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Abstract Weeds cause tremendous economic and ecological damage worldwide. The number of genomes
established for weed species has sharply increased during the recent decade, with some 26 weed
species having been sequenced and de novo genomes assembled. These genomes range from 270 Mb
(Barbarea vulgaris) to almost 4.4 Gb (Aegilops tauschii). Importantly, chromosome-level assemblies are
now available for 17 of these 26 species, and genomic investigations on weed populations have been
conducted in at least 12 species. The resulting genomic data have greatly facilitated studies of weed
management and biology, especially origin and evolution. Available weed genomes have indeed
revealed valuable weed-derived genetic materials for crop improvement. In this review, we summarize
the recent progress made in weed genomics and provide a perspective for further exploitation in this
emerging field.
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INTRODUCTION

The Arabidopsis thaliana genome sequence was
released in 2000 and represented a hallmark in plant
research as the first sequenced and assembled plant
genome (The Arabidopsis Genome Initiative 2000).
Driven by the rapid development of sequencing tech-
nologies and bioinformatics methods, hundreds of plant
genomes have since been sequenced and assembled
(Sun et al. 2022a). High-quality reference genomes have
provided vital resources for molecular genetics and
have accelerated and improved precision crop breeding.
Whole-genome genetic information for entire

populations also offers accurate and plentiful molecular
markers from which to infer and reconstruct the com-
plex evolutionary histories of plant species, particularly
for crop species.

Crops are not the only plants that grow in fields,
however, weeds—defined here as non-crop plants
growing within crop fields—can have competitive
advantages over crop plants and cause yield loss (Basu
et al. 2004). To date, 2847 plant species belonging to
177 families and 1118 genera have been designated as
weeds (Weed Science Society of America database,
http://www.wssa.net). Notably, weeds are the main
contributors to yield loss for field crops, compared to
pests and pathogens, and on average result in a 30%
annual yield loss across the major crops (Oerke 2006).
Although agricultural production is substantially& Correspondence: lybai@hunaas.cn (L. Bai), fanlj@zju.edu.cn
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affected by weeds, until recently, weed studies have not
been given sufficient attention, in terms of both tradi-
tional molecular biology and genome analyses. Recent
comparative genomics and population genomics analy-
ses have revealed the effect of weeds on crop agronomic
traits and the mechanisms underlying weediness, such
as in barnyard grass (Echinochloa crus-galli), tall
waterhemp (Amaranthus tuberculatus), and weedy rice
(Oryza sativa f. spontanea) (Guo et al. 2017; Kreiner
et al. 2018, 2019; Gaines et al. 2020; Qiu et al. 2020). In
addition, the complex relationships among crops, weeds,
humans, and abiotic environments in agricultural
ecosystems, provide an ideal model for the study of
biological interactions. Considering the potential of
weed biology, recently, the weed research community
endeavored to initiate genome sequencing of global
weed species (Ravet et al. 2018).

In this review, we summarize genome sequencing of
weed species over the past decade and explore future
directions and potential applications in agricultural
production.

WEED GENOME SEQUENCING AND DE NOVO
ASSEMBLY

In recent years, the number of genomes released for
weed species has sharply increased (Table 1), with
genomes for at least 26 weed species being sequenced.
Their genome sizes range from 270 Mb (Barbarea vul-
garis) to 4360 Mb (Aegilops tauschii); 17 of these gen-
omes have been assembled to the chromosome level,
based on long-read sequencing technologies. Mean-
while, a significant improvement in sequence quality for
weed genomes was achieved along with the develop-
ment of new sequencing technologies. For instance, the
genomes of the barnyard grass species, E. crus-galli and
E. oryzicola, which grow in paddy fields and compete
with rice, were assembled into draft genomes and later
anchored to chromosomes by incorporating data from
chromosome conformation capture (Hi-C) (Guo et al.
2017; Ye et al. 2020; Wu et al. 2022b). The genome of
weedy rice (Oryza sativa f. spontanea) was also
sequenced and assembled, at the chromosome level, in
2019 (Sun et al. 2019). In addition, the genomes of
tetraploid Chinese sprangletop (Leptochloa chinensis)
were assembled (Wang et al. 2022). An invasive weed in
wheat fields, field pennycress (Thlaspi arvense), had its
genome assembled in 2015 and independently
anchored to chromosomes in 2021 and 2022 (Dorn
et al. 2015; Geng et al. 2021; Nunn et al. 2022). The
genomes for other agronomically important weeds have

also been sequenced. For example, chromosome-level
genomes of highly heterozygous Amaranthus species (A.
tuberculatus, A. hybridus, and A. palmeri) have been
developed (Montgomery et al. 2020). Of the 26 weed
species, 16 are dicots from six different families, with
the remaining nine species being monocots from only
one family (Poaceae) (Fig. 1). Polyploid species usually
exhibit more dominant advantages in their adaptation
(te Beest et al. 2012), and the genomes of four polyploid
weed species, comprising three tetraploid (L. chinensis,
E. oryzicola, and Capsella bursa-pastoris) and one hex-
aploid (E. crus-galli) species, have been sequenced.
Notably, several weeds are very closely related to crop
species (i.e., they represent different subspecies or
accessions of the same species), and the corresponding
crop genome can therefore be used as a reference
genome for weeds. For example, the available barnyard
millet (E. colona var. frumentacea) genome provided an
important reference for barnyard grass (E. colona var.
colona) (Wu et al. 2022b), as did the crop sorghum
(Sorghum bicolor) for Johnsongrass (Sorghum hale-
pense), cultivated pearl millet (Pennisetum glaucum) for
wild pearl millet (Pennisetum violaceum), rye (Secale
cereale) for weedy rye (S. cereale subsp. segetale), sugar
beet (Beta vulgaris) for sea beet (Beta vulgaris ssp.
maritima), and rice for weedy rice.

WHOLE-GENOME SEQUENCING OF WEED
POPULATIONS

Whole-genome sequencing, which provides excellent
tools for mining genetic mechanisms and evolutionary
studies, has been widely used in crop genomics (Jia et al.
2021). Since 2017, this method has also been applied to
a limited number of weed species, mainly for paddy
weeds, such as weedy rice and barnyard grass (Table 2).

Weedy rice was the first weed species to be used for
genomic investigation, via whole-population sequenc-
ing. As weedy rice can be considered a wild-like rice
ecotype, the genome of cultivated rice provides a good
reference for calling single-nucleotide polymorphisms
(SNPs) in individuals. Over 650 accessions of weedy rice
have been sequenced, being derived from global rice
production areas, which has deepened our under-
standing of weedy rice origins and adaptation strategies
(Li et al. 2017; Qiu et al. 2017, 2020; Imaizumi et al.
2021; Wedger et al. 2022).

Other weeds affecting paddy fields have also been
studied, at the genomic level. For barnyard grass, the
release of its genome (Guo et al. 2017) heralded the
beginning of population genomics in this species, with
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Table 1 Progress of de novo sequencing and assembly of weed genomes in the past decade

Year
released

Common
name

Scientific name Ploidy Genome
size (Mb)

Assembly
level

Contig
N50 (kb)

Main crop References

2013 Tausch’s
goatgrass

Aegilops tauschii Diploid 4244 Scaffold 4 Wheat Jia et al. (2013)

2014 Horseweed Conyza canadensis Diploid 326 Scaffold 21 Cotton, corn
and soybean

Peng et al.
(2014)

2015 Field
pennycress

Thlaspi arvense Diploid 343 Scaffold 20 Wheat Dorn et al.
(2015)

2017 Barnyard
grass

Echinochloa crus-galli Hexaploid 1340 Scaffold 1800a Rice Guo et al.
(2017)

Tausch’s
goatgrass

Aegilops tauschii Diploid 4225 Scaffold 93 Wheat Luo et al.
(2017)

Tausch’s
goatgrass

Aegilops tauschii Diploid 4310 Chromosome 113 Wheat Zhao et al.
(2017)

Shepherd’s
purse

Capsella bursa-pastoris Tetraploid 252 Scaffold 37 Wheat Kasianov et al.
(2017)

Yellow rocket Barbarea vulgaris Diploid 168 Scaffold 14 Lawn Byrne et al.
(2017)

2018 Australian
dodder

Cuscuta australis / 265 Scaffold 3630 Fabaceae Sun et al.
(2018)

Dodder Cuscuta campestris / 477 Scaffold 16 Fabaceae Vogel et al.
(2018)

Wild
sugarcane

Saccharum spontaneum Haploid 2560 Chromosome 45 Poaceae Zhang et al.
(2018)

/ Leersia perrieri Diploid 267 Chromosome 50 Rice Stein et al.
(2018)

2019 Kochia Bassia scoparia Diploid 711 Scaffold 61a Wheat Patterson et al.
(2019a)

Goose grass Eleusine indica Diploid 584 Scaffold 4 Fabaceae Zhang et al.
(2019)

Weedy rice Oryza sativa f. spontanea Diploid 373 Chromosome 6090 Rice Sun et al.
(2019)

Tall
waterhemp

Amaranthus tuberculatus Diploid 664 Chromosome 1740 Cotton, corn
and soybean

Kreiner et al.
(2019)

Witchweed Striga asiatica Diploid 472 Scaffold 16 Poaceae Kreiner et al.
(2019)

2020 Horseweed Conyza canadensis Diploid 426 Chromosome 1676 Poaceae Lu et al. (2020)

Bitter vine Mikania micrantha / 1350 Chromosome 1790 Cocoa, citrus
and bananas

Liu et al.
(2020)

Palmer
amaranth

Amaranthus palmeri Diploid 408 Chromosome 2540 Cotton, corn
and soybean

Montgomery
et al. (2020)

Tall
waterhemp

Amaranthus tuberculatus Diploid 573 Chromosome 2580 Cotton, corn
and soybean

Montgomery
et al. (2020)

Smooth
pigweed

Amaranthus hybridus Diploid 403 Chromosome 2260 Corn and
soybean

Montgomery
et al. (2020)

Green foxtail Setaria viridis Diploid 395 Chromosome 11,200 Poaceae Mamidi et al.
(2020)

Green foxtail Setaria viridis Diploid 397 Chromosome 19,521 Poaceae Thielen et al.
(2020)

Barnyard
grass

Echinochloa crus-galli Hexaploid 1340 Scaffold 1570 Rice Ye et al. (2020)

Barnyard
grass

Echinochloa oryzicola Tetraploid 946 Scaffold 1870 Rice Ye et al. (2020)
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over 700 genomes of accessions collected from all over
the world being re-sequenced for studies on evolu-
tionary history and typical weed adaptation syndromes
(Ye et al. 2019, 2020; Wu et al. 2022b). Similarly, gen-
ome resequencing of 89 Chinese accessions revealed
that sprangletop originated from a local population in
tropical areas of South Asia and Southeast Asia and that
the geographical range of individuals with herbicide
resistance genes expanded, likely due to field manage-
ment practices (Wang et al. 2022).

In recent years, significant efforts have been made to
explore the adaptation and evolutionary dynamics of
field pennycress. For example, 40 field pennycress lines
from different altitude regions were re-sequenced,
resulting in the identification of one SNP responsible for
the adaptation to latitude, via constructing ultra-high-
density linkage maps (Geng et al. 2021). In another
example, a genomic region located on scaffold 6 was
identified as causing the seedling color phenotype in
field pennycress by bulk-sequencing of DNA pools from
20 wild-type and 20 pale plants (Nunn et al. 2022).

GENOMIC INSIGHTS INTO WEED BIOLOGY

Environmental adaptation

Weeds have great potential as model systems in which
to understand plant responses to biotic and abiotic
stresses (Vigueira et al. 2013). They can survive in
disrupted environments and persist under multiple
challenges, in particular escaping from control measures
in the field, including targeted tillage practices, herbi-
cide use, and hand-weeding (Sharma et al. 2021; Neve
and Caicedo 2022). In addition, weeds are not dis-
tributed in limited ecological niches, but rather, they
often exhibit a widespread distribution, even among
areas with distinct conditions, exemplifying their strong
environmental plasticity (Sharma et al. 2021).

Genomic studies have significantly improved our
understanding of weed environmental adaptations to
biotic and abiotic stresses. For example, T. arvense is an
annual weed from the Brassicaceae family that lives at
different altitudes, ranging from sea level to 4500 m
above sea level. Genomic analyses of populations from
different ecological conditions identified a SNP that led

Table 1 continued

Year
released

Common
name

Scientific name Ploidy Genome
size (Mb)

Assembly
level

Contig
N50 (kb)

Main crop References

2021 Tausch’s
goatgrass

Aegilops tauschii Diploid 4290 Chromosome 1720 Wheat Wang et al.
(2021b)

Tausch’s
goatgrass

Aegilops tauschii Diploid 4075 Chromosome 2200 Wheat Zhou et al.
(2021)

Wild radish Raphanus raphanistrum
ssp. raphanistrum

Diploid 421 Chromosome 7764 Wheat Zhang et al.
(2021)

Wild radish Raphanus raphanistrum
ssp. landra

Diploid 418 Chromosome 4068 Wheat Zhang et al.
(2021)

Field
pennycress

Thlaspi arvense Diploid 527 Chromosome 4180 Wheat Geng et al.
(2021)

2022 Field
pennycress

Thlaspi arvense Diploid 526 Chromosome 13,300 Wheat Nunn et al.
(2022)

Barnyard
grass

Echinochloa crus-galli Hexaploid 1340 Chromosome 1570 Rice Wu et al.
(2022b)

Barnyard
grass

Echinochloa oryzicola Tetraploid 946 Chromosome 1870 Rice Wu et al.
(2022b)

Chinese
sprangletop

Leptochloa chinensis Tetraploid 416 Chromosome 8500 Rice Wang et al.
(2022)

Common
ragweed

Ambrosia artemisiifolia Diploid 1258 Scaffold 271a Tomato, lettuce
and maize

Bieker et al.
(2022)

Sunflower
broomrape

Orobanche cumana / 1418 Chromosome 13,334 Sunflower Xu et al. (2022)

Egyptian
broomrape

Phelipanche aegyptiaca / 3877 Scaffold 9973 Cucurbitaceae Xu et al. (2022)

Ryegrass Lolium rigidum Diploid 2440 Chromosome 361,790a Wheat Paril et al.
(2022)

aScaffold N50 size (kb)

/Data missing
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Fig. 1 List of weed species sequenced and their phylogenetic relationships. For detailed information about all genome sequencing results,
please see Table 1

Table 2 Summary of recent investigations on weed populations by genome resequencing

Common name Scientific name Population size Sequencing depth Region References

Weedy rice O. sativa f. spontanea 38 19 9 USA Li et al. (2017)

155 18 9 China Qiu et al. (2017)

30 10 9 Korea He et al. (2017)

331 19 9 Global Qiu et al. (2020)

50 23 9 Japan Imaizumi et al. (2021)

48 40 9 USA Wedger et al. (2022)

Barnyard grass E. crus-galli 328 15 9 China Ye et al. (2019)

578 15 9 Global Wu et al. (2022b)

Barnyard grass E. walteri 15 15 9 USA Wu et al. (2022b)

Barnyard grass E. colona var. colona 20 15 9 Global Wu et al. (2022b)

Barnyard grass E. oryzicola 85 15 9 Global Wu et al. (2022b)

Tall waterhemp A. tuberculates 173 10 9 USA Kreiner et al. (2019)

Green foxtail S. viridis 598 43 9 Global Mamidi et al. (2020)

Fonio millet D. longiflora 17 20 9 Africa Abrouk et al. (2020)

Field pennycress T. arvense 40 19 9 China Geng et al. (2021)

40 15 9 USA Nunn et al. (2022)

Chinese sprangletop L. chinensis 89 19 9 China Wang et al. (2022)

Weedy rye S. cereale subsp. Segetale 30 10 9 Global Sun et al. (2022a)

Common ragweed A. artemisiifolia 655 24 9 USA Bieker et al. (2022)
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to a loss-of-function allele in FLOWERING LOCUS C on
chromosome 1, which contributed to the early flowering
trait that was key to the success of high-elevation pop-
ulations (Geng et al. 2021).

Another conspicuous trait related to environmental
adaptation in weeds is herbicide resistance (Hawkins
et al. 2019; Gaines et al. 2020). Comparative genomics
between herbicide-susceptible and -resistant individu-
als, from the same species, and between species, can
offer glimpses into innovations in herbicide resistance
pathways (Kreiner et al. 2018). Waterhemp (A. tuber-
culatus), which is troublesome in maize (Zea mays) and
soybean (Glycine max) fields, is notorious for exhibiting
multiple herbicide-resistant (MHR) traits. Recently, a
reduction–dehydration–glutathione (GSH) conjugation
system was discovered as a possible pathway for MHR
(Concepcion et al. 2021). In palmer amaranth
(Amaranthus palmeri), genomic analysis helped deter-
mine that herbicide resistance is conferred by an
extrachromosomal circular DNA (eccDNA) of about
400 kb in length that harbors 5-ENOYLPYRUVYL-
SHIKIMATE-3-PHOSPHATE SYNTHASE (EPSPS), which
encodes the enzyme targeted by the herbicide glypho-
sate (Gaines et al. 2010; Molin et al. 2020). Although the
amplification of genes and gene clusters, via eccDNAs or
other structures, is a common stress-avoidance mecha-
nism in plants (Nandula et al. 2014; Singh et al. 2020), it
is usually transient and not stably inherited (Lanciano
et al. 2017; Gaines et al. 2019).

As the most dominant weed in rice fields, barnyard
grass has also evolved global resistance to major her-
bicides. Genome resequencing of barnyard grass indi-
viduals from Brazil, Italy, and China revealed four
mutations in the gene encoding aceto-lactate synthase
(ALS), which conferred herbicide resistance, namely
Ala-122-Thr, Trp-574-Leu, Ser-653-Asn, and a Gly-654-
Cys substitution identified for the first time, with a
tendency to occur in sub-genome A (barnyard grass is a
hexaploid). Moreover, after comparing the genomes of
resistant and susceptible individuals from Brazil, an
Arg-86-Gln mutation in the conserved degron tail region
of Echinochloa AUXIN-INDUCED (AUX)/INDOLE-3-
ACETIC ACID INDUCIBLE 12 (IAA12) was identified,
which has since been confirmed to confer resistance to
other auxin-like herbicides (LeClere et al. 2018; Fig-
ueiredo et al. 2021; Wu et al. 2022b).

Great progress has also been made in understanding
the responses of weeds to biotic stresses. Before her-
bicides were used in agriculture, the direct interaction
between weeds and human beings was through hand-
weeding, which placed high pressure on weed mor-
phology, especially plant architecture. One example is
the Vavilovian mimicry or crop mimicry seen in

barnyard grass (at least in E. crus-galli and E. oryzicola),
an unintentional human selection (UHS) resulting from
human action (Fig. 2).

Crop mimicry describes the adaptation of a weed
through its acquiring some of the morphological char-
acteristics of neighboring domesticated crops, at a
specific stage of their life history, to escape their
removal by hand-weeding (Barrett 1983; Ye et al. 2019).
The preadapted plants, or wild species that were first to
colonize in cultivated fields, during the early agricultural
stage (so-called ancient weeds), gradually became
mimic weeds under strong artificial (weeding) selection.
Genomic signatures of human selection on crop mimicry
were elucidated by comparing the genomes of mimetic
and non-mimicry lines of barnyard grass collected from
paddy fields in the Yangtz River basin, China (Ye et al.
2019). Several genes underlying plant architecture (e.g.,
tiller angle) were identified, including LAZY1, a gene
responsible for plant tiller angles, which was also under
selection during rice domestication. The genomic study
of mimicry of rice seedlings, by barnyard grass, is an
example of how weeds can adapt to disturbed envi-
ronments with selective pressure from human beings,
via a genomic approach.

Allelopathic secondary metabolites also are a repre-
sentative response of weeds to biotic stress. Benzox-
azinoids, which acted against microbial pathogens and
neighboring plants, were identified in a multitude of
species of the family Poaceae, such as maize, wheat
(Triticum aestivum), and barnyardgrass (Frey et al.
2009; Wu et al. 2022a). As a predominant representa-
tive of benzoxazinoids in plants, DIMBOA is present in
barnyard grass with multiple copies and inhibits plant
height and fresh weight of neighboring rice (Guo et al.
2017). Another example is momilactone A, which has
similar functions to Benzoxazinoids in rice. Based on the
momilactone A biosynthesis genes of rice, a syntenic
gene cluster was identified in barnyard grass. Up-regu-
lated expression of MAS and KSL4, within this cluster,
under fungal infection indicated its contribution to
resistance to blast infection in the paddy environment
(Guo et al. 2017).

Origins of weeds

Understanding the origin of agricultural weeds is crucial
to their proper management. Weed origins can be via
several routes. Preadapted plants or wild species can
colonize cultivated fields in human-made ecological
niches (Larson et al. 2014). With the expansion of cul-
tivated fields, the emergence and diversification of
weeds may have resulted from hybridization between
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crop and wild groups, along with other routes (Iriondo
et al. 2018; Janzen et al. 2019).

Recent genomic studies focused on paddy weeds
revealed many interesting insights about their possible
origin(s) and evolution (Fig. 2). Weedy rice (Oryza
sativa f. spontanea) has attracted much attention for its
origin of de-domestication, i.e., the conversion of a
domesticated form to a wild-like form (Wu et al. 2021).
Weedy rice mimics rice cultivars, at the seedling stage,
while retaining wild phenotypes, such as strong seed
dormancy and shattering. De-domestication from culti-
vated rice (including cultivars and landraces) is the
main route for rice feralization, along with introgres-
sions from wild rice, which is commonly seen in
Southeast Asia and South China, where wild rice is
distributed, as well as inter-subspecies hybridization
(Stewart 2017; Sun et al. 2019; Qiu et al. 2020; Wu et al.
2021). Genomic mining, aided by comparisons between
the genomes of weedy, wild, and cultivated rice popu-
lations, has revealed distinct differentiation regions on
chromosomes during de-domestication compared to
those resulting from domestication, with the identifica-
tion of a genomic island possibly underlying feralization
traits on chromosome 7. This genomic region harbors
Rc, controlling red pericarp and seed dormancy (Swee-
ney et al. 2006), and several tandem-duplicated genes

encoding seed storage proteins (Li et al. 2017; Qiu et al.
2020).

A similar process was also described for the origins
of E. crus-galli var. oryzoides, which is currently regar-
ded as a paddy weed (Fig. 2). The significantly lower
nucleotide diversity, longer linkage disequilibrium
decay, more immune response genes, larger grains, and
non-shattering spikelets in this species, compared to
weed populations, indicate that var. oryzoides is an
abandoned crop (Wu et al. 2022b).

PERSPECTIVES IN WEED GENOMICS

We need complete, contiguous, and accurate genome
assemblies for many more weed species. Indeed, in
notable contrast to the massive increase in sequenced
crop genomes, only 26 weeds have been decoded thanks
to the sequencing and assembly of their genomes. The
enormous gap between crops and weeds underscores
how much weeds are currently being overlooked. For
example, Commelinales, with about 750 extant species,
including pickerel weed (Monochoria vaginalis), are
important weeds growing in paddy fields. Likewise,
common water hyacinth (Eichhornia crassip) is the most
common invasive plant according to a survey by the

Fig. 2 Possible origination
routes for three notorious
paddy weeds in rice fields, as
supported by recent genomic
studies. Wild progenitors
include wild Oryza,
Echinochloa, and Leptochloa
species in the grass family.
HUS, human unintentional
selection
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Weed Science Society of America database (WSSA,
http://www.wssa.net). Yet, these two species still lack a
representative genome. Several sedges (e.g., Cyperus,
Scirpus, and Fimbristilis) are found worldwide and
exhibit particular weediness traits, but very little
genomic information is currently available.

We even lack a thorough understanding and charac-
terization of notorious weeds affecting croplands, such
as hairy crabgrass (Digitaria sanguinalis), a typical
upland weed growing in maize and soybean fields.
Moreover, a higher-quality genome of weeds is required
to shed light on related biological topics. The gap-free
genomes of many plants, such as Arabidopsis, rice, and
watermelon (Citrullus lanatus), have recently been
assembled, providing the first complete genome struc-
ture of any plant (Song et al. 2021; Wang et al. 2021a;
Deng et al. 2022). With the incorporation of sequences
from highly repetitive regions and centromeres into
genome assemblies at the chromosome scale, a greater
understanding of the global pattern of weed polymor-
phisms and the genetic basis of their weedy traits and
high adaptability is finally within reach, but only if more
genomes are sequenced or improved upon. These issues
were also noted by the International Weed Science
Consortium, which has designated Plantae (www.plan
tae.org) as a platform for community collaboration
efforts and has developed a weed genomics website
(www.weedgenomics.org) (Ravet et al. 2018).

We expect and anticipate more studies exploring the
population genomics of weeds, which will be helpful for
the understanding of their evolutionary strategies and
evolutionary ecology, while offering more options for
weed management. Current evolutionary patterns tend
to highlight pressure imposed by the natural environ-
ment, perhaps neglecting the role that human activities
play in a novel ecosystem labeled with specific species
assemblages and environmental factors. Studying weed
populations with complex evolutionary trajectories of
traits will enhance our ability to decode their distinct
evolutionary strategies under different conditions. In
addition, a better understanding of the evolution of
agricultural weeds will be crucial to weed management.
Given the increasing number of rapid weed adaptations,
such as herbicide resistance, ongoing selection for other
weedy traits should be a driving force to adjust all weed
management practices to mitigate the spread and suc-
cess of weeds.

With the advantage of more available genomes, weed
functional genomics will step to the front stage. Our
understanding of the mechanisms by which multiple
weed species acquire herbicide resistance (particularly
non-target resistance) to the same class of herbicide has
considerably improved with released genomic

information (Devine and Shukla 2000; Yuan et al. 2007;
Délye 2013; Kreiner et al. 2018). For example, the
availability of the barnyard grass genome made it pos-
sible to identify, for the first time, a significant increase
in copy number for cytochrome P450 genes in the weed
genomes, as well as a Gly-654-Cys substitution, with
both strategies contributing to ALS resistance. Another
example resulting from the comparative analysis of
waterhemp genomes was the report of a possible
pathway for MHR, via reduction–dehydration–glu-
tathione. We anticipate that, along with the develop-
ment of weed genomics, additional discoveries about
gene functions and their interactions will be
forthcoming.

More valuable genetic resource of weeds will be
revealed with the sequencing of more weed genomes,
which will have benefits for the genetic improvement of
crops and even their de novo domestication. Crops,
particular orphan crops, are genetically very closely
related to weeds. For example, orphan crops usually
have a notorious weed species in the same genus (Ye
and Fan 2021). Given their strong environmental plas-
ticity and high level of genetic variation, weeds are an
untapped genetic resource for domestication. For
example, mutating the orthologs for qSH1 (Shattering
QTL 1) and Sh4 (Shattering 4) genes in weeping rice
grass (Microlaena stipoides), an Australian wild relative
of rice, caused the loss of shattering in this species
(Shapter et al. 2013). Historically, some weeds have
been domesticated into crops, such as rye (Rye secale)
(Sun et al. 2022b). Presently, de novo domestication of
new crops is an option being considered to mitigate the
effects of climate change on global crop production. We
propose that some weeds, in particular those mimicking
crops, are ideal targets for de novo domestication.

In addition to crop improvement, weed management
will also benefit from the advances in weed genomes.
Gene silencing techniques are offer a promising
approach to manipulate the expression level of weed
traits genes to reduce their impact with improved
understanding of characteristic regulated pathways
(Neve 2018). For example, if genomics can identify the
basis of allelopathy, weeds could be modified with low
levels of allelopathic compounds, thereby reducing their
competitive ability in paddy fields. However, major
challenges remain to be overcome; e.g., the designation
of highly specific gene silencing triggers with high her-
itability (Patterson et al. 2019b).

Post-transcriptional silencing, using exogenous
application of RNA, known as spray-induced gene
silencing (SIGS), is a promising technology that may
revolutionize weed control. Several limitations and
opportunities are associated with the development of

� The Author(s) 2023

aBIOTECH (2023) 4:20–30 27

http://www.wssa.net
http://www.plantae.org
http://www.plantae.org
http://www.weedgenomics.org


this technology. The main requirement for SIGS is
selective gene silencing in weeds and the absence of
effects on crops and non-target organisms. Therefore,
the development of this non-transgenic, and environ-
mentally safe, technology depends largely on genome
sequencing, chromosome-level assemblies, and deep
knowledge of gene function for all weed species, which
affect food production, and the crops whose fields they
invade.
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Patterson EL, Saski C, Küpper A, Beffa R, Gaines TA (2019b) Omics
potential in herbicide-resistant weed management. Plants
8:607. https://doi.org/10.3390/plants8120607

Peng Y, Lai Z, Lane T, Nageswara-Rao M, Okada M, Jasieniuk M et al
(2014) De novo genome assembly of the economically
important weed horseweed using integrated data from
multiple sequencing platforms. Plant Physiol
166:1241–1254. https://doi.org/10.1104/pp.114.247668

Qiu J, Zhou Y, Mao L, Ye C, Wang W, Zhang J et al (2017) Genomic
variation associated with local adaptation of weedy rice
during de-domestication. Nat Commun 8:15323. https://doi.
org/10.1038/ncomms15323

Qiu J, Jia L, Wu D, Weng X, Chen L, Sun J et al (2020) Diverse
genetic mechanisms underlie worldwide convergent rice
feralization. Genome Biol 21:70. https://doi.org/10.1186/
s13059-020-01980-x

Ravet K, Patterson EL, Krähmer H, Hamouzová K, Fan L, Jasieniuk
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