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ABSTRACT 
 

The objective of the present study was to evaluate the effect of lipopolysaccharide (LPS) administration 

on activation and apoptosis of primordial follicles. There was no difference in the total number of follicles 

as well as in the different types of follicles. Furthermore, the LPS challenge didn’t modulate the 

expression of genes related with ovarian reserve (HAM), oocyte survival (Survivin), activation rate (Pten, 

KIT, KITL1, KITL2, AKT1, SIRT1), and follicular abnormalities. Therefore, the LPS exposure with 24h 

interval had no effect on activation rate and primordial follicles abnormalities, and also had no effect on 

expression of anti-apoptotic genes and genes related with ovarian reserve, oocyte survival, activation rate, 

and primordial follicles abnormalities. 

 

Keywords: endotoxin, follicle, inflammation, oocyte, reproduction 

 

RESUMO 

 

O objetivo do presente estudo foi avaliar o efeito da administração de lipopolissacarídeo (LPS) na 

ativação e a apoptose de folículos primordiais. Dez novilhas saudáveis (Bos taurus taurus), com idade 

média de 14 meses, alojadas em sistema de confinamento e alimentadas com TMR, foram utilizadas neste 

experimento. Os animais foram distribuídos aleatoriamente em dois grupos: grupo LPS (LPS; n = 5), que 

recebeu duas injeções intravenosas de 0,5μg/kg de peso corporal de lipopolissacarídeo (Sigma Aldrich®) 

diluído em 2mL de solução salina (0,9% de NaCl), com intervalo de 24h; e grupo controle (CTR; n = 5), 

que recebeu duas injeções intravenosas de 2mL de solução salina (0,9% de NaCl), com intervalo de 24h. 

A primeira injeção de LPS foi realizada no d 1, e no d 5 os animais foram abatidos, os ovários foram 

pesados e as amostras dos ovários foram coletadas para avaliação histológica e molecular. Não houve 

diferença no número total de folículos, bem como nos diferentes tipos de folículos. Além disso, o desafio 

com LPS não modulou a expressão de genes relacionados à reserva ovariana (HAM), à sobrevivência 

oocitária (Survivin), à taxa de ativação (Pten, KIT, KITL1, KITL2, AKT1, SIRT1) e às anormalidades 

foliculares. Portanto, a exposição ao LPS com intervalo de 24h não teve efeito sobre a taxa de ativação e 

as anormalidades dos folículos primordiais, bem como não teve efeito sobre a expressão de genes 

antiapoptóticos e de genes relacionados com a reserva ovariana, a sobrevivência oocitária, a taxa de 

ativação e as anormalidades dos folículos primordiais. 
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INTRODUCTION 

 

The ovarian lifespan is determined by the 

number of oocytes at birth, as well as by the rate 

at which these oocytes will be depleted (Morita 

et al., 2000). The programmed cell death 

(apoptosis) is the main mechanism responsible 

for the age-related oocyte exhaustion and the 

relation between pro-survival and pro-apoptotic 

molecules is key for the follicles life cycle 

(Morita et al., 2000). Studies have shown the 

relation between ovarian reserve and fertility 

(Evans et al., 2010, 2012; Ireland et al., 2011). 

There is evidence that low follicular reserve is 

associated with impaired  fertility, reducing the 

conception rate and increasing calving-

conception interval (Evans et al., 2010;). 

 

Bromfield and Sheldon (2013) have shown that 

follicle reserve quality is influenced by 

inflammatory and infectious events. Regarding 

the dairy industry, calves are often exposed to 

cases of diarrhea and bronchopneumonia; and 

adult animals are exposed to mastitis, 

endometritis, and acidosis (Seegers et al., 2003; 

Gilbert et al., 2005; Haimerl and Heuwieser, 

2014; Pederzolli et al., 2018). In the beef 

industry, the major challenges for adult animals 

are bronchopneumonia and acidosis (Härtel et 

al., 2004; Pederzolli et al., 2018). These diseases 

are caused by bacteria, mainly Gram negative, 

which release lipopolysaccharide (LPS), one of 

the constituents of their outer membrane. LPS 

has the capacity to migrate to the blood, where it 

is recognized by membrane Toll-like receptor 4 

(TLR4) initiating an inflammatory response with 

the production of cytokines (Eckel and Ametaj, 

2016). Moreover, LPS can be transported to 

peripheral tissues such as the ovaries, inducing a 

localized inflammation and altering the 

development and endocrine function of antral 

follicles (Bromfield and Sheldon, 2011; Lavon et 

al., 2011). 

 

It is thought that endotoxins and inflammatory 

processes can lead to chronic effects, since the 

animals present impairment of the reproduction 

performance up to 60-80 days after the disease 

occurrence (Sheldon et al., 2009; Hertl et al., 

2010; Hudson et al., 2012). Bromfield and 

Sheldon (2013) demonstrated in an in vitro study 

that exposure of the bovine cortex to LPS 

increases the follicles’ activation rate. In this 

same work the authors evaluated the effects of 

LPS in vivo in rats, demonstrating a 3 time 

increase in the apoptosis of primary follicles and 

reduction of 1.2 times in the pool of primary 

follicles in animals exposed to LPS, which could 

lead to an early depletion of the follicular 

reserve. 

 

However, there are few in vivo studies conducted 

in cattle to evaluate the effects of LPS on the 

ovarian reserve. Thus, the hypothesis of our 

study is that exposing cows to LPS would create 

a greater activation and greater apoptosis rate in 

primary follicles. The objective of the present 

study was to assess the effect of LPS in vivo on 

the activation and apoptosis of primordial 

follicles and other follicle types in cows. 

 

MATERIALS AND METHODS 

 

The experiment was approved by the Animal 

Ethics and Experimentation Committee of the 

Federal University of Pelotas (no. 9364). Ten 

healthy heifers (Bos taurus taurus), averaging 14 

months old, housed in a confinement system, and 

fed a TMR were used in this experiment. All 

heifers were submitted to the same 

synchronization protocol. Estrous cycles were 

pre synchronized with administration of 25mg of 

prostaglandin (PGF2α) (i.m., Lutalyse®; Zoetis, 

São Paulo, Brasil) fourteen days prior to the 

synchronization protocol.  On day zero (D0), 

heifers received a controlled internal drug-

release insert impregnated with progesterone (1.9 

g, CIDR®, Zoetis®), 2mg of estradiol benzoate 

(Gonadiol, Zoetis®) i.m., and 25mg of PGF2α 

(Lutalyse®, Zoetis) I.M. The CIDR was removed 

on D5 (Cavalieri et al., 2018). Heifers were 

randomly assigned into two groups: LPS group 

(n = 5) which received two intravenous 

injections of 0.5μg/kg of BW of LPS (Sigma 

Aldrich®) diluted in 2 mL of saline solution 

(0,9% de NaCl) with 24h interval; and Control 

group (n = 5) which received two intravenous 

injections of 2mL of saline solution (0.9% de 

NaCl) with 24h interval. LPS dose and 

administration interval were chosen according to 

the lowest dose that induced an inflammatory 

response in bovine previously (Waldron et al., 

2003; Fernandes et al., 2019). The first LPS 

injection was performed on D1, and heifers were 

slaughtered on D5, when ovaries were weighted 

and samples from the ovaries were collected. For 

histological evaluations ovary samples were 

fixed in formalin. For gene expression, samples 
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were transferred to cryogenic tubes and 

following homogenization in 0.5mL of trizol 

(Invitrogen®, Carlsbad, CA, USA) samples were 

stored in liquid nitrogen.  

 

Ovaries were removed from formalin, 

dehydrated in alcohol solution, cleared with 

xylene, and embedded in Paraplast Plus® (Sigma 

Chemical Company®, St. Louis, MO, EUA). 

Embedded ovaries were then sectioned using a 5 

μm microtome (RM2245, Leica Biosystems, San 

Diego, CA, USA) and samples were collected 

every 120 histological sections, with cuts being 

made in the entirety of the ovary, according to 

methodology done by Driancourt et al., 1985. 

Microscope slides were dried in an oven at 56°C 

for 24 hours and stained with hematoxylin and 

eosin. Subsequently, ovary images were captured 

at 10 x magnification by a camera attached to the 

microscope (Nikon Eclipse E200, Nikon 

Corporation, Japan) using the Motic Image Plus 

2.0 software (Motic®, Hong Kong, China). 

 

To determine the population of follicles in each 

category, the correction factor used was the 

described by (Gougeon and Chainy, 1987) in the 

following formula Nt= No x St x Ts ⁄ So x Do. 

Where Nt: Estimated total number of follicles of 

each category; No: Number of follicles observed 

in the ovary; St: Total number of cuts made in 

the ovary; Ts: Thickness of the cut; So: Total 

number of cuts observed and Do: Mean core 

diameter do oocyte. To determine the diameter of 

the core of the oocyte, a horizontal and a vertical 

measurement was made. 

 

Preantral follicles were classified according to 

the developmental stage as primordial (one layer 

of flattened granulosa cells around the oocyte), 

transition (flattened and cuboidal granulosa cells 

around the oocyte), primary (one layer of 

cuboidal granulosa cells around the oocyte), or 

secondary (two or more layers of cuboidal 

granulosa cells around the oocyte) (Hulshof et 

al., 1994). Follicle degeneration was 

characterized by one or more of the following 

aspects: condensed oocyte nucleus, shrunken 

oocyte, pyknotic bodies in the granulosa cells, 

low cellular density, widespread disintegration of 

the granulosa cells (Driancourt et al., 1985, 

Silva-Santos et al., 2011). Only follicles in which 

the oocyte nucleus was visible in each 

histological section were counted, to avoid 

counting the same follicle repeatedly. 

 

Total RNA from the ovarian tissue was extracted 

using Trizol reagent (Invitrogen®) following the 

manufacturer's instructions. The RNA 

concentration was measured with a 

spectrophotometer (Nanodrop Lite, Thermo 

Fischer Scientific Inc., USA) and purity was 

assessed through the ratio of absorbance at 

260/280nm. Reverse transcription was conducted 

with 1 pg of total RNA in a reaction volume of 

20µL, using a commercial kit (iScript Synthesis 

kit, BIORAD®, Hercules, CA, USA) following 

the manufacturer's instructions. A thermal cycler 

was used following these cycling parameters: 

5°C for 5 min, 42°C for 20 min, and 95°C for 1 

min. 

 

The real-time polymerase chain reaction (PCR) 

was performed in a volume of 15 µL containing 

GoTaq reagent (GoTaq® qPCR Master Mix, 

Promega, Madison, WI, USA) in a thermal 

cycler StepOnePlus (Applied Biosystems, Foster 

City, CA, USA). Each reaction was performed in 

duplicates containing 4 µL of cDNA (20 ng), 

5µL of GoTaq, 0.75µL of each primer (5µM), 

and 4,5µL of ultrapure water. Forty-five cycles 

were conducted (95°C for 15 seg and 60 °C for 1 

min) and the last of each reaction was performed 

in a dissociation curve (Melting) to verify the 

amplification of a single PCR product. 

 

The genes H2A clustered histone 6 (H2AC6), 

18S ribosomal RNA (RN18S1), ubiquitously 

expressed prefoldin like chaperone (UXT), and 

glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) were used as endogenous reference 

and the target genes associated with primordial 

follicles activation were phosphatase and tensin 

homolog (PTEN), phosphoinositide-3-kinase 

regulatory subunit 1 (PIK3R1), proto-oncogene, 

receptor tyrosine kinase (KIT), KIT ligand 

(KITLG), KIT ligand 2 (KITL2), sirtuin 1 

(SIRT1) AKT serine/threonine kinase 1 (AKT1) 

anti-Mullerian hormone (AMH), mechanistic 

target of mammalian target of rapamycin 

(MTOR), and survivin (SURVIVIN) were. The 

primers sequences are described in Table 1. 
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Table 1. Genes evaluated from ovary samples of heifers challenged or not with LPS 

Gene Primer sequence 5´ → 3´ NCBI Code Reference 

H2AC6 F: GAGGAGCTGAACAAGCTGTTG NM_001205596.1 [55]  

 R: TTGTGGTGGCTCTCAGTCTTC 

RN18S1 F: CCTTCCGCGAGGATCCATTG NR_036642.1 [56]  

 R: CGCTCCCAAGATCCAACTAC 

UXT F: TGTGGCCCTTGGATGGATGGTT NM_001037471.2 [57] 

 R: GGTTGTCGCTGAGCTGAGCTG 

GAPDH F: GATTGTCAGCAATGCCTCCT NM_001034034.2 [56] 

 R: GGTCATAAGTCCCTCCACGA 

KIT F: ATCATGAAGACCTGCTGGGATGCT NM_001166484.1 [58]  

 R: GGGCTGCAGTTTGCTAAGTTGGAA 

KITL1 F: GTGTGATTTCCTCAACATCAAGTCC NM_174375.2 [58]  

 R: TGCTACTGCTGTCATTCCTAAGGG 

KITL2 F: 

AAGGGAAGGCCTCAAATTCCATTGAAGA 

NM_174375.2 [58] 

 R: AGCAAACCCGATCACAAGAGA 

AMH F: ACACCGGCAAGCTCCTCAT NM_173890.1 [59] 

 R: CACCATGTTTGGGACGTGG 

MTOR F: TCCTTGTCACGAGGCAACAA XM_002694043.6 This study 

 R: GGCGTATCAATTCTTGCAATGA 

AKT1 F: GATTCTTCGCCAGCATCGTG NM_173986.2 [60] 

 R: GGCCGTGAACTCCTCATCAA 

PTEN F: GCCACAAAGTGCCTCGTTTACC NM_001319898.1 [61] 

 R: AGAAGGCAACTCTGCCAAACAC 

SIRT1 F: CAACGGTTTCCATTCGTGTG NM_001192980.3 [62] 

 R: GTTCGAGGATCTGTGCCAAT   

PIK3R1 F: ACACAGCTGACGGGACCTTT NM_174575.1 [61] 

R: CCATATTTCCCATCTCGGTGA 

. 

The coefficient of variation was less than 5% for 

all the primer pairs used. Relative expression 

from real-time PCR was calculated from the 

equation 2A-B/2C-D (where A = Cycle 

Threshold (Ct) number for the gene of interest in 

the first control sample; B = Ct number for the 

gene of interest in the analyzed sample; C = Ct 

number for the housekeeping gene (geometric 

mean of genes H2AC6, RN18S1, UXT e 

GAPDH) in the first control sample; and D = Ct 

number for housekeeping gene in the analyzed 

sample). The first control was expressed as 1.00 

by this equation, and all other samples were 

calculated in relation to this value. Afterward, 

the results in the control group (N-AL) were 

averaged, and all other outputs were divided by 

the mean value of the relative expression in the 

control group to yield the fold change of the 

genes of interest expression compared to the 

control group (Masternak et al., 2005). 

Data relative to histological analysis and gene 

expression were analyzed with a t-test in the 

GraphPad Prism 7 (GraphPad Software Inc., La 

Jolla, CA, USA). Values of p <0.05 were 

considered significant. The abnormal, 

primordial, transition, primary follicles and total 

follicles did not present a normal distribution and 

were transformed into log10. 

 

RESULTS 

 

There was no difference in the total follicular 

population (Control: 70939±5662; LPS: 

95890±35024; P = 0,78), as well as in the 

different follicle stages (Table 2). 

 

Besides, the frequency of healthy follicles was 

51.52% in the control group and 40.62% in the 

LPS group (P=0.74). 

 

There was no difference in the expression of 

anti-apoptotic genes and genes related to ovarian 

reserve, oocyte survival, activation rate, and 

primordial follicles abnormalities (Figure 1; 

P>0,05). 
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Table 2. Total follicles according to phase from heifers challenged or not with LPS 

Group / Phase Control LPS       P-value 

Primordial 15872± 3.225 (15.83%) 16557± 6395 (16.07%) 0.92 

Transition  23916 ± 3786 (30.92%) 21285 ± 4461 (18.05%) 0.67 

Primary 4369 ± 1476 (3.70%) 6235 ± 1498 (5.53%) 0.40 

Secondary 1416± 441 (1.07%) 1292 ± 406 (0.96%) 0.84 

Abnormal primordial 7308 ± 1874(10.02%) 15042±6939 (18.51%) 0.31 

Abnormal transition 13236± 2339 (33.30%) 22245 ± 13755 (28.12%) 0.90 

Abnormal primary 3422 ± 977 (3.92%) 11067± 6426 (10.72%) 0.16 

Abnormal secondary 1400 ± 206 (1.24%) 2167 ± 595 (2.01%) 0.25 
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Figure 1. Gene expression related to follicular activation, ovarian reserve and anti-apoptotic in heifers 

which were challenged with LPS or not. 

 

DISCUSSION 

 

The binding of pathogen-associated molecular 

patterns (PAMPs) or LPS to toll-like receptors 

(TLRs) stimulates the production of cytokines 

such as interleukin-1 α and β (IL1-α and β), 

interleukin-6 (IL6), interleukin-8 (IL-8) and 

tumor necrosis factor alpha (TNF-α) in the blood 

(Beutler, 2009; Takeuchi and Akira, 2010) and 

also locally in the ovary, which seem to act by 

increasing the rate of atresia and follicular 

activation (Bromfield and Sheldon, 2013; Passos 

et al., 2016). Based on this hypothesis, we 

analyzed genes involved in the process of 

primordial follicle activation (KIT, KITL1, 

KITL2, AKT1, SIRT1) and inhibition of 

activation (PTEN) (, Chen et al., 2020, Zhao et 

al., 2021), as well as a gene linked to ovarian 

reserve (HAM) and an anti-apoptotic gene 

(Survivin) (Chen et al., 2020). 
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In our study, the challenge with LPS did not alter 

the expression of genes related to abnormality 

and follicular activation, nor did it change the 

percentage of atretic follicles, and the rate of 

follicular activation evaluated histologically. The 

results of HAM expression corroborate the 

results found in the histological evaluation, since 

this hormone is secreted from granulosa cells of 

the ovarian follicles and has been studied as an 

endocrine marker capable of estimating the 

ovarian reserve (Ireland and Mossa, 2018). 

 

The activation of primordial follicles is 

morphologically characterized by the transition 

from flattened to cuboidal granulosa cells, 

independent of gonadotropins and involved in 

pathways such as PI3K-AKT-mTORC (Adhikari 

et al., 2010; Li et al., 2010, Maidarti et al., 

2020). This process requires accumulation of 

phosphatidylinositol-triphosphate (PIP3), which 

causes PI3K stimulation and promotes Akt 

phosphorylation, resulting in the induction of 

oocyte growth and meiotic maturation (Hoshino 

et al., 2004; Kalous et al., 2006; Wang et al., 

2016). The stimulation of mTORC promotes 

protein synthesis, lipid and nucleotide biogenesis 

(Guo and Yu, 2019), and the super activation of 

the PI3K/Akt/mTOR signaling pathway has been 

linked to premature activation of primordial 

follicles, leading to early follicular atresia 

(McLaughlin and Sobinoff et al., 2011). Growth 

factors KIT, KITL1 and KTL2 also participate in 

the activation pathway, which stimulate the 

AKT/PI3K pathway (Jones and Pepling, 2013; 

Cavalcante et al., 2016. On the other hand, the 

PTEN protein, which is a lipid phosphatase, acts 

by inhibiting the activation of this pathway), by 

transforming PIP3 into PIP2, keeping the 

follicles inactive and reducing cell proliferation 

(Wang et al., 2016, Takeuchi et al., 2019, 

Maidarti et al., 2019). The specific deletion of 

PTEN from oocytes in the primordial stage in 

mice, allows the accumulation of PIP3 to occur, 

which triggers the global activation of all these 

follicles (Reddy et al., 2008). 

 

Differently from our results, Bromfield and 

Sheldon (2013) have observed that an in vitro 

bovine ovarian cortex culture containing 

10µg/mL of LPS for 6 days, induced a reduced 

expression of PTEN, associated with greater 

follicular activation. In the same study, there was 

a higher percentage of follicles that transitioned 

from primordial to the primary phase (56% 

higher in the group exposed to LPS when 

compared to the control group), also there was a 

greater number of follicles in the group 

challenged with LPS that transitioned from the 

primary phase to the secondary phase (17% 

higher).  

 

Similarly, LPS exposure caused a reduction in 

follicular reserve in mice (Wu et al., 2011; 

Sominsky et al., 2012). Fuller et al. (2017), mice 

exposed to LPS 3 or 5 days after birth, generated 

a reduction in the number of primordial follicles 

in animals exposed to LPS on day 5 and a greater 

proportion of activated primordial follicles in 

both animals exposed on day 3 and day 5. 

 

In addition to follicular activation, previous 

studies have shown higher occurrence of 

apoptosis in animals exposed to LPS. Bromfield 

and Sheldon (2013) have conducted an in vivo 

challenge with LPS in mice and have found an 

increase in follicular atresia, going from 3% to 

9.8%, mediated by the inflammatory response, 

since TLR4 knockout mice did not show this 

increase. Follicular atresia is mediated by ligands 

such as TNF-α and interferon or by the 

mitochondrial pathway in which members of the 

Bcl-2 family play an important role (Hussein et 

al., 2003, 2005). It has been demonstrated that 

TNF-α can induce a decrease in the number of 

primordial oocytes and follicles by inducing 

apoptosis (Morrison, L.J.; Marcinkiewicz, J.L, 

2002, Silva et al., 2020).  

 

The difference in our results, considering studies 

already carried out in vitro with ovaries of cattle 

and mice and in vivo with mice, is probably due 

to the type of LPS exposure and the dose used. In 

in vitro studies there is constant exposure of 

follicles to LPS and inflammatory cytokines, and 

in addition, the doses used are higher than those 

that occur naturally, since in in vivo studies, the 

organism uses mechanisms to eliminate these 

endotoxins, such as the detoxification that occurs 

in the liver (Jirillo et al., 2002). The dose 

recommended in our study was based on 

previous research (Waldron et al., 2003) that 

showed that 0.5µg/kg can promote the activation 

of defense cells and a systemic response. 

 

Moreover, bovines usually have a large 

individual variation in the total follicular 

population (Ericksson, 1966; Silva-Santos, 

2011), which was also observed in our study, and 
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it is another factor that interferes in the results. 

Silva-Santos (2011) has demonstrated that 

animals from 0 to 24 months had a variation 

from 0 to 700,000 germ cells. In addition, the 

total number of follicles remains similar until 

around 4-6 months, progressively decreasing 

after this period (Silva-Santos, 2011). This 

variation is already widely reported and related 

to the lower or higher performance of animals in 

reproductive biotechnology protocols (Ireland, J., 

Mossa, F., 2018), and several studies seek to find 

markers that indirectly indicate the germ cell 

population. 

 

In dairy and beef cattle, exposures to bacteria are 

common throughout the life of the animals, and 

from our study we observed that acute exposures 

with short duration do not influence the rate of 

activation and follicular abnormality. However, 

it is worth mentioning that in infectious and 

metabolic conditions, exposure to these 

endotoxins occurs for a longer period, varying 

according to the beginning of the treatment. 

Therefore, further studies are needed to 

understand the damage caused by LPS and 

inflammatory cytokines in the bovine ovarian 

reserve. 

 

CONCLUSION 

 

The exposure of beef heifers to LPS in a 24 hour 

interval was not capable of altering the 

primordial follicles rate of activation and 

abnormality, as well as the expression of anti-

apoptotic genes and genes related to the 

activation and inhibition of primordial follicles. 
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