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Abstract
In this paper, we introduce the inflated beta autoregressive moving average (IβARMA) mod-
els formodeling and forecasting time series data that assume values in the intervals (0,1], [0,1)
or [0,1]. The proposed model considers a set of regressors, an autoregressive moving average
structure and a link function to model the conditional mean of inflated beta conditionally dis-
tributed variable observed over the time. We develop partial likelihood estimation and derive
closed-form expressions for the score vector and the cumulative partial information matrix.
Hypotheses testing, confidence interval, some diagnostic tools and forecasting are also pro-
posed. We evaluate the finite sample performances of partial maximum likelihood estimators
and confidence interval using Monte Carlo simulations. Two empirical applications related
to forecasting hydro-environmental data are presented and discussed.
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1 Introduction

The most commonly assumption made in applications of time series is, by far, Gaussianity
(Chuang and Yu 2007; Box et al. 2015). This should be no surprise as Gaussianity allows
for simpler derivation of theoretical results, often leading to simpler models. However, this
assumption can be too restrictive for many applications (Tiku et al. 2000; Bayer et al. 2020).
As a consequence, there has been an increase in interest in non-Gaussian time series mod-
els (Zheng et al. 2015). In this field, some general models based on generalized linear models
(GLM) (McCullagh and Nelder 1989) are considered in Li (1991), Li (1994), Benjamin et al.
(2003), and Fokianos and Kedem (2004). A comprehensive reference on general models for
time series analysis is Kedem and Fokianos (2002).

When dealing with data that is naturally bounded, for example, proportion of votes in
an election, relative humidity and administrative efficiency score, Gaussian models are not
adequate. This problem is stressed from a forecasting point of view where, due to the nature
of Gaussian models, one can obtain forecasted values outside the natural bounds of the data.
Recent works on non-Gaussian time series modeling are interested in modeling the behavior
of double bounded variables, such as in Rocha andCribari-Neto (2009), da-Silva et al. (2011),
Guolo and Varin (2014), Bayer et al. (2017), Bayer et al. (2018), Pumi et al. (2019), Pumi
et al. (2021) and Melchior et al. (2021). These models are based on the assumption that the
variable of interest follows a continuous distribution. However, there are numerous instances
where the data present one or more values that appear more frequently than they should, even
in the case of discrete data. This phenomenon is called inflation. There are several time series
applications and forecasting problems for which a continuous distribution is not suitable for
data modeling because of the presence of point masses. For instance, in very humid places
such as the Amazon, relative air humidity data often present excess of 1’s and it is also
common to observe excess of 0’s in percentage of useful volume in water reservoirs.

In these situations, continuous distributions, such as the beta distribution, are not suitable
for datamodeling, since the beta-based log-likelihood function becomesunbounded and, thus,
requiring a new strategy for modeling this type of data. A common and simple approach to
handle with the problem of inflation is to model the underlying distribution as a mixture of
a hypothesized distribution, responsible for the overall probabilistic behavior, and a discrete
(possible pointmass) distribution to account for the inflation itself. This idea is easily extended
to consider covariates in themodel. An earlywork in this direction is the zero-inflated Poisson
regression of Lambert (1992). In the context of double bounded continuous data, Ospina and
Ferrari (2012) andBayes andValdivieso (2016) generalized the beta regressionmodel (Ferrari
and Cribari-Neto 2004) to account for the presence of 0’s and/or 1’s, possibly in excess. To
this end, the authors considered the inflated beta distribution which is a convex combination
of the beta distribution and two point masses located at 0 and 1.

This paper examines the problem ofmodeling and forecasting time series assuming values
in the intervals (0, 1], [0, 1) or [0, 1].We consider an autoregressivemoving average (ARMA)
structure for predicting the conditional mean of an inflated beta distributed dependent vari-
able. The proposed model, called inflated beta autoregressive moving average (IβARMA),
naturally accommodates occurrences of values 0 and/or 1 with positive probability, extending
the applicability of the beta autoregressive moving average (βARMA) models (Rocha and
Cribari-Neto 2009). Another generalization we propose is the use of the so-called partial like-
lihood for inference in the introduced IβARMAmodel. This framework generalizes both, the
conditional likelihood applied in Rocha and Cribari-Neto (2009) and the standard likelihood
by allowing the presence of time-dependent random covariates in themodel. Finally, since the
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distribution of rates and proportions are typically asymmetric, the proposed model naturally
accommodates asymmetries also avoiding transforming the data and any of its undesirable
effects.

The paper unfolds as follows. Section 2 introduces the proposed model and partial likeli-
hoodmethod for parameter estimation. Confidence intervals and hypothesis testing strategies
are presented in Section 3. Section 4 focuses on model selection criteria, residuals and fore-
casting. Section 5 containsMonte Carlo simulation results on parameter estimation. Section 6
illustrates the methodology by applying the model to relative humidity data and the percent-
age of useful volume in a water reservoir. Concluding remarks are given in Sect. 7. Finally,
closed-form expressions for the first derivatives of partial log-likelihood function (score
function) and for the partial cumulative information matrix are provided in the Appendix.

2 Proposedmodel

Let {xt }t∈Z denote a set of r -dimensional possibly random covariates for a stochastic process
{yt }t∈Z taking values in [0, 1] and letFt−1 denote the σ -field generated by past observations
of the response variable and the past and present values (when known) of the covariates
available up to time t . In practical terms, Ft−1 can be viewed as the set containing all
information regarding the data available to the researcher at time t . In technical terms, we
have Ft−1 = σ {yt−1, yt−2, . . . , x�

t , x�
t−1, x

�
t−2 . . . }.

In the terminology of Cox (1981), the proposed model is an observation-driven model in
which the random component yt follows, conditionally onFt−1, the inflated beta distribution
with probability density function given by Bayes and Valdivieso (2016)

f (yt ;α0, α1, μt , φ |Ft−1) =[
α0(1 − μt )

]I0(yt )[α1μt ]I1(yt )
[
ctb(yt ;νt , φ)

]I(0,1)(yt ), (1)

where IA(·) is the indicator function of the set A, μt = E(yt | Ft−1) ∈ (0, 1), α0, α1 ∈
[0, 1],

ct := 1 − α0(1 − μt ) − α1μt and νt := (1 − α1)μt

ct
, (2)

and b(y; ν, φ) is the beta density function parameterized as in Ferrari and Cribari-Neto
(2004):

b(y; ν, φ) = �(φ)

�(νφ)�
(
(1 − ν)φ

) yνφ−1(1 − y)(1−ν)φ−1, 0 < y < 1,

where 0 < ν < 1 and φ > 0. We say that, conditionally on Ft−1, yt ∼ BI (α0, α1, μt , φ).
The respective conditional cumulative distribution function is given by

F(yt ;α0, α1, μt , φ |Ft−1) = α0(1 − μt ) + α1μt I1(yt ) + ctB(yt ; νt , φ)I(0,1](yt ), (3)

where B(y; ν, φ) is the cumulative distribution function of a beta distribution with mean
parameter ν and precision φ. Observe that, if yt ∼ BI (α0, α1, μt , φ), then

E(yt |Ft−1) = μt and Var(yt |Ft−1) = (1 + α1φ)

1 + φ
μt +

(
(1 − α1)

2φ

ct (1 + φ)
− 1

)
μ2
t .

When α0 > 0 and α1 = 0, a random variable yt following (1) is said to have a zero-inflated
beta distribution. If α0 = 0 and α1 > 0, the random variable yt is said to have an one-inflated
beta distribution. The former case occurs with probability P(yt = 0 | Ft−1) = α0(1 − μt )

123



183 Page 4 of 24 F. M. Bayer et al.

Fig. 1 Mixed probability function (1) for y ∼ BI (α0, α1, μ, φ), with φ = 5 and different parameter values
of α0, α1, and μ

and the second one with probability P(yt = 1 | Ft−1) = α1μt . Note that this makes sense,
since the higher the conditional mean, the greater the probability of having yt occurrences
equal to one (closer to the upper bound). Similarly, the probability of occurrence of values
equal to zero is greater when the conditional mean is close to the lower bound of the interval.
Of course, if α0 = 0 and α1 = 0, (1) is simply the density of a beta distributed random
variable. Figure 1 presents the graphs of some inflated beta mixed probability functions.

Let g : (0, 1) → R be a twice differentiablemonotonic one-to-one link function for which
the inverse link is of class C2(R) (the class of twice continuously differentiable functions in
R). The model’s systematic component specify the conditional mean of yt through a GLM-
like structure (McCullagh and Nelder 1989) with the addition of an extra term responsible to
capture a possible serial dependence in the conditional mean which, conditionally on Ft−1,
is assumed to follow the ARMA(p, q)-like structure as

g(μt ) = ηt = α + x�
t β +

p∑

i=1

ϕi yt−i +
q∑

j=1

θ j rt− j , (4)

where ηt is the linear predictor, α is an intercept, β := (β1, . . . , βr )
� ∈ Rr is the vector of

parameters related to the covariates, ϕ := (ϕ1, . . . , ϕp)
� ∈ Rp and θ := (θ1, . . . , θq)

� ∈
Rq are the autoregressive and moving average parameters, respectively, and rt := yt − μt is
the moving average error term. The proposed IβARMA(p, q) is defined by (1) and (4).

Observe that (4) is similar to the systematic component in Rocha and Cribari-Neto (2009),
but with the error and autoregressive term in the response’s level. With this specification we
avoid problemswith g(yt ), when yt equals 0 or 1,which occurswith positive probability in the
IβARMA(p, q) processes, otherwise inevitable when the deterministic structure is defined
on the predictor level, i.e., when rt = g(yt ) − g(μt ). This framework, using autoregressive
terms in the response’s level, is widely considered in other classes of models, such as, for
instance, for binary outcomes inMarkov regressionmodels for times series (Zeger andQaqish
1988), time series following the canonical form of the exponential family of distributions
(Kedem and Fokianos 2002; Fokianos and Kedem 2004), and for discrete double bounded
time series using beta binomial distribution (Palm et al. 2021). One interesting consequence
of using the error term in the response’s level is that the ARMA-like structure does not follow
the usual “rules” of a classical ARMA model. This is so because, although (4) resembles
an ARMA structure, it cannot actually be rewritten as an ARMA-like difference equation
since the left hand side of (4) is on the predictive level while the autoregressive structure and
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error term are not. Some consequences of this fact is that high values of the autoregressive
coefficients are not necessarily associated to non-stationary or explosive behavior, as in usual
ARMA models.

Remark 1 A clarification about the notation. Although we are denoting random variables as
small letters, in (4) x�

t may contain non-random terms (such as a trend) as well as random
potentially time-dependent components. Also, the term x�

t contains the covariates that are
known up to time t . If x�

t is deterministic, then we typically know x�
t at time t (and all

subsequent ones). However, if the covariates are random, its values are typically known only
up to time t − 1. As a convention, the notation in (4) is understood in this fashion.

2.1 Partial likelihood estimation

Parameter estimation in the proposed IβARMA model is carried on via partial maximum
likelihood estimation (PMLE) (Cox 1975). The PMLE is most useful when, at each time
step, the knowledge regarding a given model can be updated in a sequential way. GLM-like
models for time series typically present a natural nested structure such as the one provided by
(1) and (4), where the knowledge regarding model is updated in a sequential way, quantified
by Ft , via the inclusion Ft−1 ⊂ Ft , ∀t . In this situation, PMLE allows for sequential
conditional inference, naturally accommodating autoregressive components, time-dependent
random covariates and any type of interaction between them (Kedem and Fokianos 2002).
For practical purposes, PMLE is very similar to conditional likelihood and the computational
implementation of the both methods is almost identical.

Let y1, . . . , yn be a sample from an IβARMA(p, q) process, x1, . . . , xn be the observed
covariates, and γ := (

α0, α1, φ, α,β�,ϕ�, θ�)� ∈ � := � × (0,∞) ×Rp+q+r+1 denote
the κ-dimensional parameter vector, where � := {x, y ∈ [0, 1] : 0 ≤ x + y ≤ 1} ⊂ [0, 1]2
and κ := (p + q + r + 4) is the number of model parameters. We shall denote (1) by
f (yt ; γ | Ft−1). We observe that the partial log-likelihood function for γ , conditionally to
Ft−1, is null for the first m = max(p, q) values of t , and hence we have

�(γ ) :=
n∑

t=m+1

log
(
f (yt ; γ | Ft−1)

) =
n∑

t=m+1

�t (γ ), (5)

where

�t (γ ) : = [
log(α0) + log(1 − μt )

]
I0(yt ) + [

log(α1) + log(μt )
]
I1(yt )

+
[
log(ct ) + log

(
�(φ)

) − log
(
�(νtφ)

) − log
(
�

([1 − νt ]φ)
)

+ (νtφ − 1) log(yt ) + ([1 − νt ]φ − 1
)
log(1 − yt )

]
I(0,1)(yt ),

with ct and νt given by (2). As a convention, the indicator function takes priority in evaluating
any expression. Observe that if either α0 or α1 are zero, then the respective term in (1) is
dropped from the likelihood. The PMLE γ̂ is obtained upon maximizing (5) with respect to
γ , that is, γ̂ := supγ∈�{�(γ )}. More details about numerical optimization, the associated
score vector and cumulative partial information matrix are derived in the Appendix.
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3 Asymptotic theory and large sample inference

In this section, we briefly discuss large sample properties of the PMLE in the context of
IβARMA processes. Hypothesis test and confidence intervals are also discussed.

3.1 Large sample theory

Rigorous asymptotic theory for the maximum likelihood estimator in the context of general-
ized linear models has a relatively long history. For non-canonical links the pioneer work of
Fahrmeir and Kaufmann (1985) set grounds for latter development of the theory. For GLM-
like dynamic models, a general theory for PMLE is presented in the works of Fokianos and
Kedem (1998, 2004); Kedem and Fokianos (2002). In the particular case of the βARMA
models, Rocha and Cribari-Neto (2009, 2017) present a central limit theorem for the condi-
tional maximum likelihood, but without formally stating assumptions nor providing a proof
for the result. The asymptotic theory of the PMLE for IβARMA processes is closely related
to the general theory provided in Fokianos and Kedem (1998, 2004), but not exactly so
because, even though the inflated beta is a member of the exponential family, it cannot be put
in canonical form. However, we conjecture that under suitable conditions, closely related to
the ones presented in Fokianos andKedem (2004), the PMLE is consistent and asymptotically
normally distributed, so that, for large n,

√
n(γ̂ − γ 0) ∼ Nκ

(
0, K (γ 0)

−1), (6)

where γ 0 denotes the true parameter and K (γ 0) is a suitable positive definite invertible
matrix, Nκ (0,�) denotes the κ-variate normal distribution with null mean vector 0 and
variance-covariance matrix �. In finite sample, K (γ ), is approximated by the cumulative
partial information matrix presented in the Appendix A.2.

3.2 Confidence interval and hypothesis test

Let γ j and γ̂ j denote the j th component of γ and of the PMLE γ̂ based on a sample of size
n of an IβARMA(p, q), respectively. From approximation (6),

{Kn(γ̂ ) j j }−1/2(γ̂ j − γ j ) ∼ N (0, 1),

holds for large n, where Kn(γ̂ ) j j is the j th diagonal element of Kn(γ̂ )−1 and Kn(γ̂ ) is the
cumulative partial information matrix presented in the Appendix A.2 evaluated at the PMLE
γ̂ . Let zδ represent the δ standard normal quantile. An asymptotic approximate 100(1−δ)%,
0 < δ < 1/2, confidence interval for γ j , j = 1, . . . , κ , is given by

[
γ̂ j − z1−δ/2

(
Kn(γ̂ ) j j

)1/2
, γ̂ j + z1−δ/2

(
Kn(γ̂ ) j j

)1/2]
.

The asymptotic normality of the PMLE provides the means to conduct hypothesis testing
based on asymptotic versions of well-known statistics. We shall consider hypothesis of the
form: H0 : γ j = γ 0

j against H1 : γ j �= γ 0
j . The traditional z statistic is given by Pawitan

(2001)

z = γ̂ j − γ 0
j√

Kn(γ̂ ) j j
.
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Under H0, the limiting distribution of z is standard normal. It is also possible to perform
more general hypothesis testing inference using the likelihood ratio (Neyman and Pearson
1928), Rao’s score (Rao 1948), Wald (Wald 1943), and gradient (Terrell 2002) statistics. As
long as a normal approximation like (6) holds, the technique presented in Fahrmeir (1987)
can be applied to shown that, under the null hypothesis, such test statistics are asymptoti-
cally chi-squared distributed, with the same degree of freedoms as their counterparts under
independence.

4 Diagnostic analysis and forecasting

In this section, we shall discuss results related to model selection criteria, residual analysis as
well as in-sample and out-of-sample predictions for the proposed IβARMA models. Diag-
nostic checks can be applied to a fitted model to determine whether it captures the true data
dynamics. A fitted model that passes all diagnostic checks can then be used for forecasting.

4.1 Model selection criteria

Model selection criteria in the class of IβARMAmodel can be based onAkaike’s information
criterion (AIC) (Akaike 1974). Following the idea of modified AIC (MAIC) proposed in
Bayer et al. (2018), we consider the following criterion:

MAIC = 2κ − 2�̂∗, (7)

where �̂∗ := n
n−m �(γ̂ ) and κ is the dimension of γ . Notice that when comparing models of

different orders (with different values of m), �̂∗ can be interpreted as the sum of n terms.
Therefore, the MAIC does not incorrectly penalize models with larger values of m (Bayer
et al. 2018). Among a set of competitor models, we favor the model with smallest MAIC.
Replacing the term 2κ in (7) by log(n)κ and log

(
log(n)

)
κ we obtainmodified versions of the

Schwarz information criterion (MSIC) (Schwarz 1978) and Hannan and Quinn information
criterion (HQ) (Hannan and Quinn 1979), respectively.

4.2 Residuals

Residual analysis is important for checking whether the selected model provides a good fit
to the data (Kedem and Fokianos 2002). Visual inspection of a time series residuals plot is
an indispensable first step when assessing goodness-of-fit (Box et al. 2015). In the context
of GLM-like dynamic models there are several ways to define residuals. For the proposed
IβARMA(p, q), following Ospina and Ferrari (2012) for inflated beta regression, we will
consider the randomized quantile residual given by

rqt = �−1(ut ),

with�(·)being the standard normal distribution function,ut a uniform randomvariable on the
interval (at , bt ], where at = limy↑yt F(y; γ̂ | Ft−1), bt = F(yt ; γ̂ | Ft−1), and F(yt ; γ |
Ft−1) is the cumulative distribution function of an inflated beta distribution conditional to
Ft−1, given in (3).

Under the correct model specification, the residuals are expected to behave as white noise,
i.e., they should be serially uncorrelated and follow a zero mean and constant variance pro-
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cess (KedemandFokianos 2002;Bayer et al. 2018).Hence, it is expected that 95%of residuals
autocorrelations lie inside the (asymptotic) interval

[−1.96/
√
n − m, 1.96/

√
n − m

]
. Plots

of the residuals autocorrelation function (ACF)with horizontal lines at±1.96/
√
n − m can be

used for assessing whether the residuals display white noise behavior (Kedem and Fokianos
2002). It is also possible to test if the residual autocorrelations are equal to zero using, for
example, adapted versions of tests given by Ljung and Box (1978) and Monti (1994) (see
also Scher et al. 2020).

4.3 Prediction and forecasting

For t = m + 1, . . . , n, in-sample estimates of μt (denoted μ̂t and called predicted values),
are obtained by replacing γ with its PMLE, γ̂ , and rt by yt − μ̂t in (4). For h = 1, 2, . . . ,
h-step ahead forecasts can be computed as

μ̂n+h = g−1
(

α̂ + x�
t β̂ +

p∑

i=1

ϕ̂i
[
yn+h−i

] +
q∑

j=1

θ̂ j
[
rn+h− j

]
)

,

where [yt ] := yt I(−∞,n](t) + μ̂t I(n,∞)(t) and [rt ] := (yt − μ̂t )I(−∞,n](t).

5 Monte Carlo simulation study

In this section, we investigate the finite sample performance of the proposed PMLE approach
in the context of zero, one, and zero-one IβARMAmodel through a Monte Carlo simulation
study. In all simulations, we consider an IβARMA model with systematic component given
by

g(μt ) = α + β1xt + ϕ1yt−1 + ϕ2yt−2 + θ1rt−1 + θ2rt−2,

with g(·) as the logit link and xt are randomly drawn from a uniform (0, 1) distribu-
tion, kept fixed during the simulations. We consider three different scenarios: (i) the zero
IβARMA(1, 1), in which we take α = −1.5, β1 = 1.0, ϕ1 = 1.5, ϕ2 = 0, θ1 = −1, θ2 = 0,
φ = 30, and α0 = 0.07, (ii) the one IβARMA(2,2) with α = 9.675, β1 = 0.636, ϕ1 = 0,
ϕ2 = −6.929, θ1 = 0, θ2 = 9.304, φ = 72.991, and α1 = 0.017, and (iii) the zero-one
IβARMA(1,1) for which α = −0.5, β1 = 1.0, ϕ1 = 1.5, ϕ2 = 0, θ1 = −1, θ2 = 0, φ = 20,
α0 = 0.07, and α1 = 0.08. For the one IβARMA(2, 2) scenario, the parameter values were
selected in order to match the ones found in the real data application considered in the Sect.
6.1. As we explained before, since the error term is in the response’s level, although (4) is
inspired by and resembles an ARMA-like structure, it does not follow the usual “rules” fol-
lowed by ARMA models, so that it is natural to have high values of ϕ1. We consider sample
sizes n ∈ {100, 300, 500}. All codes were written in R version 3.5.2 (R Core Team 2020)
by the authors and are available at https://github.com/fabiobayer/IBARMA.

Tables 1, 2, and 3 present the results based on R = 10,000 replications for the zero
IβARMA(1, 1), one IβARMA(2, 2), and zero-one IβARMA(1, 1) scenarios, respectively.
Presented in the tables are the mean, standard error (SE), and relative bias (RB) of the
point estimators and 95% approximate confidence interval coverage rate (CR). For arbitrary
estimates �̂1, . . . , �̂R of a quantity �, RB is defined as RB = [ 1

R

∑R
i=1

�̂i−�
�

]× 100%, while
CR is defined as the proportion of times that the interval contained the true parameter value.
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Table 1 Monte Carlo simulation results for point estimation and coverage rate (CR) for the zero IβARMA(1,1)

n Measures α β1 ϕ1 θ1 φ α0
−1.5 1 1.5 −1 30 0.07

100 Mean −1.489 1.001 1.469 −1.032 32.078 0.070

SE 0.189 0.142 0.496 0.645 4.794 0.032

RB −0.703 0.069 −2.036 3.225 6.927 0.132

CR 0.914 0.937 0.911 0.895 0.948 0.919

300 Mean −1.496 1.002 1.487 −1.004 30.667 0.070

SE 0.108 0.074 0.262 0.330 2.543 0.019

RB −0.270 0.216 −0.839 0.411 2.225 −0.355

CR 0.941 0.946 0.939 0.932 0.951 0.925

500 Mean −1.497 1.001 1.493 −1.002 30.375 0.070

SE 0.086 0.058 0.206 0.255 1.957 0.014

RB −0.170 0.079 −0.494 0.162 1.248 −0.311

CR 0.945 0.948 0.946 0.940 0.951 0.941

Table 2 Monte Carlo simulation results for point estimation and coverage rate (CR) for the one IβARMA(2,2)

n Measures α β1 ϕ2 θ2 φ α1
9.675 0.636 −6.929 9.304 72.991 0.017

100 Mean 9.54 0.528 −6.666 8.902 77.765 0.021

SE 3.352 1.902 3.723 4.786 12.051 0.012

RB −1.399 −16.987 −3.802 −4.326 6.541 25.987

CR 0.883 0.924 0.878 0.86 0.949 0.998

300 Mean 9.668 0.609 −6.891 9.212 74.547 0.017

SE 2.324 1.273 2.518 3.154 6.378 0.008

RB −0.068 −4.173 −0.544 −0.989 2.132 0.684

CR 0.917 0.94 0.916 0.909 0.952 0.866

500 Mean 9.746 0.596 −6.961 9.302 73.936 0.017

SE 1.975 1.598 2.208 2.711 5.206 0.006

RB 0.732 −6.216 0.462 −0.026 1.294 1.155

CR 0.927 0.943 0.926 0.925 0.953 0.900

In all scenarios, both SE and RB decrease as the sample size increases, which provides
evidence of the consistency of the PMLE. For instance, for β1 estimator in Table 1, the SE
is equal to 0.142 for n = 100 and equal to 0.058 for n = 500, while for φ̂ we have a
RB of 6.927% for n = 100 and 1.248% for n = 500. Table 2 shows similar results for
the one-inflated scenario. Table 3 also shows a similar scenario for α0 and α1 estimators.
For instance, the relative bias also decreases considerably as the sample size increases. For
example, with n = 100, the estimator of α0 has RB = −8.936% and the estimator of α1

presents RB = −0.140%. For n = 500, the bias of α̂0 and α̂1 are reduced to −0.522% and
−0.055%, respectively. In general, coverage rates are close to the nominal value of 95%.
For instance, for n = 500 the empirical coverage of the confidence intervals for ϕ1 are,
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Table 3 Monte Carlo simulation results for point estimation and coverage rate (CR) for the zero-one
IβARMA(1,1)

n Measures α β1 ϕ1 θ1 φ α0 α1
−0.5 1 1.5 −1 20 0.070 0.080

100 Mean −0.430 1.008 1.405 −0.964 21.413 0.064 0.080

SE 0.585 0.195 0.800 0.942 3.309 0.446 0.031

RB −13.990 0.829 −6.300 −3.621 7.063 −8.936 −0.140

CR 0.891 0.933 0.889 0.874 0.948 0.833 0.931

300 Mean −0.471 1.002 1.462 −0.976 20.473 0.069 0.080

SE 0.336 0.105 0.458 0.515 1.753 0.029 0.018

RB −5.722 0.239 −2.533 −2.397 2.367 −0.921 −0.013

CR 0.931 0.941 0.928 0.927 0.950 0.887 0.940

500 Mean −0.483 1.002 1.477 −0.982 20.285 0.070 0.080

SE 0.266 0.079 0.360 0.399 1.323 0.022 0.014

RB −3.426 0.187 −1.546 −1.760 1.423 −0.522 −0.055

CR 0.937 0.949 0.937 0.936 0.950 0.929 0.939

respectively, 94.6% (zero inflated—Table 1) and 93.7% (zero-one inflated—Table 3), and
CR = 92.6% for ϕ2 in the one-inflated scenario (Table 2). As for the precision parameter
estimator, in all scenarios the estimation is very good, improving as the sample size grows. In
general, the numerical results show good properties of the PMLE approach even in moderate
sample sizes.

6 Practical examples

This section presents two empirical applications related to hydro-environmental time series.
The first one considers relative air humidity data, while the second one is about the percentage
of useful volume of a hydroelectric plant’s water reservoir.

6.1 Relative air humidity application

The relative air humidity (RH) is an important meteorological characteristic to public health,
irrigation scheduling design, and hydrological studies. The importance of modeling and
forecasting environmental variables such as RH is largely discussed in literature (Grassly
and Fraser 2006; Bayer et al. 2017). As the humidity variability has been linked to several
infectious diseases (Tamerius et al. 2013), it is important to model properly in order to make
accurate forecasts useful to policymakers.

To showcase the proposed IβARMAmodel,we present an application to themaximumRH
in Santa Maria, RS, Brazil. The actual time series consists of monthly maximum values from
January 2002 through June 2018, yielding a total sample size n = 198, and were obtained
from Brazilian National Institute of Meteorology (INMET) (2018). The last 12 observations
were reserved for out-of-sample forecast purposes, so that only the first n = 186 observations
were used for model identification and estimation. Figure 2 presents the maximum RH time
series plot as well as the plots of the sample ACF and partial ACF (PACF). Figure 2a shows
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Fig. 2 Time series, ACF and PACF plots for the maximum RH in Santa Maria, Brazil

Table 4 Fitted IβARMA model
for the maximum RH in Santa
Maria, Brazil

Parameter Estimate Std. error z stat. Pr(>| z |)
α 9.6750 2.7559 3.5107 0.0004

ϕ2 −6.9288 2.8901 −2.3974 0.0165

θ2 9.3044 3.0828 3.0182 0.0025

β1 0.6361 0.0837 7.6000 < 0.0001

φ 72.9910 7.8699 9.2747 < 0.0001

α1 0.0170 0.0098 1.7452 0.0810

MAIC = −839.0387 MSIC = −816.4585
Ljung–Box (DF = 18): Q = 24.195 (p−value= 0.149)

that we have three observed values equal to 1 in the observations 105, 150, and 166. The RH
reaches 1 (100%) when the air is saturated. The visible sinusoidal pattern in the ACF and
PACF (Fig. 2b and c) indicates the presence of a seasonal dynamic. The yearly variability
is handled in the sense of harmonic regression approach (Bloomfield 2013), by introducing
seasonal covariates

(
sin(2π t/12), cos(2π t/12)

)
, for t ∈ {1, . . . , n}. However, only one of

them was significant and, thus, the final fitted model only contains xt = cos(2π t/12) as
covariate.

In order to select an adequate IβARMA model for the data, we systematically tried dif-
ferent orders p and q and select the one whose parameter were all significant and whose
residual did not reject the null hypothesis in the Ljung–Box test. All tests were conducted
at 10% significance level. Table 4 presents parameter estimates, standard errors, z statistics
and p-values for the selected IβARMA model for the maximum RH. An IβARMA(2,2)
was selected, but the parameters ϕ1 and θ1 were not statistically significant. The MAIC and
MSIC criteria and the Ljung–Box test (using 20 lags, with corrected degrees of freedom in
view of Scher et al. (2020)) considering the randomized quantile residuals are also presented.
Anyone familiar with ARMAmodeling might be surprised with the magnitude of ϕ2, but, as
we explained before, this is so because the particular form (4) assumes given that the error
and AR terms are in the response’s level.

Figure 3 contains some diagnostic plots based on the residual. Figure 3a shows a random
displacement with constant variance and no other visible pattern in the residuals. Figure 3b
and c evidences that the residual autocorrelations are not significantly different from zero.
Hence, all plots and tests indicate that the fitted model is adequate and can be used for out-of-
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Fig. 3 Diagnostic plots for the fitted IβARMAmodel to the RH data based on randomized quantile residuals

sample forecasting. In Fig. 4a, we plot the data (solid line) along with in-sample and 12-step
ahead forecast (dashed red line).

For comparison purposes, we also fit an additive Holt–Winters with automatic adjustment
for smoothing constants and a βARMA model. Observe that values equal to 1 imply an
asymptote in the likelihood function of a βARMAmodel. To solve this problem, we replaced
themwith 0.999. The βARMAmodel is then fitted to this new time series (with ones replaced
by 0.999) by using the same procedure as described above for the IβARMA model. It is
important to note that while this approach solves the numerical problem in the likelihood
function, it does not solve the inflation problem. When replacing values equal to one for
0.999, an inflation in this value is induced. This reflects on the estimates of the parameters
of the dynamic structure, since the probability mass at 0.999 exceeds what is allowed by the
beta distribution, which is an absolutely continuous distribution. Figure 4b shows the out-of-
sample forecasts for the fitted model. We can see that the forecast values by the IβARMA
model are closer to the actual values than the competing models.

In what follows, we consider an out-of-sample forecasting analysis based on a cross-
validation study using a rolling window approach. We consider a training data window
with nT observations moving over the time. For each training window yi , . . . , yi+nT , with
i ∈ {1, . . . , N }, a test window of size h, yi+nT +1, . . . , yi+nT +h , is considered. Then, the fore-
casting accuracy measures for the h-steps-ahead forecasts produced, with h ∈ {1, . . . , H}.
For each h, we have N forecast values that are used to calculate the following out-of-sample
accuracy measures: mean square error (MSE), mean absolute error (MAE), and mean direc-
tional accuracy (MDA). The first twomeasures (MSE andMAE) are widely used quantitative
measures for forecasting evaluation, whileMDA is a popularmetric in economics and finance
field, providing the probability that the model detect the correct direction (upward or down-
ward) of the time series. The forecast measures are given by

MSEh := 1

N

N∑

i=1

(yi+nT +h − μ̂h
i+nT )2,

MAEh := 1

N

N∑

i=1

| yi+nT +h − μ̂h
i+nT |,

MDAh := 1

N

N∑

i=1

I
(
(yi+nT +h − yi+nT )(μ̂h

i+nT − yi+nT ) > 0
)
,
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Fig. 4 In-sample and out-of-sample forecasts for maximum RH in Santa Maria, Brazil

where I (·) is the indicator function and μ̂h
t is the forecast for yt+h using the information

available up to time t . For the RH time series with 198 observations, we fixed nT = 110,
N = 76, and H = 12.

6.2 Percentage of useful volume application

In this section, we present an empirical analysis of the monthly UV (percentage of useful
volume) time series of the Samuel water reservoir in the Rondônia State, Brazil. The UV
is defined as the perceptual volume of water between the maximum and minimum normal
operating levels (Operador Nacional do Sistema Elétrico 2022; Sagrillo et al. 2021). The
hydropower is the primary source of electric energy in Brazil, with an installed hydroelec-
tric capacity representing about 64% of the National Interconnected System (SIN) in 2021
Sagrillo et al. (2021). Thus, the water resource management is important for the generation
of electricity in the country. All code were written in R and can be found at https://github.
com/fabiobayer/IBARMA.
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Table 5 Out-of-sample forecastingmeasures for themodels to RH data in SantaMaria, Brazil. The best results
are highlighted in bold

Measure Model h

1 3 6 9 12

MSEh(×104) IβARMA 8.60 8.74 9.03 10.22 7.31

βARMA 8.93 9.15 9.44 9.73 7.65

Holt–Winters 9.77 9.43 10.96 11.70 10.41

MAEh(×104) IβARMA 210.79 214.81 220.85 234.49 208.30

βARMA 214.80 222.84 229.81 234.26 212.30

Holt–Winters 234.81 224.54 243.34 247.67 230.81

MDAh IβARMA 35.53 60.53 69.74 59.21 38.16

βARMA 38.16 60.53 67.11 53.95 32.90

Holt–Winters 38.16 57.90 69.74 59.21 40.79

Fig. 5 Time series, ACF and PACF plots for the UV in Rondônia, Brazil

The times series under analysis consists of 143 monthly UV observations from January
2011 to November 2022 obtained from Operador Nacional do Sistema Elétrico (2022). As in
the first application, the last 12 observations were set aside for forecasting purposes. In this
case, n = 131 observations are used for fitting the model. Among these 131 observations, 12
of them are equal to zero, representing about 9.16% of the sample size. UV values equal to
zero occurs when the amount of water left in a reservoir cannot be used to make hydroelectric
power, known as dead pool volume.

Figure 5 shows the UV times series, the sample ACF and PACF. The sinusoidal pattern
suggests the presence of a deterministic seasonal component, which is modeled introducing
two seasonal covariates

(
sin(2π t/12), cos(2π t/12)

)
, for t ∈ {1, . . . , n}. Table 6 presents

the fitted model for the UV time series, selected by the same methodology described in
the previous application. An IβARMA(1,2) with θ1 = 0 (not statistically significant) was
selected. All tests were conducted at 10% significance.

The Ljung–Box test in Table 6 and diagnostic plots in Fig. 6 are evidence that the model
is well fitted. Figure 7a shows the actual UV times series and in-sample and 12-step ahead
forecast, while Fig. 7b presents the out-of-sample forecast values for IβARMA, βARMA,
and Holt–Winters models. For fitting βARMA model the zeros were replaced by 0.001.
The predicted and forecast values of the IβARMA show that the proposed model was able to
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Table 6 Fitted IβARMA model
for the UV in Rondônia, Brazil

Parameter Estimate Std. error z stat. Pr(>| z |)
α −2.3997 0.2127 −11.2841 < 0.0001

ϕ1 4.7892 0.3966 12.0749 < 0.0001

θ2 −1.9773 0.7553 −2.6181 0.0088

β1 −0.8690 0.1273 −6.8289 < 0.0001

β2 −0.9641 0.1371 −7.0334 < 0.0001

φ 16.9173 2.2730 7.4429 < 0.0001

α0 0.2082 0.0507 4.1096 < 0.0001

MAIC = −196.4671 MSIC = −173.4655
Ljung–Box (DF = 18): Q = 22.615 (p − value = 0.2058)

Fig. 6 Diagnostic plots for the fitted IβARMAmodel to the UV data based on randomized quantile residuals

accommodate the general pattern of the times series, being useful for inflated double bounded
times series modeling.

Finally, we perform an out-of-sample forecasting analysis using a cross-validation pro-
cedure in the same lines as the one presented in Sect. 6.1. We set nT = 100, N = 31, and
H = 12, where nT +N+H = 143. TheMSEh , MAEh , andMDAh , with h ∈ {1, 3, 6, 9, 12}
are presented in Table 7. We can see that the IβARMA model outperforms the competitors
in almost all measures. Particularly, considering the MDA, the proposed model outperforms
the other models for almost all forecast horizons, being much superior for larger h values.

7 Conclusion

In this article, we have proposed a new dynamical model for modeling and forecasting time
series that are double bounded in the intervals (0,1], [0,1) or [0,1]. The IβARMA model is
built upon the assumption that the conditional distribution of the response variable, given its
past behavior, is the inflated beta (Bayes and Valdivieso 2016). This distribution allows for
modeling double bounded processes assuming values in the unit interval containing excess
of zeros and/or ones.

The contribution of the paper is twofold. First, we proposed an observation-driven model
for which the random component follows an inflated beta distribution over time while the
deterministic part considers an autoregressivemoving average structure and a set of regressors
connected to the conditional mean through a link function. Second, we propose a partial like-
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Fig. 7 In-sample and out-of-sample forecasts for the UV data in Rondônia, Brazil

Table 7 Out-of-sample forecasting measures for the UV data in Rondônia, Brazil. The best results are high-
lighted in bold

Measure Model h

1 3 6 9 12

MSEh(×104) IβARMA 65.86 165.65 161.89 147.48 133.36

βARMA 55.24 246.23 241.46 238.22 218.14

Holt–Winters 130.72 539.15 623.68 377.44 216.62

MAEh(×104) IβARMA 661.88 1053.56 999.60 963.03 892.65

βARMA 586.42 1170.42 1158.41 1149.54 1096.73

Holt–Winters 865.33 1914.81 2056.95 1546.09 1194.14

MDAh IβARMA 90.32 93.55 93.55 80.64 35.48

βARMA 77.42 87.10 93.55 74.19 9.68

Holt–Winters 64.52 74.19 93.55 80.64 9.68
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lihood approach for parameter estimation presenting closed-form expressions for the score
vector and Fisher information matrix. We briefly discuss large sample inference and consider
the problem of interval estimation and hypotheses testing. Diagnostic tools and forecasting
method are developed and discussed. In addition, we provided Monte Carlo evidence on
the finite sample accuracy of point estimation and confidence interval. Finally, two empir-
ical illustrations are presented and discussed to evidence the applicability of the proposed
model for forecasting inflated double bounded data. The results highlight the usefulness of
the proposed model as well as its competitiveness against other established models.
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Appendix A Score vector and cumulative partial informationmatrix

In this appendix,we shall derive the partial score vector and the cumulative partial information
matrix from (5). These are useful for the asymptotic theory and inference as well as numerical
considerations.

A.1 Score vector and optimization algorithm

To obtain the partial score vector, we shall need to obtain the derivative of the log-likelihood
�(γ ) given in (5) with respect to each coordinate γ j , with j ∈ 1, . . . , κ , of the parameter γ .
To obtain the derivative of �(γ ) with respect to αi , i = 0, 1, observe that, in view of (5),

∂ct
∂αi

= (μt − 1)I0(i) − μt I1(i) and
∂νt

∂αi
= (−1)i (α1−i − 1)(μt − 1)μt

c2t
.

Now, for i = 0, 1, it is straightforward to show that

∂�(γ )

∂αi
=

n∑

t=m+1

∂�t (γ )

∂αi
= 1

αi
Ii (yt ) +

(
1

ct

[
∂ct
∂αi

]
+ φ(y∗

t − μ∗
t )

[
∂νt

∂αi

] )
I(0,1)(yt ),

where y∗
t := log

(
yt

1−yt

)
, μ∗

t := ψ(νtφ) − ψ
(
(1 − νt )φ

)
and ψ : (0,∞) → R is the

digamma function defined as ψ(z) = d
dz log

(
�(z)

)
. The derivative with respect to φ is easy

to obtain:

∂�(γ )

∂φ
=

n∑

t=m+1

[
νt (y

∗
t − μ∗

t ) + log(1 − yt ) − ψ
(
(1 − νt )φ

) + ψ(φ)
]
I(0,1)(yt ).
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For the remaining parameters, i.e., for j ∈ 4, . . . , κ , by the chain rule, and since ηt = g(μt ),
dμt

dηt
= 1

g′(μt )
, so that

∂�(γ )

∂γ j
=

n∑

t=m+1

1

g′(μt )

∂�t (γ )

∂μt

∂ηt

∂γ j
. (A1)

Observe that ∂νt
∂μt

= (α0 − 1)(α1 − 1)c−2
t and

∂�t (γ )

∂μt
=

(
α0 − α1

ct
+ φ(y∗

t − μ∗
t )

[
(α0 − 1)(α1 − 1)

c2t

])
I(0,1)(yt )

+ 1

μt
I1(yt ) − 1

1 − μt
I0(yt ). (A2)

Substituting (A2) into expression (A1), we obtain a simple formula that allows the computa-
tion of ∂�(γ )/∂γ j for each remaining coordinate γ j , by determining the derivatives ∂ηt/∂γ j ,
a much simpler task. We have

∂ηt

∂α
= 1 −

q∑

k=1

θk
1

g′(μt−k)

∂ηt−k

∂α
and

∂ηt

∂βl
= xtl −

q∑

k=1

θk
1

g′(μt−k)

∂ηt−k

∂βl
,

where xtl denotes the lth element of xt , for l = 1, . . . , r . We also have, for l = 1, . . . , p,
and j = 1, . . . , q ,

∂ηt

∂ϕl
= yt−l −

q∑

k=1

θk
1

g′(μt−k)

∂ηt−k

∂ϕl
and

∂ηt

∂θ j
= rt− j −

q∑

k=1

θk
1

g′(μt−k)

∂ηt−k

∂θ j
.

Let T = diag
{
1/g′ (μm+1) , . . . , 1/g′ (μn)

}
, a =

(
∂ηm+1

∂α
, . . . ,

∂ηn
∂α

)�
and v =

(
∂�m+1(γ )
∂μm+1

, . . . ,
∂�n(γ )
∂μn

)�
. Finally, let R, P , Q be the matrices with dimension (n − m) × r ,

(n − m) × p and (n − m) × q , respectively, for which the (i, j)th elements are given by

Ri, j = ∂ηi+m

∂β j
, Pi, j = ∂ηi+m

∂ϕ j
, and Qi, j = ∂ηi+m

∂θ j

and set Uα(γ ) := a�T v, Uβ(γ ) := R�T v, Uϕ(γ ) := P�T v and Uθ (γ ) := Q�T v.

For Uα j (γ ) := ∂�(γ )
∂α j

, and Uφ(γ ) := ∂�(γ )
∂φ

, then the partial score vector is given by

U (γ ) = (
Uα0(γ ),Uα1(γ ),Uφ(γ ),Uα(γ ),Uβ(γ )� Uϕ(γ )�,Uθ (γ )�

)�
.

The PMLE of γ , γ̂ , is obtained as a solution of the non-linear system U (γ ) = 0, where
0 is the null vector in Rκ . There is no closed form solution for such a system and, hence,
PMLEmust be obtained numerically (Nocedal andWright 1999). In this work, we use the so-
called Broyden–Fletcher–Goldfarb–Shanno (BFGS) method (Press et al. 1992). In practice,
to calculate γ̂ from a sample, we initialize rt = 0 andμt = 0 for t ≤ max{p, q} and calculate
μt and rt for t > max{p, q} recursively from the data using (4). The BFGS algorithm also
requires initialization of the parameters. The starting values of α, β and ϕ were set as the
OLS estimate of

g(yt ) = α + x�
t β +

p∑

i=1

ϕi yt−i + error term,
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restricted to the observations where y ∈ (0, 1). The vector parameter θ is initialized as a null
vector, as in Bayer et al. (2017), while inflation parameters α0 and α1 were initialized as the
sample proportion of zeroes and ones, respectively.

A.2 Cumulative partial informationmatrix

In this appendix we derive the cumulative partial information matrix, given by

Kn(γ ) = −
n∑

t=m+1

E

(
∂2�t (μt , φ)

∂γ ∂γ �
∣
∣
∣ Ft−1

)
.

Since direct knowledge of the unconditional distribution of the proposed model is not obtain-
able, Kn will be the first step towardfinding the asymptotic variance-covariancematrix related
to the PMLE. In this case, under suitable assumptions (Fokianos and Kedem 2004), there
exists a non-random information matrix, denoted by K (γ ), such that the weak convergence

Kn(γ )

n
−→
n→∞ K (γ ),

holds, where K (γ ) is a positive definite and invertible matrix. The matrix K (γ )−1 is the
asymptotic variance-covariance matrix related to the PMLE, presented in (6).

For i, j ∈ {4, . . . , κ} (that is, γ j /∈ {α0, α1, φ}), it can be shown that
∂2�t (γ )

∂γi∂γ j
= ∂

∂μt

(
∂�t (γ )

∂μt

∂μt

∂ηt

∂ηt

∂γ j

)
∂μt

∂ηt

∂ηt

∂γi

=
[

∂2�t (γ )

∂μ2
t

∂μt

∂ηt

∂ηt

∂γ j
+ ∂�t (γ )

∂μt

∂

∂μt

(
∂μt

∂ηt

∂ηt

∂γ j

)]
∂μt

∂ηt

∂ηt

∂γi
.

Since by Lemma A.1, E
(
∂�t (γ )/∂μt | Ft−1

) = 0, we arrive at

E

(
∂2�t (γ )

∂γi∂γ j

∣∣∣ Ft−1

)
= 1

g′(μt )2
E

(
∂2�t (γ )

∂μ2
t

∣∣∣ Ft−1

)
∂ηt

∂γ j

∂ηt

∂γi
.

The second-order derivatives of �t (γ ) with respect to μt is given by

∂2�t (γ )

∂μ2
t

=
(−(α0 − α1)

2

c2t
+ φ(α0 − 1)(α1 − 1)

∂

∂μt

[
(y∗

t − μ∗
t )

c2t

])
I(0,1)(yt )

− 1

μ2
t
I1(yt ) − 1

(1 − μt )2
I0(yt ).

Observe that

∂μ∗
t

∂μt
= ∂μ∗

t

∂νt

∂νt

∂μt
= φ(α0 − 1)(α1 − 1)

c2t

[
ψ ′(νtφ) + ψ ′([1 − νt ]φ

)]
.

We have, for yt ∈ (0, 1),

∂

∂μt

[
y∗
t − μ∗

t

c2t

]
= −2(α0 − α1)

c4t
(y∗

t − μ∗
t )

− φ(α0 − 1)(α1 − 1)

c4t

[
ψ ′(νtφ) + ψ ′([1 − νt ]φ

)]
,
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hence

E

(
∂2�t (γ )

∂μ2
t

∣
∣
∣ Ft−1

)
= α0μt + α1(1 − μt )

μt (μt − 1)
− (α0 − α1)

2

ct

−
[
φ(α0 − 1)(α1 − 1)

]2

c3t

[
ψ ′(νtφ) + ψ ′([1 − νt ]φ

)]
.

Second mixed derivatives related to α0 and α1 are obtained through direct differentiation of
the log-likelihood. We have, for i ∈ {0, 1} and j ∈ {4, . . . , κ}

∂2�t (γ )

∂γ j∂αi
=

[
∂

∂γ j

(
1

ct

[
∂ct
∂αi

] )
+ ∂

∂γ j

(
φ(y∗

t − μ∗
t )

[
∂νt

∂αi

])]
I(0,1)(yt ),

which, by Lemma (A.1), yields

E

(
∂2�t (γ )

∂γ j∂αi

∣
∣
∣ Ft−1

)
=

[
∂

∂γ j

(
1

ct

[
∂ct
∂αi

])
− φ

∂νt

∂αi

∂μ∗
t

∂μt

∂μt

∂ηt

∂ηt

∂γ j

]
ct .

Writing
∂ct
∂γ j

= ∂ct
∂μt

∂μt

∂ηt

∂ηt

∂γ j
= α0 − α1

g′(μt )

∂ηt

∂γ j
, we have

∂

∂γ j

(
1

ct

[
∂ct
∂αi

])
= 1

ct g′(μt )

[
(−1)i + [

(μt − 1)I0(i) − μt I1(i)
]α0 − α1

ct

]
∂ηt

∂γ j
,

and thus E

(
∂2�t (γ )

∂γ j∂αi

∣∣∣ Ft−1

)
= s(i)

t

g′(μt )

∂ηt

∂γ j
, where

s(i)
t : = (−1)iφ2(α0 − 1)i+1(α1 − 1)2−i (1 − μt )μt

c3t

[
ψ ′(νtφ) + ψ ′([1 − νt ]φ

)]

+ (−1)i + +[
(μt − 1)I0(i) − μt I1(i)

]α0 − α1

ct
. (A3)

For j ∈ {4, . . . , κ}, it is easy to show that

∂2�t (γ )

∂γ j∂φ
= − ∂

∂γ j

[
νtμ

∗
t + ψ

([1 − νt ]φ
)]
I(0,1)(yt )

= −
(

(1 − α0)(1 − α1)

c3t g′(μt )

[
ctμ

∗
t + φ(1 − α1)ψ

′(νtφ) − φα1ψ
′([1 − νt ]φ

)] ∂ηt

∂γ j

)
I(0,1)(yt ).

(A4)

Observe that, except for the indicator function, all terms in (A4) are Ft−1-measurable, so
that

E

(
∂2�t (γ )

∂γ j∂φ

∣∣∣ Ft−1

)
= dt

g′(μt )

∂ηt

∂γ j
,

where

dt := (1 − α0)(1 − α1)φ

c2t

[
(1 − νt )ψ

′([1 − νt ]φ
) − νtψ

′(νtφ)
]
. (A5)

For i ∈ {0, 1},
∂2�t (γ )

∂αi∂φ
=

(
(y∗

t − μ∗
t )

∂νt

∂αi
+

[
φψ ′([1 − νt ]φ

) − νt
∂μ∗

t

∂νt

]
∂νt

∂αi

)
I(0,1)(yt ).
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The first term has conditional expectation 0 (Lemma A.1), so that

E

(
∂2�t (γ )

∂αi∂φ

∣
∣∣ Ft−1

)
= (−1)i (α1−i − 1)(μt − 1)μtφ

c2t

[
(1 − νt )ψ

′([1 − νt ]φ
) − νtψ

′(νtφ)
]
.

Since
∂2�t (γ )

∂φ2 =
[
ψ ′(φ) − ν2t ψ

′(νtφ) − (1 − νt )
2ψ ′([1 − νt ]φ

)]
I(0,1)(yt ), we have

E

(
∂2�t (γ )

∂φ2

∣
∣
∣ Ft−1

)
= ct

[
ψ ′(φ) − ν2t ψ

′(νtφ) − (1 − νt )
2ψ ′([1 − νt ]φ

)]
.

Finally, for i, j ∈ {0, 1},
∂2�t (γ )

∂α j∂αi
=

[
φ(y∗

t − μ∗
t )

∂2νt

∂α j∂αi
− φ

∂νt

∂αi

∂μ∗
t

∂α j
− 1

c2t

∂ct
∂αi

∂ct
∂α j

]
I(0,1)(yt ) − 1

α2
i

Ii ( j)Ii (yt ).

Upon observing that P(yt = i) = αi (1 − i + (−1)iμt ), it follows that

E

(
∂2�t (γ )

∂α j∂αi

∣
∣∣ Ft−1

)
= Ii ( j)(i − 1 + (−1)iμt )

αi
− ct

[
φ

∂νt

∂αi

∂μ∗
t

∂α j
+ 1

c2t

∂ct
∂αi

∂ct
∂α j

]

= Ii ( j)(i − 1 + (−1)iμt )

αi

− ctφ
2
[
ψ ′(νtφ) + ψ ′([1 − νt ]φ

)] ∂νt

∂αi

∂νt

∂α j
− 1

ct

∂ct
∂αi

∂ct
∂α j

.

For i, j ∈ {0, 1}, let

A{i, j} := diag

{
E

(
∂�m+1(μm+1, ϕ)

∂αi∂α j

∣∣∣ Fm

)
, . . . ,E

(
∂�n(μn, ϕ)

∂αi∂α j

∣∣∣ Fn−1

)}
,

Bi := diag

{
E

(
∂2�m+1(γ )

∂αi∂φ

∣∣∣ Fm

)
, . . . ,E

(
∂2�n(γ )

∂αi∂φ

∣∣∣ Fn−1

)}
,

C := diag

{
E

(
∂2�m+1(γ )

∂φ2

∣∣∣ Fm

)
, . . . ,E

(
∂2�n(γ )

∂φ2

∣∣∣ Fn−1

)}
,

V := diag

{

E

(
∂2�m+1(γ )

∂μ2
m+1

∣∣∣ Fm

)
, . . . ,E

(
∂2�n(γ )

∂μ2
n

∣∣∣ Fn−1

)}

,

si := (s(i)
m+1, . . . , s

(i)
n )� and d := (dm+1, . . . , dn)�, where s(i)

t and dt are given in (A3) and
(A5), respectively. Thus, the joint cumulative partial information matrix for γ based on a
sample of size n is

Kn(γ ) := −

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

K(α0,α0) K(α0,α1) K(α0,φ) K(α0,α) K(α0,β) K(α0,ϕ) K(α0,θ)

K(α1,α0) K(α1,α1) K(α1,φ) K(α1,α) K(α1,β) K(α1,ϕ) K(α1,θ)

K(φ,α0) K(φ,α1) K(φ,φ) K(φ,α) K(φ,β) K(φ,ϕ) K(φ,θ)

K(α,α0) K(α,α1) K(α,φ) K(α,α) K(α,β) K(α,ϕ) K(α,θ)

K(β,α0) K(β,α1) K(β,φ) K(β,α) K(β,β) K(β,ϕ) K(β,θ)

K(ϕ,α0) K(ϕ,α1) K(ϕ,φ) K(ϕ,α) K(ϕ,β) K(ϕ,ϕ) K(ϕ,θ)

K(θ ,α0) K(θ,α1) K(θ,φ) K(θ,α) K(θ,β) K(θ ,ϕ) K(θ ,θ)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where, for i, j ∈ {0, 1}, K(αi ,α j ) = tr(A{i, j}), K(αi ,φ) = K�
(φ,αi )

= tr(Bi ), K(αi ,α) =
K(α,αi ) = s�i T a, K(αi ,β) = K�

(β,α j )
= s�i T R, K(αi ,ϕ) = K�

(ϕ,αi )
= s�i T P , K(αi ,θ) =
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K�
(θ,αi )

= s�i T Q, K(φ,φ) = tr(C), K(φ,α) = K(α,φ) = d�T a, K(φ,β) = K�
(β,φ)

=
d�T R, K(φ,ϕ) = K�

(ϕ,φ) = d�T P , K(φ,θ) = K�
(θ,φ)

= d�T Q, K(α,α) = a�T 2V a,

K(α,β) = K�
(β,α) = a�T 2V R, K(α,ϕ) = K�

(ϕ,α) = a�T 2V P , K(α,θ) = K�
(θ,α) = a�T 2V Q,

K(β,β) = R�T 2V R, K(β,ϕ) = K�
(ϕ,β)

= R�T 2V P , K(β,θ) = K�
(θ,β)

= R�T 2V Q,

K(ϕ,ϕ) = P�T 2V P , K(ϕ,θ) = K�
(θ ,ϕ)

= P�T 2V Q, K(θ ,θ) = Q�T 2V Q.

Lemma A.1 With the notation in A.1,

E
(
(y∗

t − μ∗
t )I(0,1)(yt ) | Ft−1

) = 0 and E

(
∂�t (μt , ν)

∂μt

∣
∣
∣ Ft−1

)
= 0.

Proof Observe that

E
(
(y∗

t − μ∗
t )I(0,1)(yt ) | Ft−1

) = ct

∫ 1

0

(
log(x)

log(1 − x)
− μ∗

t

)
b(x; νt , φ)dx = 0,

by standard results on the beta distribution. Hence

E

(
∂�t (μt , ν)

∂μt

∣
∣
∣ Ft−1

)
=

(
1

μt

)
P(yt = 1 | Ft−1) −

(
1

1 − μt

)
P(yt = 0 | Ft−1)

+
(

α0 − α1

ct

)
P

(
yt ∈ (0, 1) | Ft−1

)

=
(

α0 − α1

ct

)
ct −

(
1

1 − μt

)
α0(1 − μt ) +

(
1

μt

)
α1μt = 0,

as asserted. ��
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