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We derive the dielectric tensor for multicomponent magnetized dusty plasmas, in-
cluding the effect of capture of plasma electrons and ions by the dust particles. For
propagation perpendicular to the external magnetic field and Maxwellian distribu-
tions of electrons and ions, we obtain compact expressions for the components of
the dielectric tensor, which can be used to analyse wave propagation. An application
to the magnetosonic wave is presented.

1. Introduction
In recent years, interest in dusty plasmas has increased significantly because it
has been recognized that they are important for a number of applications in space
plasmas and in the Earth’s environment, as well as in laboratory plasmas and in
several technologies (D’Angelis 1992).

A dusty plasma may be defined as an ensemble of dust particles immersed in a
fully ionized plasma composed of electrons and ions. The dust particles may possess
variable mass, size and shape, and, predominantly, fluctuating charge. In general,
dust particles are highly charged (of order 103e–104e) with variable sizes (10 nm–
100µm) and masses. The assumption that the dust particles are spherical point
masses with constant radius can be made as a first approximation, but the charge
acquired by them must be taken into account. The dust particles in a dusty plasma
can be charged by plasma current, photoemission, secondary emission, etc. (Draine
and Salpeter 1979).

Several analyses, treating the dust as a charged-particle species of uniform mass
and charge, have shown that the presence of the charged dust component leads to
the appearance of new plasma modes arising from the dust-particle dynamics or to
modification of the existing plasma modes (Rao et al. 1990; Shukla 1992; Rao 1995).
In recent years, several works that have taken account of the charge variation of
the dust particles (Melandso et al. 1993; Varma et al. 1993; Vladimirov 1994) have
pointed out the importance of this feature as a source of damping or amplification
of waves propagating in dusty plasmas. These analyses describe the dusty plasma
in the framework of kinetic theory, but, in general, they concentrate on obtaining
the dielectric tensor for a particular mode of propagation, except in the work of
Vladimirov (1994), where general expressions for the dielectric tensor are obtained,
but in the absence of an external magnetic field. To the best of our knowledge,
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general expressions for the components of the dielectric tensor of a dusty plasma
with variable charge of the dust particles, in the presence of an external magnetic
field, have not previously been obtained.

In this work we develop a kinetic theory of dusty magnetized plasmas with vari-
able charges on the dust particles. The dust particles are assumed to be immobile,
and consequently the validity of the proposed model will be restricted to waves with
frequency much higher than the characteristic dust frequencies. We observe that
the dominant role of the dust particles in the process of wave propagation is due to
charge variation and that this modelling excludes the possibility of analysing modes
that can arise from the dust dynamics. Exact expressions for the components of the
dielectric tensor are derived and then particularized to propagation perpendicular
to the external magnetic field, and Maxwellian distributions of electrons and ions.
The expressions obtained show that there are two kinds of modifications introduced
by the presence of dust particles with variable charges. The dielectric tensor can
be written as the sum of two terms. One term is formally identical to the dielec-
tric tensor of a homogeneous magnetized plasma, with the resonant denominator
changed by the addition of a purely imaginary term containing a frequency that
characterizes the collisions between plasma particles and dust particles. The second
term is entirely dependent on the model used to describe the process of charging
of the dust particles.

We intend to apply this dielectric tensor to analyse several modes of propaga-
tion, trying to understand the importance of the charge variation as a mechanism
of damping or amplification. We shall also try to analyse the competition that
may arise between Landau damping and the damping due to the presence of dust
particles with variable charges.

The plan of the paper is as follows. In Sec. 2 we present the basic equations of
the model proposed for the dusty plasma, linearize these equations and analyse the
quantities that characterize the equilibrium of the system. In Sec. 3 the derivation
of the dielectric tensor is presented, restricted only by the requirements imposed by
equilibrium. In Sec. 4 complete expressions for the components of the dielectric ten-
sor are presented for propagation perpendicular to the external magnetic field and
for Maxwellian distribution functions of electrons and ions. In Sec. 5 a preliminary
application of the developed formalism is made to the magnetosonic wave, showing
that the charge variation of the dust particles in a plasma gives the possibility of
absorption. Some numerical results that show the dependence of the damping rate
on temperature and on the external magnetic field have been included. Finally, in
Sec. 6 we summarize our results and drawn some conclusions.

2. The basic equations of the model
We consider a homogeneous plasma composed of particles of charge qβ and mass
mβ , where the subscript β = e, i identifies electrons and ions respectively, in a
homogeneous external magnetic field B0 = B0ez. In this magnetized plasma we con-
sider embedded spherical dust grains with radius a and variable charge q; this vari-
ation originates from collisions between the dust particles and particles of species β.
The assumption of spherical dust grains is valid in the limit a� λD� λmfp, where
λD is the plasma Debye length and λmfp is the mean free path of the electrons and
ions. We observe that most astrophysical and laboratory dusty plasmas satisfy this
condition. The charging model for the dust particles must take into account the
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presence of an external magnetic field. This field must influence the characteristics
of charging of the dust particles, because the path described by electrons and ions
is drastically changed: in this case we have cyclotron motion of electrons and ions
around the magnetic field lines. It has been shown (Hutchinson 1987; Chang and
Spariosu 1993) that for a� ρ, where ρ is the electron gyroradius, the effect of the
magnetic field on the charging of the dust particles can be neglected.

The distribution function that describes the dust particles, which are assumed to
be immobile because of their large mass, is fd ≡ fd(q, r, t) and is the solution of the
equation

∂fd
∂t

+
∂

∂q
[I(q)fd] = 0, (2.1)

where

I(q) =
∑
β

∫
d3p qβσβ(q, p)

p

mβ
fβ (2.2)

is the current on the dust particle (Tsytovich and Havnes 1993), fβ(r, p, t) the
distribution function of particles of species β, and σβ is the charging cross-section,
given (Spitzer 1978) by

σβ = πa2
(

1− 2qqβmβ

ap2

)
H

(
1− 2qqβmβ

ap2

)
,

where H denotes the Heaviside function.
The distribution function of electrons and ions satisfies a Vlasov equation with

a collision term, which assures the possibility of variation of charge of the dust
particles:

∂fβ
∂t

+
1

mβγβ
p ·∇fβ + qβ

(
E +

1
mβγβc

p× B
)
·∇pfβ

= −
∫
σβ

p

mβγβ
(fdfβ − fd0fβ0) dq, (2.3)

where γβ = (1 + p2/m2
βc

2)1/2 is the relativistic factor.
The connection with the fields is described by the Maxwell equations:

∇ · E = 4π

∑
β

qβ

∫
fβ d

3p +
∫
qfd dq

 , (2.4)

∇× E = −1
c

∂B
∂t
, (2.5)

∇ · B = 0, (2.6)

∇× B =
1
c

∂E
∂t

+
4π
c

∑
β

qβ
mβ

∫
p
γβ
fβ d

3p. (2.7)

The set of equations (2.1)–(2.7) is linearized, resulting in the following zeroth-
order equations, where we assume fβ0 ≡ fβ0(p) and fd0 ≡ fd0(q):

∂

∂q
[I0(q)fd0] = 0, (2.8)
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I0(q) =
∑
β

∫
d3p qβσβ(q, p)

p

mβ
fβ0, (2.9)

(p× B0) ·∇pfβ0 = 0, (2.10)∑
β

qβ

∫
fβ0 d

3p +
∫
qfd0 dq = 0, (2.11)

∑
β

qβ
mβ

∫
p
γβ
fβ0 d

3p = 0. (2.12)

We also define the auxiliary function ν0
βd(p):

ν0
βd(p) ≡

∫
σβ

p

mβ
fd0 dq. (2.13)

These equations that describe the equilibrium are satisfied if fβ0 is a function with
azimuthal symmetry: fβ0 = fβ0(p⊥, p‖). Using fd0 = nd0δ(q + Zde), where −Zde is
the equilibrium charge of the dust particles, we obtain

ν0
βd(p) =

nd0p

mβ
σβ(p,−Zde) =

πa2nd0

mβ

(p2 + Cβ)
p

H(p2 + Cβ), (2.14)

where Cβ ≡ 2Zdeqβmβ/a. Also, the quasineutrality condition is given by∑
β

qβnβ0 = Zdend0. (2.15)

The auxiliary function ν0
βd(p) is related to the frequency characterizing the rate of

capture of particles of species β by dust particles in the equilibrium state, which
can be obtained from

νβd =
1
nβ0

∫
d3p ν0

βd (p)fβ0. (2.16)

Using the expression for σβ , the current on the dust particles in equilibrium can
be written as

I0(q) = πa2
∑
β

qβ
mβ

∫
d3p

1
p

(
p2 − Cβ

q

Zde

)
H

(
p2 − Cβ

q

Zde

)
fβ0. (2.17)

In this calculation we have assumed that q < 0, that is, the net charge acquired by
the dust particles is negative. For a Maxwellian distribution of particles of species β,

fβ0 =
nβ0

(2πmβTβ)3/2
e−p

2/2mβTβ ,

we obtain

I0(q) = 2a2(2π)1/2
∑
β

qβnβ0

(
Tβ
mβ

)1/2(
1− eq

Tea
δβe −

qβq

Tβa

)
eeqδβe/Tea, (2.18)

where δβe is the Kronecker delta symbol.
The equilibrium charge of the dust particles, −Zde, is obtained by imposing the

condition that

I0(−Zde) = 0. (2.19)
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From (2.18) we get a relation from which we can determine Zd:

ω2
pe

vTe
e−|χe| = τ

ω2
pi

vTi

(
1 +
| χe |
τ

)
, (2.20)

where

vTβ ≡
(
Tβ
mβ

)1/2

, (2.21)

τ =
e

qi

Ti
Te

= −χe
χi
, (2.22)

χβ =
Zdqβe

Tβa
. (2.23)

The first-order equations arising from the set of equations (2.1)–(2.7) are

∂fd1

∂t
+
∂

∂q
[I0(q)fd1 + I1(q)fd0] = 0, (2.24)

I1(q) ≡
∑
β

∫
d3p

qβ
mβ

σβ(q, p)pfβ1, (2.25)

ν1
βd(p) ≡

∫
σβ(q, p)

p

mβ
fd1 dq, (2.26)

∂fβ1

∂t
+

1
mβγβ

p ·∇fβ1 +
qβ

mβγβc
(p× B0) ·∇pfβ1 + ν0

βd(p)fβ1

= −ν1
βd(p)fβ0 − qβ

(
E1 +

1
mβγβc

p× B1

)
·∇pfβ0, (2.27)

∇ · E1 = 4π

∑
β

qβ

∫
fβ1 d

3p +
∫
qfd1 dq

 , (2.28)

∇× E1 = −1
c

∂B1

∂t
, (2.29)

∇ · B1 = 0, (2.30)

∇× B1 =
1
c

∂E1

∂t
+

4π
c

∑
β

qβ
mβ

∫
p
γβ
fβ1 d

3p. (2.31)

We note that if we exclude the charge variation of the dust particles from the
proposed model, this will be equivalent to taking σ(q, p) = 0. Thus our model will
retain information about the presence of the dust particles in the plasma only in the
quasineutrality condition. The dielectric tensor that we obtain in this case is the
same as that obtained for a magnetized plasma of electrons and ions, but the value
of some components of this tensor will be modified because the quasineutrality
condition has changed. When we discuss the application to the magnetosonic wave,
we shall return to this point.
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3. Derivation of the dielectric tensor
From the linearized system of equations (2.24)–(2.31), we shall obtain the dielectric
tensor for the dusty plasma considered. We note that this linearized system is a
coupled system of integro-differential equations, and in order to get the algebraic
system of equations that leads to the dispersion tensor, some approximations must
be made.

We take some moments of the distribution function of the dust particles, fd(q, r, t),
in the variable q. The zeroth-order moment is given by∫

fd(q, r, t) dq = nd(r, t), (3.1)

where the integration is from −∞ to 0, because we have assumed in the calculation
of I0(q) that q < 0. Linearizing this relation, we get, at zeroth order,∫

fd0 dq = nd0, (3.2)

which is satisfied if fd0 = nd0δ(q + Zde), and, at first order,∫
fd1 dq = nd1(r, t). (3.3)

The first-order moment in the variable q is∫
fd(q, r, t)q dq = nd0Q(r, t), (3.4)

which, after linearization, gives, at zero order, Q0 = −Zde, and, at first order,∫
fd1q dq = nd0Q1(r, t). (3.5)

The linearized system and (3.3) and (3.5) are Fourier-transformed in space and
time:

A1(Γ, r, t) −→ Â(Γ,k, ω)ei(k·r−ωt), (3.6)

where A1 denotes any of the perturbed variables and Γ represents p or q. We obtain

− iωf̂d +
∂

∂q
[I0(q)f̂d + Î(q)fd0] = 0, (3.7)

Î(q) ≡
∑
β

∫
d3p

qβ
mβ

σβ(q, p)pf̂β , (3.8)

−iωf̂β +
i

mβγβ
k · pf̂β +

qβ
mβγβc

(p× B0) ·∇pf̂β + ν0
βd(p)f̂β

= −ν̂βd(p)fβ0 − qβ
(

Ê +
1

mβγβc
p× B̂

)
·∇pfβ0, (3.9)

ν̂βd(p) =
∫
σβ(q, p)

p

mβ
f̂d dq, (3.10)

ik · Ê = 4π

∑
β

qβ

∫
f̂β d

3p +
∫
qf̂d dq

 , (3.11)
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k× Ê =
ω

c
B̂, (3.12)

k · B̂ = 0, (3.13)

ik× B̂ = −iω
c

Ê +
4π
c

∑
β

qβ
mβ

∫
p
γβ
f̂β d

3p, (3.14)

∫
f̂d dq = n̂d, (3.15)∫

f̂dq dq = nd0Q̂. (3.16)

We rewrite (2.27) in the form

∂f aux
β

∂t
+

1
mβγβ

p ·∇f aux
β +

qβ
mβγβc

(p× B0) ·∇pf
aux
β = −eν

0
βd(p)t(Op)fβ0, (3.17)

where

(Op) ≡ ν1
βd(p) + qβ

(
E1 +

1
mβγβc

p× B1

)
·∇p, (3.18)

fβ1 = e−ν
0
βd(p)tf aux

β . (3.19)

Integrating 3.17 over the unperturbed orbits we obtain

fβ1(p, r, t) = −e−ν
0
βd(p)t

∫ t

−∞
dt′ eν

0
βd(p′)t′

{
ν1
βd(p

′, r′, t′)

+qβ

[
E1(r′, t′) +

1
mβγβc

p′ × B1(r′, t′)
]
·∇p′

}
fβ0(p′), (3.20)

where the unperturbed orbits are given by (Krall and Trivelpiece 1973)

x′ − x = − p⊥
mβΩβ

[
sin
(
ϕ− Ωβτ

γβ

)
− sinϕ

]
, (3.21)

y′ − y =
p⊥

mβΩβ

[
cos
(
ϕ− Ωβτ

γβ

)
− cosϕ

]
, (3.22)

z′ − z =
p‖

mβγβ
τ, (3.23)

p′x = p⊥ cos
(
ϕ− Ωβτ

γβ

)
, (3.24)

p′y = p⊥ sin
(
ϕ− Ωβτ

γβ

)
, (3.25)

p′z = p‖, (3.26)

where τ = t′− t, and Ωβ = qβB0/mβc is the gyrofrequency of particles of species β.
The equilibrium distribution function fβ0 is an arbitrary function of the constants

of motion, which in this case are p⊥ and p‖, as can easily be obtained from the
equations for the unperturbed orbits. The Fourier–Laplace transform of (3.20) can
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be written as

f̂β(p) = −
∫ 0

−∞
dτ eν

0
βd(p)τei(k·R−ωτ )

[
ν̂βd(p)

+qβ

(
Ê +

1
mβγβc

p′ × B̂
)
·∇p′

]
fβ0(p⊥, p‖), (3.27)

where R = r′ − r.
In order to clarify the derivation that follows, we write the Fourier–Laplace

transform of the perturbed distribution function as

f̂β(p) = f̂hβ + f̂Nβ , (3.28)

where

f̂hβ = −qβ
∫ 0

−∞
dτ ei{k·R−[ω+iν0

βd(p)]τ}
(

Ê +
1

mβγβc
p′ × B̂

)
·∇p′fβ0(p⊥, p‖), (3.29)

f̂Nβ = −
∫ 0

−∞
d τei[k·R−(ω+iν0

βd)τ ]ν̂βd(p)fβ0. (3.30)

The components of the dielectric tensor can be written as

εij = ε̃hij + εNij , (3.31)

where the first term originates from f̂hβ and the second from f̂Nβ .

We note that f̂hβ has the same formal structure as the perturbed distribution
function obtained when we are calculating the traditional dielectric tensor for a
homogeneous magnetized plasma (Caldela et al. 1989), substituting ω + iν0

βd(p) for
ω in the argument of the exponential. We conclude that this part of the perturbed
distribution will give rise to a contribution to the dielectric tensor (whose compo-
nents we are representing by ε̃hij), that is formally identical to the corresponding
components of the dielectric tensor of a homogeneous plasma composed of particles
of species β in the presence of a external magnetic field, except for the addition in
the resonant denominator of a term that takes care of the damping due to colli-
sions between dust particles and the electrons and ions. These components of the
dielectric tensor can be written as

ε̃hij = δij +
∑
β

Xβ

nβ0

∞∑
n=−∞

∫
d3p p⊥

φ0(fβ0)
Dnβ

(
p‖
p⊥

)δiz+δjz

Rij

−δizδjz
∑
β

Xβ

nβ0

∫
d3p

L(fβ0)
γβ

p‖
p⊥
, (3.32)

where

L(fβ0) = p‖
∂fβ0

∂p⊥
− p⊥

∂fβ0

∂p‖
, (3.33)

φ0(fβ0) =
∂fβ0

∂p⊥
−

k‖
mβγβω

L(fβ0), (3.34)

Dnβ =
γβ
ω

[
ω + iν0

βd(p)−
k‖p‖
mβγβ

− nΩβ
γβ

]
, (3.35)
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the explicit expressions for the Rij are given in Appendix A, and Xβ = ω2
pβ/ω

2,
where ωpβ is the plasma frequency for particles of species β.

The second contribution to the dielectric tensor (whose components we are repre-
senting by εNij ), also comes from the process of charge variation of the dust particles.
To derive this contribution, we write, as usual,

Ĵi =
∑
β

qβ
mβ

∫
pi
γβ
f̂β d

3p =
∑
j

σijÊj , (3.36)

which gives

εNij =
4πi
ω
σNij , (3.37)

where σNij must be obtained from the relation∑
j

σNij Êj =
∑
β

qβ
mβ

∫
d3p

pi
γβ
f̂Nβ . (3.38)

We see that in order to obtain this contribution to the conductivity tensor, we
must express f̂Nβ in terms of the components of the perturbed electric field. Re-
membering that p is a constant of motion, we can write

f̂Nβ = −Iβ(p)ν̂βd(p)fβ0, (3.39)

where

Iβ(p) ≡
∫ 0

−∞
dτ ei[k·R−(ω+iν0

βd)τ ], (3.40)

which can easily be calculated using the unperturbed orbits and (2.14) for ν0
βd, and

ν̂βd(p) is given by (3.10). We see from this equation that ν̂βd depends in an integral
form on the complete perturbed distribution f̂d. In order to determine this function,
we use (3.7), which depends on Î(q), which in turn depends on an integral form of f̂β
(see (3.8)) that is given by (3.28). In other words, the equation that determines f̂d
is a complicated integro-differential equation. It is reasonable, for wave frequencies
much higher than the characteristic frequencies of the dust particles, to assume
that the q dependence of fd follows the same law as fd0:

f̂d = nd0[δ(q + x)− δ(q + Zde)], (3.41)

where x = x(k, ω) will be determined from the moments of f̂d in the variable q.
From (3.15), we conclude that x > 0, and from (3.16) that x = Zde − Q̂. In order
to determine Q̂, we take the first moment in the q variable of (3.7), getting

nd0Q̂ =
i

ω

∫
[I0(q)f̂d + Î(q)fd0] dq, (3.42)

which can be written as

Q̂ =
i

ωnd0
(T1 + T2), (3.43)

where

T1 ≡
∫
I0(q)f̂d dq, (3.44)

T2 ≡
∫
Î(q)fd0 dq. (3.45)
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Using the assumed form for f̂d, we get

T1 = nd0I0(q = Q0 + Q̂), (3.46)

which, if |Q̂|� |Q0|, using a Taylor expansion around Q0 = −Zde, and retaining
only the dominant contribution, can be written as

T1 ' −nd0ν
0
dQ̂, (3.47)

where

ν0
d = −∂I0

∂q

∣∣∣∣
q=−Zde

. (3.48)

Substituting this result into the expression for Q̂ and calculating T2, we get(
1 + i

ν0
d

ω

)
Q̂ =

i

ω
Î(q = −Zde). (3.49)

Using (3.8) and (3.28) and remembering (2.14),(
1 + i

ν0
d

ω

)
Q̂ =

i

ωnd0

∑
β

qβ

∫
d3p ν0

βd(p)(f̂
h
β + f̂Nβ ). (3.50)

Remembering that f̂Nβ = −Iβ(p)ν̂βd(p)fβ0, we calculate ν̂βd(p) using the assumed

form for f̂d and making a Taylor expansion of σβ around q = −Zde, retaining only
the relevant term. We obtain

ν̂βd(p) '
nd0

mβ
pσ′β(p)Q̂, (3.51)

where

σ′β(p) ≡ ∂σβ
∂q

∣∣∣∣
q=−Zde

.

After some algebra, we can write

Q̂ =
i

nd0[ω + i(ν0
d + ν1)]

∑
β

qβ

∫
d3p ν0

βd(p)f̂
h
β (3.52)

where

ν1 ≡
∑
β

qβ
mβ

∫
d3p ν0

βd(p)Iβ(p)pσ′β(p)fβ0. (3.53)

Using these results, we can finally write

f̂Nβ = − i

mβ[ω + i(ν0
d + ν1)]

Iβ(p)pσ′β(p)fβ0

∑
α

qα

∫
d3p ν0

αd(p)f̂
h
α , (3.54)

εNij = −4πind0

ω
UiSj , (3.55)

where

Ui =
ω

ω + i(ν0
d + ν1)

∑
β

qβ
m2
β

∫
d3p

pi
γβ
Iβ(p)pσ′β(p)fβ0, (3.56)

Sj = − i

ωnd0

∑
β

q2
β

∫
d3p ν0

βd(p)Aβj , (3.57)
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with

Aβj ≡
∫ 0

−∞

[(
1− p′ · k

mβγβω

)
∂

∂p′j
fβ0 +

1
mβγβω

(k ·∇p′fβ0)p′j

]
ei{k·R−[ω+iν0

βd(p)]τ} dτ.

(3.58)

4. The dielectric tensor for k‖ = 0 and Maxwellian distributions of
electrons and ions
We shall particularize the general expressions for the dielectric tensor obtained
in Sec. 3. We consider propagation perpendicular to the external magnetic field,
choosing the coordinate axes in such a way that k = kex. We also assume distribu-
tion functions to describe electrons and ions in equilibrium such that fβ0 ≡ fβ0(p)
and consider the nonrelativistic approximation γβ = 1. It is easy to show that the
dielectric tensor reduces, without any approximations, to the form

ε =


ε̃h11 + εN11 ε̃h12 + εN12 0

−ε̃h12 + εN21 ε̃h22 + εN22 0

0 0 ε̃h33

 , (4.1)

where the non-null components that occur in the above expression are given by

ε̃hij = δij +
∑
β

Xβ

nβ0

∞∑
n=−∞

∫
d3p p⊥

∂fβ0

∂p⊥

Πn
ij

Dnβ
, (4.2)

with

Πn
11 =

n2

b2
β

J2
n(bβ), Πn

12 = i
n

bβ
Jn(bβ)J ′n(bβ),

Πn
22 = J ′2n (bβ), Πn

33 =
p2
‖

p2
⊥
J2
n(bβ),

where

bβ ≡ µβp⊥, µβ ≡
k

mβΩβ
, Dnβ = Dh

nβ + i
ν0
βd(p)

ω
,

Dh
nβ = 1− nYβ , Yβ ≡

Ωβ
ω
,

and

εNij = −4πind0

ω
UiSj , (4.3)

Ui =
i

ω + i(ν0
d + ν1)

∑
β

qβ
m2
β

∞∑
n=−∞

∫
d3p

p⊥fβ0σ
′
β(p)p

Dnβ
Ri3, (4.4)

Sj = − 1
ω2nd0

∑
β

q2
β

∞∑
n=−∞

∫
d3p

p⊥
p
ν0
βd(p)

dfβ0

dp

Rj3
Dnβ

, (4.5)

with

R13 =
n

bβ
J2
n(bβ), R23 = −iJn(bβ)J ′n(bβ).
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In these expressions we now use the explicit form of the Maxwellian distribution
and retain only the contribution of the lowest harmonics, n = 0,±1. Making small-
Larmor-radius expansions of the Bessel functions and their derivatives, mantaining
terms up to second order, and expanding the denominatorDh

nβ+i ν0
βd(p)/ω in powers

of i(ν0
βd/ω)/Dh

nβ , retaining terms up to second order, we obtain for the nonvanishing
components of the dielectric tensor the following expressions:

ε̃h11 = 1− 4π
3

∑
β

ηβ
1− Y 2

β

(I1
0β − iE1βI1

1β − E2βI1
2β), (4.6)

ε̃h12 = −i4π
3

∑
β

ηβYβ
1− Y 2

β

(I2
0β − iE3βI2

1β − E4βI2
2β), (4.7)

ε̃h22 = 1− 4π
3

∑
β

ηβ

[
2
5
µ2
β

(
I6

0β − iI6
1β − I6

2β

)
+

1
1− Y 2

β

(I3
0β − iE1βI3

1β − E2βI3
2β)

]
,

(4.8)

ε̃h33 = 1− 4π
3

∑
β

ηβ

[
I1

0β − iI1
1β −I1

2β +
µ2
β

5(1− Y 2
β )

(I6
0β − iE1βI

6
1β − E2βI

6
2β)

]
,

(4.9)

εN11 = −C

∑
β

N1β(J3
0β − iE3βI

3
1β)

∑
β

N2β
(
I4

1β − iE3βI
4
2β

) , (4.10)

εN12 = iC

∑
β

N1β(J3
0β − iE3βI

3
1β)

∑
β

N2βYβ
(
I4

1β − iI4
2β

) , (4.11)

εN21 = iC

∑
β

N1βYβ
(
J3

0β − iE5βI
3
1β

)∑
β

N2β
(
I4

1β − iE3βI
4
2β

) , (4.12)

εN22 = C

∑
β

N1βYβ
(
J3

0β − iE5βI
3
1β

)∑
β

N2βYβ
(
I4

1β − iI4
2β

) , (4.13)

where

Is
nβ ≡ I4

nβ − 1
5sµ

2
βI

6
nβ , (4.14)

Jm
0β ≡

∫ ∞
0

dp pmH(p2 + Cβ)fβ0 (4.15)

Imnβ ≡
∫ ∞

0
dp pmfβ0

(
ν0
βd

ω

)n
, (4.16)

with

n = 0, 1, 2, s = 1, 2, 3.

Explicit expressions for these integrals are given in Appendix B. Also in these
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expressions,

E1β ≡
1 + Y 2

β

1− Y 2
β

, E2β ≡
1 + 3Y 2

β

(1− Y 2
β )2

, E3β ≡
2

1− Y 2
β

,

E4β ≡
3 + Y 2

β

(1− Y 2
β )2

, E5β ≡
3− Y 2

β

1− Y 2
β

, C ≡ 128π4a

9ω2[ω + i(ν0
d + ν1)]

,

ηβ ≡
Xβ

nβ0mβTβ
, N1β ≡

q2
βµβYβ

mβ(1− Y 2
β )
, N2β ≡

N1β

Tβ
.

In this approximation, ν0
d + ν1 is given by

ν0
d + ν1 =

4π2a

3

∑
β

q2
β

[
6(J1

0β − iI1
1β)− i2µ2

β

Y 2
β

1− Y 2
β

I3
1β

]
. (4.17)

5. The magnetosonic wave
The dispersion relation for the magnetosonic wave can be written formally as

Λ = N 2 − εxxεyy − εxyεyx
εxx

= 0. (5.1)

In order to study the simplest effect produced by the inclusion of dust particles
with variable charge in the propagation properties of this wave, we make the fol-
lowing approximations in the calculation of the εij , which are given in Sec. 4: we
neglect contributions arising from terms that contain (ν0

βd/ω)2; we neglect terms in
µ2
β and higher orders in µ2

β , which corresponds to making a small-Larmor-radius
approximation (in this case a cold-plasma approximation); and we work in a fre-
quency regime such that Y 2

β � 1, which is the appropriate regime for magnetosonic
waves. In this case εij ' ε̃hij , and the dispersion relation can be cast in the form

Λ = N 2 −
ε2xx + ε2xy
εxx

= 0, (5.2)

with

εxx = 1 + χ(0)
xx + iχ(1)

xx, (5.3)

εxy = i
C

ω
, (5.4)

where

χ(n)
xx =

4π
3

∑
β

c2

V 2
Aβ

I4
nβ

nβ0mβTβ
, n = 0, 1, (5.5)

C =
4π
3
ω
∑
β

c2

V 2
Aβ

Yβ
nβ0mβTβ

I4
0β , (5.6)

and

V 2
Aβ ≡

B2
0

4πnβ0mβ
(5.7)

is the square of the Alfvén velocity of particles of species β.



256 M. C. de Juli and R. S. Schneider

Using the explicit expression for I4
0β and remembering the approximations

utilized, we can write

C =
4πc
B0

∑
β

nβ0qβ , (5.8)

which, using the quasineutrality condition, can be cast in the form

C =
4πc
B0

Zdend0. (5.9)

We observe that in the absence of dust particles C = 0, which implies that εxy = 0,
and the dispersion relation reduces toN 2 = εxx = 1+c2/V 2

Ai, which is the traditional
form of this relation for magnetosonic waves in the cold-plasma approximation
(Krall and Trivelpiece 1973). We note that even if the dust particles have fixed
charges, C� 0 which implies εxy� 0, and produces modification in the dispersion
relation.

We can write

χ(0)
xx '

c2

V 2
Ai

, (5.10)

where we have used the condition that V 2
Ai� V 2

Ae, and

χ(1)
xx = 4

3 (2π)1/2 a
2nd0

ω

∑
β

c2

V 2
Aβ

vTβ[(2 + χi)δβi + e−ξ
2
(ξ2 + 2)δβe] ≡

B

ω
. (5.11)

The relevant components of the dielectric tensor that occur in the dispersion
relation can be written as

εxx = A + i
B

ω
, εxy = i

C

ω
,

where A ≡ 1+χ(0)
xx, and A, B and C are positive quantities. The real and imaginary

parts of Λ are

Λr =
c2k2

ω2 −A [1− F (ω)] , (5.12)

Λi = −B

ω
[1 + F (ω)] , (5.13)

where

F (ω) ≡ α2
2

ω2 + α1
2 , (5.14)

α1 ≡
B

A
, α2 ≡

C

A
.

From Λr(wr) = 0, we get the real part of the propagation frequency

ω2
r = 1

2 [−Q + (Q2 + 4ω2
0α

2
1)1/2], (5.15)

Q ≡ α2
1 − (α2

2 + ω2
0), (5.16)

ω2
0 ≡

c2k2

A
=

k2V 2
Ai

1 + V 2
Ai/c

2
, (5.17)

which in the limit nd0 → 0 gives ω2
r = ω2

0, the usual result for the frequency of the
magnetosonic wave.
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Figure 1. ωi/Ωi as a function of ck/Ωi for T = 1.5×104 eV, nd0 = 104 cm−3, ni0 = 108 cm−3,
a = 10−4 cm, and several values of the external magnetic field B0: (a) 0.2 T; (b) 0.3 T; (c) 0.4
T; (d) 0.5 T.

The imaginary part of the frequency is obtained from

ωi = − Λi(k, ωr)
(∂/∂ω)Λr(k, ω)|ω=ωr

, (5.18)

and is given in this case by

ωi = −ω
2
r

2
α1

1 + F (ωr)
ω2

0 + F (ωr)G(ωr)
, (5.19)

where

G(ωr) ≡
ω4
r

ω2
r + α2

1
. (5.20)

We note that ωi = 0 if nd0 = 0, and when nd0� 0 we have wi < 0, showing that
the wave is absorbed. This absorption comes from the presence of the dust particles
with variable charges in the plasma.

We note also that if we do not have charge variation, C� 0 but B = 0, because
it originates from terms that are dependent on ν0

βd = 0. This implies that ωr will
be modified, but we shall still have ωi = 0.

In what follows we make several numerical estimates of the relevant parame-
ters that describe the propagation and absorption of the magnetosonic wave in the
proposed model. All the results presented here were calculated using a = 10−4 cm
for the radius of the dust grain. We have checked, for each set of parameters em-
ployed, if the limits a� λD and a� ρ, which restrict the validity of the model,
are satisfied. All the figures presented are consistent with these limitations. The
equilibrium densities of electrons, ions and dust, and the equilibrium charge of the
dust particles, are obtained given two of these quantities and determining the other
two in such a way that (2.15) and (2.20), which characterize the equilibrium, are
satisfied.

In Fig. 1 we show ωi/Ωi as a function of ck/Ωi, for several values of the external
magnetic field B0. The curves labelled by (a), (b), (c) and (d) correspond to B0 =
0.2, 0.3, 0.4 and 0.5 T respectively. The fixed parameters are T = 1.5 × 104 eV,
nd0 = 104 cm−3, ni0 = 108 cm−3 and a = 10−4 cm, which give Zd ' 9766. We see
that the absolute value of ωi/Ωi decreases with increasing B0, and for B0 > 0.6 T
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Figure 2. ωi/Ωi as a function of ck/Ωi for B0 = 5 × 10−3 T and several values of the
temperature T of electrons and ions: (a) 100 eV; (b) 50 eV; (c) 10 eV; (d) 5 eV. The other
parameters are as in Fig. 1.
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Figure 3. ωr/Ωi as a function of nd0 for a = 10−4 cm, B0 = 5 × 10−3 T, ni0 = 108 cm−3,
ck/Ωi = 0.5 and several values of the temperature T of electrons and ions: (a) 15 keV;
(b) 1 keV; (c) 170 eV; (d) 100 eV.

the curves become nearly horizontal approaching the axis for larger values of B0.
We remark that increasing B0 causes the ions and electrons to be more closely
bound to the magnetic field lines and therefore to contribute less to the variation
of the currents that charge the dust particles.

In Fig. 2 we show ωi/Ωi as a function of ck/Ωi, for several values of the tempera-
ture T of electrons and ions. The curves labelled by (a), (b), (c) and (d) correspond to
T = 100, 50, 10 and 5 eV respectively. The external magnetic field is B0 = 5×10−3

T, and the other parameters are the same as used in Fig. 1. In this case Zd is ap-
proximately 6164, 8302, 9606 and 9694, for curves (a), (b), (c) and (d) respectively.
We see that the increase of the absolute value of ωi/Ωi increases with increasing
temperature of electrons and ions; for very low values of the temperature we obtain
horizontal lines, and the absolute value of ωi/Ωi approaches to zero. We remark that
with increasing temperature, electrons and ions contribute more to the variation
of the currents that charge the dust particles.

Figure 3 shows ωr/Ωi as a function of nd0, for several values of the temperature
T of electrons and ions. The curves labelled by (a), (b), (c) and (d) correspond to
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Figure 4. ωi/Ωi as a function of nd0 for several values of the temperature T of electrons
and ions. The other parameters are as in Fig. 3.
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Figure 5. ωr/Ωi as a function of nd0 for a = 10−4 cm, T = 1.5 × 104 eV, ni0 = 108 cm−3,
ck/Ωi = 0.5 and several values of the external magnetic field B0: (a) 2 × 10−2 T;
(b) 4× 10−2 T; (c) 6× 10−2 T; (d) 8× 10−2 T.

T = 15 keV, 1 keV, 170 eV and 100 eV respectively. The fixed parameters are
a = 10−4 cm, B0 = 5× 10−3 T, ni0 = 108 cm−3 and ck/Ωi = 0.5. We see that ωr/Ωi
decays sharply to small values with increasing nd0, and that this depends on the
temperature of electrons and ions: the critical value of nd0 where the abrupt decay
occurs diminishes with increasing temperature.

In Fig. 4 we show ωi/Ωi as a function of nd0, for the same parameters as used
in Fig. 3 and the same values of electron and ion temperature. We remark that
at the values of nd0 where ωr/Ωi decays to small values, ωi/Ωi presents minimum
points. These minimum points are shifted to higher values of nd0 with decreasing
temperature.

Figures 5 and 6 show, for a = 10−4 cm, T = 1.5 × 104 eV, ni0 = 108 cm−3 and
ck/Ωi = 0.5, ωr/Ωi and ωi/Ωi as functions of nd0, for several values of the external
magnetic field B0: (a) 2× 10−2 T, (b) 4× 10−2 T, (c) 6× 10−2 T and (d) 8× 10−2 T.
We see the same kind of behaviour in these figures that we have observed in Figs 3
and 4.
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Figure 6. ωi/Ωi as a function of nd0 for several values of the external magnetic field. The
other parameters are as in Fig. 5.

We remark that variations in the temperature of electrons and ions and in the
external magnetic field have the same type of effect on the enhancement of the
currents that charge the dust particles: these currents grow with increasing tem-
perature or decreasing magnetic field.

6. Summary and conclusions
In this paper we have developed a complete treatment, in the framework of kinetic
theory, in order to obtain the dielectric tensor that describes a plasma composed
of electrons, ions and dust particles immersed in an external magnetic field, taking
the charge variation of the dust particles explicitly into account.

The general expressions obtained show that the dielectric response of the plasma
is modified in two ways by the charge variation of the dust particles. First, the
denominator that usually occurs in the expression for the components of the di-
electric tensor of a homogeneous plasma in the presence of an external magnetic
field is modified by the addition of a purely imaginary term. This term can give rise
to amplification or absorption of the wave that is being considered. Also, in some
situations, we can have competition between Landau damping and the damping
due to the presence of the dust particles with variable charge. Secondly, due to
the charge variation of the dust particles, the dielectric tensor components have
an additional term that depends strongly on the process of charging of the dust
particles.

We have presented general expressions for the dielectric tensor components, and
have also derived particular expressions for the tensor, suitable for perpendicular
propagation and Maxwellian distribution functions of electrons and ions.

We have made a preliminary application of this formalism to the magnetosonic
wave. The magnetosonic wave propagates perpendicularly to an external magnetic
field, and is usually an undamped mode. We have shown that the inclusion of
dust particles, using the model proposed in this paper in its simplest form, leads
to the possibility of the magnetosonic wave being absorbed. We intend to explore
this application more deeply, retaining the effects of charge variation of the dust
particles that are included in εNij .
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Appendix A
The quantities Rij are given by

RRxx = J ′2n + cos2 ψ

(
n2

b2
β

J2
n − J ′2n

)
, RIxx = 0,

RRxy =

(
n2

b2
β

J2
n − J ′2n

)
sinψ cosψ, RIxy =

n

bβ
JnJ

′
n,

RRxz =
n

bβ
J2
n cosψ, RIxz = JnJ

′
n sinψ,

RRyy =
n2

b2
β

J2
n + cos2 ψ

(
J ′2n −

n2

b2
β

J2
n

)
, RIyy = 0,

RRyz =
n

bβ
J2
n sinψ, RIyz = −JnJ ′n cosψ,

RRzz = J2
n, RIzz = 0,

with RRij = RRji and RIij = −RIji.
The quantities Rij depend on particle species, but are written without explicit

reference to the β index in order to not burden the notation.
In the above expressions the Bessel functions Jn and their derivatives depend on

the argument bβ = k⊥p⊥/mβΩβ , and ψ = tan−1(ky/kx) is the angle between the
vector k⊥ and the x axis; k⊥ is the perpendicular component of the wave vector.
In the situation treated in this paper, ψ = 0.

Appendix B
We give the integrals for the computation of the dielectric tensor for dusty plasmas
when k‖ = 0 and fβ0 is a Maxwellian distribution function.

Expressions for Im0β
(a) For even m,

I2l
0β =

nβ0

π

(2l − 1)!!
2l+1 (2mβTβ)l−1,

I4
0β =

3
4π
nβ0mβTβ , I6

0β =
15
4π
nβ0(mβTβ)2.

(b) for odd m,

I2l+1
0β =

nβ0l!
2π3/2

(2mβTβ)l−1/2.

Expressions for Im1β

Im1β =
πa2nd0

ωmβ
(Jm+1

0β + CβJm−1
0β ),

I1
1β =

πa2nd0

ωmβ
(J2

0β + CβJ0
0β), I3

1β =
πa2nd0

ωmβ
(J4

0β + CβJ2
0β),

I4
1β =

πa2nd0

ωmβ
(J5

0β + CβJ3
0β), I6

1β =
πa2nd0

ωmβ
(J7

0β + CβJ5
0β).
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Expressions for Im2β

Im2β =
(
πa2nd0

ωmβ

)2

(Jm+2
0β + 2CβJm

0β + C2
βJm−2

0β ),

I4
2β =

(
πa2nd0

ωmβ

)2

(J6
0β + 2CβJ4

0β + C2
βJ2

0β),

I6
2β =

(
πa2nd0

ωmβ

)2

(J8
0β + 2CβJ6

0β + C2
βJ4

0β).

Expressions for Jm
0β

(a) For m = 0,

J0
0β =

nβ0

2π(2mβTβ)
[1− δβeerf(ξ)].

(b) For even m,

J2l
0β =

(2l)!
l!22l−1

{
nβ0

4π
(2mβTβ)l−1 − δβene0

π3/2
(2meTe)l−1

[
− e−ξ

2

2

l∑
k=1

(2ξ)2k−1k!
(2k)!

+
π1/2

4
erf(ξ)

]}
,

J2
0β =

{
nβ0

4π
− δβene0

π3/2

[
− e−ξ

2

2
ξ +

π1/2

4
erf(ξ)

]}
,

J4
0β =

3
2

{
nβ0

4π
(2mβTβ)− δβene0

π3/2
(2meTe)

[
− e−ξ

2

2

(
2ξ3

3
+ ξ

)
+
π1/2

4
erf(ξ)

]}
,

J6
0β =

15
4

{
nβ0

4π
(2mβTβ)2 − δβene0

π3/2
(2meTe)2

[
− e−ξ

2

2

(
4ξ5

15
+

2ξ3

3
+ ξ

)
+
π1/2

4
erf(ξ)

]}
,

J8
0β =

105
8

{
nβ0

4π
(2mβTβ)3 − δβene0

π3/2
(2meTe)3

[
− e−ξ

2

2

(
8ξ7

105
+

4ξ5

15
+

2ξ3

3
+ ξ

)
+
π1/2

4
erf(ξ)

]}
.

(c) For odd, m

J2l+1
0β =

l!nβ0(2mβTβ)(2l−1)/2

2π3/2

(
δβi + δβee

−ξ2
l∑
k=0

ξ2l

k!

)
,

J1
0β =

nβ0(2mβTβ)−1/2

2π3/2
(δβi + δβee

−ξ2
),

J3
0β =

nβ0(2mβTβ)1/2

2π3/2
[δβi + δβee

−ξ2
(ξ2 + 1)],
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J5
0β =

2nβ0(2mβTβ)3/2

2π3/2

[
δβi + δβee

−ξ2
(
ξ4

2
+ ξ2 + 1

)]
,

J7
0β =

6nβ0(2mβTβ)5/2

2π3/2

[
δβi + δβee

−ξ2
(
ξ6

6
+
ξ4

2
+ ξ2 + 1

)]
,

where ξ2 ≡ |χe|.
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