
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

EDUARDO FACCIN VERNIER

Visualization of the Evolution of Software
Quality Metrics on Open Source Projects

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Joao L.D. Comba
Coadvisor: Prof. Dr. Alexandru C. Telea

Porto Alegre
December 2016

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Carlos Arthur Lang Lisbôa
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

Computer scientists have done an incredible job at creating rich visualizations for fields

such as engineering, chemistry, physics, and medicine. Yet, in modern software develop-

ment, it is very hard to find visualization tools at use in design, implementation, mainte-

nance, or testing of code. This work attempts to provide a set of visualization techniques

that facilitate the understanding of the evolution of software entities and their relation-

ships, supplying professionals with interesting insights about the development process

and product.

Keywords: Sotware quality metrics. Metric extraction. Dimensionality reduction. Hier-

archical data. Evolution.

Visualizando a evolução de métricas de qualidade de software em projetos

Open-Source

RESUMO

Cientistas da computação têm feito um ótimo trabalho na criação de ricas visualizações

para disciplinas como engenharias, química, física e medicina. Entretanto, no processo

de desenvolvimento de software moderno, é raro encontrar ferramentas de visualização

em uso no design, implementação, manutenção ou teste de código. Este trabalho tenta

prover um conjunto de técnicas que visam facilitar a compreensão de entidades de soft-

ware e seus relacionamentos, permitindo maior discernimento do produto e processo de

desenvolvimento de software.

Palavras-chave: Métricas de qualidade de software. Redução de dimensionalidade. Da-

dos hierárquicos. Evolução.

LIST OF FIGURES

Figure 2.1 SeeSoft circa 1992 ...14

Figure 2.2 CVSgrab on the left and CVSscan on the right ...15

Figure 2.3 SolidSX views ...16

Figure 2.4 Projections being used to display class similarity, labeling the attribute

that most strongly collaborated in bring these entities together..............................16

Figure 3.1 Data extraction pipeline...17

Figure 3.2 The variable in the graph represents the global search interest relative

to the highest point on the chart through time. ...18

Figure 3.3 Git tree organization ..19

Figure 3.4 Metric output file set..23

Figure 4.1 van Wijk questions: “Botanic visualization contents of a hard disk. Use-

ful or just a nice picture?”...26

Figure 4.2 Treemap layout comparison...28

Figure 4.3 Google ExoPlayer 117 classes treemap...28

Figure 4.4 Google Guice 529 classes treemap..29

Figure 4.5 Base rectangle area represents maximum LOC value and filled rectangle

area encodes the current value ..30

Figure 4.6 Representation of hierarchy using Sunburst Diagram30

Figure 4.7 Our tool’s representation of the ExoPlayer’s project hierarchy using

both Sunburst Diagram and Squarified Treeemap ..31

Figure 4.8 Sequential Colormap ...31

Figure 4.9 Diverging Colormap ..31

Figure 4.10 Qualitative Colormap...31

Figure 4.11 Treemap and Sunburst Diagram color coded with the Sequential Colormap32

Figure 4.12 Divergent Colormap clamped at ±50% metric change33

Figure 4.13 ExoPlayer Treemap with number of methods per class metric34

Figure 4.14 Dynamic t-SNE results on SVHN CNN..36

Figure 4.15 LOC metric displayed in both radius and color attributes37

Figure 4.16 LOC metric encoded in entity radius and inheritance tree depth de-

picted in the color..38

Figure 4.17 Glyphs portraying 20% increase and reduction on metric value38

Figure 4.18 Revised glyph ..39

Figure 4.19 Representation of 4 different aspects of the data...39

Figure 4.20 Evolution of the file count on the GIMP project color coded by file

size using SolidTA ..40

Figure 4.21 Evolution of the LOC metric for 10 classes using the sequential colormap40

Figure 4.22 Evolution of the LOC metric for 10 classes using the divergent colormap.40

Figure 4.23 Filtered evolution of the LOC metric on ExoPlayer from Deceber 2014

to February 2016 ...41

Figure 4.24 Filtered evolution of the LOC metric on the RxJava project from De-

cember 2013 to February 2016 ...41

Figure 4.25 Filtered evolution of the LOC metric on the Google Closure project

from August 2011 to February 2016...42

Figure 4.26 Filtered evolution of the LOC metric on the Eclipse Vert.x project from

January 2014 to February 2016...42

Figure 4.27 Filtered evolution of the LOC metric on ExoPlayer from Deceber 2014

to February 2016 ...43

Figure 4.28 Filtered evolution of the PercentLackOfCohesion metric on the Exo-

Player project. ...43

Figure 4.29 Filtered evolution of the PercentLackOfCohesion metric on the RxJava

project. ..44

Figure 4.30 Linking nodes hierarchically on a synthetic projection...............................45

Figure 4.31 Linking nodes hierarchically on the ExoPlayer project...............................46

Figure 4.32 Linking filtered packages hierarchically on the ExoPlayer project46

Figure 4.33 Linking nodes by similarity on the ExoPlayer project47

Figure 4.34 Visualization of a software system’s call graph with edge bundling...........48

Figure 4.35 Highlight of change in Revision 22 ...49

Figure 4.36 Highlight of change in Revision 44 ...49

LIST OF TABLES

Table 3.1 Understand and Analytix analysis time for a single revision..........................21

Table 3.2 Tool Comparison: Some cells have dashes instead of values because the

tool was considerate unsuitable before the attribute was measured..........................21

LIST OF ABBREVIATIONS AND ACRONYMS

SCIVIS Scientific Visualization

INFOVIS Information Visualization

SOFTVIS Software Visualization

MRI Magnetic Resonance Imaging

VCS Version Control System

GUI Graphical User Interface

MP Multidimensional Projections

OOP Object-oriented Programming

CONTENTS

LIST OF FIGURES ...5
LIST OF TABLES ...7
1 INTRODUCTION...10
1.1 Data ..11
1.2 Research Goal..12
2 RELATED WORK ...14
3 METRIC COLLECTION..17
3.1 Version Control System ..17
3.2 Software Quality Metrics Extraction Tools ..20
3.3 Metric Extraction..22
3.4 Dataset Filtering and Normalization...23
4 VISUALIZATION...25
4.1 Hierarchical Data..26
4.1.1 Squarified Treemap ..27
4.1.2 Sunburst Diagram ..30
4.2 Colormap ...31
4.3 Projection...34
4.3.1 Glyphs ..37
4.4 Visualizing Evolution..39
4.5 Linking the Views..44
4.6 Highlighting Change...48
5 CONCLUSION ...50
REFERENCES...51
REFERENCES...51

10

1 INTRODUCTION

Modern software projects are incredibly large and complex systems, specially con-

sidering that they evolve in time. Let us use the Eclipse IDE as an example. According

to the Eclipse Neon press release, “This is the eleventh year the Eclipse community has

shipped a coordinated release of multiple Eclipse projects. There are 84 projects in the

Neon release, consisting of over 69 million lines of code, with contribution by 779 de-

velopers, 331 of whom are Eclipse committers” (Eclipse Foundation, 2016). Another

good example is the GNU Image Manipulation Program, that has been actively under

development for over 20 years (Gimp Team, 2016).

In this work, we will enter the realms of the Information Visualization field, and,

more specifically, the Software Visualization branch. According to Diehl (2007), “Soft-

ware visualization is concerned with the static or animated 2D or 3D visual representation

of information about software systems based on their structure, history, or behavior in or-

der to help software engineering tasks”.

These tasks can be performed at various levels helping to increase productivity

and code quality. For instance, programmers might use these techniques in order to assist

in the understanding of large code bases. Testers might find them useful to help guiding

their efforts more efficiently. Architects might use visualization to compare the code being

produced with the original design. Project managers and business leaders might use them

in order to have an overview of long-term projects or access the quality of process and

product decision.

Our goal with this project is assisting users in the understanding the evolution of

software projects. Our work attempts to provide effective visualization techniques that

help revealing the truth hidden behind mountains of abstract time dependent data.

According to Spence (2007), the three fundamental ingredients for any infovis ap-

plication are representation, presentation, and interaction. In this text, we will explain how

we shaped these elements to our context in order to make it easier for users to understand,

compare, correlate, and extract useful insight from software projects. The techniques

used, challenges faced and the reasoning behind design choices are also detailed in this

text.

11

Data

The Scientific Visualization field focuses on data that has physical placement.

Usually consisting of a region in Rn sampled in multiple points that can have its val-

ues interpolated in this space. For instance, when we see the 3D rendered results of an

MRI scan of a brain, the data presented can be very naturally understood, as we already

have a mental map of what a brain looks like. Software source code, conversely, has no

inherent physical or spacial placement. Therefore, we are faced with the added challenge

of introducing appropriate visual representation for such data and relationships.

In this project, we will model evolving software projects as multivariate, or multi-

dimensional, time-dependent datasets. For each data point on a multidimensional dataset,

also called a record, sample, observation, or instance, we can measure many properties

of the underlying phenomenon, each of these being a different variable, attribute, or di-

mension. Thus, a multidimensional dataset can be thought of as a table of n rows (or

observations) and m columns. What is meant by time-dependent, is that the dataset is

composed of a number t of observations in time, each of these being an individual multi-

dimensional dataset.

To exemplify, imagine that a medical research laboratory is tracking the develop-

ment of a community of a hundred infants in order to get insight on the symptoms of an

epidemic disease (e.g. Zika virus). During the first year of infancy, tests are run weekly

and ten attributes such as weight, blood composition, MRI scan data, cognitive test scores,

among others are collected for each child.

Understanding the evolution and tracking interesting patterns or correlations on

such multidimensional time-dependent dataset for large values of n (number of infants),

m (number of collected attributes) and t (number of time moments) is a very challenging

task.

Several techniques have been proposed to visualize similarity and change on tem-

poral high-dimensional data. According to Aigner et al. (2011), current techniques can be

categorized as abstract or spatial, univariate or multivariate, linear or cyclic, instantaneous

or interval-based, static or dynamic, and two or three-dimensional.

In this project, we will use a dimensionality reduction technique that provides a

scalable alternative to creating projections that evolve smoothly over time eliminating

unnecessary temporal variability (RAUBER; FALCAO; TELEA, 2016). The technique is

summarized in Section 4.3.

12

Research Goal

The main goal of this project is to provide a tool that assists in the task of un-

derstanding the evolution of software entities. With such tool, professionals that work

with software both in the academia and industry might develop a better understanding of

software dynamics, and, through visualization techniques, uncover previously unknown

aspects of code bases or confirm hypothesis, being then able to make more knowledgeable

decisions about refactoring, maintenance, and delivery of software projects.

To present the tool’s requirements, we will divide it in two: an extractor tool that

explores repositories and extract metrics from a given number of revisions; and a visu-

alization tool that takes the generated datasets and presents them in a coherent visual

manner.

It would be interesting to have at our disposal a technique that given two software

entities, returns a numerical value between 0 and 1 telling how similar they are. This

way, understanding the dynamics of the implicit structure would be much easier. Given

that such technique doesn’t exist, we will use an approach similar to the one used to

measure image similarity, in which features extraction is used to estimate the distance

(or similarity) between two images (WANG; ZHANG; FENG, 2005). In our context,

instead of using techniques such as edge detection, blob detection, template matching

and thresholding to build a feature vector, we will use a set of software quality metrics

(e.g. cyclomatic complexity, lines of code, lack of cohersion) as an expression of the

information present on the software entities.

The metric extractor tool must be relatively fast and scalable up to hundreds of

thousand lines of code, it must be fully automated (i.e. require no user interaction when

analyzing a new revision) and easy to set up. It must also be able to analyze Java code

and produce a reasonable amount of metrics. Java was chosen as the main language

because of the large collection of relevant active open source projects that use it, and in

order to accommodate for metric extractor tools’ limitations as well as simplify the data

representation, we chose to fix it as the only supported language.

The visualization tool must provide insight into both the explicit structure of the

project, captured by its physical or logical hierarchy and dependencies, and implicit struc-

ture, i.e. aspects of the recorded data which create groups of highly-related entities.

Therefore it is indispensable that both intra and inter-file metric extraction are supported

by the extractor tool (see Section 3.2).

The visualization tool must provide real time performance, it should be developed

using multi-platform technology and contain sensible interaction mechanisms.

Even though software metrics are the main research subject, the tool must be built

to accept any time-dependent multivariate dataset, hence, nothing stops it from being

effective at analyzing the crime rate evolution on a metropolitan area, for example.

14

2 RELATED WORK

Though SoftVis is a comparatively new field to other visualization disciplines,

AT&T Bell Laboratory researchers were already working on visualizing changes in the

evolution of software systems in 1992 (EICK; STEFFEN; SUMNER, 1992). Their ob-

jective in this particular project was to give project managers an overview of the state of

complex systems and provide a tool that allows search for interesting trends and patterns

in the development process. As shown in Figure 2.1, they have used rectangles to repre-

sent files. The height of each rectangle represents the size of the file, and the pixels inside

it represent lines of code. These pixel’s colors represents the age of the last modification.

Blue is used for lines that haven’t been modified in a long time and red is used for recent

changes.

Figure 2.1: SeeSoft circa 1992

According to Ian Sommerville (2004), 90% of the cost of software development

is linked to maintenance tasks. SolidSX (RENIERS et al., 2014), CVSscan (VOINEA;

TELEA; WIJK, 2005a), and CVSgrab (VOINEA; TELEA, 2006) are tools that use evo-

Figure 2.2: CVSgrab on the left and CVSscan on the right

Source: (VOINEA; TELEA; WIJK, 2005a) and (VOINEA; TELEA, 2006)

lution visualization techniques to help developers better execute these tasks. They use

linked views (e.g. treemaps, table lenses, and hierarchical edge bundles) to aid correla-

tion between source code structure and relationships with its evolution in time, hopefully

aiding in this expensive process.

In a more recent approach Silva et al. (2016) used extracted quality metrics from

software repositories in a multidimensional visualization context, proposing dynamic

maps that show the evolution of the similarity of entities across revisions. We have taken

part in this project and in this work, we attempt to extend our understanding of the prob-

lem.

Figure 2.3: SolidSX views

Source: (RENIERS et al., 2014)

Figure 2.4: Projections being used to display class similarity, labeling the attribute that
most strongly collaborated in bring these entities together.

Source: (SILVA et al., 2016)

17

3 METRIC COLLECTION

Software Quality Metrics are measurements that relate to properties of a piece

of software or its specifications. They can generate useful insight in various levels of

granularity (e.g. project level, package level, class level, method level) and can lead to a

better understanding of the code base. These insights might influence several decisions,

ranging from where to place refactoring and performance optimization effort to budget

planning, optimal personnel task assignments, and cost estimation.

Figure 3.1: Data extraction pipeline

Figure 3.1 illustrates the pipeline that takes a software repository and outputs the

two datasets (A and B) that are used in our visualization tool.

The first step to collecting data from repositories is choosing what Version Control

Systems to use. There are many options such as Subversion, Perforce, Mercurial, Bazaar,

CVS, and Git. To choose one over the others, aspects such as popularity for Open Source

projects, efficiency in the use of resources, performance, and simplicity to “walk” between

revisions are taken into consideration. More details on the discussion are presented on

Section 3.1. The choice of Metric Extraction tool is discussed in Section 3.2. The method

developed to take revision files and generate a collection of raw metric tables scalably is

featured on Section 3.3. The need for filtering and normalization of the acquired datasets

is explained on Section 3.4.

Version Control System

In order to estimate VCS popularity, we will use Google Trends data collected

from January 2004 to November 2016 on the most used systems according to the 2015

Stack Overflow Developers Survey (Stack Overflow, 2016). Google Trends allows com-

parison between the number of Google searches related to a particular system relative to

18

the total search volume. A world map also points out which is the most popular system in

each country.

Figure 3.2: The variable in the graph represents the global search interest relative to the
highest point on the chart through time.

Based on this data, we can confirm that Git is currently the most popular VCS and

that it’s popularity is steadily increasing.

According to GitHub co-founder Scott Chacon on the book Pro Git (CHACON,

2009), the major difference between Git and any other VCS is the way Git “thinks” about

its data. Conceptually, most other systems (e.g. SVN, Mercurial and CVS) store infor-

mation as a list of file-based changes, meaning that in a source file with a hundred lines

of code, if three new lines are added, only these three lines with their meta data are going

to be stored in the new revision. Git, instead, stores its data as a series of snapshots of the

file system, which mean that the hundred and three lines of code are redundantly (even

though compressed) saved into the repository when the changes are committed.

Despite that, according to Pearce (2016), Git is much faster than Subversion since

all operations (except for push and fetch) are local and there is no network latency. Git’s

repositories are also much smaller than Subversions (for the Mozilla project, 30x smaller)

and Git repository clones act as full repository backups.

One of the reasons for the smaller repository size is that an SVN working directory

always contains two copies of each file: one for the user to actually work with and another

hidden in the .svn/ folder to aid operations such as status, diff and commit. In contrast

19

a Git working directory requires only one small index file that stores about 100 bytes of

data per tracked file. On projects with a large number of files this can be a substantial

difference in the disk space required per working copy.

Every time a commit is made in Git, the differences are not recorded, instead, it

saves all modified files integrally and inserts their references to the commit tree. To be

efficient, if files have not changed, they are not redundantly stored in disk, but a link to

the previous identical file it has already stored is created. Therefore, Git thinks about its

data dynamics as a stream of snapshots. The organization of a repository tree is depicted

on Figure 3.3.

Figure 3.3: Git tree organization

Source: <https://www.hackerearth.com/>

Subversion has the advantage of having a simpler way to navigate between re-

visions as it uses sequential revision identifiers (1,2,3,..), instead of Git’s unpredictable

SHA-1 hashes.

https://www.hackerearth.com/

20

Considering the popularity factor, full local repository backups with integral files,

better performance and use of resources, we deemed Git as being a more suitable system

for our context. Additionally, the well documented and maintained library libgit2 for

C/C++ was fundamental for the choice of VCS.

Software Quality Metrics Extraction Tools

Our requirements for the Software Quality Metrics Extractor Tool regarded the

quality and relevance of the metrics, strictness of input acceptance (e.g. how it dealt with

unbuildable code and missing references), project activity, overall performance and ease

of set-up and integration. It is important for the understanding of the project dynamics

to extract both intra-file metrics, i.e. those which can be computed simply by looking

at a single file in isolation (e.g. number of lines of code, average method complexity,

average class cohesion) and inter-file metrics, which are metrics that look at the relations

between entities in different files (e.g. depth of a class hierarchy, average function-call-

path length, metrics on the number of uses of a given symbol). The latter are significantly

more complex to compute.

Eight tools were tested in the metric extractor tools analysis phase of the study, out

of which, four - CCCC, SourceMeter, iPlasma and CppCheck - were swiftly discarded

due to design or performance misalignment with our goals. The remaining four tools -

SonarQube, Analizo, CodePro Analytix and SciTools Understand - were subjected to a

series of tests that would grade the suitability of each for our purposes.

SonarQube is a very professional tool dedicated to continuous analysis and mea-

surement of source code. It has complicated initial set-up and proved to be hard to inte-

grate in our software. The quality of its outputted metrics wasn’t on par with the other

three tools and it’s performance wasn’t satisfactory either. Analizo, differently from the

other three tools, is an academic project. It is easy to use and outputs a good amount

of relevant metrics. Unfortunately, for complicated projects with many external or miss-

ing references, it struggled, taking over 30 minutes to analyze medium size repositories,

rendering it unsuitable for our study.

CodePro Analytix and SciTools Understand fit all our requirements. Both are easy

to use and integrate, flexible regarding the repositories they take as input, customizable

in the parameterization of the metrics, fast, well-documented professional grade tools.

Both output a good set of inter and intra-file metrics in various levels of granularity and in

21

easy to work formats (xml and csv). We chose to work with Understand over Analytix in

reason of the performance advantage one has over the other and the number of class level

metrics they output (43 for Understand against Analytix’s 17). The full metric reference

document provided by SciTool Understand is available at (SCITOOL, 2016).

Table 3.1 shows the performance comparison between the two tools for nine Open

Source projects.

Table 3.1: Understand and Analytix analysis time for a single revision
Project (KLOC) Analytix Time(s) Understand Time(s)

JMeter (118) 23 30
Checkstyle (95) 32 32

Gitblit (77) 31 20
JUnit (26) 17 10

JavaGame (3) 10 4
Netty (194) 70 66
Guava (243) 120 168
Zxing (42) 20 11

MPAndroidChart (20) 14 8

Table 3.2 shows a score from 0 to 5 related to requirements measured on each tool.

In order to fit all data in one table, we labeled the requirements in the following fashion:

Requirement Label
Well maintained A

Ease to set up B
Easy to integrate C

Tolerance of input acceptance D
Metric Quality E
Performance F

Table 3.2: Tool Comparison: Some cells have dashes instead of values because the tool
was considerate unsuitable before the attribute was measured.

Tool A B C D E F

CCCC 0 0 - 0 - -

Source Meter 3 0 - - - 1

iPlasma - 4 0 - 1 2

CppCheck - - - - 0 -

SonarQube 5 1 3 4 2 2

Analizo 3 3 3 2 5 2

Analytix 5 4 5 5 4 4

Understand 5 4 5 5 5 5

22

Metric Extraction

Once we had settled on Git and Scitools Understand as VCS and metric collector,

we built a tool that takes as argument a repository URL (e.g. <https://github.com/google/

ExoPlayer.git>) or a path to an already checked-out on disk repository and outputs a

collection of files that represent the metric values for a set of revisions. The number n

of revisions to be extracted from the repository is also given as an argument along with

an optional Tstart – Tend interval. The JMeter project, for example, has currently 12,647

commits. If we input 100 as the number of revisions, the first to be extracted will be

the last committed revision, after that, we walk 126 steps back on the commit tree and

check-out the next one. The process continues consecutively for the remaining revisions.

We thought of two approaches to perform metric extraction. The first would be

to create n directories and for each of them, check-out all source files from the ith revi-

sion. This is the easiest method but it is slow and space inefficient, as files from previous

commits that have not undergone changes must be decompressed and written to disk un-

necessarily.

The second approach was the one we chose to work with. First, check-out every

Java source file from the last revision to a single “dump” directory, disregarding the orig-

inal directory structure. Considering Git keeps all it’s past files compressed in the .git

folder, this process is very fast and requires no online access to the repository — this is

crucial, considering the operation is repeated several times.

With all files checked-out in the dump directory, all alphanumeric SHA-1 file and

directory keys (which work as identifiers) listed in this commit are added to a Trie data

structure. Understand then runs it’s metric calculations and outputs an appropriately iden-

tified file to the metric directory.

When the metric calculation is complete, it takes the next selected commit and,

comparing it’s file/directory keys to the current state on the Trie tree, checks which files

or groups of files are already loaded into disk. It also checks which of the files that are

currently checked into disk are not present in the next revision and deletes them. The Trie

tree is then updated for the current revision. The quality metrics are then extracted and

this step is repeated for the remaining n− 1 revisions.

The metric directory for the JMeter project with 20 analyzed revisions looks like

Figure 3.4 where each file is CSV formatted collection of 43 attributes.

https://github.com/google/ExoPlayer.git
https://github.com/google/ExoPlayer.git

Figure 3.4: Metric output file set

More details and source code can be found at <https://github.com/EduardoVernier/

metric-extractor>. The tool was implemented in C++ with the Qt framework.

Dataset Filtering and Normalization

Before the datasets are ready for the visualization two last steps are necessary.

The first concerns the unsuitability of current dimensionality reduction technique to deal

with dynamic datasets, i.e. collections where members are created or deleted between

consecutive time moments. What this implies is that all classes that we are analyzing

must be present from the first selected commit up until the last one, which means that a

considerable percentage of the project’s classes must be filtered from the dataset. As far

as we know, no multidimensional projection technique fits this requirement.

https://github.com/EduardoVernier/metric-extractor
https://github.com/EduardoVernier/metric-extractor

The second step is normalization. This is necessary because some metric range

from 0 to 1 (e.g comments ratio) and others don’t have a specific delimited range (e.g

lines of code), therefore the dimensionality reduction technique will associated differ-

ent weights to different metric value changes (which is not ideal). To perform the data

normalization, we must first extract the average value and standard deviation of each at-

tribute. Then for each sample, we subtract the corresponding average and divide the result

by the standard deviation. This guarantees that the average for each feature is zero and

the standard deviation through time is one, allowing unbiased projection calculations.

25

4 VISUALIZATION

Discussions that relate image perception and cognitive understanding can be traced

as far back as the early Greek philosophers. Socrates considered that sensory experiences

create images in the human mind, regarded as mental representations of the real world.

Around 350BC, Aristoteles stated that “thought is impossible without an image”.

Gershon (1994) defines visualization as follows: “Visualization is more than a

method of computing. Visualization is the process of transforming information into a vi-

sual form, enabling users to observe the information. The resulting visual display enables

the scientist or engineer to perceive visually features which are hidden in the data but

nevertheless are needed for data exploration and analysis.”

The resulting visual representation can be used to both to confirm the known,

(i.e. validating the fit a given model with a dataset) and discovering the unknown (i.e.

creating insight that supports a new model in the data). But first, we need first to recognize

when visualization is actually useful. As questioned by Telea (2014), if a question can

be answered by a compact, precise query (e.g. what is most complex class in a given

package), why visualize? Or if a decision can be automated, why put a human in the

process?

Visualization be can useful in many applications. For example, when there’s too

much data and we don’t have time to analyze or make sense of it all, allowing for a

overview of the data’s features. It is useful to get insight about distribution, correlations,

behavior, and relationships. It can also be useful to answer qualitative and complex ques-

tions. Lastly, it is fundamental for communication.

The challenge of creating a good visualization lies in tailoring visual representa-

tions that objectively communicate features of the data. When our representations are not

suitable, as recognized by van Vijk on Figure 4.1, visualization might not be very help-

ful. Bad representations might also lead to a visual result that is in misalignment with the

original data, and as stated by Edward Tufte, “clutter and confusion are failures of design,

not attributes of information”.

The dataset we are trying to understand (illustrated as A on Figure 3.1) is a set

of R revisions where each revision rt ∈ [rs, re] is a set of entities E = {ei} ⊂ Rn that

portray a feature vector of n = 43 real-valued quality metrics of a given software class.

For each revision rt ∈ [rs, re], a dimensionality reduction technique is used to

generate a 2D projection Pt = {qi} ⊂ R2 where i is the number of observations and

Figure 4.1: van Wijk questions: “Botanic visualization contents of a hard disk. Useful or
just a nice picture?”

Source: (WIJK, 2005)

q a point in 2D space. The projection set P depicts the class similarity throughout the

project’s history and is illustrated as B on Figure 3.1. More details on the technique are

present on Section 4.3.

Once we have collected the two time-dependent datasets, we must develop a tool

to visualize it. In this chapter we will discuss our attempts in transforming this com-

plex data into visual forms that allow for insightful answers. To develop these tech-

niques no libraries were used apart from OpenGL for the rendering and GLUT/GLUI

for the window/GUI management. The source code is available at <https://github.com/

EduardoVernier/metric-view>.

Hierarchical Data

When thinking about a software project, it is very natural to think of it in a hierar-

chical manner. This hierarchy tends not only to refer to the organization and architecture

of a project, but also to the function and behavior of specific entities.

As we mentioned on Section 1.2, one of our objectives is to represent the hier-

archical relationship in the data. There are many traditional techniques that portray this

https://github.com/EduardoVernier/metric-view
https://github.com/EduardoVernier/metric-view

sort of relationship, each of those with its pros and cons. A few honorable mentions are

Squarified (BRULS; HUIZING; WIJK, 2000) and Voronoi (BALZER; DEUSSEN, 2005)

Treemaps, Icicle Trees, Sunburst Diagrams, and Circle Packing.

In this application, we have implemented both Squarified Treemap and Sunburst

Diagram, each with a different task in mind. Squarified Treemaps are better at using “real

state”, while Sunsburst Diagrams give a intuitive and unambiguous representation of deep

level hierarchies.

Squarified Treemap

A Treemap is a method to display hierarchical data traditionally using a collection

of nested rectangles. On this particular project, the nesting of rectangles depicts the pack-

age/class hierarchy on the project. The area of each rectangle is defined by the maximum

number of lines of code each class has had during the project’s history. The area of a

package frame is defined by the sum of all classes’ areas belonging to it or to it’s children

packages.

There are several tiling algorithms in the literature with different characteristics

(e.g. Ordered Treemaps (SHNEIDERMAN; WATTENBERG, 2001), Quantum Treemaps

(BEDERSON; SHNEIDERMAN; WATTENBERG, 2002)). In addition, several algo-

rithms have been proposed that use non-rectangular regions (AUBER et al., 2013; BALZER;

DEUSSEN, 2005; ONAK; SIDIROPOULOS, 2008).

But all these techniques offer a trade-off between maintaining the input order and

keeping a low aspect-ratio. In our project, the algorithm used to plot these maps is called

Squarified Treemaps(BRULS; HUIZING; WIJK, 2000). It prioritizes low aspect-ratios

over ordering, reducing the amount of thin, elongated rectangles (see images 4.2a and

4.2b). The results generated by our implementation of this algorithm on two Open Source

projects can be found on Figures 4.3 and 4.4.

Figure 4.2: Treemap layout comparison.

(a) Stock portfolio with traditional
slice-and-dice layout.

(b) Stock portfolio with squarified lay-
out.

Source: (SHNEIDERMAN; WATTENBERG, 2001)

Figure 4.3: Google ExoPlayer 117 classes treemap

Figure 4.4: Google Guice 529 classes treemap

Classes might change in size from one revision to the next, yet Squarified Treemaps

are inherently static, therefore in order to add information about the dynamic LOC metric

value without rearranging the layout, we have encoded in the filled rectangle area the cur-

rent metric value. The increasing/decreasing of value is shown with a smooth transition

between states.

Figure 4.5: Base rectangle area represents maximum LOC value and filled rectangle area
encodes the current value

Sunburst Diagram

This visualization technique uses a series of sliced rings in order to show hierarchy.

Each ring corresponds to a level in the hierarchy, with the central circle representing the

root node and the hierarchy moving outwards from it.

Rings are sliced up and divided based on their hierarchical relationship to the

parent slice. In our project, the angle of each slice is given based on the number of leaf

children each node has.

Figure 4.6: Representation of hierarchy using Sunburst Diagram

Source: (RIBECCA, 2016)

Figure 4.7: Our tool’s representation of the ExoPlayer’s project hierarchy using both
Sunburst Diagram and Squarified Treeemap

Colormap

Colormaps are mapping functions that for every point of the domain of interest,

assign to it a color based on the scalar value at that point. In this tool, three different

color mapping schemes based on the ColorBrewer’s (BREWER, 2016) samples were im-

plemented. A sequential colormap was used to display the current normalized value of a

chosen metric, a diverging colormap was used to show the increase/decrease of a given

metric from revision Tn−1 to Tn, and a categorical colormap was used to group classes

from the same package into a single color.

Figure 4.8: Sequential Colormap

Figure 4.9: Diverging Colormap

Figure 4.10: Qualitative Colormap

Combining colormaps with the hierarchical display techniques, we can start to

understand more complex phenomena. On Figure 4.11 we have used the Sequential Col-

ormap to encode the same metric that is represented by the area of treemap rectangles (i.e.

number of lines of code) in the last collected revision of the ExoPlayer project. Between

the two representations there is a color legend that displays the full colormap and presents

the minimum and maximum values of the selected metric for the whole project’s history.

The ring sections that represent packages in the Sunburst Diagram are colored with the

recursive average value of its children, allowing for objective comparison between pack-

ages, and not only classes.

Figure 4.11: Treemap and Sunburst Diagram color coded with the Sequential Colormap

The divergent colormap can be used to analyze the activity between revisions. On

Figure 4.12, we can see that a lot of effort has been put in the current revision in order to

decrease the size of most classes, with exception of the ones in package A, which have

increased significantly. This might suggest that refactoring with code movement took

place in this revision.

Figure 4.12: Divergent Colormap clamped at ±50% metric change

We can also use the color mapping technique with the treemap in order to try to

find interesting pattern occurrences between the LOC metric (i.e. rectangle area) and other

arbitrary metrics. On Figure 4.13, we have used the Sequential Colormap to illustrate

the Number of Methods per Class metric on the last revision of the Exoplayer project.

Naturally, large classes tend to have more methods than small ones, but it is also possible

to notice three classes with over a hundred methods inside of each, which might indicate

code that is very hard to understand and maintain.

Figure 4.13: ExoPlayer Treemap with number of methods per class metric

Projection

Multidimensional projections (MP) are a set of techniques that allow efficient and

effective visual analysis of high-dimensional data. They do so by mapping data points

from a high-dimensionality space Rn to a low-dimensionality space Rm, where n > m

and m ∈ {2, 3}. This mapping aims to preserve the neighborhoods present in Rn, gener-

ating visual representations that naturally convey the similarity relationship present in the

data points.

When compared to other high-dimensional visualization techniques such as table

lenses (RENIERS et al., 2014), evolution lines (VOINEA; TELEA; WIJK, 2005b), evolu-

tion matrices (LANZA, 2001), parallel coordinates (INSELBERG; DIMSDALE, 1990),

and scatterplot matrices (HARTIGAN, 1975), multidimensional projections are consider-

ably more scalable in number of entities and dimensions it can handle, it is also specially

easy to find groups of related entities.

Modern MP techniques, such as ISOMAP (TENENBAUM; SILVA; LANGFORD,

2000), LAMP (JOIA et al., 2011), LSP (PAULOVICH et al., 2008), and t-SNE (MAATEN;

HINTON, 2008) score highly in distance preservation for static datasets, however, none

of them is able to handle time-dependent datasets. The recent dynamic t-SNE (dt-SNE)

(RAUBER; FALCAO; TELEA, 2016) technique is, to our knowledge, the only MP for

time-dependent datasets that offers explicit and verified guarantees in terms of spatial and

temporal coherence. Trade-off between preservation of distances in the same projection

vs preservation of distances across projections which are close in time is controlled by a

user parameter.

Figure 4.14 illustrates on the left how the original t-SNE technique doesn’t take

into consideration the previous position of a group of entities and might place it in a

distant locale, whilst the dt-SNE technique on the right tries to preserve the previous

neighborhood layout.

Figure 4.14: Dynamic t-SNE results on SVHN CNN

Source: (RAUBER; FALCAO; TELEA, 2016)

Projections serve two main goals. First, by simply removing a number of dimen-

sions that are highly correlated or present low variance, we are able to create a simpler

and easier to handle representation of the original dataset that might suit our needs. Sec-

ondly, projections can be used to assist in the exploration on high-dimensionality datasets.

In this case, instead of eliminating a number of dimensions, all attributes are taken into

consideration on the Rn to Rm mapping, generating a visual representation that can be

conceptually understood in the same fashion as a 2D scatterplot or a 3D point could.

In our approach, for each revision rt ∈ [rs, re], dt-SNE is used to generate a 2D

projection Pt = {qi} ⊂ R2 such that the pairwise distance between points ‖qi − qj‖ are

as close as possible to the high-dimensional space distance ‖ei − ej‖ and the distances

between the same point in consecutive revisions Et1 and Et2 are preserved.

Using keyboard keys to advance through the project’s history, the user is able to

see how this dynamic system evolves as clusters form and fork, and in a glance, implicit

information about the similarity-in-time relationship of entities can be understood.

Glyphs

The resulting dt-SNE projection is a set of points in 2D space, but we can still

add a lot of information to the representation by means of color mapping, through glyphs

size and shape, creating connection between points, and even by using the background’s

empty space to encode some other feature.

Figure 4.15 illustrates the initial tool set-up. Both the radius of the circular glyph

and color are set to encode the number of lines of code metric. Right away we can start

to identify cluster of points, indicating similarity on the Rn space, and outliers.

Figure 4.15: LOC metric displayed in both radius and color attributes

One example of use case is to change the color mapping to represent another met-

ric. On Figure 4.16, the maximum inheritance tree depth metric for each class is coded

in the glyph’s color. This rich visualization allows us to reason about three different as-

pects of the data: entities’s similarity (given by position), class size (given by the radius),

and the number of intermediate classes between each data point and the root class of its

inheritance tree (encoded in the color).

Figure 4.16: LOC metric encoded in entity radius and inheritance tree depth depicted in
the color

In order to add information about change of metric value to the projection, we have

designed the glyph illustrated on Figure 4.17. The glyph’s radius represents the normal-

ized value of the metric in the current revision, and the angle of the pie section amounts

to the percentual change in metric value from revision Tn−1 to Tn. If the metric increases

in value, a pie section of larger radius is added to the top of the glyph, otherwise a pie

section of smaller radius is placed on the bottom of the glyph representing the reduction

percentage.

Figure 4.17: Glyphs portraying 20% increase and reduction on metric value

Although it’s an interesting design, it has one major flaw: 80% increase and 20%

decrease in value are represented by the same shape. This issue is fixed on the glyph

shown on Figure 4.18, where the decrease is portrayed by the removal of a pie section. In

the application, the pie section is only drawn if the change in metric value is higher than

±1%, as shown in Figure 4.19.

Figure 4.18: Revised glyph

Figure 4.19: Representation of 4 different aspects of the data.

What Figure 4.19 accomplishes is quite interesting. In a small space, we’ve en-

coded 4 different aspects of the data: similarity (position), class size (glyph radius),

change in class size (delta pie slice size), and average cyclomatic complexity value for

each class’s methods (color). And best of all, without any clutter or misinformation.

Visualizing Evolution

So far we are able to reason about the similarity of entities, their hierarchical

relationships, their current metric values for any given collected revision, and the metric

value change from revision ti to ti+1. What we yet cannot do is to intuitively display the

evolution of a set of entities throughout large time intervals. With this in mind, we’ve

implemented two visualization techniques.

The first is the Streamgraph, inspired on the design present on the SolidTA tool

(RENIERS et al., 2014) illustrated on Figure 4.20. It subdivides the screen space verti-

cally into T sections, where T is the number of revisions being analyzed. Then, for an

arbitrary number of selected classes, it draws a lines where the height at any given time

subdivision represents the value of a chosen metric at that moment. This information can

be emphasized by color coding (with one the colormaps introduced on Section 4.2) the

line section with the same metric attribute, as exemplified on Figures 4.21 and 4.22 for 10

entities of the ExoPlayer project and the lines of code metric between the December 2014

and February 2016.

Figure 4.20: Evolution of the file count on the GIMP project color coded by file size using
SolidTA

Figure 4.21: Evolution of the LOC metric for 10 classes using the sequential colormap

Figure 4.22: Evolution of the LOC metric for 10 classes using the divergent colormap

One characteristic of the Streamgraph is that it can naturally represent the global

evolution of an attribute through time. Figure 4.23 shows the evolution of the LOC metric

on ExoPlayer for the 15 earlier mentioned months. The biggest insight that we can extract

from this visualization is not about ExoPlayer, but about our own technique.

As Frederick Brooks put it in his famous article “No Silver Bullet” (BROOKS JR.,

1987), “All successful software gets changed”, and we can certainly relate change in code

with increase in size. Using git checkout commands and the CLOC tool (DANIAL, 2016),

we discovered that in the analyzed period of time the ExoPlayer project has evolved from

18.4KLOC (thousand of lines of Java code) to 42.2KLOC, almost doubling the number

of classes from 169 in December 2014 to 332 in February 2016. Yet, due to the filtering

process (see Section 3.4) that is imposed given the limitations of state of the art projection

techniques, we can’t see this change, supposedly because we were only able to analyze

117 of the total number of classes. Additionally, one can argue (and later, on Figure 4.27,

confirm) that our classes are in a very stable state (fact that might relate to their time of

creation) and that the time that classes evolve the most is right after their creation.

Figure 4.23: Filtered evolution of the LOC metric on ExoPlayer from Deceber 2014 to
February 2016

The impression given by our visualization is that the size of the project hasn’t

increased significantly during the studied period, but we know that this is not true. In fact,

an increase of 129% in the number of lines of code has taken place during this time.

This artifact is not a one-off occurrence, the same can be seen on projects such as

RxJava (Figure 4.24), Google Closure (Figure 4.25), and Eclipse Vert.x (Figure 4.25).

Figure 4.24: Filtered evolution of the LOC metric on the RxJava project from December
2013 to February 2016

Figure 4.25: Filtered evolution of the LOC metric on the Google Closure project from
August 2011 to February 2016

Figure 4.26: Filtered evolution of the LOC metric on the Eclipse Vert.x project from
January 2014 to February 2016

This artifact is a result of the filtering process, but not all datasets need filtering.

Imagine a time dataset that consist of atmospheric, fluvial, pluvial, fauna, flora, as well

as other terrain related attributes. In this case, there wouldn’t be a problem, as there is no

creation or deletion of terrains.

The other evolution visualization tool we implemented is the Spectrograph. In

contrast to the Streamgraph, it uses a fixed line height and relies solely on color to com-

municate metric value at each instant. The Spectrograph excels at presenting the distri-

bution of the data and element-wise evolution. Additionally, similar to the Treemap, it is

uses all “real state” available for display of data.

Figure 4.27 is different portrayal of the same data of Figure 4.23. Because we

cannot see a lot horizontal change, it confirms our suspicions about the stability of the

data points.

Figure 4.27: Filtered evolution of the LOC metric on ExoPlayer from Deceber 2014 to
February 2016

Similar to the Streamgraph, the Spectrograph can show the evolution of any metric

for a set of entities. In Figures 4.28 and 4.29, we compare the distribution of the Percent

Lack Of Cohesion metric distributions between the ExoPlayer and RxJava projects. Co-

hesion is an important concept in OOP (CHIDAMBER; KEMERER, 1994), as it indicates

whether a class represents a single abstraction or multiple abstractions. Cohesiveness of

methods within a class is desirable, since it promotes encapsulation. Lack of cohesion

suggests that classes should probably be split into two or more sub-classes, decreasing

complexity and reducing the likelihood of errors during the development process. There-

fore, through this somewhat inelegant metric name, we get the understanding that lower

metric values represent a better situation. What suggests that the RxJava project (or at

least it’s filtered classes) has a better, least prone to errors, design than ExoPlayer.

Figure 4.28: Filtered evolution of the PercentLackOfCohesion metric on the ExoPlayer
project.

Figure 4.29: Filtered evolution of the PercentLackOfCohesion metric on the RxJava
project.

Linking the Views

So far we have three views. A projection view, a hierarchical view, that by default

displays the Squarified Treemap, and if solicited through the UI, an evolution view.

Selecting or brushing elements or groups of elements on one of the views, high-

lights them on the others. This is a simple mechanism that attempts to support the vi-

sualization of correlation between Rn similarity, project structure and metric evolution.

Its downside is that it relies on having to move the user’s attention from one view to the

next. In this section, we experiment with ways of hinting information about hierarchy on

top of the projection (which as far as we are concerned, no one has attempted to on the

literature) and vice versa.

For the projection, we’ve developed a technique based on force-directed graph lay-

out that links each class to its hierarchical parent. Points in the projection (i.e. classes) are

constrained to their original R2 positions (leaf nodes) and package representative nodes

are free to move according to the forces acting upon them (non leafs).

In this graph, each class point connects to its package representative. In turn, every

package representative node connects to the tree root node.

Each node is capable of generating attraction and repulsion forces. Two linked

nodes attract each other with a force linearly proportional to their distance. Additionally,

each node repels all other nodes with a force that degrades quadratically with their pair-

wise distance and is scaled by the node’s radius in order to try to avoid overlap.

If a node is able to move (i.e. package representative or root), the sum of the

forces acting upon it as well as its current velocity dictate its position on the next iteration,

creating a system that simulates particle momentum. This system iterates until it reaches

equilibrium, which is only broken when we move to the next revision and node positions

change. In which case, the system smoothly transitions to a new stable configuration.

Figure 4.30 is an example of a stable configuration for a simple hierarchy. Figure

4.31 shows the same scenario for a more complex dataset (117 classes). With this number

of classes it is already impossible to get any hierarchical insight. But if we are only

interested in understanding the Rn neighborhood of a couple of packages, Figure 4.32

shows that it is possible to do so through filtering.

Figure 4.30: Linking nodes hierarchically on a synthetic projection

Figure 4.31: Linking nodes hierarchically on the ExoPlayer project

Figure 4.32: Linking filtered packages hierarchically on the ExoPlayer project

This experiment was an attempt to find correlation between similarity of classes

and their location in the project structure. The conclusion we arrived at is that, for our

datasets, there is none. Which is an interesting result nevertheless.

Our other goal was to encode similarity on the Treemap. In order to do so, we

computed the Rn distances between every pair of points, selecting only the 1% closest

points. Between each pair in this set, we drew a line which uses the opacity to commu-

nicate the strength of the resemblance between the two points. The result for a single

revision can be seen on Figure 4.33. It is interesting to see as the project evolves, how

these relationships change.

Figure 4.33: Linking nodes by similarity on the ExoPlayer project

One future improvement would be to use Holten (2006) approach with edge bundling

to encode the similarity between nodes, as presented in Figure 4.34.

Figure 4.34: Visualization of a software system’s call graph with edge bundling

Source: (HOLTEN, 2006)

Highlighting Change

As previously mentioned, one of the reasons one might use visualization is to

discover the unknown. One place that we might find interesting patterns without initially

knowing what we are looking for is where most change takes place from one revision to

the next. That’s the reason we decided to add the option of highlighting the entities that

moved the most in Rn from revision ti to ti+1.

The highlight consists of a temporary aura that surrounds points in the projection

and partially covers entities on the Treemap during the change of revision animation.

This allows us to see where hierarchically in the project as well as in which groups in the

projection coding effort has been put.

Figures 4.35 and 4.36 highlight the entities where most change happened in revi-

sion 22 and 44 respectively. We can see that in one a lot of change happened in small

classes of one particular package (hierarchical neighbors), while in the other a lot of

change took place is large classes (projection neighbors). This kind insight might be

extremely valuable when trying to find the origin of a bug, for example.

Figure 4.35: Highlight of change in Revision 22

Figure 4.36: Highlight of change in Revision 44

Additionally to project information, this data could be used to “debug” the projec-

tion technique, identifying false positive (i.e. points that moved a lot in R2 but not in Rn)

and false negative (i.e. points that barely moved in R2 but traveled significantly in Rn)

errors in change.

5 CONCLUSION

We believe this work was a worthy debut on the software visualization field. From

scratch and without support of specialized libraries, we have built a tool that combines

long-established visualization techniques (e.g. treemaps, spectrographs) with state of the

art approaches to understanding multidimensional time-dependent data. Pushing these

techniques to their limits, we were able to understand where they fail, and motivate our-

selves to create future work that tackles these challenges.

Furthermore, the developed software quality metric extraction process was a nice

feat and it has already been put to use in other interesting work in the softvis field (SILVA

et al., 2016). Hopefully our contribution doesn’t end here, as there are many improve-

ments to be made if we want to take this tool to the next level.

REFERENCES

AIGNER, W. et al. Visualization of Time-Oriented Data. [S.l.]: Springer-Verlag Lon-
don, 2011.

AUBER, D. et al. Gospermap: Using a gosper curve for laying out hierarchical data. IEEE
Transactions on Visualization and Computer Graphics, IEEE Computer Society, Los
Alamitos, CA, USA, v. 19, n. 11, p. 1820–1832, 2013. ISSN 1077-2626.

BALZER, M.; DEUSSEN, O. Voronoi treemaps. IEEE Computer Society, Washington,
DC, USA, p. 7–, 2005. Available from Internet: <http://dx.doi.org/10.1109/INFOVIS.
2005.40>.

BEDERSON, B. B.; SHNEIDERMAN, B.; WATTENBERG, M. Ordered and quantum
treemaps: Making effective use of 2d space to display hierarchies. ACM Trans. Graph.,
ACM, New York, NY, USA, v. 21, n. 4, p. 833–854, oct. 2002. ISSN 0730-0301. Available
from Internet: <http://doi.acm.org/10.1145/571647.571649>.

BREWER, C. Color Brewer. 2016. <http://colorbrewer2.org/>. Accessed: 2016-06-25.

BROOKS JR., F. P. No silver bullet essence and accidents of software engineering. Com-
puter, IEEE Computer Society Press, Los Alamitos, CA, USA, v. 20, n. 4, p. 10–19, abr.
1987. ISSN 0018-9162. Available from Internet: <http://dx.doi.org/10.1109/MC.1987.
1663532>.

BRULS, M.; HUIZING, K.; WIJK, J. van. Squarified treemaps. Data Visualization 2000:
Proc. Joint Eurographics and IEEE TCVG Symp. on Visualization, 2000.

CHACON, S. Pro Git. [S.l.]: Apress, 2009.

CHIDAMBER, S.; KEMERER, C. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, v. 20, n. 6, p. 476–493, 1994.

DANIAL, A. CLOC. 2016. <https://github.com/AlDanial/cloc>.

DIEHL, S. Software visualization: visualizing the structure, behaviour, and evolution
of software. [S.l.]: Springer, 2007.

Eclipse Foundation. Eclipse Neon Release Train Now Available. 2016. <http://www.
eclipse.org/org/press-release/20160622_neon.php>. Accessed: 2016-11-9.

EICK, S. C.; STEFFEN, J. L.; SUMNER, E. E. Seesoft-a tool for visualizing line oriented
software statistics. IEEE Transactions on Software Engineering, v. 18, n. 11, p. 957–
968, Nov 1992. ISSN 0098-5589.

GERSHON, N. D. From perception to visualization. Scientific Visualization: Advances
and Challenges. Academic Press, 1994, 1994.

Gimp Team. About Gimp. 2016. <https://www.gimp.org/about/>. Accessed: 2016-11-9.

HARTIGAN, J. Printer graphics for clustering. Journal of Statistical Computation and
Simulation, v. 4, n. 3, p. 187–213, 1975. Available from Internet: <http://dx.doi.org/10.
1080/00949657508810123>.

http://dx.doi.org/10.1109/INFOVIS.2005.40
http://dx.doi.org/10.1109/INFOVIS.2005.40
http://doi.acm.org/10.1145/571647.571649
http://colorbrewer2.org/
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/MC.1987.1663532
https://github.com/AlDanial/cloc
http://www.eclipse.org/org/press-release/20160622_neon.php
http://www.eclipse.org/org/press-release/20160622_neon.php
https://www.gimp.org/about/
http://dx.doi.org/10.1080/00949657508810123
http://dx.doi.org/10.1080/00949657508810123

HOLTEN, D. Hierarchical edge bundles: Visualization of adjacency relations in hierar-
chical data. IEEE Transactions on Visualization and Computer Graphics, 2006.

INSELBERG, A.; DIMSDALE, B. Parallel coordinates: A tool for visualizing multi-
dimensional geometry. In: Proceedings of the 1st Conference on Visualization ’90.
Los Alamitos, CA, USA: IEEE Computer Society Press, 1990. (VIS ’90), p. 361–
378. ISBN 0-8186-2083-8. Available from Internet: <http://dl.acm.org/citation.cfm?id=
949531.949588>.

JOIA, P. et al. Local affine multidimensional projection. IEEE TVCG, v. 17, n. 12, p.
2563–2571, 2011.

LANZA, M. The evolution matrix: Recovering software evolution using software visual-
ization techniques. ACM, New York, NY, USA, p. 37–42, 2001. Available from Internet:
<http://doi.acm.org/10.1145/602461.602467>.

MAATEN, L. van der; HINTON, G. E. Visualizing high-dimensional data using t-SNE. J
Mach Learn Res, v. 9, p. 2579–2605, 2008.

ONAK, K.; SIDIROPOULOS, A. Circular partitions with applications to visualization
and embeddings. ACM, New York, NY, USA, p. 28–37, 2008. Available from Internet:
<http://doi.acm.org/10.1145/1377676.1377683>.

PAULOVICH, F. V. et al. Least square projection: A fast high-precision multidimensional
projection technique and its application to document mapping. IEEE TVCG, v. 14, n. 3,
p. 564–575, 2008.

PEARCE, S. GitSvnComparison. 2016. <https://git.wiki.kernel.org/index.php/
GitSvnComparison>.

RAUBER, P.; FALCAO, A.; TELEA, A. Visualizing time-dependent data using dynamic
t-sne. in Proceedings EuroVis Short Papers, 2016.

RENIERS, D. et al. The solid toolset for software visual analytics of program struc-
ture and metrics comprehension: From research prototype to product. Science of com-
puter programming, Elsevier, v. 79, p. 224–240, 1 2014. ISSN 0167-6423. Relation:
http://www.rug.nl/research/jbi/ Rights: University of Groningen, Johann Bernoulli Insti-
tute for Mathematics and Computer Science.

RIBECCA, S. Data Visualization Catalogue. 2016. <http://www.datavizcatalogue.
comAndgt>.

SCITOOL. Metric Implementation Notes. 2016. <https://scitools.com/documents/
metricImplementationNotes.pdf>. Accessed: 2016-11-9.

SHNEIDERMAN, B.; WATTENBERG, M. Ordered treemap layouts. IEEE Computer
Society, Washington, DC, USA, p. 73–, 2001. Available from Internet: <http://dl.acm.
org/citation.cfm?id=580582.857710>.

SILVA, R. R. O. d. et al. Metric evolution maps: Multidimensional attribute-driven explo-
ration of software repositories. In: HULLIN, M.; STAMMINGER, M.; WEINKAUF, T.
(Ed.). Vision, Modeling and Visualization. [S.l.]: The Eurographics Association, 2016.
ISBN 978-3-03868-025-3. ISSN -.

http://dl.acm.org/citation.cfm?id=949531.949588
http://dl.acm.org/citation.cfm?id=949531.949588
http://doi.acm.org/10.1145/602461.602467
http://doi.acm.org/10.1145/1377676.1377683
https://git.wiki.kernel.org/index.php/GitSvnComparison
https://git.wiki.kernel.org/index.php/GitSvnComparison
http://www.datavizcatalogue.comAndgt
http://www.datavizcatalogue.comAndgt
https://scitools.com/documents/metricImplementationNotes.pdf
https://scitools.com/documents/metricImplementationNotes.pdf
http://dl.acm.org/citation.cfm?id=580582.857710
http://dl.acm.org/citation.cfm?id=580582.857710

SOMMERVILLE, I. Software Engineering (7th Edition). [S.l.]: Pearson Addison Wes-
ley, 2004. ISBN 0321210263.

SPENCE, R. Information Visualization: Design for Interaction (2Nd Edition). Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 2007. ISBN 0132065509.

Stack Overflow. Stack Overflow 2015 Developer’s Survey. 2016. <http://stackoverflow.
com/research/developer-survey-2015>. Accessed: 2016-11-9.

TELEA, A. Data Visualization: Principles and Practice, Second Edition. [S.l.]: A K
Peters/CRC Press, 2014.

TENENBAUM, J. B.; SILVA, V. de; LANGFORD, J. C. A global geometric framework
for nonlinear dimensionality reduction. Science, v. 290, n. 5500, p. 2319, 2000.

VOINEA, L.; TELEA, A.; WIJK, J. J. van. Cvsscan: Visualization of code evolution.
In: Proceedings of the 2005 ACM Symposium on Software Visualization. [S.l.: s.n.],
2005. (SoftVis ’05).

VOINEA, L.; TELEA, A.; WIJK, J. J. van. Cvsscan: Visualization of code evolution.
ACM, New York, NY, USA, p. 47–56, 2005. Available from Internet: <http://doi.acm.
org/10.1145/1056018.1056025>.

VOINEA, S. L.; TELEA, A. Cvsgrab: Mining the history of large software projects. In:
SANTOS, B. S.; ERTL, T.; JOY, K. (Ed.). EUROVIS - Eurographics /IEEE VGTC
Symposium on Visualization. [S.l.]: The Eurographics Association, 2006. ISBN 3-
905673-31-2. ISSN 1727-5296.

WANG, L.; ZHANG, Y.; FENG, J. On the euclidean distance of images. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 2005, 2005.

WIJK, J. J. V. The value of visualization. In: . [S.l.: s.n.], 2005. p. 79–86.

http://stackoverflow.com/research/developer-survey-2015
http://stackoverflow.com/research/developer-survey-2015
http://doi.acm.org/10.1145/1056018.1056025
http://doi.acm.org/10.1145/1056018.1056025

	Abstract
	Resumo
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Data
	1.2 Research Goal

	2 Related work
	3 Metric Collection
	3.1 Version Control System
	3.2 Software Quality Metrics Extraction Tools
	3.3 Metric Extraction
	3.4 Dataset Filtering and Normalization

	4 Visualization
	4.1 Hierarchical Data
	4.1.1 Squarified Treemap
	4.1.2 Sunburst Diagram

	4.2 Colormap
	4.3 Projection
	4.3.1 Glyphs

	4.4 Visualizing Evolution
	4.5 Linking the Views
	4.6 Highlighting Change

	5 Conclusion
	References
	References

