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Trapping state stabilization in a micromaser with a mixed atomic beam
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A scheme which stabilizes the trapping states in micromasers is proposed and studied. It uses an atomic
beam composed of a mixture of two types of atoms. Numerical simulations based on the Monte Carlo wave-
function method show that, despite collective events, it is possible to obtain a steady-state photon number
distribution limited~‘‘trapped’’! to a certain domain of the photon number space. For the one-photon trapping
condition this steady state approaches a Fock state in the limit of low cavity losses.@S1050-2947~97!05302-X#

PACS number~s!: 42.50.Ct, 42.55.2f, 32.80.2t
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I. INTRODUCTION

Generation of sub-Poissonian photon statistics@1#, col-
lapses and revivals of the atomic population inversion@2#
and the so-called ‘‘trapping states’’@3# are the main quantum
features of the micromaser@4,5# which cannot be explained
in the viewscope of a classical field theory. While the fi
two features have already been realized experiment
@6–8#, the trapping states remain to be observed. These s
have been largely studied theoretically and they constitu
proposal for Fock state generation@3#. Recently, a scheme
for producing entangled Fock states and a ‘‘Schro¨dinger
cat’’ @9# has been proposed which uses the concept of t
ping states@10#. Also, squeezing in a two-mode micromas
pumped by three-level (L-type! atoms running Raman tran
sitions into the cavity has been theoretically predicted un
the trapping conditions@11#.

Depending on the atom-field coupling constant and in
action time, for certain values of the photon number ins
the cavity the atoms will have maximum probability of lea
ing the cavity in the excited state. If they were initially pr
pared in the excited state, this corresponds to a situatio
which the atoms undergo a number of full Rabi oscillatio
inside the cavity. Thus, for fields initially in the vacuu
state, the photon number distribution will be limite
~‘‘trapped’’! to a certain domain of the Fock space. Mor
over, in the lossless case this process leads to ad distribu-
tion, i.e., a Fock state@3#. However, due to its marginal sta
bility @1,12#, the realization of a trapping state is ve
sensitive to external sources of noise like thermal fluct
tions, stray electric fields inside the cavity~or resonator!,
atomic velocity dispertion, and collective events in which t
field interacts with more than one atom at a time inside
cavity. Lately, special attention has been given to the pr
lem of cooperative effects in the micromaser@13–16#. An
analytical and numerical calculation of the trapping sta
lifetime can be found in Ref.@16#.

Among the difficulties in the realization of a trappin
state, collective events play a special role. Even though
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standard micromaser experiments the atomic beam flu
very small, so that most events involve only one atom, th
is a nonzero probability for a collective event of two o
more atoms to occur. After the interaction with a pair
atoms, for instance, the number of photons inside the ca
may be altered and the trapping condition violated. A sin
atom that follows this event will then have a nonzero pro
ability of adding one more photon, so that a nontrapped fi
is built up. As demonstrated before@14#, too many one-atom
events are needed in order to recover the trapping pho
number, so that another collective event is very likely
occur in the meantime.

In the present work we propose a scheme which ov
comes the difficulty created by the collective events. It
based on the production of an atomic beam composed of
types of atoms with different transition frequencies. One
is prepared in the upper level of the masing transition, a
the other in the lower level. With a suitable cavity tuning it
possible to obtain a situation in which both sets of ato
have the same effective Rabi frequency. Under the trapp
condition the atoms develop an integer number of Rabi
cillations without changing the trapping photon numb
When the trapping condition is violated by a collectiv
event, for example, the excited atoms that follow will have
nonzero probability for emitting a photon but, at the sam
time, atoms in the lower level will have a nonzero probab
ity for absorbing a photon. By adjusting the fluxes of the tw
sets of atoms one may obtain a stable trapping state as
will show below. In fact, the role played by the atoms pr
pared in the lower level is to reduce the time taken by
micromaser to reestablish the trapping condition so tha
happens before another collective event takes place.

II. MICROMASER DYNAMICS IN THE PRESENCE
OF A MIXED ATOMIC BEAM

A. Atom-field interaction

We now turn to a quantitative argument about the cons
erations above. Assuming that the atoms can be appr
mated by a two-level system, and adopting the usual elec
dipole and rotating-wave approximations the atom-field
teraction Hamiltonian in the rotating frame may be written
2304 © 1997 The American Physical Society
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55 2305TRAPPING STATE STABILIZATION IN A . . .
H~ t !5(
i

\k i~as i
11a†s i

2!2\D is i
1s i

2 , ~1!

wherek i and D i are, respectively, the atom-field couplin
constant and the detuning (vcav2v i) corresponding to atom
i , a anda† are the creation and annihilation operators for
cavity mode, ands i

1 ands i
2 are the Pauli spin flip matrice

corresponding to atomi . Let us first consider one-atom
events only so that the summation appearing in the Ha
tonian is irrelevant for the moment. In addition, let us su
pose that the atomic beam is composed of two sets of ato
One set is prepared in the upper level before entering
cavity and detuned byDemt @Demt5(vcav2vemt)# from the
cavity frequency. From now on we will refer to these atom
asemitters, wherevemt is their atomic transition frequency
The other set is prepared in the lower level and detuned
Dabs @Dabs5(vcav2vabs)#. We will call themabsorbers, and
vabs is their atomic transition frequency. From the Ham
tonian above, the transition probability for both sets of ato
may be calculated in terms of the interaction timet int and the
photon numbern inside the cavity. We then find the wel
known results describing the Rabi oscillations

Pemt
g ~n!5

4kemt
2 ~n11!

Demt
2 14kemt

2 ~n11!
sin2@Vemt~n!t int# ~2!

and

Pabs
e ~n!5

4kabs
2 n

Dabs
2 14kabs

2 n
sin2@Vabs~n!t int#, ~3!

where Pemt(abs)
g(e) (n) is the probability that an emitter~ab-

sorber! leaves the cavity in the lower~upper! level, that is,
the emission~absorption! probability when there aren pho-
tons inside the cavity.Vemt(n) and Vabs(n) are the
n-photon Rabi frequencies for the corresponding sets of
oms, given by

Vemt~n!5F S Demt

2 D 21kemt
2 ~n11!G1/2 ~4!

and

Vabs~n!5F S Dabs

2 D 21kabs
2 nG1/2. ~5!

The factor (n11) in Eqs.~2! and~4! accounts for the spon
taneous Rabi oscillation performed by an emitter in
vacuum field.

In the usual micromaser experiments@5# the atomic beam
is prepared in the excited state and the cavity is tuned
resonance. In this case, for one-atom operation, it is p
dicted @3# that a trapped photon number distribution is o
tained when the atom-field interaction time is such that
emission probability vanishes for some valuen0 of the pho-
ton number. This corresponds to a situation where the at
develop an integer number of full Rabi oscillations befo
leaving the cavity. From the equations above we see tha
principle, one can conceive a situation in which both sets
atoms perform an integer number of Rabi oscillations fo
given number of photonsn0 in the cavity and for a given
e
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interaction time. This situation is achieved, for examp
whenVemt(n0)t int5Vabs(n0)t int5qp, with q an integer. A
simple and straightforward calculation shows that this co
dition can be fulfilled provided the interaction time is set
the suitable value and the cavity is tuned to the frequenc

vcav5
vabs1vemt

2
1
2kabs

2 n022kemt
2 ~n011!

vabs2vemt
. ~6!

We can see from Eqs.~2! and ~3! that bothPemt
g and Pabs

e

vanish when the trapping condition is satisfied. Furthermo
if an extra photon is added to the cavity field, so that t
trapping condition is no longer fulfilled, both probabilitie
will have a nonzero value and the trapping condition may
reestablished due to the absorption of a photon by an
sorber. As we will see in Sec. IV, in this case one can obt
a trapped photon number distribution despite the presenc
collective events.

In what concerns the system parameters the consid
ations above are quite general and we may investigate t
consequences in a simpler context. For example, let us
Demt50 and kemt5kabs[k. In this case, Eq.~6! implies
Dabs562k. Since the Rabi frequency depends on the squ
of the detuning, the absorbers may be detuned either ab
or below the cavity frequency. The hypothesis of equal co
pling constants is in general not verified if the two sets
atoms are from different atomic species since the elec
dipole moments may be appreciably different. However,
both sets are from the same specie their coupling consta
will be the same.

Let us consider, for instance, the situation sketched in F
1. The atomic beam crosses a region where the atoms
excited to the Rydberg state corresponding to the upper m
ing level, which means that all atoms are initially prepared
emitters. The preparation of the absorbers may be achie
by means of a microwavep pulse, represented in the figur
by the state selection box, which flips the atoms to the low
masing level. This atomic flipping must be synchronize
with the application of a constant electric field inside th
cavity that will shift the masing levels via the Stark effec
and provide the detuning of the atomic frequency for t
absorbers. By switching the state selection and the dc fi

FIG. 1. A proposed setup for production of a mixed atom
beam composed by emitters and absorbers. The alternating betw
the two sets of atoms is achieved by periodically switching on a
off the state selection and the dc electric field between the ca
mirrors in a synchronized way. The dc field provides the suitab
tuning of the absorbers in order to cancel the absorption when
trapping condition is fulfilled.
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2306 55A. Z. KHOURY AND TARSO B. L. KIST
on and off periodically, one obtains the alternating betwe
emitters and absorbers in the beam.

B. Trapping state recovering time

The main feature behind the trapping state stabilizatio
the reduction of the number of one-atom events required
the micromaser to recover the trapping condition after
violation due to a collective event. In order to check th
argument let us first consider one-atom events only. In
presence of a mixed atomic beam satisfying a Poisso
injection statistics, the micromaser dynamics is described
the following master equation:

ṗn5 f emtr @2Pemt
g ~n!pn1Pemt

g ~n21!pn21#

1 f absr @2Pabs
e ~n!pn1Pabs

e ~n11!pn11#

1gcav~nth11!@~n11!pn112npn#

2gcavnth@~n11!pn2npn21#, ~7!

wheref emt ( f abs512 f emt) is the fraction of emitters~absorb-
ers! in the beam,r is the total atomic flux,gcav is the cavity
decay rate,nth is the average number of thermal photons
the mode ~given by Planck’s distribution!, and
pn[^nurun& is the density-matrix diagonal element in th
Fock state basis. One can easily verify that in the absenc
losses (gcav50) a Fock stateun0&, corresponding to a trap
ping conditionVemt(n0)t int5Vabs(n0)t int5qp, is a steady-
state solution of the above master equation. In the prese
of a zero temperature reservoir the steady-s
photon number distribution will be limited to th
$u0&, . . . ,un0&% subspace. Let us consider, for example,
one photon trapping state (kt intA25p). In this case both the
emitters and absorbers will develop a full Rabi oscillati
when there is one photon in the resonator. The steady s
pn will then vanish fornÞ0,1. When a collective even
takes place there is a finite probability for the atoms to a
an extra photon to the cavity field so that the subsequ
atoms will no longer develop a full Rabi oscillation. In th
absence of the absorbers the cavity losses take a very
time to reestablish the trapping condition, so that anot
collective event is very likely to occur in the meantime@14#.
When the absorbers are present in the beam they provid
extra loss mechanism which is triggered when the trapp
condition is violated. This extra loss significantly reduces
time taken by the micromaser to reestablish the trapped p
ton number distribution, and at the same time are ineffec
under the trapping condition due to the coherent nature of
atom-field interaction. In order to give a quantitative mea
ing to this argument we have numerically solved the ma
equation~7! taking the Fock stateu2& as the initial condition
for the cavity field. Of course, other initial conditions may
considered, but they do not add much physical insight.
then compute the time, in units of the average time inter
1/r between two consecutive atoms, taken by the pho
number distribution to become trapped in the$u0&,u1&% sub-
space. To do so we had to establish a numerical criterion
the trapping condition so that we actually calculated the ti
t99 for which p0(t99)1p1(t99) reaches the value 0.99. I
Fig. 2~a! we show the timet99 in units of 1/r as a function of
n
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f abs. Under the usual micromaser condition (f abs50), about
616 atoms are required for the system to recover the trap
condition. Asf abs increases,t99 decreases very fast and aft
about 33 atoms the photon number distribution is alrea
trapped whenf abs5 f emt50.5. The time evolution scale in
creases with the ratio between the cavity damping rategcav
and the atomic fluxr . In Fig. 2~a! we assumed a rather low
value (Nex[r /gcav510) in order to save computation time
but the result may be easily extended to higher values.

We may develop some intuition about the competiti
between the evolution toward the trapping condition and
collective events by calculating the probabilityPcol(t) that at
least one collective event takes place during the time inte
t. An approximate expression forPcol as a function of time is
obtained in the Appendix and the result is

Pcol~ t !512
e2rt

p
~eprt1p21!, ~8!

wherep[e2rt int is the probability that the time interval be
tween two consecutive atoms exceedst int for a beam obeying
Poisson’s distribution function. Notice that a relevant para
eter in what concerns the collective events is the aver
number of atoms in the resonatorNat[rt int . In Fig. 2~b! we
show the probabilityPcol(t) as a function of time for
Nat50.01, which is a typical value in micromaser expe
ments@6#. For the timet995616/r , taken by the usual micro
maser scheme to recover the trapping condition, the pr
ability Pcol exceeds 0.997, while for t99533/r ,
corresponding tof abs5 f emt50.5, it is smaller than 0.28. O
course, higher values off absmay be considered, but in thi
case collective events involving absorbers will populate
vacuum state. In Sec. IV we will see that a trapped pho
number distribution is obtained whenf abs5 f emt50.5.

FIG. 2. In ~a! the trapping state recovering timet99 vs the frac-
tion f absof absorbers in the atomic beam (Nex510) is shown. In~b!
the probabilityPcol that at least one collective event takes pla
during the time intervalt is given as a function oft (Nat50.01). In
both figures, the time is expressed in units of the average t
interval between two consecutive atoms.
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III. MONTE CARLO WAVE-FUNCTION APPROACH

In order to study the micromaser dynamics includi
many features of its operation, we have chosen a Mo
Carlo wave-function~MCWF! approach@17# for simulating
the master equation. This method has been successfully
plied before to study collective effects in the micromas
@15,16#, and its results are in very good agreement with
density-matrix approach. The MCWF simulations invol
two steps@17#. In the first one, the Schro¨dinger equation is
numerically integrated fromt to t1dt, using the second
order Runge-Kutta method with the effective non-Hermiti
Hamiltonian

Heff5H2
i\

2 (
m

Cm
†Cm , ~9!

whereH is the interaction Hamiltonian given by Eq.~1!. The
number of atoms, as well as their types~emitter or absorber!,
included in the Hamiltonian for each time intervaldt is de-
termined by random choice: before the integration of
Schrödinger equation for each realization, the arrival tim
of the successive atoms are drafted according to the distr
tion for time intervals corresponding to a Poissonian pum
ing @P(T)5re2rT, where 1/r is the average time interva
between successive atoms#. In the present work, we conside
up to two atoms inside the cavity, since three-atom eve
are very rare for the small atomic fluxes considered here.
operatorsCm are obtained from the master equation for t
reduced density matrixr corresponding to the subsyste
atom-field mode~obtained by tracing out the reservoir var
ables for both the atoms and the field!, written in Lindblad’s
form @18#:

ṙ5
i

\
@r,H#1(

m
@CmrCm

† 2 1
2Cm

†Cmr2 1
2rCm

†Cm#.

~10!

The interaction of the field in the cavity with the reservoir
taken into account by the operatorsC15@gcav(11nth)#

1/2a
and C25@gcavnth#

1/2a†. Note that if we set
uC̃(t1dt)&5(12 iH effdt/\)uc(t)&, then sinceHeff is non-
Hermitian the stateuC̃(t1dt)& is not normalized, the squar
of its norm being given by

^C̃~ t1dt !uC̃~ t1dt !&512dP, ~11!

where

dP5dt
i

\
^C~ t !uHeff2Heff

† uC~ t !&5(
m

dpm , ~12!

with

dpm5dt^C~ t !uCm
†CmuC~ t !&. ~13!

The quantitydP is the probability that the mode exchanges
photon with the reservoir betweent andt1dt, while dpm is
the probability that the cavity field loses~if m51) or gains
~if m52) a photon during the same time interval.

In the second step, the subsystem is subjected to quan
jumps @17# in each intervaldt, according to the probability
te

p-
r
e

e
s
u-
-

ts
e

um

dP. The randomness of this jump is mimicked by the cho
of a pseudorandom number@19# e uniformly distributed be-
tween 0 and 1. Ife.dP, there is no jump, and we have on
to normalize the wave functionuC̃(t1dt)&, since the time
evolution with Heff is not unitary: uC(t1dt)&
5uC̃(t1dt)&/A12dP. If e,dP, a quantum jump occurs
betweent andt1dt. The wave function is projected accord
ing to uC(t1dt)&5CmuC(t)&/(dpm /dt)

1/2. The operator
Cm to be used in this equation is chosen according to
probability dpm /dP. This procedure is repeatedtmax/dt
times from t50 to t5tmax. The expectation value of an
operator may be calculated for a single realization at e
time intervaldt, while the mean value over an ensemble
obtained by making an average over many realizations. S
cial attention must be paid to the value ofdt. It must be
small enough becausedP in Eq. ~11! was calculated up to
first order indt and also because at most one quantum ju
should occur in this interval. Also, it should not be too sma
because of the limited precision of the computer-genera
pseudorandom numberse, and also because of the Markov
ian approximation implicit in the effective Hamiltonian
which implies thatdt should be larger than the reservo
correlation time~of the order of one optical period!. In the
following simulationsdt was chosen so thatdP stays in the
range from 1023 to 1025.

IV. NUMERICAL RESULTS

We now present the results obtained with the method
scribed above. Our simulations include collective events
volving two emitters, two absorbers, or one of each. We h
takenkemt5kabs[k, Demt50, andDabs512k.

Figure 3 shows the steady-state photon number distr
tion pn for a micromaser operating in the one photon tra
ping state condition (kt intA25p) for f abs50 and 0.5. One

FIG. 3. Steady-state photon number distribution forNex550,
with ~a! f abs50 and~b! f abs50.5. The collective events build up
nontrapped photon number distribution in the first case while
trapped steady state is obtained when one-half of the atoms in
beam are absorbers. In the last case the field approaches a
photon Fock state with decreasing losses.
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2308 55A. Z. KHOURY AND TARSO B. L. KIST
can easily see that in the absence of the absorbers@see Fig.
3~a!# the distribution leaks beyond the trapping photon nu
ber n51. The situation is quite different when half of th
atoms in the beam are absorbers@see Fig. 3~b!#, the distribu-
tion remains trapped despite the collective events. When
extra photon is added to the cavity field by a collective ev
an additional loss mechanism is triggered due to the pres
of the absorbers, and the distribution is pulled back to
trapping condition. The peak atn51 is approximately
0.94. Large values off abs will tend to destroy the trapped
photon and increase the population of the vacuum state
to the increment of the number of collective events involvi
absorbers.

We have checked that the differences increase withNex,
i.e., with decreasing losses. Once the extra photons lef
collective events live longer, the distribution becomes hig
spread out whenf abs50. On the other hand, forf abs50.5 the
distribution remains trapped and the peak atn51 increases
since extra photons are removed by the absorbers and
trapped photon lives longer. A one-photon Fock state pre
ration using the principle of trapping states requires the co
plete absence of losses. While in the usual micromaser s
the effects of the collective events are stressed in the low
regime, with the scheme proposed here it is possible to
isfy the compromise between low losses and trapping co
tion, despite the action of collective events.

V. CONCLUSIONS

We have presented an interesting feature of microma
operation related to the interaction of a mixed atomic be
with the intracavity field. The scheme presented was th
retically demonstrated to produce a stable trapping st
which constitutes an additional tool for its implementatio
We have shown that trapped photon number distributi
may be obtained despite the action of collective events. T
is achieved by the presence of the absorbers in the ato
beam. The absorbers are ineffective under the trapping
dition and constitute an extra loss mechanism when this c
dition is violated. While in the standard micromaser sche
the reduction of losses makes the effects of collective ev
even more important, with the mixed beam setup it is p
sible to approach the one-photon Fock state by reduc
losses despite the action of collective events.
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APPENDIX

In the following we calculate the probabilityPcol(t) that
at least one collective event takes place in the time inte
(0,t). We start by assuming a Poissonian atomic beam w
flux r so that the numberN of atoms that cross the cavit
-
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during the time intervalt obeys the following distribution:

P~N!5e2^N&
^N&N

N!
, ~A1!

where ^N&5rt . As a consequence the probability distrib
tion for the time intervalT between two consecutive atoms

P~T!5re2rT. ~A2!

The probability p[e2rt int that two consecutive atoms ar
separated by a time interval larger than the interaction t
t int is obtained by direct integration of Eq.~A2! from t int to
infinity.

If N atoms have crossed the cavity entrance during
time t ~considering the entrance of the first atom of the p
at time zero!, the condition that no collective events occ
requires that all consecutive atoms are separated by a
interval larger thant int . Of course, in order to be consiste
with the fact thatN atoms have crossed the cavity duringt
the sum of theN21 time intervals between the consecuti
atoms must be smaller thant. For the values ofN such that
(N21)t int.t, it will be impossible not to have a collectiv
event. On the other hand, ifN50,1 there will certainly be no
collective events. Let us define the probabilitypN(t int ,t) that
no collective events have occurred during the time inter
t, given thatN atoms have entered the cavity during th
time. Taking the considerations above, and with the help
Eq. ~A2!, we may write it as

pN~ t int ,t !55
1, N50,1

A, 2<N<
t

t int
11

0, N.
t

t int
11,

~A3!

where A5r N21*V(t int ,t)dt1•••dtN21e
2r( i51

N21t i, V(t int ,t) is
the hypervolume limited by the hyperplane
t15t int , . . . ,tN215t int and the hyperplaneSN21 over which
t11•••1tN215t. For the values of N such that
(N21)t int!t the integrand inpN(t int ,t) is negligible over
and beyondSN21. In this case we may extend the integr
overV(t int ,t) to infinity, so thatpN(t int ,t)'pN21.

The probability that no collective events occur duringt,
regardless of the number of atoms that crossed the cavit
the sum overN of pN(t int ,t) weighed byP(N). For a diluted
atomic beam such thatrt int!1 we havê N&!t/t int , so that
the probabilityP(N) associated with the values ofN for
which (N21)t int*t is very small. Thus the probability tha
at least one collective event takes place duringt is given by

Pcol~ t !512 (
N50

`

P~N!pN~ t int ,t !

'12e2^N&F11 (
N51

`
^N&N

N!
pN21G . ~A4!

A straightforward algebra yields

Pcol~ t !'12
e2rt

p
~eprt1p21!, ~A5!

which is the formula presented in the text.
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