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Abstract

Infant rats must learn to identify their mother’s diet-dependent odor. Once learned, maternal odor controls pups’ approach to 
the mother, their social behavior and nipple attachment. Here we present a review of the research from four different labo-
ratories, which suggests that neural and behavioral responses to the natural maternal odor and neonatal learned odors are 
similar. Together, these data indicate that pups have a unique learning circuit relying on the olfactory bulb for neural plasticity 
and on the hyperfunctioning noradrenergic locus coeruleus flooding the olfactory bulb with norepinephrine to support the neu-
ral changes. Another important factor making this system unique is the inability of the amygdala to become incorporated into 
the infant learning circuit. Thus, infant rats appear to be primed in early life to learn odors that will evoke approach responses 
supporting attachment to the caregiver. 
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Rapid learning for early life attachment to the caregiver 
has been demonstrated in many species, including humans, 
rodents, and avian species. The most prominent example 
of this early life learning was shown in avian species and 
was termed imprinting (1-3). Imprinting in chicks is gener-
ally considered an innate process with a biological system 
designed for proximity seeking of the caregiver by the 
altricial animal (4). However, equally important is the need 
for the infant to identify and learn who or what to approach 
(4). The interplay between the biological predisposition 
of proximity seeking and the plasticity of learning who/
what to follow was dramatically demonstrated by goslings 
learning to follow Lorenz rather than a mother goose (2). 
While imprinting in chicks appears to be all-or-none and 
irreversible (2), attachment learning in mammals seems 
more malleable. Human infants rapidly learn the mother’s 
odor, voice and touch during the perinatal period, and at-
tachment is specific to a caregiver. However, human infants 

can form attachments to more than one caregiver and 
throughout early life (5,6). Thus, while attachment learn-
ing appears to be widespread throughout altricial species, 
specific characteristics of attachment learning vary with the 
ecological needs of the altricial animal. 

This review will focus on the neurobiology of attachment 
learning in infant rats, and the results described therein sug-
gest that neurobehavioral responses to the natural maternal 
odor and neonatal learned odors are very similar. 

Attachment learning in infant rats

Attachment learning occurs in rat pups, although it 
is primarily confined to odor learning since pups do not 
see or hear until after the second week of life. Specifi-
cally, maternal odor controls rat pups’ interactions with the 
mother, including approach responses, social behavior 
and nipple attachment (Figure 1) (7,8). While maternal 
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odor was initially viewed as a pheromone, it is now clear 
that it is learned prenatally, reinforced both during the birth 
process and repeatedly throughout the postnatal period, 
presumably due to the maternal diet continuously altering 
the maternal odor (7-10). While some risk is associated 
with requiring olfactory learning for survival-dependent 
behaviors related to attachment, prenatal odor learning of 
the mother’s amniotic fluid (mothers spread the amniotic 
fluid on their ventrum during the birth process) and rapid 
postnatal learning appear to provide pups with a system 
that ensures rapid and robust maternal odor learning. This 
robust and rapid neonatal learning system seems to be 
designed to make sure that this learning will occur by the 
simple contiguous pairing of an odor and sensory stimula-
tion from the mother. Thus, maternal licking of pups during 
the birth process reinforces the learning of the amniotic 
fluid and also conditions pups to novel postnatal maternal 
odors. This postnatal learning of maternal odor continues 
throughout most of the preweanling period, which is critical 
since the maternal odor is diet-dependent (10). The limited 
sensory (vision and audition emerge around 2 weeks) and 
motor (walking emerges around 10 days of age) abilities 
of rat pups also appear to limit pups’ exposures to odors 
outside the nest.

An artificial odor can become a maternal odor 
by applying it to the mother during 
mother-infant interactions

A novel odor (i.e., peppermint or citral) applied to the 
mother and experienced by pups during mother-infant 
interactions acquires the properties of a maternal odor 
(11). Indeed, this new maternal odor now elicits approach 
behaviors and supports nipple attachment, similar to a natu-
ral maternal odor (10). Furthermore, suppressing maternal 
odor (via a special diet, 10) and applying a novel odor to 
the mother throughout preweanling life causes pups to 
show a preference for this odor and supports pups’ nipple 
attachment to the mother, while the suppressed maternal 
odor fails to support these behaviors (11). 

The maternal odor can also be learned
through classical conditioning

Removing pups from the nest and performing controlled 
classical conditioning have added to our understanding of 
the learning processes that appears to occur naturally in 
the nest (7,8,12-16). Exposing pups to a novel odor while 
stroking them with an artist brush (to mimic maternal lick-
ing of pups) results in a robust odor preference (Figure 1) 
(8,14,17). Most importantly, the conditioned odor acquires 
the qualities of the maternal odor, with the power to control 
pups’ social attachment behavior (Figure 1); (7,8). Specifi-
cally, the odor-stroke conditioned odor induces nipple attach-
ment in the presence of an anesthetized mother previously 

washed to remove the natural maternal odor. 
Not surprisingly, rat pups exhibit exquisite and robust 

classical conditioning abilities that appear to conform to 
the basic laws of learning even at birth (18). However, 
this early life learning shows unique characteristics that 
enhance learning approach responses to an odor while 
attenuating avoidance/aversions to other odors. For ex-
ample, exposing the infant rat to an odor later to be used 
in conditioning (latent inhibition), enhances pup learning; 
conversely, presenting the odor explicitly unpaired with the 
reward (learned irrelevance) does not appear to affect pup 
learning. These procedures have profound effects on adult 
learning (18-21). Furthermore, while sequential presenta-
tions of stimuli enhance sensory associations in adults, 
simultaneous presentations are optimal in young pups (22). 
Thus, pups appear to have a broadly defined odor learning 
system that increases the probability of learning to prefer 
odors and presumably increases pups’ proximity seeking 
behavior of the mother. 

Attachment neural circuitry learning in infant 
rats

Infant attachment odor learning, natural maternal 
odor as well as classical conditioning are supported by a 
unique neural framework; brain areas important for adult 
learning, such as the amygdala, hippocampus and frontal 
cortex, are still developing and are only partially functional 
(15,16,23-26). The neural activation of the olfactory bulb 
and locus coeruleus and the absence of amygdala are the 
major events in the infant odor attachment learning and 
are discussed below.

Olfactory bulb neural response to the learned 
odor

Pups show robust olfactory bulb responses to maternal 
odor. In fact, learning-induced anatomical and physiological 
changes within the olfactory bulb have been documented to 
support approach responses in infant rats (27-30). These 
olfactory bulb changes, as measured through increased c-
Fos expression (8,31) and 2-deoxy-d-glucose (2-DG) uptake 
(11), occur in response to the natural maternal odor or to an 
artificial maternal odor. Moreover, rapid olfactory classical 
conditioning results in robust olfactory bulb activation, similar 
to that observed in response to natural maternal odor or to 
an odor placed on the mother in the nest (8,11,28,32). The 
olfactory bulb neural changes are sufficient and necessary 
to support pups’ approach and odor-guided interactions 
with the mother (8,31,33-36).

The molecular cascade of the learned natural or arti-
ficial maternal odor begins with norepinephrine binding to 
its receptor (β-adrenoceptor) on olfactory bulb mitral cells. 
Consequently, norepinephrine binding induces the produc-
tion of increased amounts of cAMP, permitting the catalytic 
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subunit of protein kinase A to translocate to the nucleus. In 
the nucleus, protein kinase A will phosphorylate the cAMP 
response element binding protein (CREB) at the Ser-133 
site (17,30,37,38). Phosphorylated CREB (pCREB), in turn, 
can activate the transcription of immediate-early genes. 
The protein products of the immediate-early genes are 
transcription factors that go on to activate the transcription 
of late response genes that allow the formation of long-tem 
memory. 

Locus coeruleus norepinephrine is required 
for the olfactory bulb learning changes

The olfactory bulb neural changes appear to depend 
on the contiguous presentation of odor and norepinephrine 
from the locus coeruleus (LC). The modified olfactory bulb 
response is seen during expression and has been measured 
by a myriad of techniques assessing neural functioning 
(c-Fos, 2-DG, modified single-unit response patterns of 
mitral/tufted cells and olfactory bulb anatomical changes) 
(28,39,40).

The LC is the sole source of the olfactory bulb’s nor-
epinephrine (41,42) and norepinephrine is both necessary 
and sufficient for olfactory conditioning in neonatal pups 
(33,35,36,38,43-45). The role of norepinephrine in learn-
ing changes as pups mature, at which time norepinephrine 

plays more of a modulatory role of enhancing or attenuating 
memories (46,47). 

While the pup’s LC is not completely mature, it is also 
not simply an immature version of the adult LC. Indeed, 
the infant LC has unique characteristics that result in an 
enhanced response to environmental stimuli, such as tac-
tile stimulation mimicking maternal licking (48). First, the 
infant LC is more responsive to sensory stimuli than an 
adult LC. Secondly, the adult LC habituates after repeated 
presentation of the stimuli (49), whereas the infant LC fails 
to exhibit habituation (50,51). Finally, a 1-s presentation of 
tactile stimulation is likely to cause a few ms response in 
the adult LC, while a 20-30-s response is observed in the 
infant LC (50,51). Together, these results indicate that the 
infant rat’s olfactory bulb receives a uniquely large amount 
of norepinephrine for a more extended period of time from 
the LC compared with adult LC. 

The development into a more adult-like LC occurs 
around postnatal day 10, when the amount of norepineph-
rine released into the olfactory bulb is reduced. One of the 
principal changes in infant LC neurons is the functional 
development of the α2 inhibitory autoreceptors, responsible 
for the termination of the LC’s excitatory response to stimuli. 
Moreover, the function of LC excitatory α1 autoreceptors 
becomes limited at this time and no longer extends the LC’s 
response to sensory stimuli (50,51).

Figure 1. During early life pups approach (Y-maze) the naturally learned maternal odor or the experimentally learned attachment odor 
produced by pairing a novel odor (i.e., peppermint) with either stroking or a 0.5-mA shock (A). The natural maternal odor, as well as 
the odor previously paired with either stroke or shock, support social interactions with the mother (B-D). If the natural maternal odor 
is removed, pups will show little interactions with the mother. However, an air stream of either maternal odor or the odor previously 
paired with stroke or shock enhances interactions with the mother, including nipple attachment. Figure reproduced from Ref. 8, with 
permission from Elsevier 2010. *P < 0.05 between groups (one-way ANOVA followed by the Fisher test). 
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Attenuated amygdala and aversion learning 
may help prevent pups from learning to avoid 
the maternal odor

During the first 10 days of life rat pups exhibit attenuated 
aversion learning and pairing an odor with pain (i.e., 0.5-
mA shock or tailpinch) results in a learned odor preference 
(Figure 1). Learning to prefer an odor after it is paired with 
aversive stimuli (moderate shock and tailpinch) occurs in 
spite of a functional pain system as moderate shock elicits 
escape in neonatal pups and threshold to shock does not 
appear to change developmentally (12,16,31,52), although 
the pain system continues to develop (16,53,54). Observa-
tions of mother-pup interactions within the nest illustrate 
that the mother occasionally hurts pups during normal 
interactions, such as stepping on pups when she enters or 
leaves the nest. Considering the necessity of pups learning 
a preference to their mother’s odor for nipple attachment and 
other related attachment behaviors, it is certainly beneficial 
to pups not to learn an aversion to their mother’s odor or 
inhibit approach responses to nest odors. In fact, as in 
odor-stroke conditioning, the odor paired with shock also 
controls pups’ social attachment behaviors with mothers by 
promoting nipple attachment when the conditioned odor is 
present (Figure 1). 

The assessment of pups’ attenuated aversion learning 
began with the amygdala because of its strong association 
with odor-shock fear conditioning in adulthood (55,56). Our 
assessment of the amygdala, using 2-DG uptake (Figure 
2) or c-Fos, suggested it did not participate in odor-shock 
conditioning during the first 10 days of life (8,13,16,31). 

The lack of amygdala activation in odor-shock condition-
ing has recently been verified using pCREB immunohis-
tochemistry (Figure 2). Moreover, temporarily suppressing 
amygdala function with muscimol does not influence infant 
rats’ odor-0.5-mA shock learning until the emergence of 
fear conditioning around postnatal day 10 (57). In fact, 
the lack of amygdala plasticity during infancy may play a 
leading role not only in the absence of fear learning, but 
also in the limited passive and active avoidance as well as 
inhibitory conditioning - behaviors critically dependent on 
the amygdala (58). 

It is nevertheless important to note that infant rats are 
capable of learning odor aversions. Specifically, odor/
taste-malaise (LiCl or >1 mA shock) learning can produce 
odor aversions, even in the fetal rat (15,52), although this 
malaise learning is greatly attenuated if pups are nursing 
during conditioning (59,60). This malaise conditioning does 
not appear to incorporate the amygdala until weaning, sug-
gesting pain and malaise learning are using different, albeit 
overlapping, neural circuits (15,60). 

Ecological significance

For altricial animals such as rats, attachment learning is 
critical for survival. In fact, pups’ survival is dependent on 
learning this maternal odor preference/approach. Besides 
being attractive for the pups, the maternal odor also orga-
nizes pups’ social behavior ensuring that pups will nipple 
attach and receive care and necessary warmth. Evolutionary 
pressures may have selected for a unique attachment neural 
circuitry to ensure pups’ rapid attachment to the caregiver. 

Figure 2. During early life (postnatal day 8), pairing an odor with a 0.5-mA shock does not produce a change in pCREB expression 
(top) or 2-deoxy-d-glucose (2-DG) uptake (bottom) in the lateral (LA) and basolateral (BLA) amygdala. The expression of phosphory-
lated cAMP response element binding protein (pCREB) in the cortical amygdala (CoA), a component of the olfactory cortex, appears 
to be heightened by odor exposure.
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