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Abstract: Ralstonia solanacearum is the causal agent of bacterial wilt, one of the most destructive
diseases of solanaceous plants, affecting staple crops worldwide. The bacterium survives in water,
soil, and other reservoirs, and is difficult to control. In this sense, the use of three specific lytic
R. solanacearum bacteriophages was recently patented for bacterial wilt biocontrol in environmental
water and in plants. To optimize their applications, the phages and the bacterium need to be
accurately monitored and quantified, which is laborious and time-consuming with biological methods.
In this work, primers and TaqMan probes were designed, and duplex and multiplex real-time
quantitative PCR (qPCR) protocols were developed and optimized for the simultaneous quantification
of R. solanacearum and their phages. The quantification range was established from 108 to 10 PFU/mL
for the phages and from 108 to 102 CFU/mL for R. solanacearum. Additionally, the multiplex qPCR
protocol was validated for the detection and quantification of the phages with a limit ranging from
102 targets/mL in water and plant extracts to 103 targets/g in soil, and the target bacterium with a
limit ranging from 103 targets/mL in water and plant extracts to 104 targets/g in soil, using direct
methods of sample preparation.

Keywords: bacterial wilt; phage; identification; enumeration; duplex; multiplex

1. Introduction

One of the most significant plant pathogens on a global scale is the bacterial wilt
species Ralstonia solanacearum [1,2], as it produces disease in solanaceous crops basic for
human nutrition such as potato and tomato, and ornamentals such as geranium [3–5].
The pathogen is soil- and water-borne, enters the plant through the roots, and infects
vascular tissues, producing brown rot in potato tubers and lethal wilting in the plant [3,6,7].
Infection is related to many factors; among them, an unusually high number of virulence
and pathogenicity determinants [8–11]. R. solanacearum is originally from tropical and
subtropical areas but it can also survive in temperate climates. It is a quarantine bacterium
in the European Union (EU), the USA, and Canada, and a Select Agent in the USA [12–14].
Following epidemic outbreaks, R. solanacearum can persist for variable periods in water-
courses, soils, and other reservoirs in the absence of the host [3,4,15–18], and despite the
exposure to environmental stress, without losing virulence [17,18]. The endurance of the
bacterium points out potential for dissemination and colonization of new geographical
and climatic areas. In environmental water, R. solanacearum cells resuscitated after just a
favorable temperature upshift [18], which makes spread of the pathogen an ever-increasing
threat under global warming conditions.
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The presence of R. solanacearum in the environment constitutes a risk to sensitive crops,
most of which are irrigated. In fact, the origin of many bacterial wilt outbreaks has been
linked to contact with R. solanacearum-contaminated water [16,18,19], which is one of the
main pathways for the introduction of the pathogen to new areas. The great ability for
survival of R. solanacearum in aquatic habitats and the fact that water is an increasingly
scarce essential resource [20], together with the lack of effective and/or environmentally
friendly chemical control methods either in water or in the field, constitute a problem for
farmers and agricultural production of susceptible crops in affected areas. To overcome
this issue, and in agreement with the growing social awareness for a healthy environment
and a demand for safe food, the interest has been focused on alternative bacterial wilt
biological control methods [21,22]. In this sense, the use of lytic bacteriophages (phages)
has the advantage of specifically targeting the bacterial host cell, allowing for maintenance
of sustainable agroecosystems. In recent years, three phages with specific lytic activity
against R. solanacearum were isolated from environmental water from different locations
in Spain. They were characterized, named vRsoP-WF2, vRsoP-WM2, and vRsoP-WR2,
and their efficacy to biocontrol the pathogen populations in environmental water and
in planta was demonstrated for all of them and their combinations in laboratory assays,
and patented [23–27]. The three phages constituted the first European phages isolated
against R. solanacearum, and their genomic characterization allowed their classification in a
novel species of the genus Gyeongsanvirus within the Autographiviridae family, as well as
confirmation of their suitability as safe biocontrol agents [28]. Although first steps were
taken towards their conservation with a view to their commercialization [27], there are still
some unknown data concerning their applications in the field, especially when a mixture
of the phages is used, which require the precise monitoring and quantification of the three
phages and the target bacterium.

To date, the time course of phage–host dynamics in liquid medium is most frequently
monitored based on optical density measurements of the loss of turbidity from an initial
bacterial host suspension due to the lytic activity of a phage or a mixture of phages. To
link these optical density data to quantification of host and phage populations, parallel
counting on solid medium is usually performed by both direct plating and a standard
double-layer plating, respectively, for the host bacterium and the phage or phages, at each
sampling time [29–32]. This is laborious and time-consuming, and the efficiency mainly
depends on several factors, such as the type of plaque, the target bacterium, and the culture
medium [31]. Some other inconveniences consist of the difficulty to quantify bacterial hosts
and phages in very short periods, especially when different experimental conditions are
running simultaneously, and the inability to quantitatively differentiate each phage in a
mixture, as well as host and phages in non-sterile conditions, such as environmental water,
soil suspensions, or plant extracts. In contrast, real-time quantitative PCR (qPCR) has
proven to be an accurate, reproducible, rapid, simple, and useful alternative, allowing for
individual quantification of multiple bacteria and phages in mixed cultures [31–34]. With
respect to R. solanacearum, several real-time qPCR protocols have been described [35–41].
However, no real-time qPCR protocol has been developed so far for phages with specific
lytic activity against R. solanacearum. In this regard, in the present work, specific primers and
TaqMan probes have been designed to develop two real-time qPCR protocols: a duplex qPCR
for the simultaneous detection and quantification of the three patented R. solanacearum phages,
vRsoP-WF2, vRsoP-WM2, and vRsoP-WR2, and the target bacterium, and a multiplex qPCR
for detection of the three phages, the individual vRsoP-WR2 phage, and the target bacterium.
Additionally, the multiplex real-time qPCR protocol has been validated for the detection and
quantification of the three R. solanacearum phages and the target bacterium in water, soil, and
plant material, mimicking samples taken under field conditions.
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2. Materials and Methods
2.1. Bacterium, Phages, and Growth Conditions

The strain CFBP 4944 of R. solanacearum isolated from potatoes in Spain [19,26] was
the bacterial host in all phage assays. It was cultured on the general media casamino
acids peptone glucose (CPG) [42] or Luria Bertani (LB) [43], with 1.5% bacteriological
agar (CPGA or LBA), for 48 h at 28 ◦C. LB broth (LBB) was used for overnight cultures of
the bacterial strain at 28 ◦C with aeration by shaking at 120 rpm. R. solanacearum phages
vRsoP-WF2, vRsoP-WM2, and vRsoP-WR2, further characterized by Biosca et al. [28],
were used in this work. They were propagated on R. solanacearum cultures similarly to
Álvarez et al. [26], with minor modifications. Briefly, the host strain was grown in LBB
overnight at 28 ◦C and 120 rpm. Thereafter, the bacterial cell concentration was adjusted
to an OD600 nm = 0.5, equivalent to about 108 colony-forming units (CFU)/mL, using a
spectrophotometer (Thermo Scientific Genesys 20, Waltham, MA, USA). Afterwards, 0.1 mL
of 0.22 µm-filtered lysates were added to 5 mL of adjusted bacterial suspensions and the
mixture was incubated overnight at 28 ◦C with shaking at 120 rpm. Phage titers were
determined according to [27] by performing serial 10-fold dilutions of each phage lysate
(0.22 µm-filtered lysates) in SM buffer [44] and the double-layer agar method. Thus, 0.2 mL
aliquots of the bacterial culture (adjusted to an OD600 nm = 0.5) were mixed with 0.1 mL
of each phage dilution and 5 mL of soft agar (0.6%) medium, poured onto CPGA plates,
and incubated at 28 ◦C for 48 h. After incubation, the plaque-forming units (PFU) were
observed. Phage suspensions were maintained for short periods at 4 ◦C.

2.2. Plant Material and Environmental Samples

Tomato plants (Solanum lycopersicum L.), cultivar (cv.) Roma, susceptible to R. solanacearum
but free of the pathogen, were grown 3–4 weeks in TEKU: PL3040/20 and vermicoco
(cocopeat) 100% in jiffis at 20–25 ◦C during the daytime and 18–20 ◦C during the nighttime,
under greenhouse conditions at the Vegetal Production Unit of the Central Service for
Experimental Research (SCSIE) at the Universitat de València (UV). Plant extracts were
prepared by crushing 0.5 g of tomato plant stems in 4.5 mL of Phosphate Buffered Saline
(PBS) at 10 mM, pH 7.2, and then filtering the extract to prepare R. solanacearum-spiked
samples, as indicated in Section 2.3.

Soil samples from a tomato field and river water from R. solanacearum-free areas in the
southeast of Spain were used to prepare R. solanacearum-spiked samples, as indicated in
Section 2.3.

2.3. Bacterial and Phage Dilutions, and DNA Purification

Suspensions of 109 PFU/mL of the mix of the three phages and 109 CFU/mL of
R. solanacearum were performed in PBS at 10 mM, pH 7.2, separately. Serial dilutions of
108 to 1 PFU/mL of the phages and 108 to 1 CFU/mL of the bacterium were performed in
PBS and in river water, with extract of tomato plants cv. Roma and soil from pathogen-free
samples. For direct amplification (without DNA purification), each dilution performed
above was further diluted 100-fold in PBS. Total DNA was extracted from each dilution
of all samples using the cetyltrimethyl ammonium bromide (CTAB) method [45]. DNA
concentration and quality were determined spectrophotometrically at 260 nm and 280 nm
with a Nanodrop (ND-2000, Thermo Fisher, Wilmington, DE, USA).

2.4. Design of Primers and Probes

To design appropriate primers and probes, the nucleotide sequences deposited in
GenBank of complete genomes of the phages vRsoP-WF2 (MN685189), vRsoP-WM2
(MN685190), and vRsoP-WR2 (MN685191) were used. Alignments of the nucleotide
sequences of the phages were carried out using Blast tools from the National Center for
Biotechnology Information (NCBI) and Geneious Prime v2023.0.1 software. Primer Express
software (Applied Biosystems, Waltham, MA, USA) was used to obtain the sequences of
specific primers and TaqMan probes of R. solanacearum phages. In addition, primers and
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TaqMan probes specific for phage vRsoP-WR2 were designed based on the insertion of
480 bp present in their nucleotide sequence [28].

The primers B2-I-F/B2-II-R and the TaqMan probe B2-P specific to strains of R.
solanacearum Phylotype IIB-1 (race 3, biovar 2) were described by Fegan et al. [46] and
Weller et al. [35] and recommended in the EPPO Standard for R. solanacearum detection [47]
(Table 1). The TaqMan probe of R. solanacearum was labeled in 5′ with fluorescent dye HEX
and 3′ with quencher (IABkFQ).

Table 1. Sequences of primers and probes for Ralstonia solanacearum phages vRsoP-WF2, vRsoP-WM2,
and vRsoP-WR2, and the bacterial species R. solanacearum.

Name Sequence (5′–3′) Reference

WFMR2 F CGTGCCCTCGTAGCGAAT This work
WFMR2 R GTTGCAAGTAGTGGGCGATGT This work
WFMR2 P FAM-AACTAAACAACACCCAGCACAGAAAGACTTTCG-TAMRA This work
WR2 F AAGGCACAGGGACTCCCATT This work
WR2 R AAGTGCCCGCGTGAGACTT This work
WR2 P Cy5-ACCTGGAGG/TAO/AGTCGGACATCCAAATTCC-RQ This work

B2-I-F TGGCGCACTGCACTCAAC [35,46]
B2-II-R AATCACATGCAATTCGCCTACG [35,46]
B2-P HEX–TTCAAGCCGAACACCTGCTGCAAG-IABkFQ [35]

2.5. Quantitative Duplex PCR

TaqMan assays for quantitative real-time PCR (qPCR) were performed in the StepOne
Plus Sequence Detection System (Applied Biosystems) at the Genomics Unit of the SCSIE
at the UV. The individual reaction cocktail in a final volume of 10 µL contained 1X TaqMan
Universal PCR Master Mix (Applied Biosystems), 1 µM of each primer, 150 nM of TaqMan
probe, and 2 µL of sample. The duplex reaction cocktail contained 1X TaqMan Universal
PCR Master Mix (Applied Biosystems), 1 µM of each primer for the phages and for the
bacterium, 150 nM of TaqMan probe for the phages and for the bacterium, and 2 µL of
sample. Real-time PCR amplification consisted of one step at 95 ◦C for 10 min followed by
40 cycles of amplification (95 ◦C for 15 s and 60 ◦C for 1 min). Data acquisition and analysis
were performed with the StepOne software v2.3. The default threshold set by the machine
was slightly adjusted above the noise to the linear part of the growth curve, at its narrowest
point, according to the StepOne manufacturers (Applied Biosystems).

2.6. Quantitative Multiplex PCR

TaqMan assays for multiplex qPCR were performed in a QuantStudio 5 Real-time
PCR System (Applied Biosystems) at the Central Unit for Research in Medicine (UCIM) at
the UV. The reaction cocktail in a final volume of 10 µL contained 1X TaqMan Universal
PCR Master Mix (Applied Biosystems), 0.75 µM of each primer for phage vRsoP-WR2,
0.75 µM of each universal primer for the three phages, 0.75 µM of each primer for the
bacterium, 150 nM of each TaqMan probe, and 2 µL of sample. Real-time multiplex PCR
amplification consisted of one step at 95 ◦C for 10 min followed by 40 cycles of amplification
(95 ◦C for 15 s and 60 ◦C for 1 min). Data acquisition and analysis were performed with
QuantStudio Design and Analysis software v1.5.1. The default threshold set by the machine
was slightly adjusted above the noise to the linear part of the growth curve, at its narrowest
point according to the manufacturers (Applied Biosystems). To determine the theoretical
sensitivity and the reliability of the multiplex real-time PCR for each sample type, three
replicates of each assay were undertaken using the ten-fold serial dilutions of the single
phage and the single bacterium, and the phage plus bacterium mixture.

A summarization of the development of the TaqMan qPCR protocols for specific DNA
detection and quantification of R. solanacearum and the phages vRsoP-WF2, vRsoP-WM2,
and vRsoP-WR2, and their applications, is represented in Figure 1.
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Figure 1. Graphical summary of the methodology developed for the detection and quantification
of the Ralstonia solanacearum phages vRsoP-WF2, vRsoP-WM2, and vRsoP-WR2, and the target
bacterium in environmental water, soil, and plant material using duplex and multiplex qPCR.

3. Results
3.1. Specificity of PCR of R. solanacearum Phages

The primers WFMR2 F, WFMR2 R, and TaqMan probe WFMR2 P (Table 1; Figure 2A)
were designed in ORF 52–53 (phage terminase small subunit) [28] and were able to specif-
ically amplify the three R. solanacearum phages tested, vRsoP-WF2, vRsoP-WM2, and
vRsoP-WR2. No amplification was obtained from R. solanacearum suspensions, nor from
pathogen-free samples of river water, tomato plants, and soil used as controls. The primers
WR2 F, WR2 R, and TaqMan probe WR2 P (Table 1; Figure 2B) were designed in ORF 17
(phage-restriction endonuclease) [28] and were able to specifically amplify the vRsoP-WR2
R. solanacearum phage. No amplification was obtained from phages vRsoP-WF2 and vRsoP-
WM2, R. solanacearum suspensions, nor from pathogen-free samples of river water, tomato
plants, and soil used as controls. In vitro assays confirmed the previous in silico specificity
analysis performed with the sequences of the phages retrieved from databases.
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Figure 2. Nucleotide alignment of the sequences of Ralstonia solanacearum phages vRsoP-WF2, vRsoP-
WM2, and vRsoP-WR2 in Geneious Prime software. Primer and probe sequences of the three phages
(A), and primer and probe sequences specific to phage vRsoP-WR2 (B).
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3.2. qPCR Standard Curves for Quantification of R. solanacearum Phages and Bacterium

The quantification range of duplex PCR was established from 108 to 10 PFU/mL of R.
solanacearum phages and from 108 to 102 CFU/mL of R. solanacearum due to the reliability
of three replicates (Figure 3).
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Figure 3. Quantification range of real-time duplex PCR. Amplification curves of 10-fold serial
dilutions from 108 to 10 PFU/mL for vRsoP-WF2, vRsoP-WM2, and vRsoP-WR2 phages (A), and
standard curve (B). Amplification curves of 10-fold serial dilutions from 108 to 102 CFU/mL for
Ralstonia solanacearum (C), and standard curve (D). Standard curves were obtained with mean values
of three replicates for each of the ten-fold serial dilutions.

The Ct value for the standard curve of the phages vRsoP-WF2, vRsoP-WM2, and
vRsoP-WR2 ranged from 10.42 to 33.07 for 108 to 10 PFU, respectively. The mathematical
equation that represents the curve is: y = 3.321x + 36.916, with a correlation coefficient (R2)
value of 0.9987. For quantitation of vRsoP-WR2 phage particles only, with the cocktail of
duplex PCR, the same mathematical coefficients were obtained as when using a mixture
of particles from all three phages. The Ct value for the R. solanacearum standard curve
ranged from 15.84 to 35.20 for 108 to 102 CFU, respectively. The mathematical equation
that represents the curve is: y = 3.291x + 41.529, with a correlation coefficient (R2) value of
0.9973. The Ct value for each dilution was the mean of three repetitions.

3.3. Sensitivity of Multiplex qPCR in the Detection of R. solanacearum Phages and the Bacterium
in Different Types of Samples

A comparison of the sensitivities achieved by multiplex real-time PCR in the detec-
tion of the three phages and the bacterium using different types of samples with DNA
purification or without it (direct samples) is shown in Table 2.

For the phage quantification, the detection limit was 10 PFU/mL in PBS buffer, 102

in river water and tomato plant extracts, and 103 PFU/g in soil. For the R. solanacearum
quantification, the detection limit was 102 CFU/mL in PBS, 103 in river water and in tomato
plant extracts, and 104 PFU/g in soil. When different methods of sample preparation
were compared, direct methods yielded similar or identical results as when a laborious
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DNA purification protocol was used. The phage- and/or bacterium-free samples and PCR
cocktail controls were negative by all tested protocols.

Table 2. Sensitivity of PCR protocols in the detection of Ralstonia solanacearum phages vRsoP-WF2,
vRsoP-WM2, and vRsoP-WR2, and R. solanacearum in PBS, river water, tomato plant extracts, and soil
from pathogen-free samples, with and without DNA purification.

Real-Time PCR Protocol

Types of Samples

PBS River Water Tomato Plant Soil

Direct a Direct DNA b Direct DNA Direct DNA

R. solanacearum phage cocktail (PFU/mL)
(vRsoP-WF2, vRsoP-WM2, vRsoP-WR2) 10 102 102 102 102 103 103

vRsoP-WR2 phage (PFU/mL) 10 102 102 102 102 102 102

R. solanacearum (CFU/mL) 102 103 104 103 103 104 104

Multiplex:
R. solanacearum phage cocktail (PFU/mL)
(vRsoP-WF2, vRsoP-WM2, vRsoP-WR2) 10 102 102 102 102 102 102

vRsoP-WR2 phage (PFU/mL) 10 102 102 102 102 103 103

R. solanacearum (CFU/mL) 102 103 104 103 103 104 104

a Without DNA purification. b CTAB DNA purification.

The sensitivity of the multiplex qPCR was the same as each individual amplification
for vRsoP-WR2 phage, the three R. solanacearum phages, and the bacterium (Table 2). No
differences on curve behavior were observed when vRsoP-WF2, vRsoP-WM2, and vRsoP-
WR2 phages (Figure 4A), R. solanacearum (Figure 4B), or vRsoP-WR2 phage (Figure 4C)
were amplified individually or all together (Figure 4D), showing no interference between
the different primes and TaqMan probes used. Similarly, no differences in the efficiency
and curve behavior were observed when different types of samples (river water, tomato
plant extracts, or soil) were used.
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of vRsoP-WF2, vRsoP-WM2, and vRsoP-WR2 phages ((A)—red), amplification curves of serial
dilutions from 106 to 103 CFU/mL of Ralstonia solanacearum ((B)—blue), amplification curves of serial
dilutions from 106 to 103 CFU/mL of vRsoP-WR2 phage ((C)—green), and amplification curves
of serial dilutions from 106 to 102 CFU/mL of vRsoP-WF2, vRsoP-WM2, and vRsoP-WR2 phages,
and from 106 to 103 CFU/mL of bacteria ((D)—red + green + blue). Dilutions of phages and the
bacterium were performed in river water and direct sample preparation was used. Amplifications
were performed in triplicate.

4. Discussion

Bacterial wilt caused by R. solanacearum is one of the most important bacterial dis-
eases concerning solanaceous plants and ornamentals of economic importance worldwide.
Outbreaks in the field have frequently been associated with detection of the bacterium
in watercourses, where it can survive for long periods as a free-living form and/or in
roots of semi-aquatic weeds or other reservoir plants, or in the soil. In the host, detection
of the pathogen can be hindered by the occurrence of latent or symptomless infections.
Bacterial wilt management often fails due to the limited efficacy and environmental impact
of agrochemical methods, and the lack of resistant cultivars. R. solanacearum is therefore
subjected to strict regulation and included in international quarantine procedures [12,47].
Biological control methods are being explored. Among them, three lytic phages, vRsoP-
WF2, vRsoP-WM2, and vRsoP-WR2, were isolated and further characterized because of
their successful biocontrol of the pathogen [23–27]. As they proved to be specific for R.
solanacearum, detection of at least one of them in environmental samples could be useful
for the development of a sensitive, indirect, phage-based detection of the pathogen, since
phage concentrations are usually ten times higher than those of their bacterial target [48].
Further, simultaneous sensitive detection and accurate identification of bacterium and
phages are important to deepen knowledge on their interaction in the environment for
improvement of the prevention and management of the disease.

There is a number of molecular tests that have been validated and can be routinely
used for detection and identification of R. solanacearum (former phylotype II of the Ral-
stonia solanacearum species complex) and the phylogenetically related species R. pseu-
dosolanacearum (former phylotypes I and III) and Ralstonia syzygii subsp. indonesiensis
(former phylotype IV of the complex) for screening of plant material and other environ-
mental samples, and some of them are also quantitative [47]. Concerning R. solanacearum,
real-time qPCR protocols have been reported either based on SYBR green detection or
TaqMan probes [35–41], and the design of specific primers and DNA probes from the 16S
rDNA region [35,40] or the 16–23S rRNA spacer sequence [39]. R. solanacearum has also
been detected from soil and plant tissues by qPCR based on the integration of the rapid
self-replicating ability of phages [49]. However, all these methods have been developed to
target the pathogenic bacterium, even when phages have been used in the protocol. There
is no previous report on the combined or simultaneous detection of R. solanacearum and
several specific phages able to lyse it.

In this work, specific primers and TaqMan probes were designed and evaluated for
simultaneous detection and quantification of R. solanacearum and the phages vRsoP-WF2,
vRsoP-WM2, and vRsoP-WR2, by duplex and multiplex qPCR in water, soil, and plant
material. The genomic sequences of the three phages were compared with sequences
obtained from public databases to identify regions with differences. As the sequences
of vRsoP-WF2 and vRsoP-WM2 are nearly identical [28], it was not possible to design a
TaqMan probe to differentiate between them. In contrast, vRsoP-WR2 has an insert of
480 bp between positions 8619 and 9095 compared to the other two phages [28]. Therefore,
primers and a specific TaqMan probe could be designed only for vRsoP-WR2 in ORF
17 (putative endonuclease). In silico and in vitro analyses showed that the sequence of
the designed primers and the TaqMan probe were specific for vRsoP-WR2. Additionally,
primers and a TaqMan probe for the universal detection of the three phages were designed
in the ORFs 52–53 (phage terminase small subunit) and validated. In silico analysis showed
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that the designed universal phage primers and probe also amplified the related Ralstonia
sp. phages RsoP1EGY and DU_RP_I. However, amplification with other Ralstonia-related
phages, such as PSG 11 and PSG11.1 [28], is not expected due to sequence homology.

The amplification protocols for vRsoP-WR2 individual qPCR and the qPCR for the
three R. solanacearum phages were optimized, as well as the multiplex qPCR for vRsoP-
WR2, the three phages, and the bacterium. Amplification curves were obtained from all the
positive samples, without amplification of the negative controls or DNA from other phages
and/or other bacterial species present in plant extracts, soil, and irrigation water samples.
No interference was observed between probes and fluorophores.

The sensitivity of real-time qPCR for the detection of the three R. solanacearum phages
together (universal), the vRsoP-WR2 phage, R. solanacearum, and the multiplex (phages
and bacterium) protocol, was determined in environmental water, plant material, and soil.
With respect to the phages, sensitivities of detection in river water were appropriate to the
concentrations reported for R. solanacearum phages, which were estimated between 102

and >103 lytic viral particles/mL in natural river water samples [30]. Similar sensitivities
were obtained in samples of more complex composition, such as tomato plant extracts
and soil, where the presence of PCR inhibitors has been commonly described [35,37,50].
This is particularly significant in soil samples, where inhibitors such as humic acids and
the microbial diversity in their culturable and unculturable states cause the difficulty of
detection of a specific microorganism [37]. With respect to R. solanacearum, sensitivity of
detection in PBS without previous DNA purification was in agreement with 102 cells/mL
obtained using the same primers and TaqMan probe by Weller et al. from cells suspended
in water [35]. This sensitivity in water would not allow for a successful detection of R.
solanacearum in river water in cases where natural population numbers of the bacterium
have been reported to range from 10 to 80 CFU/mL [16]. The same authors obtained
less sensitivity of R. solanacearum detection from potato extracts, pointing out the pres-
ence of qPCR inhibitors, and suggesting the need for the use of pathogen enrichment
procedures [35]. Thus, the analytical sensitivity established in international procedures
for extracts of potato heel-end cores spiked with R. solanacearum is 105 CFU/mL using
the B2-I-F/B2-II-R/B2-P assay [35,47]. Since the protocols developed in this work for the
simultaneous detection of the phages and bacterium were about one order of magnitude
more sensitive in detecting the phages than the target bacterium, they could be successfully
applied for a highly sensitive detection of R. solanacearum as indicators of the pathogen
contamination in different types of plant and environmental samples.

A direct method of sample preparation was compared and validated for use in real-
time qPCR. Conventional PCR-based techniques require purified total DNA or RNA as
templates in amplification reactions. However, nucleic acid purification steps are laborious
and expensive, limiting the number of samples that can be processed. In real-time PCR
protocols, especially when a TaqMan probe is used, nucleic acid purifications can be
partially or totally circumvented using direct sample preparation methods such as dilution
or spot immobilization on membranes [51–59]. Data obtained in this work showed that the
dilution method of sample preparation allowed for the same sensitivity as conventional
DNA extraction protocols. The dilution method requires fewer steps, is less labor-intensive
and faster, and is more cost-effective than traditional purification DNA methods, favoring
high-throughput results.

The qPCR protocols developed in this work are appropriate for analytical purposes,
with excellent limits of detection and quantification. Phage isolation is generally carried
out by plaque assays, with the limitations of their identification based on their lytic activity
on indicator bacterial hosts and the need for relatively high numbers of phage particles
in the sample [32]. Therefore, these molecular protocols for combined detection of R.
solanacearum and the phages vRsoP-WF2, vRsoP-WM2, and vRsoP-WR2 substantially
improved traditional methods, allowing for the sensitive, precise, reliable, and quick
detection and quantification of phages and bacteria in tomato plant material, soil, and
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irrigation water, even without previous DNA purification, saving time and reagents by
reducing the cost of the screening tests.
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