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Abstract: Studies evaluating candidate tick-derived proteins as anti-tick vaccines in natural hosts have
been limited due to high costs. To overcome this problem, animal models are used in immunization
tests. The aim of this article was to review the use of rabbits as an experimental model for the
evaluation of tick-derived proteins as vaccines. A total of 57 tick proteins were tested for their
immunogenic potential using rabbits as models for vaccination. The most commonly used rabbit
breeds were New Zealand (73.8%), Japanese white (19%), Californians (4.8%) and Flemish lop-
eared (2.4%) rabbits. Anti-tick vaccines efficacy resulted in up to 99.9%. Haemaphysalis longicornis
(17.9%) and Ornithodoros moubata (12.8%) were the most common tick models in vaccination trials.
Experiments with rabbits have revealed that some proteins (CoAQP, OeAQP, OeAQP1, Bm86, GST-Hl,
64TRP, serpins and voraxin) can induce immune responses against various tick species. In addition,
in some cases it was possible to determine that the vaccine efficacy in rabbits was similar to that of
experiments performed on natural hosts (e.g., Bm86, IrFER2, RmFER2, serpins and serine protease
inhibitor). In conclusion, results showed that prior to performing anti-tick vaccination trials using
natural hosts, rabbits can be used as suitable experimental models for these studies.

Keywords: antigen; humoral and adaptive response; immunization; rabbit; tick

1. Introduction

Ticks are obligate blood-sucking ectoparasites that parasitize a large number of terres-
trial and semi-terrestrial vertebrates, including humans [1–3]. Although they have been
considered cosmopolitan parasites, most tick species are restricted to specific habitats, espe-
cially in tropical and subtropical regions [4,5]. Ticks transmit a wide variety of pathogens,
being the second most important vectors of pathogens affecting humans, and the main
vector in domestic and wild animals [6,7].

Traditional methods to control these arthropods are mainly based on the use of syn-
thetic acaricides [8–10]. However, the application of these products has disadvantages,
including the selection of resistant tick populations, environmental contamination, and
residues in products of animal origin such as milk and meat [11].
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These issues raise the need to develop alternative control methods, including the selec-
tion of parasite-resistant breeds [12,13]; biological control using entomopathogenic fungi
(Metarhizium spp., Beauveria spp.) [14,15]; entomopathogenic nematodes (Heterorhabditidae
and Steinernematidae) [16,17]; regulator ants (Solenopsis germinata, S. saevissima, Camponotus
rengira, and Ectatomma quadridens) [18,19]; pesticides [20,21]; and immunological control
through the application of anti-tick vaccines [22–24].

Several proteins have been studied to date as candidates for the development of
tick vaccines [25,26]. The immune response against target tick-derived proteins can af-
fect the biological functions of ticks, such as feeding, blood digestion, protein regulation,
water transport, reproduction, embryogenesis, immune response, and tick–pathogen in-
teractions [27–30]. The first commercial anti-tick vaccine was obtained from the Bm86
protein [31]. The antigen hindered the feeding and reproductive ability of the Rhipicephalus
microplus [31,32], and was used in two leading tick vaccines, TickGARD® and GAVAC® [33].
This landmark result, obtained by Willadsen et al. (1989) [31], paved the way for the inves-
tigation of new antigens and the development of vaccines that reduced infestations by R.
microplus as well as other tick species.

The evaluation of tick vaccines in natural hosts has limitations, mainly due to the
high costs of maintaining and using farm or wild animals in experiments. For this reason,
animal models such as hamsters, guinea pigs, and rabbits are commonly used [34–36].
These animals have been used as models for basic and applied research, not only to test
immune responses generated by anti-tick vaccines, but also to study resistance to chemical
acaricides and tick-borne pathogen infection under laboratory conditions [37–40].

The use of hamsters, guinea pigs, and rabbits in tick vaccination experiments generally
has low maintenance costs, minimal space requirements, short reproductive cycles and
larger numbers of pups produced per year compared to some natural hosts [41–43]. How-
ever, there are distinct benefits and disadvantages to each of these models. For instance,
the use of hamsters is limited by low blood volume, compared to the use of guinea pigs
and rabbits [44,45]. On the other hand, guinea pigs have thick skin, which makes blood
collection relatively difficult, sometimes even requiring anesthetic techniques to collect
small volumes, in contrast to rabbits, which do not require anesthetic techniques for blood
collection [46].

Another limitation in experimental animal models is the number of ticks that can
be used when performing the infestation. Studies in rabbits have reported that these
animals can support a higher burden of adult ticks [23,47] compared to mice, hamsters
or guinea pigs [48,49]. Interestingly, the rabbit model was the first animal model used in
several immunological studies and was crucial, for example, in the development of Louis
Pasteur’s rabies vaccine in 1881 [50]. In 1976, the World Health Organization (WHO) [51]
highlighted rabbits as among the most important laboratory animals for the study of
different diseases [51–54]. The most common breeds of laboratory rabbits are derived from
the European rabbit (Oryctolagus cuniculus) [55]. The American Rabbit Breeders Association
(ARBA) enlisted 30 rabbit breeds that are used in experiments [56], among which the most
used is the New Zealand white rabbit [30,42,57].

Laboratory rabbits have proven to be the most suitable and accessible hosts for all
life-stages of various tick species during infestation and vaccination experiments [41,58].
This is because it has several advantages over the use of laboratory mice and rats, such as:
(i) a longer life span than mice and rats [59]; (ii) a larger body size (up to four times larger
than rats); (iii) higher blood volume, cell and tissue samples [60]; (iv) the production of
copious antiserum [51,56]; and (v) easy maintenance and breeding [56].

Moreover, it is evident that rabbit-based experiments are more cost-effective when
comparing trials conducted using large animals such as bovines. Various factors contribute
to the overall costs, including animal prices, the extended maintenance period, a higher
demand for feed, as well as the size and complexity of the animal facilities. Bovines require
a greater amount of physical space and specialized infrastructure, along with large feed
quantities. As a result, more demanding waste management systems are necessary for
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bovine experiments. Nonetheless, the determination of the real cost difference is difficult
due to various local factors. This is because facilities, locations, and services vary among
different regions and installations. Therefore, although rabbits incur lower costs, the precise
amount varies.

Historically, the evaluation of tick-stimulated immune responses in rabbits began by
studying the skin reactions caused by tick bites. A study by Trager observed that a single
infestation of rabbits with Dermacentor variabilis larvae induced immunity that prevented
subsequent larval infestations [61]. This work served as the basis for the subsequent use of
rabbits as a model host for the development of anti-tick vaccines in the 1970s [62]. The main
objective of this article was to review the current literature, underscoring the importance
of laboratory rabbits as experimental models for the development of anti-tick vaccines,
compare the immune responses developed in rabbits and the natural host, and evaluate
the vaccine efficacy against potential anti-tick antigens.

2. Vaccination in Rabbits

Rabbits are currently used as a model organism in anti-tick vaccines assays against
ticks of the genera Amblyomma, Dermacentor, Hyalomma, Haemaphysalis, Ixodes, Ornithodoros,
and Rhipicephalus (Figure 1) [23,35,63–66]. The following paragraphs will discuss the main
trials carried out on rabbits for anti-tick vaccine development.
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2.1. Haemaphysalis spp.

The tick Haemaphysalis longicornis tick is native to east Asia, with sparse distribution
in Australia, New Zealand, and the U.S. [67,68]. It has a three-host life cycle, infesting
cattle, and wild animals such as ungulates, lagomorphs, carnivores, and birds [69,70].
Immunological studies have shown different immunogenic proteins with the potential to
develop a vaccine against H. longicornis from China and Japan. Japanese white rabbit and
New Zealand breeds were mostly used in the infestation experiments.

Eight proteins were evaluated for the purpose of vaccine development against H.
longicornis using rabbits as an animal model (Figure 2). Wang et al. used New Zealand
white rabbits to test the immune response against the lipocalin homologous protein of H.
longicornis, obtaining a 60% reduction in the blood-feeding period of ticks, which would
affect egg number, oviposition, and hatching rate [24]. In one experiment, Japanese white
rabbits were immunized with protein 34 from H. longicornis, obtaining a partial reduction
of this tick infestation [64,71].
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2.2. Ornithodoros spp.

Ornithodoros erraticus and Ornithodoros moubata are nidicolous and endophilic argasid
ticks that are widely distributed in different regions [72–75], and can intermittently feed
on various vertebrates such as birds and canines [76,77]. Eight tick-derived proteins
were evaluated for the development of vaccines against O. erraticus and O. moubata using
rabbits as an animal model. Oleaga et al. tested the O. moubata ferritin 2 orthologues
in New Zealand white rabbits, obtaining 71% efficacy for OmFer2, which corresponded
to a decreased egg-hatching rate and in the subsequent number of emerging O. moubata
larvae [78]. On the other hand, Pérez-Sánchez’s research group tested the immune response
against aquaporin, showing moderate vaccine efficacy against O. erraticus [35].

A study carried out by Manzano-Román used New Zealand rabbits to test the protec-
tive effect induced by recombinant subolesin proteins against O. erraticus and O. moubata.
The results showed a higher reduction in the O. erraticus oviposition when compared with
O. moubata [79]. Manzano-Román et al. used the same rabbit breed to verify the vaccine
efficiency of the synthetic peptides of subolesin/akirin, obtaining 83.1% vaccine efficacies
against O. erraticus (Figure 3) [80]. These results show that rabbits presented anti-O. erraticus
antibodies that recognized both subolesin proteins and protected against both argasid ticks
with comparable efficacy.

2.3. Rhipicephalus spp.

Rhipicephalus appendiculatus, Rhipicephalus microplus, and Rhipicephalus sanguineus s.l.
are medically important ixodid ticks of the genus Rhipicephalus [81]. Rhipicephalus appen-
diculatus is distributed in central, eastern, and southeastern Africa [82,83]. Rhipicephalus
microplus and R. sanguineus s.l. are cosmopolitan ticks, distributed in the tropical and
subtropical regions of the globe [6,84]. They present monoxene (R. microplus) and hetorex-
one (R. sanguineus s.l. and R. appendiculatus) lifecycles, preferring domestic hosts such as
bovines, canines, and some wild animals, respectively. They feed on humans as incidental
hosts [84,85].

New Zealand white, Californians, Japanese white, and Flemish lop-eared rabbit breeds
were studied as model hosts for R. appendiculatus, R. microplus, and R. sanguineus s.l. in
experiments carried out in Brazil, Cuba, Kenya, Japan, and Mexico, which proved to be
successful in evaluating anti-tick proteins. Regarding the evaluation of proteins for the
development of vaccines against Rhipicephalus species using rabbit as an animal model,
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a total of 15 molecules, to date, have been evaluated in rabbits for vaccine development
against Rhipicephalus species, the most frequent tick genus in this kind of study.
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The voraxin α homologue of the R. appendiculatus tick was used to immunize Japanese
white rabbits, which resulted in a reduction in the weight of ticks, followed by a 50%
reduction in egg mass [86]. On the other hand, a different study determined the vaccinal
efficacy of rGST in New Zealand white rabbits, showing that rGST caused a reduction in
the number of female R. sanguineus s.l. infestations [28].

Parizi et al. using the New Zealand white rabbit for immunization with the R. microplus
cystatin 2c and reported a reduction in the number of fully engorged adult female ticks,
causing damage to R. appendiculatus tissues such as the intestines, salivary glands and
ovaries [23]. A study using Californian breed rabbits immunized with the P0 protein
demonstrated a 90% reduction efficacy against R. sanguineus s.l.; a decrease in nymphs and
larvae fed on vaccinated rabbits was observed [57]. In turn, Jittapalapong et al. determined
the vaccine efficacy of recombinant R. microplus salivary gland serpins in New Zealand
rabbits, obtaining an 83% reduction in adult R. microplus engorgement compared to the
control [87]. These results indicate that this tick serpin is immunogenic for rabbits and
suggest that this vaccine candidate antigen may confer protective immunity against the
cattle ticks in this experimental model.

Additionally, for cattle ticks, Lagunes-Quintanilla et al. initially studied the recombi-
nant peptide derived from the serpin RmS-17 protein as a vaccine in New Zealand rabbits
in order to later vaccinate cattle. The results showed that the experimental vaccination
reached 79% efficacy, limiting the number of infested adult ticks, the oviposition, and the
fertility of the eggs [47]. Rabbits developed a strong humoral immune response expressed
by high levels of anti-RmS-17 IgG. This was the first study evaluating the efficacy of the
RmS-17 peptide against infestation by R. microplus ticks, and demonstrated in a rabbit
model that it is both immunogenic and protective. A study used New Zealand rabbits
to verify the vaccinal efficacy of the 50-kDa protein from Rhipicephalus haemaphysaloides,
reporting a 74.7% protection in feeding ticks just 24 h after infestation [88]. The protein
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stimulated a specific protective immune response in tick-infested rabbits, demonstrating
the success of rabbits as an animal model for these tick experiments.

2.4. Ixodes spp.

Ixodes ricinus and Ixodes scapularis are ixodid ticks that are characterized by a heteroxe-
nous life cycle, and infest cattle, deer, dogs, and a wide variety of vertebrates, including hu-
mans [89–91]. The nymphal stage is most frequently responsible for transmitting pathogens
to humans [92,93]. Of the 265 species of Ixodes, 55 are distributed in the neotropical regions
of the planet [5]; however, I. ricinus and I. scapularis can be found only in the northern hemi-
sphere [89]. Vaccination studies against I. ricinus and I. scapularis using the New Zealand
rabbit breed were reported in the U.S., Spain, and the Netherlands (Figure 4) [48,94,95].
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Five proteins were tested for the development of vaccines against I. ricinus and I.
scapularis, using rabbits as an animal model. For instance, Contreras and de la Fuente
evaluated the efficacy of CoAQP proteins against I. ricinus infesting New Zealand white
rabbits and obtained an efficiency of 80% [95]. Meanwhile, Schuijt et al. evaluated P8, P19
and P23 proteins of I. scapularis in New Zealand white rabbits, demonstrating a reduction
in feeding by infested nymphs in rabbits immunized with the cocktail antigens [94].

Contreras and de la Fuente used New Zealand rabbits as a vaccination model to
describe the effect of the Q38 chimeric protein that conserved protective epitopes from I.
ricinus. The vaccine had an efficacy of 99.9% in the reduction of I. ricinus larvae, with a
cumulative effect in the reduction in tick survival and molting to the next life-stage [39].
Also, vaccination with I. ricinus recombinant protein ferritin 2 significantly reduced the
number, weight, and fertility of ticks in vaccinated rabbits infested with I. ricinus, with an
overall 98% vaccine efficacy [96]. These results demonstrate the feasibility of using ferritin
2 to develop vaccines to control tick infestations. A study showed that recombinant forms
of the tick cement antigen R. appendiculatus 64P, act as a “double-acting” tick vaccine for I.
ricinus, providing cross-protection for this ixodid tick, possibly by attacking antigens in the
midgut and salivary glands of adults and nymphs. The tick mortality rate was 60%, and
the results indicated the potential of 64TRPs as a broad-spectrum tick vaccine [48].

http://smart.servier.com/
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2.5. Dermacentor spp.

Dermacentor marginatus is an ixodid tick that has a heteroxenous life cycle and a variety
of hosts including canines, horses, and humans [97,98]. It is a tick with a cosmopoli-
tan distribution, present mainly in the Nearctic, Palearctic, and Neotropic ecozones of
the planet [99–101]. In the search for proteins for the development of a vaccine against
D. marginatus, the New Zealand white rabbit was used as an animal model in infestations
and vaccination experiments. A study infested New Zealand breed rabbits with D. margina-
tus after administering the last dose of the immunogen of GST, recording moderate vaccine
efficacy against D. marginatus (Figure 5 and Table 1) [30].
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Figure 5. Comparison of different models of tick infestation in rabbits: 1. larval-stage tick infestation;
2. nymphal-stage tick infestation; 3. adult-stage tick infestation; and 4. nymphal- and adult-
stage tick infestation. Parts of the figures were drawn by using pictures from Servier Medical Art:
http://smart.servier.com/ (accessed on 21 February 2023).
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Table 1. Use of rabbits as animal models for anti-tick vaccine experiments.

No Experiment/Molecule Name # of Rabbits Rabbitsbreed Tick Species Tick Stages Immunization Tick per Rabbit % Reduction Reference

1 Haemaphysalis longicornis lipocalin
(HlLIP) 6 NZ H. longicornis Adults 3 46 60.1 [24]

2 Glutathione S-transferase GST-cocktail 6 NZ R. sanguineus s.l. Adults 3 60 35 [28]

3 Dermacentor marginatus S-transferase
(DmGST) 6 NZ D. marginatus Nymphs and adults 3 110 43.6 [30]

4
Aquaporin of Ornithodoros erraticus

(OeAQP) and selenoprotein T of
Ornithodoros moubata (OeSEL)

9 NZ O. erraticus and O.
moubata Nymphs and adults 3 180 47.5 and 22.5 [35]

5 Q38 3 NZ I. ricinus and D.
reticulatus Larvae 2 200 99.9 and 43.6 [39]

6 RmS-17 and Bm86 6 NZ R. microplus Adults 3 120 79 and 62 [47]
7 64TRP 14 NR I. ricinus Adults 3 30 NA [48]
8 Evaluation of the immune response NR NZ H. leporispalustris Nymphs 1 NR NA [52]

9 Whole tick tissues collected from
Amblyomma maculatum 8 NZ A. maculatum Nymphs and adults 2 75 NA [53]

10 Attachment sites of Rhipicephalus
appendiculatus 5 NZ R. appendiculatus Adults 3 80 NA [54]

11 P0 protein and Bm86 10 C R. sanguineus s.l. Nymphs and adults 4 400 90 [57]

12 Evaluation of the immune response 6 NR D. variabilis and H.
leporispalustris Larvae 1 159 NA [61]

13 Native protein (p29) 10 JW H. longicornis Nymphs and adults 3 2110 56 [63]

14 Haemaphysalis longicornis serpin 1
(HLS1) 4 JW H. longicornis Nymphs and adults 2 120 43.9 [64]

15 Haemaphysalis longicornis ferretin 1
(HlFER1) 3 JW H. longicornis Adults 1 50 NA [65]

16 Triosephosphate isomerase homologue
from Haemaphysalis longicornis (HlTIM) 27 NZ H. longicornis Adults 1 92 50 [66]

17 Haemaphysalis longicornis protein 34
(HL34) 4 JW H. longicornis Nymphs and adults 2 115 29.1 [71]

18 Ferritin 2 in Ornithodoros moubata
(OmFer2) 6 NZ O. moubata Nymphs and adults 3 95 71 [78]

19
Subolesin Ornithodoros erraticus and
Ornithodoros moubata (rOeSub and

rOmSub)
9 NZ O. erraticus and O.

moubata Nymphs and adults 3 90 8.5 and 24.3 [79]

20
Subolesin/akirin orthologues of
Ornithodoros erraticus (OE1, OE2

and OM1)
3 NZ O. erraticus Adults and nymphs 3 200 48.6, 83.1 and

50.3 [80]

21 rVoraxin from Rhipicephalus
appendiculatus 3 JW R. appendiculatus Adults 3 60 26.7 [86]

22 Serpin 6 NZ R. microplus Larvae 3 500 67 [87]
23 RH50 6 NZ R. haemaphysaloides Nymphs and adults 3 120 74.7 [88]
24 Salivary antigens P8, P19, P23 and P32 3 NZ I. scapularis Nymphs 3 50 NA [94]
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Table 1. Cont.

No Experiment/Molecule Name # of Rabbits Rabbitsbreed Tick Species Tick Stages Immunization Tick per Rabbit % Reduction Reference

25 CoAQP 6 NZ I. ricinus Larvae 2 200 32 and 80 [95]
26 IrFER2 4 NR I. ricinus Nymphs 3 50 98 [96]

27 Haemaphysalis longicornis serpin-2
(HLS2) 4 JW H. longicornis Nymphs and adults 2 160 44.6 [102]

28 Tick egg yolk protein (vitellin) 4 JW O. moubata Nymphs and adults 4 112 NA [103]
29 Voraxin of Amblyomma hebraeum 2 FL A. hebraeum Adults 3 62 74 [104]

30 Protein 05 from Boophilus annulatus
(Ba05) 1 NR B. annulatus Larvae NA NA NA [105]

31 Recombinant BM95-MSP1a fusion
protein and Bm86 16 NZ R. microplus Adults 1 50 65.5 and 55.9 [106]

32 REnolase 3 NZ O. moubata Adults 3 90 NA [107]

33 Ornithodoros moubata salivary lipocalin
(TSGP4) 6 NZ O. moubata Adults and nymphs 3 100 14.1 [108]

34 Amblyomma americanum serine protease
inhibitor 19 (AAS19) 2 NZ Amblyomma americanum Adults 2 40 60 [109]

35 ATAQ protein from Rhipicephalus
microplus 9 NZ R. sanguineus s.l. Adults 3 NR 47 [110]

36 Rhipicephalus microplus ticks from Brazil
(Bm05br) 1 NZ R. sanguineus s.l. Adults 3 NR NA [111]

37 Glutathione S-transferase from
Haemaphysalis longicornis (GST-Hl) 14 NZ R. sanguineus s.l. and R.

appendiculatus Nymphs and adults 3 190 67 [112]

38 OM85 and OM03 6 NZ O. moubata Nymphs and adults 3 40 20.7 and 66.1 [113]

39
Cathepsin L and tropomyosin proteins

derived from Rhipicephalus microplus
(CaTroRh)

6 NZ R. microplus NA 3 NA NA [114]

40 Cathepsin L from Hyalomma asiaticum
(HasCPL) 6 NZ Hy. asiaticum Larvae 3 250 55 [115]

41 ATAQ in Haemaphysalis longicornis
(HlATAQ) 2 JW H. longicornis Adults 2 30 NA [116]

42 Hexokinase of Haemaphysalis longicornis
(HlHK) 12 NZ H. longicornis Adults 3 46 65.6 [117]

43

Acid tail salivary protein (OeATSP),
multiple coagulation factor deficiency

protein 2 homolog (OeMCFD2),
Cu/Zn-superoxide dismutase (OeSOD)

and sulfotransferase (OeSULT) of
Ornithodoros erraticus

6 NZ O. erraticus Nymphs and adults 3 95 58.3 [118]

44 RmGRP N/A NZ R. microplus N/A 9 N/A NA [119]

45 Haemaphysalis longicornis
metalloprotease (HLMP1) 3 NR H. longicornis Nymphs and adults 3 120 15.6 and 14.6 [120]

NR: Not reported. NA: Not applicable. NZ: New Zealand. JW: Japanese white. C: Californians. FL: Flemish lop-eared rabbit, and No: Number of ticks per rabbit.
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3. Discussion

To date, 57 tick-derived proteins have been evaluated as potential anti-tick vaccines
by studying the immunogenic responses generated using rabbits as an experimental model.
Rabbit models for anti-tick vaccination trials have allowed for a better understanding of
the physiological mechanisms of ticks infesting mammal hosts. For example, a study of the
serpins HLS1, rHLS2, rSerpin, and RmS-17 in rabbits stimulated an immune response that
affected the prolonged duration of feeding, increased mortality, and reduced oviposition in
ticks like H. longicornis and R. microplus [47,64,87,102].

Globally, the use of rabbits has provided novel evidence on a vaccine based on salivary
glycine-rich proteins in various medically important tick species. According to the findings
obtained by Zhou et al., using rabbits immunized with the glycine-rich protein RH50,
the protein was only expressed in the salivary glands of partially fed ticks and not in the
salivary glands of unfed ticks or in the midgut, fat body, or ovary of partially fed ticks, in
contrast to what was previously reported for p29 and Bm86 proteins [63,88,121].

Rabbits have been used as an immunization model to evaluate immunological re-
sponses to a given antigen (Q38, Bm86, GST, serpins and voraxin) against different tick
species. For example, high vaccine efficacy against both I. ricinus and D. reticulatus was
obtained with the chimeric protein Q38 containing subolesin/akirin [39].

Similarly, experiments on rabbits using voraxin α, a protein derived from the male tick
and transferred to the female through copulation to stimulate female blood-feeding [104],
have yielded vaccine efficiency by reducing feeding times in Amblyomma hebraeum. There is
an amino acid sequence similarity between the voraxin α of A. hebraeum (85%) and that
of D. variabilis (92%) and R. appendiculatus (85%) [86]. The immunization results could
therefore potentially be similar, making this protein a good multispecies vaccine candidate.
A reduction in the feeding time of ticks would also reduce salivation and, consequently,
pathogen transmission, in addition to impairing oocyte development [104].

The use of rabbits as animal models in the discovery of anti-tick molecules has been
fundamental in enabling the testing of these molecules before inoculation of the natural
hosts. It was verified that rabbits present an immune response similar to that of the
natural hosts. For example, the use of the ferritin 2 protein to immunize rabbits infested
with I. ricinus (IrFER2) yielded an efficiency of 98%, while the efficiency of the same
protein used in bovines infested with R. microplus and R. annulatus (RmFER2) was 64% and
72%, respectively [96]. Additionally, recombinant peptides derived from serpins showed
efficacies against R. microplus of between 67% and 79% in rabbits [47,87]; in bovines, this
protein showed an efficacy of 67% against R. appendiculatus [122].

Studies carried out with the Bm86 antigen in rabbits and cattle have shown that
rabbits and cattle have a very similar reduction efficacy against R. microplus, obtaining
a 62% reduction in rabbits [47], and a 60% reduction in cattle [96]. These results further
indicate that rabbits are an excellent experimental model for initial vaccination experiments
with anti-tick antigens, prior to the application of these in natural hosts such as bovines.
Another benefit obtained by using rabbits as an animal model in research is the high
recovery rate of fully engorged individuals of different tick species when carrying out
infestations, compared to that of non-definitive domestic hosts. An experiment using R.
microplus obtained a recovery of 33% in rabbits [123], compared to 3.7% in goats [124], 0.4%
in dogs [125], and 1.8% in horses [126].

On the other hand, in a vaccination experiment on rabbits, Canales et al. reported for
the first time that the recombinant bacterial membrane fraction containing the BM95-MSP1a
chimera was effective in the control of R. microplus infestations. The BM95-MSP1a vaccine
reduced oviposition and fertility of R. microplus similarly to that of the commercial vaccine
Bm86, having a significantly greater immune response in vaccinated rabbits compared to
the controls [106]. The results obtained in this experiment demonstrated that the rabbit
is an excellent animal model with which to continue exploring new techniques or novel
anti-tick antigens.
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The infestation time of the R. microplus nymphal-to-adult stages on rabbits takes an
average of 30 days to complete [127], while the time taken to complete these two life
stages in bovines is between 14 and 20 days, on average [128]. These data indicate that
the infestations of some tick species, such as R. microplus, in rabbits could be a valuable
alternative animal model for the evaluation of candidate vaccines and new molecules with
acaricidal activity against this ectoparasite. A possible explanation of why the life cycle
takes longer in the nymphal-to-adult life stages of R. microplus in rabbits could be due
to the inflammatory cellular response caused by tick bites at the beginning of feeding,
which prevents them from accessing the blood source, which can in turn lead to increased
mortality and feeding times [129]. Another aspect could be the strong competition between
ticks due to the small physical body space for feeding provided by rabbits as a feeding
model, which can cause the death of some ticks who are not able to adhere to the skin at
the beginning of the infestation [127,130].

Rabbits immunized with 64TRP and infested with R. sanguineus s.l. or I. ricinus devel-
oped local inflammatory immune responses involving leukocytes, basophils, eosinophils,
lymphocytes, mast cells, and macrophages. In turn, bovines immunized with 64TRP and
challenged by R. appendiculatus showed dermal migration of dendritic cells, actively degran-
ulating mast cells, basophils, and eosinophils [48]. These authors also found that the GST
protein generated very similar inflammatory responses (mainly caused by eosinophils or
mast cells) in hamsters, rabbits, and bovines [48]. Furthermore, infestation-only studies re-
vealed a similar immune response against R. appendiculatus, with infiltration of neutrophils,
macrophages, eosinophils, and basophils in both rabbits and cattle [54].

The immune responses generated by the different proteins studied in rabbits could
vary depending on the challenges of ticks in immature or mature life stages. For example,
the response generated by the p29 and HL34 proteins in the life stages of larvae, nymphs,
and adults of H. longicornis fed on immunized rabbits suggests that these proteins may be
involved in mediating key physiological functions in the tick [63,71]. Although mature
and immature ticks commonly express native p29, their sensitivities to rabbit immune
responses against rp29 appear to be different [63], while the native HL34 is expressed in
both immature (larvae and nymphs) and adult ticks. It is thus likely that immunity against
rHL34 is directed towards immature and mature ticks [71].

This result can be supported by Kemp et al. who recorded that R. microplus in immature
and mature states have different sensitivities for acquiring resistance against anti-tick
molecules. While there was severe intestinal damage in adult females and males feeding on
cattle infested with R. microplus-derived antigens, there was no effect on tick larvae feeding
on the same protected cattle [119]. Therefore, we can suggest that the different vaccine
effects between immature and mature H. longicornis ticks fed on rp29-vaccinated rabbits
could be consistent as well on natural hosts.

Additionally, studies on rabbits have allowed us to broaden our knowledge about
the “exposed” and “hidden” antigens of anti-tick proteins. For example, it was reported
that HLS1 acts on the expression of hidden antigens, inhibiting the secretion of rHLS1
in rabbits during feeding [64]. Also, 64TRP isoforms were characterized as “dual-acting”
anti-tick proteins against R. sanguineus s.l. and I. ricinus; they target both “exposed” and
“hidden” antigens, preventing attachment, and feeding by affecting the feeding site, as
well as cross-reacting with ‘hidden’ midgut antigens, resulting in the death of engorged
ticks [48].

Only a few studies focused on identifying molecules that affect male feeding or
reproduction. One of the proteins that was identified and tested in rabbits is voraxin [105].
The preliminary vaccination of rabbits with voraxin α demonstrated humoral immunity
and conferred protective immunity against female R. appendiculatus ticks, resulting in
reduced feeding weights [86]. This may indicate that the antibodies against voraxin α affect
female ticks of the same species. This same result was observed in the female A. hebraeum,
which was studied in infestations on rabbits immunized with voraxin α, where a reduction
in feeding of up to 72% was obtained compared to that of the engorged ticks on the control
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rabbits [104]. These results suggest that rabbits may be a good model not only for the study
of anti-tick molecules that act on females, but also for the molecules that act on males.

Results obtained from the study of the tick saliva proteome have shown a variety
of proteins that protect ticks against host immune responses and antihemostatic mech-
anisms [131–136]. This is because, during hematophagy, tick salivary glands undergo
remarkable growth and differentiation, accompanied by a significant increase in the syn-
thesis of different proteins [137]. Tirloni et al. identified 187 tick and 68 bovine proteins
in the saliva proteome of R. microplus, demonstrating that R. microplus saliva is rich in
hemolipoproteins, lipocalins, peptidase inhibitors, antimicrobial peptides, glycine, and
maintenance proteins [133]. These proteins, together with pharmacological bioactive lipids,
can counteract the host’s defenses and hemostatic mechanisms [131,138], while the host
physiological systems can trigger changes in the feeding activity of ticks [139] by stimulat-
ing proteins to limit host defense mechanisms [140].

Another study by Tirloni et al. examined the saliva proteome of non-fed adult ticks of
I. scapularis and A. americanum stimulated in different hosts, including rabbits, dogs and
humans, identifying a total of 276 proteins in I. scapularis and 340 proteins in A. americanum.
Among these proteins, 55 (I. scapularis) and 67 (A. americanum) belonged to the same func-
tional classes [141]. These data suggest that A. americanum and I. scapularis use a core set
of functionally similar proteins that regulate key host defense pathways to successfully
feed. I. scapularis saliva had a high abundance of proteins related to heme/iron metabolism,
followed by extracellular matrix/cell adhesion, oxidative metabolism/detoxification, cy-
toskeletal metabolism, proteasome machinery, nuclear regulation, conserved protein with
unknown function, modification proteins, protein synthesis machinery proteins, and
transport/storage. In turn, A. americanum saliva had a high abundance of extracellu-
lar matrix/cell adhesion proteins and proteinase inhibitors, followed by immune-related
heme/iron metabolism, energy protein metabolism, cytoskeletal, protein synthesis machin-
ery and proteasome machinery [141].

The above results indicate that these two tick species could inject the same protein
at different levels into different hosts, and that the protein composition of the saliva of
different tick species feeding on the same host is likely to be different. Furthermore, the
results suggest that ticks of the same species differentially express tick salivary proteins
when stimulated to start feeding on different hosts, expressing unique protein profiles in
their saliva. There is evidence that ticks differentially express specific sets of genes when
stimulated to start feeding [142,143]. For example, A. americanum saliva proteins contain a
diversity of protease inhibitors (PI), expressing a total of 155 PI proteins belonging to eight
families. Approximately 74% of these PI (115/155) were secreted into saliva within the first
120 h of feeding, indicating that the functions of the PIs are associated with the regulation
of the early stages of feeding in A. americanum, which could also include the transmission
of TBD agents by A. americanum [144].

On the other hand, Tirloni et al. identified differences in the expression of proteins in
the development stages of nymphs and adult females of H. longicornis, obtaining 30 proteins
in the saliva of nymphs, 74 proteins in the saliva of fully engorged adult females, and
31 proteins that were detected at both stages [134]. Proteins expressed in adult saliva may
be related to exposure to different vertebrate hosts and the different stages of development,
leading to changes in the dynamics of salivary transcription [132,145]. Taken together,
those studies demonstrate that, even though the protein profile of tick saliva is strongly
influenced by the host they infest, rabbits can be used as an alternative non-natural host to
continue exploring and describing proteins that serve as candidates for tick vaccines.

4. Conclusions

The current review summarized the evaluation of 57 antigens as anti-tick vaccines
in different rabbit breeds. These breeds include New Zealand, Japanese white, Flemish
lop-eared, and California rabbits. The most widely used is the New Zealand breed, in
countries located in Africa, Asia, America, Oceania, and Europe. Rabbits are not the natural
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host of most tick species; however, this has not been a limitation in obtaining vaccination
results very similar to those of natural hosts for different tick species. Likewise, the use
of rabbits has provided valuable insights on the immunological responses generated by
novel antigens prior to vaccination trials in natural hosts. Rabbits stand out among other
animal models used in vaccination experiments because they are suitable and commercially
accessible alternative hosts for challenging the larval, nymphal, and adult life-stages of
various tick species.
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