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Abstract - Product development and advanced control applications require models with good predictive 
capability. However, in some cases it is not possible to obtain good quality phenomenological models due to 
the lack of data or the presence of important unmeasured effects. The use of empirical models requires less 
investment in modeling, but implies the need for larger amounts of experimental data to generate models with 
good predictive capability. In this work, nonlinear phenomenological and empirical models were compared 
with respect to their capability to predict the melt index and polymer yield of a low-density polyethylene 
production process consisting of two fluidized bed reactors connected in series. To adjust the 
phenomenological model, the optimization algorithms based on the flexible polyhedron method of Nelder and 
Mead showed the best efficiency. To adjust the empirical model, the PLS model was more appropriate for 
polymer yield, and the melt index needed more nonlinearity like the QPLS models. In the comparison 
between these two types of models better results were obtained for the empirical models. 
Keywords: Ethylene polymerization; Parameter estimation; Empirical model; Phenomenological model, 
LLDPE. 

 
 
 

INTRODUCTION 
 

Multivariate models for polymerization processes 
provide useful information about process and 
product characteristics and are therefore important to 
the polymer industry. Thus, correctly validated 
multivariate models are essential to the development 
of reliable optimization procedures and predictive 
controllers.  

Depending on their nature, i.e., empirical, 
phenomenological, or hybrid, these models may give 
different levels of information. Phenomenological 
models have higher extrapolation capability than 

empirical models, which is advantageous for process 
optimization and product development. However, the 
development of phenomenological models may be 
too expensive when there is little available 
information about the phenomena that govern the 
process. On the other hand, empirical models require 
less investment in modeling, but need larger 
experimental datasets to generate models with good 
predictive capability. 

Many studies on the modeling of polyolefin 
polymerization processes have been developed in the 
past several decades. Many of these studies have 
been focused on model description and parameter 
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estimation, which represent important steps in the 
development of both phenomenological and 
empirical models. 

Sato et al. (2000) studied the modeling and 
simulation of an industrial gas-phase ethylene 
polymerization process, based on McAuley's 
phenomenological model (McAuley and MacGregor, 
1991), for use in melt index and density nonlinear 
control design. 

Many published papers deal with application of 
modeling and parameter estimation in industrial 
nonlinear model predictive control design (Zhao et 
al., 2001; Soroush, 1998). Parameter estimation for a 
phenomenological model should include sensibility 
analysis to select the key parameters to be adjusted, 
like the analysis of Sirohi and Choi (1996). Bindlish 
et al. (2003) studied the parameter estimation 
problem for industrial polymerization processes. In 
their work, two kinetic parameters were estimated 
for Exxon's homo and copolymerization to use in 
monitoring and feedback control systems for these 
processes. 

This work studies the parameter estimation step 
in the modeling of an industrial process for 
production of linear low-density polyethylene 
(LLDPE). This process consists of two gas-phase 
reactors connected in series. Phenomenological and 
empirical models for the prediction of yield and melt 
index in each reactor were considered and compared. 
 

PHENOMENOLOGICAL MODEL 
 

The industrial reactors were modeled as 
fluidized-bed reactors (Kunii and Levenspiel, 1991; 
Choi and Ray, 1985; Gambetta, 2001). According to 
the model proposed by Gambetta (2001), the 
fluidized bed can be divided into two regions: an 
emulsion phase and a bubble phase, connected by 
heat and mass transfer between them. The emulsion 
phase has a solid phase (polymer and catalyst), a gas 
phase at the minimum fluidization velocity, and a 
gas phase adsorbed by the solid phase. The bubble 
phase is composed of the excess gas required to keep 
the emulsion phase at the minimum fluidization 
velocity. In the disengagement section, only the gas 
phase is considered. 

The kinetic model was developed for Ziegler-
Natta catalysts for the following reactions: 
spontaneous activation of sites, chain initiation by 
the monomer, chain propagation, chain transfer to 
hydrogen, spontaneous deactivation, and deactivation 
by hydrogen (Gambetta, 2001). Mass balances for 
the main gases (ethylene, comonomers, solvent, and 
hydrogen) and polymeric species were used to obtain 

gas phase and polymer compositions, respectively. 
The momentum technique for the bulk polymer (the 
sum of live and dead polymer) was used to 
determine the molecular weight distribution 
(Neumann, 2001). Empirical correlations adjusted to 
experimental data had previously been used to obtain 
the melt index as a function of the weight average 
molecular weight predicted by the model. 

The resulting system of algebraic-differential 
equations was implemented in C-language with input 
and output data manipulation and integration into the 
Matlab/Simulink® environment. Each reactor model 
has 22 states and the simulation time is about 25 
seconds for 11 days of plant data (Pentium III 800 
MHz 128 MB RAM).  

Parameter estimation for the phenomenological 
model was accomplished using the weighted least 
squares method with Equation 1 as the objective 
function to be minimized.  
 

2 2
calc calc

Prod MI
exp exp

Prod MIS w 1 w 1
Prod MI

   
= − + −      

   
    (1) 

 
where the subindices calc and exp are of the data 
calculated by the model and the experimental data of 
the plant, respectively. Prod is the resin yield, MI is 
the melt index, and w is the weight. 
 
 

EMPIRICAL MODEL 
 

The empirical model was obtained through PLS 
(partial least squares) decomposition and its nonlinear 
extensions, the QPLS (quadratic PLS) and the BTPLS 
(Box-Tidwell-based PLS). For detailed information 
about these three PLS versions, readers are referred to 
Finkler (2003), Wold (1966), Baffi et al. (1999), and Li 
et al. (2001). The three PLS techniques were 
implemented using the software Matlab®.  
 
 

RESULTS 
 

Two industrial process datasets were used, one 
for parameter estimation and the other for model 
validation.  
 
Parameter Estimation for the Phenomenological 
Model 
 

The objective function (Eq. 1) was minimized 
through the comparison of eight multivariate 
optimization algorithms without constraints to verify 
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their efficiency in obtaining the minimum (number of 
evaluations of the objective function). The following 
techniques were compared: the flexible polyhedrons of 
Nelder and Mead [NM], Hooke and Jeeves’s [HJ], 
Rosembrock’s [RO], Powell’s [PO], the complex [CO], 
Newton’s [NE], Newton’s with Levenberg-Marquardt’s 
modification [LM] (Himmelblau, 1972), and the global 
optimization using adaptive random search (Secchi and 
Perlingeiro, 1989) [RS]. Two of these (NE and LM) are 
variable metric methods (which use the first and the 
second derivates of the objective function). 

Parameter estimation was carried out in two 
stages. In the first stage, initial guesses for the 
parameters were obtained from a preliminary 
estimation with steady-state data. In the second 
stage, the variable metric algorithms (LM and NE) 
were included, using as initial guess the best set of 
parameters in the first stage. These algorithms were 
included only in the second stage because they are 
more sensitive to the initial guesses of the 
parameters, and in the first stage these initial guesses 
were very far from the minimum. The dataset used in 
all estimations was dynamic data from a period of 11 
days of production. 

In Table 1, a comparison between the 
optimization methods for the first stage of the 

estimation is shown. The value of the objective 
function is 12.8 for the initial set of parameters. 

In Table 1, it is possible to verify that all methods 
reduce the value of the objective function on the 
same order of magnitude, in relation to the initial 
value. The difference between the methods is the 
number of evaluations of the objective function. Due 
to the time of one simulation, the optimization times 
were 112 hours for the slowest method (RO) and 1.5 
hours for the fastest method (CO). 

The analysis of estimations shows that the 
flexible polyhedron and complex methods had very 
fast convergence and low values of objective 
functions. The Rosembrock method was the slowest, 
but it was highly efficient, with a low value of S. The 
methods of Hooke and Jeeves and the random search 
showed values of S that were low, but higher than 
the minimum found and with the longest time. For 
this reason, these two methods were excluded in the 
second stage of estimations. 

Table 2 shows the results of the second stage of 
estimation, where the minimum of S in Equation 1 is 
sought, taking the results of stage 1 with the NM 
method and small perturbations as initial guesses for 
the parameters. The variable metric methods were 
included in this stage.  

 
 

Table 1: Comparison between the optimization methods after stage 1. 
 

method S number of evaluations 
NM 1.034 529 
HJ 1.167 1823 
RO 1.054 15623 
PO 4.116 2067 
CO 1.125 178 
RS 1.167 6145 

 
 

Table 2: Comparison between the optimization methods after stage 2. 
 

method S number of evaluations 
NM 1.000 1463 
RO 1.146 641 
PO 1.215 882 
CO 1.005 1166 
LM 1.214 86 
NE 1.214 96 

 
 

Although the number of evaluations of S is large 
for the flexible polyhedron and complex methods, 
these showed good results. The variable metric 
methods showed the highest speed of convergence of 
all methods, as expected, but they resulted in higher 

values of the objective function than the other 
methods. 

The set of kinetic parameters chosen at the end of 
the estimation stages was the result of the flexible 
polyhedron optimization in stage 2, because this 
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result showed the minimum of the objective 
function. 

Figure 1a shows the values of yield of each 
reactor for the data set used in the estimation. Figure 
1b shows the same results for the melt index. 

It is possible to recognize the need for improving 
the model dynamics. The tendency of the prediction 
is different from that of the process data. This can be 
achieved by including a term of tendency in the 
objective function. 

Another dataset of real plant data was used to 
validate the models. This set includes 12 days of data 
from a run of a different period from that of the data 
used in parameter estimation. Figures 2a and 2b 
show the comparison between plant validation data 
and model prediction of yield and melt index, 
respectively. In this case, it can also be noted that the 
dynamics can be improved. Even so, the prediction 
has values on the same level as that of the process 
data. 
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(b) 

Figure 1: Comparison between the process data and the phenomenological  
model for yield (a) and melt index (b). 
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(b) 

Figure 2: Comparison between the process data and the phenomenological model for yield  
(a) and melt index (b) – A validation dataset. 

 
 
Empirical Model 
 

Using the seven previously mentioned input 
variables, the PLS, QPLS, and BTPLS techniques 
were employed to identify the steady-state gains of 
the melt index and polymer yield using industrial 
plant data. The empirical models were generated 
using 70 stationary points which were selected from 
the same dataset as that used for the 
phenomenological model adjustment. Based on the 
estimated stationary gains and on the identified 
system dynamics, dynamic empirical models were 

built. 
For both reactors, the polymer yield values 

predicted by the PLS, QPLS, and BTPLS empirical 
models are compared with the plant data in Figure 3. 
The simulations were performed with the software 
Simulink® using the stationary gains of the 
empirical models. The reported results suggest that 
linear PLS is the most appropriate model to predict 
the polymer yield. 

In Figure 4, the melt index values predicted by 
the empirical models developed are compared to the 
process data for both reactors.  
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(c). 

Figure 3: Comparison between the process data and the PLS (a), QPLS (b),  
and BTPLS (c)  models for polymer yield 
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(c) 

Figure 4: Comparison between the process data and the PLS (a), QPLS (b),  
and BTPLS (c) models for polymer melt index. 

 
Again, the linear PLS method had an outstanding 

fit, although it was verified that the QPLS model gave a 
better prediction. This can be explained by the fact that 
the dynamic behavior of the melt index had a more 
pronounced nonlinear contribution than the polymer 
yield. Table 3 shows a comparison of the correlation 
coefficients for the melt index of the two reactors. 

The validation results confirm the conclusion that 
the QPLS model is the best empirical model for the 

melt index. Thus, the PLS model was selected to 
predict the polymer yield while the QPLS model was 
selected to predict the polymer melt index. For both 
reactors, these models were validated using the same 
dataset as that used to validate the phenomenological 
models. The results for the polymer yield and melt 
index are reported in Figure 5. As can be noted, the 
model predictions are still good, with better results 
for the melt index. 

 
Table 3: Correlation coefficient of the predicted and real melt indices for the empirical models. 

 
 MI1 MI2 

Model Estimation Validation Estimation Validation 
PLS 0.969 0.874 0.988 0.768 

QPLS 0.979 0.894 0.997 0.876 
BTPLS 0.989 0.104 0.991 0.795 
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(b) 

Figure 5: Comparison between the process data and the PLS model for polymer yield  
(a) and the QPLS model for melt index (b) – A validation. 

 
 
Comparison Between the Models 
 

A comparison of the results of model predictions 
showed a better fit with the validation data for the 
empirical models. This is due to the fact that steady-
state data were available to fit these models. For 
example, the predicted values for the resin yield and 
the melt index were acceptable at the steady-state, 
even with a linear PLS. For the dynamic data, the 
best results for the melt index were obtained with the 
QPLS model. This occurs due to the nonlinear nature 
of the IF. 

The poor quality of the plant data may explain the 
inaccuracy of the phenomenological model. In this 
case, the use of hybrid models may be necessary. 
 

 
CONCLUSIONS 

 
Industrial process data were fit to models of 

different types for ethylene polymerization reactors. 
To adjust the phenomenological model, the 
optimization algorithms based on the flexible 
polyhedron method of Nelder and Mead were the 
most efficient in finding the minimum difference 
between the real data and the model predictions. To 
adjust the empirical model, the PLS model was more 
appropriate for polymer yield and the melt index 
needed more nonlinearity like the QPLS models. The 
comparison between these two types of models 

showed better results for the empirical models. 
Adjustments of the dynamics of the models are 
necessary, so both can be used for the development 
of advanced process control. 
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