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ABSTRACT

Spamdexing techniques have "haunted" search engines for more than a decade now,
and are still an issue nowadays. Many content-based techniques to detect such methods
were already proposed in the literature, but the research on link-based spamdexing de-
tection techniques is recent. This work focuses on the study and implementation of two
such link-based techniques, measuring their quality with well-known Information Re-
trieval metrics, and comparing their results. The obtained results show that even though
the problem cannot be a hundred percent eliminated yet, a lot may already be done to
improve search engines response to user submitted queries.

Keywords: Spamdexing, link analysis, adversarial information retrieval, evaluation.



RESUMO

Aplicando Técnicas de Detecção de Spamdexing Baseadas em Links

Técnicas de spamdexing têm "assombrado"os motores de busca por mais de uma dé-
cada e ainda são um problema hoje em dia. Muitas técnicas baseadas em conteúdo para
detectar esses métodos já foram propostas na literatura, mas a pesquisa sobre técnicas
de detecção de spamdexing baseadas em links é recente. Este trabalho tem como foco o
estudo e implementação de duas dessas técnicas baseadas em links, medindo suas quali-
dades com métricas de Recuperação de Informações bem conhecidas, e comparando seus
resultados. Os resultados obtidos mostram que, embora o problema ainda não possa ser
cem por cento eliminado, muito já pode ser feito para melhorar a resposta dos motores de
busca para as consultas submetidas por usuários.

Palavras-chave: Spamdexing, análise de links, recuperação de informações contraditó-
rias, avaliação.
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1 INTRODUCTION

In recent years, the term spam has been associated with unwanted (and usually of
commercial nature) messages sent out in bulks. Although the most common and known
form of spam is simply junk e-mail, there are many other forms of spam, such as credit
card seller operators. The focus of this work is to deal with another kind of spam, one
that has slightly "disappeared" (from the point of view of the users) some years ago, but
that now, with different and evolved techniques, is forcing search engines to re-adapt once
more: spamdexing.

Also known as Web spam, the first citation of the term spamdexing was made by Eric
Convey, in his article "Porn sneaks way back on Web" (The Boston Herald, May 1996), in
which he wrote: "the problem arises when site operators load their Web pages with hun-
dreds of extraneous terms so search engines will list them among legitimate addresses".
The term "spamdexing" is a combination of the words "spam" and "indexing".

The definition above serves as a characterization of the first large class of spamdexing
techniques: content spam (a.k.a. term spam). This class of spamdexing was the main
cause for making the most popular 1990’s search engines unreliable. That is because, at
that time, search engines used to base their ranking algorithms solely on the content of
the Web sites they indexed, matching the content of the pages with the queries submitted
by their users.

Google’s success came with their ability to combat this kind of spamdexing tech-
niques by using a ranking algorithm based on the link structure between the pages on
the Web: the famous PageRank (PR) (PAGE et al., 1998). Even though Google did not
become unreliable as its ancestors, it has not remained immune to more sophisticated
methods of spamdexing.

The second large class of spamdexing techniques is known as link spam. Spam farm-
ing and Google bombing are examples of new ways of manipulating results, which in-
volve adding hyperlinks that affect the ranking of Web sites, making use of the properties
of algorithms such as Google’s PR.

With these two classes of spamdexing technique in mind, a more general definition of
the term is given in (GYONGYI; GARCIA-MOLINA, 2005): "any deliberate action that
is meant to trigger an unjustifiably favorable relevance or importance for some Web page,
considering the page’s true value". That is, pages whose creators had the evident intention
of misleading the results of search engines, showing the users unsolicited content (spam
content) among the contents they had requested, or even preventing them from finding
what they were looking for.
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A lot of research has been made in the search of content-based techniques for detecting
spam pages, such as (DAVISON, 2000), and (NTOULAS et al., 2006), by studying rele-
vant features such as page size or keyword distribution. However, the use of link-based
techniques for detecting spam pages is a relatively new area of research. The leading
studies emerged only in 2004 and were reported in (GYONGYI; GARCIA-MOLINA;
PEDERSEN, 2004), and in (BECCHETTI et al., 2006).

After a preliminary analysis of the current state of the art in link-based techniques for
detecting spam pages, this work focuses on studying the two references cited above, since
they are the most well-known and well-documented works on the subject. The proposed
techniques were implemented, and evaluated, so that an analysis of the quality of the
results given by the current state of art can be presented.

Indexing and retrieving information from collections that have been maliciously ma-
nipulated is known in the literature as Adversarial Information Retrieval (AIR). This area
is dedicated to detecting and combating such manipulation.

1.1 Goals

The goals of this work are:

a) to study two different link-based spamdexing detection techniques already pro-
posed in the literature;

b) to analyze and implement the studied techniques;

c) to evaluate and compare the results of the implemented techniques;

d) to combine the results of the techniques and analyze such a combination.

1.2 Organization

The remainder of this work is organized as follows:

a) Chapter 2 contains the first part of a literature review, presenting a model to
view the Web as a graph, and the evaluation measures used in this work;

b) Chapter 3 follows the second Chapter as a second part of a literature review,
showing the main algorithms used during this work;

c) Chapter 4 explains the implementation details of each studied technique and
the dataset used;

d) Chapter 5 defines the analysis tool and presents the experiments and results.
Comparisons are made in order to evaluate the significance of each result;

e) Chapter 6 reports the final conclusions of this work.
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2 WEB GRAPH, AND EVALUATION MEASURES

In this Chapter, a model to describe the Web as a graph is explained, as well as the
measures used to evaluate each of the link-based spamdexing detection techniques.

2.1 Web Graph

A Web graph is the graph representation of any portion of the (or of the whole) Web,
where each node represents a page, and the hyperlinks between pages are the edges. For-
mally, we have a graph G = (V,E) consisting of a set V of N pages and a set E of directed
links (edges) that connect pages. In practice, self hyperlinks are removed, and, even
though a page p may have multiple hyperlinks to a page q, they are usually collapsed into
a single link (p,q) ∈ E.

Two functions, i(p) and o(p), may also be described as the number of in-links and
out-links of a certain page p. Furthermore, this graph may also be represented as an
adjacency matrix ANxN , where ai, j = 1 if and only if there is a link from page i to page j.

It is also important to notice that this model carries through to the case where graph
vertices are entire sites (host graphs). In this case, all the hyperlinks between two hosts
are merged, and possibly weighted - although such weighting system is not implemented
in this work.
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2.2 Evaluation Measures

The evaluation of the techniques presented in this work are done based on a set of mea-
sures commonly used in Machine Learning (ML) and Information Retrivel (IR) (BAEZA-
YATES; RIBEIRO-NETO et al., 1999), considering the spam detection task. For a given
technique, we consider its confusion matrix:

Prediction
Non-spam Spam

True Label
Non-spam w x

Spam y z

Table 2.1: Confusion matrix for a given spamdexing detection technique

where each letter represents:

• w: the non-spam examples that were correctly classified;

• x: the non-spam examples that were wrongly classified as spam;

• y: the spam examples that were wrongly classified as non-spam;

• z: the spam examples that were correctly classified.

Two types of errors of the spam classification are then measured:

False positives: FP =
x

x+w

False negatives: FN =
y

y+ z

As well as the following IR evaluation measures:

Precision: P =
z

x+ z

Recall, or true positive rate: R =
z

y+ z

And finally:

F-measure: F1 = 2
P∗R
P+R

where the F-measure F1 consists of a way of summarizing both precision and re-
call, so that it can be used as the primary measure of comparison between spamdexing
detection techniques.
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3 RANKING ALGORITHMS

The general idea behind the studies in (BECCHETTI et al., 2006), and in (GYONGYI;
GARCIA-MOLINA; PEDERSEN, 2004), is to create an algorithm which ranks the pages
on a Web graph, according to some properties. After, a classifier is built, which uses the
results from these algorithms along with a small set of human-labeled hosts1 to generate
parameters for an automatic classification. This process is presented in a more detailed
way in Chapters 4 and 5.

The two ranking algorithms are called: Truncated PageRank (TPR) (BECCHETTI
et al., 2006) and TrustRank (TR) (GYONGYI; GARCIA-MOLINA; PEDERSEN, 2004).
Since the two may be implemented as slightly modified versions of the best known PageR-
ank, PR is the first ranking algorithm presented.

3.1 PageRank

As stated in the first Chapter, before the idealization of PageRank by Larry Page and
Sergey Brin (Google founders) (PAGE et al., 1998), the main search engines then used to
calculate the importance of a page by looking at how many words matched those entered
by a user search query. That is not completely true, because some of them already used
link counting whilst trying to bias their databases in favor of some pages, which would
probably happen to be the most important pages. The idea was the same as in classic
IR systems (based primarily on the study of retrieving information from scientific work):
counting the number of links that pointed to a page (a.k.a. the in-links of this page) should
suggest its importance, much like the number of citations to an article usually does.

The problem is that citation counting on the Web does not work as it used to work on
academic citation databases, since the Web has characteristics of its own. For example,
if a page p is being pointed to by NASA2, it should receive a higher rank than a page q
that is linked by many hobbyist sites about space traveling. Google’s PR is based on this
simple idea: that we should not only count the number of in-links a certain page has, but
also consider the importance of each link that is pointing to it.

As in (PAGE et al., 1998), the intuitive description for PageRank is: "a page has high
rank if the sum of the ranks of its backlinks is high. This covers both the case when a page
has many backlinks - or in-links - and when a page has a few highly ranked backlinks".

1Hosts labeled as spam or non-spam. Both the dataset and the tool used to build such classifiers are
shown in Chapter 4 and 5, respectively.

2http://www.nasa.gov
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Let ω be a damping factor between 0 and 1 - typically 0.85, as suggested in the original
PR’s proposal -, used for normalization, the above description can be expressed by the
following formula:

r(p) = ω ∑
q;(q,p)∈E

r(q)
o(q)

That is, the rank of a page p is based on a percentage of the rank of all pages that point
to it. If done this way, a page that is highly linked will receive a lot of "importance", and
a page with lots of out-links will distribute smaller portions of its rank. This focuses on
the idea that, usually, important pages do not point to many pages, but are pointed by a
high number of pages. Figure 3.1 exemplifies such ranking system.

Figure 3.1: PageRank calculation example

Actually, a more complete version of PR’s formula may be described as the following:

r(p) = ω ∑
q;(q,p)∈E

r(q)
o(q)

+(1−ω)
1
N

The equation is recursive, so that there is mutual reinforcement between pages, where
the importance of a certain page influences and is influenced by the importance of some
other pages. It may be computed by starting with any set of ranks and iterating the compu-
tation until it converges. What usually happens is that the ranks are uniformly initialized
( 1

N ), and instead of waiting until it converges, the number of iterations is fixed.

For the formula above, the equivalent matrix equation form is:

r = ωUr+(1−ω)
1
N

1N

where U is the row-normalized version of the adjacency matrix ANxN , such that all
rows add up to one, and rows of zeros are replaced by rows of 1

N to avoid the effect of
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rank "sinks". Pages with no out-links are called "sinks" because their accumulated rank
is usually wasted.

While the first component of the score of a certain page p comes from pages that
point to it, the second component is equal for all web pages. This part of the equation,
as pointed by Page and Brin in the original PageRank paper, is called "the random surfer
model", in other words, the probability of a certain Web surfer to stop following links and
redirecting to any other page on the Web. Also in this part, it is possible to substitute the
1
N 1N for a vector d: a static scored distribution vector, of arbitrary, non-negative entries
adding up to one, that is, a way to bias the ranking of a pre-selected group of pages. This
will also cause this "extra score" to be spread for the pages this pre-selected group of
pages points to.

3.2 Functional Ranking

Given a path, that is, a sequence of links in a Web graph u = {p1, p2, ..., pk}, such that
page pi has a link to page pi+1, a branching contribution is as follows:

branching(u) =
1

o(p1)o(p2)...o(pk−1)

A functional ranking (BAEZA-YATES; BOLDI; CASTILLO, 2006) is a link-based
ranking algorithm formalized as:

Wi = ∑
u∈Path(−,i)

damping(|u|)
N

branching(u)

where Path(−, i) is the set of all paths into page i, |u| is the length of path u, and
damping(|u|) is a decreasing function on |u|.

Equivalently, we have:

W =
∞

∑
t=0

damping(t)
1
N

1NU t

where (U t)i, j contains the sum of the branching contributions of all paths of length t
from i to j. In particular, PR’s damping(t) = (1−ω)ω t , as also explained in (BAEZA-
YATES; BOLDI; CASTILLO, 2006), where they also point "This way of expressing the
PageRank of a node is essentially obtained as a weighted sum of contributions coming
from every path entering into the node, with weights that decay exponentially in the length
of the path". This also gives as us an important starting point for the first of the two
ranking algorithms used in this work: the Truncated PageRank.

3.3 Truncated PageRank

The Truncated PageRank algorithm is a slightly modified version of the PageRank al-
gorithm with the intention of avoiding the impact of a special kind of link-based structure
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commonly used by spammers to mislead link-based ranking algorithms such as PR: link
farms - densely connected sets of pages. In (ZHANG et al., 2004), this is called "collu-
sion", and is defined as the "manipulation of the link structure by a group of users with
the intent of improving the rating of one or more users in the group" .

For a better understanding of what a link farm actually is, a comparison between a
normal link structure and a link farm is made in Figures 3.2 and 3.3.

Figure 3.2: Normal link structure of a group of Web pages

Figure 3.3: Link farm

"Link farms can receive links by buying advertising, or by buying expired domains
used previously by legitimate Web sites" (BECCHETTI et al., 2006).

Studies presented in the original paper, based on the calculation of the PageRank of
pages from a spamdexing− f ree portion of the Web, have shown that, normally, highly-
ranked pages have a large number of supporters from a farther distance in the Web graph,
while low-ranked pages do not. Spam pages participating in link farms will not follow
this rule, since they still have a high rank, even though they share little relationship with
the rest of the Web graph.
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Based on these ideas, the TPR algorithm does what its name already suggests: it
truncates the normal PageRank algorithm by ignoring the contribution of the first levels
of links in the paths that lead to the pages, so that pages participating in link farms (that
is, that have a high PageRank value because of their nearest neighbors) "lose their value",
actually making them assume their real value.

Using the functional ranking version of the PageRank, we can achieve the expected
behavior by adjusting its damping(t) function, as follows:

damping(t) =

{
0 t 6 T
Cω t t > T

where T is the length of the truncated path, C is a normalization constant, such that
∞

∑
t=0

damping(t) = 1 - so C = 1−ω

ωT+1 -, and ω is the damping factor used for PageRank.

3.4 TrustRank

The assumption underlying TrustRank (GYONGYI; GARCIA-MOLINA; PEDER-
SEN, 2004) is what the authors of the original paper call "approximate isolation of the
good set", which means that trustful pages tend to point exclusively to other genuine
pages.

Lets then call the non-spam pages "good" and the spam pages "bad". Given the set of
pages of the Web graph from Figure 3.4, where the good pages are in white and the bad
pages in black, lets suppose we do not know the quality of all of those pages, just from
a small portion of them. A sample of pages, called "seed", which was previously labeled
by humans as "spam" or "non-spam".

Figure 3.4: Web graph example - good pages in white; bad pages in black
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Then, the first attempt to compute Trust with a seed is through an Ignorant Trust
Function. For any given page p in our Web graph, where S denotes our seed set:

T0(p) =

{
s(p) if p ∈ S
1
2 otherwise

And:

s(p) =

{
1 if p was labeled as "non-spam"
0 if p was labeled as "spam"

With S = {1,2,7}, we should have:

t0 =
{

1,1,
1
2
,
1
2
,
1
2
,
1
2
,0,

1
2
,
1
2

}
The next step is to propagate these Trust scores by applying a K-Step Trust Function:

TK(p) =


s(p) if p ∈ S
1 if p /∈ S and ∃q ∈ S+ : Path(q, p)
1
2 otherwise

where S+ denotes the subset of good pages in S, and Path(q, p) denotes the existence
of a path between pages q and p.

For K = 3, the same seed S, and the same Web graph, then we have:

t1 =
{

1,1,
1
2
,1,

1
2
,1,0,

1
2
,
1
2

}
t2 =

{
1,1,

1
2
,1,

1
2
,1,0,1,1

}
t3 =

{
1,1,

1
2
,1,1,1,0,1,1

}
Note that, until the second step, all the pages were correctly assigned, but in the third

step, page 5 receives a score of 1 due to the link from good page 8 to bad page 5 (marked
with an asterisk on Figure 3.4). Since bad pages are created to mislead search engines,
there is little or no reason for a good page to point towards a bad page. But, sometimes,
they do.

The authors of good pages may be "tricked" into pointing to bad pages. The most
simple example is the creator of a bad page adding a link to that page in a well-known
forum on the Web. Another example is the creation of a "honey pot", which is a set of
pages that provide some useful information along with hidden links to spam pages. The
"honey pot" can then attract people to point to these pages, helping them boost the rank
of spam pages.
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To solve this problem, a Trust attenuation is applied, that is, a reduction of Trust as we
move further and further away from the good seed pages on the Web graph (as |Path(q, p)|
becomes higher). This attenuation may be done in different ways, but the authors of the
algorithm suggest the use of damping, splitting, or both. By using damping, at each level,
instead of propagating 1’s, we will be propagating goodScore∗β , where β is a damping
factor, so, we will be actually propagating β t , where t = |Path(q, p)|. By using splitting,
at each level, instead of propagating 1’s, we will be propagating goodScore

o(p) , where p is the
current page.

TrustRank may be easily implemented by using PageRank as its basis. The only
modification is to use the specialization vector d instead of a vector 1N , where the values
are assigned according to the values in the seed S, with the values that are unknown being
assigned to 0. We also use this vector to initialize our vector of ranks, and, other than this,
we just need to multiply the vector by 1

N+ instead of 1
N , as it is in the original PageRank

formula, where N+ corresponds to the number of good pages in the seed. So, the matrix
equation for TrustRank is the following:

r = ωUr+(1−ω)
1

N+
d

where the values of the vector d are as described above. This way, at each iteration,
the Trust score of a page is split among its neighbors, and dampened by the same factor
as the PageRank. The only main difference, though, is that this U does not have its rows
of zeros replaced by rows of 1

N , since the TrustRank calculation does not need to avoid
the effect of rank "sinks": we do not want the trustfulness of a page being propagated to
every other page in the graph.

The functional ranking form of TrustRank should then look like this:

W =
∞

∑
t=0

damping(t)
1

N+
dU t

After this brief explanation of the fundamental ideas underlying each of the studied
algorithms, Chapter 4 follows with the implementation details of each of them. The use
of the scores produced by such algorithms to detect spamdexing is presented in Chapter
5.

3.5 Inverted TrustRank

An alternative for the original TrustRank would be its inverted calculation, which
is here named Inverted TrustRank (ITR). It follows the same idea underlying the TR,
but instead of propagating the goodness of a page forwards, the badness of a page is
propagated backwards.

The assumption is exactly the opposite of the one used by TrustRank, that is, the
"approximate isolation of the bad set", which means that pages that may not be trusted
tend to be pointed exclusively by other non-genuine pages.
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4 IMPLEMENTATION DETAILS

In this Chapter, the implementations of the Truncated PageRank and TrustRank are
shown, as well as the implementation of a variation of the "classic" TrustRank, the In-
verted TrustRank, and of a series of algorithms that calculate different attributes presented
in the pages of a Web graph. The necessary tools and data to enable such implementations
are also detailed.

All implementations were done in the Java programming language, using the Trun-
cated PageRank implementation of its original authors1 as the base source code. This
code has suffered only minor updates in this work, but its functionality is explained any-
way, for the sake of completeness.

4.1 WebGraph Framework

WebGraph is a framework made to assist in the study and research of large graphs, like
the ones presented on the Web: "It provides simple ways to manage very large graphs,
exploiting modern compression techniques"2. It is totally implemented in the Java pro-
gramming language3, and a complete documentation also accompanies the package.

The graph available with the dataset that is presented in Section 4.2 is in the BVGraph
compressed format, which is part of the WebGraph framework, and further explained in
(BOLDI; VIGNA, 2004). Also, the framework provides the ASCIIGraph class, which
allows us to convert a graph in text format to the BVGraph compressed format.

An example of how to use the ASCIIGraph class is presented with the use of the graph
shown in Figure 3.4, which is now repeated in Figure 4.1 to facilitate the understanding
of the procedure. Note that now the labels on the nodes range from 0 to 8, instead of 1 to
9 as in Figure 3.4.

1Available under http://213.27.241.151/webspam/code
2http://webgraph.dsi.unimi.it
3A version in C++ is also available, but, by the time this work was done, it was considered still in alpha

stage.
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Figure 4.1: Web graph example - same of figure 3.4

A file named "example.graph-txt" to represent the graph from Figure 4.1 would look
like the following:

9
3
0 5
1 6
5
2
7 8
4
1 4
_

where:

• the first line indicates the number of nodes in the graph;

• the second line represents the out-links of node 0;

• the third line represents the out-links of node 1, and so on;

• nodes with no out-links are represented with blank lines (the underscore
character in the example above).

Also, an important observation is that the out-links list must be sorted in numerical
order for a better compression rate when converting to the BVGraph compressed format.

After creating such file, all one needs to do is use the following command (considering
that the libraries of the framework have been properly installed):

java it.unimi.dsi.webgraph.BVGraph -g ASCIIGraph example bvexample
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The outputted file, in the BVGraph compressed format, is then named "bvexam-
ple.graph". Along with it, other two files are created: "bvexample.offsets" and "bvex-
ample.properties".

4.2 Dataset

The dataset used in this work is the WEBSPAM-UK2006 collection4 detailed in (CASTILLO
et al., 2006). As the title of the original paper suggests, it is a reference collection for the
testing of spamdexing detection techniques.

It is a snapshot of the .uk domain pages that was made starting in May 2006. "These
pages were downloaded at the Laboratory of Web Algorithmics5 at the Università degli
Studi di Milano. The crawl was done using the UbiCrawler (BOLDI et al., 2004) in
breadth-first-search mode for cross-host links (depth-first exploration was adopted for
local links), starting from a large seed of over 190,000 URLs in about 150,000 hosts
under the .uk domain listed in the Open Directory Project6. The crawler was limited
to the .uk domain and to 8 levels of depth, with no more than 50,000 pages per host:
these restrictions were such that indeed only a part of the hosts contained in the seed
were actually crawled" (CASTILLO et al., 2006). With such procedure, the collection
includes 77.9 million pages from 11,402 hosts, and over 3∗109 edges.

The available files are:

• "uk-2006.05.graph.gz" (734MB, expands to 1GB): the graph itself in the
BVGraph compressed format;

• "uk-2006.05.offsets.gz" (67MB): the offsets of the graph in the BVGraph
compressed format;

• "uk-2006.05.properties" (1KB): the properties of the graph in the BVGraph
compressed format;

• "uk-2006.05.urls.gz" (572MB): contains one URL per line, sorted lexico-
graphically (which is also the same node access order when using the graph with
the WebGraph framework - the first URL is identified with the number 0);

• "uk-2006-05.graphtxt.gz" (1.5GB, expands to >10GB): the graph in text for-
mat, as exemplified in Section 4.1;

• "uk-2006-05.hostnames.txt.gz" (97KB): a text format graph where each line
is formatted as follows: ”src−> dest1 : nlinks1dest2 : nlinks2, ...,destk : nlinksk” in
which src is the source host, dest is the destination host, and nlinks the number of
page-to-page links between the two hosts.

• "uk-2006-05.hostnames.txt.gz" (1.9MB): just like the "uk-2006.05.urls.gz"
file, but only with the host pages included.

4Available under http://213.27.241.151/webspam/datasets/uk2006
5http://law.dsi.unimi.it
6http://www.dmoz.org
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The content of the pages is not available for download, but may be requested with a
signed agreement. Since the algorithms studied in this work make use only of the link
structure of the Web graph for their calculations, such request was not necessary.

Using the "bow-tie" model of the Web (BRODER et al., 2000), the components of the
host graph of the WEBSPAM-UK2006 dataset are the following:

Region CORE IN OUT TENDRILS DISC Total
Size 7945 135 3,100 64 165 11,402

Table 4.1: Evaluation measures for TR based classifier

Which shows that most of the pages contained in the dataset are part of the strongly
connected components set (CORE) of the graph they are in (no matter if it is the Web
graph or the host graph), and, also, that a big portion of them is on the OUT set. The OUT
set is formed by the pages that are linked by the CORE set, but do not link to any page
in the CORE set (which does not mean that they do not have links between each other).
These characteristics show that this collection may indeed serve as a really good dataset
for testing purposes.

4.3 Truncated PageRank

In this Section, the implementation details for the Truncated PageRank algorithm are
presented. For a better comprehension, its pseudocode is also shown.

This work used the TPR implementation of its original authors7 with minor updates.
The original version already used the WebGraph framework to access the graph data, but
since then, updates to the framework caused the original source code to not work anymore,
which has been corrected in this work. Nevertheless, the original algorithm remains the
same.

The algorithm starts by testing whether or not we are truncating the PageRank scores.
Note that if this algorithm is executed with truncation T = 0, the normal PR is calculated.
With this test, the normalization constant c is assigned to be either the one used by the PR
or the one used by its truncated version.

Afterwards, the R and Score vectors are initialized. R is an auxiliary accumulator
which keeps the contribution of a certain iteration to the rank of each page. It is important
to keep both Score and R separated in the calculation, since the first levels are discarded,
or we may end up with only zeros in the output. All values of the vector R are initialized
to C

N , where N is the total number of pages in the graph. If we are to calculate the normal
PageRank, then Score is initialized with the same values as R.

iteration is initialized to 1, and, until the scores converge, the algorithm is executed
(although, usually, the number of iterations is fixed). The Aux vector is set to contain only
0’s and dangling_score is also initialized to 0. The dangling_score variable is responsible
for accumulating the scores from "sinks".

Then, for every page in the graph, if the page has no out-links, its R is divided by N,
7Available under http://213.27.241.151/webspam/code
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the total number of pages in the graph, and added to the dangling_score accumulator. If
the page has out-links, then every out-neighbor of this page receives a portion of its R
(which corresponds to its R divided by the number of out-links this page has - or simply
put, its out-degree).

Finally, the damping factor is applied, and R is updated with a new value. Then, if
there is no need to truncate anymore, R is added to Score.

Truncated PageRank pseudocode:
Require: N: number of nodes, 0 < ω < 1: damping factor, T > 0: distance of truncation

1 i f T > 0 then
2 C = (1 − ω ) / ( ωT+1 )
3 e l s e
4 C = (1 − ω )
5 end i f
6 f o r j : 1 . . . N do / / I n i t i a l i z a t i o n
7 R[ j ] = C / N
8 i f T > 0 then
9 Score [ j ] = 0

10 e l s e / / C a l c u l a t e normal PageRank
11 Score [ j ] = R[ j ]
12 end i f
13 end f o r
14 i t e r a t i o n = 1
15 whi le not conve rged do
16 Aux = 0
17 d a n g l i n g _ s c o r e = 0
18 f o r s r c : 1 . . . N do / / Fol low l i n k s i n t h e g raph
19 i f s r c has no l i n k s then
20 d a n g l i n g _ s c o r e = d a n g l i n g _ s c o r e + (R[ s r c ] / N)
21 end i f
22 f o r a l l l i n k from s r c t o d e s t do
23 Aux [ d e s t ] = Aux [ d e s t ] + R[ s r c ] / o ( s r c )
24 end f o r
25 end f o r
26 f o r j : 1 . . . N do / / Apply damping f a c t o r ω

27 R[ j ] = ( Aux [ j ] + d a n g l i n g _ s c o r e ) ∗ ω

28 i f i t e r a t i o n > T then / / Add t o r a n k i n g v a l u e
29 Score [ j ] = Score [ j ] + R[ j ]
30 end i f
31 end f o r
32 i t e r a t i o n = i t e r a t i o n + 1
33 end whi l e
34 r e t u r n Score
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Formally:

R(0) =
C
N

R(t) = ωR(t−1)U

And the Truncated PageRank is calculated using:

W =
∞

∑
t=T+1

R(t)

The complexity of the implementation above is analyzed as follows. The initialization
part, from line 1 to line 14, has a cost of O(N), where N is the number of pages in the
graph. Lines 16-32 has a cost of O(N +M), where M is the number of links. Thus, the
Truncated PageRank implemented has complexity O(K(N +M)), where K is the number
of iterations of the algorithm that depends on the stopping criterium of the algorithm. In
our implementation the stopping criterium is a given number of iterations.

The complexity of such implementation may be easy calculated. The initialization
part, from line 1 to line 14, has a cost of O(N), where N is the number of pages in the
graph. As of the rest of the code, the complexity is O(k∗(N+M)), where k is the number
of needed iterations, and M is the number of links in the graph.

Let us now calculate the PageRank and the Truncated PageRank - with truncations
T = 1, and T = 4 - of the pages presented in the host graph of the WEBSPAM-UK2006
dataset. The relation of both measures is shown in Figures 4.2, and 4.3.
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Figure 4.2: PageRank versus Truncated PageRank with T = 1
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Figure 4.3: PageRank versus Truncated PageRank with T = 4

It is possible to notice that, as expected, both measures are highly correlated, and that
this correlation decreases as more levels are truncated. That is, if T = 0 was used instead,
something near to a line would be seen in the graphics above, and, as we truncate more
and more the PageRank calculation, the TPR values of the pages (with a certain PR value)
begin to decrease.

4.4 TrustRank

This Section focuses on explaining the implementation of both TrustRank and Inverted
TrustRank. For differentiation, the first is referred as the "classic" TrustRank.

4.4.1 Classic TrustRank

Considering the functional ranking form of the TrustRank, it is possible to use the TPR
implementation as the basis for a TR implementation. The details of such implementation
are presented in this Subsection, along with its pseudocode.

First of all, the normalization constant C is initialized in the same way as the PageR-
ank. R is an auxiliary accumulator which keeps the contribution of a certain iteration to
the rank of each page, and Score will contain the final score of each page. The values of
both these vectors are initialized with C

N+ , where N+ is the number of good pages in the
seed, if the corresponding page is a good page in the seed, and with 0 if it is not.

As explained in Chapter 3, what follows is a normal PR calculation. iteration is ini-
tialized to 1, and, until the scores converge, the algorithm is executed (although, usually,
the number of iterations is fixed) like in the Truncated PageRank implementation. The
Aux vector is also set to contain only 0’s.

Then, for every page in the graph, if it has out-links, every out-neighbor of this page
receives a portion of its R (which corresponds to its R divided by the number of out-links
this page has - or simply put, its out-degree). The damping factor is applied, and R is
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updated with a new value, which is then added to Score.

Classic TrustRank pseudocode:
Require: N: number of nodes, 0 < ω < 1: damping factor, S+: subset of the seed containing only the

good pages, N+: number of good pages in the seed

1 C = (1 − ω )
2 f o r j : 1 . . . N do / / I n i t i a l i z a t i o n
3 i f j ∈ S+ then
4 R[ j ] = C / N+

5 e l s e
6 R[ j ] = 0
7 end i f
8 Score [ j ] = R[ j ]
9 end f o r

10 whi le not conve rged do
11 Aux = 0
12 f o r s r c : 1 . . . N do / / Fol low l i n k s i n t h e graph
13 f o r a l l l i n k from s r c t o d e s t do
14 Aux [ d e s t ] = Aux [ d e s t ] + R[ s r c ] / o ( s r c )
15 end f o r
16 end f o r
17 f o r j : 1 . . . N do
18 / / Apply damping f a c t o r ω

19 R[ j ] = Aux [ j ] ∗ ω

20 / / Add t o r a n k i n g v a l u e
21 Score [ j ] = Score [ j ] + R[ j ]
22 end i f
23 end f o r
24 end whi l e
25 r e t u r n Score

The complexity of such implementation is the same of the TPR’s implementation:
O(K(N + M)), where K is the number of iterations, N is the number of pages in the
graph, and M is the number of links in the graph.

4.4.2 Inverted TrustRank

The algorithm that is detailed now is quite the same as the TrustRank’s, but "inverted".
Its pseudocode is also provided.

Instead of repeating the same explanation given in Subsection 4.4.1, lets focus on the
differences between the TR and the ITR. The first one is that the values of vectors R and
Score are initialized with C

N− , where N− is the number of bad pages in the seed, if the
corresponding page is a bad page in the seed, and with 0 if it is not.

Furthermore, in the step responsible for following every link in the graph, instead of
considering if a page has out-links, the in-links are considered. Then, for every page in the
graph, if it has in-links, every in-neighbor of this page receives a portion of its R (which
corresponds to its R divided by the number of in-links this page has - or simply put, its
in-degree).
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Inverted TrustRank pseudocode:
Require: N: number of nodes, 0 < ω < 1: damping factor, S−: subset of the seed containing only the

bad pages, N−: number of bad pages in the seed

1 C = (1 − ω )
2 f o r j : 1 . . . N do / / I n i t i a l i z a t i o n
3 i f j ∈ S− then
4 R[ j ] = C / N−

5 e l s e
6 R[ j ] = 0
7 end i f
8 Score [ j ] = R[ j ]
9 end f o r

10 whi le not conve rged do
11 Aux = 0
12 f o r d e s t : 1 . . . N do / / Fol low l i n k s i n t h e g raph
13 f o r a l l l i n k t o d e s t from s r c do
14 Aux [ s r c ] = Aux [ s r c ] + R[ d e s t ] / i ( d e s t )
15 end f o r
16 end f o r
17 f o r j : 1 . . . N do
18 / / Apply damping f a c t o r ω

19 R[ j ] = Aux [ j ] ∗ ω

20 / / Add t o r a n k i n g v a l u e
21 Score [ j ] = Score [ j ] + R[ j ]
22 end i f
23 end f o r
24 end whi l e
25 r e t u r n Score

With the same complexity of both Truncated PageRank and TrustRank.

4.5 Extra Attributes

Along with the algorithms explained in Chapter 3, five other page-level attributes were
computed. These extra attributes were calculated as an attempt to make the results from
the experiments described in Chapter 5 become even better. They are:

• Assortativity: the coefficient of the degree of a page divided by the average
degree of both its in-neighbors and out-neighbors. Degree in this case is undirected
(for a page p, degree(p) = i(p)+o(p));

• Average in-links in out-neighbors: for a page p, ave_in_out(p)=∑q∈(p,q)
i(q)
o(p) ;

• Average out-links in in-neighbors: for a page q, ave_out_in(q)=∑p∈(p,q)
o(p)
i(q) ;

• In-degree: for a page p, i(p) as defined in Chapter 2;

• Out-degree: for a page p, o(p) as defined in Chapter 2;

• Reciprocity: the fraction of out-links that are also in-links of a page. For
instance, if a page p has five out-links, and three of those out-neighbors links back
to p, reciprocity(p) = 3

5 . If p has no out-links, reciprocity(p) = 0.
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A short explanation of the implementation details of each of them is given now.

4.5.1 Assortativity

The first step is to calculate the degree of every page, by adding the out-degree and the
in-degree of each of them. Then, the average degree of the neighbors (ave_degree vector
in the pseudocode) of every page is then computed. Finally, the ratio between the degree
of every page and the average degree of its neighbors is then calculated.

If the average degree of the neighbors of a page p is equal to 0, it also means that
degree(p) = 0. In this case, an assortativity of 1 is given.

Assortativity pseudocode:
Require: N: number of nodes

1 f o r j : 1 . . . N do
2 d e g r e e [ j ] = i ( j ) + o ( j )
3 end f o r
4 f o r s r c : 1 . . . N do / / Fol low l i n k s i n t h e g raph
5 f o r a l l l i n k s from s r c t o d e s t do
6 a v e _ d e g r e e [ s r c ] = a v e _ d e g r e e [ s r c ] + ( d e g r e e [ d e s t ] / d e g r e e [ s r c ] )
7 a v e _ d e g r e e [ d e s t ] = a v e _ d e g r e e [ d e s t ] + ( d e g r e e [ s r c ] / d e g r e e [ d e s t ] )
8 end f o r
9 end f o r

10 f o r j : 1 . . . N do
11 i f a v e _ d e g r e e [ j ] 6= 0 then
12 a s s o r t a t i v i t y [ j ] = d e g r e e [ j ] / a v e _ d e g r e e [ j ]
13 e l s e
14 a s s o r t a t i v i t y [ j ] = 1
15 end i f
16 end f o r
17 r e t u r n a s s o r t a t i v i t y

4.5.2 Average in-links in out-neighbors

The average in-links in out-neighbors computation is done by simply passing over the
graph, and adding up the ratio between the in-degree of the out-neighbors of a page p and
the out-degree of p.

Average in-links in out-neighbors pseudocode:
Require: N: number of nodes

1 a v e _ i n _ o u t = 0
2 f o r s r c : 1 . . . N do / / Fol low l i n k s i n t h e g raph
3 f o r a l l l i n k s from s r c t o d e s t do
4 a v e _ i n _ o u t [ s r c ] = a v e _ i n _ o u t [ s r c ] + ( i ( d e s t ) / o ( s r c ) )
5 end f o r
6 end f o r
7 r e t u r n a v e _ i n _ o u t
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4.5.3 Average out-links in in-neighbors

The average out-links in in-neighbors computation is done by simply passing over the
graph, and adding up the ratio between the out-degree of the in-neighbors of a page p and
the in-degree of p.

Average out-links in in-neighbors pseudocode:
Require: N: number of nodes

1 a v e _ o u t _ i n = 0
2 f o r d e s t : 1 . . . N do / / Fol low l i n k s i n t h e g raph
3 f o r a l l l i n k s t o d e s t from s r c do
4 a v e _ o u t _ i n [ d e s t ] = a v e _ o u t _ i n [ d e s t ] + ( o ( s r c ) / i ( d e s t ) )
5 end f o r
6 end f o r
7 r e t u r n a v e _ o u t _ i n

4.5.4 In-degree and Out-degree

The Out-degree of every page may be found with a simple call to a method from the
WebGraph framework. The In-degree is found by passing through all the out-neighbors
of a page and adding 1 to its in-degree variable.

4.5.5 Reciprocity

To calculate the reciprocity of every page in a graph, it is necessary to follow all the
links in the graph and check if there is a "back-link" for each of them. So, for each link
from page p to page q, if there is also a link from page q to page p (the "back-link" of the
link from page p), 1

o(p) is added to the reciprocity of p.

Require: N: number of nodes

1 r e c i p r o c i t y = 0
2 f o r s r c : 1 . . . N do / / Fol low l i n k s i n t h e g raph
3 f o r a l l l i n k s from s r c t o d e s t do
4 i f ∃ l i n k from d e s t t o s r c then
5 r e c i p r o c i t y [ s r c ] = r e c i p r o c i t y [ s r c ] + (1 / o ( s r c ) )
6 end f o r
7 end f o r
8 r e t u r n r e c i p r o c i t y
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4.6 Input and Output Formats

The input and output formats used in this work is explained in the two Subsections
below.

4.6.1 Input Formats

Most of the implemented algorithms used only the BVGraph compressed format of
the graph as input. The basename of the graph was then given as an argument for their
executions.

For example: if the files for the graph are "uk-2006-05.graph", "uk-2006-05.offsets",
and "uk-2006-05.properties", the basename is then only "uk-2006-05".

The TrustRank implementation also needs to receive a seed file as argument, with the
following format (for the graph in Figure 3.4):

2
1
1
_
_
_
_
0
_
_
_

where:

• the first line indicates the number of good pages in the graph;

• the second line represents the trustfulness of page 0 (1 if good, 0 if bad);

• the third line represents the trustfulness of page 1 (1 if good, 0 if bad), and
so on;

• pages that are not in the seed are represented with black lines (underscore
characters in the example above).

The Inverted TrustRank implementation receives as argument a seed file with a similar
format, but with the first line indicating the number of bad pages in the graph instead.
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4.6.2 Output Formats

All implemented algorithm output files look the same: it is a consecutive list of values,
where each line indicates the score for the page which the id is equal to line_number−1.
So, the first 15 lines of the output file from the Truncated PageRank with truncation T = 3,
for the Web graph of the WEBSPAM-UK2006 dataset should look like:

2.2992026551612757E−8
2.283874110873647E−8
2.214069898303004E−8
2.214069898303004E−8
1.1984591420336383E−9
2.283874110873647E−8
2.283874110873647E−8
2.283874110873647E−8
2.283874110873647E−8
2.283874110873647E−8
2.283874110873647E−8
2.283874110873647E−8
2.205961027994608E−8
1.2451718963401025E−9
2.205961027994608E−8
. . .

where:

• the first line represents the Truncated PageRank with truncation T = 3 score
for page 0;

• the second line represents the Truncated PageRank with truncation T = 3
score for page 1, and so on;
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5 EXPERIMENTS AND RESULTS

This Chapter presents the experiments conducted during this work. Each of the classi-
fiers built is presented together with their results and a comparative analysis. The features
used by each classifier were calculated using the algorithms discussed in Chapter 4.

In Section 5.1, Weka, the tool used to create the classifiers is briefly presented. In
Section 5.2, the necessary steps to be taken before the generation of such classifiers is
described. Section 5.3 details the results of each of the proposed classifiers. Finally, Sec-
tion 5.4 shows a comparison between the results of the two studied spamdexing detection
techniques and an analysis of the combination of both techniques (with and without the
use of the extra attributes, presented in Chapter 4, as features).

5.1 Weka

Weka (WITTEN; FRANK, 2005), as presented in its official Web site1, "is a collection
of machine learning algorithms for data mining tasks". These algorithms can either be
applied directly to a dataset, with the use of an available Graphical User Interface (GUI),
or called from a code in the Java programming language.

For this work, the Weka’s implementation of C4.5 (QUINLAN, 1993) decision trees
is used. The choice of C4.5 was because it is the most usual way of experimenting with
this kind of data, as seen in most papers of this area of research - like (BECCHETTI et al.,
2006) and (CASTILLO et al., 2007). These decision trees may be used as classifiers to
determine, based on a set of features, whether a page is or is not a spam page. Describing
such classifiers in detail is not the focus of this work, and more information about them
may be found in (WITTEN; FRANK, 2005).

1http://www.cs.waikato.ac.nz/ml/weka
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As an example, the classifier generated by Weka featuring the TrustRank algorithm
results (which is further detailed in Section 5.3) is shown:

l o g _ t r u s t r a n k _ d i v _ p a g e r a n k <= −3.58793
| l o g _ p a g e r a n k <= −10.2313
| | t r u s t r a n k _ d i v _ p a g e r a n k <= 0 .00382
| | | l o g _ p a g e r a n k <= −10.8684
| | | | t r u s t r a n k _ d i v _ p a g e r a n k <= 0 .001275
| | | | | l o g _ p a g e r a n k <= −10.8778: normal
| | | | | l o g _ p a g e r a n k > −10.8778: spam
| | | | t r u s t r a n k _ d i v _ p a g e r a n k > 0 . 0 0 1 2 7 5 : normal
| | | l o g _ p a g e r a n k > −10.8684
| | | | l o g _ p a g e r a n k <= −10.5393: spam
| | | | l o g _ p a g e r a n k > −10.5393
| | | | | l o g _ p a g e r a n k <= −10.521: normal
| | | | | l o g _ p a g e r a n k > −10.521
| | | | | | l o g _ p a g e r a n k <= −10.2725: spam
| | | | | | l o g _ p a g e r a n k > −10.2725: normal
| | t r u s t r a n k _ d i v _ p a g e r a n k > 0 .00382
| | | l o g _ p a g e r a n k <= −10.8153: normal
| | | l o g _ p a g e r a n k > −10.8153
| | | | t r u s t r a n k _ d i v _ p a g e r a n k <= 0 . 0 1 4 2 7 1 : spam
| | | | t r u s t r a n k _ d i v _ p a g e r a n k > 0 .014271
| | | | | l o g _ p a g e r a n k <= −10.4121: normal
| | | | | l o g _ p a g e r a n k > −10.4121: spam
| l o g _ p a g e r a n k > −10.2313
| | t r u s t r a n k _ d i v _ p a g e r a n k <= 0 . 0 1 5 4 8 4 : spam
| | t r u s t r a n k _ d i v _ p a g e r a n k > 0 .015484
| | | l o g _ p a g e r a n k <= −9.94297: spam
| | | l o g _ p a g e r a n k > −9.94297
| | | | p a g e r a n k <= 0 . 0 0 0 0 9 7 : normal
| | | | p a g e r a n k > 0 .000097
| | | | | t r u s t r a n k _ d i v _ p a g e r a n k <= 0 .023442
| | | | | | t r u s t r a n k _ d i v _ p a g e r a n k <= 0 . 0 1 6 8 8 7 : normal
| | | | | | t r u s t r a n k _ d i v _ p a g e r a n k > 0 . 0 1 6 8 8 7 : spam
| | | | | t r u s t r a n k _ d i v _ p a g e r a n k > 0 . 0 2 3 4 4 2 : normal
l o g _ t r u s t r a n k _ d i v _ p a g e r a n k > −3.58793: normal

A tree of size 35 and 18 leaves.

5.2 Preparing the Test Data

In this Section, the steps taken before the creation of the classifiers shown in Section
5.3 are presented.

5.2.1 Label Sets and Validation

As a part of the WEBSPAM-UK2006 dataset (CASTILLO et al., 2006), two sets of
human-labeled hosts are provided: the first one is provided as a training set for tools like
Weka, and the second one is provided as a testing set for the classifiers generated for such
tools. The distribution of labels in these sets are as follows:

• set1: 4948 (88%) non-spam labels versus 674 (12%) spam labels;

• set2: 601 (32.5%) non-spam labels versus 1250 (67.5%) spam labels.
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The problem is that, preliminary tests in these sets have shown that these label bal-
ances are not the best, since the significant difference in the amount of each sample (non-
spam, and spam) caused the generated classifiers to misclassify too many entrances. To
solve this problem, a mixture of the two sets was proposed: the non-spam labels from set1
are joined with the spam labels from set2, and the non-spam labels from set2 are joined
with the spam labels from set1, which causes the creation of two whole new sets:

• set3: 4948 (80%) non-spam labels versus 1250 (20%) spam labels;

• set4: 601 (47%) non-spam labels versus 674 (53%) spam labels.

Tests using both new sets as training sets were performed. Even though the classifiers
using set4 for training presented, in general, better F-measures than the ones built with
set3, they have also shown a False positive rate three to six times bigger than the classifiers
that used set3 as training set. The reason for this overall better results with set3 may be
strongly related to the reality of the Web, where the number of non-spam pages really
outnumbers the number of spam pages (even though the later are the most noticed by the
users). For this reason, it was opted to use set3 as the training set for the classifiers that
are presented in Section 5.3.

Furthermore, the almost 50%/50% ratio achieved in the creation of set4 gave the
opportunity to use it as the seed for both TrustRank and Inverted TrustRank algorithms,
since it has a fair distribution of good and bad pages. A fair distribution which would
cause an unfair evaluation for both of the algorithms if set4 was also used as the testing
set for the generated classifiers. Two options then emerged: either breaking set3 in two
different sets, with the same label balance as the one presented in set3, so that one could be
used as the training set and the other as the testing set; or using a K-fold cross-validation.

K-fold cross-validation is a technique that divides the data in K approximately equal
partitions, then each part is held out as the validation data for the testing model, and
the remaining K-1 folds are used as training data. The cross-validation process is then
repeated K times, each time using a different partition as the validation data. The K error
estimates are then averaged to produce a single error estimate. Using 10 as fold number
is the most common choice for the cross-validation method, and was also the option used
in this work.

5.2.2 Score Calculation

In order to calculate the scores produced by the studied ranking algorithms, the host
graph of the WEBSPAM-UK2006 dataset was used instead of using its whole Web graph.
The reason for this is that preliminary tests have shown that the difference in the accuracy
of the classifiers generated with the page-level scores and with the host-level scores is
small, but the time taken to calculate the same scores for a 77-million-node graph is much
higher than the time it takes to calculate them for a 11-thousand-node graph. Also, the
labels provided are at host-level, so it would not be possible to use all the calculated
page-level scores anyway.

For doing this, the procedure explained in Section 4.1 was used to create a BVGraph
compressed format graph from the "uk-2006-05.hostnames.txt.gz" file provided (though
a text-level conversion was necessary - and made using one of the the auxiliary scripts
presented in appendix A). The weights of the links were ignored.
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It is also important to notice that the Truncated PageRank scores were calculated us-
ing truncations T = 2,3,4, since T = 1 would be just based on in-degree, and T > 4
would start to truncate more than just link farms, which are the main targets of this algo-
rithm. Moreover, the PageRank used as feature of all classifiers was calculated using the
Truncated PageRank implementation, with truncation T = 0.

The number of iterations used during the score calculation of each of the implemented
algorithms were the same as the ones suggested by their original authors: 50 iterations
for the Truncated PageRank and 20 iterations for the TrustRank and Inverted TrustRank
score calculations. The extra attributes, that were also calculated, may be easily computed
in one to three steps over the Web graph, as shown in their pseudo codes in Chapter 4.

5.2.3 Conventions

Some of the features used by the classifiers that are shown in Section 5.3 were made
by using the logarithm of some of the calculated scores, as well as the ratio between
some of them. When computing these features, some conventions were used to avoid null
values:

• log(x) =−50 if x 6 0

• x
0 = 1 if x = 0

• x
0 = 0 if x 6= 0

5.3 Classifiers

This Section presents the 18 different classifiers which were built using the scores
computed by the implemented algorithms of Chapter 4. First, we deal with the straight-
forward application of the calculated scores as the features for the C4.5 decision trees
implementation of Weka, the Standard Classifiers. The results of the ensemble of classi-
fiers created with the help of the bagging technique are shown afterwards.

5.3.1 Standard Classifiers

Before listing the generated classifiers, it is important to explain the use of the loga-
rithm of the calculated scores as features: the use of the raw scores as the only features for
the classifiers was not properly taken into account by the decision tree algorithm. Since
the computed scores seems to be distributed according to a log-normal distribution, then
their logarithms are distributed according to a normal distribution, which this implemen-
tation of C4.5 decision trees seems to handle better. Also, the ratio of the scores with the
PageRank was used as a comparison feature: to show the relation of the score of a certain
page with its PR value.

For abbreviation purpose, the Truncated PageRank with truncations T = 2, 3, 4 are
referred to as TPR-2, TPR-3, and TPR-4 respectively.
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• TPR-2 based classifier: uses as features the TPR-2 scores, the PR scores, the TPR-
2 scores divided by the PR scores, and the logarithm of these three values, totaling
6 features.

Prediction
Non-spam Spam

True Label
Non-spam 4570 378

Spam 554 696

Table 5.1: Confusion matrix for TPR-2 based classifier

Precision Recall F-measure FP rate FN rate
0.65 0.56 0.60 7.6% 44%

Table 5.2: Evaluation measures for TPR-2 based classifier

• TPR-3 based classifier: uses as features the TPR-3 scores, the PR scores, the TPR-
3 scores divided by the PR scores, and the logarithm of these three values, totaling
6 features.

Prediction
Non-spam Spam

True Label
Non-spam 4593 355

Spam 549 701

Table 5.3: Confusion matrix for TPR-3 based classifier

Precision Recall F-measure FP rate FN rate
0.66 0.56 0.60 7.2% 44%

Table 5.4: Evaluation measures for TPR-3 based classifier

• TPR-4 based classifier: uses as features the TPR-4 scores, the PR scores, the TPR-
4 scores divided by the PR scores, and the logarithm of these three values, totaling
6 features.

Prediction
Non-spam Spam

True Label
Non-spam 4533 415

Spam 479 771

Table 5.5: Confusion matrix for TPR-4 based classifier
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Precision Recall F-measure FP rate FN rate
0.65 0.62 0.63 8.4% 38%

Table 5.6: Evaluation measures for TPR-4 based classifier

At this point, it is possible to notice that even though the performance of the classifiers
is getting better as we truncate more and more the PageRank calculation, the number of
False positives is also increasing. This means that the applied truncation begins to "to cut"
a larger number of non-spam pages. This may also indicate that the Truncated PageRank
with truncation T = 3 is be the most appropriate for the host graph we are dealing with,
since it also presents the best Precision of all three classifiers presented until now.

For a better use of the Truncated PageRank scores, with all truncation levels, a com-
bined classifier, using the features of all the three classifiers above was tested:

• TPR-X based classifier: uses all features of the previous classifiers, totaling 14
features.

Prediction
Non-spam Spam

True Label
Non-spam 4498 450

Spam 436 814

Table 5.7: Confusion matrix for TPR-X based classifier

Precision Recall F-measure FP rate FN rate
0.64 0.65 0.65 9.1% 35%

Table 5.8: Evaluation measures for TPR-X based classifier

The overall performance (F-measure) improved again, as well as the number of spams
what were correctly classified, although the FP rate continues to rise. Depending on the
intention when using this kind of classification, the False positive rate (if not too high)
may be completely ignored in favor of detecting more spam pages, but then, the use of
this kind of technique alone is not indicated.

The next classifiers use the TrustRank and the Inverted TrustRank scores as features.

• TR based classifier: uses as features the TR scores, the PR scores, the TR scores
divided by the PR scores, and the logarithm of these three values, totaling 6 features.

Prediction
Non-spam Spam

True Label
Non-spam 4614 334

Spam 350 900

Table 5.9: Confusion matrix for TR based classifier
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Precision Recall F-measure FP rate FN rate
0.73 0.73 0.73 6.8% 28%

Table 5.10: Evaluation measures for TR based classifier

• ITR based classifier: uses as features the ITR scores, the PR scores, the ITR scores
divided by the PR scores, and the logarithm of these three values, totaling 6 features.

Prediction
Non-spam Spam

True Label
Non-spam 4614 334

Spam 350 900

Table 5.11: Confusion matrix for ITR based classifier

Precision Recall F-measure FP rate FN rate
0.63 0.50 0.56 7.2% 51%

Table 5.12: Evaluation measures for ITR based classifier

With these results, the spamdexing detection technique based on TrustRank proves
itself as the best one so far, even with the use of a seed that corresponds to only 5% of the
whole host graph. On the other hand, the use of the Inverted TrustRank scores as features
for a classifier have shown the worst results until now. This behavior is, nevertheless,
expected, since the majority of pages of this host graph are non-spam pages, and the spam
pages are also supposed to be near each other, so that it is more difficult to propagate a
non-trust factor than a trust factor.

Combining the last two classifiers above gives us the following classifier:

• TR & ITR based classifier: uses all features of both TR and ITR based classifiers,
totaling 10 features.

Prediction
Non-spam Spam

True Label
Non-spam 4633 315

Spam 363 887

Table 5.13: Confusion matrix for TR & ITR based classifier

Precision Recall F-measure FP rate FN rate
0.74 0.71 0.72 6.4% 29%

Table 5.14: Evaluation measures for TR & ITR based classifier
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Even though this combined classifier is using both of the features from TR and ITR
based classifiers, the F-measure results are worse than the one based only on TR. How-
ever, it has improved Precision and a lower False positive rate with the use of the ITR
based classifier features.

If we use all the features, from all the classifiers presented to this point, we may then
construct a combined classifier.

• Combined classifier: uses as features all the features used in both TPR-X and TR
& ITR based classifiers, totaling 22 features.

Prediction
Non-spam Spam

True Label
Non-spam 4641 307

Spam 356 894

Table 5.15: Confusion matrix the Combined classifier

Precision Recall F-measure FP rate FN rate
0.74 0.72 0.73 6.2% 29%

Table 5.16: Evaluation measures for the Combined classifier

Which shows itself as the classifier with the best balance in its evaluation measures,
what is expected, since we used more information in its learning scheme.

With the sole purpose of improving even more the overall performance of this Com-
bined classifier, the algorithms to calculate the extra attributes of the pages, shown in
Chapter 4, were implemented. The objective is to try and explore the properties of the
pages. So, a classifier using a total of 34 features was generated.

• Combined classifier with extra features: uses as features the TPR-2, TPR-3,
TPR-4, TR, and ITR scores, as well as the PR score, and all the previous scores
divided by the corresponding PR score. Furthermore, the assortativity, average
in-links in out-neighbors, average out-links in in-neighbors, in-degree, out-degree,
and reciprocity of the labeled pages were also used as features. The logarithm of
all these values formed the other half of the features.

Prediction
Non-spam Spam

True Label
Non-spam 4657 291

Spam 334 916

Table 5.17: Confusion matrix the Combined classifier with extra features
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Precision Recall F-measure FP rate FN rate
0.76 0.73 0.75 5.9% 27%

Table 5.18: Evaluation measures for the Combined classifier with extra features

These good results show that all these extra attributes may be indeed used as a help
factor to characterize spam pages over non-spam pages.

5.3.2 Classifiers with Bagging

As suggested in (CASTILLO et al., 2007), the bagging technique may be used to
improve the results of the proposed classifiers: "bagging is a technique that creates an
ensemble of classifiers by sampling with replacement from the training set to create N
classifiers whose training sets contain the same number of examples as the original train-
ing set, but may contain duplicates. The labels of the test set are determined by a majority
vote of the classifier ensemble". In this work, this N was set to 10.

Bagging improved the overall results of the classifiers by reducing the False positive
rate while increasing Precision and F-measure. So, for each of the previously presented
classifiers:

• TPR-2 based classifier:

Precision Recall F-measure FP rate FN rate
Without bagging 0.65 0.56 0.60 7.6% 44%

With bagging 0.69 0.55 0.61 6.2% 45%

Table 5.19: TPR-2: with bagging versus without bagging

• TPR-3 based classifier:

Precision Recall F-measure FP rate FN rate
Without bagging 0.66 0.56 0.61 7.2% 44%

With bagging 0.69 0.56 0.62 6.3% 44%

Table 5.20: TPR-3: with bagging versus without bagging

• TPR-4 based classifier:

Precision Recall F-measure FP rate FN rate
Without bagging 0.65 0.62 0.63 8.4% 38%

With bagging 0.70 0.60 0.65 6.6% 39%

Table 5.21: TPR-4: with bagging versus without bagging
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• TPR-X based classifier:

Precision Recall F-measure FP rate FN rate
Without bagging 0.64 0.65 0.65 9.1% 35%

With bagging 0.70 0.64 0.67 6.9% 36%

Table 5.22: TPR-X: with bagging versus without bagging

• TR based classifier:

Precision Recall F-measure FP rate FN rate
Without bagging 0.73 0.72 0.73 6.8% 28%

With bagging 0.75 0.70 0.73 5.8% 29%

Table 5.23: TR: with bagging versus without bagging

• ITR based classifier:

Precision Recall F-measure FP rate FN rate
Without bagging 0.63 0.50 0.56 7.2% 51%

With bagging 0.69 0.46 0.55 5.1% 54%

Table 5.24: ITR: with bagging versus without bagging

• TR & ITR based classifier:

Precision Recall F-measure FP rate FN rate
Without bagging 0.74 0.71 0.72 6.4% 29%

With bagging 0.77 0.70 0.73 5.3% 30%

Table 5.25: TR & ITR: with bagging versus without bagging

• Combined classifier:

Precision Recall F-measure FP rate FN rate
Without bagging 0.74 0.72 0.73 6.2% 29%

With bagging 0.77 0.73 0.75 5.6% 27%

Table 5.26: Combined: with bagging versus without bagging
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• Combined classifier with extra features:

Precision Recall F-measure FP rate FN rate
Without bagging 0.76 0.73 0.75 5.9% 27%

With bagging 0.79 0.76 0.78 5.0% 24%

Table 5.27: Combined with extra features: with bagging versus without bagging

Noticeably, when applying the bagging technique in the Combined classifiers (with
and without extra features), there is a gain in all evaluation measures used in this work.

5.4 Final Evaluation

For a final comparison between the two studied spamdexing detection techniques, the
version with bagging of the generated TPR-X and TR & ITR based classifiers are used,
as well as the Combined classifier, with and without the use of the extra features.

Precision Recall F-measure FP rate FN rate
TPR-X 0.70 0.64 0.67 6.9% 36%

TR & ITR 0.77 0.70 0.73 5.3% 30%
Combined 0.77 0.73 0.75 5.6% 27%

Combined + extras 0.79 0.76 0.78 5.0% 24%

Table 5.28: Final comparison between classifiers

The Truncated PageRank based classifier presents a satisfactory performance, with a
good Precision, Recall, and with acceptable False positive and False negative rates. Still,
it is worse than the TrustRank based classifier, which is the main responsible for the very
good results obtained by the combined classifier, as shown in Table 5.28.

Both single-technique based classifiers are able to detect, alone, more than 60% of
the spams present in the dataset used in this work, and while doing this, they incorrectly
classify less than 7% non-spam pages as spam pages. Since, usually, it is much better
to discard normal pages than having a lot of spam pages infecting our rank results, this
rates safely allow both studied spamdexing detection techniques to be used in real-life
environments.

Furthermore, the combined use of both techniques has proven to be even better, de-
tecting 73% of the presented spam-mass, and only mistaking 5.6% of non-spam pages as
spam. Also, although not attempted, an implementation that calculates all the scores at
the same time could be made, reducing the implementation costs of using the combined
classifier to the same cost of using a single-technique based classifier.

The Combined classifier with extra features was generated mainly with the purpose
to be a proof of concept that, by using more characteristics of the pages, it is possible to
achieve highly accurate results in spamdexing detection. This also shows that even though
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spam pages try to disguise themselves as non-spam pages, their most simple attributes are
quite different.

A comparison between the four classifiers listed above is also shown in Figures 5.1
and 5.2.

Combined + extras

CombinedTR & ITR

TPR-X

Figure 5.1: Precision and Recall of the classifiers

Combined + extras

Combined

TR & ITR

TPR-X

Figure 5.2: Error rates of the classifiers
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6 CONCLUSIONS

The present work has evaluated the quality of two spamdexing detection techniques,
as well as their combination. The goal was to check whether or not the current state of the
art is good enough in terms of detecting the largest possible number of spam pages in a
collection of Web sites, also considering the resulting mistakes. The conclusion is that the
results were very good in all cases, specially when the two techniques were combined.

During this work, the two selected spamdexing detection techniques were studied
and implemented, along with a small set of extra page-level attributes. The results of
all implemented algorithms were then used as features to generate decision trees with
the help of Weka (WITTEN; FRANK, 2005). The performance of each of the 18 built
classifiers was then evaluated with well-known Information Retrieval metrics, such as
Precision and Recall.

Even though the results achieved in the performed evaluations cannot be compared
with the quality of the spam filters found in modern email solutions, they are still very
acceptable, even when considering the False positive and False negative percentages. The
reason for this is that, while losing an important email is really bad for end-users, misclas-
sifying a non-spam page as spam is not that problematic. If the misclassified non-spam
page is really relevant, it can still be found by following links, or it can simply be moved
away from the first result page of search engines.

Also, the combined classifier with extra features proved that, when adding more
features, the results may still be improved. So, the combination of these link-based
spamdexing detecting techniques with content-based spamdexing detection techniques
may lead to results with an even higher quality than the ones produced in this work.

Both Truncated PageRank and TrustRank algorithms are strongly based on the PageR-
ank algorithm. A possible idea for a future work could be the study of other ranking al-
gorithms, such as HITS (KLEINBERG, 1999) and SALSA (LEMPEL; MORAN, 2000),
trying to modify them in the same fashion as the modifications applied to the PR. It would
be really interesting to see how this could be done, and also to compare such modifications
with the PageRank-based ones.
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