
Fault Tolerance

552 0740-7475/04/$20.00 © 2004 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

ICS ARE SENSITIVE to upsets that occur in aero-

space. More recently, ICs have also become sensitive to

upsets at ground level because of the continual evolution

of fabrication technology for semiconductors. Drastic

device shrinkage, power supply reduction, and increas-

ing operating speeds significantly reduce noise margins

and thus reliability because of the internal noise sources

that very deep-submicron ICs face.1 This trend is

approaching a point at which it will be infeasible to pro-

duce ICs that are free from these effects. Consequently,

fault tolerance is no longer a matter exclusively for aero-

space designers; it’s important for the designers of next-

generation ground-level products as well.

FPGAs are popular for design solutions because they

improve logic density and performance for many appli-

cations. SRAM-based FPGAs, in particular, are highly

flexible because they are reprogrammable, allowing

onsite design changes. However, because the repro-

grammability leads to a high logic density in terms of

SRAM memory cells, SRAM-based FPGAs are also sen-

sitive to radiation and require protection to work in

harsh environments.2

Our high-level fault tolerance tech-

nique combines time and hardware

redundancy to cope with upsets in SRAM-

based FPGAs. This technique reduces the

number of I/O pads, and therefore power

dissipation, in the interface compared to

the well-known triple modular redun-

dancy (TMR) solution. Our goal is to

reduce hardware overhead (which is

three times more in TMR than the original

area of the unprotected design) to close

to twice the original area, maintaining the

same reliability and consequently reducing power dis-

sipation. We’ve evaluated our technique in two types of

circuits: multipliers and digital filters.

Radiation effects on SRAM-based
FPGAs

A radiation environment contains various charged

particles, generated by sun activity, that interact with sil-

icon atoms, exciting and ionizing the atomic electrons.3

At ground level, neutrons are the most frequent causes

of upsets.4 When a single heavy ion strikes the silicon,

it loses its energy through the production of free elec-

tron-hole pairs, resulting in a dense ionized track in the

local region. Protons and neutrons can cause a nuclear

reaction when passing through the material. The recoil

also produces ionization, generating a transient current

pulse that can cause an upset in the circuit.

A single particle can hit either the combinational or

the sequential logic in the silicon.5 When a charged par-

ticle strikes a memory cell’s sensitive nodes, such as a

drain in an off-state transistor, it generates a transient

current pulse that can mistakenly turn on the opposite

Designing Fault-Tolerant
Techniques for SRAM-Based
FPGAs

Editors’ note:
FPGAs have become prevalent in critical applications in which transient faults
can seriously affect the circuit’s operation. This article presents a fault
tolerance technique for transient and permanent faults in SRAM-based
FPGAs. This technique combines duplication with comparison (DWC) and
concurrent error detection (CED) to provide a highly reliable circuit while
maintaining hardware, pin, and power overheads far lower than with classic
triple-modular-redundancy techniques.

—Dimitris Gizopoulos, University of Piraeus; and
Yervant Zorian, Virage Logic

Fernanda Gusmão de Lima Kastensmidt

State University of Rio Grande do Sul
Gustavo Neuberger, Renato Fernandes Hentschke,

Luigi Carro, and Ricardo Reis

Federal University of Rio Grande do Sul

transistor’s gate. The effect can invert the stored value—

that is, produce a bit flip in the memory cell. This effect

is called a single-event upset (SEU) or soft error, and it’s

a major concern in digital circuits. When a charged par-

ticle hits the combinational logic block, it also gener-

ates a transient current pulse. This phenomenon is

called a single-event transient (SET).

In FPGAs, an upset has a peculiar effect when it hits the

combinational and sequential logic mapped into the pro-

grammable architecture. For example, consider SRAM-

based FPGAs such as those from Xilinx’s Virtex series, one

of the most popular series of programmable devices on

the market. Virtex devices include a flexible, regular archi-

tecture comprising an array of configurable logic blocks

(CLBs) surrounded by programmable I/O blocks, all inter-

connected by a hierarchy of fast and versatile routing

resources.2 The CLBs provide the functional elements for

constructing logic; the I/O blocks provide the interface

between the package pins and the CLBs. A general rout-

ing matrix interconnects the CLBs. This matrix includes

an array of routing switches located at the intersections of

horizontal and vertical routing channels. Virtex devices

also dedicate 4,096-bit memory blocks called block-select

RAMs, clock delay-locked loops (DLLs) for clock-distrib-

ution delay compensation and clock domain control, and

two tristate buffers associated with each CLB.

Users can quickly program a Virtex device by load-

ing a configuration bitstream (a collection of configu-

ration bits) into it. They can change device functionality

at any time by loading in a new bitstream. The bitstream

contains all the information to configure the program-

mable storage elements in the matrix located in the

lookup tables (LUTs), flip-flops, and CLB configuration

cells, and interconnections, as Figure 1 shows. All these

configuration bits are potentially sensitive to SEUs;

hence, we targeted them in our investigation.

In an ASIC, the effect of a particle hitting either the

combinational or the sequential logic is transient; the

only variation is how long the fault lasts. A fault in the

combinational logic is a transient logic pulse in a node

that can disappear according to the logic delay and

topology. In other words, a storage cell might or might

not latch a transient fault from the combinational logic.

Faults in the sequential logic manifest themselves as bit

flips, which remain in the storage cell until the next

load. In an SRAM-based FPGA, customizable memory

cells—SRAM cells (see Figure 1)—implement both the

user’s combinational and sequential logic. When an

upset occurs in the combinational logic synthesized in

the FPGA, it corresponds to a bit flip in one of the LUT’s

cells or in the cells that control the routing. An upset in

an LUT memory cell modifies the implemented combi-

national logic, as Figure 2a shows. This upset has a per-

manent effect, and is correctable only at the next load

of the configuration bitstream. This effect is similar to a

stuck-at fault at 1 or 0 in the combinational logic defined

by that LUT. Thus, a storage cell latches the upset from

the FPGA’s combinational logic, unless the FPGA uses

some detection technique. An upset in the routing can

connect or disconnect a wire in the matrix, as Figure 2b

shows. It also has a permanent effect, which can travel

to an open or a short circuit in the combinational logic

implemented by the FPGA. The configuration bit-

stream’s next load corrects this fault.

553November–December 2004

Lookup
tableF1

F2

F3

F4

M M

M

M

Flip-flop M M M M

Soft-error upset
(bit flip)

Block RAM

Xilinx Virtex

M

Figure 1. Bits sensitive to single-event upsets (SEUs) in the configurable-logic-block tile schematic. Inputs F1

through F4 are the four 1-bit input signals of the lookup table. M is the configuration memory cell.

When an upset occurs in the user sequential logic

synthesized in the FPGA, it has a transient effect

because the CLB flip-flop’s next load corrects it. An

upset in the embedded block RAM has a permanent

effect, and fault tolerance techniques must correct it.

Engineers must apply these techniques in the architec-

tural or high-level description, because the bitstream’s

load can’t change the memory state without interrupt-

ing the application’s normal operation. It’s also possi-

ble to find, in the CLB, the SET upsets in the

combinational logic, such as input and output multi-

plexers for routing control. (Rebaudengo, Reorda, and

Violante also discuss the effects of upsets in the FPGA

architecture.6)

Radiation tests on Xilinx FPGAs show the effects of

SEUs in the design application and prove the necessity

for using fault-tolerant techniques in aerospace applica-

tions.7 A fault-tolerant system designed into SRAM-based

FPGAs must cope with the peculiarities just discussed:

transient and permanent effects of an SEU in the combi-

national logic, short and open circuits in the design con-

nections, and bit flips in the flip-flops and memory cells.

Ohlsson et al. also analyzed the effect of neutrons in an

SRAM-based FPGA from Xilinx.8 At that time, FPGAs were

not very susceptible to

neutrons, but now as tran-

sistor size decreases and

logic density increases,

FPGAs are becoming more

vulnerable.

Fault tolerance in
SRAM-based
FPGAs

There are two ways to

implement fault-tolerant

designs in SRAM-based

FPGAs. The first is to

design a new FPGA matrix

of fault-tolerant elements.

These new elements can

replace the old ones in the

same architecture topolo-

gy, or you could develop a

new architecture to im-

prove robustness. Either

way, the cost will be high,

though it will vary accord-

ing to development time,

number of required engi-

neers, and foundry technology. Another option is to pro-

tect the high-level description using redundancy,

targeting the FPGA architecture. You could use a com-

mercial FPGA to implement the design, and apply the

SEU mitigation technique to the design description

before synthesizing the redundant blocks in the FPGA.

This approach is far less expensive than the previous one

because here users are responsible for protecting their

own designs; new chip development and fabrication are

not necessary. Thus, the user can choose the fault toler-

ance technique, and consequently control the area, per-

formance, and power dissipation overheads.

The high-level SEU mitigation technique used most

often today to protect designs synthesized in the Virtex

architecture is based mainly on TMR combined with

scrubbing, which places a continuous load on the bit-

stream. The TMR mitigation scheme uses three identical

logic circuits (redundant blocks 0, 1, and 2) synthesized

in the FPGA. These circuits perform the same task in tan-

dem, with a majority voter circuit comparing corre-

sponding outputs. Details of the TMR technique for Virtex

are available elsewhere,9 and Lima et al. present more

examples.10 The correct implementation of TMR circuitry

in the Virtex architecture depends on the type of data

Fault Tolerance

554 IEEE Design & Test of Computers

A B C D

1

1

1

0

0

1

0

0

0

1

1

1

1

0

0

1

(a) (b)

Configurable
logic block

Configurable
logic block

Configurable
logic block

Configurable
logic block

Configurable
logic block

Configurable
logic block

Figure 2. Example upsets in the SRAM-based FPGA architecture: an upset in the lookup

table because of logic modification (a), and an upset in the routing because of an

undesirable connection (b).

structure you need to mitigate. Logic falls into four dif-

ferent structure types: throughput, state machine, I/O, and

special features (select-RAM blocks, DLLs, and so on).

Throughput logic is a logic module of any size or func-

tionality, synchronous or asynchronous, where all logic

paths flow from the module’s inputs to its outputs with-

out forming a logic loop. In this case, all that’s necessary

is to triplicate the logic, creating three redundant logic

parts (0, 1, and 2). No voters are required, because the

FPGA output will be voted on later by default. State-

machine logic is any structure where a registered output,

at any register stage in the module, feeds back into any

prior stage in the module, forming a registered logic loop.

This structure is common in accumulators, counters, and

any custom state machine or state sequencer in which

each internal register’s state depends on its own previous

state. In this case, it’s necessary to triplicate the logic and

to have majority voters in the outputs. To ensure that a

register doesn’t lock on the wrong value, each redundant

logic part in the feedback path has a voter so that the sys-

tem can recover itself. One LUT can easily implement the

majority voter. For designs constrained by available logic

resources, you can implement the majority voter using

Virtex tristate buffers rather than LUTs.

The primary purpose of using a TMR design method-

ology is to remove all single points of failure from the

design. Therefore, each redundant part that uses FPGA

inputs should have its own set of inputs. Thus, if an input

suffers a failure, it affects only one of the redundant logic

parts. The outputs are the key to the overall TMR strate-

gy. Because full TMR generates every logic path in tripli-

cate, it’s necessary to bring these three logic paths back to

a single path that doesn’t create a single point of failure.

You can do this by placing TMR output voters inside the

output logic block. Figure 3 illustrates the TMR technique.

Scrubbing lets a system repair SEUs in the configu-

ration memory without disrupting operations. The

Virtex Select-MAP interface performs this scrubbing.

When an FPGA is in this mode, an external oscillator

generates a configuration clock that drives the pro-

grammable ROM (PROM) and the FPGA. At each clock

cycle, new data is available on the PROM data pins. One

example is the Flash PROM XQR18V04, which provides

a parallel frequency of up to 264 Mbps at 33 MHz. The

scrubbing cycle time depends on the configuration

clock frequency and the readback bitstream size.

Previous results based on fault injection and radia-

tion ground testing show the Virtex TMR design tech-

niques’ reliability.8,11 However, the TMR technique has

limitations, such as high area overhead, three times

more input and output pins, and a significant increase

in power dissipation. Many applications can accept

these limitations, but some cannot.

Reducing TMR overheads by
combining hardware and time
redundancy

To reduce the number of pins used by the TMR

approach and to deal with permanent upset effects, we

present a new technique based on time and hardware

555November–December 2004

Majority
voterClock 0tr0

Majority
voterClock 1tr1

Majority
voterClock 2tr2

tr0
Check 0

tr1
Check 1

tr2
Check 2

Combinational logic
Output pads

with check voters

Input pads

Sequential-logic flip-flops and majority voters

Figure 3. Triple modular redundancy for Xilinx FPGAs. The throughput logic is triplicated, represented by TMR

combinational modules tr0, tr1, and tr2. The registers are also triplicated and are voted on by majority voters; they

also have a mechanism to correct upsets in the multiplexers.

redundancy to protect the user’s combinational logic.

TMR still protects the sequential logic to avoid the accu-

mulation of faults, because scrubbing doesn’t change

the content of a user’s memory cell.

Lubaszewski and Courtois discussed TMR’s reliabil-

ity and safety compared to self-checking-based fault-tol-

erant schemes.11 Their experiments indicate that the

higher the module’s complexity, the greater the differ-

ence in reliability between TMR and the self-checking

scheme. The self-checking fault-tolerant scheme is more

reliable than TMR if it does not exceed the self-check-

ing overhead bound of 73%.

We extend the idea of using a self-checking fault-tol-

erant scheme to FPGAs. Our method combines dupli-

cation with comparison (DWC) with a concurrent error

detection (CED) machine based on time redundancy

that works as a self-checking block. DWC detects faults

in the system, and CED detects which blocks are fault

free. Figure 4 shows the general scheme. Two combi-

national logic blocks run simultaneously in the DWC

technique: modules dr0 and dr1. A comparator in the

output can detect a mismatch and signal a fault detec-

tion. If a mismatch occurs, the CED block evaluates

whether the logic is fault free by analyzing the combi-

national logic’s properties.

Researchers have proposed many methods for using

CED blocks based on time redundancy to detect per-

Fault Tolerance

556 IEEE Design & Test of Computers

Combinational
logic block (dr0)

Combinational
logic block (dr1)

Fault-free
status

CED CED

B

out0 out1

Fault-free
status

BA A

Fault detection

=

Figure 4. Duplication with comparison (DWC) combined with

concurrent error detection (CED).

A

Encode

1 0ST

ST

tc0 tc1

t

Hc

dr0

Decode

B

Encode

1 0

dr0 Clock 0

Voter

B

Encode

0 1 STSTST

ST_error

Cycle I
(normal

operation)

dr1

Decode

A

Encode

0 1

dr1
Clock 1

= =

Enable_ dr1Enable_dr0

=

A

Encode

1 0ST

ST

tc0 tc1Hc

dr0

Decode

B

Encode

1 0

dr0 Clock 0

Voter

B

Encode

0 1 STSTST

ST_error

dr1

Decode

A

Encode

0 1

dr1
Clock 1

= =

Enable_dr1Enable_dr0

=

t

Cycle II
(detection
operation)

(a) (b)

Figure 5. DWC combined with CED technique for SRAM-based FPGAs: normal (a) and fault detection (b) operation.

ST is a state signal from the voter block that puts the system in detection operation (ST = 1); dr0 and dr1 are the

combinational logic blocks; Tc0 and Tc1 are time comparisons; and Hc is the hardware comparison. The voter block

also generates a state error signal (ST_error) and signals to enable the fault-free block (enable_dr0 and enable_dr1).

manent faults. These include bitwise inversion, recom-

puting with shift operands (RESO), and recomputing

with swapped operands (REWSO). We implement the

CED block using Patel and Fung’s RESO technique.12

This RESO method includes encoding and decoding

blocks and a register.

During normal operation when time t0, dr0, and dr1

are working simultaneously, the CED block stores the

outputs in sample registers for further comparison, and

the voter block continually compares the dr0 and dr1 out-

puts, as Figure 5a shows. If a mismatch occurs between

these outputs, the output registers hold their original

value for an extra clock cycle, while the CED block’s

RESO detects the fault. During this second clock cycle,

the operands shift prior to use such that errors from per-

manent faults in the combinational logic are different in

the first calculation than in the second. Comparing the

results can identify these different errors, as Figure 5b

shows. The encoding blocks are simple multiplexers,

and the decoding blocks are simple connections.

For registered outputs, each output goes directly to

the input of the user’s TMR register. Figure 6a shows the

logic scheme. Block dr0 connects to TMR combina-

tional module tr0, and block dr1 connects to module tr1.

While the circuit searches for faults, the user’s TMR reg-

ister holds its previous value. When the circuit finds the

fault-free module, tr2 receives that module’s output, and

continues receiving it until the next chip reconfigura-

tion (fault correction). By default, the circuit starts pass-

ing the output of dr0 to tr2. For unregistered outputs, the

circuit can drive the signals directly to the next combi-

national module or to the I/O pads, as Figure 6b shows.

The important characteristic of our method is that it

doesn’t incur a high performance penalty when the sys-

tem has no faults or only a single fault. This method

needs only one clock cycle in a hold operation to detect

the faulty module; then it operates normally again with-

out performance penalties. The final clock period is the

original clock period plus the propagation delay of the

encoders, decoders, and output comparator.

The voter block contains comparators and a small

state machine to identify the operation’s fault-free state

or to signal an error. Figure 7 shows this logic’s state dia-

gram. The state machine’s inputs are hardware com-

parison Hc and time comparisons Tc0 and Tc1,

represented by the 2-bit signal, Tc. The state machine’s

outputs constitute a 4-bit vector (shown in Figure 7 after

the slash) indicating the detection state (ST), the error

state, enable_dr0, and enable_dr1. Signals enable_dr0

and enable_dr1 are used for the unregistered outputs

(Figure 6b); when the output is registered, only

enable_dr0 is used (Figure 6a).

557November–December 2004

(a) (b)

Clock 0

Majority
voter

tr0

dr0

trv0 trv1 trv2

tr1 tr2

en0 en1 en2

tr0 tr2 tr0 tr1

Clock 1

Majority
voter

tr1

dr1

Clock 2 + d

Majority
voter

tr2

dr0 dr1

Enable_dr0

Pad

Pad

Enable_dr0

Enable_dr1

dr0

dr1

2

Figure 6. Example implementations when the combinational output is registered (a) or in the pad (b). Each

majority voter block receives the signal from the tr0, tr1, and tr2 registers. The enable_dr0 and enable_dr1 signals

decide which fault-free blocks should pass through the logic output to the registers or to the pads. To improve

reliability in routing, there are three enable signals (en1, en2, and en3), each a 1-bit signal with a logic value of 0

or 1. The outputs from the majority voter blocks are trv0, trv1, and trv2.

In both TMR and our method, scrubbing corrects

upsets in the user’s combinational logic, and the CLB

flip-flops’ TMR scheme corrects upsets in the user’s

sequential logic. Scrubbing must be continuous to guar-

antee that only one upset has occurred between two

reconfigurations in the design. Some constraints are

necessary for our method to function properly, just as

with TMR. First, there must not be upsets in more than

one redundant module, including the state machine’s

detection and voting circuit. Consequently, we must use

assigned area constraints to reduce the probability of

short circuits between dr0 and dr1. Second, the scrub-

bing rate should be fast enough to avoid the accumu-

lation of upsets in two different redundant blocks.

Upsets in the detection and voting circuit don’t interfere

with the system’s proper execution because the logic is

already duplicated. In addition, upsets in this logic’s

latches are not critical, because they’re refreshed every

clock cycle. Assuming a single upset occurs per chip

between scrubbing, it doesn’t matter if an upset alters

the correct voting, provided no upset

occurs in both redundant blocks.

Experimental results
To evaluate our technique’s fault cov-

erage, we chose two arithmetic-based cir-

cuits: a multiplier and a canonical finite

impulse response (FIR) digital filter. The

developed tools automatically generated

the multipliers and filters protected by

DWC-CED. We evaluated these case study

circuits in terms of fault coverage, area,

performance, and power dissipation.

Fault coverage
We developed a fault coverage test

system to evaluate the DWC-CED tech-

nique’s robustness in the presence of

upsets. The system automatically

inserted structures to enable automatic

fault injection in high-level descrip-

tions, replacing all design nodes with

one fault injection component, a 4-to-1

multiplexer, so that users can insert all

types of faults and as many as neces-

sary. If the multiplexer’s select signal is

00, the original signal goes to the out-

put; if the signal is 01, the output is a

constant 0 (stuck-at-0 emulation); if the

signal is 10, a constant 1 propagates

(stuck-at-1 emulation).

For the first case study, we chose an 8-bit multipli-

er, along with a 9-bit multiplier to apply the RESO

technique without losses in the most significant bit.

We implemented multipliers using cascaded full

adders. The 8-bit multiplier had 528 faulty nodes,

1,056 faults in total (stuck-at 0 or 1). The 9-bit multi-

plier had 675 faulty nodes, 1,350 faults in total. In both

cases, the two original operands had 8 bits, resulting

in 216 (65,536) combinations of input vectors. We

injected all combinations of faults and input vectors:

69,206,016 for the 8-bit multiplier, and 88,473,600 for

the 9-bit version.

We chose a canonical digital FIR filter circuit for our

second case study; the multipliers had constant coeffi-

cients, resulting in an optimized area and minimal faulty

nodes. Our developed system automatically generated

a 9-tap, 8-bit FIR canonical filter. The multiplier coeffi-

cients were 2, 6, 17, 32, and 38. Because of the 8-bit

input, there were 28 (256) combinations of input vectors

Fault Tolerance

558 IEEE Design & Test of Computers

No upset Upset
detection

dr0
fault free

dr1
fault free

Hc = '0' / 0000

Hc = '1' / 1011

Hc = '0' / 0000

Hc = '0' / 0000

Hc = '0' / 0000

Hc = '1' / 0010 Hc = '1' / 0001

Tc = "00" / 1011
Tc = "11" / 1111

Tc = "10" / 0010

Tc = "01" / 0001

Figure 7. State diagram of the DWC-CED voter circuitry. Numbers after a

slash indicate the 4-bit vector outputs. Numbers with single quotation

marks indicate Tc or Hc values. Double quotation marks indicate that if

the input is that value, the output is the one after the corresponding slash;

if the input is another value (also indicated by double quotation marks),

the output is the one after that corresponding slash.

to test. The total number of faulty nodes

in the FIR filter, including all multipliers

and adders, was 4,208. We tested all pos-

sible combinations of input vectors and

faults, a total of 1,077,248.

The system exhaustively injected the

faults in all nodes of the test circuits for

each input vector, sensitive node, and

redundant blocks mult_dr0 and mult_dr1.

The fault injection system operated with

two clocks, one to control the change of input vectors,

and the other to control the change of faults. A counter

controlled the total number of combinations of input

vectors and faults inserted in the circuit. We injected all

possible combinations.

In all cycles, the voter block from the DWC-CED tech-

nique compared the outputs of modules dr0 and dr1. If

the outputs were equal (Hc = 0), then a fault occurring

in one of the circuits did not generate an error in the

output. Therefore, for real-time operations, we could

ignore this fault, and no detection operation was

necessary. If a fault generated an error in the output

(Hc = 1), the voter compared the output of dr1 with the

recomputing circuit’s decoded output. If the outputs

were not equal (Tc1 = 1), the technique under test was

able to detect the fault. The voter also compared the

output of dr0 to the recomputing circuit’s decoded out-

put. If the outputs were equal (Tc0 = 0), the technique

was able to detect a fault-free module.

A fault was undetected if there was a mismatch in

the output of dr0 and dr1 (Hc = 1), and the technique

could detect neither the faulty module (status Tc1 = 0)

nor the fault-free module (status Tc0 = 1). An incre-

mented counter shows the number of total undetected

faults. Reading this counter from the prototype board,

we calculated the percentage of undetected faults. The

results in Table 1 show that all variations of RESO had

good results in terms of fault coverage for arithmetic-

based circuits.

Area, performance, and power dissipation
To check area, performance, and power dissipation,

our first test circuit was a 16-bit multiplier with a regis-

ter in the output. We compared three implementations

of this circuit in the XCV300-PQ240 FPGA: no fault tol-

erance, TMR, and our technique (DWC-CED for perma-

nent faults using RESO). The application was to multiply

a set of input numbers for 2,000 ns, with the inputs

changing every 100 ns. We evaluated each circuit’s

power dissipation using Xilinx’s XPower tool.

Table 2 shows the results in terms of area, perfor-

mance, and power dissipation for these multipliers.

Using our DWC-CED method, we reduced not only the

number of I/O pins but also the area. The prototype

board used a Virtex part with 240 I/O pins (166 available

for the user). With TMR, we were unable to synthesize

the (16 × 16)-bit multiplier. However, implementing the

same multiplier with our technique, we could fit it into

the chip and occupy less area.

In terms of performance, the standard multiplier

without fault tolerance had a maximum delay of 54 ns

for the specific application, the TMR version had a delay

of 56 ns, and our DWC-CED method had a delay of 62

ns, representing an 11% degradation in performance.

Power dissipation was less in the DWC-CED than the

TMR technique, mainly because of differences in the

logic, connections, and I/Os.

The second test circuit was an 11-tap, 9-bit, digital low-

pass filter, shown in Figure 8. We multiplied the original

559November–December 2004

Table 1. Fault coverage of recomputing with shift operands (RESO) techniques in SRAM-

based FPGAs.

No. of No. of Detected

Circuit injected faults detected faults faults (percent)

8-bit multiplier 69,206,016 69,176,011 99.95

9-bit multiplier 88,473,600 88,473,600 100.00

8-bit FIR filter 1,077,248 1,077,248 100.00

Table 2. Results for a 16-bit multiplier with a register in the output implemented in an XCV300-PQ240 FPGA.

Fault No. of

tolerance Maximum No. of four-input No. of Estimated power dissipation (mW)

technique delay (ns) I/O pads LUTs flip-flops Clock Nets Logic Inputs Outputs Total

None 54 67 495 32 7 88 186 2 29 312

TMR 56 201 1,709 96 22 305 718 7 88 1,140

DWC-CED 62 169 1,706 162 22 282 542 5 83 934

Fault Tolerance

560 IEEE Design & Test of Computers

coefficients calculated using Matlab (http://www.matlab.

com) by a constant of 512. The final multiplier coefficients

were 1, –1, –9, 6, 73, and 120.

Table 3 compares the results in terms of area, per-

formance, and power dissipation for this digital filter

implemented with no fault tolerance, TMR, and our

DWC-CED technique. In this case, TMR also protected

the registers, whereas the DWC-CED using RESO pro-

tected the combinational logic (multipliers and

adders). The CED block resides at the outputs, where it

votes on the correct pad output from dr0 or dr1. Results

show that the FIR filter occupies a little bit less area in

the FPGA when DWC-CED rather than TMR protects it.

The results also show that our method uses 19% fewer

pins than TMR. In terms of performance, TMR had a

maximum delay of 58 ns for this test application, 20%

higher than the standard (no fault tolerance) approach.

Our DWC-CED technique had a maximum delay of 63

ns (8% higher than TMR) for this application.

The DWC-CED technique’s power dissipation was

considerably less than with TMR. But DWC-CED’s power

dissipation was also less than the standard (no fault tol-

erance) approach because our technique uses fewer

input and output pins compared to TMR, uses less logic,

and stores the output in a register, whereas the standard

approach has the combinational logic going directly to

the output pads. The DWC-CED technique also saves

power because the output voter passes only one of the

logic-registered outputs to the pads while the other one

waits in the used one in case of a fault. TMR does not

register the outputs but rather votes on them in the out-

put pads, consuming more power.

WE’VE DISCUSSED only SEUs occurring in the SRAM pro-

grammable cells that are permanent until the next recon-

figuration. However, a circuit operating in outer space can

suffer from a total ionization dose and other effects that

can provoke permanent physical damages in the circuit.

We hope to explore these areas in the future. �

References
1. A.H. Johnston, “Scaling and Technology Issues for Soft

Error Rates,” Proc. 4th Ann. Research Conf. Reliability,

Pads

Pads

IN_tr0 R2_tr0

C1_dr0 C2_dr0 C3_dr0 C4_dr0 C5_dr0 C6_dr0 C5_dr0 C4_dr0 C3_dr0 C2_dr0 C1_dr0

OUT_dr0

X

+

R3_tr0

X
Combinational

logic

+

R4_tr0

X

+

R5_tr0

X

+

R6_tr0

X

+

R7_tr0

X

+

R8_tr0

X

+

R9_tr0

X

+

R10_tr0

X

+

R11_tr0

X

+

X

Sequential
logic

Figure 8. Digital, low-pass filter with 11 taps and 9 bits. The figure represents only one redundant block (dr0) out

of two for the combinational logic, and one redundant block (tr0) out of three for the sequential logic. IN_tr0 is the

input to TMR combinational module tr0; R2_tr0 through R11_tr0 are the registers of tr0; C1_dr0 through C6_dr0 are

constants of the filter. In these labels, dr0 indicates that DWC protects the combinational logic such that only dr0

and dr1 (not shown) are necessary, and OUT_dr0 is the output of dr0.

Table 3. Results for a digital, 11-tap, 9-bit FIR filter implemented in the XCV300-PQ240 FPGA.

Fault No. of

tolerance Maximum No. of four-input No. of Estimated power dissipation (mW)

technique* delay (ns) I/O pads LUTs flip-flops Clock Nets Logic Inputs Outputs Total

None 48 27 508 90 8 85 145 1 748 987

TMR 58 93 1,779 270 32 350 504 2 823 1,711

DWC-CED 63 75 1,738 308 25 324 530 2 19 900
* DWC-CED stores the output in registers, whereas the standard (no fault tolerance) technique and TMR do not.

Stanford Univ., 2000; http://parts.jpl.nasa.gov/docs/

Scal-00.pdf.

2. “Virtex 2.5 V Field Programmable Gate Arrays,” DS003,

v2.5, Product Specification, 2 Apr. 2001, Xilinx;

http://direct.xilinx.com/bvdocs/publications/ds003.pdf.

3. J. Barth, C. Dyer, and E. Stassinopoulos, “Space,

Atmospheric, and Terrestrial Radiation Environments,”

IEEE Trans. Nuclear Science, vol. 50, no. 3, June 2003,

pp. 466-482.

4. E. Normand, “Single Event Upset at Ground Level,”

IEEE Trans. Nuclear Science, vol. 43, no. 6, Dec. 1996,

pp. 2742-2750.

5. D. Alexandrescu, L. Anghel, and M. Nicolaidis, “New

Methods for Evaluating the Impact of Single Event Tran-

sients in VDSM ICs,” Proc. IEEE Int’l Symp. Defect and

Fault Tolerance in VLSI Systems, IEEE CS Press, 2002,

pp. 99-107.

6. M. Rebaudengo, M.S. Reorda, and M. Violante, “Simula-

tion-Based Analysis of SEU Effects of SRAM-Based

FPGAs,” Proc. Int’l Workshop Field-Programmable Logic

and Applications, IEEE CS Press, 2002, pp. 607-615.

7. E. Fuller, M. Caffrey, and P. Blain, “Radiation Test

Results of the Virtex FPGA and ZBT SRAM for Space

Based Reconfigurable Computing,” Proc. Int’l Conf. Mili-

tary and Aerospace Applications of Programmable Logic

Devices (MAPLD 02), NASA Office of Logic Design,

2002, pp. 1-8.

8. M. Ohlsson et al., “Neutron Single Event Upsets in

SRAM-Based FPGAs,” Proc. IEEE Nuclear Space

Radiation Effects Conf. (NSREC 98), IEEE Press,

1998, pp. 1-4; http://www.xilinx.com/appnotes/

FPGA_NSREC98.pdf.

9. C. Carmichael, “Triple Module Redundancy Design

Techniques for Virtex Series FPGA,” Xilinx Application

Notes 197, v1.0, Mar. 2001, p. 137;

http://www.xilinx.com/bvdocs/appnotes/xapp197.pdf.

10. F. Lima et al., “A Fault Injection Analysis of Virtex FPGA

TMR Design Methodology,” Proc. European Conf. Radi-

ation and Its Effects on Components and Systems

(RADECS 01), IEEE CS Press, 2001, pp. 275-282.

11. M. Lubaszewski and B. Courtois, “A Reliable Fail-Safe

System,” IEEE Trans. Computers, vol. 47, no. 2, Feb.

1998, pp. 236-241.

12. J. Patel and L. Fung, “Multiplier and Divider Arrays with

Concurrent Error Detection,” Proc. Int’l Symp. Fault-Tol-

erant Computing, IEEE CS Press, 1982, pp. 325-329.

561November–December 2004

IEEE Design & Test Call for Papers
IEEE Design & Test, a bimonthly publication of the IEEE Computer Society and the IEEE Circuits and Systems Society, seeks original manuscripts

for publication. D&T publishes articles on current and near-future practice in the design and test of electronic-products hardware and supportive

software. Tutorials, how-to articles, and real-world case studies are also welcome. Readers include users, developers, and researchers concerned

with the design and test of chips, assemblies, and integrated systems. Topics of interest include

To submit a manuscript to D&T, access Manuscript Central, http://cs-ieee.manuscriptcentral.com. Acceptable file formats include MS Word,

PDF, ASCII or plain text, and PostScript. Manuscripts should not exceed 5,000 words (with each average-size figure counting as 150 words toward

this limit), including references and biographies; this amounts to about 4,200 words of text and five figures. Manuscripts must be doubled-spaced,

on A4 or 8.5-by-11 inch pages, and type size must be at least 11 points. Please include all figures and tables, as well as a cover page with author

contact information (name, postal address, phone, fax, and e-mail address) and a 150-word abstract. Submitted manuscripts must not have been

previously published or currently submitted for publication elsewhere, and all manuscripts must be cleared for publication.

To ensure that articles maintain technical accuracy and reflect current practice, D&T places each manuscript in a peer-review process. At least

three reviewers, each with expertise on the given topic, will review your manuscript. Reviewers may recommend modifications or suggest additional

areas for discussion. Accepted articles will be edited for structure, style, clarity, and readability. Please read our author guidelines (including

important style information) at http://www.computer.org/dt/author.htm.

Submit your manuscript to IEEE Design & Test today!
D&T will strive to reach decisions on all manuscripts within six months of submission.

� Analog and RF design,

� Board and system test,

� Circuit testing,

� Deep-submicron technology,

� Design verification and validation,

� Electronic design automation,

� Embedded systems,

� Fault diagnosis,

� Hardware/software codesign,

� IC design and test,

� Logic design and test,

� Microprocessor chips,

� Power consumption,

� Reconfigurable systems,

� Systems on chips (SoCs),

� VLSI; and

� Related areas.

Fernanda Gusmão de Lima
Kastensmidt is a professor in the
Department of Digital Systems Engi-
neering at the State University of Rio
Grande do Sul in Guaíba, Brazil, and

also an associate professor at the Institute of Infor-
matics of the Federal University of Rio Grande do Sul
in Porto Alegre, Brazil. Her research interests include
VLSI testing and design, fault effects, fault-tolerant
techniques, and programmable architectures. Kas-
tensmidt has a BS in electrical engineering, and an MS
and a PhD in computer science and microelectronics,
all from the Federal University of Rio Grande do Sul.
She is a member of the IEEE.

Gustavo Neuberger is a PhD stu-
dent at the Institute of Informatics of
the Federal University of Rio Grande
do Sul. His research interests include
fault tolerance, radiation effects, DFT,

and SRAM memories. Neuberger has a BS in com-
puter engineering from the Federal University of Rio
Grande do Sul. He is a member of the ACM.

Renato Fernandes Hentschke is
a PhD student at the Institute of Infor-
matics of the Federal University of Rio
Grande do Sul. His research interests
include design automation for physical

design; and algorithms for placement, routing, and
congestion estimation. Hentschke has an MS and a BS
in computer science from the Federal University of Rio
Grande do Sul. He is a member of the ACM.

Luigi Carro is a professor in the
Electrical Engineering Department
and the graduate program at the Insti-
tute of Informatics of the Federal Uni-
versity of Rio Grande do Sul. His

research interests include mixed-signal design, DSP,
mixed-signal and analog testing, and fast system pro-
totyping. Carro has a BSc in electrical engineering, an
MSc in computer science, and a PhD in computer sci-
ence, all from the Federal University of Rio Grande do
Sul. He is a member of the IEEE and the ACM.

Ricardo Reis is a professor at the
Institute of Informatics of the Federal
University of Rio Grande do Sul, and
the Latin America liaison for IEEE
Design & Test. His research interests

include VLSI design, CAD, physical design, design
methodologies, and fault-tolerant techniques. Reis has
a BSc in electrical engineering from the Federal Uni-
versity of Rio Grande do Sul, and a PhD in computer
science and microelectronics from the Institut Nation-
al Polytechnique de Grenoble, France. He is a vice
president of the International Federation for Informa-
tion Processing and a member of the IEEE.

Direct questions and comments about this article
to Fernanda Gusmão de Lima Kastensmidt, PO Box
15064, Porto Alegre – RS – Brasil, 91501-970;
fglima@inf.ufrgs.br.

For more information on this or any other computing topic,

visit our Digital Library at http://www.computer.org/

publications/dlib.

Fault Tolerance

562 IEEE Design & Test of Computers

Join a community that targets your discipline.

In our Technical Committees, you’re in good company.

www.computer.org/TCsignup/

Looking for a community targeted to your
area of expertise? IEEE Computer Society
Technical Committees explore a variety

of computing niches and provide forums for
dialogue among peers. These groups influence
our standards development and offer leading
conferences in their fields.

JOIN A
THINK
TANK

