
Maintenance and repair tasks that follow estab-
lished procedures reduce the chances of unex-
pected failure and the consequent losses in
production, time, and money. In some critical

cases, failure in a process can cause serious damage or even
endanger human lives. We have developed a fuzzy logic sys-
tem to diagnose the operation of rotating machines and help
improve maintenance and repair procedures.

Vibration Analysis for Monitoring
Machines
Machines can have complex mechanical structures with artic-
ulated elements. The parts can oscillate, and coupled elements
can transmit these oscillations. The result
is a complex frequency spectrum that
characterizes the system [6]. A frequency
component in the system will change
when a mechanical part either wears or
cracks. A change in the coupling between parts also affects the
frequency spectrum of the system.

Vibration measurements have been taken on bearings [6],
which see vibrations from such forces as centrifugal, alternat-
ing, and friction. These measurements reveal stress on compo-
nents, potentially leading to functional abnormalities. Gaps,
failures, or misalignments of bearings or an unbalanced rotor
can alter the spectrum of frequencies in rotating machines. Ta-
ble 1 shows some of the diagnostic parameters.

According to Ya’Cubsohn, failures can be divided into two
generic classes: low-frequency faults (e.g., unbalancing, mis-
alignment) and high-frequency faults (e.g., ball bearing de-
fects, lack of lubrication) [6]. However, measuring the
frequency of each one of the vibration components is not suffi-
cient to identify the fault. Frequency must be related to the ro-

tating speed of the axle. Therefore, we must know the rotating
speed of the axle in order to diagnose faults.

Imbalance, misalignment, excessive gap, insufficient rigid-
ity, bad coupling, belt wear, or bent axles will change the am-
plitude of vibration at the rotational frequency [4], [6]. These
faults can be classified as a cluster of low-frequency faults and
are called nonadjustments.

One of the difficulties with fault detection is the high

dimensionality in the motor [1]. Many variables can affect the

process of fault detection, including load, saturation, unpre-

dictable operating conditions, electrical noise, and tempera-

ture. These can result in dozens of possible combinations for

different patterns that will mask the vibration measurement [2].

A fundamental premise of this vibration analysis is: “Each
component or each kind of mechanical deficiency of a ma-
chine in operation produces one vibration of specific fre-
quency which, in normal conditions of operation, can reach a
maximum known amplitude” [6]. The basic methodology rec-
ommends measuring:

◗ The frequency to identify the origin of vibration, which
may be either a machine component or a fault and

◗ The amplitude of the vibration level to evaluate normal
or abnormal operation and the magnitude of the de-
tected fault.

Spectral Analysis
Accelerometers can detect and measure the vibration within a
system. Analysis then plots the frequency spectrum of the
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vibration through the Fourier theorem, which establishes that
any periodic function is based on a series of sinusoids at multi-
ple harmonics of the fundamental frequency. We can diag-
nose the state of operation or the evolution of faults within the
system by observing the amplitudes of the peaks in some fre-
quencies and relating them to the amplitude of the fundamen-
tal frequency of the system.

Forces that excite vibrations exist in different places within
the machine. Each exciting force will generate a harmonic of
the vibration that is characteristic of displacement, velocity,
and acceleration. The sum of all harmonics to each variable
will result in a unique spectrum at the bearings. The harmonic
components of vibration may be classified into two groups [6]:

◗ Low-frequency components with frequencies up to five
times the axle rpm and

◗ High-frequency components with frequencies greater
than five times the axle rpm.

The Rotating System

We developed an experimental setup, called the rotating sys-
tem, so that we could insert faults and measure the results. The
rotating system comprises an ac motor with a nominal rotation
of 1800 rpm and an axle with a wheel disc (Fig. 1). The motor
drives the axle, which is doubly supported by a belt. It rotates at
2270 rpm. The main rotating mass of the axle subsystem is a
metallic disc that is 15 cm in diameter and has a mass of 1012 g.
An L20 Microtest tachometer measures the rotational speed.

The accelerometer is an Analog Devices ADXL202, a
solid-state, biaxial, low-power device. The ADXL202 can mea-
sure dynamic acceleration and vibrations over a range of ±2 g
and null out gravity. This electronic circuit has two digital out-
puts, x and y, that give information about the accelerations in
two orthogonal directions by modulating the duty cycle of
each signal. The two signals can input directly to a digital cir-
cuit that computes the duration of the “on” periods of each
signal without using an A/D converter.

We measured the vibration signals from the rotating sys-
tem with a development system designed for digital signal
processing and based on a TMS320C25 microprocessor (the
Psi25). The Psi25 system acquires signals above 18 Hz. It con-
nects to a microprocessor-based counter inside a personal
computer. A program in the C language commands the acqui-
sition of acceleration data and records them in *.dat files [3].

Experimental Results
We obtained the spectral signature of the rotating system by
acquiring ten *.dat files and computing the average spectrum.
Then, we considered changes in the status of the rotating sys-
tem by inserting faults. We examined faults by inserting
weights that unbalanced the wheel, which has a hole to re-
ceive the weights. The ratio of mass between the wheel (1012
g) and the smallest weight (0.6 g) is 1:1666 [4], [5]. Fig. 2 pres-
ents spectrograms of three different data sets, one for each test
condition: normal operation (blue, 0 g), incipient fault (red, 0.6
g), and maintenance (cyan, 5.1 g).

The experimental process follows these steps and runs in
Matlab (Fig. 3):
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Fig. 2. Spectrogram with the cluster of ten acquisitions.

Fig. 1. The rotating system.

Table 1. Parameters to be Measured

in Predictive Maintenance.

Parameter Fault or Defect

Amplitude of vibration
displacement

Imbalance, misalignment,
excessive gap, insufficient
rigidity, bad coupling,
worn belts, a bent axle

Amplitude of vibration
velocity Bearing or damaged gear

Amplitude of vibration
acceleration

Worn bearings, excessive
friction between
components, lack of
lubrication

Vibration frequency

Data to complement the
measurement of any
characteristic of vibration,
essential to the
determination of any
detected problem



◗ Acquire data (*.dat),
◗ Compute the mean of the data acquisition (*.mat),
◗ Evaluate and plot the spectral signature,
◗ Search for amplitude values at the frequency of wheel

rotation, and
◗ Perform analysis and fuzzy diagnostic.

It automatically executes all steps via command; adjusts the
acquisition time, number of acquisitions, and range of fre-
quency; and sets the fuzzy logic system. The *.dat files are
computed and analyzed in the frequency domain with the sig-
nal processing tool (SPTOOL) in the Matlab5 package.

Fig. 3 shows the result of the fuzzy analysis that deter-
mined the condition of the actual system. The fuzzy system re-
turns the result in a qualitative form by placing the cursor at
the correct position.

Fuzzy Diagnostic
This method allows the diagnosis of the rotating system’s op-
erational status with a fuzzy logic system. It uses a collection
of logical rules in the form of IF-THEN statements. The ante-
cedent statements are the rotational frequency of the wheel
and the vibration amplitude at this frequency (Fig. 2). The re-
sulting statement is the diagnostic of the system (Fig. 3).

The ease of altering rules and updating variables makes
this method versatile. It can accommodate the desired perfor-
mance range of the system, the quality of the construction, risk
factors, and tolerance.
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Fig. 3. The fuzzy diagnostic.


