
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

BRUNO LOUREIRO COELHO

Efficient and Scalable Load Balancing
Through Cross-Plane Cooperation

Thesis presented in partial fulfillment of the
requirements for the degree of Master of
Computer Science

Advisor: Prof. Dr. Alberto Egon Schaeffer Filho

Porto Alegre
October 2023

CIP — CATALOGING-IN-PUBLICATION

Coelho, Bruno Loureiro

Efficient and Scalable Load Balancing Through Cross-
Plane Cooperation / Bruno Loureiro Coelho. – Porto Alegre:
PPGC da UFRGS, 2023.

88 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2023. Advisor: Alberto Egon Schaeffer Filho.

1. Load Balancing. 2. Traffic Engineering. 3. Deep Rein-
forcement Learning. 4. Machine Learning. 5. Programmable Data
Planes. 6. Elephant Flow Detection. I. Schaeffer Filho, Alberto
Egon. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Alberto Egon Schaeffer Filho
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

ABSTRACT

Load balancing network traffic through multiple shortest-paths has become common prac-

tice to efficiently utilize the network infrastructure. Despite widespread adoption, Equal-

Cost Multi-Path (ECMP) delivers performance far from optimal. Several load balancing

solutions utilize Weighted-Cost Multi-Path (WCMP), splitting incoming traffic between

links proportionally to link weights. However, implementing WCMP requires the con-

troller to update match+action rules whenever the weights must be changed, introducing

a delay before the appropriate traffic split can be applied. Additionally, weighted traf-

fic splits are applied over network flows without regard to flow characteristics or needs.

We propose CrossBal, a hybrid load balancing system based on Deep Reinforcement

Learning (DRL) that focuses its efforts on high-impact elephant flows. The DRL agent is

modeled to be able to efficiently utilize network links while minimizing the action space,

allowing the agent to quickly learn how to load balance. Further, CrossBal can quickly

react to network changes by monitoring and switching active routes directly in the data

plane. Our evaluation shows that CrossBal can efficiently utilize network resources, us-

ing most available links, while also reducing link utilization imbalance. We also evaluate

the elephant flow detection employed by CrossBal, showing how it can quickly identify

elephant flows while efficiently utilizing switch resources.

Keywords: Load Balancing. Traffic Engineering. Deep Reinforcement Learning. Ma-

chine Learning. Programmable Data Planes. Elephant Flow Detection.

Balanceamento de Carga Eficiente e Escalável Através da Cooperação Entre Planos

RESUMO

Balancear o tráfego de rede por meio de vários caminhos mais curtos tornou-se uma prá-

tica comum para obter uma utilização eficiente da infraestrutura de rede. Embora seja fre-

quentemente utilizado, o Equal-Cost Multi-Path (ECMP) oferece um desempenho longe

do ideal. Várias soluções de balanceamento de carga utilizam o Weighted-Cost Multi-

Path (WCMP), dividindo o tráfego entre links proporcionalmente aos pesos dos links. No

entanto, a implementação do WCMP exige que o controlador atualize as regras de en-

caminhamento match+action sempre que os pesos devem ser alterados, introduzindo um

atraso antes que a divisão de tráfego apropriada possa ser aplicada. Além disso, o WCMP

divide o tráfego de rede baseando-se apenas nos pesos dos links, sem levar em conta

as características ou necessidades de cada fluxo. Neste trabalho, propomos CrossBal,

um sistema híbrido de balanceamento de carga baseado em Deep Reinforcement Lear-

ning (DRL) que concentra seus esforços em fluxos elefantes de alto impacto. O agente de

DRL é modelado para ser capaz de utilizar os links de rede de forma eficiente e, ao mesmo

tempo, minimizar o espaço de ação, permitindo que o agente aprenda rapidamente como

balancear a carga. Além disso, o CrossBal pode reagir rapidamente às mudanças na rede

monitorando e alternando as rotas ativas diretamente no plano de dados. Nossa avaliação

mostra que o CrossBal consegue utilizar os recursos da rede de forma eficiente, usando

a maioria dos links disponíveis, ao mesmo tempo que reduz o desequilíbrio na utilização

dos links. Também avaliamos a detecção de fluxo elefante utilizada pelo CrossBal, mos-

trando como ele pode identificar rapidamente fluxos elefantes através do uso eficiente dos

recursos do switch programável.

Palavras-chave: Balanceamento de Carga. Engenharia de Tráfego. Aprendizado por

Reforço Profundo. Aprendizado de Máquina. Planos de Dados Programáveis. Detecção

de Fluxos Elefantes.

LIST OF FIGURES

Figure 2.1 Plane decoupling in Software-Defined Networks..17
Figure 2.2 Abstract Forwarding Model...20
Figure 2.3 Main aspects of Reinforcement Learning..25
Figure 2.4 Overview of Deep Neural Networks. ..26
Figure 2.5 Steps of an iteration of a Deep Learning Agent ..29

Figure 3.1 Overview of the collaboration between control and data plane employed
in CrossBal..30

Figure 3.2 Overview of the cross-plane elephant flow detection.32
Figure 3.3 Relevant scenarios where hash collision may happen.34
Figure 3.4 The source and destination switches are encoded in one-hot vectors.36
Figure 3.5 Mapping actions to hops leads to reward assignment issues.37
Figure 3.6 Links take time to reflect changes caused by the action selected by the

agent..38
Figure 3.7 Mechanism for switching active paths...40
Figure 3.8 Architectural implementation of CrossBal. ...41
Figure 3.9 The first switch selects an end-to-end route and inserts a custom header.46
Figure 3.10 Switches use the Elephant Flow Table to forward packets of corre-

sponding flows. ...47

Figure 4.1 Topology used in our experiments...50
Figure 4.2 Link analysis for workload 1. ..54
Figure 4.3 Link analysis for workload 2. ..55
Figure 4.4 Analysis of parameters for elephant detection optimization with a 30KB

threshold..57

LIST OF TABLES

Table 2.1 Simplified example of a Flow Table..18

Table 4.1 Workloads used in our evaluation. ..49
Table 4.2 CrossBal and Deep Reinforcement Learning agent parameters used in

the evaluation. ...51
Table 4.3 Experiment parameters used in the evaluation. ...52

Table 5.1 Data Plane load balancers. ..59
Table 5.2 Control Plane load balancers based on heuristics. ..60
Table 5.3 Control Plane load balancers that employ Machine Learning models.61
Table 5.4 Emerging categories of load balancers..62

LIST OF ABBREVIATIONS AND ACRONYMS

ML Machine Learning

ECMP Equal-Cost Multi-Path

WCMP Weighted-Cost Multi-Path

DRL Deep Reinforcement Learning

SDN Software-Defined Networking

ASIC Application-Specific Integrated Circuit

NIC Network Interface Card

FPGA Field Programmable Gate Array

CPU Central Processing Unit

DPDK Data Plane Development Kit

XDP eXpress Data Path

DDoS Distributed Denial of Service

RL Reinforcement Learning

NN Neural Network

DNN Deep Neural Network

FC Fully Connected

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

DQN Deep Q-Learning

DM Demand Matrix

RF Random Forest

FIFO First-in First-out

RR Round-Robin

PoC Proof-of-Concept

LoC Lines-of-Code

VM Virtual Machine

OS Operating System

FCT Flow Completion Time

MLU Maximum Link Utilization

WAN Wide Area Network

CONTENTS

1 INTRODUCTION...11
1.1 Contextualization ..11
1.2 Motivation..12
1.3 Goals...13
1.4 Document Outline ...14
2 BACKGROUND AND MOTIVATION...16
2.1 Programmable Networks ...16
2.1.1 Software-Defined Networking ...16
2.1.2 Programmable Data Planes ..18
2.2 Load Balancing in Computer Networks ...22
2.2.1 Equal-Cost Multi-Path (ECMP)...22
2.2.2 Weighted-Cost Multi-Path (WCMP) ...22
2.2.3 Elephant Flows...23
2.3 Deep Reinforcement Learning ...24
2.3.1 Reinforcement Learning ..24
2.3.2 Neural Networks ..26
2.3.3 Deep Q-Learning ...27
3 CROSSBAL: CROSS-PLANE LOAD BALANCING ...30
3.1 Approach Overview ..30
3.2 Identifying Elephant Flows Efficiently and Accurately31
3.3 Deep Reinforcement Learning Agent..34
3.4 Reacting to Short-Lived Network Congestion..39
3.5 Architecture...41
3.5.1 Control Plane ...42
3.5.2 Data Plane ..43
4 EVALUATION...48
4.1 Prototype..48
4.2 Methodology ..48
4.2.1 Setup ..49
4.2.2 Workloads ..49
4.2.3 Topology ..50
4.2.4 Parameters..51
4.2.5 Metrics ...52
4.3 Link Utilization Analysis..53
4.4 Elephant flow detection optimizations ..56
5 RELATED WORK ...58
5.1 Characterization of the Reviewed Literature...58
5.2 Data Plane Load Balancers ..59
5.3 Control Plane Load Balancers ...59
5.3.1 Heuristics-based Controllers..60
5.3.2 Machine Learning-based Controllers...61
5.4 Emerging categories of Load Balancers ...61
5.5 Discussion ..62
6 CONCLUDING REMARKS ...64
6.1 Summary of Contributions ..64
6.2 Future Work ..66
REFERENCES...68
APPENDIX A – RESUMO EXPANDIDO ..76

APPENDIX B – ACCEPTED PAPER – CNSM 2023...79

11

1 INTRODUCTION

This work focuses on the efficient utilization of network resources through the

judicious load balancing of high-impact flows. More specifically, we propose CrossBal, a

load balancing system that combines programmable data planes with Machine Learning

(ML) to reduce the imbalance in the utilization of network links. Section 1.1 provides

further contextualization into load balancing in computer networks, while Section 1.2

presents the motivation of this work. Next, Section 1.3 lists the goals of this work, while

Section 1.4 concludes this chapter with the outline of this document.

1.1 Contextualization

With the accelerated growth of the Internet in the past few decades, network in-

frastructures have been continuously expanded. Computer networks often implement re-

dundant paths between end-points in order to increase reliability and meet the demands

of users and services (HSU et al., 2020b). However, in order to efficiently utilize the

available multi-path infrastructure, the incoming traffic must be properly split between

the redundant output links, avoiding overwhelming links while others remain underuti-

lized (NOORMOHAMMADPOUR; RAGHAVENDRA, 2018).

In this multi-path scenario, classic shortest-path routing strategies are unable to

provide efficient network utilization (REDA et al., 2020). Equal-Cost Multi-Path (ECMP)

is a widely deployed load balancing technique due to its simplicity, being readily available

in commercial switches (GAVRILUŢ; PRUSKI; BERGER, 2022). However, ECMP may

present severe performance issues, being unable to provide an efficient split of the network

traffic (ZHANG et al., 2018). Weighted-Cost Multi-Path (WCMP) extends ECMP by

adding weights to each hop, increasing performance and resilience to network asymme-

try. Researchers have proposed a diverse set of techniques for calculating optimal weights

for WCMP. These techniques can be based on heuristics (PERRY et al., 2023), Machine

Learning models (XU et al., 2018; VALADARSKY et al., 2017), or other strategies (LE

et al., 2021; MAGNOUCHE et al., 2021). However, updating link weights during con-

gestion requires control plane intervention, which introduces considerable delay. On the

other hand, load balancing solutions that rely entirely on the data plane are limited to spe-

cific topologies (e.g., CONGA (ALIZADEH et al., 2014), HULA (KATTA et al., 2016))

or employ simple heuristics (e.g., LetFlow (VANINI et al., 2017), BurstBalancer (LIU et

12

al., 2022b)).

In addition to the aforementioned deficiencies, the majority of proposed load bal-

ancing systems generally do not consider the characteristics or needs of each network

flow. Elephant flows are high-throughput, long-lasting flows that tend to have a large

impact on the network (LIU et al., 2022a). While elephant flows may constitute a small

portion of total flows, research shows that a few large flows constitute more of the total

network traffic than an immense number of small flows (DURNER; KELLERER, 2020).

Considering the impact that elephant flows have on the network, intelligent rerouting of

these flows can severely improve network utilization (JURKIEWICZ, 2021a). Addition-

ally, as elephant flows are long-lived, we have more chances to reroute them.

Given the importance of elephant flows, a system capable of identifying and rerout-

ing these flows is better equipped to load balance the network. However, the identification

of elephant flows requires monitoring up to terabits per second of network traffic. While

control plane solutions can enable complex techniques for identifying elephant flows,

they are not able to process network traffic at these rates (JURKIEWICZ, 2021b). An

alternative is to use the data plane of networking devices to aid in the identification of

elephant flows. While emerging programmable switches (BOSSHART et al., 2014) allow

us to reconfigure the packet processing pipeline, they are still subject to limitations, as

these devices tend to have a few tens of MBs of memory, a restricted set of logical and

arithmetic operations, limitations on memory accesses, and a strict time budget to process

each packet (SAPIO et al., 2017).

In addition to the challenges in efficiently and accurately detecting elephant flows,

load balancing active flows is not a trivial task. For instance, there may be a large number

of possible routes for each active flow. Therefore, the strategy employed must be able

to identify and select the best route, while also being able to scale up to larger networks.

Further, load balancing systems must be able to react to changes in the network state, such

as transient congestion. This requires the decision-loop to be fast enough to detect and

handle congestion in a short time-scale. In conclusion, an ideal load balancing system has

a large number of requirements, several of which seem opposed to each other.

1.2 Motivation

Despite research efforts, current techniques for network load balancing tend to

either be too slow to react to network changes or use very simple heuristics. Generally,

13

approaches in the control plane employ more complex algorithms for splitting the in-

coming traffic (e.g., Machine Learning models (XU et al., 2018; VALADARSKY et al.,

2017)). However, these approaches have a significant delay, as the controller has a slower

decision-loop (KATTA et al., 2016). In contrast, in-network load balancing systems tend

to use simple heuristics, often acting based on local or limited information, resulting in

suboptimal decisions (ZHANG et al., 2017).

Considering the requirements listed previously, current load balancing schemes

fall short from providing efficient resource utilization. In order to fully utilize the network

infrastructure, we require an approach capable of providing both intelligent and reactive

routing, while also taking into account system scalability and the characteristics of flows.

We propose CrossBal, a hybrid load balancing system that combines an intelligent

control plane with a reactive data plane. CrossBal employs a Deep Reinforcement Learn-

ing (DRL) agent in the control plane, responsible for intelligently selecting routes that

maximize the efficiency of the network. CrossBal focuses on optimizing the routing of

high-impact flows, such as elephant flows. By prioritizing a small subset of high-impact

flows, we can efficiently load balance the network without introducing scalability issues.

Further, CrossBal offloads part of the task of identifying elephant flows to the data plane.

Through the collaboration of the control and data planes, CrossBal achieves scalable, ac-

curate, and fast detection of elephant flows. Finally, CrossBal exploits programmable

data planes to quickly detect and react to congestion in active paths. By utilizing pro-

grammable switches to probe and switch between installed paths for each elephant flow,

CrossBal complements the slower (but intelligent) control-loop of the DRL agent with a

quicker and reactive control-loop in the data plane.

1.3 Goals

The goal of this work is to design, implement, and evaluate a system capable

of intelligently and efficiently load balancing elephant flows over the available network

infrastructure. Further, we aim to design, implement, and evaluate a Deep Reinforcement

Learning (DRL) agent capable of aiding our load balancing system with real-time route

selection for active flows.

In order to achieve these goals, we must address the following objectives:

• Investigate the state-of-the-art. Several network load balancing systems have

14

been proposed in the literature. However, current solutions are still unable to deliver

optimal performance. By studying the literature in load balancers and ML-aided

routing techniques, we can identify the strengths and weaknesses of each approach;

• Design and implement CrossBal. This work proposes CrossBal, a hybrid Machine

Learning-aided load balancing system capable of identifying and rerouting elephant

flows, as well as detecting and reacting to congestion in selected paths. We highlight

the main challenges in designing a hybrid load balancing system, as well as a Deep

Reinforcement Learning agent for actively rerouting flows;

• Evaluate a Proof-of-Concept prototype. In order to validate our design, we im-

plement and evaluate a prototype of CrossBal. The evaluation is based on BMv21

switches in an emulated environment with a realistic network topology and work-

loads.

1.4 Document Outline

The remainder of this document is organized as follows. Chapter 2 provides back-

ground knowledge on programmable networks (Section 2.1), the technology employed

in this work; load balancing in computer networks (Section 2.2), the main focus of this

work; and Deep Reinforcement Learning (Section 2.3), the Machine Learning technique

responsible for actively rerouting high-impact flows.

Chapter 3 presents the design of our proposed system, CrossBal. First, Section 3.1

shows an overview of how CrossBal approaches load balancing the network. Then, we

detail key aspects of our design: the cross-plane elephant flow detection (Section 3.2),

the Deep Reinforcement Learning agent (Section 3.3), and the data plane mechanism to

monitor and switch paths (Section 3.4). Finally, Section 3.5 concludes the chapter by

detailing the architecture of CrossBal.

Next, Chapter 4 reports our evaluation of a proof-of-concept prototype of Cross-

Bal. We first detail the prototype that was evaluated (Section 4.1), then describe the

methodology employed in our evaluation (Section 4.2). We present the results of our

evaluation of the performance of CrossBal in Section 4.3, followed by an analysis of

proposed optimizations for the detection of elephant flows in the data plane (Section 4.4).

Chapter 5 discusses the related work, presenting the state-of-the-art in network

1<https://github.com/p4lang/behavioral-model>

https://github.com/p4lang/behavioral-model

15

load balancing. For each work, we highlight its main characteristics, as described in

Section 5.1. First, Section 5.2 covers data plane load balancers, while Section 5.3 covers

approaches in the control plane. Section 5.4 concludes the chapter by covering emerging

classes of load balancers: hybrid and end-host load balancers.

Finally, Chapter 6 concludes this work with our final remarks. Section 6.1 presents

a summary of our contributions, while Section 6.2 discusses interesting directions for fu-

ture work.

16

2 BACKGROUND AND MOTIVATION

This chapter provides necessary background information on several topics relevant

to this work. First, Section 2.1 provides background on programmable networks, the

emerging technology we utilized in this work. Next, Section 2.2 discusses load balancing

in computer networks, the main focus of our work. Finally, Section 2.3 presents the main

concepts of Deep Reinforcement Learning, the Machine Learning model employed in this

work to select routes for active flows.

2.1 Programmable Networks

Enabling programmability in computer networks is an effort that dates back to the

1990s. Since then, the recurring motivations for making networks programmable have

been to facilitate network management and innovation (FEAMSTER; REXFORD; ZE-

GURA, 2014). Despite several early attempts, it was not until recently that network oper-

ators started adopting programmability. Starting from the late 2000s, both the academia

and the industry began using Software-Defined Networking (SDN) to create more man-

ageable and efficient networks (ZHU et al., 2020). Examples of adoption by the indus-

try include Google’s private WAN, B4 (JAIN et al., 2013), that has been in use since

2010 (HONG et al., 2018); and Microsoft’s decentralized WAN traffic engineering sys-

tem, BlastShield (KRISHNASWAMY et al., 2022).

2.1.1 Software-Defined Networking

Software-Defined Networking (SDN) is a paradigm that divides functionality be-

tween a logically-centralized Control Plane and a distributed Data Plane, as shown in

Figure 2.1. By decoupling functionality, SDN allows a centralized controller to have a

global view of the network. At the same time, the network data plane can be simplified to

basic forwarding devices (ZHU et al., 2020).

In SDN, the logically-centralized controller is responsible for the configuration

of the forwarding devices in the data plane (ZHU et al., 2020). This configuration is

done through the Southbound API (as shown in Figure 2.1), with protocols such as Open-

Flow (MCKEOWN et al., 2008). Using OpenFlow as an example, the controller config-

17

Figure 2.1 – Plane decoupling in Software-Defined Networks.

Data Plane

SDN Controller

Southbound API
(e.g., OpenFlow)

Northbound API
(e.g., REST)

App
1

App
2

App
3

App
4

App
5

App
...

App
n

Source: Adapted from Kreutz et al. (2015).

ures the OpenFlow-enabled switches with flow rules, which tell the device how to process

incoming packets.

Table 2.1 shows a simplified example of a flow table, with each entry specifying

a list of values for the match fields, a list of (zero or more) counters to update, and a

(non-empty) list of instructions to be applied over the packet. For instance, the first line

in the table dictates that packets arriving from port 2 of the forwarding device, with a des-

tination IP address matching the prefix 10.0.1.0/24 (e.g., 10.0.1.1 or 10.0.1.50), should

be processed according to the instructions in this entry. This includes decrementing the

time-to-live field of the packet, and then forwarding it through port 3 of the switch. Ad-

ditionally, the counter for bytes sent through that output port should be updated with the

size of the packet forwarded.

Another example shown in Table 2.1 can be understood when looking at both the

second and third entries in the flow table: when a packet arrives at port 1, if its destination

TCP port is 4321, it should be forwarded through port 2 (entry #2). However, if the

destination TCP port does not match the specified value, the packet should be dropped1

(entry #3). Finally, entry #4 is a simplified example of a typical default rule. Default

rules are applied when a packet does not match any of the other entries. In this example,

we want every packet that does not match any of the other entries to be forwarded to the

1In practice, flow tables also require each entry to have a priority specified. The priority field is used to
select an entry when a packet matches more than one flow entry. This field was omitted in the example to
simplify the table.

18

Table 2.1 – Simplified example of a Flow Table

Counters InstructionsMatch Fields
Ingress

Port
Destination
IP Address

Destination
TCP Port

Port 2 10.0.1.0/24 Any Bytes Sent
decrement TTL
output port_3

Port 1 0.0.0.0/0 4321
Bytes Sent

Packets Sent
decrement TTL
output port_2

Port 1 0.0.0.0/0 Any Packets Dropped drop

Any 0.0.0.0/0 Any -
Forward to
Controller

Source: The Authors.

controller (a “packet_in” to the controller).

One of the consequences of having a logically centralized controller is that all

the information about the network is gathered in one (logical) place. As shown in Fig-

ure 2.1, this allows network applications to communicate with the controller through a

Northbound API (e.g., REST). This way, a developer can create a specific application,

such as an innovative routing algorithm, that receives topology information from the con-

troller. After computing the new routes, this application can forward it to the controller,

which translates these routes into entries of a flow table for OpenFlow-enabled switches

to apply.

SDN controllers can combine the functionality of the Southbound API and the

Northbound API, allowing it to implement complex logic over the network. As a simple

example, a controller can receive the first packet of each flow (a ”packet_in” in OpenFlow)

through the Southbound API, then query a routing application (e.g., based on Machine

Learning) through the Northbound API. Once the application returns an optimal routing

strategy for this flow, the controller can update the flow tables of the switches through the

Southbound API, e.g., by sending a “flow_mod” message with the OpenFlow protocol.

2.1.2 Programmable Data Planes

While Software-Defined Networking allows network operators to have more con-

trol over their networks, SDN protocols (e.g., OpenFlow) still have to be consistently

updated to include new header fields and instructions (BOSSHART et al., 2014). For

instance, the first version of the protocol, OpenFlow 1.0, released in December of 2009,

19

supported 12 header fields for matching in flow table entries (OPEN NETWORKING

FOUNDATION, 2009). By version 1.4, released in October 2013, OpenFlow had been

extended to support 41 header fields (BOSSHART et al., 2014). Additionally, newer ver-

sions of the protocol also extended the list of supported actions (OPEN NETWORKING

FOUNDATION, 2015).

The need to constantly update the protocol to support new headers and actions

can slow down the pace of innovation (BOSSHART et al., 2014). Seeking to empower

network operators with more control over network protocols and how data packets are pro-

cessed, researchers aimed to add programmability to the data plane. Programmable data

plane devices include programmable Application-Specific Integrated Circuits (ASICs)

(e.g., Intel Tofino), smart Network Interface Cards (NICs), and Field Programmable Gate

Arrays (FPGAs). Additionally, general-purpose Central Processing Units (CPUs) (LI-

ATIFIS et al., 2023) empowered with technologies such as Data Plane Development

Kit (DPDK) (FOUNDATION, 2015) or eBPF eXpress Data Path (XDP) (HØILAND-

JØRGENSEN et al., 2018) can be used to process packets efficiently.

In this work, we focus on programmable switches compatible with the P4 lan-

guage (BOSSHART et al., 2014). Implementations of P4-enabled switches include soft-

ware switches, such as BMv22, and programmable ASICs, such as the Intel Tofino3.

While the exact architecture of a programmable switch depends on the target (e.g., BMv2

or Tofino), P4-enabled switches are based on an Abstract Forwarding Model (BOSSHART

et al., 2014), shown in Figure 2.2.

Switches following the Abstract Forwarding Model (BOSSHART et al., 2014)

are composed of a parser, an ingress, and an egress processing blocks (LIATIFIS et al.,

2023). Several concrete architectures (e.g., v1model4, PSA5) also define a deparser block

(not present in Figure 2.2). The deparser block specifies the headers to be added to the

packet that is going to be emitted in the output port, as well as the relative order of the

headers.

• Parser: This block is the first step in the pipeline, being responsible for parsing

protocol headers. As opposed to SDN protocols like OpenFlow, P4 does not define

any protocol headers by default. Instead, network operators have complete control

over protocol headers, being responsible for defining the size and order of each
2BMv2: <https://github.com/p4lang/behavioral-model>
3Intel Tofino: <https://www.intel.com/content/www/us/en/products/details/network-io/

programmable-ethernet-switch/tofino-series.html>
4v1model: <https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4>
5PSA: <https://github.com/p4lang/p4c/blob/main/p4include/bmv2/psa.p4>

https://github.com/p4lang/behavioral-model
https://www.intel.com/content/www/us/en/products/details/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/details/network-io/programmable-ethernet-switch/tofino-series.html
https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4
https://github.com/p4lang/p4c/blob/main/p4include/bmv2/psa.p4

20

Figure 2.2 – Abstract Forwarding Model

Source: Bosshart et al. (2014).

protocol field. This eliminates the issue cited above, where SDN protocols have

to be constantly updated. Additionally, it empowers network operators with the

ability to design, test, and deploy custom protocols. The parser is also responsible

for deciding if packets should be accepted for further processing or if they should

be dropped. If a packet is accepted by the parser, the P4-enabled switch maintains

the value of parsed header fields to be used by subsequent processing blocks;

• Ingress: The ingress processing block is responsible for processing packets that

have been accepted by the parser. In this block, the network operator can define

match+action tables, matching on arbitrary keys, such as packet header fields or

custom metadata, and invoking actions defined by the operator. Match+action ta-

bles are similar to Flow Tables (e.g., Table 2.1), except the keys (match fields)

and the actions (instructions) are defined by the network operator. Actions can be

created based on simple arithmetic and logic primitives, as well as architecture-

specific functions. This includes reading and storing data in registers, allowing

stateful processing. Along with user-defined metadata, each architecture defines a

set of intrinsic metadata. For instance, the developer can read timestamp when the

packet was enqueued, or when it started being processed by the ingress block;

• Egress: The egress processing block is identical to the ingress processing block,

except the output port has already been selected. The egress processing block is par-

21

ticularly useful in scenarios involving packet cloning. Several P4-enabled switches

support functionality such as packet cloning, packet resubmission, and packet recir-

culation. It is also worth noting that both blocks have an independent amount of re-

sources, such as SRAM and arithmetic and logic units. Further, each block (ingress

and egress) has its own independent set of registers and match+action tables (as de-

fined by the network operator). While the resources of the ingress and egress blocks

are independent, they are also scarce. State-of-the-art programmable switches have

a few tens of MBs of SRAM and a limited amount of pipeline stages (SAPIO et al.,

2017).

Similarly to switches in a Software-Defined Networking scenario, P4-enabled

switches also communicate with a logically centralized controller. However, this is sub-

ject to the limitations of the communication channel and the controller’s processing rate.

The controller is responsible for configuring each switch with the source code and other

configuration files at startup, as shown in Figure 2.2. Additionally, the controller can in-

teract with each switch during runtime, inserting and removing entries from match+action

tables; accessing the values of statistics counters and stateful registers; configuring packet

cloning and recirculation; and so on. The complete set of operations supported by P4-

enabled programmable switches is defined in the P4Runtime Specification6.

Data plane programmability is being extensively researched in recent years. By

exploiting the capabilities of P4-enabled switches, researchers have explored offloading

part of applications into the network (LIATIFIS et al., 2023). Aside from enabling new

applications, programmable data planes also allow network operators to design, evaluate,

and deploy new solutions to old problems.

For instance, in a previous work, we implemented both the computation of fea-

tures and the evaluation of a Machine Learning (ML) model in the data plane to detect

Distributed Denial of Service (DDoS) attacks (COELHO; SCHAEFFER-FILHO, 2022);

HULA (KATTA et al., 2016) implements a load balancing system for datacenters entirely

in the data plane; and HashPipe (SILVA et al., 2018) uses P4-enabled switches to detect

heavy hitters - flows that have large traffic volumes. In conclusion, programmable data

planes allow researchers and network operators to propose and evaluate innovative proto-

cols and algorithms. In this work, we use P4-enabled switches to compute features for an

ML model and to aid the controller in load balancing the network.

6P4Runtime Specification: <https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html>

https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html

22

2.2 Load Balancing in Computer Networks

The expansion of computer networks, along with the increasing complexity and

requirements of applications, has made clear the need for efficient utilization of network

resources. Classic shortest-path routing strategies are not able to meet these require-

ments (REDA et al., 2020). Instead, traffic engineering systems started focusing on load

balancing the network.

2.2.1 Equal-Cost Multi-Path (ECMP)

Equal-Cost Multi-Path (ECMP) evenly splits traffic between multiple equal-cost

paths. This is commonly achieved by applying a hash function H over the five-tuple that

defines a flow: source IP address, destination IP address, source port, destination port,

and protocol. As H is deterministic, applying it over the five-tuple always produces the

same result, which can be used to pick among equal-cost paths (ZHANG et al., 2018).

As the implementation of ECMP in forwarding devices is very simple, it is readily

available in commercial switches (GAVRILUŢ; PRUSKI; BERGER, 2022). However,

ECMP suffers from severe performance drawbacks, often causing high link utilization.

One of the reasons why ECMP may lead to link congestion is due to hash collisions

between large flows (ZHANG et al., 2018). Another drawback of ECMP is that it lacks

any knowledge about the current state of the links, that is, it is not aware of any potential

congestion along paths (ALIZADEH et al., 2014).

2.2.2 Weighted-Cost Multi-Path (WCMP)

Weighted-Cost Multi-Path (WCMP) improves upon ECMP by adding weights to

each hop, increasing performance and resilience to network asymmetry. By carefully

setting appropriate weights for each link, WCMP can lead to efficient network utilization

even during link failures. These weights can be calculated through heuristics (PERRY et

al., 2023; LE et al., 2021; MAGNOUCHE et al., 2021) or Machine Learning models (XU

et al., 2018; LI et al., 2020; VALADARSKY et al., 2017).

While WCMP can provide more efficient network utilization than ECMP, updat-

ing link weights during congestion requires control plane intervention. This controller in-

23

volvement introduces considerable delay (ZHANG et al., 2020), which limits the switch’s

ability to react to transient congestion (ALIZADEH et al., 2014).

Further, WCMP is not as straight-forward as ECMP to implement in commodity

switches. While ECMP requires one entry in a hash table or match-action table for each

equal-cost hop, standard implementations of WCMP require replicating entries propor-

tionally to the weight of each path (HSU et al., 2020b). This can lead to severe waste of

switch resources depending on path weights.

2.2.3 Elephant Flows

Computer applications differ in the way they use the network - some only transmit

a small portion of data, while others may require a large amount of bandwidth. Aside from

the amount of data transferred, the duration of network flows can also differ based on the

application. Finally, the requirements for each flow also depend on the application - some

require low latency, while others are mostly interested in high throughput.

While flow classification can be quite complex, two broad types of flows are mice

and elephant flows. Mice flows are characterized by low-throughput and short dura-

tion (SILVA et al., 2018). Due to these characteristics, the performance of these flows

is more sensitive to additional latency and packet loss (ALIZADEH et al., 2014). By con-

trast, elephant flows are characterized by high-throughput and long duration (LIATIFIS et

al., 2023).

Out of the two, mice flows represent the majority of network flows. Despite this, it

is actually a small number of elephant flows that carry most of the network traffic (GUO;

MATTA, 2001; ALIZADEH et al., 2010; GREENBERG et al., 2009). Due to their char-

acteristics, elephant flows tend to have a large impact on the network (CURTIS et al.,

2011). Consequently, optimizing the path taken by these flows can severely improve net-

work utilization (AL-FARES et al., 2010).

Considering the impact of elephant flows, identifying these flows may allow rerout-

ing them in order to avoid network congestion. Elephant flows can be identified through

detection or prediction. Detection-based approaches employ simple thresholds or heuris-

tics for detecting elephant flows (SILVA et al., 2018). However, this typically requires

flows to be tracked long enough to be detected, incurring delay. An alternative is the pre-

diction of elephant flows, using heuristics (SILVA; SCHAEFFER-FILHO; GRANVILLE,

2022) or Machine Learning models (DURNER; KELLERER, 2020).

24

Despite its flexibility, the identification of elephant flows in the control plane is

not able to scale up to current network throughput rates, which can reach terabits per

second (JURKIEWICZ, 2021b). While sampling can improve scalability, it delays the

identification of elephant flows (SILVA et al., 2018). An alternative is to implement

the identification of elephant flows in the data plane. However, this poses several chal-

lenges due to the limitations of programmable data plane devices (previously explained

in Section 2.1). Therefore, there is a trade-off between the scalability provided by sim-

ple approaches that can be implemented in the data plane (e.g., IDEAFIX (SILVA et al.,

2018), HashCuckoo (SILVA; SCHAEFFER-FILHO; GRANVILLE, 2022)) and the high

accuracy of control plane approaches, where it is possible to implement more complex

identification techniques, such as Machine Learning models (DURNER; KELLERER,

2020).

2.3 Deep Reinforcement Learning

Machine Learning models can be divided into supervised models, unsupervised

models, semi-supervised models, and reinforcement learning (PARIZOTTO et al., 2023).

While supervised models learn from a labeled dataset, reinforcement learning algorithms

learn by interacting with an environment (SUTTON; BARTO, 2018).

2.3.1 Reinforcement Learning

In Reinforcement Learning (RL), an agent interacts with its environment in each

timestep t ∈ 1, 2, In each iteration, the agent observes a state s ∈ S and chooses

an action a ∈ A according to its policy π (ZHAN; ZHANG, 2020). Afterwards, the

agent receives a reward r according to a reward function and transitions to a new state

s′ ∈ S according to a transition function. RL algorithms can learn an optimal policy π

even without any explicit knowledge of the reward or transition functions (RESTUCCIA;

MELODIA, 2020).

Q-Learning is one of the most popular RL algorithms due to its simplicity. In

Q-Learning (Figure 2.3), the agent attempts to learn to estimate the value of every state-

action pair, (s, a). To this end, the agent keeps an entry for each state-action pair in its

Q-table, Q(s, a). At the end of each iteration, the agent updates the value of the entry

25

Figure 2.3 – Main aspects of Reinforcement Learning

Reward r
Environment

Feature
Engineering Identified

State

Observed
Raw Data

St
at

e
1 Action 1

Q-Value 1

...

...

Action N

...

...

St
at

e
M

... ... Q-Value NM

Reinforcement Learning Agent

Action a

Source: The Authors.

Q(s, a) with Equation 2.1, where s is the observed state, a is the action to be taken in this

state, and r is the reward expected from taking the action a in state s. Additionally, s′ is

the state the agent will transition to in the next step and a′ ∈ A is each possible action

the agent can take. Lastly, we have γ, the discount factor for future rewards, and α, the

learning rate. As this equation involves a future state, s′, the update of Q-values are done

in the next time-step, where the agent can easily observe s′ (SUTTON; BARTO, 2018).

Qk+1(s, a)← (1− α)Qk(s, a) + α(r + γmax
a′

Qk(s
′, a′) (2.1)

As shown in Figure 2.3, Q-Learning requires transforming the observed raw data

into the observed (identified) state. This process is known as feature engineering, as the

raw data is used to compute “features” that represent the observable state. Due to this re-

quirement, Q-Learning is ill-suited for complex environments, as explicitly representing

the entire state space can lead to an effect known as “state-space explosion” (RESTUC-

CIA; MELODIA, 2020). For instance, efficiently representing the state of computer net-

works is extremely challenging with traditional RL algorithms. In Q-Learning, repre-

senting the utilization of each link in the network would require transforming continuous

values into discrete values. This process of transforming a continuous space into a discrete

one is known as quantization. After quantization, the Q-table would require lq entries for

each possible action, where l is the number of links in the network and q is the number

of values used for representing the link utilization. Therefore, in order to store an entry

for each possible value, it is necessary to quantize the link utilization ul into q possible

values. These issues with explicitly representing (and storing) each possible observable

state are not limited to applying RL in computer networks, also happening in several other

26

domains (RESTUCCIA; MELODIA, 2020).

2.3.2 Neural Networks

A Neural Network (NN) is a supervised Machine Learning model. A represen-

tation of the structure of a (Deep) Neural Network is shown in Figure 2.4. An NN is

composed of an input layer, a set of hidden layers, and an output layer. Each layer is

composed of a series of artificial neurons (LUONG et al., 2019). A Deep Neural Network

(DNN) is a Neural Network with multiple hidden layers.

Figure 2.4 – Overview of Deep Neural Networks.

Deep Neural Network

input 1

Raw Input
Data

input 2

input n

Input Layer

...

Synapses

... ...

...

...

Output LayerHidden Layers

output 1

output n

Source: The Authors.

During inference, an NN has input data fed into neurons in its input layer. The

neurons in this layer are connected to neurons in the (first) hidden layer by synapses.

Each synapse connecting neuron i to neuron j can be represented by a weight Wi,j and a

bias Bi,j . While the value of a neuron in the input layer is determined by the input data,

the value of a neuron j in the next layer (first hidden layer) is computed by applying an

activation function, G(yj), over the weighted sum of the values of every neuron i in the

previous layer (input layer) that connects to neuron j (in the first hidden layer) (LUONG

et al., 2019). More formally, if G(yj) is the activation function, the value of neuron j, xj ,

can be defined with Equation 2.2.

xj = G(
∑
i

xi ∗Wi,j +Bi,j) (2.2)

The computation in Equation 2.2 is applied over every neuron j in layer l. As

27

this computation is applied over each neuron j in a given layer, subsequent layers can

only be computed after the values of the neurons in the previous layers are known. In

other words, for each layer l ∈ {1, 2, ..., |L|}, we must compute the values in layer l − 1

before computing l. Neural Networks similar to the one shown in Figure 2.4 are known

as Feedforward Neural Networks, as the synapses are always directed from layer l − 1

to layer l (TALBI, 2021). Further, Neural Networks where every neuron i in layer l is

connected to every neuron j in layer l + 1 are known as Fully Connected (FC) Neural

Networks. It can also be said that layer l is fully connected to layer l + 1 (LUONG et al.,

2019).

There is a wide range of activation functions G(yj) that can be applied to compute

the final value xj of neuron j. A popular example is the Rectified Linear Unit (ReLU)

activation function, as shown in Equation 2.3 (GLOROT; BORDES; BENGIO, 2010).

G(yj) =

yj, yj ≥ 0

0, yj < 0
(2.3)

The training of a neural network consists of updating the weight (and bias) of

each synapse. While there are multiple ways of updating these weights, a very common

technique is backwards propagation combined with Stochastic Gradient Descent (SGD).

At a very high level view of the technique, the combination of these techniques aims to

calculate the error of a prediction during training and adjust the synapses based on that

error. The values of the synapses are adjusted starting with the output layer, going back to

the hidden layer(s). As we rely on the calculated error of the prediction during training,

this means we must know the correct prediction for each training sample. In other words,

neural networks are a supervised Machine Learning model (TALBI, 2021).

2.3.3 Deep Q-Learning

In order to be able to efficiently utilize Reinforcement Learning algorithms in sys-

tems with complex environments, researchers have proposed replacing the state-action

pair with a function approximation. In particular, the use of Deep Neural Networks as a

function approximator for RL (ELIYAHU et al., 2021) has been extensively researched

in the past years. As this technique combines Deep Neural Networks with Reinforcement

Learning, it is known as Deep Reinforcement Learning (DRL). While Deep Reinforce-

28

ment Learning (DRL) includes a broad set of algorithms, we focus specifically on Deep

Q-Learning (DQN). Therefore, for the remainder of this document, we use the terms

Deep Reinforcement Learning (DRL) and Deep Q-Learning (DQN) interchangeably, un-

less stated otherwise.

Figure 2.5 illustrates the main aspects of a Deep Reinforcement Learning (DRL)

agent. First, (1) the DRL agent observes raw data which describes its current state s. As

opposed to traditional Reinforcement Learning, the agent utilizes a Deep Neural Network

(DNN) to process the information describing the state. This alleviates the need to dis-

cretize and store each possible state, as the DNN is capable of identifying similar states.

Then, (2) the DNN outputs the expected value of each action for the observed state as the

value of each neuron in the output layer. Next, (3) the agent selects an action a based on

its strategy. This typically involves choosing between exploiting, i.e., choosing the action

with the highest expected value, or exploring a random action, based on its exploration pa-

rameters. After acting, (4) the agent receives a reward r and transitions to a new state s′.

State-of-the-art Deep Reinforcement Learning techniques usually (5) store transitions as

a tuple (s, a, r, s′) to be used for periodic training (ELIYAHU et al., 2021). This technique

is known as memory replay, which has been shown to greatly stabilize learning (MNIH et

al., 2015). With memory replay, (6) the agent periodically samples a batch of transitions

stored in its memory. Finally, (7) the agent uses this batch to update its internal weights

based on the rewards received. In order to stabilize the learning of the agent, the internal

weights of the neural network being trained remain unchanged between “episodes”. For

a deeper understanding of Deep Reinforcement Learning techniques, we refer the reader

to Mnih et al. (2015) and Silver et al. (2016).

29

Figure 2.5 – Steps of an iteration of a Deep Learning Agent
Deep Reinforcement Learning Agent

Deep Neural Network

input 1

Observed
Raw Data

input 2

input n

Input Layer

...

Synapses

... ...

...

...

Output Layer

value of

action 1

Hidden Layers

value of

action n

Reward r

State s'

Environment

update weights

Action
Selection

1

2

3

4

5 store(s, a, r, s')

sample(batch)

Memory

Optimizer

6

7

Action a

Source: The Authors.

30

3 CROSSBAL: CROSS-PLANE LOAD BALANCING

CrossBal is a hybrid load balancing system that combines an intelligent control

plane with reactive data plane processing. In this chapter, we present CrossBal, starting

with an overview of the approach (Section 3.1), while subsequent sections present key de-

sign elements. Section 3.2 describes our collaborative mechanism for detecting elephant

flows. Next, Section 3.3 discusses the main challenges and design choices in employing a

Deep Reinforcement Learning agent for load balancing network flows. Then, Section 3.4

elaborates on how CrossBal utilizes programmable data planes to be able to react to short-

lived network congestion. Finally, Section 3.5 concludes this chapter with architectural

details of CrossBal.

3.1 Approach Overview

Figure 3.1 presents an overview of our approach. CrossBal relies on two key

principles to balance network utilization in an efficient and scalable manner: (i) cross-

plane cooperation, enabling CrossBal to quickly react to transient congestion by relying

on mechanisms implemented in the programmable data plane, without having to sacrifice

decision-making intelligence at the control plane; and (ii) scalable traffic rerouting, by

focusing its efforts on flows that have the highest impact on the network (e.g., elephant

flows and heavy hitters), as opposed to dealing with every flow in an equal manner.

Figure 3.1 – Overview of the collaboration between control and data plane employed in CrossBal.

Control Plane

DRL Agent

Network

Metrics

Data Plane

ECMP

Routing
Strategy

O

U

T

P

U

T

Network

Monitoring

Positive

Negative

Elephant Flow
Detection

Report
Network State

Forwarding
Rules

Source: The Authors.

31

The workflow starts with each programmable data plane device monitoring the

state of the network. Simultaneously, the data plane is also responsible for performing

part of the elephant flow detection. Both the network status and detected elephant flows

are reported to a logically centralized controller with a global view of the network. The

controller employs a Deep Reinforcement Learning (DRL) agent to periodically select the

new top-n optimal routes to forward these flows of interest.

CrossBal decomposes load balancing into two complementary control-loops that

work together to provide both intelligent and reactive decision-making. There is a slower,

but more intelligent, control-loop at the control plane, which is fed with network mon-

itoring data and employs the DRL agent to compute the optimal routes. However, pro-

grammable data plane devices also apply a faster, but simpler, control-loop to probe, mon-

itor, and rapidly switch between a subset of active routes selected by the DRL agent. By

having the data plane cooperate with the control plane in multiple aspects, CrossBal can

achieve both intelligent and reactive load balancing of the network.

There are several challenges that directly influenced the following design aspects

of CrossBal: the identification of elephant flows, the modeling of a Deep Reinforcement

Learning agent, and allowing data plane devices to actively participate in route selection.

These will be discussed in the following sections.

3.2 Identifying Elephant Flows Efficiently and Accurately

Identifying elephant flows efficiently and accurately is challenging in high-throughput

networks, where network traffic rates can reach terabits per second (JURKIEWICZ, 2021b).

Despite its flexibility, a centralized controller is incapable of performing per-packet clas-

sification without incurring latency overheads (SIVARAMAN et al., 2017).

A natural solution is to utilize programmable data plane devices, such as P4-

enabled switches (BOSSHART et al., 2014), to offload part of this task. However, im-

plementing an accurate and efficient identification of elephant flows in the data plane is

not straight-forward due to the limitations of these devices (as previously discussed in

Section 2.1). In particular, programmable switches impose a strict time budget to process

each packet, limiting memory accesses and per-packet processing (SAPIO et al., 2017).

Further, the data structures employed in the identification of elephant flows must be com-

pact, as these devices tend to have only a few tens of MBs of memory (HSU et al., 2020a).

With the limitations of programmable data plane hardware in mind, CrossBal de-

32

composes the detection of elephant flows into three levels of complementary mechanisms,

balancing the tradeoffs between fast and lightweight detection in the data plane with more

accurate and heavyweight detection in the control plane. As illustrated in Figure 3.2, these

mechanisms include a Preliminary Filtering that is applied over all flows, fol-

lowed by a step of Refined Detection over a subset of flows in the data plane. Fi-

nally, the control plane implements a Machine Learning Classifier to provide

a final, more accurate classification. We detail each of these mechanisms next.

Figure 3.2 – Overview of the cross-plane elephant flow detection.

X

Tiny Flow
Small Flow

Medium Flow
Large Flow

X

Elephant

Flow
X

Control Plane
Data Plane

Machine Learning
Classifier

Medium Flow Large Flow

Preliminary
Filtering

Refined
Detection

Deep
Reinforcement
Learning Agent

Active
Elephant Flows

<5-tuple>

...

Source: The Authors.

• Preliminary filtering: the data plane implements a threshold-based1 detection that

tracks the number of bytes, number of packets, and duration for each active flowlet2.

The main aspect of this mechanism is that it must handle a large number of flows,

consequently limiting the amount of processing and storage available for each flow.

Thus, as shown in Figure 3.2, this step acts as an early filtering of low-throughput

and short flows in order to save hardware resources. A further optimization is pro-

posed and evaluated (in Section 4.4), where only packets larger than a threshold are

accounted for. By utilizing this strategy, the number of packets of a flowlet can be

seen as a lower bound of the number of bytes transmitted by the flowlet. This can

lower the number of bits utilized to store this information, saving precious on-board

memory. The same reasoning can be applied to track the number of flowlet timeouts

of a flow rather than the entire duration.

• Refined detection: While the threshold-based mechanism mentioned above can ex-

clude a large number of small and short flows, it may lead to a high number of false

positives if used by itself. To address this, CrossBal employs further mechanisms to
1The configuration of thresholds should be done by network administrators based on knowledge of their

networks. These thresholds should consider the characteristics of the network load and the hardware of data
plane devices.

2Flowlets are bursts of packets from the same flow separate by an idle interval.

33

detect elephant flows. The intuition is that because the preliminary threshold-based

filtering already excluded a large number of unimportant flows, it is now possible

to implement a slightly refined detection mechanism over the remaining flows of

interest, as shown in Figure 3.2. In particular, CrossBal implements a Classification

Tree3 in the form of if-else statements in the programmable data plane. As there is

a smaller number of flows to consider, it is possible to dedicate slightly more on-

board memory to track features of each flowlet. In our proof-of-concept prototype,

we track simple statistics of the inter-arrival-time and packet size of each flowlet.

We leave a more thorough feature selection as future work.

• Cross-plane detection: Although CrossBal implements multiple mechanisms for

the identification of elephant flows directly in the data plane, ensuring line-rate

processing requires sacrificing accuracy for efficiency. In order to provide a more

accurate detection of elephant flows, CrossBal employs cross-plane collaboration,

as shown in Figure 3.2. This builds upon the preliminary filtering (which reduces

the amount of flows of interest) and upon the refined detection (which tracks addi-

tional features for relevant flows). Therefore, CrossBal implements a classifier in

the control plane that receives the information tracked by the data plane. As the

controller provides a more flexible programming model, and considering the fea-

tures extracted by the data plane, we implement a Random Forest4 in the control

plane, providing higher accuracy than a single classification tree.

CrossBal utilizes hash tables to implement the preliminary filtering and the refined

detection. Since onboard memory is a scarce resource, collisions in the hash tables are

unavoidable. However, due to the multi-stage elephant flow detection spanning both the

data and control planes, hash collisions do not cause elephant flows to pass undetected.

Figure 3.3 shows examples of hash collisions that may happen during the detection of

elephant flows in the data plane. Particularly, when one of the colliding flows is a short-

lived flow (Figure 3.3a), this flow tends to complete while the elephant flow is still active.

This means that the elephant flow will eventually be able to utilize the hash table entry

once the short-lived flow expires. In another scenario (Figure 3.3b), when the hash of two

3A Decision Tree (DT) is a Machine Learning model that can learn classification or regression from
training data. A Classification Tree (CT) is a subset of DTs that is trained to predict a class for each
sample evaluated (QUINLAN, 1987). CTs can be generated from training data with algorithms such as
c4.5 (QUINLAN, 1993).

4A Random Forest (RF) is an ensemble (POLIKAR, 2006) of classification or decision trees (HO, 1995).
By employing several classifiers trained over a different subset of data, RFs provide better accuracy and
avoid overfitting the training data (BREIMAN, 2001).

34

Figure 3.3 – Relevant scenarios where hash collision may happen.
(a) Hash collision of a mice and elephant flows.

Flow D
Flow A
Flow C

...
Hash Table

Arriving Flow A

Arriving Flow B
Hash Function

Hash collision

(Flow A ends)

Flow A ends, freeing the entry
in the hash table for Flow B

Time = t

Flow D
Flow B
Flow C

...
Hash Table

Arriving Flow B
Hash Function

Time = t+1

(b) Hash collision between two elephant flows.

Both flows are long-lasting, but
Flow A is occupying the slot

Hash Table

Arriving Flow A

Arriving Flow B
Hash Function

Hash Table

features[Flow A]

insert(Flow A)

Thresholds

Refined
Detection

Flow A is stored in a different Hash Table,
freeing the slot for Flow B

Hash Table

Arriving Flow A

Arriving Flow B
Hash Function

Refined
Detection

Time = t

Time = t+1

Time = t+2

Flow D
Flow A
Flow C

...

Flow D
Flow A
Flow C

...

Flow D
Flow B
Flow C

...

Source: The Authors.

(undetected) elephant flows lead to the same table entry, the first flow (A) will occupy

the slot. Eventually, the preliminary filtering will recognize flow A as being a potential

elephant flow, inserting it in the list of flows tracked by the refined detection. This way,

flow A will be removed from the first hash table, freeing the slot for the second flow (B).

This same reasoning is applicable to hash collisions in the refined detection, as flows are

eventually exported to the controller, freeing the occupied slot.

The control plane is responsible for the final classification of potential elephant

flows, as hardware limitations of data plane devices impose restrictions on the complexity

of the classification models implemented. Therefore, the control plane is a more advanta-

geous place to implement a complex machine learning classifier with high accuracy. Once

an elephant flow is identified, it is inserted in a list of flows to be actively rerouted by the

DRL agent that executes in the controller (next section).

3.3 Deep Reinforcement Learning Agent

The Deep Reinforcement Learning (DRL) agent is responsible for selecting the

routes for active elephant flows that lead to efficient network utilization. In particular, the

modeling of the observed state, action space, and reward function impact how well the

agent can achieve this goal.

35

State Space. The state must include all the information the agent needs in order

to take an appropriate decision at a given time. However, the state space must be carefully

designed in order to avoid communication overheads between the data plane and the con-

troller. Further, excessive or redundant information may negatively impact the learning

rate of the agent.

Past research has proposed the utilization of a Demand Matrix (DM) (or Traffic

Matrix) as input for a Deep Reinforcement Learning agent (VALADARSKY et al., 2017),

and other ML-based frameworks (RUSEK et al., 2019). While the DM for a given itera-

tion (or epoch) could be calculated by polling statistics from switches, this design assumes

that there is (at least some) regularity in the network traffic. Further, designing an agent

based on DMs in a multi-path scenario is challenging, as traffic is not evenly split between

shortest-paths. Finally, as our agent actively reroutes elephant flows, designing the state

space based on past DMs would not provide the agent with enough information about the

current state of the network, as the DM would not properly reflect the impact of an action

taken by the agent.

Another possible design for the state space is to use the information collected

by the programmable switches during the Preliminary Filtering and Refined

Detection steps of the elephant flow detection (previously detailed in Section 3.2).

However, exporting this information to the controller would pose scalability challenges,

considering the amount of information tracked by the data plane. Further, directly utiliz-

ing this information as the state space of the agent would likely lead to slow learning, as

most of the flows tracked (especially by the Preliminary Filtering) are too small

to have a considerable impact in the network.

Our approach: In order to avoid the aforementioned problems, we model the state

based on the utilization of each link in the network. More formally, the agent observes

LU , a vector of the utilization Ui,j of each link j ∈ (1, 2, ...,m) for every switch5 i ∈
(1, 2, ..., n):

LU = (U1,1, U1,2, ..., U1,n, U2,1, ..., U2,n, ..., Um,n)

The link utilization of the ports of each switch in the network is enough for the

agent to understand the current state of the available network resources. Further, the agent

is able to learn the relationship between routes and links by observing how each action

taken affects the utilization of links.

5Each switch can have a different number of links, i.e., m does not have to be the same for every switch
i. The notation was simplified to be easier to understand.

36

Considering that the agent is used to reroute active elephant flows, the state is

modeled to also consider the two endpoints of that network flow. However, we find that

directly using identifiers such as the 5-tuple of the flow is not the most appropriate solu-

tion. This is because requiring the agent to learn the mapping of IP addresses can lead

to slower learning. Instead, we map the source and destination IP addresses to the cor-

responding source and destination edge switches, including numerical identifiers of these

switches in the state observed by the agent.

Figure 3.4 – The source and destination switches are encoded in one-hot vectors.

Src = [1, 0, 0, 0, 0]

Switch 2

Switch 3Switch 1

Switch 4

Switch 5

Dst = [0, 0, 1, 0, 0]

Value '1' at index 3 means
the destination is Switch 3

Value '1' at index 1 means
the source is Switch 1

Source: The Authors.

Figure 3.4 shows an example of how we encode the identifiers into one-hot vec-

tors for the state space. Formally, in a topology with n switches Sw1, Sw2, ..., Swn, the

source IP address originating from switch Swi is mapped into a one-hot vector Src =

(X1, X2, ..., Xn−1, Xn), where Xi = 1, and Xj = 0 ∀j ̸= i, j ∈ (1, 2, ..., n). The for-

mulation for the one-hot vector Dst for the destination switch is analogous. Therefore, at

iteration t, the agent observes the state St = (LU, Src,Dst).

Action Space. The action space must allow the agent to make decisions on how

to reroute active (elephant) flows. A naïve approach would be to map each possible route

to an action. However, this would generate a large number of possible actions, leading to

slow learning. An alternative would be to model each action as one hop, as shown in Fig-

ure 3.5. In this scenario, (1) the state space would need to include the information of each

hop in the end-to-end route. (2) This would increase complexity, possibly slowing down

the training of the agent. Further, (3) hop-by-hop routing with Deep Neural Networks

can generate paths with persistent loops and blackholes (XIAO et al., 2020). Finally, (4)

an end-to-end route would require several hops, i.e., several actions being taken in a se-

quence. (5) However, the environment would still return a single reward for the composite

37

route, leading to reward assignment issues.

Figure 3.5 – Mapping actions to hops leads to reward assignment issues.

Expected value

of each port

State(i) = (

 utilization[...],

 hops[<empty>])

1
Update

Loss
Function

Which action/neuron to

assign reward to?

Extending state to include
hops makes it more complex,

leading to slower learning

Neural

Network

Action
Selection A = hops[2, 1, ...]

R = 10

S' = utilization[...],

 hops = [<empty>]

State(i) = (

 utilization[...],

 hops[2])

2

3

4

5

Source: The Authors.

Our approach: We model the action space based on a set of predefined end-to-

end routes for each pair of source-destination edge switches. First, this design eliminates

the need for multiple actions per end-to-end route. Instead, the agent can observe the

correlation between choosing a route (taking an action) and changes in the utilization of

the links in the network (observing the next state). Additionally, restricting the action

space to a set of predefined routes results in a well-defined number of possible actions.

This avoids potential issues that might arise if the agent had to consider every single

possible end-to-end route in the network. Finally, the set of end-to-end routes for each

source-destination pair should remain the same throughout the life of the DRL agent, i.e.,

from training to the end of its use in load balancing. While this may seem like it could

restrict the agent in achieving optimal load balancing, it is possible to generate several

short paths with diversity by using an algorithm such as KSPD6 (LIU et al., 2018). By

employing paths with diversity, the agent is able to utilize several links in the network

while keeping the number of possible actions small. While topology changes require

recomputing the static routes and retraining the agent with the new routes, Graph Neural

Networks (GNNs) could make the agent robust to topology changes (RUSEK et al., 2019).

We leave this as future work.

Reward Function. Load balancing aims to improve the utilization of network

resources, reducing the congestion of links and the delay observed by applications. In

6CrossBal does not define how to compute the set of pre-defined routes. The routes considered by the
agent must be supplied by the network operator.

38

order for the agent to learn how to achieve this goal, we must design a reward function that

reflects how well the agent is performing. Therefore, the exact formulation of the reward

function can impact the performance of the agent. For instance, a reward function based

on the maximum link utilization will train the agent to act differently than an agent trained

with a reward function based on the imbalance of network links (e.g., variance of link

utilization). Further, while in traditional DRL the impact of an action in the environment

is reflected immediately, the state of the links may take some time to update in our context

of load balancing the network. Figure 3.6 illustrates the problem with the delayed reward.

(1) After querying the previous state (based on the link utilization), (2) the agent selects

new routes for an elephant flow. However, (3) if the controller polls the link utilization

immediately after installing the new routes, (4) the reward computed based on the link

utilization will not properly reflect the impact of the action selected. Naturally, the new

routes installed need to be applied for some time before having a noticeable effect on the

link utilization.

Figure 3.6 – Links take time to reflect changes caused by the action selected by the agent.

Control Plane

link_utilization[0.43, 0.22, ...]
Time = t1

update_route(flow, action)
2 Time = t+1

Time = t+23

4 return_reward(max([0.44, 0.21, ...]))

Short time interval is not

enough to reflect changes

caused by the action taken

link_utilization[0.44, 0.21, ...] DRL Agent

Data Plane

Controller

Source: The Authors.

Our approach. We implemented and compared three different reward functions:

one based on the maximum link utilization (Equation 3.1), another on the variance of

the link utilization, (Equation 3.2), and the last based on the number of inactive Network

Interface Cards (NICs) (Equation 3.3).

inv_mlu(s′) =
1

max(link_utilization(s′))
(3.1)

inv_stdev(s′) =
1

standard_deviation(link_utilization(s′))
(3.2)

inv_nics(s′) =
1

inactive_nics(s′)
(3.3)

39

After evaluating the reward functions above (Section 4.3), we observed that the

reward function based on the maximum link utilization performed the best. Therefore,

the reward function, R(s, a, s′), is given by inv_mlu(s′) (Equation 3.1). Additionally,

in order for the new state to reflect the consequences of the action taken, we poll link

statistics from switches t milliseconds after an action is taken.

3.4 Reacting to Short-Lived Network Congestion

The DRL agent is used to reroute elephant flows as soon as they are detected. As

explained above, the agent takes into consideration the current utilization of the links in

the network to select an optimal route with respect to network load balancing. Addition-

ally, when no new elephant flows are detected, the agent is used to periodically select

new routes for already active elephant flows. This is useful when the utilization of certain

links in the network changes considerably, causing alternative routes to become more fa-

vorable. However, due to the fact that this control-loop is only executed periodically, it

may not be capable of reacting to short-lived congestion.

Thus, in order to be able to quickly react to network changes, CrossBal im-

plements mechanisms for switching active paths directly in the data plane. Figure 3.7

presents an overview of this mechanism, where (i) the programmable data plane actively

monitors the quality of the installed routes, and (ii) upon detecting a significant increase

in RTT (which may indicate congestion), (iii) the forwarding device switches to the pre-

computed route with lowest RTT without control plane intervention.

CrossBal achieves this by having the controller install multiple routes7 for each

active elephant flow8. As the DRL agent computes the expected value of each route, we

select the N routes with highest expected value. Also, the data plane devices are respon-

sible for periodically probing each of the installed routes. By calculating the RTT of each

route, the programmable switch is capable of detecting congestion along paths and select-

ing an alternate route. While we could spray the data packets of a flow through paths we

wish to probe, this could lead to packet reordering at the destination end-host. Packet re-

ordering can affect transport protocols such as TCP, thereby harming performance (GENG

et al., 2016). Instead, CrossBal periodically creates probe packets to measure the RTT of

7Each switch only knows the local output port for each path. Only the controller must know every hop
of the end-to-end path.

8The flow only utilizes one of the installed routes at a given time.

40

Figure 3.7 – Mechanism for switching active paths

Path B
Path

 A

Path C
Active route

Path B

Path
 A

Path C

Active route
worsens

Congestion

Path B

Path
 A

Path C

Congestion

Switch
Active route

Active Routes
Flow ID Path ID RTT

Flow X Path A 20

Flow X Path B 43

Flow X Path C 31

...

Active Routes
Flow ID Path ID RTT

Flow X Path A 75

Flow X Path B 43

Flow X Path C 31

...

Active Routes
Flow ID Path ID RTT

Flow X Path A 75

Flow X Path B 43

Flow X Path C 31

...

Source: The Authors.

41

active paths. More specifically, when a new packet of an active elephant flow arrives, if

it has been longer than t ms since the last probing, CrossBal utilizes the clone feature

of programmable switches to generate new packets. The cloned packets have their pay-

load removed and an additional customized probing header is inserted. A packet is sent

through each active route to measure the RTT of each route. As the control plane is only

involved in the process when first installing the multiple routes, we can quickly detect and

react to short-lived congestion.

3.5 Architecture

The collaboration between the logically-centralized controller and the data plane is

a key principle of CrossBal. To this end, the architecture of CrossBal comprises a series of

modules in the controller and in each programmable switch, as shown in Figure 3.8. Next,

we describe each of these modules, starting with the architecture of the Control Plane

(Section 3.5.1), before detailing the data plane of programmable switches (Section 3.5.2)

Figure 3.8 – Architectural implementation of CrossBal.

Elephant Flows
<5-tuple> <index>

... ...

(hit)
bytes[port_1,

port_2, ...]

Statistics Tracker
<port> <bytes> <packets>

...

link_utilizations[port_1, port_2, ...]

pull_bytes()

(every t
seconds)

Statistics
Monitor

Reward r

State s
Environment(FIFO Queue)

insert()

Arriving
Elephant Flows

<5-tuple>
...

(RR scheduling)
Active

Elephant Flows
<5-tuple>

...

(empty)

<src_switch_id,
dst_switch_id>IP-to-Switch

Mapper
map(action, src_switch,

 dst_switch)

Deep
Reinforcement
Learning Agent

(miss)

Arriving
Packet

O
U
T
P
U
T

ECMP

(hit)

Control Plane

Data Plane

ML
Classifier

Tracked Flows

Path Monitoring
& Switching

Preliminary
Filtering

Refined
Detection

Elephant Flow
Detection

(miss)
(hit)

Action-to-Route
Mapping

for each path in selected_paths:
 for each hop in path:
 insert_entry(switch,
 5_tuple, egress_port)
 end
end

Source: The Authors.

42

3.5.1 Control Plane

The control plane is responsible for selecting the best routing strategy for active

elephant flows and configuring the data plane with the chosen routes. Further, the control

plane periodically polls the link utilization from each switch.

As shown in Figure 3.8, the Statistics Monitor periodically polls each

switch for the bytes sent from each port. This module computes the link utilization based

on the time elapsed and bytes sent since the last time the switch was queried. The link

utilization of each switch is eventually used by the DRL agent (as previously described in

Section 3.3). In our proof-of-concept prototype (further described in Section 4.1) based

on BMv2 software switches, the control plane sends packets with a custom header to

each switch to request the link utilization. This is done because BMv2 switches currently

do not support the full set of operations defined by the P4Runtime Specification, such

as reading and writing to registers. Therefore, we had to manually implement a simple

protocol to recover and reset the values of these registers.

Further, the Machine Learning Classifier module receives flow reports

from programmable switches. Flow reports carry a custom header with the 5-tuple of the

potential elephant flow and the features tracked by the Refined Detection module

(detailed next in Section 3.5.2). These reports are fed into the Random Forest (RF) re-

sponsible for the final classification of potential elephant flows, as previously described

in Section 3.2.

Elephant flows identified by the RF are inserted into a First-in First-out (FIFO)

queue of Arriving Elephant Flows (Figure 3.8). The flows in this queue are sent

to the Deep Reinforcement Learning agent to be rerouted once (in a FIFO fashion), and

then moved to a list of Active Elephant Flows. During each iteration of the DRL

agent, CrossBal first checks if there are any flows in the FIFO queue. If it is empty, then

CrossBal selects from the list of active elephant flows in a Round-Robin (RR) fashion.

The IP-to-Switch Mapper maps the 5-tuple of a flow into one-hot vectors

representing the source and destination switches in order for the DRL agent to effi-

ciently learn how to reroute flows, as previously explained in Section 3.3. The vectors of

source and destination switches, along with the array of link utilization calculated by the

Statistics Monitor, are used by the Environment to produce the state observed

by the agent. The Environment module also computes the reward of the previous

iteration based on the current link utilization, as described in Section 3.3.

43

In each iteration, the Deep Reinforcement Learning Agent is queried to

compute the top-n out of the k routes for an active flow. The k routes considered for each

pair of source-destination switches are static and pre-computed offline. This improves

controller efficiency and helps stabilize the training of the DRL agent (as previously de-

scribed in Section 3.3). The Action-to-Route Mapping module maps the n highest

value actions to end-to-end routes, which are then translated into entries in the Elephant

Flow Table of the P4-enabled switches (described next).

3.5.2 Data Plane

The data plane includes modules for monitoring network links, routing elephant

flows, detecting new elephant flows, monitoring active end-to-end routes, and switching

active end-to-end routes. Algorithm 1 provides the pseudo-code of the packet processing

pipeline of the P4 switches used by CrossBal.

Forwarding Elephant Flows. The ingress processing begins by checking the

match+action table of Elephant Flows for an entry that matches the 5-tuple of the

arriving packet. The entries in this table are inserted by the control plane after detect-

ing elephant flows. Each entry is a tuple (flow_tuple*, elephant_index, path_hops,

last_hop, version). Below we detail the entries in the Elephant Flow Table:

• flow_tuple* is the match key of the table. In practice, it is composed of the five fields

that define a flow: source IP address, destination IP address, source TCP/UDP port,

destination TCP/UDP port, and protocol (TCP or UDP). As each entry matches on

an exact 5-tuple, we insert two entries for each elephant flow: one matching pack-

ets from client to server, and another matching packets from server to client. In our

proof-of-concept prototype, the two entries inserted by the controller have symmet-

rical routes (in opposite directions). This can be easily extended by modifying the

control plane software, as the implementation of the data plane already supports

asymmetrical routes.

• elephant_index is used by the switch when accessing registers for this elephant

flow. This includes the registers that keep track of the last two RTTs measured for

each route, the timestamp when the paths for this flow were last probed, and so on.

• path_hops is an array with the output port (current hop) for each path installed for

this elephant flow. As P4 does not support arrays, it is implemented as n parameters,

44

one for each of the n paths installed for this flow. Therefore, each switch only knows

its local hop for each of the n paths.

• last_hop is a flag that tells the switch if this is the last hop for this flow. We assume

that if a switch is the last hop for one path for this elephant flow, it is also the last

hop for every other path for this flow. However, this can be easily extended by

replacing a single flag with an array of flags - one for each of the n paths installed.

• version is an identifier for the current version of the installed paths. It is incre-

mented each time the controller updates the routes for this elephant flow. This is

used to ensure that paths are probed whenever they are updated. It could also be

used to ensure that in-flight packets are not affected by the controller updating the

routes installed for the elephant flow. This could be done by keeping a “shadow

copy” of the previous installed routes. We leave this as future work.

As explained in Section 3.5.1, the controller periodically queries the DRL Agent

to select better routes for active elephant flows. However, due to its location in the control

plane, it may not be able to quickly react to short-lived congestion. Therefore, the data

plane implements mechanisms for Path Monitoring and Switching (lines 2-8 of

Algorithm 1). The data plane can freely switch between the n routes installed for each ele-

phant flow. Each route has a different register array9 to keep track of its two last observed

RTTs. The route selection happens by electing an active route, which remains selected

until the RTT of that route worsens by a certain threshold (e.g., 200%). Upon detecting

a degradation in the selected route, the data plane picks the route with the lowest last

measured RTT (lines 2-4 of Algorithm 1). Further, the data plane periodically generates

probe packets (lines 5-7 of Algorithm 1) to measure the quality of the routes installed for

this flow. These packets are generated by using the clone feature of P4-enabled switches

and carry a custom header.

The Path Monitoring and Switching is only applied by the first switch

that processes the packets of an elephant flow. As illustrated in Figure 3.9, after selecting

a path according to the logic described above, the first switch inserts a custom header to

the packets of the elephant flow. This header is used to inform the active (chosen) path to

subsequent switches. This relieves subsequent switches from having to do any complex

processing, simply having to forward the packet according to the active path (listed in

the header) and the matching output port (according to the corresponding entry in the

9The index used for each active elephant flow is configured by the controller upon installing new routes,
allowing the controller to avoid any collisions.

45

Algorithm 1: Data plane packet processing pipeline
Data: pkt← Packet In
Data: flow ← pkt.5_tuple

1 if flow is in elephant_flows then
2 rtt_diff ← active_route.curr_rtt− active_route.prev_rtt;
3 if rtt_diff ≥RTT Threshold then
4 active_route[flow]← min(installed_routes[flow]);
5 time_since_probing ← curr_time− last_probe[flow];
6 if time_since_probing ≥Probing Interval then
7 create_probes(installed_routes[flow]);
8 egress_port← active_route[flow].egress_port;
9 else

10 if flow is in refined_detection.tracked_flows then
11 features[flow]← compute_features(flow);

// If statements are automatically generated
12 if feature_1[flow] ≥ Feature 1 Threshold AND feature_3[flow] <

Feature 3 Threshold then
13 notify_controller(flow, features[flow]);
14 else
15 if Bytes Optimization is enabled then
16 if pkt.length > Length Threshold then
17 packets[flow]← packets[flow] + 1;
18 bytes[flow]← packets[flow]∗Length Threshold;
19 else
20 bytes[flow]← bytes[flow] + pkt.length;
21 flow_duration← curr_time− flow_start[flow];
22 if bytes[flow] ≥ Bytes Threshold AND flow_duration ≥ Duration

Threshold then
23 refined_detection.track(flow);
24 egress_port← ecmp(pkt.5_tuple);

46

match+action table of Elephant Flows). Finally, the last switch (indicated by the last_hop

flag) removes this header before forwarding the packet to the destination end-host.

Figure 3.9 – The first switch selects an end-to-end route and inserts a custom header.

s1 s2 s3

Data PacketEF Header

Path Switching
and Monitoring

Data Packet

End-host source
of elephant flow

End-host destination
of elephant flow

Data Packet Data PacketEF Header

...

Alternative path

insert_ef_header(
route=1);

Flow Tuple* Path Hops Last Hop
Flow A ... False

s2 Elephant Flow table

forward_packet_through_route(
ef_header.active_route);

Flow Tuple* Path Hops Last Hop
Flow A ... True

s3 Elephant Flow table

remove_ef_header();
forward_packet(ipv4.dst);

Source: The Authors.

Figure 3.10 shows an example of how switches use the entries in the Elephant

Flow Table to forward the packets of the corresponding flow. For example, assume

that Flow A has been detected by the cross-plane elephant flow detection mechanisms.

Then, the controller queried the DRL agent, which selected Path A, Path B, and Path

C as the best routes for this flow (as explained in Section 3.5.1). Finally, the controller

installs the corresponding entries for Flow A in the Elephant Flow table of each switch

(Figure 3.10). Assuming that packets from Flow A first arrive at switch s1, it will be

responsible for applying Path Monitoring and Switching, selecting one of Path

A, Path B, or Path C. If it selects Path A, it will add a custom header and then forward the

packet through output port p1 to switch s2. Then, switch s2 will read the active path from

the custom header (Path A) and use its Elephant Flow table to select the output port p2

(to switch s5). Note that s2 does not have entries for Path B or Path C, as these paths do

not traverse s2. The same logic is applied at switch s5, which decides between two output

links (p3 and p4) to switch s7.

Processing regular flows. Upon receiving a packet that does not belong to an

elephant flow, the switch applies a hash function over the 5-tuple of the packet. The

resulting hash is used to check if the packet belongs to a flow in the list of Tracked

Flows (line 10 of Algorithm 1). If the flow is not being tracked, the switch applies

47

Figure 3.10 – Switches use the Elephant Flow Table to forward packets of corresponding flows.

Path B

Path
 A

Path C

s4

s1 s3

s2

s5

s6

s7

Flow Tuple* Path A Path B Path C
Flow A p1-s2 p2-s3 p3-s4
Flow B p2-s3 p2-s3 ...

Flow Tuple* Path A Path B Path C
Flow A p2-s5 - -

...

Flow Tuple* Path A Path B Path C
Flow A - p2-s5 -

...

Flow Tuple* Path A Path B Path C
Flow A p3-s7 p4-s7 -

...

s1 Elephant Flow table

s2 Elephant Flow table

s3 Elephant Flow table

s5 Elephant Flow table

Source: The Authors.

a Preliminary Filtering to exclude short-lived and small flows (lines 14-23 of

Algorithm 1). For each flow, we use registers to track a few simple features, such as

the number of bytes, packets, and flow duration. When the features of a flow exceed

predefined thresholds, the flow is set to be processed by a second module (lines 22-23 of

Algorithm 1) that implements a more elaborate mechanism.

The Refined Detection is only applied over a smaller subset of flows, en-

abling the data plane to keep track of more complex features for each tracked flow (lines

10-13 of Algorithm 1). The features tracked in this module include the minimum, maxi-

mum, and total inter-arrival-time and packet length of each flow. These features are tested

against a set of chained conditions in order to identify potential elephant flows (line 12 of

Algorithm 1). This is achieved by converting a Classification Tree to a series of condi-

tions. If the flow is labeled as a potential elephant flow, it is exported to the controller for a

final classification, along with the computed features of that flow (line 13 of Algorithm 1).

The data plane further implements the Statistics Tracker, which is respon-

sible for monitoring statistics of each switch port. This module tracks the bytes received

in each ingress port (implemented in the ingress block) and the bytes sent through each

egress port (implemented in the egress block). At this time, the control plane only polls

the statistics for each ingress port, which is used to compute the array of link utilization

used by the Environment module in the control plane.

48

4 EVALUATION

This chapter presents the evaluation of a proof-of-concept (PoC) prototype of

CrossBal. First, Section 4.1 details the PoC prototype that was implemented and eval-

uated. Next, Section 4.2 describes the methodology employed in our evaluation. Then,

Section 4.3 shows the results of our evaluation of the load balancing capabilities of Cross-

Bal. Finally, Section 4.4 presents an analysis of the optimizations for the preliminary

filtering mechanism that we proposed previously in Section 3.2.

4.1 Prototype

The PoC prototype includes both data plane and control plane software. For the

data plane, we wrote over 1800 Lines-of-Code (LoC) of P4 source-code for the BMv21

software switch. The control plane software comprises over 2400 LoC written in Python 3

and depends on several libraries listed next. We used graph-tool v2.45 (PEIXOTO, 2023)

to compute the ECMP routes and to help with the top-k routes that constitute the action

space of the agent. We also used Scapy v2.5.0 (SCAPY, 2023) to send and receive packets

between the controller and the software switches2. In order to facilitate and speedup some

of the computing, we used NumPy v1.23.4 (NUMPY, 2023). Finally, to implement the

Deep Reinforcement Learning agent, we used PyTorch v1.12.1 (PYTORCH, 2023) for

the DNN and Gym v0.26.2 (GYM, 2023) to create a custom Reinforcement Learning

environment.

4.2 Methodology

This section describes the methodology employed in our experiments. First, we

detail the setup utilized in our experiments (Section 4.2.1). Next, we characterize the

workloads utilized in our evaluation (Section 4.2.2), followed by the topology used in our

emulated setup (Section 4.2.3). Then, we list system and experiment parameters for our

evaluation (Section 4.2.4). Finally, we describe the metrics measured in our evaluation

1BMv2 is the most recent version of the reference P4 software switch. Accessible at:
https://github.com/p4lang/behavioral-model

2BMv2 switches currently do not support the full set of operations defined by P4Runtime, such as
reading and writing to registers. Therefore, we had to send packets from the controller to each switch.

49

Table 4.1 – Workloads used in our evaluation.
Workload A Workload B

Flow Size Distribution Flow Size Distribution
20 KB 0.5 10 KB 0.2
200 KB 0.3 100 KB 0.4
2 MB 0.1 1 MB 0.2
20 MB 0.1 10 MB 0.2

Source: The Authors.

(Section 4.2.5).

4.2.1 Setup

We emulated a network using Mininet3 v2.3.1b1. All experiments were performed

on a virtual machine (VM) with guest Operating System (OS) Ubuntu 20.04.5 (focal)

on a Windows 10 host. The VM was configured with 16GB RAM and access to all

8 physical cores of the host CPU. Oracle VirtualBox4 v7.0 was used to host the VM,

enabling PAE/NX and nested AMD-V in the extended features.

Considering the experiments were performed in a single VM, we had to down-

scale the workloads and the topology (described next in Section 4.2.2 and Section 4.2.3,

respectively). We leave a more thorough evaluation in a distributed setup as future work.

4.2.2 Workloads

In order to evaluate CrossBal, we performed experiments based on realistic work-

loads. In particular, we based our workloads on the work of Pizzutti and Schaeffer-Filho

(2019), which was originally inspired by Alizadeh et al. (2014) and Vanini et al. (2017).

Due to restrictions in our experimental setup, we had to reduce the flow sizes in the

original workload. The flow size distribution of the workloads used in our experiments is

described in Table 4.1. Each switch in the topology has one host connected directly to it.

Each host runs both a client and a server script. The client from each host independently

generates requests to randomly chosen servers (from other hosts) according to a Poisson

distribution based on the workload and the desired network load.

3Mininet: <https://mininet.org/>
4VirtualBox: <https://www.virtualbox.org/>

https://mininet.org/
https://www.virtualbox.org/

50

4.2.3 Topology

The topology used in our experiments was generated using iGen, with parameters

inspired by Pizzutti and Schaeffer-Filho (2019). Due to hardware limitations in the setup

used in our experiments, we restricted the topology to 15 switches and the emulated link

speeds to 50 Mb/s. This includes the links from hosts to switches and the links between

switches. We did not impose any limits on the links from each switch to the controller.

Figure 4.1 shows the topology used in our experiments. In order to obtain this

topology, we first used iGen to generate 15 routers in a single domain, ensuring that all

the routers were placed in continents, with the specified area set to “North America”.

Then, we had iGen generate an intradomain mesh with the selected method “two-trees”.

These settings can be used to generate a Hub & Spokes topology (LUIZELLI et al., 2016).

According to Kamiyama et al. (2010), Hub & Spokes is a realistic class of topology that

is characterized by nodes with aggregation function (PIZZUTTI; SCHAEFFER-FILHO,

2019), i.e., routers with a high degree of connectivity (hubs).

Figure 4.1 – Topology used in our experiments.

s1

s6

s2

s4

s3

s5

s7s8

s11

s10

s9

s12

s13

s15

s14

Source: The Authors.

The topology emulated in mininet only considers the routers and the links between

them. While iGen also exports positional information, our setup does not emulate the

physical distance between routers (P4-enabled switches).

51

Table 4.2 – CrossBal and Deep Reinforcement Learning agent parameters used in the evaluation.
CrossBal parameters

Parameter Value Description
k 3 Number of routes installed for each detected elephant flow.
n 10 Number of routes the agent considers (action space) for each detected elephant flow.

time_step 0.5s This is how long the controller waits after polling the link utilization from switches. It
also dictates how often the DRL agent is queried.

probing_interval 1s Time between probing each path installed for an elephant flow.
detection_threshold 30KB Flow size threshold for the Preliminary Filtering.
flowlet_timeout 50ms The timeout used for flowlet switching and in the Preliminary Filtering.

Deep Reinforcement Learning agent parameters
Parameter Value Description

hidden_layers 2 The number of hidden layers used in the Deep Neural Network.
hidden_layer_size 512 The number of neurons in each hidden layer of the Deep Neural Network.
activation_function ReLU The activation function used to connect the layers.

burn_in 150 The number of iterations the agent experiences before training.
learn_every 10 The number of iterations between training the online network.
batch_size 32 The number of samples in each batch used to train the agent.

Source: The Authors.

4.2.4 Parameters

Table 4.2 lists the parameters used for CrossBal and the Deep Reinforcement

Learning agent in our experiments. These values were set through a combination of intu-

ition and experimentation. We leave a more thorough analysis of the parameters as future

work.

The CrossBal parameters k and n define how many routes are installed for each

elephant flow and how many are considered for each source-destination pair, respectively.

These parameters were set considering the size of the topology and the average number

of paths between endpoints. The remaining parameters listed in Table 4.2 were set based

on our setup and workloads, as described in Section 4.2.1 and Section 4.2.2, respectively.

The Deep Reinforcement Learning agent parameters burn_in and sync_every

were set considering the agent is queried every 0.5s (time_step). As the first few itera-

tions of each experiment happen while the network is being underutilized5, we want the

agent to avoid focusing on the earlier experiences. The remaining parameters were used as

a proof-of-concept prototype. We leave a more thorough exploration of the configuration

of the DNN as future work.

Table 4.3 lists the experiment parameters used in our evaluation. The parameters

for experiments include characteristics of the emulated topology and values that were

calculated based on the workloads, as previously described in Section 4.2.3 and Sec-

tion 4.2.2, respectively. These parameters are used by the clients to generate requests, ac-

cording to the rationale previously explained in Section 4.2.2. In order to facilitate the im-

5This is due to the fact that the clients are just starting to generate requests, as explained in Section 4.2.2.

52

Table 4.3 – Experiment parameters used in the evaluation.
Experiment parameters

Parameter Value Description

host_MTU 1400B
Size of the MTU for hosts. This was decreased to allow switches
to insert additional headers without changing the MTU of the links
between switches.

average_request_size 2.27MB
2.242MB

This is calculated based on the workload used. It is a weighted sum
of the size and proportion of each flow type. The first value was
calculated for Workload A and the second for Workload B (§4.2.2).

link_bandwidth 50Mbps
The bandwidth for the network links. We use this value for links
between switches and the links that connect switches to end-hosts, as
previously explained (§4.2.3).

desired_load 0.7
Proportion of the available bandwidth we wish to utilize in the exper-
iments.

available_paths 3
An estimate of the average number of paths between any source-
destination pair.

load_multiplier desired_load ∗ available_paths This value is used to compute the average requests per second for
each client.

request_rate link_bandwidth∗load_multiplier
average_request_size

The number of new requests per second each host generates. This
value is calculated based on the maximum link bandwidth and the
load multiplier.

request_window 100s
We use a poisson distribution to generate r requests for each request
window. The r requests are then evenly distributed during the request
window.

experiment_duration 300s
The duration of each experiment. New requests are generated during
this time, after which we wait for every flow to complete, even if it
takes longer than this duration.

repetitions 40
The number of times each experiment was repeated for each config-
uration, such as reward function (described in §4.3), load balancer
(CrossBal or ECMP), and workload (§4.2.2).

Source: The Authors.

plementation of our experiments, we configured the MTU of hosts to 1400 bytes, as shown

in Table 4.3. However, the actual overhead of custom headers is orders of magnitude

smaller - e.g., the routing header added to packets of detected elephant flows only requires

3 bytes. As shown in Table 4.3, we performed 40 repetitions for each experiment. During

each experiment, the clients generated new requests for 300s (experiment_duration).

After this time, the experiment continued until every existing request completed.

4.2.5 Metrics

The main objective of CrossBal is to efficiently utilize available network resources,

balancing the network load across the existing links. Due to limitations in the setup used

during the experiments, the software switches presented high variance in packet through-

put and the time spent processing each packet6. This happened even when emulating

smaller topologies (e.g., less than 15 routers) with lower link bandwidth (e.g., lower than

50Mbps). Therefore, we opted to not use the flow completion time (FCT) as the main

metric in our evaluation. Instead, we measured the following metrics in our experiments:

6It is worth noting that our design is aimed at programmable data plane hardware, where the time spent
processing each packet is near constant.

53

• Active Network Interfaces. The percentage of active network interfaces is able

to show how many links are not being utilized at each point of the experiment.

Intuitively, a higher value is better, as more links are being utilized.

• Link Utilization Imbalance. This metric is defined as max(LU)−min(LU)
mean(LU)

, where

LU is an array with the utilization of each link in the network (ALIZADEH et al.,

2014). Intuitively, a lower imbalance is better, as the network load is being more

evenly distributed.

• Link Utilization Standard Deviation. The standard deviation can also be used to

represent the imbalance in the utilization of network resources. Intuitively, a lower

standard deviation is better, as the network load is being more evenly distributed.

• Maximum Link Utilization. This metric also represents how well the network

load is being balanced. Intuitively, a lower maximum link utilization is better, as no

single link is being overutilized.

As the links connected directly to end-hosts depend on the amount of data being

sent to/from the host, we did not include these links in the calculation of any of the

metrics listed above. Further, links between the controller and each switch were also

not considered when calculating these metrics.

4.3 Link Utilization Analysis

We implemented and compared three different reward functions for the DRL

agent (as previously mentioned in Section 3.3): (A) inv_mlu(s′) = 1
max(link_util) , (B)

inv_stdev(s′) = 1
stdev(link_util) , and (C) inv_nics(s′) = 1

inactive_nics , where link_util is

an array with the utilization of every link in the network and inactive_nics is the propor-

tion of NICs not being utilized.

Figure 4.2a shows an analysis of the ratio of active links during our experiments.

We can observe that CrossBal effectively utilizes nearly all available links in the net-

work, while ECMP is incapable of utilizing as many links concurrently. Further, we can

observe that the agent trained with the reward function based on the maximum link uti-

lization, 1
max(link_util) , quickly learns how to actively use nearly every link in the network,

effectively distributing the workload. Additionally, Figure 4.2b compares the Link Uti-

lization Imbalance7 of each approach. Again, CrossBal performs a better job at balancing

7Link Utilization Imbalance is a metric that takes into account the maximum, minimum, and average

54

Figure 4.2 – Link analysis for workload 1.

	0

	20

	40

	60

	80

	100

	0 	50 	100 	150 	200 	250 300Ac
tiv
e	
Ne
tw
or
k	
In
te
rfa
ce
s	(
%
)

Time	(s)

1/max(LinkUtil) 1/stdev(LinkUtil) 1/InactiveNICs
a)	Active	Network	Interface	Cards	(%)

ECMP

	4

	6

	8

	10

	12

	14

	0 	50 	100 	150 	200 	250 300

a)	Active	Network	Interface	Cards	(%) b)	Link	Utilization	Imbalance

Lin
k	
Ut
iliz
at
io
n	
Im
ba
la
nc
e

Time	(s)

	0

	10

	20

	30

	40

	50

	0 	50 	100 	150 	200 	250 300M
ax
im
um

	L
in
k	
Ut
iliz
at
io
n	
(%
)

Time	(s)

1/max(LinkUtil) 1/stdev(LinkUtil) 1/InactiveNICs
c)	Maximum	Link	Utilization	(%)

ECMP

	0

	1

	2

	3

	4

	5

	6

	0 	50 	100 	150 	200 	250 300

c)	Maximum	Link	Utilization	(%) d)	Standard	Deviation	of	the	Link	Utilization

St
an
da
rd
	D
ev
ia
tio
n	
of
	

	th
e	
Lin
k	
Ut
iliz
at
io
n

Time	(s)
Source: The Authors.

link utilization across network links compared with ECMP. As before, we can observe

that the agent trained with the reward function based on the maximum link utilization,
1

max(link_util) , outperforms the agents trained with the other reward functions.

The other metrics used in our evaluation, maximum link utilization (Figure 4.2c)

and the standard deviation of the utilization of links (Figure 4.2d), show results consistent

with the analysis of the previous metrics. The maximum link utilization (MLU) (Fig-

ure 4.2c) could not hit 100% due to the limited setup for our experiments, as the software

switches became the bottleneck. While the link speeds could not be saturated, the load

balancing by CrossBal still consistently resulted in lower MLU than ECMP.

Figure 4.3 shows the results for each metric when performing the same exper-

iments with a different workload. Workload B presents a distribution tailored towards

heavier flows, as previously described in Section 4.2.2. However, the heavier flows in this

workload are smaller than the ones in the first workload.

Figure 4.3a shows the ratio of active NICs during this evaluation, where we can

observe a similar behavior from ECMP, but a slightly worse performance by CrossBal

when compared with the previous workload (Figure 4.2a). This can likely be explained

link utilization (ALIZADEH et al., 2014).

55

Figure 4.3 – Link analysis for workload 2.

	0

	20

	40

	60

	80

	100

	0 	50 	100 	150 	200 	250 300Ac
tiv
e	
Ne
tw
or
k	
In
te
rfa
ce
s	(
%
)

Time	(s)

1/max(LinkUtil) 1/stdev(LinkUtil) 1/InactiveNICs
a)	Active	Network	Interface	Cards	(%)

ECMP

	4

	6

	8

	10

	12

	14

	0 	50 	100 	150 	200 	250 300

a)	Active	Network	Interface	Cards	(%) b)	Link	Utilization	Imbalance

Lin
k	
Ut
iliz
at
io
n	
Im
ba
la
nc
e

Time	(s)

	0

	10

	20

	30

	40

	50

	0 	50 	100 	150 	200 	250 300M
ax
im
um

	L
in
k	
Ut
iliz
at
io
n	
(%
)

Time	(s)

1/max(LinkUtil) 1/stdev(LinkUtil) 1/InactiveNICs
c)	Maximum	Link	Utilization	(%)

ECMP

	0

	1

	2

	3

	4

	5

	6

	0 	50 	100 	150 	200 	250 300

c)	Maximum	Link	Utilization	(%) d)	Standard	Deviation	of	the	Link	Utilization

St
an
da
rd
	D
ev
ia
tio
n	
of
	

	th
e	
Lin
k	
Ut
iliz
at
io
n

Time	(s)
Source: The Authors.

by the larger number of heavier flows. As we did not change how often the DRL agent is

queried (time_step in Table 4.2), the controller rerouted a smaller ratio of heavy flows.

Further, Figure 4.3b shows the link utilization imbalance during the experiments

with the second workload. In this aspect, CrossBal had a similar performance when

compared to the previous workload (Figure 4.2b). We can also notice that ECMP had a

slightly better performance than before, which can possibly be explained by the fact that

the flows in this workload are smaller than in the previous distribution. Therefore, hash

collisions caused by the simple load balancing in ECMP are less prone to lead to link

utilization imbalances.

While both CrossBal and ECMP showed slight changes in performance with dif-

ferent workloads, the overall patterns remained the same: CrossBal generally outperforms

ECMP. Further, the agent trained with the reward function based on the maximum link

utilization, 1
max(link_util) , generally performs the best out of the three agents trained.

56

4.4 Elephant flow detection optimizations

The preliminary filtering mechanism (previously described in Section 3.2) in the

data plane must be able to analyze a large number of total flows in order to filter a small

number of possible elephant flows. Therefore, it is crucial to optimize the per-flow pro-

cessing and storage requirements as much as possible. An optimization mentioned in

Section 3.2 is to filter packets according to a specific threshold, only accounting for pack-

ets that are not too small. This way, rather than counting bytes, it becomes possible to

count packets, while still having a lower bound of the size of the flow.

However, only accounting for the lower bound of the size of a flow may cause

detection to take longer. For instance, with a packet length threshold of 500 bytes, it

would take 20 packets (of at least 500 bytes) to reach a threshold of 10KB. However, by

counting bytes, 7 packets of 1500KB (typical MTU value) would be enough to reach that

same threshold. Therefore, a further optimization would be to adjust the assumed size of

the packets without changing the packet length threshold.

Figure 4.4a compares the number of packets required for the Preliminary

Filtering to forward a flow to the Refined Detection according to different

thresholds for packet length, considering a detection threshold of 30KB8. We can observe

that the number of packets required to identify a potential elephant flow (forward it to the

next step) decreases as the packet length threshold increases. This behavior can be ex-

plained by the fact that larger flows tend to have packets with significant payloads. There-

fore, a low threshold would incorrectly assume that most packets are relatively small,

delaying detection as explained above.

Figure 4.4b shows the number of bits required to keep track of the size of each

flow. Assuming a standard width of 32 bits for the unoptimized approach, we can observe

that the optimization requires, at worst, 3x less bits (10 bits). Additionally, the number of

bits required per flow can be further optimized by increasing the packet length threshold.

However, Figure 4.4c shows that increasing the packet length threshold also decreases

the filtering accuracy, i.e., increases the number of flows incorrectly reported as possi-

ble elephant flows and forwarded to the next step, the Refined Detection module.

Therefore, with different parameters, we can choose a trade-off between detection speed,

memory efficiency, and detection accuracy. Finally, it is worth noting that elephant flows

8We configured the threshold to this value after an analysis based on our workloads and parameters. We
expect network administrators to select appropriate parameters based on knowledge of their network.

57

Figure 4.4 – Analysis of parameters for elephant detection optimization with a 30KB threshold.
(a) Packets required for preliminary filtering.

	0

	100

	200

	300

	400

	500

	600

	200 	400 	600 	800 	1000 	1200

Pa
ck
et
s	
to
	D
et
ec
tio
n

Packet	Length	Threshold	(Bytes)

Optimization	Disabled Packet	Length	Threshold	x1

(b) Bits required per flow.

	5
	10
	15
	20
	25
	30
	35
	40

	200 	400 	600 	800 	1000 	1200

Bi
ts
	p
er
	F
lo
w

Packet	Length	Threshold	(Bytes)

Packet	Length	Threshold	x2 Packet	Length	Threshold	x3

(c) Filtering accuracy.

	0

	20

	40

	60

	80

	100

	200 	400 	600 	800 	1000 	1200

Fl
ow
s	
co
rre
ct
ly
	fi
lte
re
d	
(%
)

Packet	Length	Threshold	(Bytes)

Source: The Authors.

are also long-lived flows. However, we leave the optimization of the duration threshold in

the elephant flow detection as future work.

58

5 RELATED WORK

In this chapter, we discuss related work in network load balancing. First, Sec-

tion 5.1 details how we characterize the related work discussed in this chapter. Then, we

analyze the literature in load balancing in the following sections. First, in Section 5.2, we

discuss approaches that delegate load balancing to the data plane. Next, in Section 5.3, we

move to the control plane, comparing related work that perform the bulk of processing for

path selection in the controller. Then, Section 5.4 covers systems that do not fit in either of

the aforementioned categories: end-host and hybrid load balancers. Finally, Section 5.5

concludes the chapter with a brief discussion about the state-of-the-art in network load

balancing.

5.1 Characterization of the Reviewed Literature

In order to provide a comprehensible comparison of the related work, we focused

on the following main characteristics of each work:

• Decision Plane is the plane responsible for the strategy employed to route flows.

In particular, we identified load balancers that utilize the data plane, while others

utilize the control plane to implement a load balancing strategy. In addition to these,

we identified two emerging types of systems: end-host and hybrid load balancers.

• Path Generation specifies the type of strategy used to load balance. We classify

existing work into systems that utilize Machine Learning to route flows, and sys-

tems that employ less complex heuristics for path generation.

• Path Selection refers to how the load balancers select a path for each flow (or

packet). Per-hop path selection is similar to decentralized routing strategies, where

each switch (or router) locally selects a hop according to its strategy, while fine-

grained strategies select an end-to-end route, generally at the first switch (or at the

controller). There are also systems that compute link weights for WCMP-based

load balancing (previously described in Section 2.2.2).

• Topology is the general structure of computer networks that the load balancer sup-

ports. While most systems can support any generic topology, a few are limited to

datacenter topologies, such as multi-rooted trees.

59

Table 5.1 – Data Plane load balancers.
Path

Selection Related Work Benefits Limitations

Per-hop

HULA (KATTA et al., 2016)
LetFlow (VANINI et al., 2017)

MP-HULA (BENET et al., 2018)
BurstBalancer (LIU et al., 2022b)

Data plane decision-making and per-
hop selection lead to high scalability
and responsiveness.

Heuristic-based path generation can lead to
suboptimal network utilization. Per-hop path
selection provides less control over the end-to-
end route.

Fine-
grained

CONGA
(ALIZADEH et al., 2014)

Data plane decision-making leads to
high responsiveness. Fine-grained
path selection provides control over
the end-to-end route.

Heuristic-based path generation can lead to
suboptimal network utilization. Fine-grained
path selection leads to scalability issues as the
topology grows.

Source: The Authors.

5.2 Data Plane Load Balancers

This section compares state-of-the-art load balancers implemented on the data

plane. Table 5.1 highlights the main characteristics of each work.

Data plane load balancers employ simple heuristics to generate and select paths.

This is due to the limited hardware of programmable switches, which impose restrictions

on the per-packet processing, as previously explained in Section 2.1. While offloading

this task to the data plane allows reactive load balancing, the decision-making process

is inferior to Machine Learning-based systems (discussed next in Section 5.3). It is also

worth mentioning that only LetFlow (VANINI et al., 2017) is designed for any topology

out of the approaches in Table 5.1, with the remaining load balancers being limited to

datacenter topologies.

During our review of the literature, we found two main techniques for path se-

lection being employed in data plane load balancers: (i) per-hop (decentralized) and (ii)

end-to-end, fine-grained (centralized) path selection. In (i) per-hop path selection, each

switch locally decides on the best next hop for the packet. This includes random path se-

lection similar to ECMP (e.g., LetFlow (VANINI et al., 2017), BurstBalancer (LIU et al.,

2022b)), and choosing the least congested next hop (e.g., HULA (KATTA et al., 2016),

MP-HULA (BENET et al., 2018)). As an alternative, (ii) end-to-end path selection pro-

vides more control over the path taken by each flow (e.g., CONGA (ALIZADEH et al.,

2014)). However, implementing end-to-end path selection entirely in the data plane can

lead to scalability issues in large networks.

5.3 Control Plane Load Balancers

This section covers load balancers that implement path generation and selection

in the control plane. In order to provide a more in-depth analysis, we first cover heuristic-

60

Table 5.2 – Control Plane load balancers based on heuristics.
Path

Selection Related Work Benefits Limitations

Fine-
grained

Hedera (AL-FARES et al., 2010)
Chameleon (BEMTEN et al., 2020)

Mahout
(CURTIS; KIM; YALAGANDULA, 2011)

Controller has a global view of
the network, leading to better
path selection.

Control Plane involvement compromises scal-
ability and responsiveness. Heuristic-based
path generation provides decision-making in-
ferior to Machine Learning-based approaches.

Multi-
Controller

HELIX (ZAICU et al., 2021)
BlastShield

(KRISHNASWAMY et al., 2022)

Multi-controller implementa-
tion provides logically central-
ized path selection, improving
scalability and responsiveness.

Heuristic-based path generation can lead to
suboptimal network utilization. Controller
involvement still provides lower responsive-
ness. Design focuses on WANs.

Link
Weights

Parham et al. (2021)
Magnouche et al. (2021)

Le et al. (2021)

Path selection based on link
weights is highly scalable.

Path selection based on link weights can lead
to suboptimal network utilization due to hash
collisions. Controller involvement limits re-
sponsiveness.

Source: The Authors.

based systems (Section 5.3.1), before comparing Machine Learning-based systems (Sec-

tion 5.3.2).

5.3.1 Heuristics-based Controllers

Table 5.2 provides an overview of heuristic-based control plane load balancers.

Out of the systems listed in the table, only Hedera (AL-FARES et al., 2010) is limited to

datacenter topologies, while the others support any topology.

A number of load balancing systems implement fine-grained path selection in

the control plane, as resources are less scarce and the programming model is more flex-

ible (e.g., Hedera (AL-FARES et al., 2010), Chameleon (BEMTEN et al., 2020), Ma-

hout (CURTIS; KIM; YALAGANDULA, 2011)). However, requiring controller involve-

ment to select an end-to-end route leads to severe scalability and responsiveness issues.

While multi-controller approaches can improve scalability, heuristic-based path genera-

tion and selection can lead to suboptimal network utilization. Further, multi-controller ap-

proaches are generally more focused on Wide Area Networks (WANs) (e.g., HELIX (ZA-

ICU et al., 2021), BlastShield (KRISHNASWAMY et al., 2022)).

Alternatively, several systems employ heuristics to compute link weights for WCMP

(e.g., Parham et al. (2021), Magnouche et al. (2021), Le et al. (2021), DOTE (PERRY et

al., 2023)). However, as previously explained in Section 2.2.2, WCMP requires control

plane intervention to update weights, limiting its ability to detect and react to transient

congestion. Further, there are Machine Learning-based systems capable of providing

near-optimal weights for WCMP (covered next).

61

Table 5.3 – Control Plane load balancers that employ Machine Learning models.
Path

Selection Related Work Benefits Limitations

Link
Weights

Valadarsky et al. (2017)
DRL-TE (XU et al., 2018)

DPRO (LI et al., 2020)
DOTE (PERRY et al., 2023)

ML-based approaches can com-
pute near-optimal link weights.

Path selection based on link weights can lead
to suboptimal network utilization due to hash
collisions. Controller involvement limits re-
sponsiveness.

Strategy
GQNN (GEYER; CARLE, 2018)
RouteNet (RUSEK et al., 2019)

RBB (RUSEK et al., 2022)

ML-based approaches can learn
more efficient routing strategies.

Does not utilize redundant paths, potentially
leading to suboptimal network utilization.
Path selection provides no responsiveness to
congestion.

Fine-
grained NGR (XIAO et al., 2020)

ML-based approaches can select
end-to-end routes that optimize
network utilization.

Fine-grained path selection based on ML
severely limits scalability and responsiveness
due to controller involvement.

Source: The Authors.

5.3.2 Machine Learning-based Controllers

Table 5.2 provides an overview of Machine Learning-based control plane load

balancers. A common characteristic of these systems is that they can support any type of

topology.

Machine Learning-based approaches can compute near-optimal link weights for

WCMP (e.g., DPRO (LI et al., 2020), DRL-TE (XU et al., 2018), Valadarsky et al.

(2017)). However, WCMP-based load balancing systems suffer from several issues, as

previously mentioned in Section 2.2.2 and Section 5.3.1. Machine Learning can also

be used to perform fine-grained path selection for each flow (e.g., NGR (XIAO et al.,

2020)). However, querying a DNN to select a path for each flow poses severe scalabil-

ity challenges. Additionally, reacting to transient congestion would require querying the

DNN at a packet or flowlet granularity, further limiting scalability.

As an alternative, researchers have explored utilizing Machine Learning to gen-

erate a strategy for selecting paths. For instance, it is possible to use Machine Learning

to generate distributed routing protocols (e.g., GQNN (GEYER; CARLE, 2018)), or to

select a routing strategy (e.g., shortest-path or least-utilized) that will maximize a desired

metric (e.g., RouteNet (RUSEK et al., 2019), RBB (RUSEK et al., 2022)). However, these

techniques generate static routing strategies, not being able to properly utilize multi-path

infrastructures.

5.4 Emerging categories of Load Balancers

This section covers load balancers that do not fit in any of the previous categories.

Table 5.4 presents two emerging types of load balancers: end-host and hybrid load bal-

62

Table 5.4 – Emerging categories of load balancers.
Decision

Plane Related Work Benefits Limitations

End-
Host

Hermes (ZHANG et al., 2017)
PLB (QURESHI et al., 2022)

End-host decision-making is highly
scalable and generally responsive.

Requires modifying end-hosts, severely lim-
iting deployability. Heuristic-based approach
can lead to suboptimal path selection.

Hybrid Pizzutti and Schaeffer-Filho (2019)
CONTRA (HSU et al., 2020a)

Combines data plane responsive-
ness with control plane visibility
and path generation.

Heuristic-based path generation can lead to
suboptimal network utilization.

Source: The Authors.

ancers. Considering every work in this section employs heuristics to generate paths and

fine-grained path selection, we did not include these columns in the table. Further, the

load balancing systems covered here can support any type of topology.

End-host load balancers are highly scalable and can quickly react to congestion

along paths (e.g., Hermes (ZHANG et al., 2017), PLB (QURESHI et al., 2022)). How-

ever, this requires modifying end-hosts, which limits deployability to specific cases, such

as datacenters or cloud environments. Further, existing end-host load balancers are based

on simple heuristics, which can lead to suboptimal network utilization.

Hybrid load balancers combine reactive data plane processing with controller-

based path generation. These systems can be highly scalable due to collaboration between

the data and control planes. Additionally, hybrid load balancers can quickly detect and

react to transient congestion in the data plane, while also providing efficient network uti-

lization with fine-grained path selection in the control plane (e.g., Pizzutti and Schaeffer-

Filho (2019), CONTRA (HSU et al., 2020a)). However, we believe existing work can be

improved upon, as current strategies are limited to heuristic-based path generation and

selection.

5.5 Discussion

This chapter reviewed data plane load balancers (Section 5.2) and control plane

load balancers (Section 5.3). These two classes of load balancers have opposing charac-

teristics, usually trading off scalability and reactiveness for more intelligent decision-

making. Alternatively, end-host load balancing approaches have several benefits, but

are limited to datacenter and cloud environments, where end-host modification is easily

achieved.

Hybrid load balancers are an emerging type of load balancing systems that com-

bine reactive data plane processing with intelligent decisions by the controller. Existing

solutions (e.g., Pizzutti and Schaeffer-Filho (2019), CONTRA (HSU et al., 2020a)) al-

63

ready demonstrate the benefits of a hybrid approach, providing high scalability and effi-

cient network utilization.

CrossBal improves upon related work by employing a Deep Reinforcement Learn-

ing agent responsible for selecting the best routes for each rerouted flow. Further, the fast

decision loop in the data plane is capable of quickly reacting to transient congestion on

installed paths. Finally, by focusing its efforts on elephant flows, CrossBal minimizes the

number of flows to be actively rerouted. Only a few of the related work highlighted (e.g.,

Hedera (AL-FARES et al., 2010), Mahout (CURTIS; KIM; YALAGANDULA, 2011))

focus their efforts on elephant flows. As elephant flows are large and long-lasting flows

that tend to have a high impact on the network, focusing on these flows can lead to ef-

ficient network utilization, while also improving control plane scalability, as there are

significantly fewer flows to reroute.

64

6 CONCLUDING REMARKS

This chapter presents our concluding remarks. Section 6.1 provides a summary of

our contributions, while Section 6.2 discusses possible future research directions.

6.1 Summary of Contributions

This work presented CrossBal, a hybrid load balancer that combines an intelli-

gent decision-loop in the control plane with a reactive decision-loop in the programmable

data plane. CrossBal utilizes Machine Learning models in the control plane to provide

intelligent decision-making. The controller collaborates with programmable switches,

responsible for a fast decision-loop that complements the more intelligent decision-loop.

CrossBal was designed after identifying a gap in existing network load balancers.

In general, existing proposals present a trade-off between intelligent decision-making and

scalability or ability to react to transient congestion. This can be attributed to most load

balancers heavily relying on either the control or the data plane. While there have been

a few attempts at designing hybrid load balancers, existing approaches employ simple

heuristics for path selection. Further, few load balancers focus their efforts on elephant

flows - high-throughput, long-lasting flows that can cause a large impact on the network.

CrossBal addresses the challenges in load balancing the network by employing

both a logically-centralized controller and the data plane of programmable switches. The

control plane implements a Deep Reinforcement Learning agent to periodically reroute

high-impact elephant flows. The agent is fed with updated statistics of network link uti-

lization polled from every switch, providing it with a global view of the network. This

allows the agent to optimize the routing of high-impact flows in order to prevent network

congestion.

Seeking to complement the intelligent decision-loop in the controller, CrossBal

delegates the task of reacting to transient congestion to the programmable data plane. As

programmable switches can perform simple logic and arithmetic operations at line-rate,

CrossBal utilizes P4-enabled switches to implement a simpler, but fast, decision-loop.

In particular, the data plane probes the quality of installed paths by measuring RTT and,

upon detecting a significant increase in RTT, changes the active path for detected elephant

flows. This mechanism allows programmable switches to quickly detect and react to

transient congestion by observing the RTT of routes installed by the controller.

65

Finally, CrossBal employs cooperative cross-plane mechanisms in order to pro-

vide scalable and accurate elephant flow detection. This is achieved by first distributing

the identification of possible elephant flows into two complementary mechanisms entirely

in the data plane, before a final mechanism in the control plane. The first mechanism ap-

plies a preliminary filtering in order to rule out small and short-lived flows. After this

first step reduces the number of flows to consider, the data plane applies a refined de-

tection over the remaining flows. After identifying a flow as a likely elephant flow, the

switch exports a set of features computed for this flow to the controller. As the control

plane presents fewer programming and resource constraints, we implement a Machine

Learning model in order to provide accurate identification of elephant flows.

Our evaluation showed that CrossBal outperforms ECMP at balancing different

workloads over available network links. In particular, CrossBal consistently utilizes most

available network links, while ensuring lower link utilization imbalance. We also com-

pared the performance of agents trained with different reward functions, identifying the

agent trained with a reward function based on the maximum link utilization as the best

performing agent. Finally, we proposed and analyzed optimizations for the preliminary

filtering mechanism used in identifying elephant flows in the data plane. The analysis

showed how our optimization can reduce memory utilization, a critical but scarce resource

in programmable switches. Additionally, it also showed how we can change optimization

parameters in order to trade-off detection speed for filtering accuracy.

In summary, the main contributions of our work are the following:

• Review of the state-of-the-art. We performed a study of the literature in network

load balancing, comparing the main characteristics of each work (Chapter 5);

• Design and implementation of CrossBal. We designed and implemented a hybrid

load balancing system based on cross-plane collaboration and state-of-the-art Ma-

chine Learning models. Further, our system employs programmable data planes to

detect and react to congestion in selected paths (Chapter 3);

• Evaluation a Proof-of-Concept prototype. We evaluated a prototype of CrossBal

with BMv2 switches in an emulated environment with a realistic network topology

and workloads. Our results showed that CrossBal outperforms ECMP at load bal-

ancing with different workloads. Further, we compared the design of DRL agents

trained with different reward functions (Chapter 4);

• Design of a Deep Reinforcement Learning agent. We described our design of

a Deep Reinforcement Learning agent capable of actively load balancing network

66

flows. We also highlighted the challenges in designing an agent and possible issues

with alternative designs (Section 3.3).

Finally, we believe that CrossBal shows the benefits of a cross-plane load balanc-

ing approach based on Machine Learning models.

6.2 Future Work

CrossBal improves upon existing hybrid load balancers (previously discussed in

Section 5.4) by applying Deep Reinforcement Learning to actively reroute high impact

flows, while employing the programmable data plane to aid in the detection of elephant

flows, identify congestion along installed paths, and switch the active path of detected

elephant flows. However, there are alternative designs that can be explored, as well as

possible improvements to our proof-of-concept prototype that was implemented and eval-

uated in Chapter 4. Next, we discuss possible directions for future work.

• Exploration of alternative designs for preliminary filtering and refined detec-

tion. The preliminary filtering module is based on the need to filter out a large

number of small flows while keeping resource utilization at a minimum. The re-

fined detection builds upon the previous module, being able to perform a more

in-depth analysis over the remaining flows. While we found that simple thresholds

produced satisfactory results for the preliminary filtering, an interesting direction

for future work is to explore alternative mechanisms, such as sketches (SONG et

al., 2020) or other compact data structures. Similarly, future work for the refined

detection includes performing a more thorough feature selection (as mentioned in

Section 3.2) and exploring alternative mechanisms for this module;

• Alternative designs for the DRL agent. Our design for the DRL agent was based

on the review of the state-of-the-art in ML for networking, discussing the weak-

nesses and strengths of each design, and some experimentation (Section 3.3). An

interesting direction for future work is to compare alternative designs for the agent.

An example is to extend the state space to include an identifier for the current ele-

phant flow being rerouted and the previous routes selected for it. Further, employing

Graph Neural Networks (RUSEK et al., 2019) could improve the agent’s ability to

select routes;

• In-depth evaluation and parameter analysis. As mentioned in Section 4.2, our

67

emulated setup had some limitations. Additionally, CrossBal depends on a few

important parameters (listed in Section 4.2.4). Therefore, a further evaluation in a

distributed setup (emulated or on a testbed) with larger topologies and workloads is

an important future work. Additionally, future work in evaluating CrossBal should

include a more thorough analysis on the impact of system parameters.

68

REFERENCES

AL-FARES, M. et al. Hedera: Dynamic flow scheduling for data center networks. In:
Proceedings of the 7th USENIX Conference on Networked Systems Design and Im-
plementation. USA: USENIX Association, 2010. (NSDI’10), p. 19.

ALIZADEH, M. et al. Conga: Distributed congestion-aware load balancing for datacen-
ters. In: Proceedings of the 2014 ACM Conference on SIGCOMM. New York, NY,
USA: Association for Computing Machinery, 2014. (SIGCOMM ’14), p. 503–514. ISBN
9781450328364. Available from Internet: <https://doi.org/10.1145/2619239.2626316>.

ALIZADEH, M. et al. Data center tcp (dctcp). In: Proceedings of the ACM SIGCOMM
2010 Conference. New York, NY, USA: Association for Computing Machinery, 2010.
(SIGCOMM ’10), p. 63–74. ISBN 9781450302012. Available from Internet: <https://
doi.org/10.1145/1851182.1851192>.

BEMTEN, A. V. et al. Chameleon: Predictable latency and high utilization with queue-
aware and adaptive source routing. In: Proceedings of the 16th International Confer-
ence on Emerging Networking EXperiments and Technologies. New York, NY, USA:
Association for Computing Machinery, 2020. p. 451–465. ISBN 9781450379489. Avail-
able from Internet: <https://doi.org/10.1145/3386367.3432879>.

BENET, C. H. et al. Mp-hula: Multipath transport aware load balancing using pro-
grammable data planes. In: Proceedings of the 2018 Morning Workshop on In-
Network Computing. New York, NY, USA: Association for Computing Machinery,
2018. (NetCompute ’18), p. 7–13. ISBN 9781450359085. Available from Internet:
<https://doi.org/10.1145/3229591.3229596>.

BOSSHART, P. et al. P4: Programming protocol-independent packet processors. SIG-
COMM Comput. Commun. Rev., Association for Computing Machinery, New York,
NY, USA, v. 44, n. 3, p. 87–95, jul 2014. ISSN 0146-4833. Available from Internet:
<https://doi.org/10.1145/2656877.2656890>.

BREIMAN, L. Random forests. Machine Learning, v. 45, n. 1, p. 5–32, Oct 2001. ISSN
1573-0565. Available from Internet: <https://doi.org/10.1023/A:1010933404324>.

COELHO, B.; SCHAEFFER-FILHO, A. Backorders: Using random forests to detect
ddos attacks in programmable data planes. In: Proceedings of the 5th International
Workshop on P4 in Europe. New York, NY, USA: Association for Computing Ma-
chinery, 2022. (EuroP4 ’22), p. 1–7. ISBN 9781450399357. Available from Internet:
<https://doi.org/10.1145/3565475.3569074>.

CURTIS, A. R.; KIM, W.; YALAGANDULA, P. Mahout: Low-overhead datacenter traf-
fic management using end-host-based elephant detection. In: 2011 Proceedings IEEE
INFOCOM. Shanghai, China: IEEE Press, 2011. p. 1629–1637.

CURTIS, A. R. et al. Devoflow: Scaling flow management for high-performance net-
works. In: Proceedings of the ACM SIGCOMM 2011 Conference. New York, NY,
USA: Association for Computing Machinery, 2011. (SIGCOMM ’11), p. 254–265. ISBN
9781450307970. Available from Internet: <https://doi.org/10.1145/2018436.2018466>.

https://doi.org/10.1145/2619239.2626316
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/3386367.3432879
https://doi.org/10.1145/3229591.3229596
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3565475.3569074
https://doi.org/10.1145/2018436.2018466

69

DURNER, R.; KELLERER, W. Network function offloading through classification of
elephant flows. IEEE Transactions on Network and Service Management, v. 17, n. 2,
p. 807–820, 2020.

ELIYAHU, T. et al. Verifying learning-augmented systems. In: Proceedings of the 2021
ACM SIGCOMM 2021 Conference. New York, NY, USA: Association for Computing
Machinery, 2021. (SIGCOMM ’21), p. 305–318. ISBN 9781450383837. Available from
Internet: <https://doi.org/10.1145/3452296.3472936>.

FEAMSTER, N.; REXFORD, J.; ZEGURA, E. The road to sdn: An intellectual history of
programmable networks. SIGCOMM Comput. Commun. Rev., Association for Com-
puting Machinery, New York, NY, USA, v. 44, n. 2, p. 87–98, abr. 2014. ISSN 0146-4833.
Available from Internet: <https://doi.org/10.1145/2602204.2602219>.

FOUNDATION, L. Data Plane Development Kit (DPDK). 2015. Available from Inter-
net: <http://www.dpdk.org>.

GAVRILUŢ, V.; PRUSKI, A.; BERGER, M. S. Constructive or optimized: An overview
of strategies to design networks for time-critical applications. ACM Comput. Surv., As-
sociation for Computing Machinery, New York, NY, USA, v. 55, n. 3, feb 2022. ISSN
0360-0300. Available from Internet: <https://doi.org/10.1145/3501294>.

GENG, Y. et al. Juggler: A practical reordering resilient network stack for datacen-
ters. In: Proceedings of the Eleventh European Conference on Computer Systems.
New York, NY, USA: Association for Computing Machinery, 2016. (EuroSys ’16). ISBN
9781450342407. Available from Internet: <https://doi.org/10.1145/2901318.2901334>.

GEYER, F.; CARLE, G. Learning and generating distributed routing protocols using
graph-based deep learning. In: Proceedings of the 2018 Workshop on Big Data An-
alytics and Machine Learning for Data Communication Networks. New York, NY,
USA: Association for Computing Machinery, 2018. (Big-DAMA ’18), p. 40–45. ISBN
9781450359047. Available from Internet: <https://doi.org/10.1145/3229607.3229610>.

GLOROT, X.; BORDES, A.; BENGIO, Y. Deep sparse rectifier neural networks. In: .
[S.l.: s.n.], 2010. v. 15.

GREENBERG, A. et al. Vl2: A scalable and flexible data center network. In: Pro-
ceedings of the ACM SIGCOMM 2009 Conference on Data Communication. New
York, NY, USA: Association for Computing Machinery, 2009. (SIGCOMM ’09),
p. 51–62. ISBN 9781605585949. Available from Internet: <https://doi.org/10.1145/
1592568.1592576>.

GUO, L.; MATTA, I. The war between mice and elephants. In: Proceedings Ninth Inter-
national Conference on Network Protocols. ICNP 2001. [S.l.: s.n.], 2001. p. 180–188.

GYM. 2023. Available from Internet: <https://www.gymlibrary.dev/>. Accessed in:
2023-05-30.

HO, T. K. Random decision forests. In: Proceedings of the Third International Con-
ference on Document Analysis and Recognition (Volume 1) - Volume 1. USA: IEEE
Computer Society, 1995. (ICDAR ’95), p. 278. ISBN 0818671289.

https://doi.org/10.1145/3452296.3472936
https://doi.org/10.1145/2602204.2602219
http://www.dpdk.org
https://doi.org/10.1145/3501294
https://doi.org/10.1145/2901318.2901334
https://doi.org/10.1145/3229607.3229610
https://doi.org/10.1145/1592568.1592576
https://doi.org/10.1145/1592568.1592576
https://www.gymlibrary.dev/

70

HØILAND-JØRGENSEN, T. et al. The express data path: Fast programmable packet
processing in the operating system kernel. In: Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies. New York,
NY, USA: Association for Computing Machinery, 2018. (CoNEXT ’18), p. 54–66. ISBN
9781450360807. Available from Internet: <https://doi.org/10.1145/3281411.3281443>.

HONG, C.-Y. et al. B4 and after: Managing hierarchy, partitioning, and asymme-
try for availability and scale in google’s software-defined wan. In: Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communica-
tion. New York, NY, USA: Association for Computing Machinery, 2018. (SIGCOMM
’18), p. 74–87. ISBN 9781450355674. Available from Internet: <https://doi.org/10.1145/
3230543.3230545>.

HSU, K.-F. et al. Contra: A programmable system for performance-aware routing.
In: 17th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). Santa Clara, CA: USENIX Association, 2020. p. 701–721. ISBN 978-
1-939133-13-7. Available from Internet: <https://www.usenix.org/conference/nsdi20/
presentation/hsu>.

HSU, K.-F. et al. Adaptive weighted traffic splitting in programmable data planes. In:
Proceedings of the Symposium on SDN Research. New York, NY, USA: Association
for Computing Machinery, 2020. (SOSR ’20), p. 103–109. ISBN 9781450371018. Avail-
able from Internet: <https://doi.org/10.1145/3373360.3380841>.

JAIN, S. et al. B4: Experience with a globally-deployed software defined wan. In: Pro-
ceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM. New York, NY,
USA: Association for Computing Machinery, 2013. (SIGCOMM ’13), p. 3–14. ISBN
9781450320566. Available from Internet: <https://doi.org/10.1145/2486001.2486019>.

JURKIEWICZ, P. Boundaries of flow table usage reduction algorithms based on elephant
flow detection. In: 2021 IFIP Networking Conference (IFIP Networking). [S.l.: s.n.],
2021. p. 1–9.

JURKIEWICZ, P. Boundaries of flow table usage reduction algorithms based on elephant
flow detection. In: 2021 IFIP Networking Conference (IFIP Networking). Espoo and
Helsinki, Finland: IEEE Press, 2021. p. 1–9.

KAMIYAMA, N. et al. Impact of topology on parallel video streaming. In: 2010 IEEE
Network Operations and Management Symposium - NOMS 2010. [S.l.: s.n.], 2010.
p. 607–614.

KATTA, N. et al. Hula: Scalable load balancing using programmable data planes. In:
Proceedings of the Symposium on SDN Research. New York, NY, USA: Association
for Computing Machinery, 2016. (SOSR ’16). ISBN 9781450342117. Available from
Internet: <https://doi.org/10.1145/2890955.2890968>.

Kreutz, D. et al. Software-defined networking: A comprehensive survey. Proceedings of
the IEEE, v. 103, n. 1, p. 14–76, 2015.

KRISHNASWAMY, U. et al. Decentralized cloud wide-area network traffic engineering
with BLASTSHIELD. In: 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22). Renton, WA: USENIX Association, 2022. p. 325–338.

https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3230543.3230545
https://doi.org/10.1145/3230543.3230545
https://www.usenix.org/conference/nsdi20/presentation/hsu
https://www.usenix.org/conference/nsdi20/presentation/hsu
https://doi.org/10.1145/3373360.3380841
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1145/2890955.2890968

71

ISBN 978-1-939133-27-4. Available from Internet: <https://www.usenix.org/conference/
nsdi22/presentation/krishnaswamy>.

LE, V. A. et al. Multi-time-step segment routing based traffic engineering leveraging traf-
fic prediction. In: 2021 IFIP/IEEE International Symposium on Integrated Network
Management (IM). [S.l.: s.n.], 2021. p. 125–133.

LI, Q. et al. Data-driven routing optimization based on programmable data plane. In:
2020 29th International Conference on Computer Communications and Networks
(ICCCN). Honolulu, HI, USA: IEEE Press, 2020. p. 1–9.

LIATIFIS, A. et al. Advancing sdn from openflow to p4: A survey. ACM Comput. Surv.,
Association for Computing Machinery, New York, NY, USA, v. 55, n. 9, jan 2023. ISSN
0360-0300. Available from Internet: <https://doi.org/10.1145/3556973>.

LIU, H. et al. Finding top-k shortest paths with diversity. IEEE Transactions on Knowl-
edge and Data Engineering, v. 30, n. 3, p. 488–502, 2018.

LIU, Y. et al. Rslb: Robust and scalable load balancing in software-defined data center
networks. IEEE Transactions on Network and Service Management, v. 19, n. 4, p.
4706–4720, 2022.

LIU, Z. et al. Burstbalancer: Do less, better balance for large-scale data center traffic. In:
2022 IEEE 30th International Conference on Network Protocols (ICNP). [S.l.: s.n.],
2022. p. 1–13.

LUIZELLI, M. C. et al. How physical network topologies affect virtual network embed-
ding quality: A characterization study based on isp and datacenter networks. Journal of
Network and Computer Applications, v. 70, 05 2016.

LUONG, N. C. et al. Applications of deep reinforcement learning in communications
and networking: A survey. IEEE Communications Surveys & Tutorials, v. 21, n. 4, p.
3133–3174, 2019.

MAGNOUCHE, Y. et al. Distributed utility maximization from the edge in ip networks.
In: 2021 IFIP/IEEE International Symposium on Integrated Network Management
(IM). [S.l.: s.n.], 2021. p. 224–232.

MCKEOWN, N. et al. Openflow: Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., Association for Computing Machinery, New York, NY, USA,
v. 38, n. 2, p. 69–74, mar. 2008. ISSN 0146-4833. Available from Internet: <https://doi.
org/10.1145/1355734.1355746>.

MNIH, V. et al. Human-level control through deep reinforcement learning. Nature, v. 518,
p. 529–533, 2015.

NOORMOHAMMADPOUR, M.; RAGHAVENDRA, C. S. Datacenter traffic control:
Understanding techniques and tradeoffs. IEEE Communications Surveys & Tutorials,
v. 20, n. 2, p. 1492–1525, 2018.

NUMPY. 2023. Available from Internet: <https://numpy.org/>. Accessed in: 2023-05-30.

https://www.usenix.org/conference/nsdi22/presentation/krishnaswamy
https://www.usenix.org/conference/nsdi22/presentation/krishnaswamy
https://doi.org/10.1145/3556973
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://numpy.org/

72

OPEN NETWORKING FOUNDATION. OpenFlow Switch Specification. [S.l.], 2009.
Version 1.0.0. Available from Internet: <https://opennetworking.org/wp-content/uploads/
2013/04/openflow-spec-v1.0.0.pdf>.

OPEN NETWORKING FOUNDATION. OpenFlow Switch Specification. [S.l.], 2015.
Version 1.5.1. Available from Internet: <https://opennetworking.org/wp-content/uploads/
2014/10/openflow-switch-v1.5.1.pdf>.

PARHAM, M. et al. Traffic engineering with joint link weight and segment optimization.
In: Proceedings of the 17th International Conference on Emerging Networking EX-
periments and Technologies. New York, NY, USA: Association for Computing Machin-
ery, 2021. (CoNEXT ’21), p. 313–327. ISBN 9781450390989. Available from Internet:
<https://doi.org/10.1145/3485983.3494846>.

PARIZOTTO, R. et al. Offloading machine learning to programmable data planes: A
systematic survey. ACM Comput. Surv., Association for Computing Machinery, New
York, NY, USA, jun 2023. ISSN 0360-0300. Just Accepted. Available from Internet:
<https://doi.org/10.1145/3605153>.

PEIXOTO, T. graph-tool. 2023. Available from Internet: <https://graph-tool.skewed.de/
>. Accessed in: 2023-05-30.

PERRY, Y. et al. DOTE: Rethinking (predictive) WAN traffic engineering. In: 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
23). Boston, MA: USENIX Association, 2023. p. 1557–1581. ISBN 978-1-939133-
33-5. Available from Internet: <https://www.usenix.org/conference/nsdi23/presentation/
perry>.

PIZZUTTI, M.; SCHAEFFER-FILHO, A. E. Adaptive multipath routing based on hybrid
data and control plane operation. In: IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications. Paris, France: IEEE Press, 2019. p. 730–738. Available
from Internet: <https://doi.org/10.1109/INFOCOM.2019.8737398>.

POLIKAR, R. Polikar, r.: Ensemble based systems in decision making. ieee circuit syst.
mag. 6, 21-45. Circuits and Systems Magazine, IEEE, v. 6, p. 21 – 45, 10 2006.

PYTORCH. 2023. Available from Internet: <https://pytorch.org/>. Accessed in: 2023-
05-30.

QUINLAN, J. R. Simplifying decision trees. Int. J. Man-Mach. Stud., Academic Press
Ltd., GBR, v. 27, n. 3, p. 221–234, sep. 1987. ISSN 0020-7373. Available from Internet:
<https://doi.org/10.1016/S0020-7373(87)80053-6>.

QUINLAN, J. R. C4.5: Programs for Machine Learning. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1993. ISBN 1558602380.

QURESHI, M. A. et al. Plb: Congestion signals are simple and effective for network load
balancing. In: Proceedings of the ACM SIGCOMM 2022 Conference. New York, NY,
USA: Association for Computing Machinery, 2022. (SIGCOMM ’22), p. 207–218. ISBN
9781450394208. Available from Internet: <https://doi.org/10.1145/3544216.3544226>.

https://opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://doi.org/10.1145/3485983.3494846
https://doi.org/10.1145/3605153
https://graph-tool.skewed.de/
https://graph-tool.skewed.de/
https://www.usenix.org/conference/nsdi23/presentation/perry
https://www.usenix.org/conference/nsdi23/presentation/perry
https://doi.org/10.1109/INFOCOM.2019.8737398
https://pytorch.org/
https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.1145/3544216.3544226

73

REDA, W. et al. Path persistence in the cloud: A study of the effects of inter-region
traffic engineering in a large cloud provider’s network. SIGCOMM Comput. Commun.
Rev., Association for Computing Machinery, New York, NY, USA, v. 50, n. 2, p. 11–23,
may 2020. ISSN 0146-4833. Available from Internet: <https://doi.org/10.1145/3402413.
3402416>.

RESTUCCIA, F.; MELODIA, T. Deepwierl: Bringing deep reinforcement learning to
the internet of self-adaptive things. In: IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications. Toronto, ON, Canada: IEEE Press, 2020. p. 844–853.

RUSEK, K. et al. Fast Traffic Engineering by Gradient Descent with Learned Differ-
entiable Routing. 2022.

RUSEK, K. et al. Unveiling the potential of graph neural networks for network modeling
and optimization in sdn. In: Proceedings of the 2019 ACM Symposium on SDN Re-
search. New York, NY, USA: Association for Computing Machinery, 2019. (SOSR ’19),
p. 140–151. ISBN 9781450367103. Available from Internet: <https://doi.org/10.1145/
3314148.3314357>.

SAPIO, A. et al. In-network computation is a dumb idea whose time has come. In: Pro-
ceedings of the 16th ACM Workshop on Hot Topics in Networks. New York, NY,
USA: Association for Computing Machinery, 2017. (HotNets-XVI), p. 150–156. ISBN
9781450355698. Available from Internet: <https://doi.org/10.1145/3152434.3152461>.

SCAPY. 2023. Available from Internet: <https://scapy.net/>. Accessed in: 2023-05-30.

SILVA, M. V. B. da et al. Ideafix: Identifying elephant flows in p4-based ixp networks.
In: 2018 IEEE Global Communications Conference (GLOBECOM). [S.l.: s.n.], 2018.
p. 1–6.

SILVA, M. V. Brito da; SCHAEFFER-FILHO, A. E.; GRANVILLE, L. Z. Hashcuckoo:
Predicting elephant flows using meta-heuristics in programmable data planes. In:
GLOBECOM 2022 - 2022 IEEE Global Communications Conference. [S.l.: s.n.],
2022. p. 6337–6342.

SILVER, D. et al. Mastering the game of go with deep neural networks and tree search.
Nature, v. 529, p. 484–489, 01 2016.

SIVARAMAN, V. et al. Heavy-hitter detection entirely in the data plane. In: Proceedings
of the Symposium on SDN Research. New York, NY, USA: Association for Comput-
ing Machinery, 2017. (SOSR ’17), p. 164–176. ISBN 9781450349475. Available from
Internet: <https://doi.org/10.1145/3050220.3063772>.

SONG, C. H. et al. Fcm-sketch: Generic network measurements with data plane sup-
port. In: Proceedings of the 16th International Conference on Emerging Networking
EXperiments and Technologies. New York, NY, USA: Association for Computing Ma-
chinery, 2020. (CoNEXT ’20), p. 78–92. ISBN 9781450379489. Available from Internet:
<https://doi.org/10.1145/3386367.3432729>.

SUTTON, R.; BARTO, A. Reinforcement Learning, second edition: An Intro-
duction. MIT Press, 2018. (Adaptive Computation and Machine Learning series).
ISBN 9780262039246. Available from Internet: <https://books.google.com/books?id=
6DKPtQEACAAJ>.

https://doi.org/10.1145/3402413.3402416
https://doi.org/10.1145/3402413.3402416
https://doi.org/10.1145/3314148.3314357
https://doi.org/10.1145/3314148.3314357
https://doi.org/10.1145/3152434.3152461
https://scapy.net/
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1145/3386367.3432729
https://books.google.com/books?id=6DKPtQEACAAJ
https://books.google.com/books?id=6DKPtQEACAAJ

74

TALBI, E.-G. Automated design of deep neural networks: A survey and unified taxon-
omy. ACM Comput. Surv., Association for Computing Machinery, New York, NY, USA,
v. 54, n. 2, mar 2021. ISSN 0360-0300. Available from Internet: <https://doi.org/10.1145/
3439730>.

VALADARSKY, A. et al. Learning to route. In: Proceedings of the 16th ACM Work-
shop on Hot Topics in Networks. New York, NY, USA: Association for Computing
Machinery, 2017. (HotNets-XVI), p. 185–191. ISBN 9781450355698. Available from In-
ternet: <https://doi.org/10.1145/3152434.3152441>.

VANINI, E. et al. Let it flow: Resilient asymmetric load balancing with flowlet switch-
ing. In: 14th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 17). Boston, MA: USENIX Association, 2017. p. 407–420. ISBN 978-
1-931971-37-9. Available from Internet: <https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/vanini>.

XIAO, S. et al. Neural packet routing. In: Proceedings of the Workshop on Network
Meets AI & ML. New York, NY, USA: Association for Computing Machinery, 2020.
(NetAI ’20), p. 28–34. ISBN 9781450380430. Available from Internet: <https://doi.org/
10.1145/3405671.3405813>.

XU, Z. et al. Experience-driven networking: A deep reinforcement learning based ap-
proach. In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communica-
tions. Honolulu, HI, USA: IEEE Press, 2018. p. 1871–1879. Available from Internet:
<https://doi.org/10.1109/INFOCOM.2018.8485853>.

ZAICU, N. F. et al. Helix: Traffic engineering for multi-controller sdn. In: . Pro-
ceedings of the ACM SIGCOMM Symposium on SDN Research (SOSR). New York,
NY, USA: Association for Computing Machinery, 2021. p. 80–87. ISBN 9781450390842.
Available from Internet: <https://doi.org/10.1145/3482898.3483354>.

ZHAN, Y.; ZHANG, J. An incentive mechanism design for efficient edge learning by deep
reinforcement learning approach. In: IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications. Toronto, ON, Canada: IEEE Press, 2020. p. 2489–2498.

ZHANG, H. et al. Resilient datacenter load balancing in the wild. In: Proceedings
of the Conference of the ACM Special Interest Group on Data Communication.
New York, NY, USA: Association for Computing Machinery, 2017. (SIGCOMM ’17),
p. 253–266. ISBN 9781450346535. Available from Internet: <https://doi.org/10.1145/
3098822.3098841>.

ZHANG, J. et al. Smartentry: Mitigating routing update overhead with reinforcement
learning for traffic engineering. In: Proceedings of the Workshop on Network Meets
AI & ML. New York, NY, USA: Association for Computing Machinery, 2020. (NetAI
’20), p. 1–7. ISBN 9781450380430. Available from Internet: <https://doi.org/10.1145/
3405671.3405809>.

ZHANG, J. et al. Load balancing in data center networks: A survey. IEEE Communica-
tions Surveys & Tutorials, v. 20, n. 3, p. 2324–2352, 2018.

https://doi.org/10.1145/3439730
https://doi.org/10.1145/3439730
https://doi.org/10.1145/3152434.3152441
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini
https://doi.org/10.1145/3405671.3405813
https://doi.org/10.1145/3405671.3405813
https://doi.org/10.1109/INFOCOM.2018.8485853
https://doi.org/10.1145/3482898.3483354
https://doi.org/10.1145/3098822.3098841
https://doi.org/10.1145/3098822.3098841
https://doi.org/10.1145/3405671.3405809
https://doi.org/10.1145/3405671.3405809

75

ZHU, L. et al. Sdn controllers: A comprehensive analysis and performance evalua-
tion study. ACM Comput. Surv., Association for Computing Machinery, New York,
NY, USA, v. 53, n. 6, dec 2020. ISSN 0360-0300. Available from Internet: <https:
//doi.org/10.1145/3421764>.

https://doi.org/10.1145/3421764
https://doi.org/10.1145/3421764

76

APPENDIX A – RESUMO EXPANDIDO

Este trabalho apresenta o CrossBal, um balanceador de carga híbrido que combina

uma lógica de decisão inteligente no plano de controle com uma lógica de decisão reativa

no plano de dados programável. O CrossBal utiliza modelos de Aprendizado de Máquina

(Machine Learning) no plano de controle, responsável por escolher rotas de maneira in-

teligente. O controlador colabora com switches programáveis, responsáveis por um ciclo

de decisão rápido que complementa o ciclo de decisão mais inteligente do controlador.

Com o crescimento acelerado da Internet nas últimas décadas, as infra-estruturas

de rede têm sido continuamente expandidas. As redes de computadores muitas vezes

implementam caminhos redundantes entre os pontos finais, a fim de aumentar a confiabil-

idade e atender às demandas dos usuários e dos serviços.

Contudo, para utilizar eficientemente a infra-estrutura disponível, o tráfego de en-

trada deve ser adequadamente dividido entre os links de saída redundantes, evitando links

sobrecarregados enquanto outros permanecem subutilizados. Neste cenário de múltiplos

caminhos, as estratégias clássicas de roteamento de caminho mais curto são incapazes

de fornecer uma utilização eficiente da rede. Equal-Cost Multi-Path (ECMP) é uma téc-

nica de balanceamento de carga amplamente utilizada devido à sua simplicidade, estando

disponível em switches comerciais. Entretanto, o ECMP pode apresentar sérios proble-

mas de desempenho, sendo incapaz de fornecer uma divisão eficiente do tráfego da rede.

O CrossBal foi projetado após identificar uma lacuna nos balanceadores de carga

de rede existentes. Em geral, as propostas existentes apresentam uma escolha entre de-

cisões inteligentes e a eficiência do sistema, como a escalabilidade e a capacidade de rea-

gir a congestionamentos de curta duração. Isso pode ser atribuído ao fato da maioria dos

balanceadores de carga focarem no plano de controle ou no plano de dados. Embora al-

guns trabalhos proponham balanceadores de carga híbridos, as abordagens existentes em-

pregam heurísticas simples para seleção de caminhos. Além disso, poucos balanceadores

de carga concentram seus esforços em fluxos elefantes – fluxos de alto rendimento e de

longa duração que podem causar um grande impacto na rede.

O CrossBal aborda os desafios do balanceamento de carga da rede empregando

um controlador logicamente centralizado e o plano de dados de switches programáveis.

O plano de controle implementa um agente de Aprendizado por Reforço Profundo (Deep

Reinforcement Learning) para periodicamente rerotear fluxos elefantes de alto impacto.

O agente é alimentado com estatísticas atualizadas de utilização dos links de rede, pro-

77

porcionando uma visão global da rede. Isto permite ao agente otimizar o roteamento de

fluxos de alto impacto para evitar congestionamentos na rede.

A fim de complementar o ciclo de decisão inteligente no controlador, o CrossBal

delega a tarefa de reagir ao congestionamento transitório ao plano de dados programável.

Como os switches programáveis podem realizar operações lógicas e aritméticas simples

em taxa de linha, o CrossBal utiliza switches P4 para implementar uma lógica de decisão

mais simples, porém rápida. Em particular, o plano de dados estima a qualidade dos

caminhos instalados medindo o RTT e, ao detectar um aumento significativo no RTT,

altera o caminho ativo para os fluxos elefantes detectados. Este mecanismo permite que os

switches programáveis detectem e reajam rapidamente a congestionamentos transitórios,

observando o RTT das rotas instaladas pelo controlador.

Finalmente, o CrossBal emprega mecanismos cooperativos para fornecer detecção

eficiente e precisa de fluxos elefantes. Isto é feito primeiro distribuindo a identificação de

possíveis fluxos elefantes em dois mecanismos complementares inteiramente no plano

de dados, além de um mecanismo final no plano de controle. O primeiro mecanismo

aplica uma filtragem preliminar para excluir fluxos pequenos e de curta duração. Após

esta primeira etapa reduzir o número de fluxos a considerar, o plano de dados aplica uma

detecção refinada sobre os fluxos restantes. Depois de identificar um fluxo como provável

fluxo elefante, o switch exporta um conjunto de características (features) desse fluxo para

o controlador. Como o plano de controle apresenta menos restrições do modelo de progra-

mação e recursos disponíveis, implementamos um modelo de Aprendizado de Máquina

(Machine Learning) para fornecer uma identificação precisa dos fluxos elefantes.

Nossa avaliação mostrou que o CrossBal supera o ECMP no equilíbrio de difer-

entes cargas de trabalho nos links de rede disponíveis. Em particular, o CrossBal utiliza

consistentemente a maioria dos links de rede disponíveis, garantindo ao mesmo tempo

um menor desequilíbrio na utilização dos links. Também comparamos o desempenho de

agentes treinados com diferentes funções de recompensa, identificando o agente treinado

com uma função de recompensa baseada na utilização máxima do link (maximum link

utilization) como o agente com melhor desempenho. Por fim, descrevemos e analisamos

otimizações para o mecanismo de filtragem preliminar utilizado na identificação de fluxos

elefantes no plano de dados. A análise mostrou como nossa otimização pode reduzir a uti-

lização de memória, um recurso crítico, mas escasso em switches programáveis. Além

disso, nossa avaliação também mostrou como podemos alterar os parâmetros de otimiza-

ção para fazer ajustes, trocando a velocidade de detecção pela precisão da filtragem.

78

Em resumo, as principais contribuições do nosso trabalho são as seguintes:

• Revisão do estado-da-arte. Realizamos um estudo da literatura em balanceamento

de carga de redes, comparando as principais características de cada trabalho;

• Projeto e implementação do CrossBal. Projetamos e implementamos um sistema

de balanceamento de carga híbrido baseado em colaboração entre planos e modelos

recentes de aprendizado de máquina. Além disso, nosso sistema emprega planos

de dados programáveis para detectar e reagir ao congestionamento em caminhos

selecionados;

• Avaliação de um protótipo de prova-de-conceito. Avaliamos um protótipo do Cross-

Bal com switches BMv2 em um ambiente emulado com topologia de rede e cargas

de trabalho realistas. Nossos resultados mostraram que o CrossBal supera o ECMP

no balanceamento de carga com diferentes cargas de trabalho. Além disso, com-

paramos o design de agentes de Aprendizado por Reforço Profundo (Deep Rein-

forcement Learning) treinados com diferentes funções de recompensa;

• Projeto de um agente de Aprendizado por Reforço Profundo (Deep Reinforcement

Learning). Descrevemos nosso projeto de um agente de Aprendizado por Reforço

Profundo (Deep Reinforcement Learning) capaz de balancear os fluxos de rede.

Também destacamos os desafios na concepção de um agente e possíveis problemas

com propostas alternativas.

Por fim, acreditamos que o CrossBal mostra os benefícios de uma abordagem

híbrida de balanceamento de carga baseado em modelos de Aprendizado de Máquina

(Machine Learning).

79

APPENDIX B – ACCEPTED PAPER – CNSM 2023

Load balancing network traffic through multiple shortest-paths has become com-

mon practice to efficiently utilize the network infrastructure. Despite widespread adop-

tion, Equal-Cost Multi-Path (ECMP) delivers performance far from optimal. Several load

balancing solutions utilize Weighted-Cost Multi-Path (WCMP), splitting incoming traffic

between links proportionally to link weights. However, implementing WCMP requires

the controller to update match+action rules whenever the weights must be changed, intro-

ducing a delay before the appropriate traffic split can be applied. Additionally, weighted

traffic splits are applied over network flows without regard to flow characteristics or needs.

We propose CrossBal, a hybrid load balancing system based on Deep Reinforcement

Learning (DRL) that focuses its efforts on high-impact elephant flows. The DRL agent is

modeled to be able to efficiently utilize network links while minimizing the action space,

allowing the agent to quickly learn how to load balance. Further, CrossBal can quickly

react to network changes by monitoring and switching active routes directly in the data

plane. Our evaluation shows that CrossBal can efficiently utilize network resources, us-

ing most available links, while also reducing link utilization imbalance. We also evaluate

the elephant flow detection employed by CrossBal, showing how it can quickly identify

elephant flows while efficiently utilizing switch resources.

• Title: CrossBal: Data and Control Plane Cooperation for Efficient and Scalable

Network Load Balancing

• Conference: CNSM 2023 - 19th International Conference on Network and Service

Management

• Type: Main Track (Full Paper)

• Qualis: A4

• Date: 30 October - 2 November 2023

• Location: Niagara Falls, Canada

CrossBal: Data and Control Plane Cooperation for
Efficient and Scalable Network Load Balancing

Bruno L. Coelho, Alberto E. Schaeffer-Filho
Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

{blcoelho, alberto}@inf.ufrgs.br

Abstract—Load balancing network traffic through multiple
shortest-paths has become common practice to efficiently utilize
the network infrastructure. Despite widespread adoption, Equal-
Cost Multi-Path (ECMP) delivers performance far from optimal.
Several load balancing solutions utilize Weighted-Cost Multi-Path
(WCMP), splitting incoming traffic between links proportionally
to link weights. However, implementing WCMP requires the
controller to update match+action rules whenever the weights
must be changed, introducing a delay before the appropriate
traffic split can be applied. Additionally, weighted traffic splits are
applied over network flows without regard to flow characteristics
or needs. We propose CrossBal, a hybrid load balancing system
based on Deep Reinforcement Learning (DRL) that focuses its
efforts on high-impact elephant flows. The DRL agent is modeled
to be able to efficiently utilize network links while minimizing
the action space, allowing the agent to quickly learn how to
load balance. Further, CrossBal can quickly react to network
changes by monitoring and switching active routes directly in the
data plane. Our evaluation shows that CrossBal can efficiently
utilize network resources, using most available links, while also
reducing link utilization imbalance. We also evaluate the elephant
flow detection employed by CrossBal, showing how it can quickly
identify elephant flows while efficiently utilizing switch resources.

Index Terms—Load Balancing, Traffic Engineering, Deep Re-
inforcement Learning, Machine Learning, Programmable Data
Planes, Elephant Flow

I. INTRODUCTION

Current intra-domain routing solutions present limitations
in properly trying to load balance network traffic. Equal-
Cost Multi-Path (ECMP) evenly splits traffic between multiple
equal-cost paths. Due to its simplicity, ECMP is readily
available in commercial switches [1]. However, ECMP suffers
from severe performance drawbacks, being unable to achieve
adequate performance [2]. Weighted-Cost Multi-Path (WCMP)
extends ECMP by adding weights to each hop, increasing
performance and resilience to network asymmetry. Several
systems propose techniques for calculating optimal weights
for WCMP [3]–[7]. However, updating link weights during
congestion requires control plane intervention, which intro-
duces considerable delay. On the other hand, load balancing
solutions that rely entirely on the data plane are limited to
specific topologies [8], [9] or simple heuristics [10], [11].

In addition to the aforementioned deficiencies, existing load
balancing systems based on traffic splits generally do not
consider the characteristics or needs of each network flow. Ele-
phant flows are high-throughput, long-lasting flows that tend to
have a large impact on the network [12]. While elephant flows

may constitute a small portion of total flows, a few large flows
tend to contribute more to the overall network traffic than a
large amount of small flows [13], [14]. Considering the impact
that elephant flows have on the network, intelligent rerouting
of these flows can severely improve network utilization [15].
Additionally, as elephant flows are long-lived, we have more
chances to reroute them.

Given the importance of load balancing elephant flows, a
system capable of identifying and rerouting these flows is
required. However, the identification of elephant flows requires
monitoring up to terabits per second of network traffic. While
a control plane solution can enable complex techniques for
identifying elephant flows, SDN controllers cannot process
network traffic at these rates [16]. An alternative is to use the
data plane of networking devices to aid in the identification of
elephant flows. While emerging programmable switches [17]
allow us to reconfigure the packet processing pipeline, they
are still subject to limitations, as these devices tend to have
a few tens of MBs of memory, a restricted set of logical and
arithmetic operations, limitations on memory accesses, and a
strict time budget to process each packet [18].

In addition to efficiently and accurately detecting elephant
flows, a load balancer must be able to react to changes in the
network state, such as transient congestion. Considering these
requirements, we propose CrossBal, a hybrid load balancing
system that combines an intelligent control plane with a
reactive data plane. CrossBal employs a Deep Reinforcement
Learning agent in the control plane, responsible for intel-
ligently selecting routes that maximize the performance of
the network. Additionally, by having the control and data
planes collaborate to identify elephant flows, CrossBal avoids
scalability and delay issues that are introduced by performing
per-packet computation in the controller. Finally, CrossBal is
able to quickly detect and react to congestion in active paths by
employing mechanisms directly in programmable data planes.

In summary, this work presents the following contributions:
• Design and implementation of CrossBal: a hybrid

machine learning-aided load balancing system capable
of identifying and rerouting elephant flows, as well as
detecting and reacting to congestion in selected paths;

• Evaluation of a PoC prototype: using BMv21 in an
emulated environment with realistic network topologies
and workloads;

1https://github.com/p4lang/behavioral-model

• Design of a deep reinforcement learning agent: which
is capable of actively load balancing network flows.

II. BACKGROUND AND MOTIVATION

This section provides necessary background information on
Deep Reinforcement Learning and programmable data planes.

A. Deep Reinforcement Learning

In Reinforcement Learning (RL), an agent interacts with its
environment in each timestep t ∈ 1, 2, In each iteration,
the agent observes a state s ∈ S and chooses an action a ∈ A
according to its policy π [19]. Afterwards, the agent receives
a reward r according to a reward function and transitions to
a new state s′ ∈ S according to a transition function. RL
algorithms can learn an optimal policy π even without any
explicit knowledge of the reward or transition functions [20].

In order to be able to efficiently utilize Reinforcement
Learning algorithms in systems with complex environments,
researchers have proposed the use of Deep Neural Networks
(DNNs) as a function approximator for RL [21] - a technique
known as Deep Reinforcement Learning (DRL).

Deep Reinforcement Learning Agent
Deep Neural Network

input 1

Observed
Raw Data

input 2

input n

Input Layer

...

Synapses

... ...

...

...

Output Layer

value of
action 1

Hidden Layers

value of
action n

Reward r
State s'Environment

update weights

Action
Selection

1

2

3 4

Optimizer

5

Action a

Fig. 1: Steps of an iteration of a Deep Learning Agent

Figure 1 illustrates the main aspects of a Deep Reinforce-
ment Learning (DRL) agent. First, (1) the DRL agent observes
raw data which describes its current state s. The agent utilizes
a DNN to identify similar states, improving scalability and
efficiency. Then, (2) the DNN outputs the expected value of
each action for the observed state as the value of each neuron
in the output layer. Next, (3) the agent selects an action a
based on its strategy. This typically involves choosing between
exploiting, i.e., choosing the action with the highest expected
value, or exploring a random action, based on its exploration
parameters. After acting, (4) the agent receives a reward r and
transitions to a new state s′. Finally, (5) the agent updates its
internal weights based on the reward received.

B. Programmable Data Planes

Programmable data planes allow network operators to re-
define the packet-processing pipeline through domain-specific
languages, such as P4 [17]. In the PISA architecture, the data
plane is mainly composed of a parser, an ingress, and an
egress processing blocks [9]. The first step in the pipeline
is the parser, responsible for parsing protocol headers. Next,
the ingress block processes packets and selects an egress port.

In this block, the network operator can define match+action
tables, matching on arbitrary keys, such as packet header
fields or custom metadata, and invoking actions defined by the
operator. Actions can be defined based on simple arithmetic
and logic primitives, as well as architecture-specific functions.
This includes reading and storing data in registers, allowing
stateful processing. The egress processing block is identical to
the ingress processing block, except the output port has already
been selected. Both blocks have an independent amount of
resources, such as SRAM and arithmetic and logic units. State-
of-the-art programmable switches have a few tens of MBs of
SRAM and a limited amount of pipeline stages [18].

III. CROSSBAL: CROSS-PLANE LOAD BALANCING

CrossBal is a hybrid load balancing system that combines
an intelligent control plane with reactive data plane processing.
In this section, we present CrossBal, starting with an overview
of the approach (§III-A), followed by the key design elements,
including elephant flow detection (§III-B), DRL agent (§III-C)
and how to react to short-lived network congestion (§III-D).

Control Plane

DRL Agent

Network

Metrics

Data Plane

ECMP

Routing
Strategy

O

U

T

P

U

T

Network

Monitoring

Positive

Negative

Elephant Flow
Detection

Report
Network State

Forwarding
Rules

Fig. 2: CrossBal employs cross-plane collaboration.

A. Approach Overview

Figure 2 presents an overview of our approach. CrossBal
relies on two key principles to balance network utilization in
an efficient and scalable manner: (i) cross-plane cooperation
for combining line rate reaction to network changes at the data
plane with more intelligent decisions at the control plane; and
(ii) scalable traffic rerouting for flows that have the highest
impact on the network (e.g., elephant flows and heavy hitters)
as opposed to dealing with every flow in an equal manner.

The workflow starts with each programmable data plane
device monitoring the state of the network. Simultaneously,
the data plane is also responsible for performing elephant flow
detection at line rate. Both the network status and detected
elephant flows are reported to a logically centralized controller,
with a global view of the network. The controller employs
a Deep Reinforcement Learning (DRL) agent to actively
compute the new top-n optimal routes to forward these flows
of interest, and reconfigure the data plane devices.

CrossBal employs two control-loops that work together
for performing load balancing. There is a slower, but more

intelligent, control-loop at the control plane, which is fed
with network monitoring data and is used by the DRL agent
to compute the optimal routes. However, programmable data
plane devices also apply a faster, but simpler, control-loop to
probe, monitor, and rapidly switch between a subset of active
routes selected by the DRL agent. By having the data plane
cooperate with the control plane in multiple aspects, CrossBal
achieves intelligent and reactive load balancing of the network.

There are several challenges that directly influenced the
following design aspects of CrossBal: the identification of ele-
phant flows, the modeling of a Deep Reinforcement Learning
agent, and allowing data plane devices to actively participate
in route selection. These will be discussed next.

X

Tiny Flow
Small Flow

Medium Flow
Large Flow

X

Elephant

Flow
X

Control Plane
Data Plane

Machine Learning
Classifier

Medium Flow Large Flow

Preliminary
Filtering

Refined
Detection

Deep
Reinforcement
Learning Agent

Active
Elephant Flows

<5-tuple>

...

Fig. 3: Overview of the cross-plane elephant flow detection.

B. Identifying Elephant Flows at Line-Rate

Identifying elephant flows at line-rate is challenging in high-
throughput networks, where network traffic rates can reach
terabits per second [16]. Despite its flexibility, a central-
ized controller is incapable of performing per-packet classi-
fication without incurring latency overheads. Programmable
switches [17] can be used to offload part of this task.

CrossBal decomposes the detection of elephant flows into
three levels of complementary mechanisms, balancing the
tradeoffs between fast and lightweight detection in the data
plane with more accurate and heavyweight detection in the
control plane (Figure 3):
• Preliminary filtering: the data plane implements a

threshold-based detection that tracks the number of bytes,
number of packets, and duration for each active flowlet2.
The main aspect of this mechanism is that it must handle
a large number of flows, thus limiting the amount of
processing and storage available for each flow. Therefore,
as shown in Figure 3, this step acts as an early filtering of
low-throughput and short flows in order to save hardware
resources. A further optimization is proposed and evalu-
ated (§V-D), where only packets larger than a threshold
are accounted for. By utilizing this strategy, the number
of packets of a flowlet can be seen as a lower bound of
the number of bytes transmitted by the flowlet. This can
lower the number of bits utilized to store this information,
saving precious on-board memory. The same reasoning
can be applied to track the number of flowlet timeouts of
a flow rather than the entire duration.

2Flowlets are bursts of packets of a flow separated by an idle interval.

• Refined detection: While the threshold-based mechanism
mentioned above can exclude a large number of small
and short flows, it may lead to a high number of false
positives if used by itself. To address this, CrossBal
employs further mechanisms to detect elephant flows. The
intuition is that because the preliminary threshold-based
filtering already excluded a large number of unimportant
flows, it is now possible to implement a slightly refined
detection mechanism over the remaining flows of interest,
as shown in Figure 3. In particular, CrossBal implements
a classification tree in the form of if-else statements in the
programmable data plane. As there is a smaller number of
flows to consider, it is possible to dedicate slightly more
on-board memory to track features of each flowlet. In
our PoC prototype, we track simple statistics of the inter-
arrival-time and packet size of each flowlet. We leave a
more thorough feature selection as future work.

• Cross-plane detection: Although CrossBal implements
multiple mechanisms for the identification of elephant
flows directly in the data plane, ensuring line-rate pro-
cessing requires sacrificing accuracy for efficiency. In
order to provide a more accurate detection of elephant
flows, CrossBal employs cross-plane collaboration, as
shown in Figure 3. This builds upon the preliminary
filtering (which reduces the amount of flows of interest)
and upon the refined detection (which tracks additional
features for relevant flows). Therefore, CrossBal imple-
ments a classifier in the control plane that receives the
information tracked by the data plane. As the controller
provides a more flexible programming model, and con-
sidering the features extracted by the data plane, we im-
plement a Random Forest in the control plane, providing
higher accuracy than a single classification tree.

CrossBal utilizes hash tables to implement the preliminary
filtering and the refined detection. Since onboard memory is
a scarce resource, collisions in the hash tables are unavoid-
able. However, due to the multi-stage elephant flow detection
spanning both the data and control planes, hash collisions
do not cause elephant flows to pass undetected. Figure 4
shows examples of hash collisions that may happen during the
detection of elephant flows in the data plane. Particularly, when
one of the colliding flows is a short-lived flow (Figure 4a),
this flow tends to complete while the elephant flow is still
active. This means that the elephant flow will eventually be
able to utilize the hash table entry once the short-lived flow
expires. In another scenario (Figure 4b), when the hash of two
(undetected) elephant flows lead to the same table entry, the
first flow (A) will occupy the slot. Eventually, the preliminary
filtering will recognize flow A as being a potential elephant
flow, inserting it in the list of flows tracked by the refined
detection. This way, flow A will be removed from the first
hash table, freeing the slot for the second flow (B). This
same reasoning is applicable to hash collisions in the refined
detection, as flows are eventually exported to the controller,
freeing the occupied slot.

Flow D
Flow A

...

Hash Table

Arriving Flow A

Arriving Flow B
Hash Function

Hash collision

(Flow A ends)

Flow A ends, freeing the entry
in the hash table for Flow B

Time = t

Flow D
Flow B

...

Hash Table

Arriving Flow B
Hash Function

Time = t+1

(a) Hash collision between a mice flow and an elephant flow.
Both flows are long-lasting, but

Flow A is occupying the slot

Hash Table

Arriving Flow A

Arriving Flow B
Hash Function

Hash Table

features[Flow A]

insert(Flow A)

Thresholds

Refined
Detection

Flow A is stored in a different Hash Table,
freeing the slot for Flow B

Hash Table

Arriving Flow A

Arriving Flow B
Hash Function

Refined
Detection

Time = t

Time = t+1

Time = t+2

Flow D
Flow A

...

Flow D
Flow A
Flow C

...

Flow D
Flow B

...

(b) Hash collision between two elephant flows.

Fig. 4: Relevant scenarios where hash collision may happen.

The control plane is responsible for the final classification
of potential elephant flows. Hardware limitations of data plane
devices impose restrictions on the complexity of the classifi-
cation models implemented, and as such the control plane is
a more advantageous place to implement a complex machine
learning classifier with high accuracy. Once an elephant flow is
identified, it is inserted in a list of flows to be actively rerouted
by the DRL agent that executes in the controller (next section).

C. Deep Reinforcement Learning Agent

The Deep Reinforcement Learning (DRL) agent is respon-
sible for selecting routes for active elephant flows, with the
objective of improving network utilization. In particular, the
modeling of the state, action space, and rewards impact how
well the agent can achieve its goal.

State Space. The state must include all the information the
agent needs in order to take an appropriate decision at a given
time, but real time data collection poses several scalability
challenges. In particular, switches must refrain from exporting
unnecessary information and, at the same time, must minimize
the amount of redundant information, which may negatively
impact the learning rate of the DRL agent.

Our approach: In order to avoid the aforementioned prob-
lems, we model the state based on the utilization of each link
in the network. More formally, the state S observed by the

agent is a vector of the utilization Ui, j of each link i of
every switch j:

S = (U1,1, U1,2, ..., U1,n, U2,1, ..., U2,n, ..., Un,m)

The link utilization of the ports of each switch in the
network is enough for the agent to understand the current state
of the available network resources. Further, the agent is able
to learn the relationship between routes and links by observing
how each action taken affects the utilization of links.

As the agent is used to reroute active elephant flows, the
state must also consider the endpoints of the flow. However,
using the 5-tuple of the flow requires the agent to learn the
mapping of IP addresses, leading to slower learning. Instead,
we map the source and destination IP addresses to one-hot
vectors representing the source and destination edge switches.

Action Space. The action space must allow the agent to
make decisions on how to reroute active (elephant) flows.
A naïve approach would be to map each possible route
to an action. However, this would generate a large number
of possible actions, leading to slow learning. An alternative
would be to model each action as one hop, as shown in
Figure 5. In this approach, an end-to-end route would require
several hops, i.e., several actions being taken in a sequence.
This leads to the problem of reward assignment, as a sequence
of actions would be required to obtain a single reward.

Expected value

of each port

State(i) = (

 utilization[...],

 hops[<empty>])

1
Update

Loss
Function

Which action/neuron to

assign reward to?

Extending state to include
hops makes it more complex,

leading to slower learning

Neural

Network

Action
Selection A = hops[2, 1, ...]

R = 10

S' = utilization[...],

 hops = [<empty>]

State(i) = (

 utilization[...],

 hops[2])

2

3

4

5

Fig. 5: Mapping actions to hops leads to reward assignment
issues.

Our approach: We model the action space based on a
set of predefined end-to-end routes for each pair of source-
destination edge switches. First, this design eliminates the need
for multiple actions per end-to-end route. Instead, the agent
can observe the correlation between choosing a route (taking
an action) and changes in the utilization of the links in the
network (observing the next state). Additionally, restricting
the action space to a set of predefined routes results in a
well-defined number of possible actions. This avoids potential
issues that might arise if the agent had to consider every single
possible end-to-end route in the network. Finally, the set of
end-to-end routes for each source-destination pair should re-
main the same throughout the life of the DRL agent, i.e., from
training to the end of its use in load balancing. Computing
short paths with diversity can be done with algorithms such
as KSPD [22]. The computed paths can be used by the agent
to effectively distribute the load over the network links while

keeping the number of possible actions small. While topology
changes require recomputing the static routes and retraining
the agent with the new routes, Graph Neural Networks (GNNs)
could make the agent robust to topology changes [23]. We
leave this as future work.

Reward. In the context of network load balancing, the re-
ward is linked to the utilization of network resources. Although
in traditional DRL the impact of an action in the environment
is reflected immediately, for load balancing the state of the
links may take some time to update. If the utilization of the
network links is queried immediately after the action is taken,
it will not properly reflect the impact of the selected action.

Our approach. Considering the main objective of load
balancing the network, we model the reward R(s, a) after
the max link utilization of the network. After comparing
different formulas based on the link utilization to compute
the reward (§V-C), we observed that (1) produced the best
results. Additionally, in order for the new state to reflect the
consequences of the action taken, we poll link statistics from
switches t milliseconds after an action is taken.

R(s, a) =
1

MaxLinkUtilization(s′)
(1)

D. Reacting to Short-Lived Network Congestion

The DRL agent is used to reroute elephant flows as soon
as they are detected. As explained above, the agent takes into
consideration the current utilization of the links in the network
to select an optimal route with respect to network load balanc-
ing. Additionally, when no new elephant flows are detected,
the agent is used to periodically select new routes for already
active elephant flows. This is useful when the utilization of
certain links in the network changes considerably, causing
alternative routes to become more favorable. However, due
to the fact that this control loop is only executed periodically,
it may not be capable of reacting to short-lived congestion.

Thus, in order to be able to quickly react to network
changes, CrossBal implements mechanisms for switching ac-
tive paths directly in the data plane. Figure 6 presents an
overview of this mechanism, where (i) the programmable data
plane actively monitors the quality of the installed routes,
and (ii) upon detecting congestion, (iii) the forwarding device
switches to a less congested pre-computed route without
control plane intervention.

CrossBal achieves this by having the controller install
multiple routes for each active elephant flow. As the DRL
agent computes the expected value of each route, we select
the N routes with highest expected value. Also, the data
plane devices are responsible for periodically probing each
of the installed routes. By calculating the RTT of each route,
the programmable switch is capable of detecting congestion
along paths and selecting an alternate route. Spraying a flow’s
data packets through paths we wish to probe could lead
to packet reordering at the destination end-host. This can
negatively affect the performance of transport protocols such
as TCP [24]. Instead, CrossBal periodically creates probe

Path B

Path
 A

Path C

Active route

Path B

Path
 A

Path C
Active route

worsens

Congestion

Path B

Path
 A

Path C

Congestion

Switch
Active route

Active Routes
Flow ID Path ID RTT

Flow X Path A 20

Flow X Path B 43

Flow X Path C 31

...

Active Routes
Flow ID Path ID RTT

Flow X Path A 75

Flow X Path B 43

Flow X Path C 31

...

Active Routes
Flow ID Path ID RTT

Flow X Path A 75

Flow X Path B 43

Flow X Path C 31

...

Fig. 6: Mechanism for switching active paths

packets to measure the RTT of active paths. Probe packets
are created using the clone feature of programmable switches
when it has been longer than t ms since the last probing
for this elephant flow. The cloned packets have their payload
removed and a custom probing header inserted. Each active
route is probed in order to measure its RTT. As the control
plane is only required initially to install the multiple routes,
we can quickly detect and react to short-lived congestion. An
elephant flow is rerouted when there is a noticeable increase
in measured RTT in the active route. Therefore, even if every
route is experiencing congestion, CrossBal will only reroute
once per probing interval.

IV. ARCHITECTURE

CrossBal comprises a series of modules divided in the con-
trol and data planes. The architecture of our system is shown
in Figure 7. The data plane of programmable devices includes
modules for monitoring network links, routing elephant flows,
detecting new elephant flows, monitoring active end-to-end
routes, and switching active end-to-end routes. Algorithm 1
provides the pseudo-code of the packet processing pipeline of
the P4 switches used by CrossBal.

Upon receiving a packet that does not belong to an elephant
flow, the programmable switch applies a Preliminary
Filtering to exclude short-lived and small flows (lines
14-23 of Algorithm 1). For each flowlet, we use registers
to track a few simple features, such as the number of bytes,
packets, and flowlet duration. When the features of a flowlet
exceed predefined thresholds, the flowlet is set to be pro-
cessed by a second module, responsible for refined detection.
The Refined Detection is only applied over a smaller
subset of flows, enabling the data plane to keep track of
more complex features for each tracked flow (lines 10-13 of
Algorithm 1). The features tracked in this module include the
minimum, maximum, and total inter-arrival-time and packet
length of each flow. These features are tested against a set
of chained conditions in order to identify potential elephant

Elephant Flows
<5-tuple> <index>

... ...

(hit)
bytes[port_1,

port_2, ...]

Statistics Tracker
<port> <bytes> <packets>

...

link_utilizations[port_1, port_2, ...]

pull_bytes()

(every t

seconds)

Statistics
Monitor

Reward r

State s
Environment(FIFO Queue)

insert()

Arriving
Elephant Flows

<5-tuple>
...

(RR scheduling)
Active

Elephant Flows
<5-tuple>

...

(empty)

<src_switch_id,

dst_switch_id>IP-to-Switch

Mapper
map(action, src_switch,

 dst_switch)

Deep
Reinforcement
Learning Agent

(miss)

Arriving

Packet

O

U

T

P
U

T

ECMP

(hit)

Control Plane

Data Plane

ML
Classifier

Tracked Flows

Path Monitoring
& Switching

Preliminary
Filtering

Refined
Detection

Elephant Flow

Detection

(miss)
(hit)

Action-to-Route
Mapping

for each path in selected_paths:

 for each hop in path:

 insert_entry(switch,

 5_tuple, egress_port)

 end

end

Fig. 7: Architectural implementation of CrossBal.

Algorithm 1: Data plane packet processing pipeline
Data: pkt← Packet In
Data: flow ← pkt.5_tuple

1 if flow is in elephant_flows then
2 rtt_diff ← active_route.curr_rtt− active_route.prev_rtt;
3 if rtt_diff ≥RTT Threshold then
4 active_route[flow]← min(installed_routes[flow]);
5 time_since_probing ← curr_time− last_probe[flow];
6 if time_since_probing ≥Probing Interval then
7 create_probes(installed_routes[flow]);
8 egress_port← active_route[flow].egress_port;
9 else

10 if flow is in refined_detection.tracked_flows then
11 features[flow]← compute_features(flow);

// If statements are automatically generated
12 if feature_1[flow] ≥ Feature 1 Threshold AND

feature_3[flow] < Feature 3 Threshold then
13 notify_controller(flow, features[flow]);
14 else
15 if Bytes Optimization is enabled then
16 if pkt.length > Length Threshold then
17 packets[flow] ← packets[flow] + 1;
18 bytes[flow] ← packets[flow]∗Length Threshold;
19 else
20 bytes[flow] ← bytes[flow] + pkt.length;
21 flow_duration ← curr_time− flow_start[flow];
22 if bytes[flow] ≥ Bytes Threshold AND flow_duration ≥

Duration Threshold then
23 refined_detection.track(flow);
24 egress_port ← ecmp(pkt.5_tuple);

flows (line 12 of Algorithm 1). This is achieved by converting
a Classification Tree to a series of conditions. If the flow
is labeled as a potential elephant flow, it is exported to the
controller for a final classification, along with the computed
features of that flow (line 13 of Algorithm 1).

The data plane further implements the Statistics
Tracker, which is responsible for monitoring statistics of
each switch port. Each switch exports this local information
to the controller, which computes the link utilization of every
link in the network. The Environment utilizes the computed
link utilization, along with a FIFO queue and a Round-Robin

list of detected Elephant Flows, to produce the State observed
by the DRL Agent. The agent is queried to compute the
expected value of the top-k routes for a given elephant flow.
Among these, the N actions with highest expected values are
translated into routes, which can be efficiently achieved by
looking up the Action-to-Route Mapping table3. The
N routes are then installed in each forwarding device.

The controller periodically queries the DRL agent to select
routes for active elephant flows. However, this control loop
may not be able to quickly react to short-lived congestion.
Therefore, the data plane implements mechanisms for Path
Monitoring and Switching (lines 1-8 of Algorithm 1).
Each active elephant flow has N routes installed in the data
plane, which can freely switch between them. Each route has
a different register array4 to keep track of its two last observed
RTTs. The route selection happens by electing an active route,
which remains selected until the RTT of that route worsens by
a certain threshold (e.g., 200%). Upon detecting a degradation
in the selected route, the data plane picks the route with the
lowest last measured RTT (lines 2-4 of Algorithm 1).

V. EVALUATION

We implemented and evaluated a prototype of CrossBal in
order to validate its design. Our experiments aimed to evaluate
how well CrossBal could perform load balancing, as well as
understand how key parameters might impact its performance.

A. Prototype

The prototype includes data plane software written in P4 and
control plane software written in Python 3. The P4 source-code

3The mapping of actions to routes is computed offline for each pair of
Source-Destination switches.

4The index used for each active elephant flow is configured by the controller
upon installing new routes, allowing the controller to avoid any collisions.

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	50 	100 	150 	200 	250 300Ac
tiv

e	
Ne

tw
or
k	
In
te
rfa

ce
s	(

%
)

Time	(s)

1/max(LinkUtil) 1/stdev(LinkUtil) 1/InactiveNICs ECMP

	0
	2
	4
	6
	8

	10
	12
	14
	16
	18

	0 	50 	100 	150 	200 	250 300
Lin

k	
Ut

iliz
at
io
n	
Im

ba
la
nc

e
Time	(s)

(a) Link analysis for workload 1.

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	50 	100 	150 	200 	250 300Ac
tiv

e	
Ne

tw
or
k	
In
te
rfa

ce
s	(

%
)

Time	(s)

1/max(LinkUtil) 1/stdev(LinkUtil) 1/InactiveNICs ECMP

	4

	6

	8

	10

	12

	14

	0 	50 	100 	150 	200 	250 300

Lin
k	
Ut

iliz
at
io
n	
Im

ba
la
nc

e

Time	(s)

(b) Link analysis for workload 2.

Fig. 8: Link Utilization Imbalance and Active NICs.

was written for the BMv25 software switch. We used graph-
tool v2.45 to compute ECMP routes and the top-k routes that
constitute the action space of the agent. We also used Scapy
v2.5.0 to send and receive packets between the controller
and the software switches6. In order to facilitate and speedup
some of the computing, we used NumPy v1.23.4. Finally, to
implement the Deep Reinforcement Learning agent, we used
PyTorch v1.12.1 for the DNN and Gym v0.26.2 to create
a custom Reinforcement Learning environment. We used a
DNN with 2 hidden layers with 512 neurons each. The layers
are connected by ReLU activation functions, except for the
output layer. We leave a more thorough exploration of the
configuration of the DNN as future work.

B. Methodology
We emulated a network topology using Mininet. Inspired

by [25], we used iGen to generate a “two-trees” intradomain
mesh, obtaining a Hub & Spokes topology. This realistic
class of topology is characterized by nodes with aggregation
function (high degree of connectivity) [25]. Due to hardware
limitations in the setup used in our experiments, we restricted
the topology to 15 switches and the link speeds to 50 Mb/s.
Similarly to [25], the workload used was also inspired by [8]
[10]. Considering the restrictions on the topology used, we
also reduced the flow sizes in the original workload. The flow
size distribution of the workloads used in our experiments is
described in Table I. Each switch in the topology has one host
connected directly to it. Each host independently generates
requests according to a Poisson distribution based on the
workload and the desired network load. In our experiments,
we had the DRL agent select N=3 out of K=10 precomputed
routes for each elephant flow. N and K are parameters
that should be set by the network operator based on the
characteristics of the respective network topology, such as the
average number of redundant paths between endpoints. Our
prototype uses a simple greedy heuristic to compute routes,
but algorithms such as KSPD [22] can be used to efficiently
compute the shortest routes with diversity.

5BMv2 is the most recent version of the reference P4 software switch.
Accessible at: https://github.com/p4lang/behavioral-model

6BMv2 switches currently do not support the full set of operations defined
by P4Runtime, such as reading and writing to registers.

Workload A Workload B
Flow Size Distribution Flow Size Distribution
20 KB 0.5 10 KB 0.2
200 KB 0.3 100 KB 0.4
2 MB 0.1 1 MB 0.2
20 MB 0.1 10 MB 0.2

TABLE I: Workloads used in our evaluation.

C. Link Utilization Analysis

We implemented and compared three different reward func-
tions for the DRL agent (§III-C): (A) 1

max(link_util) , (B)
1

stdev(link_util) , and (C) 1
inactive_nics , where link_util is an

array with the utilization of every link in the network and
inactive_nics is the proportion of NICs not being utilized.

Figure 8a shows an analysis of the ratio of active links dur-
ing our experiments. We can observe that CrossBal effectively
utilizes nearly all available links in the network, while ECMP
is incapable of utilizing as many links concurrently. Further,
we can observe that the agent trained with Reward Function A,

1
max(link_util) , quickly learns how to actively use nearly every
link in the network, effectively distributing the workload. Ad-
ditionally, Figure 8a compares the Link Utilization Imbalance7

attained by each approach. CrossBal performs a better job at
balancing link utilization across network links compared to
ECMP. As before, we can observe that the agent trained with
Reward Function A, 1

max(link_util) , outperforms the agents
trained with the other reward functions. Figure 8b shows
the ratio of active NICs and the link utilization imbalance
when running the same experiments with a different workload,
where a similar behavior was observed.

D. Elephant flow detection optimizations

The preliminary filtering mechanism (§III-B) in the data
plane must be able to filter a small number of possible elephant
flows out of a large number of flows. Therefore, it is crucial to
optimize the per-flow processing and storage requirements as
much as possible. An optimization mentioned in Section III-B
is to filter packets according to a specific threshold, only
accounting for packets that are not too small. This way, rather

7Link Utilization Imbalance is a metric that takes into account the maxi-
mum, minimum, and average link utilization [8].

	0
	100
	200
	300
	400
	500
	600
	700

	200 	400 	600 	800 	1000 	1200

Pa
ck

et
s	

to
	D

et
ec

tio
n

Packet	Length	Threshold	(Bytes)

Optimization	Disabled

(a) Packets required for preliminary filtering.

	5
	10
	15
	20
	25
	30
	35
	40

	200 	400 	600 	800 	1000 	1200

Bi
ts
	p
er
	F
lo
w

Packet	Length	Threshold	(Bytes)

Packet	Length	Threshold	x1 Packet	Length	Threshold	x2

(b) Bits required per flow.

	0

	20

	40

	60

	80

	100

	200 	400 	600 	800 	1000 	1200Fl
ow
s	
co
rre
ct
ly
	fi
lte
re
d	
(%
)

Packet	Length	Threshold	(Bytes)

Packet	Length	Threshold	x3

(c) Filtering accuracy.

Fig. 9: Analysis of parameters for elephant detection optimization with a 30KB threshold.

than counting bytes, it becomes possible to count packets,
while still having a lower bound of the size of the flow.

However, only accounting for the lower bound of the size of
a flow may cause detection to take longer. For instance, with a
packet length threshold of 500 bytes, it would take 20 packets
(of at least 500 bytes) to reach a threshold of 10KB. However,
by counting bytes, 7 packets of 1500KB (typical MTU value)
would be enough to reach that same threshold. Therefore, a
further optimization would be to adjust the assumed size of
the packets without changing the packet length threshold.

Figure 9a shows the number of packets required for
the Preliminary Filtering to forward a flow to the
Refined Detection according to different thresholds for
packet length, considering a detection threshold of 30KB8. We
can observe that, by increasing the packet length threshold, we
also require less packets to detect possible elephant flows. Ad-
ditionally, Figure 9b shows that we increase memory efficiency
with a larger packet length threshold as the number of bits
required for each flow decreases. However, Figure 9c shows
that increasing the packet length threshold also decreases the
filtering accuracy, i.e., flows incorrectly reported as possible
elephant flows and forwarded to the next step, the Refined
Detection module. Therefore, with different parameters,
we can choose a trade-off between detection speed, memory
efficiency, and detection accuracy.

VI. RELATED WORK

Several network load balancing systems have been pro-
posed in the literature. Table II compares the related work,
highlighting some of their main characteristics, such as the
plane responsible for the routing decision and the technique
employed to generate paths.

Firstly, data plane load balancers rely exclusively on
data plane processing to implement their routing strategy.
Due to the limitations of the programmable hardware, these
systems typically employ simple heuristics to generate routes.
Generally speaking, heuristic-based route generation (and se-
lection) can lead to suboptimal network utilization. Further,
per-hop (decentralized) path selection [9], [10], [26] can lead
to worse routes than fine-grained, end-to-end (centralized) path
selection [8], [11]. Finally, some data plane load balancers are
limited to datacenter topologies [8], [9], [26].

8We configured the threshold to this value after an analysis based on
our workloads and parameters. We expect network administrators to select
appropriate parameters based on knowledge of their network.

Secondly, control plane load balancers implement a variety
of path generation and path selection strategies. Path gen-
eration based on heuristics may lead to suboptimal network
utilization when compared to sophisticated machine learning
strategies. Fine-grained end-to-end path selection [15], [27],
[28] may lead to better routes at the cost of greatly reduced
responsiveness to transient congestion and scalability due to
control plane involvement. On the other hand, load balancers
that implement link weights (WCMP) path selection [3]–[7],
[31] are generally more scalable, as the control plane is not
included in the path selection of each flow. However, WCMP
requires control plane intervention to change link weights,
which limits responsiveness to transient congestion.

Thirdly, end-host load balancers [29], [30] are highly
scalable and responsive to transient congestion, as each host
is only responsible for its own flows. However, decentralized
(and often heuristic-based) path generation and selection can
lead to suboptimal link utilization. Further, these types of load
balancers require modifying end-hosts, which limits deploya-
bility to specific cases, such as datacenters or cloud.

Finally, an emerging class of hybrid load balancers com-
bine reactive data plane processing, enabling high responsive-
ness to transient congestion, with superior path generation
by the control plane, leading to efficient network utilization.
However, we believe existing work can be improved upon, as
current strategies are limited to heuristic-based path generation
and selection [25]. By employing a Deep Reinforcement
Learning agent, CrossBal can select the best routes for each
rerouted flow. Further, by focusing its efforts on elephant
flows, CrossBal minimizes the number of flows to be actively
rerouted. Finally, the fast decision loop in the data plane can
quickly react to transient congestion on installed paths.

VII. CONCLUSION

We have presented CrossBal, a hybrid load balancer that
combines an intelligent decision loop based on a Deep Rein-
forcement Learning agent in the control plane, with a reactive
decision loop in the programmable data plane. We highlighted
key aspects of the modelling of the agent, comparing the
performance of CrossBal with different reward functions.
Our evaluation shows that CrossBal outperforms ECMP at
balancing the workload over available network links. Finally,
of the related work highlighted, only a few [15], [27] focus
their efforts on elephant flows. As elephant flows are large
and long-lasting flows that tend to have a high impact on the

TABLE II: Comparison of related work

Decision
Plane

Path
Generation

Path
Selection Examples Benefits Limitations

Data
Plane Heuristics

Per-hop HULA [9], LetFlow [10]
BurstBalancer [26]

Data plane decision-making and per-hop selec-
tion lead to high scalability and responsiveness.

Heuristic-based path generation and per-hop selection can lead
to suboptimal network utilization.

Fine-
grained

CONTRA [11]
CONGA [8]

Data plane decision-making leads to high respon-
siveness.

Path generation and selection is based on heuristics, while fine-
grained path selection limits scalability.

Control
Plane

Heuristics

Fine-
grained

Hedera [15], Mahout [27]
Chameleon [28]

Controller has a global view of the network,
leading to better path selection.

Control Plane involvement compromises scalability and re-
sponsiveness. Heuristic-based path generation and selection.

Link
Weights

Le at al. [3], DOTE [4]
Magnouche et al. [6]

Path selection based on link weights is highly
scalable.

Path selection based on WCMP can lead to suboptimal network
utilization. Controller involvement limits responsiveness.

Machine
Learning

Link
Weights

DRL-TE [5]
Valadarsky et al. [7]

Machine Learning-based approach can lead to
better link weights.

Path selection based on WCMP can lead to suboptimal network
utilization. Controller involvement limits responsiveness.

End
Host Heuristics Fine-

grained
Hermes [29]

PLB [30]
End-host decision-making is highly scalable and
generally responsive.

Requires modifying end-hosts, severely limiting deployability.
Heuristic-based approach can lead to suboptimal path selection.

Hybrid Heuristics Fine-
grained Pizzutti et al. [25] Combines data plane responsiveness with control

plane visibility and path generation.
Heuristic-based path generation with controller involvement,
limiting scalability and causing suboptimal network utilization.

network, focusing on these flows can improve control plane
scalability, as there are significantly fewer flows to reroute.

ACKNOWLEDGMENTS

This work was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
- Finance Code 001, CNPq (grant #311276/2021-0) and
FAPESP (grant #2020/05152-7 - PROFISSA).

REFERENCES

[1] V. Gavriluţ, A. Pruski, and M. S. Berger, “Constructive or optimized: An
overview of strategies to design networks for time-critical applications,”
ACM Comput. Surv., vol. 55, no. 3, feb 2022.

[2] J. Zhang, F. R. Yu, S. Wang, T. Huang, Z. Liu, and Y. Liu, “Load
balancing in data center networks: A survey,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 3, pp. 2324–2352, 2018.

[3] V. A. Le, T. T. Le, P. L. Nguyen, H. T. T. Binh, and Y. Ji, “Multi-
time-step segment routing based traffic engineering leveraging traffic
prediction,” in IM ’21, 2021, pp. 125–133.

[4] Y. Perry, F. V. Frujeri, C. Hoch, S. Kandula, I. Menache, M. Schapira,
and A. Tamar, “DOTE: Rethinking (predictive) WAN traffic engineer-
ing,” in NSDI ’23. USENIX, Apr. 2023, pp. 1557–1581.

[5] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM 2018. IEEE, 2018, p. 1871–1879.

[6] Y. Magnouche, P. T. A. Quang, J. Leguay, X. Gong, and F. Zeng,
“Distributed utility maximization from the edge in ip networks,” in IM
’21, 2021, pp. 224–232.

[7] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning to
route,” in HotNets-XVI. ACM, 2017, p. 185–191.

[8] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“Conga: Distributed congestion-aware load balancing for datacenters,”
in SIGCOMM ’14. ACM, 2014, p. 503–514.

[9] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula:
Scalable load balancing using programmable data planes,” in SOSR ’16.
ACM, 2016.

[10] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it flow:
Resilient asymmetric load balancing with flowlet switching,” in NSDI
’17. USENIX, Mar. 2017, pp. 407–420.

[11] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, and D. Walker, “Contra:
A programmable system for performance-aware routing,” in NSDI ’20.
USENIX, Feb. 2020, pp. 701–721.

[12] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” in SIGCOMM ’11. ACM, 2011, p. 254–265.

[13] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
SIGCOMM ’10. ACM, 2010, p. 63–74.

[14] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible
data center network,” in SIGCOMM ’09. ACM, 2009, p. 51–62.

[15] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vah-
dat, “Hedera: Dynamic flow scheduling for data center networks,” in
NSDI’10. USENIX, 2010, p. 19.

[16] P. Jurkiewicz, “Boundaries of flow table usage reduction algorithms
based on elephant flow detection,” in IFIP Networking ’21. IEEE,
2021, pp. 1–9.

[17] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, jul 2014.

[18] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-
network computation is a dumb idea whose time has come,” in HotNets-
XVI. ACM, 2017, p. 150–156.

[19] Y. Zhan and J. Zhang, “An incentive mechanism design for efficient edge
learning by deep reinforcement learning approach,” in IEEE INFOCOM
2020. IEEE, 2020, pp. 2489–2498.

[20] F. Restuccia and T. Melodia, “Deepwierl: Bringing deep reinforcement
learning to the internet of self-adaptive things,” in IEEE INFOCOM
2020. IEEE, 2020, pp. 844–853.

[21] T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira, “Verifying learning-
augmented systems,” in SIGCOMM ’21. ACM, 2021, p. 305–318.

[22] H. Liu, C. Jin, B. Yang, and A. Zhou, “Finding top-k shortest paths
with diversity,” IEEE Transactions on Knowledge and Data Engineering,
vol. 30, no. 3, pp. 488–502, 2018.

[23] K. Rusek, J. Suárez-Varela, A. Mestres, P. Barlet-Ros, and A. Cabellos-
Aparicio, “Unveiling the potential of graph neural networks for network
modeling and optimization in sdn,” in SOSR ’19. ACM, 2019, p.
140–151.

[24] Y. Geng, V. Jeyakumar, A. Kabbani, and M. Alizadeh, “Juggler: A
practical reordering resilient network stack for datacenters,” in EuroSys
’16. ACM, 2016.

[25] M. Pizzutti and A. E. Schaeffer-Filho, “Adaptive multipath routing based
on hybrid data and control plane operation,” in IEEE INFOCOM 2019.
IEEE, 2019, p. 730–738.

[26] Z. Liu, Y. Zhao, Z. Fan, T. Yang, X. Li, R. Zhang, K. Yang, Z. Zhong,
Y. Huang, C. Liu, J. Hu, G. Xie, and B. Cui, “Burstbalancer: Do less,
better balance for large-scale data center traffic,” in ICNP ’22, 2022, pp.
1–13.

[27] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
in IEEE INFOCOM 2011. IEEE, 2011, pp. 1629–1637.

[28] A. Van Bemten, N. Ðerić, A. Varasteh, S. Schmid, C. Mas-Machuca,
A. Blenk, and W. Kellerer, “Chameleon: Predictable latency and high
utilization with queue-aware and adaptive source routing,” in CoNEXT
’20. ACM, 2020, p. 451–465.

[29] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
datacenter load balancing in the wild,” in SIGCOMM ’17. ACM, 2017,
p. 253–266.

[30] M. A. Qureshi, Y. Cheng, Q. Yin, Q. Fu, G. Kumar, M. Moshref, J. Yan,
V. Jacobson, D. Wetherall, and A. Kabbani, “Plb: Congestion signals are
simple and effective for network load balancing,” in SIGCOMM ’22.
ACM, 2022, p. 207–218.

[31] M. Parham, T. Fenz, N. Süss, K.-T. Foerster, and S. Schmid, “Traffic en-
gineering with joint link weight and segment optimization,” in CoNEXT
’21. ACM, 2021, p. 313–327.

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Contextualization
	1.2 Motivation
	1.3 Goals
	1.4 Document Outline

	2 Background and Motivation
	2.1 Programmable Networks
	2.1.1 Software-Defined Networking
	2.1.2 Programmable Data Planes

	2.2 Load Balancing in Computer Networks
	2.2.1 Equal-Cost Multi-Path (ECMP)
	2.2.2 Weighted-Cost Multi-Path (WCMP)
	2.2.3 Elephant Flows

	2.3 Deep Reinforcement Learning
	2.3.1 Reinforcement Learning
	2.3.2 Neural Networks
	2.3.3 Deep Q-Learning

	3 CrossBal: Cross-Plane Load Balancing
	3.1 Approach Overview
	3.2 Identifying Elephant Flows Efficiently and Accurately
	3.3 Deep Reinforcement Learning Agent
	3.4 Reacting to Short-Lived Network Congestion
	3.5 Architecture
	3.5.1 Control Plane
	3.5.2 Data Plane

	4 Evaluation
	4.1 Prototype
	4.2 Methodology
	4.2.1 Setup
	4.2.2 Workloads
	4.2.3 Topology
	4.2.4 Parameters
	4.2.5 Metrics

	4.3 Link Utilization Analysis
	4.4 Elephant flow detection optimizations

	5 Related Work
	5.1 Characterization of the Reviewed Literature
	5.2 Data Plane Load Balancers
	5.3 Control Plane Load Balancers
	5.3.1 Heuristics-based Controllers
	5.3.2 Machine Learning-based Controllers

	5.4 Emerging categories of Load Balancers
	5.5 Discussion

	6 Concluding Remarks
	6.1 Summary of Contributions
	6.2 Future Work

	References
	APPENDIX A – RESUMO EXPANDIDO
	APPENDIX B – ACCEPTED PAPER – CNSM 2023

