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Subtração de Fundo baseado em Rastreamento Robusto de Subespaço

RESUMO

Este trabalho propõe um método robusto de subtração de fundo online, que detecta o

fundo e o primeiro plano em sequências de vídeo. Os métodos de subtração de fundo

existentes tendem a ter um desempenho limitado em cenários de ambiente complexo.

Neste trabalho, um método de rastreamento de subespaço é usado para atualizar conti-

nuamente, ao longo do sequências de vídeo, as estimativas de plano fundo e primeiro

plano. O primeiro plano estimado é atualizado continuamente ao reestimar suas caracte-

rísticas salientes e descartando elementos que potencialmente fazem parte do fundo. Os

resultados experimentais sugerem que a abordagem proposta tende a ser eficaz em vídeos

com uma ampla gama de cenários complexos e demonstram que nosso método supera

algoritmos de subtração de fundo on-line de última geração.

Palavras-chave: Aprendizagem de subespaço, Análise robusta de componentes princi-

pais, Rastreamento de Subespaço Robusto, Detecção de Saliency, Subtração de fundo,

Sensoriamento Compressivo, Visão Computacional.





ABSTRACT

This work proposes a robust online background subtraction method, which detects the

background and the foreground in video sequences. Existing background subtraction

methods tend to have a limited performance in complex environment scenarios. In this

work, a subspace tracking method is used to update continuously, along the video se-

quences, the background and foreground estimates. The estimated foreground is updated

by continuously re-estimating its salient features, and discarding elements that potentially

are part of the background. The experimental results suggest that the proposed approach

tends to be effective in videos with a wide range of complex backgrounds, and demon-

strate that our method outperforms state-of-the-art online background subtraction algo-

rithms.

Keywords: Subspace learning. Robust principal component analysis. Robust Subspace

Tracking. Salient detection. Background Subtraction. Compressive Sensing. Computer

Vision.
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1 INTRODUCTION

The successive progress of computer capacity has made it possible to process, an-

alyze, and interpret images and videos, enabling the continuous development of research

fields in computer vision, pattern recognition, and image processing, whose main objec-

tive is to process and analyze images and videos. These advancements have benefited

various application areas such as remote sensing, medical diagnosis, human-computer

interaction, video compression, intelligent video surveillance, traffic monitoring, visual

analysis of animals and insects, and optical motion capture. In most of these applications,

a minimum increase in precision is essential. Therefore, in recent decades, these research

areas have aroused great interest in the scientific community and industry (BOUWMANS,

2014), (GARCIA-GARCIA; BOUWMANS; Rosales Silva, 2020).

In most video-based applications, a fundamental and critical step is detecting the

foreground (moving objects) in a scene. Each scene comprises a background (generally

understood as the more static part or, the slower changing portion of video scenes) and

a foreground. Being able to discriminate the background from the foreground can be

critical in several video analysis tasks, such as in video surveillance and anomaly detec-

tion, to name a few. The process of separating the foreground and background of a video

frame is often known as background subtraction (BOUWMANS, 2014). It is also called

foreground segmentation or layering video. Background subtraction is a widely used

approach for this task. Also, this method seeks an adequate solution that balances com-

putation time and detection quality. The focus of the present work is on the Background

subtraction task.

To ensure good foreground detection, the videos must be generated using a static

camera, constant illumination, and a static background. However, in real applications, it is

not easy to have these conditions, and a wide variety of factors present different challenges

and different types of interest in moving foreground objects. In (KALSOTRA; ARORA,

2019), these factors are classified according to the challenges present in the background,

foreground, and camera; Background: Illumination changes, dynamic background, shad-

ows, challenging weather, bootstrapping, moved background, and objects. Foreground:

Shadows, Camouflage, intermittent object motion, occlusion, foreground aperture, and

sleeping foreground. Camera: Video noise, moving camera, and camera jitter. Thus, the

development of new background subtraction methods has become necessary. These meth-

ods should be able to adapt to previously mentioned significant changes and be robust in
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the presence of noise. Additionally, with technological advancements, devices are becom-

ing increasingly cheaper, such as computers, image scanners, digital cameras, and mobile

phones generating a large amount of data. New background subtraction methods must

consider these large data volumes to process and analyze them effectively and efficiently.

Different approaches to the background subtraction method have been developed

to deal with these challenges present in videos. These methods can be based on funda-

mentals, statistical information, subspace learning, and deep learning: Some examples

of methods based on fundamentals are mean subtraction (LEE; HEDLEY, 2002), me-

dian subtraction (GRASZKA, 2014) and histograms (ROY; GHOSH, 2017). However,

these methods may fail in practical situations. For example, when there is a camera jit-

ter, changes in illumination, and dynamic backgrounds. The methods based on statistical

information may consider a mixture of Gaussians (WREN et al., 1997) (ELGUEBALY;

BOUGUILA, 2013) (MUKHERJEE; JONATHANWU, 2012), the Student t-distribution

(GUO; DU, 2012), the Dirichlet distribution (MUKHERJEE; JONATHANWU, 2012)

(HAINES; XIANG, 2012), and the Poisson distribution (ZIN et al., 2014), to name a

few. The statistical methods can handle dynamic backgrounds in video sequences. How-

ever, prior knowledge of the background often is required and may miss spatially adjacent

objects in complex backgrounds.

In Subspace Learning (SL) methods (VASWANI et al., 2018), it is common prac-

tice to project each video frame into a low-rank subspace. The difference between the

original frame and its projection onto the subspace allows us to obtain the foreground.

Some examples of SL methods are (DIANA; BOUWMANS, 2010), (FARCAS; MARGHES;

BOUWMANS, 2012), (MARGHES; BOUWMANS; VASIU, 2012). The SL methods

tend to be robust to local changes (e.g. illumination). Still, they are sensitive to noise and

outliers, and missing data that often are present during the video acquisition. These lim-

itations motivated the development SL approaches such as robust principal component

analysis (RPCA) (CANDèS et al., 2011), (MCCOY; TROPP, 2011), (ZHANG; LER-

MAN, 2014), and low-rank matrix factorization (LRMF). The LRMF methods express a

data matrix as a product of two smaller matrices, namely, the low-rank matrix and the co-

efficient matrix, and can be categorized into three groups based on how noise is measured

(error norm). The L2-LRMF methods (TORRE; BLACK, 2003) (GABRIEL; ZAMIR,

1979) (SREBRO; JAAKKOLA, 2003) use the L2 error norm, but tend to be sensitive the

outliers. The L1-LRMF methods (WANG et al., 2012) (ZHENG et al., 2012) are more

robust to outliers. However, it may be affected by non-Gaussian noise, and the optimal so-
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lution finding can be challenging since most L1-LRMF methods have a non-differentiable

cost function. Finally, the probabilistic LRMF methods can handle complex noise (DING;

HE; CARIN, 2011) (BABACAN et al., 2012) (ZHAO et al., 2014) (CAO et al., 2015) us-

ing a combination of distributions. So, these methods tend to be adaptive to different

types of noise that occur in practical scenarios.

In Deep Learning (DL) methods (BOUWMANS et al., 2019), it is common to

model either the background or foreground using deep neural networks (DNNs). Some

examples of DL methods are (SULTANA et al., 2019) (LIM; Yalim Keles, 2018) (LIM;

KELES, 2018b) (LIM; KELES, 2018a) (GAO; LI; LU, 2021), (RAHMON et al., 2021)

and (LIANG et al., 2023). These methods have demonstrated high performance compared

to the mentioned methods, but they are supervised approaches that require a large amount

of data for training and generalization.

The mentioned methods often operate in batches (i.e., require all data to be avail-

able before processing), so applying these methods to online processing or to long data se-

quences can be challenging. Robust Principal Component Analysis (RPCA) based meth-

ods often use a fixed low-dimensional subspace to represent the background, which can

lead to high dimensional subspace when processing large data sets. Nevertheless, there

are online versions of RPCA and LRMF methods that can help dealing with some of the

above mentioned issues. Some examples of online RPCA mehods are Grassmannian Ro-

bust Adaptive Subspace Tracking algorithm (GRASTA, (He; Balzano; Lui, 2011)), Recur-

sive Projected Compress Sensing (ReProCS, (GUO; QIU; VASWANI, 2014), (QIU et al.,

2014), (NARAYANAMURTHY; VASWANI, 2018a), (NARAYANAMURTHY; VASWANI,

2018b), (NARAYANAMURTHY; VASWANI, 2019)), Online Robust PCA via Stochas-

tic Optimization (RPCA-STOC,(FENG; XU; YAN, 2013)), and Online Robust Princi-

pal Component Analysis with Change Point Detection (OMWRPCA-CP,(XIAO et al.,

2020)). GRASTA and ReProCS assume that a low dimensional subspace used for repre-

senting the background can slowly change in time, while RPCA-STOC assumes a fixed

subspace, and OMWEPCA-CP assumes that the subspace used for representing the back-

ground can change substantially at any time. Some examples of online LRMF are Robust

Online Matrix Factorization for Dynamic Background Subtraction (OMoGMF (YONG et

al., 2018)), and Efficient Low-Rank Matrix Factorization Based on l1,ϵ-Norm for Online

Background Subtraction (OBSL1 (LIU; LI, 2022)). The approach adopted by OMoGMF

is to model the foreground by a mixture of Gaussians (MoG), which is dynamically up-

dated online. So, the foreground and the background are detected adaptively. On the
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other hand, OBSL1 is based on the l1,ϵ-Norm, which approximates the L1 norm with the

advantage of being differentiable, which allows to search for optimal and sub-optimal

solutions. It shall be observed that most of the online foreground detection methods men-

tioned above (except for OMoGMF) do not consider the video (or image) structural in-

formation or the relationship that may exist among groups of pixels (or local features). In

other words, the above-mentioned methods do not take into account prior information that

may be available about the foreground and its features. However, in practice, neighboring

foreground features tend to cluster in the image and the feature space since the foreground

features persist in time and show identifiable structural properties. Therefore, these above

mentioned methods tend to have limitations when processing real data.

In the present work, we propose background subtraction for online foreground

detection called Background Subtraction Based on Robust Subspace Tracking (BS-RST).

It includes the robust estimation of foreground detection and utilizes Robust Subspace

Tracking as the backbone.

In the proposed BS-RST method, we replace the commonly used L1 norm, which

is used to quantify the foreground in most of the methods mentioned above, with a salience

detection method called spectral residual (HOU; ZHANG, 2007). Spectral residual fo-

cuses on the available structures in the foreground, unlike the L1 norm, which does not

consider the structure or relationships that may exist between groups of pixels in the

foreground. The BS-RST method operates online, after obtaining an initial subspace es-

timate (ZHAO et al., 2014). This initial subspace estimation allows for the estimation

of the foreground and background, with dynamic updates over time, as previously men-

tioned. Thus, the BS-RST method is capable of processing a large amount of data. Conse-

quently, we can address the limitations commonly found in other representative methods

in the state-of-the-art. The BS-RST method improves on s-ReProCS to estimate the fore-

ground and the background online in videos by: (i) calculating the initial subspace using a

Bayesian-RPCA approach; and (ii) estimating the foreground via a modified s-ReProCS-

like scheme, wherein the spectral residual is used to detect the salient visual features that

most likely belong to the foreground and to keep track of these salient foreground fea-

tures. The proposed model applied for the foreground segmentation achieved an accuracy

of 68.02% in the I2R public dataset (LI et al., 2004).
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2 FUNDAMENTAL CONCEPTS AND BACKGROUND

This chapter describes the definitions needed for a better understanding of this

work.

2.1 Background Subtraction (BS)

A challenging task in computer vision is detecting and identifying moving ob-

jects, which is a relatively simple task for humans. This task can be tackled using three

different approaches; background subtraction detects moving objects (foreground) by the

difference between the current image frame and a reference image (background model);

temporal difference computing the difference between two consecutive frames and Op-

tical flow analysis all the patterns related to the movement of objects (MADDALENA;

PETROSINO, 2007). Of these approaches, background subtraction is the most efficient

and widely adopted approach for differentiating the background and foreground of image

sequences captured by a stationary camera. So, the last two decades have seen significant

publications on background subtraction, which has allowed it to be one of the most ac-

tive research fields of artificial vision (BOUWMANS et al., 2019). Thus, we can see that

a quick background subtraction search in IEEE Xplore shows 3022 conference publica-

tions, 569 journal publications, 14 magazines, and one book in the last twenty-three years

(2000-2023).

Background subtraction aims to separate foreground regions such as people, vehi-

cles, and animals between others from the background (stationary objects such as doors,

walls, rugs, or moving objects such as waves, rain. swaying three, escalators, Etc.) of a

video sequence. So, this approach is considered a critical and fundamental step to sim-

plify many computer vision and video analysis tasks, for example:

• Intelligent visual surveillance: The main focus is to detect moving objects or aban-

doned objects. Then, these objects are analyzed to detect possible incidents or

calculate statistics on roads, airports, offices, buildings, stores, Etc.

• Intelligent visual observation of animals and insects: The main focus is to analyze

the behavior (interaction within their group and their environment) of animals and

insects by detecting and tracking their movements through a video-based system

that would be the most appropriate.
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• Optical motion capture: The objective is to detect the movements in real life and

take them to the virtual world (Three dimensions). Different views from various

cameras accomplish this.

• Human-machine interaction: Different applications require human-machine inter-

action, such as games, arts, and ludo.

• Content-based video coding: These applications are based on coding the back-

ground and foreground of static and dynamic environments separately. So, a suit-

able method can be applied for video coding.

Figure 2.1 shows a diagram of the background subtraction step: The first step is

background initialization (also called background generation), which consists of obtain-

ing a background model (also called background image) without moving objects through

a frames sequence. Then the second step is foreground detection, which consists of label-

ing pixels as background or foreground pixels by comparing each incoming frame with

the built background model. Thus, we can acquire a binary mask distinguishing fore-

ground and background pixels. The last step is Model maintenance, which consists of

adapting the background model to the present changes of a scene generated by different

factors over time.

Figure 2.1: Background subtraction steps

Background
Initialization

Background
Model

Model
 Maintenance

Foreground 
Detection

Input

Foreground
Mask
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2.2 Fourier Transform

For defining the Fourier transform of an integrable function f : R → C, denoted

F{ f(x)}, is defined by the equation:

F{ f(x)} =
∫ ∞

−∞
f(x)e−i2πµxdx,∀ µ ∈ R (2.1)

Where µ indicates the frequency and we can see that F{ f(x)} is a function that only

depends on µ then we can express the Fourier transform as F{ f(x)} = F(µ); That is.

F (µ) =

∫ ∞

−∞
f(x)e−i2πµxdx,∀ µ ∈ R (2.2)

Since F(µ) is a complex number, we can calculate the Amplitude (Spectrum) and

phase as follows:

Amplitude = |F (µ)| (2.3)

Phase = arctan

(
ℑ(F (µ))

ℜ(F (µ))

)
(2.4)

Then, we can say that the Fourier transform consists of transforming a function f(x) in

the spatial domain into the spectral domain. It is used in a wide range of applications in

signal processing.

Figure 2.2: (a) A simple function; b, its Fourier transform; and c, the spectrum. Figure
taken from (GONZALEZ; WOODS, 2008)

(a) (b) (c)
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2.3 Inverse Fourier Transform

Conversely, given F(µ) in spectral domain, we can obtain f(x) back in spatial

domain using the inverse Fourier transform, f(x) = F−1{F (µ)}, written as

f(x) =

∫ ∞

∞
F (µ)ei2πµxdµ,∀ x ∈ R (2.5)

2.4 Probability

To be able to define probability formally, we will give some basic concepts:

• Random experiment: Process of acquiring data related to a phenomenon that presents

uncertainty in the outcome that will be obtained.

• Sample space: Set of all possible outcomes of a random experiment.

• Event: It is a subset of the sample space.

Then we can define the probability of the occurrence of an event of interest A gen-

erated by a random experiment, with a sample space Ω, as the ratio between the number

of favorable cases of the occurrence of that event and the total number of cases in the

sample space:

p(A) =
A

Ω
(2.6)

where A is the event that represents the number of favorable cases, and Ω represents the

sample space

Mathematically, every probability of an event A must fulfill three axioms (FRONT. . . ,

2016):

• Axiom 1: The probability of event A must be between 0 and 1.

0 ≤ p(A) ≤ 1 (2.7)

• Axiom 2: The probability of occurrence of the sample space Ω is equal to one.

p(Ω) = 1 (2.8)

• Axiom 3: For any sequence of independent events Ai and Aj , i.e, for Ai ∩ Aj = ∅
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with i ̸= j, we have:

p

(
k⋃

i=1

Ai

)
=

k∑
i=1

p(Ai) (2.9)

2.4.1 Fundamental rules

1. Probability of a union of two events. Given two events, A and B, The probability

of occurrence of event A or B or both is defined as:

p (A ∪B) = p(A) + p(B)− p(A ∩B) (2.10)

2. Joint probability. Probability of simultaneous occurrence of two or more events.

Considering events A and B, the joint probability of these events will be written as:

p(A,B) = p(A ∩B) = p(A/B)p(B) (2.11)

Here p(A/B) is a conditional probability and is verbalized as "the probability of A

given B". If events A and B are independent, we can write the joint probability as:

p(A,B) = p(A)p(B) (2.12)

3. Conditional Probability. It is the probability that a given event will occur once

a second event has occurred; p(A|B) is the probability that event A will happen,

given that event B has occurred.

p(A|B) =
p(A,B)

p(B)
, if p(B) > 0 (2.13)

2.4.2 Bayes Theorem

From the conditional probability and the joint probability, we obtain Bayes Theo-

rem:

p(A/B) =
p(B/A)p(A)

p(B)
(2.14)

Where: p(B/A) is called the likelihood function, p(B) is called prior, and p(A/B) is

called Posterior. This theorem quantifies event A’s occurrence based on event B’s knowl-



28

edge.

2.5 Probability Distribution

Given a sample space Ω, a random variable X is defined as a function that takes

elements in Ω and maps them to the real numbers, that is, X : Ω → ℜ. The probability

density function is the mapping between the real number space and the probability space

p : ℜ → [0, 1].

A probability distribution must satisfy the normalization conditions and not as-

sume negative values, that is:

p(Xi = xi) ≥ 0 i = 1, ..., N (2.15)

For discrete random variables, it must satisfy the following:

N∑
i=1

p(Xi = xi) = 1 (2.16)

For continuous random variables, it must satisfy the following:∫ ∞

−∞
p(x)dx = 1 (2.17)

In general, we will use p(xi) instead of p(Xi = xi) for notation simplification. The

expected value or mathematical expectation E[.] of a sequence of random variables xi

with i = 1, ..., N and their respective probability density function p(xi) is determined for

the discrete case as:

E[x] =
N∑
i=1

xip(xi) (2.18)

And for the continuous case, it is:

E[x] =

∫ ∞

−∞
xp(x)dx (2.19)

In a more general way, we can define the expected value of a sequence of random variables

determined by a function f(xi) as:

E[f(x)] =

∫ ∞

−∞
f(x)p(x)dx (2.20)
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For the discrete case, it is similar to the continuous case.

2.5.1 Gaussian Distribution

It is also known as the normal distribution and is a widely used model in statistics,

machine learning, signal, and image processing. It models continuous variable distribu-

tions. In the case of a single variable x, its probability density function (pdf) is given

by

N (x|µ, σ2) =
1√
2πσ2

e−
1

2σ2 (x−µ) (2.21)

Where µ = E[x] is the mean (and mode), and σ2 = var[x] is the variance.
√
2πσ2 is the

normalization constant needed to ensure the density integrates to 1. Figure 2.3 shows an

example of the pdf of a Gaussian distribution with parameters µ = 0 and σ = 1.

Figure 2.3: Pdf of a Gaussian distribution with µ = 0 and σ = 1.

For an N-dimensional vector x, the multivariate Gauss distribution takes the form

N (x|µ,Σ) =
1

(2π)N/2

1

|Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ) (2.22)

where µ is an N-dimensional mean vector, Σ is a N×N covariance matrix, and |Σ| de-

notes the determinant of Σ.

We write X ∼ N (µ, σ2) to denote that p(X = x) = N (x|µ, σ2). Also, the

precision of a Gaussian is represented by λ = 1/σ2.
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2.5.2 Gaussian mixture Distribution

The Gaussian distribution is limited when trying to model real data sets. We con-

sider the example in Figure 2.5. This synthetic data was generated by datasets of the

sklearn library that create a constant block diagonal structure array forming two groups.

We can appreciate that the data set forms two dominant clumps and that a single Gaussian

distribution cannot capture this structure. In contrast, a linear superposition of two Gaus-

sian gives a better characterization of the data set. Therefore, we can define a mixture of

Gaussian distribution as a superposition of K Gaussian densities, that is

p(x) =
K∑
k=1

πkN (x|µk,Σk) (2.23)

where, the parameters πk in (2.23) are called mixing coefficients, and each Gaussian

Figure 2.4: Example of a Gaussian mixture distribution in one dimension showing three
Gaussians in blue, orange, green, and their sum in red.

density N (x|µk,Σk) is called a component of the mixture and has its own mean µk and

covariance Σk). Figure 2.4 shows a linear combination of Gaussian generated by three

Gaussians.

These distributions are suitable in applications such as clustering, where the data is

scattered but forming different groups. For example, Figure 2.5 shows how each Gaussian

distribution is fitted or associated with each group, and the combination represents the

mixed Gaussian model that fits the data.
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Figure 2.5: Plots of the synthetic datasets generated by
sklearn.datasets.makebiclusters. In (a) show of spread of data, in (b) show
contours of constant probability density (single Gaussian distribution)

(a) (b) (c)

that fitted to the data. We can note that this distribution fails to capture the two clumps in
the data and indeed places much of its probability mass in the central region between the
clumps where the data are relatively sparse, and in (c) show the distribution is given by
linear combination of two Gaussian which fitted better to the data.

2.6 Subspace Learning

Subspace learning models are powerful tools for analyzing high-dimensional data.

Which consists of performing a dimensionality reduction of this data through a projection

in a new intrinsic subspace of lower dimension that allows us to analyze, interpret and

visualize data.

In the context of dimensionality reduction, Principal Component Analysis (PCA)

is one of the most widely used techniques. PCA finds a small number of orthogonal basis

vectors, called principal components (PCs) while retaining as much as possible of the

variation present in the data. PCs are the basis of intrinsic lower dimension subspace.

Given a set of data points y1,y2, . . . , yd where yi ∈ Rn, for i = 1, 2, . . . , d

and let b be a transformation vector. We aim to obtain a low-dimensional compressed

representation zi = bTyi of yiby means of its variance:

V[zi] =
1

d

d∑
i=1

z2
i

=
1

d

d∑
i=1

(bTyi)
2 = bTSb

(2.24)

Then, we maximize the variance of zi and can obtain b by means of:

bopt = argmax
b

bTSb (2.25)
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Figure 2.6: Image compression using the PCA method. In (a) show the digit 9 of 784
dimensions, and in (b) show the digit 9 of 184 dimensions

(a) (b)

where S is the data covariance matrix. PCs also called basis functions of PCA are the

eigenvectors of the data covariance matrix associated with the largest eigenvalues. Fig-

ure 2.6 shows an example of dimensionality reduction for 784-dimensional images. We

use the MNIST1 dataset of handwritten digits to obtain the images of the digits zero to

nine. Then we apply PCA on all the images and we obtain 184 principal components.

Thus, we can represent any images of 784 dimensions for one of 184 dimensions.

2.6.1 Robust Principal Components Analysis

PCA tends to be sensitive to outliers, which can affect the finding of the PCs. So,

Robust Principal Component (RPCA) arises to address these limitations. Robust Principal

Component (RPCA) is the method that decomposes a given data matrix into the sum of

a low-rank matrix that represents true data (it has no noise) and a sparse matrix that

represents outliers of the data matrix. Therefore, the RPCA method was developed to

estimate the PCs of a data matrix emphasizing the uncontaminated data elements, which

also allows to estimate the spurious (contaminated) elements of the data matrix (WRIGHT

et al., 2009).

Given a data matrix Y , the RPCA method decomposes Y into a sum of two

uncorrelated matrices, namely, a low-rank matrix L, and a sparse matrix X :

Y = L+X (2.26)

1http://yann.lecun.com/exdb/mnist/
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Figure 2.7: Background modeling from Lobby video. In (a) show video frame 300, in (b)
show the background, and in (c) show the foreground.

(a) (b) (c)

where the columns (i.e. the column subspace) of the low-rank matrix L are the PCs

estimated putting higher emphasis on the uncontaminated data.

This decomposition of the RPCA method is obtained by solving the following

constrained convex minimization problem (CANDèS et al., 2011):

min
L,X
∥L∥∗ + λ ∥X∥1 s.t Y = L+X. (2.27)

where ∥L∥∗ denotes the nuclear norm of L, ∥X∥1 denotes L1-norm of X , and λ is a

scalar used for balancing the weights of ∥L∥∗ and ∥X∥1. The desired solution in terms

of L and X minimizes the rank of L and the norm-1 of X . The minimization problem in

Eq. 2.27 can be solved using the principal components pursuit (PCP) algorithm(CANDèS

et al., 2011), which allows to estimate L and X with high probability. However, other

algorithms also could be used to solve RPCA minimization problem in Eq. 2.27, such as

singular value thresholding (SVT) (CAI; CANDES; SHEN, 2008), accelerated proximal

gradient (LIN; CHEN; MA, 2010) and augmented lagrangian multiplier (LIN; CHEN;

MA, 2010). Figure 2.7 shows the decomposition of a video frame by means of the RPCA

method. We take 400 frames from the video Lobby of the I2R dataset (LI et al., 2004)

and generate a matrix where each column represents a video frame. We decompose the

given matrix Y into two matrices: L and X. Next, we select column 300 from each matrix

(Y, L, and X) and create an image based on these columns.

2.6.2 Generalized Robust Principal Components Analysis

The RPCA approach assumes that L is exactly low-rank and X is sparse. Conse-

quently, Y = L+X , and L and X can be estimated exactly using different algorithms,

as mentioned above.
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However, the data matrix Y may be noisy and/or contain outliers 2. Let us con-

sider the general case of a noisy data matrix Y , and the following representation for the

data matrix decomposition problem :

Y = L+X + V (2.28)

where L is always low rank, X is always sparse, and V only contains noise that is small in

magnitude as compared to the X element magnitudes. Actually, the low rank component

can be obtained as L = BBTY , where the columns of the matrix B are the eigenvectors

spanning the lower dimensional space where L lies, and Y −L = X+V . If the low rank

approximation of Y can be calculated exactly (e.g., if Y is not noisy), then its low-rank

approximation is L, and X is sparse, and V = 0. However, if the low rank approximation

of Y can not be calculated exactly (e.g., when Y is noisy), its low rank approximation

still is L, and X still is sparse, and V ̸= 0 is the residual V = Y −L−X .

The discussion above leads to the more general version of the RPCA, which can

be expressed by Equation 2.28, where L, X are defined above and V is a residual ap-

proximation error Y −L−X (i.e. small unstructured noise).

2.6.3 Robust Subspace Tracking

Robust Subspace Tracking (RST), also known as dynamic RPCA, is an online

variant of the Generalized RPCA method. It operates online after an initial subspace es-

timation While RPCA methods assume a single fixed subspace for the true data, RST

considers that the true data is in a low-dimensional subspace that can change every so of-

ten. Therefore, given the estimated initial subspace, it can track and updates the subspace

that can change over time in the presence of sparse outliers. This model is more appro-

priate for long data sequences, e.g., surveillance videos or long dynamic social network

connectivity data sequences.

Problem definition. The measurement vector at time t, yt, is an n-dimensional

vector which can be decomposed as

yt := ℓt + xt + νt, for t = 1, 2, . . . , d (2.29)

2Outliers are assumed to have a magnitude that is larger or equal to the smallest magnitude element of
X (ZHAO et al., 2014).
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Here d is the number of observed data, xt ∈ Rn is a sparse outlier vector, νt ∈ Rn

is small unstructured noise, and ℓt ∈ Rn is the true data vector that lies in a changing

low-dimensional subspace of Rn that over time t.

2.6.4 Low-Rank Matrix Factorization

Low-Rank Matrix Factorization (LRMF) is a frequently employed method for

subspace learning in the context of background subtraction. Its primary objective is to

extract the low-rank approximation of a data matrix by multiplying two smaller matrices,

which represent the basis matrix and coefficient matrix. The general form LRMF problem

can be expressed as:

min
B,A

∥∥W ⊙ (Y −BAT )
∥∥
Lp

(2.30)

where B ∈ Rn×r and A ∈ Rd×r denote the basis and coefficient matrices, with r ≪

min(n, d), implying the low-rank property of BAT . W is the indicator matrix of the

same size as Y , with wij = 0 if yij is missing and 1 otherwise. ∥.∥Lp
denotes the p −

th power of an Lp norm. Equation 2.30 can also be equivalently understood under the

maximum likelihood estimation (MLE) framework as:

yij = bTi aj + eij (2.31)

where bi, aj ∈ Rr are the i− th and j− th row vectors of B and A, respectively, and eij

denotes the noise element embedded in yij .

Based on the values that p can take in the loss term utilized to measure the ap-

proximation represent in Equation 2.30. The LRMF methods can be mainly categorized

into three classes: L2−LRMF methods, L1−LRMF methods, and probabilistic models (it

encodes the noise as a parametric probabilistic model).
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3 RELATED WORK

In this section, we provide a review of related works. Our analysis is primarily

centered on solutions that utilize robust subspace tracking and low-rank matrix factor-

ization for online background subtraction. We have chosen this focus due to the fact that

Deep Learning-based methods often necessitate extensive data, are frequently supervised,

and primarily operate in a batch processing mode. Additionally, they require significant

computational resources. This restriction aligns with our proposed solution, which ex-

plores these two approaches.

3.1 Methods-Based Robust Subspace Tracking

The RST-based methods for the background subtraction task have a common for-

mulation represented by sparse+low-rank (S+LR). This formulation means that any vector

can be decomposed as the sum of a vector that lies in changing low rank subspace and a

sparse vector, as represented in Equation 2.29

Below, we elucidate the methods relevant to this section. Furthermore, we provide

a more detailed explanation of the s-ReProCS method, as it offers fundamental steps that

are crucial to our proposed solution.

The s-ReProCS (VASWANI et al., 2018) method (An RST-based method) con-

siders the simplest model on the change of subspace. In each change only one direction

must change and the others remain the same, i.e., the subspace at time t spanned by Bt

contains all the vectors lying in the previous subspace spanned by Bt−1. So, the differ-

ences in terms of the data representation in the spaces spanned by Bt−1 and Bt tend to be

small. In other words, (
∥∥(I−Bt−1B

′
t−1)Bt

∥∥≪ ∥Bt∥ = 1), where Bt ∈ Rn×r is a basis

matrix (B′
tBt = I), Bt is r-dimensional, r ≪n, and the support sets Tt of xt is defined

as {i : (xt)i ̸= 0}.

To ensure that each ℓt = Btat is not a sparse vector, each xt’s is not dense, and

the subspace spanned by Bt be of low rank, the following conditions must be true:

(i) |T̂t|
n

is upper bounded.

(ii) T̂t changes enough over time so that any one index is not part of the outlier support

for too long.

(iii) The columns of Bt are dense (not sparse).
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(iv) The subspace coefficient at are element-wise bounded, mutually independent., zero

mean, have identical and diagonal covariance matrices, and are independent of the

outlier supports T̂t.

(v) The subspace span(Bt) is piecewise constant with time, i.e., Bt = Btj , for all t ∈

[tj, tj+1), j = 1, . . . , J and to lower bound tj+1 − tj , with t0 = 1 and tJ+1 = d.

With i) and ii) it is ensured that the xt’s are sparse vectors, iii) and iv) guarantee

that the ℓt’s are dense, and with v) it is ensured that the subspace generated by the Bt is

of low rank. Based on these conditions, it is possible to recover xt, lt, update Bt with a

short delay. Then, it is possible to recover xt, lt, update Bt with a short delay.

Thus, with the formulation in Equation 2.29, we can decompose t-th frame of

a video as the sum of a background frame and a foreground frame as can be seen in

Figure 3.1. The background frame changes slowly and the changes are usually dense.

It is therefore well modeled as a dense vector that lies in a low-dimensional subspace

that can change over time, albeit gradually, in the original space. The foreground frame

usually consists of one or more moving objects and is correctly modeled as the sparse out-

lier (VASWANI; NARAYANAMURTHY, 2018). Thus, under this approach, we review

the following RST-based papers: Provable Dynamic Robust PCA or Robust Subspace

Tracking (s-ReProCS, (VASWANI et al., 2018)), Nearly Optimal Robust subspace track-

ing (NORST, (NARAYANAMURTHY; VASWANI, 2018b)), and Online Robust Princi-

pal Component Analysis with Change Point Detection (OMWEPCA-CP, (XIAO et al.,

2020)). Also, We highlight that they have code available, thus allowing us to perform

comparisons.

Figure 3.1: Background subtraction based on the model of equation 2.29: The t-th frame
is separated by a background component and a foreground component.

Frame Background Foreground

s-ReProCS starts with a good estimate of the initial subspace, B̂0 by means of

AltProj (NETRAPALLI et al., 2014) applied to the first ttrain data frames Y [1,ttrain] =
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[y1, y2, ..., yttrain ], i.e.,

[L̂0, X̂0] = AltProj(Y [1,ttrain])

B̂0 = SV D(L̂0)
(3.1)

where L̂0, X̂0 are low-rank matrix and sparse matrix of the first ttrain data frames (Y train)

and SVD represent to the Singular Value Decomposition algorithm (QIU et al., 2014). At

time t, we have the observed vector yt, which can be represented by Equation 2.29, and

B̂t−1 which is a good estimate of the previous subspace, span( Bt−1), with B̂t−1 we

construct the projection function Ψ = I− B̂t−1B̂
′
t−1. So, we estimate xt by means of:

ỹt = Ψxt + bt (3.2)

where ỹt = Ψyt, yt := ℓt+xt+νt, bt = Ψ(ℓt+νt), with ∥bt∥ and ∥νt| are small. Under

s-ReProCS conditions, it is possible to recover xt from the Equation 3.2 by Projected

comprehensive sensing (ProjCS) method (CANDèS, 2008), i.e.,

x̂t,cs = argmin
x̃t

∥x̃t∥1 s.t ∥ỹt −Ψx̃t∥1 ≤ ξ (3.3)

then by thresholding ωsupp we get T̂t, since xt is lower bounded.

T̂t = {i : |x̂t,cs| > ωsupp} (3.4)

Finally, to get better estimate of xt we use Least Squares based debiasing on T̂t:

x̂t = IT̂t(Ψ
′
T̂t
ΨT̂t)

−1Ψ′
T̂t
ỹt. (3.5)

Then, we estimate ℓt as:

ℓ̂t = yt − x̂t. (3.6)

The ℓt’s are used for: i) detecting the tj , which represents the time when the

subspace change ii) obtaining improved versions of the addresses that change in Bt by K

steps of projection SVD (QIU; VASWANI; HOGBEN, 2013), each done with a new set α

frames of ℓ̂t, and iii) Updating Bt by a simple SVD, done with another new set α frames

of ℓ̂t.

The NORST method has the same procedure as s-ReProCS to obtain xt, lt, and
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update Bt with a short delay, but it assumes that r directions of the subspace can change

in time. Which is less restrictive than s-ReProCS (only one subspace direction can change

at each change time) and in order to update the subspace instead of using the projection-

SVD method, it uses a simple SVD.

s-ReProCS and NORST assume that any standard RPCA algorithms can estimate

accurate initial subspace. But, they are not robust to the different scenarios present in a

video (ZHAO et al., 2014). For example, dynamic background, Bootstrap, and campus

sequences (LI et al., 2004). So, the approximation error increases to estimate B0. Also,

the ProjCS method used to detect sparse outlier vector does not consider any structure or

relationship between subsets of entries (l1 norm treats each entry (pixel) independently).

However, in foreground detection, moving parts (outliers) in a video often have the struc-

tural properties of spatial contiguity and locality (LIU et al., 2015).

The OMWRPCA technique is proposed for effectively tracking both slowly chang-

ing and abruptly changing subspaces. Initially, the RPCA-STOC algorithm (FENG; XU;

YAN, 2013) is employed to estimate all ℓ̂t and x̂t from 1 to t. Instead of updating the

subspace Bt with all the estimated vectors, the update process only considers the vectors

from t − nwin + 1 to t, where nwin represents the user-defined number of most recent

samples. Subsequently, hypothesis testing is integrated to detect change points, which in-

dicate when the subspace should change. This heuristic is based on the observation of an

unusually large magnitude of the estimated |T̂t| derived from x̂t. This phenomenon occurs

due to the significant difference between the current and previous subspaces, resulting in

poor modeling of ŷt by the subspace and reflected in the estimation of x̂t, which exhibits

a relatively higher number of non-zero elements compared to those calculated until t− 1.

Furthermore, this algorithm dynamically and automatically estimates the dimension of

each subspace, distinguishing it from previously mentioned methods.

Overall, the OMWRPCA technique demonstrates its effectiveness in tracking chang-

ing subspaces, adapting to various change patterns, and dynamically estimating subspace

dimensions. The integration of the RPCA-STOC algorithm and hypothesis testing enables

accurate tracking and change point detection, making it suitable for diverse applications

requiring subspace analysis.
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3.2 Methods-Based Low-Rank Matrix Factorization

We address the last two classes of the LRMF category because they are more

robust in the presence of outliers compared to the L2-norm. All of these algorithms are

online versions of LRMF methods.

The OBSL1 method combines the LRMF approach and the L1,ϵ norm to address

the underlying problem of online background subtraction. It uses the LRMF method

because, unlike RPCA-based methods, it does not require any adjustment of the penalty

parameters, it changes the norm L1 to an approximate norm denoted by L1,ϵ-norm in the

loss function, in order to deal with the complexity of finding the optimal solution and to

reduce the processing time of L1-norm. This approximate norm, being differentiable and

locally convergent, greatly facilitates finding the solution and reduces processing time.

The L1,ϵ-norm is defined as:

∥Y ∥11,ϵ =
n∑

i=1

d∑
j=1

((y2i,j + ϵ2)1/2 − ϵ) (3.7)

Where ϵ > 0, ensure the smoothness of the norm.

The MoGMF method has goals to address online background subtraction prob-

lems. Instead of using a fixed noise distribution for all frames, this method models the

noise and foreground of each frame separately using a mixture of Gaussian (MoG) dis-

tribution. The MoG distribution’s good approximation capability enables the method to

adapt to complex video foreground variations, even when the video noises have dynamic

complex structures. Additionally, an affine transformation operator is employed for each

video frame. This allows the method to handle real-time background transformations

caused by a moving camera, resulting in improved robustness compared to previous ap-

proaches. Furthermore, the proposed method exhibits potential for extending to other

subspace alignment tasks, including image alignment and video stabilization applications.
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4 PROPOSED METHOD FOR SUBSPACE TRACKING AND ONLINE BACK-

GROUND SUBTRACTION

In this section, we propose a new online background subtraction method called

Background Subtraction Based on Robust Subspace Tracking (BS-RST) to generate a

more robust estimate of the foreground in complex environmental scenarios compared to

state-of-the-art methods. BS-RST relies on a robust initial subspace estimate and read-

justs the foreground by filtering out spurious elements. Based on the foreground, the

background is estimated, and it is used to update the subspace using the subspace track-

ing method, as detailed next.

A robust estimate of the initial subspace is obtained using RPCA with complex

noise (RPCA-MoG) (ZHAO et al., 2014) (see Section 4.1). This allows for a better ap-

proximation of the background model at the initial stage than most RPCA-based methods,

as shown in Figure 4.2. The Saliency Detection method (HOU; ZHANG, 2007) is used

as a filter for the foreground (see details in Section 4.2). This method addresses the limi-

tations of most algorithms that use the L1-norm to quantify the foreground, as it is known

that this norm does not take into account the structure or relationships that may exist

between groups of pixels in the foreground. In Figure 4.1, we can see two sparse sig-

nals (zeros and ones), and if we use the L1-norm to quantize the signal, we will obtain

the same value, which makes it difficult to consider structures in the foreground. The

proposed method is detailed in Section 4.3.

Figure 4.1: (a) Sparse distribution; (b) the L1-norm; (c) the foreground; and (d) the fore-
ground vector

(a)

Sparse signal 1

Sparse signal 2

(b)

¹

(c) (d)
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4.1 Robust Principal Component Analysis with Complex Noise

As mentioned before, the standard RPCA tries to decompose Y into L and X .

But, the structure of the sparse outlier vectors X are not taken into consideration since

the L1-norm is used to characterize the error term as shown in the Equation 2.27, and it is

known that the L1-norm treats each element (pixel) independently. Thus, to overcome this

limitation, the Robust Principal Component Analysis with Complex Noise (RPCA-MoG)

approach is used in this work (ZHAO et al., 2014). It works in batch, and assumes that

each input xi,j in X is generated from a mixture of Gaussians (MoG) distribution. This

MoG can accommodate different types of noise, such as Laplacian, Gaussian, and Sparse

noise and/or their combinations. A MoG component will group elements xi,j , obtaining

the sparse outlier vector X , while the other components will group different types of noise

present in the data matrix Y . This scheme has a clear advantage over RPCA because of

its ability to recover L and X . Figure 4.2 shows a comparison of RPCA and RPCA-MoG

methods in the task background subtraction.

Figure 4.2: Example illustrating the difference between RPCA (CANDèS et al., 2011)
and MoG-RPCA (ZHAO et al., 2014) : (a) shown a 200th frame of the fountain video;
(b) shows the foreground and the background obtained by RPCA; and (c) shows the fore-
ground and the background obtained by MoG-RPCA.

Original frame

(a)

Foreground

Background

(b)

Foreground

Background

(c)
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4.2 Saliency Detection

In this work, we utilize the Spectral Residual Model (HOU; ZHANG, 2007), a

straightforward, rapid, and unsupervised algorithm for saliency detection (detecting mov-

ing objects). Unlike methods such as (CUI; LIU; METAXAS, 2009) or any deep learning-

based approaches (ULLAH et al., 2020) (WANG et al., 2022) (SINGH et al., 2022), the

Spectral Residual Model does not necessitate training data. It consists of analyzing the

log-spectrum of an image to obtain the spectral components that are associated with fre-

quently occurring features (image redundancy). Afterward, a saliency map (SM) is built

in the space domain using Inverse Fourier Transform and a convolution operation with a

Gaussian filter.

Given an image I(x), its SM is obtained by Algorithm 1, where A(f), P (f), L(f),

and R(f) denote the amplitude, the phase spectrum, the log spectrum, and the spectral

residual of I(x), respectively; gσ is a Gaussian filter with σ = 8, and F and F−1 denote

the Fourier Transform and Inverse Fourier Transform, respectively.

Algorithm 1: Saliency map
Input: Original image I(x)
Output: Saliency Map S(x)

1 function SM(I(x))
2 A(f)← ℜ (F[(I(x))])
3 P (f)← ℑ(F[I(x)])
4 L(f)← log(A(f))
5 R(f)← L(f)− hn(f) ∗ L(f)
6 S(x)← gσ ∗ F−1[exp(R(f) + P (f))]2

7 return S(x);

8 end function

Algorithm 1 takes an image as input and transforms it into the frequency domain

using the Fourier transform. In this domain, we take the real part of the signal and elim-

inate redundant elements from the image using the spectral residual obtained from line 5

of Algorithm 1. Then, we reconstruct the signal by replacing the real part with the ex-

ponential of the spectral residual while maintaining the same phase spectrum (P (f)) as

the original signal. Next, we bring the signal back to the spatial domain using the inverse

Fourier transform, and finally, we apply a convolution operation to obtain the saliency

map of the image.

In Figure 4.3, we present the input image, which is then resized into three images

of sizes 32x32, 64x64, and 128x128. Subsequently, we apply Algorithm 1 to each image
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and obtain their Spectral Residual Maps (SM). For each SM, we calculate a threshold by

taking the average value of the SM. Using this threshold, we create a binary image (object

map) where all pixels in the SM smaller than the threshold are set to zero, and all pixels

greater than the threshold are set to one. Finally, we multiply the binary image with the

original image and resize it back to its original size. When directly applying Algorithm 1,

the results may not meet our expectations, but we can observe that we manage to identify

a significant portion of the moving object of interest.

Figure 4.3: Detection of salient objects

32

64

Salient Map Salient Objects

threshold= 2threshold

Input image

128

Saliency map

4.3 Background Subtraction Based on Robust Subspace Tracking

As mentioned before, a new method called Background Subtraction Based on

Robust Subspace Tracking (BS-RST) is proposed in this work to deal with the limita-

tions of ReProCS. The BS-RST approach combines s-ReProCS (NARAYANAMURTHY;

VASWANI, 2019), RPCA-MoG (ZHAO et al., 2014), and saliency detection (HOU;

ZHANG, 2007) algorithm to obtain robust estimates of the background and foreground in

video sequences.

The BS-RST starts by estimating B0 using the RPCA-MoG algorithm, next at

time t, yt is projected by Ψ to get ỹt = Ψyt, and saliency detection is applied to ỹt to

obtain x̂t,s = SM(ỹt) and T̂t = {i : (x̂t,s)i > ωs}, where SM denotes the saliency map

of ỹt, and the threshold ωs = E(x̂t,s) ∗ 3 denotes the average intensity of the saliency

map. Next, the sparse outlier vector (x̂t) is estimated using Least Squares (LS) Based
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debiasing on T̂t: x̂t = IT̂t(Ψ
′
T̂t
ΨT̂t)

−1Ψ′
T̂t
ỹt. Figure 4.5 shows the procedure to obtain

the foreground of a video frame. Finally, ℓt is estimated as ℓ̂t = yt − x̂t. Then, each

α frames of ℓ̂t will be used to update the subspace B̂t using the simple SVD method.

In Figure 4.4, we present the proposed solution to address the problem of background

subtraction.

Figure 4.4: Solution Architecture

Support Estimation

The pseudo-code of BS-RST is displayed in Algorithm 2, and its main steps are :

1. We start with the estimation of L̂0 by means of MoG-RPCA on Y [1,ttrain]

2. The parameters K,α, ξ, r and ωevals are set as in s-ReProCS.

3. s-ReproCS states that projecting yt onto the orthogonal complement of Bt−1 will

nullify most of ℓt under the assumption of fixed or slowly changing subspace. This

is expressed in lines 8 and 9 of the Algorithm 2, where Ψ is projection operator

and ỹt is the projection of yt onto Ψ.

4. Since x̃t is contained in ỹt, first, we remove most elements in ỹt that are not part of

x̃t using the Algorithm 1. We then calculate T̂t based on the threshold ωs as shown

in lines 11 and 12 of the Algorithm 2. Finally, we perform an LS thresholded by

T̂t to obtain x̃t using the lines 13 and 14 of the Algorirthm 2.

4.4 Model Evaluation

We adopt traditional evaluation metrics to assess our model’s performance for

online foreground detection in videos. Thus, performance assessment was based on sen-

sitivity (Sens, also called recall), precision (Prec, i.e., positive predictive value), F1-score

(i.e., the harmonic mean between recall and precision).
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Figure 4.5: Stages to obtain the foreground of the t-th frame yt by means of Ψ, Salient
map (SM), and LS based debiasing on T̂t.

Algorithm 2: Robust Subspace Tracking for BS-RST

Input: L̂0, yt

Output: x̂t, l̂t B̂t, T̂t
Parameters: ωs, K, α, ξ, r, ωevals

1 B̂0 is equal to SV Dr (top r singular vectors) of L̂0

2 L̂t;α := [l̂t−α+1, l̂t−α+2, ..., l̂t]

3 B̂ttrain ← B̂0

4 j ← 1
5 k ← 1
6 t← ttrain + 1
7 Assign phase← update
8 for t > ttrain do
9 Ψ← I− B̂t−1B̂

′
t−1

10 ỹt ← Ψyt

11 x̂t,s ←SM(ỹt) ; // Algorithm 1
12 ωs← E(x̂t,s) ∗ 3
13 T̂t ← {i : x̂t,s > ωs}
14 x̂t ← IT̂t(Ψ

′
T̂t
ΨT̂t)

−1Ψ′
T̂t
ỹt

15 ℓ̂t ← yt − x̂t

/* Automatic Subspace Update method
(NARAYANAMURTHY; VASWANI, 2019) */

16 (B̂t, B̂j , t̂j , k, j, phase)← AutoSubUp(L̂t;α, B̂j−1, t, t̂j−1, j, k, phase,
B̂t−1) ; // Algorithm 3

17 t← t+ 1
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Algorithm 3: Automatic Subspace Update

1 function AutoSubUp(L̂t;α, B̂j−1, t, t̂j−1, j, k, phase, B̂t−1)
2 if phase = update then
3 if t = t̂j + αu for u = 1, 2, . . . , K + 1 then
4 B← (I − B̂j−1B̂

′
j−1)L̂t;α

5 Bj,chd,k ← SV D1[B]

6 B̂t ← [B̂j−1Bj,chd,k]
7 k ← k + 1
8 if k = K + 1 then
9 B̂j ← SV Dr[L̂t;α]

10 B̂t ← B̂j

11 j ← j + 1
12 k ← 1, phase← detect

13 else
14 B̂t ← B̂t−1

15 t̂j−1,fin ← t̂j−1 + kα+ α− 1

16 if phase = detect and t = t̂j−1,fin + αu then
17 B← (I − B̂j−1B̂

′
j−1)L̂t;α

18 if σmax(B) ≥ √αωevals then
19 phase← update
20 t̂j ← t

21 B̂t ← B̂t−1

22 return B̂t, B̂j , t̂j , j, k, phase

23 end function
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5 DESIGN CHOICES

This chapter aims to describe some of the choices that we made during the devel-

opment of this study and presenting the respective justifications.

5.1 Environment for experiment

For the development of this work, we have used the following experimentation

environment detailed below.

We used a computer with Intel(R) Core(TM) i5-7300HQ as CPU and GeForce

GTX 1050 graphics card with 4GB of RAM; additional information is reported in Ta-

ble 5.1. All experiments were implemented in the Matlab software.

Table 5.1: The experimental environment is presented in this work.
Local

enviroment

CPU
Intel(R) Core(TM)

i5-7300HQ
N° cores 4

RAM 8 GB
Operating

System Ubuntu 22.04.03

Graphic card GeForce GTX Titan
GPU RAM 4 GB

Cuda version 11.0

5.2 Dataset

The I2R dataset (LI et al., 2004), recorded by Lin and Huang, was created to ad-

dress the difficulties in background modeling for detecting moving objects in complex

environments. In 2004, they assessed their statistical-based background modeling algo-

rithm and Bayesian framework for foreground detection using the I2R dataset. The dataset

comprises 9 video sequences captured in both indoor and outdoor settings, encompassing

various challenging factors such as bootstrapping problems, shadows, camouflage, illumi-

nation changes (both sudden and gradual), video noise, challenging weather conditions,

and dynamic backgrounds. Ground truth is provided in the form of manually segmented

foreground masks for 20 video frames of each sequence. Some published works, iden-
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tified as (EBADI; IZQUIERDO, 2018), (HU et al., 2017), provide application examples

of this dataset. The complete details of each video sequence are presented in Table 5.2.

Additionally, the dataset is also referred to as the STAR dataset in certain publications

(BERJóN et al., 2018), (XIANG, 2013).

Table 5.2: Characteristics of the video sequences in the I2R Dataset.
Video Scenes Frame number Challenges

Airport Indoor 3584 Shadows, Bootstrapping
Restaurant Indoor 3055 Shadows, Bootstrapping

Shopping Mall Indoor 1286 Shadows, Bootstrapping
Lobby Indoor 2545 Shadows, Sudden

Subway Station Outdoor 2634 Dynamic Background, Sudden Illumination
Curtains Indoor 23893 Dynamic Background, Camouflage
Campus Outdoor 1439 Dynamic Background, Shadows, Gradual Illumination Changes

Water Surfaces Outdoor 633 Dynamic Background
Fountain Outdoor 1523 Dynamic Background

We use the I2R Dataset because all of the compared methods use most or all of

the videos from this dataset to quantify the performance of their algorithms.

5.3 Experimental Results

Our experiments were performed on the I2R dataset (LI et al., 2004). In these

experiments, the first three/four letters of each sequence name are taken as an abbrevia-

tion. We select 400 frames for each video, except for the Water Surfaces video where we

choose 200 frames. Then, we train and obtain the initial subspace B0.

A number of typical online state-of-the-art background subtraction methods were

used as comparative methods in these experiments, such as: OMoGMF1 (YONG et al.,

2018), NORST2 (NARAYANAMURTHY; VASWANI, 2018b), s-ReProCS3 (NARAYANA-

MURTHY; VASWANI, 2019), OMWRPCA4 (XIAO et al., 2020), and OBSL15 (LIU; LI,

2022). As we can see in Table 5, the proposed metshod BS-RST is the only one that does

not have a restriction for modeling the foreground. It utilizes an unsupervised algorithm

called Saliency detection to highlight objects in an image, which is incorporated into our

proposed pipeline.

1http://gr.xjtu.edu.cn/web/dymeng/7
2https://github.com/praneethmurthy/NORST
3https://github.com/praneethmurthy/ReProCS
4https://github.com/wxiao0421/onlineRPCA
5https://sites.google.com/site/qiliucityu/discussion
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Table 5.3: Comparing BS-RST with the state-of-the-art methods.
Method Approach Decompostion Drawback Constraint

OMoGMF LRMF yt = Btat + xt Prior knowledge about xt,i ∼
∑K

k=1 πkN (xt,i|biTa, σk
2)

MoG distribution,
complex solution

s-ReproCS RST yt := ℓt + xt + νt Fixed subspace, xt ∼ Laplace(1,0)
single component change

NORST RST yt := ℓt + xt + νt Fixed subspace, xt ∼ Laplace(1,0)
r component changes

OBSL1 LRMF yt = Btat + xt Fixed subspace ∥xt∥11,ϵ =
n∑

i=1

((x2
t,i + ϵ2)1/2 − ϵ)

r component changes

OMWRPCA RST yt := Btat + xt Weak performance xt ∼ Laplace(1,0)
in foreground estimation

BS-RST RST yt := ℓt + xt + νt Fixed subspace, No
single component change

5.4 Performance Evaluation

The F-measure was used as the quantitative metric for performance evaluation,

which is calculated as follows:

F-measure = 2× precision · recall
precision+ recall

where precision =
|Sf

⋂
Sgt|

|Sf |
and recall =

|Sf
⋂

Sgt|
|Sgt| , Sf and Sgt denote the support sets of

the foreground estimated and the ground truth, respectively.
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6 RESULTS

This chapter provides a comprehensive summary of the results obtained from

the conducted experiments. It is worth noting that throughout these experiments, we

employed the exact settings established by the respective authors of each comparison

method. By adhering to their prescribed parameters, we aimed to ensure a fair and objec-

tive evaluation of the performance of each method.

Table 6.1 shows the average F-measure values that were obtained for all fore-

ground frames computed by the various comparative methods. These F-measure values

serve as a quantitative measure of the accuracy and precision of each method in delineat-

ing the foreground objects within the video sequences.

Table 6.1: F-measure (%) results for all comparative methods for the videos of the I2R
dataset. Each value is averaged over all foreground-annotated frames in the correspond-
ing video. The most right column shows the average performance of each competing
method over all video sequences. The best result is highlighted in bold, and our results
are underlined.

Methods
Data

airp. boat. shop. lobb. esca. curt. camp. wate. foun. Average
OMoGMF 51.79 55.22 45.81 48.29 41.27 70.77 19.27 47.71 17.33 44.16
s-ReproCS 54.11 52.54 56.29 55.12 56.43 61.88 31.24 74.01 46.85 54.23

NORST 56.86 55.14 56.28 54.49 51.14 70.66 30.12 73.76 46.69 55.02
OMWRPCA 38.33 45.84 39.80 51.68 56.49 42.38 39.85 30.07 55.53 44.33

OBSL1 49.83 44.24 46.12 31.82 43.09 71.55 26.78 71.67 41.86 47.44
BS-RST 63.46 65.16 71.73 69.26 67.40 75.68 61.52 58.77 79.21 68.02

6.1 Discussion

The obtained results suggest that the proposed BS-RST method, potencially can

obtain better detection of foreground in each frames of videos in comparison with methods

that represent the state-of-the-art, such as OMoGMF, NORST, s-ReProCS, OMWRPCA

and OBSL1.

The BS-RST method tends to provide a better performance as compared to the

comparative methods, in average. Also, no image pre-processing techniques were used

for these videos. The BS-RST results are shown in Fig. 6.1, which illustrates the fore-

grounds detected by each comparative method in typical frames of tested videos. Also,

it is possible to conclude that the obtained foreground detection results obtained by the

proposed BS-RST method tend to be similar to the groundtruths, which is validated by
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Figure 6.1: From left to right: Typical frames from fountain, curtain, bootstrap, and
lobby sequences, groundtruth foreground objects, foregrounds detected by all competing
methods.

the obtained F-measure in the experiments.

The improved performance of the proposed BS-RST method may be explained by

two main reasons. First, BS-RST better approximates the initial subspace by being less

sensitive to outliers, while other approaches use PCA, RPCA, or SVD, which are sensitive

to noise and outliers. Second, the saliency detection step provides a robust estimate of the

foreground support regions, and considers the relationships between subsets of pixels that

are part of the foreground, while removing unlikely foreground elements, such as noise

and/or background elements. This refinement step can be seen as an additional filter after

projecting the frame into the orthogonal subspace to get the foreground at each time t. It

shall be mentioned that the proposed BS-RST tends to faster in foreground estimation than

s-ReproCS, since s-ReProCS relies on compressive sensing, which is computationally

more expensive.

It should be clarified that the proposed BS-RST scheme has limitations, as illus-

trated in Fig. 6.2. The original frame is decomposed into two the foreground and the

background components. As can be seen in Fig. 6.2, over-segmentation occurred and
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Figure 6.2: From left to right: Typical frames from campus sequences, foreground and
background detected by BS-RST method.

small groups of pixels that are not part of foreground were incorrectly detected. These

artifacts were generated mainly by the saliency detection algorithm, since it failed to de-

tected coherently groups of foreground pixels. In this process, the saliency detection

algorithm considered all these groups of pixels as outstanding image parts, and grouped

them as parts of the foreground.
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7 CONCLUSION AND FUTURE WORKS

This work proposed a novel method, namely BS-RST, for online background sub-

traction of video sequences. The proposed method tends to make robust estimates of the

background, which helps obtaining improved foreground estimates, as compared to other

methods that are representative of the state of the art.

A series of experiments were designed to evaluate the performances of the pro-

posed method and the comparative methods. Based on these experiments, it is possible to

conclude that BS-RST tends to be less sensitive to outliers, makes robust estimates of the

foreground support regions, and tends to faster in foreground estimation than most of the

comparative methods.

Among the possibilities for future work, we would like to explore current methods

in Saliency detection. As discussed in this paper, our method utilizes a fast and simple

approach for foreground detection that does not discriminate similarity, size, and distance

between objects. In addition, we want to use the temporal information of the previous

frames and be able to filter the elements that were considered as foreground in the esti-

mation stage of the current foreground. Another point to investigate is the update stage

of the subspace, as well as the potential reduction of certain restrictions imposed by the

current model. This would lead to improved performance in foreground detection, consid-

ering that in real-world scenarios, satisfying the constraints of the current model becomes

challenging.
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APPENDIX A — RESUMO EXPANDIDO EM PORTUGUÊS

Título da Dissertação de Mestrado: Subtração de Fundo baseado em Rastreamento

Robusto de Subespaço.

Resumo expandido: O progresso sucessivo da capacidade dos computadores tornou pos-

sível processar, analisar e interpretar imagens e vídeos, impulsionando o desenvolvimento

contínuo de campos de pesquisa em visão computacional, reconhecimento de padrões e

processamento de imagens. Isso beneficiou várias áreas de aplicação, como sensoria-

mento remoto, diagnóstico médico, interação humano-computador, compressão de vídeo,

vigilância inteligente por vídeo, monitoramento de tráfego, análise visual de animais e in-

setos, e captura de movimento óptico. A precisão é essencial em muitas dessas aplicações,

o que levou a um grande interesse na comunidade científica e na indústria (BOUWMANS,

2014), (GARCIA-GARCIA; BOUWMANS; Rosales Silva, 2020).

Em muitas aplicações baseadas em vídeo, um passo fundamental e crítico é a

detecção do primeiro plano (objetos em movimento) em uma cena, conhecida como sub-

tração de fundo. Isso é vital para tarefas de análise de vídeo, como vigilância e detecção

de anomalias.

A subtração de fundo é um método amplamente utilizado para esse fim, buscando

um equilíbrio entre tempo de computação e qualidade de detecção. No entanto, condições

ideais, como câmera estática, iluminação constante e fundo estático, são raras em apli-

cações reais, apresentando diversos desafios relacionados a fatores no fundo, primeiro

plano e câmera. Portanto, novos métodos de subtração de fundo adaptativos e robustos se

tornaram necessários, especialmente com o aumento da geração de grandes volumes de

dados por dispositivos como computadores, câmeras digitais e celulares.

Diferentes abordagens para o método de subtração de fundo foram desenvolvidas

para lidar com os desafios apresentados em vídeos, incluindo abordagens baseadas em

fundamentais (LEE; HEDLEY, 2002) (GRASZKA, 2014) (ROY; GHOSH, 2017), infor-

mações estatísticas (WREN et al., 1997) (ELGUEBALY; BOUGUILA, 2013) (MUKHER-

JEE; JONATHANWU, 2012) (MUKHERJEE; JONATHANWU, 2012) (HAINES; XI-

ANG, 2012), aprendizado de subespaço (VASWANI et al., 2018) (DIANA; BOUW-

MANS, 2010) (CANDèS et al., 2011) (MCCOY; TROPP, 2011) (GABRIEL; ZAMIR,

1979) (SREBRO; JAAKKOLA, 2003) , e aprendizado profundo (SULTANA et al., 2019)

(LIM; Yalim Keles, 2018) (LIM; KELES, 2018b) (LIM; KELES, 2018a) (GAO; LI; LU,

2021).
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Neste trabalho apresentamos o BS-RST, um método de subtração de fundo para

detecção do primeiro plano online baseado no Rastreamento de Subespaço Robusto (Uma

abordagem de aprendizado de subespaço). Comparamos nosso método com outros tra-

balhos, OMoGMF (YONG et al., 2018), NORST (NARAYANAMURTHY; VASWANI,

2018b), s-ReProCS (NARAYANAMURTHY; VASWANI, 2019), OMWRPCA (XIAO et

al., 2020), e OBSL1 (LIU; LI, 2022). Publicamos nossos resultados avaliando a métrica

F-measure em um conjunto de dados público para comparações justas com as outras abor-

dagens.

BS-RST possui duas etapas principais, a primeira parte focado na construção do

subespaço inicial e a segunda parte obtenção do primeiro plano.

1. SUBESPAÇO INICIAL. Para esta etapa utilizamos o método RPCA-MoG (ZHAO et

al., 2014) para estimar de maniera mais robusta o subespeço inicial, atravez de um

conjunto de frames Y [1,ttrain] de tamanho ttrian para calcular os subespaço inicial.

2. ESTIMAÇÃO DO PRIMEIRO PLANO. Ele consiste de duas etapas.

• Refinamento do primeiro plano. Dado o subespaço inicial, começamos a

estimação do t-esimo primeiro plano por meio do subespaço t− 1 e o refina-

mento por meio do método SM (HOU; ZHANG, 2007), assim conseguimos

remover elementos que foram erroneamente considerados como primeiro plano

logrando obter uma estimação mais proxima do primeiro plano.

• Atualização do subespaço. Depois de refinar o primeiro plano, estimamos

o fundo correspondente a esse frame pela diferença entre o frame atual e o

primeiro plano estimado, logo a atualizaçãmos o subespaço atravez do metodo

(NARAYANAMURTHY; VASWANI, 2019). Na Figura 4.4, podemos visu-

alizar todos os passos mencionados para estimar o subespaço inicial, refinar o

primeiro plano, estimar o fundo e finalmente atualizar o subespaço no tempo.

No decorrer do desenvolvimento desta dissertação utilizamos o banco de dados

chamado I2R dataset (LI et al., 2004). O qual foi criado para abordar as dificuldades

na modelagem de fundo para detecção de objetos em movimento em ambientes com-

plexos. O conjunto de dados compreende 9 sequências de vídeo capturadas em ambientes

internos e externos, abrangendo vários fatores desafiadores, como problemas de inicial-

ização, sombras, camuflagem, mudanças de iluminação (súbitas e graduais), ruído de

vídeo, condições climáticas desafiadoras e fundos dinâmicos. O ground truth é fornecida

na forma de máscaras de primeiro plano segmentadas manualmente para 20 quadros de
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vídeo de cada sequência.

Além dos experimentos citados, realizamos uma discução sobre as advantagem e

desvantagem de nosso metodo ao obter o primeiro plano de um video frame de maneira

online. Assim, em nossos experimentos obtivimos um 68,02% de acurácia, destacando

assim que nosso metodo proposto é menos sensivel aos outliers.

Por fim, apresentamos visualizações dos resultados obtivos na etapa de experi-

mentos na tarefa de segmentação de objetos.
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