes. At least one page must be loaded in main
memory. The number of I/Os done by STXXL is the number of blocks read and
written. The number of I/Os is always a multiple of the page size.

2.3 Current Algorithms For Counting And Listing Triangles

We will summarize main memory algorithms for counting and listing triangles
in Section 2.3.1, and external memory algorithms in Section 2.3.2.

2.3.1 Main Memory Solutions

Most exact algorithms for counting and listing triangles have been designed for
main memory. Schank and Wagner [19] studied experimentally almost all available
algorithms. Latapy [12] reviewed those algorithms, presented new ones and paid
much attention to their memory consumption, analyzing their space complexities.
Both papers expose the solutions for triangles counting and listing. The later is also
a great guide for triangle problem solving methods.

For counting purposes, the use of matrix multiplication is a simple approach.
Although it has poor efficiency with the trivial method, fast matrix multiplication
can be used to speed it up. The most efficient triangles counting algorithm is,
following Latapy’s nomenclature, the ayz-counting, proposed by Alon et al. [2]. It
requires fast matrix multiplication and has time complexity O(n2.376). However, in
practice, this algorithm is not used because of its space complexity, since it requires
an adjacency matrix with size Θ(n2).

One can note that there is a lower bound for time complexity in triangle listing
in the general case. There may be

(
n
3

)
∈ Θ(n3) triangles in G. This is the same

to say that there are Θ(m
3
2 ) triangles since G may be a clique of Θ(

√
m) vertices.

With this, Lemma 1 can be stated.

Lemma 1. ([12, 19]). Listing all triangles in G is in Ω(n3) and Ω(m
3
2 ) time.

However, Θ(m
3
2 ) is much better in sparse graphs. The most common algorithms

that explore this property are vertex-iterator (Algorithm 1) and edge-iterator (Al-
gorithm 2).



16

Algorithm 1: vertex-iterator

Input: adjacency list E of G and its adjacency matrix A

1 foreach v ∈ V do
2 foreach u ∈ N(v) do
3 foreach w ∈ N(v) do
4 if Auw = 1 then output triangle {u, v, w}

Algorithm 2: edge-iterator

Input: sorted adjacency list E of G

1 foreach (u, v) ∈ E do
2 foreach w ∈ N(u) ∩N(v) do
3 output triangle {u, v, w}

The vertex-iterator has time complexity Θ(
∑

v∈V d(v)2), Θ(m∆), Θ(mn) and
Θ(n3) [12]. The edge-iterator has time complexity equals to Θ(m∆), Θ(mn) and
Θ(n3) [12]. Note that all complexities are the same in the worst case, i.e., when G
is a clique.

These two algorithms are the basis for triangle listing. Many algorithms reported
in literature are variations of them. Besides them, there exists tree-listing, new-
vertex-listing, new-listing and ayz-listing. We will not cover in depth all of them
because it is not the scope of this work, but observe that all have the same time
complexity but different space complexities. A summary of their complexities is
presented in Table 2.2. The most efficient triangles listing algorithms – and with
simplified implementations – are forward and compact-forward. The later is also
memory efficient, compared to the former.

Table 2.2: Main memory algorithms for several triangles problems and their time
and space complexities. More proofs can be found in [12]. σ is a constant that
represents the size of the type that encodes a vertex.

Algorithm Time Complexity Space Complexity

vertex-iterator Θ
(∑

v d(v)2
)
, Θ(m∆), Θ(mn), Θ(n3) Θ(n2)

edge-iterator Θ(m∆), Θ(mn), Θ(n3) Θ(2m+ n) ⊆ Θ(m)

tree-listing Θ(m3
2
) Θ(n2)

ayz-listing Θ(m3
2
) if K ∈ Θ(

√
m) Θ(n2)

forward Θ(m3
2
) Θ(3m+ 2n) ⊆ Θ(m)

compact-forward Θ(m3
2
) Θ(2m+ 2n) ⊆ Θ(m)

new-listing Θ(m3
2
) Θ(2m+ n+ n

σ
) ⊆ Θ(m)

We present the compact-forward algorithm in detail (Algorithm 3) and demon-
strate its correctness and complexity.

The compact-forward algorithm is derived from edge-iterator but it aims to be



17

Algorithm 3: compact-forward [12]

Input: adjacency list E of G

1 number the vertices with an injective function η() such that
∀u, v ∈ V : d(u) > d(v) =⇒ η(u) < η(v)

2 sort E according to η()
3 foreach v taken in increasing order of η() do
4 foreach u ∈ N(v) with η(u) > η(v) do
5 let u′ be the first neighbor of u, and v′ the one of v
6 while there remain untreated neighbors of u and v and

η(u′) < η(v) ∧ η(v′) < η(v) do
7 if η(u′) < η(v′) then set u′ to the next neighbor of u
8 else if η(u′) > η(v′) then set v′ to the next neighbor of v
9 else

10 output triangle {u, v, u′}
11 set u′ to the next neighbor of u
12 set v′ to the next neighbor of v

memory efficient, or compact, since it does not require an adjacency matrix but
simply an edge list.

To prove that its time complexity achieves the triangle listing lower bound
Θ(m

3
2 ), described in Lemma 1, a property of vertices is stated in Lemma 2.

Lemma 2. Any vertex v ∈ V has at most O(
√
m) neighbors of higher degree.

Proof. Assume v has H neighbors n1, ..., nH of higher degree. We have d(ni) ≥
d(v) ≥ H, and therefore they induce at least∑

1≤i≤H

d(ni)/2 ≥ Hd(v)/2 ≥ H2/2

edges. Since H2/2 ≤ m, i.e., H ≤
√

2m we have H ∈ O(
√
m).

Theorem 1. ([12]) Given the adjacency list of G, compact-forward lists all triangles

in Θ(m
3
2 ).

Proof. For each vertex x, let N+(x) = {y ∈ N(x)|d(y) ≥ d(x)} be the set of
neighbors of x with equal or higher degree to the one of x itself. For any triangle
t = {u, v, w}, one can suppose without loss of generality that η(w) < η(v) < η(u).
One may then discover t by discovering that w is in N+(u) ∩N+(v).

If the adjacency structures encoding the neighborhoods are sorted according
to η(), then we have that N+(v) is the beginning of N(v), truncated when we reach
a vertex v′ with η(v′) > η(v). Likewise, N+(u) is N(u) truncated at u′ such that
η(u′) > η(v). Lines 1 and 2 of Algorithm 3 ensure the appropriate sorting for the
edge list E, which also represents the neighborhoods for all vertices. These lines
have time complexity O(m logm).

Lines 3 and 4 iterate through all edges on the graph. The condition η(u) > η(v)
in line 4 ensures that edges do not get repeated. Time complexity is O(m) for those.

Lines 6 to 12 compute the intersection N+(u) ∩ N+(v), explained later. The
intersection’s matches output triangles (Line 10). The time complexity for this
internal loop is O(

√
m) as Lemma 2 ensures.



18

Thus, the final complexity of the compact-forward algorithm is O(m
√
m) =

O(m
3
2 ).

2.3.2 External Memory Solutions

The main memory solutions for triangle problems are not prepared for dealing
with massive graphs. Until now there was only one algorithm I/O-efficient for listing
triangles. It was proposed by Roman Dementiev in his doctoral thesis [8] and we
reproduce it in Algorithm 4.

Algorithm 4: Dementiev’s External memory vertex-iterator [8]

Input: An adjacency list E of G, assuming that
∀v, u ∈ V : (v, u) ∈ E =⇒ (u, v) ∈ E; A value k as the maximum
size of queries list

1 create empty lists D, F , L, N , Q, R
2 sort E lexicographically
3 compute degree list D = [(v, d(v)), ...] based on E
4 sort D by d(v)
5 for i ∈ {0, 1, ..., n− 1} do
6 let (v, d(v)) be the iTh element in D
7 append (v, i) to R

8 sort R lexicographically
9 let R be [(v, p(v)), ...]

10 scan E and R producing F = [(p(v), v, u), ...]
11 sort F by u
12 scan F and R producing F = [(p(v), p(u), v, u), ...]
13 sort F by p(v), p(u)
14 c = −1
15 foreach (p(v), p(u), v, u) ∈ F do
16 if p(v) < p(u) then
17 if p(v) 6= c then
18 c = p(v)
19 N = [p(u)]

20 else
21 foreach w ∈ N do
22 append (w, p(u), v) to Q
23 if Q is longer than km then
24 sort Q lexicographically
25 foreach (w, p(u), v) ∈ Q do
26 if (w, p(u)) ∈ E then output triangle {w, p(u), v}
27 clear Q

28 append p(u) to N

Dementiev’s algorithm is based on vertex-iterator. However, vertex-iterator re-
quires an adjacency matrix of the graph such that the adjacency test can be made
in O(1) (line 4 of Algorithm 1). To avoid the adjacency matrix, Dementiev’s uses
an edge list E and the adjacency tests, or queries, are buffered in batches of size km



19

(where k is some constant; e.g. Dementiev uses k = 4 [7]). The buffer is important
so the queries can be checked with only one scan of E per batch. This is more effi-
cient than full random access, that would be required if no buffer were used. Thus,
the final I/O complexity can be reduced.

Besides the buffered approach, Dementiev observes in [8] that the number of
edge queries can be reduced heuristically if the nodes are processed in order of
increasing degrees. Then, while examining the neighbors of a vertex v, a query
is made only for neighbors u and w if d(v) < d(u) < d(w). This heuristic is
implemented I/O-efficiently by using an injective mapping function, built with scans
and sorts, represented by lines 1 to 13 in Algorithm 4.

Dementiev assumed that the adjacency list of a vertex, represented by N in
Algorithm 4, must fit in main memory. This makes Algorithm 4 as a semi-external
memory algorithm. However, the list can be implemented with an external memory
structure, to obtain an external memory algorithm.



20

3 EXTERNAL MEMORY TRIANGLES LISTING

In this chapter we present our main contributions: an analysis of Dementiev’s
external memory vertex-iterator in Section 3.1; and a new external memory algo-
rithm for listing triangles in Section 3.2, including a discussion of its I/O complexity
and how its performance can be improved.

3.1 External Memory Vertex-Iterator Analysis

We first analyze the Dementiev’s external memory vertex-iterator (Algorithm 4)
without answering queries, i.e., ignoring lines 23 to 27.

Lemma 3. If a single adjacency list fits in main memory, and without answering
queries, the external memory vertex-iterator in lines 15 to 28 has worst case I/O
complexity

Θ
(

Output
(∑
v∈V

d(v)2
))
⊆ Θ(Output(m∆)) ⊆ Θ(Output(mn)) ⊆ Θ(Output(n3)).

Proof. The upper limits follow from the observation that the loop in lines 21 to 27 is
limited by d(v) and is executed at most d(v) times for a given vertex v and the fact
that d(v) ≤ ∆ ≤ n and m ≤ n2. This way, there are at most

∑
v∈V d(v)2 queries

that are output to buffer Q. The case of a clique of size n shows all the upper limits
are tight, since each iteration of the loop outputs a triangle.

Theorem 2. The worst case I/O complexity of Algorithm 4 is

O

(∑
v∈V d(v)2

m
Sort(m)

)
.

Proof. Dementiev’s implementation assumes that the adjacency list fits into main
memory. If it does not, we output and scan at most another d(v)2 items per vertex
v, for an additional total cost of O(Scan(

∑
v∈V d(v)2)), which is already dominated

by the cost without answering queries.

As observed in Lemma 3, there are at most
∑

v∈V d(v)2 queries to answer. These
queries are processed in batches of size km (line 23). Each batch requires a sort-
ing of the list of queries (O(Sort(km)) followed by a parallel scan of the edge list
(O(Scan(m))) and the list of queries (O(Scan(km))). Thus, answering those queries



21

in batches of size km costs

Θ

(∑
v∈V d(v)2

km

(
Sort(km) + Scan(km)

))
⊆

Θ

(∑
v∈V d(v)2

km
Sort(km) + Scan

(∑
v∈V

d(v)2
))
⊆

O

(∑
v∈V d(v)2

m
Sort(m)

)
(3.1)

The pre-processing in lines 1 to 13 costs O(Sort(m)). The output cost observed
by Lemma 3 is overlapped by the Scan cost in Equation 3.1. The cost for answering
queries yields the total cost claimed above.

As noted previously in Section 2.3.2, Dementiev proposed an heuristic to reduce
the number of edge queries: his algorithm can be improved querying only vertices
of higher degree. This improvement is made by replacing line 22 in Algorithm 4 by

if p(v) < w ∧ p(v) < p(u) then append (w, p(u), v) to Q

With an improved implementation, one can skip the low-index w’s. In this case,
the output complexity reduces to

O
(∑
v∈V

d+(v)2
)
≤ O

(√
m
∑
v∈V

d+(v)
)
≤ O(m

√
m) = O(m

3
2 )

where d+(v) represents the number of neighbors of v with higher or equal degree
than itself. With this observation, we can state the following corollary.

Corollary 1. Based on Theorem 2, the worst case I/O complexity of Algorithm 4
with the above alteration is

O
(
m

3
2 Sort(m)

)
.

3.2 External Memory Compact-Forward

Our approach adapts the compact-forward algorithm for listing triangles in exter-
nal memory. We choose compact-forward because it does not depend on adjacency
matrices, as vertex-iterator does; or adjacency arrays for each vertex, as forward is
based. Although it requires an offset array for locating the neighbors of a vertex,
since we use an edge list for the graph representation. The proposal is described in
Algorithm 5.

In lines 3 to 5, a new list F of edges with duplicate edges is built. Each element
has a special structure, a pair of pairs, because it will later be altered with new
indices which will guide the proper sorting of the list.

Line 6 is a notation to help our explanation, in which we name each edge (or
element of F ) by a source vertex v, that has a mapped index m(v), to a target
vertex u, that has a mapped index m(u). The mapped indices are defined later, in
lines 10 to 13, and set in lines 15 and 16.



22

Algorithm 5: External Memory Compact-Forward

Input: list of edges E of G

1 create empty lists O, D and F
2 B = a buffer
3 foreach (v, u) ∈ E do
4 append ((v, v), (u, u)) to F
5 append ((u, u), (v, v)) to F

6 let F be [((v,m(v)), (u,m(u))), ...]
7 sort F by v and u lexicographically
8 compute degree list D = [(v, d(v)), ...] based on F
9 sort D by d(v) decreasingly

10 for i ∈ {0, 1, ..., n− 1} do
11 let (v, d(v)) be the iTh element in D
12 set O[i] with O[i− 1] + d(v)
13 set (v, d(v)) in D with (v, i)

14 sort D by v lexicographically
15 set all m(v) in F with i where (v, i) ∈ D
16 set all m(u) in F with i where (u, i) ∈ D
17 sort F by m(v) and m(u) lexicographically
18 foreach ((v,m(v)), (u,m(u))) ∈ F do
19 if m(v) < m(u) then
20 insert query ((v,m(v)), (u,m(u))) in B
21 if |B| ≥ k then
22 sort B appropriately
23 foreach ((v,m(v)), (u,m(u))) ∈ B do
24 access neighbors of v with F [O[m(v)]]
25 access neighbors of u with F [O[m(u)]]
26 let v′ be the first neighbor of v, and u′ the one of u
27 let m(v′) be the mapped index of v′, and m(u′) the one of u′

28 while there remain untreated neighbors of u and v
∧ m(u′) < m(v) ∧m(v′) < m(v) do

29 if m(v′) < m(u′) then set v′ to the next neighbor of v
30 else if m(v′) > m(u′) then set u′ to the next neighbor of u
31 else
32 output triangle (u, v, u′)
33 set v′ to the next neighbor of v
34 set u′ to the next neighbor of u



23

Line 8 computes the degree of each node, iterating through F , and stores it
in a pair (v, d(v)). This information is used to sort the vertices by non-increasing
degrees. This processing order is guaranteed with lines 9 to 17.

Lines 18 to 34 count the triangles. They are very similar to Latapy’s compact-
forward (Algorithm 3).

The lines 18 to 20 iterate over all not repeated edges on the graph and insert
them in a buffer B. When the buffer is full (line 21), i.e., when its size reaches a
value k, the queries holded by it get processed.

The processing order of the buffer’s queries is defined by the sorting applied in
line 22. The appropriate sorting method will be discussed in Section 3.2.2. Let us
imagine that there is no sorting for now.

The neighborhood of v and u is accessed with lines 24 and 25, respectively. The
random access of F is helped by an offset list O that keep track of the position of
the first neighbors for all vertices, thus |O| = n.

Finally, the intersection of the neighbors of u and v, as explained for Algorithm 3,
is made with lines 28 to 34 in Algorithm 5.

The IO complexity of Algorithm 5 is established with Theorem 3.

Theorem 3. Algorithm 5 lists all triangles in O(Scan(m
3
2 ))

Proof. The I/O complexity of the lines 1 to 17 is O(Sort(m)). Line 18 starts an
iteration over all edges in F (O(Scan(m))). By Theorem 1, the loop of lines 28 to 34
has time complexity O(

√
m), establishing an I/O complexity of O(Scan(

√
m)) since

each loop iteration executes only a constant number of I/O operations. Random
access of the offset list O has I/O complexity O(1). Thus, it does not alter the
algorithm’s complexity. In the worst case, it will perform one operation for each edge,
which is already taken into account for the loop in line 18. With this, lines 18 to 34
and EMCF algorithm I/O complexity is

O(Scan(m)Scan(
√
m)) ⊆ O(Scan(m

3
2 ))

3.2.1 I/O Costs

In this section we discuss the source of I/Os in Algorithm 5 based on observations
of our implementation. These observations were important to propose a performance
optimization that will be explained in this and Section 3.2.2. In this section we will
introduce the lines of the algorithm that may produce I/Os. This will require some
assumptions so we can isolate those lines and will lead to the conclusion that a
specific processing order of the edges would reduce those I/Os.

With an implementation of the algorithm one can find out that the number of
input and outputs depends on the block size of the main data structure and how
blocks are managed in main memory.

The edge list F in Algorithm 5 is implemented as an STXXL vector. Throughout
this and next sections, we assume the block size for F to 64KiB; page size to 4,
leading to a 256KiB page; the number of pages depends of the available main memory
space; and the pager is the default one, LRU.

Since the edge list F requires four integers per page and each page has 256KiB,
with 32 bits integers, 16,384 edges can be stored within it. If the maximum degree



24

of a graph is lower than this, all edges adjacent to a vertex can be stored in a single
page. Therefore at most two pages will be loaded if an iteration through its edges
is required. Let us suppose that pages are not shared by the edges of two vertices.
Under this assumption, lines 28 to 34 does not make any input or output if we
consider that we do not output triangles but only count them. Therefore, the lines
that can do I/Os are 18, in u, mu, v and mv assignment; 24 or 25. The offset
structure O is an STXXL vector, but let us assume from now on that it does not
do any I/O, i.e, it fits in main memory.

Supposing that the buffer B from Algorithm 5 has no effect (for example, if
its size is one), line 24 does not make any I/O because the page that holds the
neighbors of v was already loaded in main memory by line 18. However, the access
to neighbors of u (line 25) almost always loads a page. This happens because of the
forward behavior of the algorithm. For example, imagine a program that has some
limited main memory space available; in this space, the program loads a maximum of
1,000 pages at once; supposing that for some graph, a vertex vi has 2,000 neighbors
and all of them are in different pages; even if vi+1, the next analyzed vertex, had the
same neighbors of vi, all pages would be loaded again. In the example, this happens
because the pages 1, ..., 1000, loaded by vi, would be replaced at all by 1001, ...2000,
also loaded by vi, and then loaded again through vi+1 by the same motive.

If buffer size is more than one and supposing that main memory is clean, i.e.
no pages were previously loaded; when answering buffer’s queries, the access of
neighbors of v and u (lines 24 and 25) are the only places that an I/O can happen.

These simplifications lead to a more precise definition of the I/O problem: each
edge (u, v) in B has a cost of cuv ∈ {0, 1, 2} which represents the number of pages
that is needed to be loaded. The real value of cuv depends on the state of the main
memory, i.e., which pages are already loaded. The cost for the edges in a buffer is
C =

∑
(u,v)∈B cuv. A graph would be split in r buffers, since the number of generated

queries appended to the buffer could be greater than its size. Thus, for the whole
graph, the cost is

CG =
∑

i∈{1,..,k}

Ci.

If the buffer is not sorted, the use of a buffer has no effect either, because the same
problem of page replacements will happen. Therefore, to minimize IO complexity,
we have to find a permutation of edges which minimizes CG. This optimization is
done through an appropriately sorting of B.

3.2.2 Sorting the buffer

In this section we will exemplify how I/Os can be reduced when a sorting is
applied to the buffer from Algorithm 5. A bipartite graph will be used as example
because it will help the understanding about how data replacement is made between
main and external memory. We will use the concept of page, seen in Section 2.2.1,
to explain this replacements. The observations will be the basis for a proposal of
sorting algorithm.

Keep the assumption from Section 3.2.1 that all adjacent edges of a vertex fits
in a page and pages are not shared by the edges of two different vertices.

Imagine that one uses, as input of the Algorithm 5, a bipartite graph (Figure 3.1).
Obviously, the number of triangles in it is zero. However, vertices may represent



25

p4

DDDDDDDDDDDDDDDDDD

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV p5

�������������

2222222222222

MMMMMMMMMMMMMMMMMMMMMMMMM p6

DDDDDDDDDDDDDDDDDD

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR p7

qqqqqqqqqqqqqqqqqqqqqqqqq

�������������
p8

zzzzzzzzzzzzzzzzzz
p9

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj p10

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh p11

ffffffffffffffffffffffffffffffffffffffffffffffffffffffff

p0 p1 p2 p3

Figure 3.1: A bipartite graph

p9 p4 p8 p3

tt

�����
p7 p1

@@���

��>>>>>>>>

��

++WWWWWWWWWWWW

22fffffffffffffff p6

p5 p11 p7 p5

p4 p10 p5 p2

��>>>

77pppppp

JJ

p0

@@���

II

KK

MM

00

11

p6 p4

slot

OO

time
//

Figure 3.2: Page loading scheme. Each page loaded more than once is represented
the same amount of times. There are only 5 slots in main memory for loading
pages. Arcs represent the processed edges: naturally, edges have two vertices; since
the vertices represents pages, two pages can be loaded for an edge. A requested
source vertex or page points to a target page. 18 page loads are made in total.
Observe that edges pointing to a page that is back in time of its source indicate
reused pages.

pages (because its adjacent edges are not in different pages) and, so, edges repre-
sents the relations between pages. This is why the bipartite graph is interesting
to illustrate the sorting. Since ∀u ∈ V1 : u /∈ V2, there is this direct relation be-
tween the graph and the external memory structure. When one wants to access the
neighborhood of a vertex, it means that only one page will be loaded.

Now, suppose that one can load only a maximum of 5 pages at once, i.e., the
main memory has 5 slots for pages. Following Algorithm 5, some of the pages will be
loaded more than once because a page can be source and target of multiple vertices.
What in fact happens is shown in Figure 3.2. Each reloaded page is represented as
a duplicated vertex.

The edges of the example graph are processed at the usual way. Some pages
are loaded a lot and 18 page loads are made, as shown in Figure 3.2. This can be
improved if the edges are processed in a different order. For example, Figure 3.3
shows the page load scheme for one possible permutation of the edges. It requires
only 14 page loads.

The improvement is made using a sorting heuristic, defined by Algorithm 6. It
groups target pages that can fit in memory and permits the iteration of all edges
related to them but also grouping source pages secondarily. Everything related to
the sorting is done in main memory so no I/O is necessary. In line 11, q − 2 is the
divisor because, if there are q slots in main memory, the iteration through the sorted
buffer edges will load the page for a source vertex and q−2 pages for target vertices.
When a new source comes up, a free slot will be replaced by its page. If it was used
q − 1 in line 11, for example, potentially a new page would replace a target page
and this is not the desired behavior.



26

p6 p8

p1

qq

�����

@@���
p3

oo

ggNNNNNN
p1

pp

@@���

p5 p0

��......
''NNNNNN

$$

))p4 p9 p11

p0

@@���

11

p2

kkWWWWWWWWWWWW

ddIIIIIIIIII

SS'''''''''''''
p7 p10

slot

OO

time
//

Figure 3.3: Page loading scheme after sorting the buffer. 14 page loads are made.

Algorithm 6: Sort Buffer

Input: The list of edges of buffer B; The offsets O from Algorithm 5

1 P = [ ]
2 A = [ ]
3 foreach ((u,mu), (v,mv)) ∈ B do
4 p = the page of v identified through mv and O
5 insert p in P
6 insert (p, (u,mu), (v,mv)) in A

7 sort P lexicographically and remove duplicates
8 let ip be the index of page p ∈ P
9 let q be the number of page slots in main memory

10 foreach (p, (u,mu), (v,mv)) ∈ A do
11 update p with bip/(q − 2)c
12 sort A lexicographically
13 map A to B, dropping the first element of A

Since Algorithm 6 is an heuristic, there is no guarantee that the result will be
improved. In fact, it can be worse than running the algorithm with no special
sorting. For example, the proposed algorithm is based on the assumption that the
buffer size is a lot smaller than the total number of edges. With this, the number of
queries will be small enough so only a few number of different source vertices will
be inside it and the number of neighbors is great enough so they cover many pages
of the graph. Thus, there are potentially more reuse of the target pages than the
source ones. This is very common for most graphs. Although, if there is a graph
that all target vertices do not share source vertices, the edges could be split in such
a way that source pages would be loaded several times, increasing the total number
of I/Os.

One can think in another heuristic that groups pages most frequently used. But,
experimental tests show results a bit worst than the one from Algorithm 6.

The optimal sorting should be the one that minimizes the cost CG, described pre-
viously. Unfortunately it is hard to define the correct order because of the dynamic
cost of the edges.



27

4 EXPERIMENTAL RESULTS

In this chapter we will expose some experimental results based on the imple-
mentation of our algorithm, external memory compact-forward (EMCF). We com-
pared the results with the ones obtained from Dementiev’s external memory vertex-
iterator (EMVI) implementation [7] and Latapy’s compact-forward (CF) [11]. Al-
though the later is a main memory algorithm, it is our baseline for time tests.

4.1 Dataset

The dataset used in the experiments is a subset of Latapy’s [12, 14]. The graphs
represent real situations:

• ip [13] — nodes are IP addresses with a link between two addresses if the
router on which the measurement is conducted routed a packet from one of
them to the other.

• notre-dame [13] — a graph in which nodes are the web pages at the university
of Notre-Dame, with links between them.

• actor-2002 — the nodes are movie actors found in IMDB, with a link between
two actors if they appear in a same movie.

• p2p [13] — nodes are the users of an eDonkey server, and two nodes are linked
if they exchanged a file during the measurement

• uk-2005 [13] — graph provided by the WebGraph project [5, 4]. Nodes are
pages in the .uk domain and edges are links between them.

In Table 4.1 is shown some graph properties for each instance. The number of
triangles were counted by our algorithm and compared to the result of Dementiev’s.

4.2 Results

The results that will be presented in this section are structured as follows. We
will show results for a set of tests for EMCF with different memory configurations.
This will expose the performance impact on the use of a buffer. Next, we will show
the results for CF and EMVI so we can compare them with the best results of
EMCF.

In this first set of tests we experimented EMCF with different buffer and block
size configurations. EMCF1 represents the tests where buffer size is one and block



28

Table 4.1: The instances of graphs used at the experiments and some of their prop-
erties.

Instance name Vertices Edges Max Degree Triangles

ip 467,273 1,744,214 81,756 22,197,777
notre-dame 701,654 1,935,518 5,331 5,334,389
actor-2002 382,220 15,038,083 3,956 346,813,199
p2p 6,235,399 159,870,973 15,420 4,350,587,128
uk-2005 39,459,925 822,487,051 3,984,658 21,860,421,554

Table 4.2: Time results for EMCF with different buffer and block size configurations.
Preproc. is a shortening for preprocessing and represents the time of processing
lines 1 to 17 in Algorithm 5.

EMCF1 EMCF2 EMCF3

Instance Preproc. Total Preproc. Total Preproc. Total

ip 6 s 10.1 s 6 s 10.5 s 6 s 10.5 s
notre-dame 7 s 7.5 s 7.1 s 8.8 s 6.9 s 8.5 s
actor-2002 1 min 7 s 2 min 1 s 1 min 8 s 2 min 7 s 1 min 7 s 2 min 4 s
p2p 26 min 8 days 19.6 hrs 17 min 1 hr 5 min 16 min 44 min
uk-2005 — — 7 hrs 8 min 17 hrs 25 min 7 hrs 6 min 9 hrs 25 min

size is 64KiB. In EMCF2, the buffer size corresponds to 10% of main memory’s
available space and block size is also 64KiB; In EMCF3, the buffer size corresponds
to 30% of main memory and block size is 2MiB. The time results are shown in
Table 4.2 and I/O results are in Table 4.3.

Tests of EMCF1 run in a Core 2 Q8200@2.33GHz with 4GB DDR2@800MHz
Dual Channel RAM and a SATA 7200rpm HD. Tests EMCF2 and EMCF3 run in
a Core i7 930@2.80GHz with 12GB DDR3@1333MHz Tripple Channel RAM and
a SATA 7200rpm HD. All three tests in this set had the main memory limited to
1.5GiB.

The exposed results are useful to analyze how a different processing order of
edges, produced through the sorting of the buffer, affects the performance of the
algorithm. EMCF1 took almost 9 days to get complete and transferred 20 TiB
of data. On the other hand, the increase of buffer size leads to an understanding
of the edges and optimization of the processing order. As the experiments show,
EMCF2 and EMCF3 reduce sensitively the amount of data transferred and, thus,
Algorithm 6 has been proved to be effective, at least with these instances.

Table 4.3: Transfer amount results for EMCF with different buffer and block size
configurations. Preproc. is a shortening for preprocessing and represents the transfer
during the processing of lines 1 to 17 in Algorithm 5.

EMCF1 EMCF2 EMCF3

Instance Preproc. Total Preproc. Total Preproc. Total

ip 0.5 GiB 0.5 GiB 0.5 GiB 0.5 GiB 0.5 GiB 0.5 GiB
notre-dame 0.5 GiB 0.5 GiB 0.5 GiB 0.5 GiB 0.5 GiB 0.5 GiB
actor-2002 5.1 GiB 5.1 GiB 5.1 GiB 5.1 GiB 5.1 GiB 5.1 GiB
p2p 82.7 GiB 21,317.0 GiB 77.9 GiB 139.3 GiB 78.2 GiB 116.2 GiB
uk-2005 — — 1,135.5 GiB 2,386.4 GiB 1,135.8 GiB 1,939.9 GiB



29

The next set of tests was to experiment Dementiev’s EMVI and compare the
results with EMCF’s, shown in Tables 4.2 and 4.3. EMVI run on the same machine
as EMCF3 and also got its main memory limited to 1.5GiB. The comparison is
represented through Table 4.4.

Table 4.4: Results for the comparison of Latapy’s main memory triangles list-
ing compact-forward (CF), our external memory compact-forward in its best con-
figuration for huge graphs (EMCF3) and Dementiev’s external memory vertex-
iterator (EMVI).

Time I/O

Instance CF EMCF3 EMVI EMCF3 EMVI

ip < 1 s 10.5 s 27.6 s 0.5 GiB 1.9 GiB
notre-dame < 1 s 8.5 s 7.9 s 0.5 GiB 0.5 GiB
actor-2002 14 s 2 min 4 s 4 min 36 s 5.1 GiB 20.5 GiB
p2p 6 min 16 s 44 min 2 hrs 20 min 116.2 GiB 467.7 GiB
uk-2005 5 min 33 s 9 hrs 25 min 6 hrs 9 min 1,939.9 GiB 1,296.8 GiB

The results of EMCF were, except for the graph uk-2005, best than EMVI.
However, Dementiev’s EMVI had less I/Os than EMCF in uk-2005. Although EMVI
has a worst case I/O complexity greater than EMCF, we were not capable to keep
the performance with this relation. The best explanation for why this happens
comes from the analysis of EMCF. With no buffer, the algorithm almost always
gets in worst case. This happens because of the random access in edge list while a
neighborhood is accessed. The buffer was then introduced to rearrange the edges
and reduce the I/Os produced. Despite the fact that the buffer is effective, we
still do not have the knowledge about a better sorting or even the optimum sorting
method. Therefore, for now, the average complexity for EMVI is better than EMCF
for those instances.



30

5 CONCLUSIONS

In this thesis, we analyzed some of the existent algorithms for triangles listing
in main memory and also the only one in external memory. Our main contributions
were the following ones:

• A better analysis of external memory vertex-iterator (EMVI) algorithm for
triangles listing proposed by Roman Dementiev [8]. We concluded that its
worst case I/O complexity is

O

(∑
v∈V d(v)2

m
Sort(m)

)
.

We also explained an optimization for evaluating only queries with higher de-
gree neighbors and this leads to the worst case I/O complexity O(m

3
2 Sort(m)).

• We proposed a new algorithm for listing triangles called external memory
compact-forward (EMCF) that has worst case I/O complexity O(Scan(m

3
2 )).

Some performance optimizations were also proposed and experimental tests
were run so we could compare it to Dementiev’s in practice.

Although the worst case I/O complexity of our algorithm is better than EMVI,
with an implementation we made experimental tests which were important to ob-
serve that our algorithm still require optimizations to get better performance in
practice that the Dementiev’s algorithm. The performance could be improved with
a different arrangement of the graph’s edges as noted in Section 3.2.1, but we still
do not have knowledge of how to produce the optimal arrangement yet.

The average performance of EMCF was understood to be related to the block
size of the external memory data structures and how the edges of the graph are
processed. This was proved to affect performance through the introduction of a
buffer that could rearrange the edges before they were processed. The buffer was
sorted with a proposed algorithm and tested in different configurations. However,
we still have some open questions about if there exists an optimal sorting and if it
can be constructed without affecting to much the time complexity.

Although the proposed algorithm does not have better performance in practice
than its predecessor, there is still margin for optimizations. The research of a bet-
ter sorting of the buffer is necessary for further improvements on external memory
compact-forward. We also observe that the research for solutions of the triangles
problems with external memory are not stagnate and new proposals may appear –
maybe using I/O efficient matrix multiplications [17].



31

REFERENCES

[1] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approx-
imating the frequency moments. Journal of Computer and System Sciences,
58:137–147, 1999.

[2] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length
cycles. Algorithmica, 17(3):209–223, March 1997.

[3] Lars Arge, Gerth Stølting Brodal, and Laura Toma. On external-memory MST,
SSSP and multi-way planar graph separation. In 7th Scandinavian Workshop
on Algorithm Theory, volume 1851 of Lecture Notes in Computer Science, pages
433–447. Springer, 2000.

[4] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubi-
crawler: A scalable fully distributed web crawler. Software: Practice & Expe-
rience, 34(8):711–726, 2004.

[5] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression
techniques. In Proc. of the Thirteenth International World Wide Web Confer-
ence (WWW 2004), pages 595–601, Manhattan, USA, 2004. ACM Press.

[6] Luciana Salete Buriol, Gereon Frahling, Stefano Leonardi, Christian Sohler,
and Alberto Marchetti-Spaccamela. Counting triangles in data streams. In
25th ACM Symposium on Principles of Database Systems (PODS2006), pages
253–262, 2006.

[7] Roman Dementiev. Pipelined external memory triangle counting/listing al-
gorithm. http://algo2.iti.kit.edu/dementiev/tria/algorithm.shtml,
2005. [Online; accessed 3-December-2009].

[8] Roman Dementiev. Algorithm Engineering for Large Data Sets. PhD thesis,
Saarland University, 2006.

[9] Roman Dementiev, Lutz Kettner, and Peter Sanders. STXXL: Standard tem-
plate library for XXL data sets. In 13th Annual European Symposium on Al-
gorithms (ESA2005), pages 640–651, 2005.

[10] Roman Dementiev, Peter Sanders, Dominik Schultes, and Jop Sibeyn. Engi-
neering an external memory minimum spanning tree algorithm. In 3rd IFIP In-
ternational Conference on Theoretical Computer Science, pages 195–208, 2004.



32

[11] Matthieu Latapy. Triangle computations. http://www-rp.lip6.fr/~latapy/
Triangles. Source code; Accessed 16-March-2010.

[12] Matthieu Latapy. Main-memory triangle computations for very large (sparse
(power-law)) graphs. Theoretical Computer Science, 407(1-3):458–473, 2008.

[13] Clemence Magnien and Matthieu Latapy. Massive graphs dataset. http://

data.complexnetworks.fr/Diameter. Used as dataset for [14].

[14] Clémence Magnien, Matthieu Latapy, and Michel Habib. Fast computation
of empirically tight bounds for the diameter of massive graphs. Journal of
Experimental Algorithmics, 13:1.10–1.9, 2009.

[15] Ulrich Meyer. On dynamic breadth-first search in external-memory. In Proc.
25th Annual Symposium on Theoretical Aspects (STACS), pages 551–560, 2008.

[16] Ulrich Meyer, Peter Sanders, and Jop F. Sibeyn, editors. Algorithms for Mem-
ory Hierarchies – Advanced Lectures, volume 2625 of Lecture Notes in Computer
Science. Springer, 2003.

[17] Sraban Kumar Mohanty. I/O Efficient Algorithms for Matrix Computations.
PhD thesis, Indian Institute of Technology Guwahati, 2009.

[18] Harald Prokop. Cache-oblivious algorithms. PhD thesis, MIT, 1999.

[19] Thomas Schank and Dorothea Wagner. Finding, Counting and Listing All
Triangles in Large Graphs, an Experimental Study, volume 3503/2005 of Lecture
Notes in Computer Science, pages 606–609. Springer Berlin / Heidelberg, 2005.

[20] STXXL – Standard Template Library for Extra Large Data Sets. http://

stxxl.sourceforge.net.

[21] Charalampos E. Tsourakakis. Fast counting of triangles in large real networks
without counting: Algorithms and laws. In ICDM ’08: Proceedings of the
2008 Eighth IEEE International Conference on Data Mining, pages 608–617,
Washington, DC, USA, 2008. IEEE Computer Society.

[22] Jeffrey Scott Vitter. Algorithms and Data Structures for External Memory,
volume 2 of Foundations and Trends R© in Theoretical Computer Science. Now
Publishers, 2006.

[23] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. Algorithms for parallel mem-
ory I: Two-level memories. Algorithmica, 12(2–3):110–147, 1994.


