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ABSTRACT 

Recent deep-submicron technology-based ICs are significantly more vulnerable to 
transient faults. The arisen errors are thus also more critical than they have ever been 
before. This thesis presents a further novel benefit of the Quasi-Delay Insensitive (QDI) 
asynchronous circuits in terms of reliability: their strong natural ability to mitigate long-
duration transient faults that are severe in modern synchronous circuits. A methodology 
to evaluate comparatively the transient-fault effects on synchronous and QDI 
asynchronous circuits is presented. Furthermore, a method to obtain the transient-fault 
mitigation ability of the QDI circuits’ memory elements (i.e., the C-elements) is also 
proposed. Finally, mitigation techniques are suggested to increase even more the C-
elements’ transient-fault attenuation, and thus also the QDI asynchronous systems’ 
robustness. 

 

Keywords: Design of robust or fault-tolerant systems, QDI asynchronous circuits, 
transient faults, soft errors, evaluation of transient-fault effects. 





Sistemas Robustos a Falhas Transientes Explorando Circuitos 
Assíncronos Quase-Insensíveis aos Atrasos 

RESUMO 

Os circuitos integrados recentes baseados em tecnologias nanoeletrônicas estão 
significativamente mais vulneráveis a falhas transientes. Os erros gerados são assim 
também mais críticos do que eram antes. Esta tese apresenta uma nova virtude em 
termos de confiabilidade dos circuitos assíncronos quase-insensíveis aos atrasos (QDI): 
a sua grande habilidade natural para mitigar falhas transientes de longa duração, que são 
severas em circuitos síncronos modernos. Uma metodologia para avaliar 
comparativamente os efeitos de falhas transientes tanto em circuitos síncronos como em 
circuitos assíncronos QDI é apresentada. Além disso, um método para obter a 
habilidade de mitigação de falhas transientes dos elementos de memória de circuitos 
QDI (ou seja, os C-elements) é também proposto. Por fim, técnicas de mitigação são 
sugeridas para aumentar ainda mais a atenuação de falhas transientes por parte dos C-
elements e, por consequência, também a robustez dos sistemas assíncronos QDI. 

 

Palavras-Chave: projeto de sistemas robustos ou tolerantes a falhas, circuitos 
assíncronos QDI, falhas transientes, Soft errors, avaliação dos efeitos de falhas 
transientes. 





1 INTRODUCTION 

The IC fabrication technology’s evolution has allowed in last years the use of 
nanometer scales to design semiconductor devices. Deeper-submicron technologies 
enable thus the development of sophisticated electronic systems in small scale, high 
density, high performance, and low power consumption. 

On the other hand, the close proximity to the physical limits of the semiconductors 
and the high complexity of such deep-submicron technology-based designs impose 
considerable challenges to the IC reliability. The circuits indeed suffer harmful effects 
that in older technologies were practically negligible. 

There are many challenges imposed by deep-submicron technologies to the circuit 
reliability. Several types of faults can thus occur in a circuit given its larger 
vulnerability. Today nanoelectronic circuits are indeed more sensitive to variations of 
fabrication process as well as environmental factors like temperature, radiations, and 
electrical noise. IC-based systems are so more vulnerable to two effects of such 
variations: timing alterations of the circuit delays and transient voltage modifications. 

Such effects, in terms of voltage transients and delay variations, have motivated 
many researches due to the severity of their consequences for the systems. In fact, these 
effects, known respectively as transient faults and delay faults, can provoke errors in 
circuit’s functional operations. If propagated, theses errors can lead the circuit to 
produce inconsistent results at its primary outputs, and so making a system’s failure 
scenario. 

Normally, delay faults are arisen from fabrication process variations, however they 
can also be induced by environmental factors. On the contrary, transient faults are 
generated due to environmental or intentional-perturbation events. A single perturbation 
event on an IC can produce a transient fault so-called as single-event transient (SET). 
Moreover, there are lower-probability cases in which multiple-perturbation events or 
even a single event can create multiple-transient faults. The worst transient-fault effects 
on ICs are memory-bit flips that are non-permanent errors in memory cells named as 
soft errors (SEs). If transient faults accomplish upsetting various memory cell’s bits, the 
phenomenon is thus known as multiple-bit upset (MBU). 

The transient and delay faults have even more severe effects in deeper-submicron 
technologies where the circuit’s delays are inherently shorter. In these technologies, it is 
possible that fault’s durations are comparable or even longer than the clock cycle’s 
periods. In addition, most of the existing mitigation techniques require very-high power, 
performance, and area overheads to deal with such long-duration transient (LDT) faults, 
hence new solutions to protect the circuits are necessary (LISBOA, 2007-a). LDT faults 
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have clearly a much higher probability of not being masked, and therefore they also 
stand a greater chance of producing a system’s failure. 

In fact, such a higher error probability is due to the limitation of the clock period that 
is thus fundamental for the severity of transient and delay faults. On the other hand, the 
clock is a particularity of the traditional synchronous circuits which suffer thus much 
more with the worse LDT consequences than clockless circuits. Hence, designing 
circuits that are not controlled by a global clock but only by their internal data flow can 
result in systems that are more robust against such LDT faults. It is the case of the 
asynchronous circuits, and specially their most important class: the Quasi-Delay 
Insensitive (QDI) circuits. 

Essentially, QDI circuits are composed of C-elements, so-called Muller gates. Such 
an element, which has a dual-behavior, works either as a buffer or as a memory cell. 
These special gates ensure the QDI property and permit the synchronization between 
circuit’s stages, where a handshaking protocol is applied by a multi-rail data path. 

The multi-rail data codification and the asynchronous handshaking communication 
of QDI systems make the detection and correction of errors easier (MONNET, 2007-a). 
The absence of a clock tree allows them to emit less electromagnetic interference 
(PANYASAK, 2004), and makes them more secure against malicious power analysis 
(BOUESSE, 2005). Moreover, such a clockless property also leads to increased energy 
savings (RIOS, 2008), and achieving high performance at the expense of using less than 
twice larger area than their synchronous counterparts. A QDI circuit is also inherently 
robust against delay faults on most of its paths due to its natural QDI property 
(LAFRIEDA; MANORAR, 2004). In addition, its C-elements are fundamental to 
implement more robust systems. In fact, even in synchronous systems, C-elements are 
often used to filter transient faults, and so protecting the circuits against SEs 
(NICOLAIDIS, 1999; MITRA et al, 2005; FAZELI et al, 2007). Then, QDI systems’ C-
elements improve the circuit’s ability for masking transient faults (MONNET, 2007-a). 
Such inherent characteristics of QDI asynchronous designs ensure a high systems’ 
reliability without implementing costly hardware-based mitigation mechanisms which 
in synchronous designs are practically indispensable to obtain similar immunity level. 

As QDI asynchronous circuits are undeniably quite robust against delay faults, the 
goal of this thesis was exploiting such a class of circuits in order to obtain more 
transient-fault robust systems. 

In this thesis, chapter 2 shows the benefits and features of the QDI asynchronous 
systems. Chapter 3 outlines the different transient-fault effects on ICs. In Chapter 4, a 
novel method is proposed to evaluate at logical level the transient-fault effects as on 
synchronous circuits as on QDI asynchronous circuits. Chapter 5 presents and discusses 
a new QDI asynchronous systems’ benefit in comparison with synchronous systems: 
their better natural ability for mitigation of LDT faults in deep-submicron technologies. 
In chapter 6, hardware-based transient-fault mitigation techniques and their costs to 
protect synchronous circuits at different abstraction levels are discussed. Furthermore, 
chapter 7 evaluates innovatively the transient-fault effects on traditional C-element’s 
implementations and also presents for the first time the best C-element’s options to 
further improve the QDI asynchronous systems’ robustness. Finally, chapter 8 
highlights the main contributions of this thesis as well as the ideas to be discussed in 
future works. 

 



2 ASYNCHRONOUS CIRCUITS 

Even nowadays the largest part of ICs in electronics equipments are based on an 
oscillator to start, process, and finalize all of their operations. Such electronics systems 
are synchronous circuits at a frequency of a signal well determined to reach all circuit 
parts. However, in the last years, there are already systems in which their different 
internal circuits operate without the need of the pace of a global clock. These circuits 
then so-called asynchronous or clockless use their own data flow to locally govern the 
computation and communication between parts of the system. 

The asynchronous communication activity between circuit blocks, and even among 
systems with their environments, had a significant increase (BRZOZOWKI; SEGER 
1995). Indeed, the technological evolutions and their more complex ICs have required 
asynchronous activities to face with design challenges. Synchronous blocks which 
operate on different frequencies need asynchronous interfaces to efficiently exchange 
data (SUTHERLAND, EBERGEN, 2002). In the last years, the use of asynchronous 
approaches has also been targeted for electronics applications or embedded systems. 
Asynchronous systems are thus mostly applied to achieve low power consumption, 
reliability, robustness, and security. Then, applications such as smart cards, RFIDs, 
pagers, PDAs, power management chips, electronics for automation and avionics, 
sensor networks, cell phones, metering, medical, mobile, and battery-powered devices 
are very feasible. In addition, high-performance applications like processors for 
simulation, audio, video, images, signals, graphics, servers, and workstations may also 
be designed by asynchronous logic (GEER, 2005; TIEMPO, 2009). 

Asynchronous systems are not only applications for ICs. Synthetic biology uses 
engineering principles to design genetic circuits. Such biological circuits constructed 
from DNA (deoxyribonucleic acid) are inserted into bacteria to perform various tasks 
(NGUYEN et al, 2007). As there is not a global clock, genetic circuits are inherently 
asynchronous. Thus, asynchronous design techniques are also applied for many 
applications of the synthetic biology, which contributes directly, for instance, in the 
production of drugs to combat malaria (NGUYEN et al, 2007). 

In fact, all digital systems, essentially, can be viewed as asynchronous 
(BRZOZOWKI; SEGER 1995). Some fundamental concepts related to asynchronous 
circuits support the operational characteristics of the synchronous (FLETCHER, 1980). 
A synchronous circuit is designed based on rules of a particular project and operated 
under special assumptions of its environment (BRZOZOWKI; SEGER 1995). Its 
combinational circuits process their logic functions asynchronously within a clock 
period. In addition, its hearts, the flip-flops, are structurally asynchronous sequential 
machines that operate within the time conditions of set-up and hold. Several other 
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asynchronous machines, such as, latches and Muller C-elements, are also components 
for the design of synchronous systems. 

The concepts of asynchronous circuits are suggested since the middle of the last 
century when there was the development of the first asynchronous machines 
(FLETCHER, 1980). However, synchronous approaches prevailed in the 
microelectronics industry due to the simplicity in the design implementation of the 
control and logic circuit (FRAGOSO, 2005). Such a dominion nowadays is 
accomplished by the maturity of commercial CAD tools dedicated to synchronous. 
Although synchronous methods could be adapted for asynchronous (KONDRATYEV; 
LWIN, 2002), they are optimized for synchronous. There is, therefore, a larger 
complexity for the implementation of asynchronous designs by using such synchronous-
dedicated tools. Moreover, the resulting asynchronous circuits are poorly optimized. In 
fact, these tools are not prepared to implement a local organization for asynchronous 
communications between circuit blocks. Then, implementations of asynchronous 
protocols are not optimized resulting thus in high overheads in terms of area and total 
computation time. 

On the other hand, a coordination of asynchronous actions also determines 
additional hardware mechanisms and, therefore, costs in terms of area. Indeed, even 
using an efficient synthesis method for asynchronous designs, the area of an 
asynchronous system reaches the order of twice the size of an equivalent synchronous 
system. However, this is practically the only cost paid to obtain the many inherent 
advantages of an asynchronous system. The absence of a fixed rhythm of a global clock 
allows several important benefits that are discussed in the following paragraphs 
(SUTHERLAND, EBERGEN, 2002; FRAGOSO, 2005; SPARSO, 2006; FLETCHER, 
1980; HAUCK, 1995; BRZOZOWKI; SEGER 1995): 

• Sutherland and Ebergen (2002) observe that the efforts required to coordinate 
asynchronous actions are small. An asynchronous system indeed may, on 
average, be faster than a synchronous, especially in irregular IC designs in 
which slower actions are infrequent. In fact, the data paths of asynchronous 
circuits operate in the pace of their gate and wire delays. Thus, operations more 
complex and less frequent take more time than average, and simple and frequent 
ones take less. On the other hand, synchronous systems are always in the pace of 
the longest circuit path. In addition, a margin to cope with variations of the clock 
(jitter and skew), and manufacturing and environmental irregularities must be 
also considered (GEER, 2005). Therefore, simple tasks in synchronous circuits 
run slower to follow the pace of the more complex ones; 

• In clocked systems, the delay differences between data paths of their circuits 
generate the so-called static hazards (FLETCHER, 1980), which are tolerated by 
using a global clock. Otherwise, such a kind of spurious switching is not allowed 
in asynchronous design. By nature, indeed, asynchronous systems have no static 
hazards. Therefore, dynamic power is not wasted. In addition, as there is not a 
clock, a clock-distribution circuit is not required. Consequently, lower power 
consumptions (GAGELDONK, 1998) are feasible. In fact, nowadays complex 
synchronous chips, like microprocessors, have clock-tree circuits that represent a 
good part of the system’s area (SUTHERLAND, EBERGEN, 2002). About 30% 
of the power consumed by such chips is due to the clock and its distribution 
circuit. Furthermore, as the clock is always working, the chip heats even though 
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it is not doing anything useful. Clockless systems, otherwise, allow easily 
disable blocks of the circuit to reduce the power consumption; 

• The need nowadays to distribute uniformly the clock signal in all parts of the 
chips, which are faster and denser, has required synchronous designs even more 
sophisticated in order to avoid different latching times within the clock-skew 
problem. Given such a technological trend, asynchronous approaches arise as an 
interesting alternative to avoid elaborate clock-tree designs in complex 
circuits; 

• Synchronization by a clock also requires more careful designs with signals from 
a system’s asynchronous interface. An inadequate sampling of such signals can 
put the synchronous circuit indefinitely in meta-stable states (FLETCHER, 1980; 
HAUCK, 1995; BRZOZOWKI; SEGER 1995; MYERS, 2001). In contrast, 
asynchronous systems by nature can wait the interfaces to meet stable conditions 
in order to start a correct computation, and thus avoiding the metastability 
phenomenon; 

• The clock also limits the modularity  of a synchronous system, which requires 
special interfaces to perform communications with other systems of different 
operation frequencies (SUTHERLAND, EBERGEN, 2002; FRAGOSO, 2005). 
Asynchronous modules are much more flexible because their circuits do not 
have to share a common rhythm, therefore, they easily allow designs of SOCs 
and NOCs; 

• The absence of a clock’s fixed rhythm allows also lower emissions of 
electromagnetic interferences (EMI) (SUTHERLAND, EBERGEN, 2002; 
PANYASAK, 2004). In contrast, synchronous systems emit stronger 
electromagnetic signals at its clock frequency and harmonics. Besides being able 
to produce internal noise in its own circuit, such signals can also interfere with 
televisions, cellular phones, aircraft navigation systems, and any electronics 
equipment operating at the same frequency band; 

• More recently, asynchronous systems, especially the Quasi-Delay Insensitive 
class (QDI Circuits), are suggested as a qualified alternative to design robust 
and secure circuits. This topic is discussed at greater length in the following 
sections of this chapter. 

Given such many advantages, asynchronous applications certainly will evolve even 
more in the IC market, especially when the various methods optimized for the 
asynchronous design, like those in (VIVET, 2001; RIGAUD, 2002; MAURINE et al, 
2003; DINH-DUC, 2003; FOLCO et al, 2005; FRAGOSO, 2005; BALSA, 2009; 
TIEMPO, 2009), conquer more popular commercial dimensions. However, these 
asynchronous qualities already encourage several efficient commercial applications 
which perhaps still are little known by the scientific community and industry. 

Asynchronous ICs indeed are already in commercial mass production 
(SUTHERLAND, EBERGEN, 2002). The electronics company Sharp already released 
asynchronous media chips devoted to edit graphics, video, and audio. Asynchronous 
microcontrollers are used in pagers sold by Philips Electronics. Some synchronous 
processors from Sun Microsystems include asynchronous blocks to organize 
information from memory chips. Other hybrid applications are proposed but based on 
the idea of globally asynchronous and locally synchronous designs (CHAPIRO, 1984; 
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IYER; MARCULESCU, 2002; TEEHAN, 2007). The Handshake Solutions and ARM 
companies developed asynchronous cores for devices such as smart cards, consumer 
electronics, and automotive applications (GEER, 2005). In addition, the Fulcrum 
Microsystems offers asynchronous chips of high performance for networks, storage 
devices, and embedded systems. The Theseus Logic company developed a low-power 
and low-noise asynchronous version of a Freescale’s 8-bit microcontroller. It is for 
signal-processing or battery-powered applications. Moreover, such a company with a 
medical-equipment provider, the Medtronic, also produced asynchronous chips for 
defibrillators and pacemakers. The French company Tiempo presents its asynchronous-
based solutions for applications of smart cards, RFIDs, cellular phones, mobile 
handsets, power management, automobile, avionics, and medical systems. Tiempo’s 
products include IP cores of microcontrollers, microprocessors, and crypto-processors, 
as well as an asynchronous-dedicated EDA tool (TIEMPO, 2009). Besides these and 
other companies, there are several asynchronous-dedicated research groups at 
educational institutions like the California Institute of Technology, the University of 
Manchester, the University of Tokyo, and the TIMA Laboratory in Grenoble. 

According to the aim of this work, the following sections present the main 
characteristics of this important asynchronous option to design, especially, low-power, 
reliable, robust, and secure circuits. 

2.1 Classes of Asynchronous Circuits 
An asynchronous system has, as a natural feature, a well-coordinated activity of its 

data switching (KONDRATYEV; LWIN, 2002). The computation flow is not modelled 
with the aid of a clock but with the implementation of logic redundancy in parts of the 
circuit. It thus prevents spurious switching, the hazards, which arise from the delay 
differences in the gates and wires of the system. On the other hand, the design of a 
synchronous system does not require, within a clock period, an exact timing sequence 
coordination of the circuit’s switching activity. The design implementation, therefore, 
requires less redundancy. 

In the past decades, these features related to the lower design complexity and 
smaller circuit area were very important for the synchronous design achieving today 
such a maturity. However, given the current technological trends that require more 
robust systems, the larger redundancy in asynchronous have made such circuits very 
attractive. 

The use of redundancy to ensure the correct circuit behaviour (i.e., a hazard-free 
circuit) in any delay distribution of gates and wires can be costly and even impractical 
(KONDRATYEV; LWIN, 2002). Therefore, certain timing assumptions are necessary 
to enable implementations of any function type. Such timing assumptions have different 
locality degrees that can be since matching delays on wire branches of some circuit’s 
forks (as in Quasi-Delay Insensitive asynchronous systems, the QDI circuits) to balance 
all circuit’s data paths (as in synchronous circuits) (KONDRATYEV; LWIN, 2002). 

The different classes of circuits can thus be summarized by Figure 2.1 (VIVET, 
2001; KONDRATYEV; LWIN, 2002). The figure’s vertical axis shows the redundancy 
degree of the class, therefore the robustness degree as well as the complexity. The 
horizontal axis indicates the number of timing assumptions, then also the degree of non-
locality and slack of the constraints on the assumptions. As greater as the number of 
timing assumptions is, slacker timing constraints must be set and thus the circuits are 
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simpler (FRAGOSO, 2005). However, they are less robust, less modular, and the timing 
assumptions are more difficult to meet (KONDRATYEV; LWIN, 2002). 

 

Figure 2.1: The different classes of circuits in accord with the logic redundancy and the 
number of timing assumptions 

The Huffman circuits  (HUFFMAN, 1954-a; HUFFMAN, 1954-b), which are also 
known as asynchronous sequential machines, are the origin of the asynchronous systems 
and therefore they well represent their fundamental mode. Such circuits consist of a set 
of combinational gates, which compute the next state and circuit outputs, and a set of 
feedback lines, which store the circuit states (ALMUKHAIZIM, 2008). Their inputs 
must remain at a steady state for a minimum time that ensures the circuit stabilization. 
The classic examples of Huffman circuits are the flip-flops, which must conserve the 
time of set-up and hold to stabilize their outputs. Other asynchronous sequential 
machines more complex are feasible, but they will be even more sensitive to the delays 
of their gates and wires. Therefore, they are sensitive to delay variations beyond the 
limits set by the designer, because they use a model known as bounded delay. The 
circuits will be thus more sensitive to physical failures and more vulnerable to 
fabrication defects (defined in chapter 3). The same bounded delay is also used in 
synchronous circuits, so they are also subject to these vulnerabilities. 

The Micropipeline circuits  (SUTHERLAND, 1989) are asynchronous architectures 
that, as the pipelines of synchronous approaches, compute and store data. The global 
clock is replaced by a local-synchronization structure based on handshake. It is used to 
control the elastic data pipeline in the circuit stages (FRAGOSO, 2005). The control 
circuit operates independently of its gate and wires delays, so it uses an unbounded-
delay model. It means that no upper limit to the values of its delays is needed or 
established, since there is an asynchronous communication by handshake between its 
stages (HAUCK, 1995). Furthermore, the bounded-delay model is also used on the 
Micropipeline circuits, but only on the architecture’s data path to circumvent the hazard 
problem in its computation logic. Micropipeline circuits are thus also subject to those 
vulnerabilities discussed in last paragraph for Huffman circuits. 

The Speed Independent circuits (MILLER, 1961) use the unbounded-delay model 
on all their gates, but the delays of all their wires are simply negligible or assumed 
smaller than their smaller gate delays (HAUCK, 1995). Nowadays the wire delays are 
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increasingly more critical in complex systems based on deep-submicron technologies, 
therefore Speed Independent circuits are not recommended (FRAGOSO, 2005). 

On the other hand, the Delay Insensitive circuits (DI circuits) (WESLEY, 1967; 
UDDING, 1986), which are built similarly to the Speed Independent ones, have no 
timing assumption. Therefore, all gate and wire delays use the unbounded-delay model. 
DI circuits would be thus the ideal ones to avoid physical failures and tolerating 
fabrication defects, since they operate correctly under whatever delay condition in their 
gates and wires. However, Martin (1990) highlighted that the implementation of DI 
circuits is very limited and non-practical. In addition, he also presented the minimum 
timing assumptions, which have the constraints with the least slack, to make practicable 
the implementation of any circuit. In fact, Martin (1990) proved that the required timing 
assumptions, called isochronic forks, are indeed those which characterize a QDI circuit. 
Therefore, the class of the QDI circuits impose themselves as the most feasible. 

2.2 Quasi-Delay Insensitive Asynchronous Circuits 
The Quasi-Delay Insensitive circuits (QDI circuits) beyond using the unbounded-

delay model (discussed in the previous section) in all their gates, they also use it in 
quasi-all their wires. The only timing assumptions of the QDI circuits are localized in 
branches of some critical forks. In fact, such forks need be isochronic (i.e., they need to 
have branches with similar delays) to enable the implementation of any circuit with the 
quasi-delay insensitivity feature. The only timing-assumption requirement is thus to 
have a negligible delay difference between the branches of isochronic forks. It must 
indeed be negligible compared to the smallest gate delays of the circuit (MARTIN, 
1990). Therefore, the branches of isochronic forks are the only wires in a QDI circuit 
that do not use the unbounded-delay model. 

The use of this unbounded-delay model results in a circuit that is no sensitive to the 
delays of its gates and almost all its wires. The circuit thus has the QDI property. It has 
no determined time to compute a certain input logic state, since all gates and almost all 
wires can have any delay value. Therefore, the circuit’s inputs have to remain stable 
also for an undetermined period of time in order to correctly compute the circuit’s logic 
functions. Only after the end of the logic computation, the circuit’s inputs can be 
stimulated again with a new logic state. On the contrary, a certain synchronous system’s 
stage needs to have the logic state of its inputs kept by a certain determined time to 
enable a correct computation. Stimulating a new logic state at its inputs is authorized 
only after such a determined time, which is defined by the inverse of the maximum 
system’s clock frequency. 

On the other hand, in a QDI system generalized in Figure 2.2, each one of its stages 
need abstract the absence of a clock and the unbounded-delay model in order to enable 
the stimulus of a new logic state at their inputs. As this delay model considers that there 
is not a determined time for a correct computation of a certain input logic state X of a 
stage N, an emitter stage N-1 would have no guarantee that stage N has finished the 
computation of state X. Hence, the emitter stage N-1 need to be informed by some 
artifice. Otherwise, it could disturb the computation end of state X by means of sending 
prematurely a certain new state Y. The QDI system need thus locally coordinate its 
communication actions between the parts (stages) of its circuit. Therefore, a small 
additional circuit is implemented to detect changes at stage’s outputs and indicating to 
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the emitter stage, by means of an acknowledgment signal, the computation end of a state 
X. Thus, the correct computation of a state X and a new state Y are achievable. 

 

Figure 2.2: Communication between stages of a QDI asynchronous system 

Such an acknowledgment signal to the emitter stage need be always consistent to 
ensure the QDI property of a system. Therefore, the circuit design of a QDI system’s 
stage need also ensure that 

• no hazards occur on any stage’s logic and 

• whatever logic state transition at stage’s inputs results in some logic state change 
at stage’s outputs. 

Ensuring such conditions, eventual false acknowledgements to the emitter stage are 
avoided because there are no hazards. In fact, these conditions eliminate any stage’s 
input logic transition that does not generate logic state changes at stage’s outputs. 
Hence, the outputs of a receiver stage will not fail to acknowledge an input transition. It 
ensures, therefore, the feasibility to observe all possible input logic transitions of a 
receiver stage by means of its output transitions. Finally, it also ensures an accurate 
acknowledgement to the emitter stage that becomes enabled to send a new logic state to 
the receiver stage’s inputs. Evidently, it is ensured because any output logic transition of 
the receiver stage means, in theory, a correct computation of a logic state at its inputs. 
Consequently, only ensuring these conditions there will be a guarantee that the emitter 
stage will not stay without knowing about the computation end of the receiver stage. 

To implement such conditions, three design mechanisms are used: 

• a communication protocol between system’s stages that implements a handshake 
by request and acknowledgement to start a certain computation and indicating its 
end; 

• a data codification that allows the stage to detect a computation request as well 
identifying its end; and 

• circuits of the logic functions synthesized in a certain way that do not allow the 
hazard generation. 

2.2.1 Communication Protocol 

The communication between stages of a QDI system is organized by a protocol. It 
allows agreeing a handshake by request and acknowledgment to control the data flow 
and the computation. Therefore, any action produced by an emitter stage to modify the 
input logic state of a receiver stage is necessarily authorized before by the receiver 
stage’s outputs. 

A traditional protocol uses two phases to achieve a cycle for computation of a 
certain logic state X and authorization of a new one Y. However, the protocol that is 
currently further used in QDI systems consists of four phases. This protocol guarantees 
a simpler implementation (FRAGOSO, 2005; MONNET, 2007-a) because the detection 
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of its phases is performed by logical level rather than transition events, as it is done in 
the two-phase protocol. 

Figure 2.3 illustrates the four phases of such a protocol. In the first phase, Phase 1, 
valid data are detected at the inputs of the receiver stage N that computes and generates, 
by using its data outputs, a signal of acknowledgment at the computation end. In Phase 
2, the acknowledgment is detected by the emitter stage N-1 that sends zero to all data 
inputs of the receiver stage N. Such returns to zero level are known as invalid data that 
are defined by a codification discussed in the next section. In Phase 3, the invalid data 
are detected by the receiver stage N that generates again the signal of acknowledgment. 
Finally, Phase 4, such an acknowledgment is detected by the emitter stage N-1 that is 
thus authorized to send new valid data to the inputs of the receiver stage N. 

 

Figure 2.3: Four-phase protocol for a communication between stages 

2.2.2 Data Codification 

A QDI system’s stage detects the presence of new input data only by its own data 
switching. However, implementing such a mechanism requires necessarily a data 
codification based on more than one wire to represent a data bit, i.e., a multi-rail 
codification. The request to begin a new computation and the information of data 
validity can thus be included in its own data (FRAGOSO, 2005). 

Otherwise, by implementing a codification that has only one wire per data bit (i.e., 
single rail), the use of a specific additional signal to characterize the request would be 
needed. In addition, the bounded-delay model would have to be used in the circuit’s 
data path to thus ensure an end of the data computation before the end of the request 
signal. In fact, a fixed delay in such a request signal would have to be defined for it goes 
along with the computation of the slowest circuit logic. Therefore, the circuit would not 
be a QDI, but a Micropipeline. Furthermore, in case of using a single-rail codification 
without the aid of any request signal, a new logic state equal to the current state at data 
inputs could not be detected without the implementation of a data packet. Moreover, 
interpreting the beginning of the packet would require a memory bank in each stage. In 
order to avoid the computation time in such a package interpretation, a data codification 
using more than one wire per data bit would make easier not only the implementation of 
the logic circuit responsible to identify a request but also the circuit for 
acknowledgment generation. 

The minimum data codification, which is thus the most traditional one, uses two 
wires per data bit, i.e., it is the dual-rail codification. Based on two wires per data bit, 
four states of data codification are available (00, 01, 10, and 11) to express two logic 
values of a data bit (0 or 1) (MONNET, 2007-a). 
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For a two-phase protocol, the four states are used to ensure the codification of all 
possible transition events of a data bit (0=>0, 0=>1, 1=>0, and 1=>1) (FRAGOSO, 
2005). The least significant bit’s value of a codification state expresses the logic value 
of the data. In addition, a new computation request is detected by the modification of 
the codification state’s parity (“codification state 00” => parity even, logic value 0; 
“state 01” => odd, value 1; “state 10” => odd, value 0; “state 11” => even, value 1). 
Owing to such particularities, the implementation of this protocol is more complex and 
less used. 

For a four-phase protocol, only three states are required to code a valid-data logic 
value 0, another 1, and a return to zero defined as an invalid data. A fourth state is thus 
considered as forbidden or not used (FRAGOSO, 2005). This dual-rail data codification 
by three states is illustrated in Figure 2.4. This approach ensures that the transition from 
a certain state to another is always done by modifying only a single bit of the 
codification state (MONNET, 2007-a). Hazards, therefore, are not tolerated because any 
spurious switching could lead the circuit to an unwanted codification state. On the other 
hand, the generation of the acknowledgment signal can be easily implemented by a 
simple NOR gate monitoring the stage’s outputs. 

 

Figure 2.4: Dual-rail data codification by three states 

Even if the dual-rail codification is the most used in the design of QDI circuits, other 
codifications based on N wires to represent a data bit are also feasible. In case of dual 
rail, two wires (N=2) are thus used to represent a data bit. However, only one wire 
(M=1) must be equal to logic level 1 to code a logic value of a data bit. To implement a 
QDI circuit, any codification is possible for a data bit represented by N wire(s) at which 
M of such wire(s) must be equal to logic level 1 to code a logic value. Unfortunately, 
such codifications known as M-out-of-N increase the circuit design complexity. 

Codifications M-out-of-N are redundant by nature, so they ensure a greater data bit 
robustness to voltage variations due to environmental or intentional perturbation events. 
For instance, by using codification 1-out-of-2 (dual rail), if one of the data bit wires 
erroneously switching to a complementary logic state (as from 00 to 01; 01=>00; 
01=>11; 00=>10; 10=>00; and 10=>11), the chance of the resulting erroneous state 
being the forbidden state 11 is 2 / 6. Under correct circuit operation, this forbidden state 
will never be used, therefore it can be monitored by a simple AND gate as a form of 
error detection scheme. As the circuit has such a redundancy able to detect errors, it is 
thus also more robust. 
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2.2.3 Logic Synthesis 

The structure of a QDI system can be better understood by the blocks in Figure 2.5. 
This illustration indeed shows a direct analogy to the typical stages of a synchronous 
system (MONNET, 2007-a). The memory blocks in this figure would represent the 
registers (groups of flip-flops) in a synchronous system. In addition, the computational 
blocks would implement the combinational logic in the synchronous system. However, 
the implementations of such blocks in a QDI system obviously have a different 
construction, they use actually a particular gate known as C-element, or also Muller gate 
(MULLER, 1959). 

 

Figure 2.5: A structure of a QDI system by analogy to a synchronous system 

In fact, the C-element is a key component in QDI asynchronous circuits to ensure 
the QDI property. The basic function of a C-element, Figure 2.6, is comparing the logic 
states at its inputs. Basically, if the inputs are identical, the state at its output will be 
updated with such an input state. The C-element in this condition will work like a buffer 
gate. On the other hand, when its inputs are not identical, the output state will be 
preserved. Then, the C-element will work like a memory cell. There are several circuit 
variations of the C-element implementation that may have, for example, more than two 
inputs. The traditional circuit implementations of a C-element are presented in chapter 
7. 

 

Figure 2.6: Function of a 2-input C-element gate 

Based on this particular C-element operation and the data codification M-out-of-N 
(like the dual rail) associated to a communication protocol, the computational blocks in 
Figure 2.5 can be synthesized as hazard-free logic functions (i.e., as delay insensitive 
functions). The generation of a computational logic circuit operating according with the 
four-phase protocol, for instance, can be made by any synthesis method traditionally 
used in the design of synchronous circuits. The classic expression resulting from the 
logic synthesis, the sum of minterms, can be used to map the logic circuit (SPARSO, 
2006). However, the ANDs of the mini-terms are replaced by C-elements. Such a 
method is thus known as Delay-Insensitive Minterm Synthesis (DIMS). The simplest 
method for the synthesis of logic functions in codification M-out-of-N uses the so-called 
MDDs (Multi-valued Decision Diagrams) (BREGIER, 2007). As an example, Figure 
2.7 illustrates the MDD-based synthesis of a dual-rail XOR function for the four-phase 
protocol (RIOS, 2008). More complex logic functions are also feasible using the same 
method. As complex as the function is, smaller area overheads are achieved although 
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the circuits’ areas continue to be greater than the conventional single-rail 
implementations (SPARSO, 2006). 

 

Figure 2.7: MDD-based logic synthesis of a delay-insensitive dual-rail XOR function 
for the four-phase protocol 

Figure 2.7 shows that the computational logic blocks of a QDI system, like in Figure 
2.5, consist basically of C-elements and ORs. Unlike combinational blocks in a 
synchronous system, the computational blocks of a QDI system contains memory 
elements, since the C-elements can store logic states. However, such memory elements 
when used in computational blocks are not intended to store the result of a computation. 
They indeed implement a rendezvous behaviour and thus make the synchronization of 
different signals (MONNET, 2007-a). The C-element’s memory property is required 
only to ensure the QDI property of the computational block. 

In stages of a QDI asynchronous system, C-elements are not only used in the design 
of a computational blocks’ part. They, moreover, also implement the system’s memory 
blocks in accordance with the communication protocol and the data codification. Figure 
2.8 illustrates three stages of a QDI system operating through the four-phase protocol. 
The memory blocks are implemented by half-buffers (RENAUDIN, 2000) characterized 
by two C-elements. By using its memory function, the C-elements aid the stages in 
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retaining their output states until a computation end. They thus also aid in coordinating 
the actions between each system’s stage. 

 

Figure 2.8: A QDI system operating through the four-phase protocol 

2.3 Conclusions 
This chapter discusses the different classes of circuits and details specially the QDI 

asynchronous systems. It shows that the inherent redundancy of such QDI systems 
makes possible additional characteristics in terms of robustness and security which are 
significantly better than those in synchronous systems. The following paragraphs 
summarize these natural benefits: 

• QDI systems have better resistance to attacks based on analysis of the power 
consumption (e.g., differential power analysis, DPA) than their synchronous 
counterparts. In fact, the data codification, the communication protocol, and the 
local control rather than a global clock make the electrical activity of these 
circuits with weaker current peaks. Hence, the correlations to obtain confidential 
data through a DPA attack are more difficult. These natural features permit thus 
improve the security properties of cryptographic devices used in confidential 
systems (BOUSSE et al, 2004; BOUSSE et al, 2005; BOUSSE, 2005; 
RENAUDIN el al, 2004; RENAUDIN; MONNET, 2006); 

• As asynchronous systems generate weaker current peaks due to the absence of a 
clock edge, they emit less EMI (Electromagnetic Interference) and so there is a 
reduction of errors related as to noise within the circuits as to interference 
with nearby devices (PANYASAK, 2004; GEER, 2005); 

• The QDI property makes them largely robust by nature to timing variations 
arisen from fabrication defects, environmental or intentional perturbation events 
(MONNET et al, 2006-c; MONNET 2007-a) that are further discussed in chapter 
3. A QDI asynchronous system automatically adapts itself to such timing 
variations, which are known as delay faults. In theory, delay faults of any 
duration are tolerated. Only those on branches of isochronic forks, which 
represent a small part of the wires, are not tolerated; 

• QDI circuits are potentially more able to tolerate any kind of transient 
fluctuation . The use of C-elements and a communication protocol allows 
particular masking forms of certain transient-fault effects. Such harmless effects 
of transient faults are further discussed in chapter 3. In addition, asynchronous 
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systems are not vulnerable to perturbations on a clock-distribution circuit as the 
synchronous systems are due to attacks by malicious fault injection (MONNET 
et al, 2006-c; MONNET 2007-a) or even occurrence of natural transient faults; 

• In QDI systems, the multi-rail codification schemes and the asynchronous 
communication by handshake between computation stages make easier the 
detection and correction of soft errors (KUANG et al., 2010). Multi-rail 
codifications allow the system identifying theoretically inexistent logic states 
(forbidden states) and, therefore, enable it detecting soft errors. Moreover, with a 
little additional circuitry and the assistance of the asynchronous handshake, the 
system can make a recomputation to correct the detected soft error before 
propagating it to a next circuit’s computation stage. 
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3 TRANSIENT-FAULT EFFECTS ON INTEGRATED 
CIRCUITS 

An IC performs several operations to achieve functional goals of a system. In fact, 
ICs implement functions providing results in accordance with input stimuli. In nornal 
conditions, the circuits are stimulated through operational events controlled by their 
applications. However, perturbation events arisen from internal or external sources can 
stimulate along the circuit’s lifetime the occurrence of faults (ABRAMOVICI; 
BREUER; FRIEDMAN, 1990). The presence of a fault  in an IC’s functional element 
can lead it to produce incorrect operations. The occurrence of such an error  scenario in 
one of the IC’s elements can still perturb the system as a whole. A failure  of the 
system’s functional goals is illustrated by the generation of inconsistent results at IC’s 
primary outputs (LAPRIE, 1998). 

Abramovici (1990) classifies types of faults, errors, and failures in the design of a 
circuit. The design errors are thus due to faults during the circuit design, for example, 
incomplete or inconsistent specifications, incorrect mapping between different 
abstraction levels of design, or violations of design rules. There are also those 
fabrication errors  which occur during the circuit’s fabrication procedures as a direct 
consequence of some human fault in the design implementation, for instance, wrong 
configuration of factory’s equipments or the mistaken selection of materials or 
components. On the other hand, there are those fabrication defects which are the result 
of imperfections or variations in the fabrication process, such as, short or open circuits, 
improper doping profiles, bad alignment of the layout’s masks, etc. Fabrication defects 
give rise to stuck-at faults, which retain permanently the logic of circuit’s bits. 
Furthermore, such defects can also generate delay faults that are delay variations of 
circuit’s wires (internal connections) or gates. 

Abramovici (1990) also classifies the physical failures that can occur during the 
circuit’s lifetime. Such failures are indeed as instantaneous as short or long-term 
consequences of transient, intermittent or permanent faults that are induced by 
perturbation events arisen from environmental or intentional sources: 

• Environmental perturbation events: variations of environmental factors in 
terms of temperature, humidity, or vibration, as well any kind of natural 
radiation (particles from cosmic rays or radioactive materials) or even artificial 
radiation (electromagnetic emission from electronics equipments, external or 
internal electrical noise in the circuits); 

• Intentional perturbation events: malicious fault injections by radiation (light 
flashes, sources of particles or laser), by voltage variation of circuit’s pins 
(power, clock, inputs), or even by temperature variation. All of these injection 
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types work as a form of attack to break secret information in confidential 
systems (RENAUDIN et al, 2004; MONNET, 2007-a). 

The recent many technological advances in ICs have induced several researches 
concerning the circuits’ susceptibility to faults, especially the transient faults. 

In reality, the concern about the transient faults due to environmental perturbations 
in ICs always existed. However, until the end of 20th century, before the emergence of 
deep-submicron technologies, related researches were very focused on circuits located 
in hostile environments. Evaluations of such faults in circuits and suggestions to protect 
them were mostly developed for space and physics applications. With the recent deep-
submicron technologies, the circuits are today designed through tiny transistors which 
thus determine smaller capacitances on their nodes. Moreover, the reduced voltages 
generate lower currents and charges to supply them. All of these advances decrease the 
circuit’s noise margin which along with the viability of higher clock’s frequency and 
higher density makes them more vulnerable to faults (LIMA, 2003-b; KARNIK; 
HAZUCHA; PATEL, 2004; KASTENSMIDT; CARRO; REIS, 2006). Hence, related 
researches have also become more and more important in other ICs’ applications, 
including therefore IC-based systems at ground level. 

Furthermore, also due to technological advances, there is a growing need to ensure 
the confidentiality in the communication of information between systems. This concern 
indeed always existed on systems for banking, military, and government services that 
require the preservation and protection of their secret information (MONNET, 2007-a). 
However, in recent years the data communication between systems has remarkably 
increased with the advances in the cellular telephony and Internet. Banking services and 
electronic commerce through the world wide web of computers, as applications that 
require security, are more and more common by using, for instance, smartcards 
(MONNET, 2007-a). The confidentiality of such electronics transactions is ensured by 
implementing secure systems based on cryptography algorithms. Nevertheless, on the 
other hand, cryptanalysis methods have also evolved considerably in terms of efficiency 
to break such secure systems. Novel classes of attacks, like the differential fault analysis 
(DFA), are developed based, for instance, by injecting non-invasive transient faults in 
system’s circuits. 

In accordance with the goals of this thesis, this chapter discusses briefly the transient 
faults induced by environmental perturbation events during the circuit’s lifetime. 
Furthermore, the physical failures arisen from the different types of transient-fault 
effects on synchronous and QDI asynchronous circuits are also detailed. Such 
discussions render also the consequences of transient faults due to intentional 
perturbation events, which indeed create very similar transient voltage modifications in 
the circuits (MONNET, 2007-a). 

3.1 Transient Faults Induced by Environmental Perturbations 
Many recent researches indicate that transient faults in ICs are induced mostly by 

environmental perturbations arisen from radiation sources. 

About radiation, the physics explains as the process of propagating radiant energy in 
the form of waves or particles. The radiation-induced particles can hit with atoms of 
semiconductor devices transferring them their energy by means of ionizing or non-
ionizing processes. Depending on the energy and flow of the particles, the effects of 



 

 

35 

 

such energy transfers to devices can be transient, permanent, cumulative, or even 
destructive (O’BRYAN et al, 1998; LABEL et al, 2000; LIMA, 2000-c; SROUR; 
MARSHALL; MARSHALL, 2003). 

The radiation-induced transient effects on ICs are caused specially by alpha particles 
(released by radioactive impurities) and more importantly neutrons from cosmic rays. 
Such types of environmental perturbations events can produce in silicon chips ionizing 
processes that deposit charges on circuit’s nodes. The amount of ionization and current 
arisen in the semiconductor devices is directly proportional to the energy lost by the 
radiation-induced particles (LIMA, 2003-b; KARNIK; HAZUCHA; PATEL, 2004). In 
fact, a current pulse generated by the charge deposition is considered a transient fault 
that reflects also a transient voltage fluctuation at the circuit’s node 
(KRISHNAMOHAN, MAHAPATRA, 2004). It is well-known as a transient arisen 
from a single perturbation event (e.g., a particle flow in a certain circuit’s node), and so-
called as a single event transient (SET). 

If the energy and flow of the radiation-induced particles are enough to deposit a 
charge that creates a significant transient effect on a node, a volatile memory element of 
the circuit may be perturbed (MASSENGILL et al, 2000). In this wrong way, a memory 
element’s bit would be logically inverted featuring the well-known single event upset 
(SEU), which by its non-permanent and non-recurring nature is also called as soft error 
(SE). 

These transient effects highlighted in previous paragraphs are also known as soft 
effects arisen from a single event: the soft single event effects (Soft SEE). 

3.2 Types of Transient-Fault Effects 
The primary harmful transient-fault effects on systems are basically the generation 

of soft errors highlighted in previous section and chapter 1. The most basic model to 
represent a soft error is abstracted at logical level of a system design. The simple logic 
inversion of a memory bit accurately models the characteristics of such an error. 

On the other hand, soft errors give rise to secondary harmful transient-fault effects 
which are the failures presented at primary outputs of systems’ modules. 

Figure 3.1, which generalizes a module of whatever system, is used in the following 
sections to illustrate further details of such transient-fault effects on synchronous 
systems or on QDI asynchronous. The illustrated module abstracts RT-level blocks 
characterized by K-bit registers and also combinational or computational macrocells of 
K bits. The K-bit registers are represented by memory macrocells of N bits. 

In synchronous systems, such memory macrocells are single rail, then N=1, and 
typically represent flip-flops. While in QDI asynchronous systems, they are usually dual 
rail, so N=2, and represent C-elements. The combinational macrocells for synchronous 
systems are logic gates, and the computational macrocells for QDI asynchronous 
systems are C-elements as well logic gates. In fact, in accordance with chapter 2, such 
C-elements in computational macrocells do not work as registers but like AND gates 
that prevent the generation of hazards. 
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Figure 3.1: A generic hardware module to represent either a synchronous systems or a 
QDI asynchronous 

All analysis in this chapter 3 assumes that such a module in Figure 3.1 is stimulated 
at its K-bit primary inputs by a certain data X. The module requires a number I of 
iterations along the time to process such a data X. After these I iterations, the module 
will provide at its K-bit primary outputs a result Y from its functional operations on the 
data X. Moreover, the module will also provide by a certain specific primary output an 
indication signal (i.e., End_of_Operation in Figure 3.1) for the end of such a result Y’s 
computation. In fact, It is used to indicate to another module the result Y’s availability 
at its K-bit primary outputs. 

The module thus needs I execution cycles (i.e., I iterations) to accomplish its 
function. In a synchronous system, an execution cycle is a clock period, while in a QDI 
asynchronous system, it is the time required to perform, for example, the four protocol’s 
phases illustrated in Figure 2.3. Hence, the module’s operating frequency is defined 
multiplying I by the inverse of the total computation time due to the I iterations. Such a 
frequency for an asynchronous system is an average, while for a synchronous, it is 
constant in accordance with the clock rhythm. 

3.2.1 Harmful Effects of Transient Faults on Synchronous Circuits 

The effects of transient faults on synchronous circuits are well defined by many 
works (KARNIK; HAZUCHA; PATEL, 2004). Depending on the circuit part that a 
transient fault is induced, different consequences arise on a synchronous system like 
that abstracted in Figure 3.1. In fact, there are three cases based on occurrences of single 
transient faults (i.e., SETs as explained in chapter 1 and previous section 3.1): 

Case (1): A SET occurring on a D-flip-flop that implements a memory macrocell: 
the worst effect is a direct soft error  (dSE). It means the flip-flop’s output is wrongly 
inverted until a next system’s event that updates such a memory. If the SET starts 
during the latching window (set-up and hold times), the worst case is also a dSE; 
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Case (2): A SET on a D-latch which implements also a memory macrocell: the worst 
situation is a dSE when the latch is not enabled. Otherwise, when the latch is enabled, 
the worst effect is a SET propagation to the latch’s output; 

Case (3): A SET on a combinational logic macrocell: the worst effect is the 
combinational circuit propagates the SET up to the input of a memory circuit (flip-flop 
or latch) generating an indirect Soft Error  (iSE). Furthermore, the SET can reach a 
non-registered primary output (i.e., a module’s output that ends nor by a memory 
macrocell but by a combinational logic), and so the SET propagates to another module; 

3.2.2 Harmful Effects of Transient Faults on QDI Asynchronous Circuits 

A simple QDI asynchronous circuits’ analysis in terms of computational and 
memory blocks allows a direct analogy with combinational and memory blocks in 
synchronous circuits (MONNET; RENAUDIN; LEVEUGLE, 2005-b). Therefore, 
transient-fault effects on synchronous circuits, discussed in previous section in 
accordance with Figure 3.1, are easily transposed to QDI circuits by only including the 
C-element’s concepts: 

 Case (4): A SET occurring on a C-element that implements part of a memory 
macrocell: the worst effect is a dSE when the C-element has different values at its 
inputs. This is because the C-element would work as a memory circuit. In contrast, 
when its inputs have the same value, the worst consequence is a SET appearing at its 
output, since the C-element would work like a buffer; 

Case (5): A SET on a computational logic macrocell: such a situation is similar to 
case (3) detailed in the previous section for synchronous circuits, even though the 
memory macrocells consists of C-elements. Observe however that computational 
macrocells’ C-elements under transient faults never result in dSE because they do not 
work as logic state registers of a system’s module. In fact, it may generate iSE in 
memory macrocell’s C-elements that characterize the module’s registers. 

3.2.3 Harmless Effects of Transient Faults 

The transient-fault consequences discussed in previous sections normally result in 
failures on modules like that in Figure 3.1, except if they are masked before arriving at 
module’s primary outputs. Indeed, masking effects can eliminate SETs even before they 
could cause dSEs or iSEs. In synchronous circuits there are three types of hardware-
level masking effects (KARNIK; HAZUCHA; PATEL, 2004): 

Case (a): A logical masking occurs when the fault is masked due to a combinational 
logic. The combinational macrocell does not propagate the fault up to the input of a 
memory macrocell or up to a module’s primary output; 

Case (b): An electrical masking is a SET attenuation as a result of the electrical 
properties of gates on the propagation path. It also depends on the SET energy that 
contributes to define the SET shape. Typically, a SET starts to be slightly attenuated by 
a gate when its duration is smaller than the gate’s propagation time; 

Case (c): A latching-window masking is when the SET reaches the input of a 
memory macrocell but does not meet the time window, such as the set-up and hold 
times or the enable signal, which are required to memorize a logic value; 
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Cases (a) and (b) occur in the same way for QDI asynchronous circuits. Moreover, 
there are two other types of masking effects on QDI asynchronous circuits (MONNET, 
2006-c): 

Case (d): A masking through the C-element’s filter ability  happens when a SET 
arrives at a C-element’s input but it is not memorized. The reason is that another input 
has a different logic value from that with SET, therefore the C-element’s output is not 
modified and the SET is masked; 

Case (e): Another masking is the communication protocol’s actions by means of a 
natural tolerance to SET-induced delay faults. It is when a SET is memorized by a 
C-element, i.e. a soft error happens, but the same logic value stored would be 
memorized, earlier or later, anyway in normal fault-free conditions. Therefore, a delay 
fault is induced at the C-element’s output. Nevertheless, such a premature or delayed 
memorization is almost always naturally tolerated by the system’s QDI property. 

3.2.4 Failures: the Effects of Soft Errors 

Soft errors impose in most cases a failure on primary outputs of a module like that in 
Figure 3.1. This means that a soft error leads to the computation of an inconsistent result 
illustrated at module’s primary outputs. 

If a module is able to indicate the end of the results’ computation by a specific 
primary output (e.g., End_of_Operation signal in Figure 3.1), then eventual failures at 
its primary outputs may be naturally detected by the system without requiring any 
additional specific hardware mechanism for detection. 

Therefore, two types of failure are defined: 

• Failure Detectable Naturally (FDN): the natural detection of a failure occurs if 
the End_of_Operation signal is not indicated within a period P estimated greater 
than the total computation time of I module’s iterations that obtain a result. In 
this failure scenario, peripheral nearby modules as well as software applications 
of the system would normally notice the absence of such an indication. 
Therefore, the failure would propagate naturally into higher abstraction levels 
(e.g., software applications), where the system could easily as detect as correct it 
by recomputation. In fact, a detection at software level, for instance, by using 
timeout-based mechanisms and a subsequent request for recomputation would 
eliminate easily such a failure; 

• Failure Non-detectable Naturally (FNN): an eventual failure at other module’s 
primary outputs that provide data or address results, for instance, cannot be 
naturally detected if the module indicates the End_of_Operation within the 
estimated period P. Therefore, additional hardware-level mechanisms have to be 
implemented to enable failure detections. 

If a module by each I iterations always provide a single result at its K-bit primary 
outputs, then only a single failure is able to happen at the end of the I iterations. A 
single failure could be thus generated by either a single or even multiple soft errors 
occurred along the I module’s iterations. Hence, evaluating the number of failures, 
which may occur during the total time to compute an amount of R results, does not 
depend on the amount of occurred soft errors. The module’s immunity level to transient-
fault effects can be estimated by assessing various computation results. Each one would 
be obtained under different perturbation conditions characterized during each group of I 
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iterations by initial instants, circuit places, durations, and amount of induced transient 
faults. 

Table 3.1 summarizes the transient-fault effects in accordance with the primary 
outputs’ possibilities in a module like that in Figure 3.1 which is perturbed during a 
group of I computation iterations. 

Table 3.1: Possible primary outputs of a module perturbed by transient faults 

Values at Module’s Primary Outputs   

Output for Indication 
of Computation End 

(as End_of_Operation 
in Figure 3.1) 

Other Outputs for 
Results (Data, 
Addresses… as 

Primary_Out(...) in 
Figure 3.1) 

Type of Effect Consequence 

OK OK Harmless Faults Tolerated Naturally (FTN) 

Inconsistent OK 
Harmful Failure Detectable Naturally (FDN) 

Inconsistent Inconsistent 

OK Inconsistent Harmful Failure Non-detectable Naturally (FNN) 

 

3.2.5 Harmful Effects of Multiple-Transient Faults 

Multiple perturbation events or even a single one can create multiple-transient faults. 
Such fault situations of lower probability than the single transient faults can create more 
severe harmful effects because more than one memory macrocell can be upset, and so 
multiple soft errors can be generated as in synchronous as QDI asynchronous circuits. In 
fact, transient faults can perturb different memory macrocells, like those memory 
elements in Figure 3.1, simultaneously as well as at different instants. Further issues 
related to such section are discussed in chapter  5. 

3.2.6 Harmful Effects of Long-Duration Transient Faults 

Long duration transient (LDT) faults, which are typical in deep-submicron 
technology-based circuits, can be longer than a clock period of a synchronous circuit. 
As soft errors as failures are, therefore, very probable in any LDT situation. 
Nevertheless, such a scenario is not so severe in QDI asynchronous circuits. The 
absence of a clock imposes no limits to the system dealing much more efficiently with 
such LDT faults. More details about such harmful effects of LDT faults are discussed in 
chapter  5. 

3.3 Conclusions 
This chapter summarizes the different types of transient-fault effects as on 

synchronous circuits as QDI asynchronous circuits. Table 3.2 briefly presents all of 
them. Note that a single transient fault can result in multiple transient faults, and vice 
versa (arrows in Table 3.2), as consequence of the circuit's delays. The multiple 
transient faults can be as simultaneously (multiple at space) as at different instants 
(multiple at time). 
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These types of transient-fault effects in Table 3.2 are arisen as from environmental 
as intentional perturbation events. The basic difference between environmental and 
intentional fault effects seems to be the amount of charge induced on the circuit's nodes. 
Intentional perturbation events may have higher energy, and so they have a wider range 
of transient voltage durations to upset the circuit. Therefore, the concept of LDT faults, 
which is normally used in deep-submicron technology-based circuits due to 
environmental perturbation events, seems also to be interesting to represent 
consequences of intentional perturbation events as in deep-submicron as older 
technology-based circuits. 

Furthermore, failures were divided into FDN and FNN in order to highlight in the 
following chapters the larger natural detection ability of QDI systems, especially in 
terms of LDT faults. There are some particularities of the QDI circuits, mostly in terms 
of harmless effects and FDN induction that quite contribute for their systems achieving 
higher transient-fault immunity levels. On the other hand, there are some harmful and 
harmless effects so similar on both circuit classes. The next chapters of this thesis better 
discusses such QDI systems’ benefits. 

Table 3.2: Summary of transient-fault effects on synchronous and QDI asynchronous 
circuits 

 

 

Transient Fault (TF) Soft Error (SE) Failure

Effect Multiplicity Duration Location Origin Multiplicity Type

Harmful

Single

Short
Memory Direct

Single Failure 
Detectable 
Naturally 
(FDN) or 
Failure 
Non-

detectable 
Naturally 

(FNN)

Logic Indirect

Long
Memory Direct Single or 

MultipleLogic Indirect

Multiple at
Time or Space

Short
Memory Direct Multiple

Logic Indirect
Single or 
MultipleLong

Memory Direct

Logic Indirect
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Class Masking Effect

Synchronous Latching-Window Masking

Synchronous or 
QDI Asynchronous

Electrical Masking
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QDI Asynchronous
Filter Ability of the C-elements in Memory Macro-cells

Natural Tolerance to Delay Faults induced by TFs
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4 EVALUATING TRANSIENT-FAULT EFFECTS AT 
LOGICAL LEVEL 

IC designs necessarily have to be evaluated under the effects of different fault types, 
given the scenario of errors and failures discussed in previous chapter. In fact, they have 
to be tested whether their functional behaviours and immunity levels are satisfactory for 
the purposes specified. Such assessments allow identifying potential vulnerability 
situations of the circuit that can thus be redesigned or even protected by more efficient 
mitigation mechanisms. Such testing evaluations to verify the circuit conditions can be 
done at different abstraction levels of the system’s design. Abramovici (1990), Smith 
(1997), and Wagner (2004) relate the usual abstraction levels from the lowest to the 
highest one as shown below: 

• Real-circuit level: circuits’ prototypes or circuits produced by physical materials 
from a fabrication technology;  

• Electrical level: circuits’ layout masks, circuits’ models based on transistors, 
resistors, capacitors, and inductors. Some authors consider layout mask issues as 
part of the labeled physical level, which may also used to denominate the real-
circuit level described above. However, in order to avoid confusions, this thesis 
stands “physical level” only for the electrical-level-related issues discussed in 
the first sentence of this paragraph. Moreover, other authors define switch level 
as transistors modeled discretely (switches at logic level 0 or 1) and transistor 
level as transistors characterized by non-linear models (e.g., exponential 
equations); 

• Logical level: circuits’ models based on flip-flops, latches, and logic gates, 
besides library cells. EDA tools usually label a model in terms of logic gates as 
gate level; 

• Micro-architectural level  or the well-known Register Transfer (RT) level: the 
circuit models based on registers, multiplexers, and operators like adders, 
subtracters, multipliers, and dividers, besides other macrocells. Some authors 
label this level as behavioral level or even functional level in accordance with 
the delay model used; 

• Algorithmic level: the circuit models based on hardware modules. Modules, 
cores, plans of power, ground, and clock; 

• Systemic level: the circuit models based on processors, memories, and other 
peripherals, besides circuit boards and their components. 

Testing evaluations at real-circuit level by using prototypes or FPGA-based 
reconfigurable platforms, for instance, does not always allow monitoring and 
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diagnosing certain internal errors. Furthermore, the configuration of a hardware 
framework dedicated to test a specific type of fault in a target circuit is neither cheap 
nor a simple task. Therefore, the evaluations usually fall on the electrical level by using 
software-based tools (e.g., spice, spectre, hspice, etc), which allow simulating the circuit 
behaviour through equations based on preliminary transistor characterization and 
modelling. The different types of faults that may occur at real-circuit abstraction level 
can thus also be characterized and modelled by representations at electrical abstraction 
level. 

However, an electrical-level fault-simulation alternative may consume too much 
time and computational effort when the target circuits have a certain complexity. The 
simulation task may even be much more difficult to evaluate the effects of faults with 
temporal characteristics such as, for instance, the transient faults. 

Hence, logical abstraction level simulations based on logic event-driven simulators 
(e.g., modelsim, nclaunch, etc) are usually suggested in order to enable such a 
computational task for evaluation of transient-fault effects. Even if they have no the best 
accuracy to characterize and model the transient faults, they are able to provide 
meaningful results to identify sensitive instants and zones of a circuit, and thus allowing 
comparative analysis in terms of robustness in different circuits. 

Nowadays, the evaluation of transient-fault effects on synchronous circuits is 
evident through many simulation-based methods at logical level (MASSENGILL et al, 
2000; ALEXANDRESCU; ANGHEL; NICOLAIDIS, 2002, 2004; REORDA; 
VIOLANTE, 2004; HADJIAT, AMMARI, LEVEUGLE, 2005; NEVES et al, 2006-a; 
NEVES et al, 2006-b). However, the same methodologies cannot be applied to 
asynchronous circuits, since they are based on the clock of synchronous systems. 
Furthermore, the particularities of the transient-fault effects on asynchronous systems’ 
C-elements are not considered. On the other hand, Monnet (2004, 2005-c 2006-c 2007-
a) was the only one to propose a method to evaluate the QDI asynchronous circuits’ 
sensitivity to such effects. However, his method cannot evaluate synchronous circuits, 
since it provides a metric which represent the circuit’s sensitivity by only counting the 
total time when the QDI system’s C-elements are vulnerable to transient faults. The 
methodology, therefore, allows only comparing the sensitivities of QDI asynchronous 
architectures. Any comparison of such specific metric for QDI circuits with metrics of 
methods dedicated to synchronous circuits would not be possible. 

Hence, a new methodology able to compare the sensitivities of both (synchronous 
and asynchronous QDI circuits) is required to evaluate the best design options in terms 
of transient-fault robustness. For that, the following sections propose a solution 
presented also in (BASTOS et al, ETS 2009-a; BASTOS et al, IOLTS 2009-b) which 
provides evaluation metrics common to both these classes of circuits. 

4.1 Method for Logical-Level Evaluation of Transient-Fault Effects 
This new methodology is developed by traditional means of transient-fault-injection 

simulation campaigns in gate-level circuits’ designs. The clock period of synchronous 
systems and the transient-fault vulnerability time of QDI asynchronous systems’ C-
elements are abstracted through a probability distribution which requires a sample of 
small size (i.e., a small number of transient-fault-injection simulation situations). The 
aim is made an evaluation of SET effects which cause system’s failures. 
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The methodology is able to analyze complex circuits under such faults by using a 
commercial logic event-driven simulator, a gate-level circuit netlist, and its circuit 
timing information in a SDF (Standard Delay Format) file. Furthermore, a typical 
command of commercial simulators (e.g., “force”) models and injects the fault. Figure 
4.1 briefly presents the simulation scheme employed by the methodology. 

 

Figure 4.1: Simulation scheme of a SET on an IC-design netlist 

4.1.1 Modelling the Transient-Fault Effects 

A rectangular-pulse-based model detailed in (ALEXANDRSCU; ANGHEL; 
NICOLAIDIS, 2004) is utilized to simulate a SET fault at gate level. The command 
forces a netlist’s node (wire or signal of netlist) to its reverse value just during a time in 
order to model a transient pulse width (i.e., a transient fault’s duration). Figure 4.2 
illustrates such a modelling to inject a transient fault on a netlist’s wire. 

 

Figure 4.2: Modelling of a SET fault on a netlist’s wire 

For a complete evaluation of the SET effects, the methodology also considers the 
possibility of dSE occurrences detailed in chapter 3. As the approach is over a gate-level 
circuit, a SET happening inside a memory cell cannot be modeled in the same way 
discussed in previous paragraph. Hence, the method considers each memory cell as an 
extra netlist’s node. In fact, every simulation evaluating output wires of memory cells is 
executed again but under a different fault-injection model. The same command “force” 
is used with a different parameter to represent a dSE. This command is thus able to 
deposit in an output wire of memory cell its reverse value. However, unlike a stuck-at 
fault, such a deposit can be eliminated by a subsequent driver transaction. 

On the other hand, as explained in chapter 3, the method must take into 
consideration the C-element’s dual behaviour (memory-buffer) depending on its input 
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values. If inputs are different, the C-element’s output is forced as a deposit (dSE), else if 
inputs are equal, it is forced as a pulse (SET). 

Therefore, for a set of a stimulus vector, a fault initial time, and a pulse width, each 
simulation illustrated in Figure 4.3, Figure 4.4, and Figure 4.5 is separately executed 
depending on the circuit’s class or logic values of C-element’s inputs. Other memory 
types are also approached by considering their particularities. 

 

Figure 4.3: Fault-injection simulations into a synchronous circuit 

 

Figure 4.4: Fault-injection simulations into a QDI asynchronous circuit with different 
logic values at its C-element’s inputs 

 

Figure 4.5: Fault-injection simulations into a QDI asynchronous circuit with equal logic 
values at its C-element’s inputs 

4.1.2 Dynamic of Fault-Injection Simulations 

The goal is to compare in a fair way the robustness of circuits functionally 
equivalent but architecturally different. Therefore, the target circuits for comparison are 

 

S
im

ul
at

io
n 

3
 

S
E

T
 

C 

Computational  
Logic Block 

Memory  
Block 

S
im

ul
at

io
n 

1
 

S
E

T
 

S
im

ul
at

io
n 

2
 

S
E

T
 

S
im

ul
at

io
n 

4
 

S
E

T
 

S
im

ul
at

io
n 

5
 

S
E

T
 

S
im

ul
at

io
n 

6
 

S
E

T
 

0 

0 

 

 

S
im

ul
at

io
n 

3
 

S
E

T
 

C 

Computational  
Logic Block 

Memory  
Block 

S
im

ul
at

io
n 

1
 

S
E

T
 

S
im

ul
at

io
n 

2
 

S
E

T
 

S
im

ul
at

io
n 

4
 

S
E

T
 

S
im

ul
at

io
n 

5
 

S
E

T
 

S
im

ul
at

io
n 

6
 

dS
E

 

1 

0 

 

 

S
im

ul
at

io
n 

3
 

S
E

T
 

D-FF 

Combin ational  
Logic Block 

Memory  
Block 

S
im

ul
at

io
n 

1
 

S
E

T
 

S
im

ul
at

io
n 

2
 

S
E

T
 Simulation 

4 
SET 

S
im

ul
at

io
n 

5
 

S
E

T
 

S
im

ul
at

io
n 

6
 

dS
E

 

 

CLK 



 

 

45 

 

evaluated under similar simulation conditions. The scheme in Figure 4.1 is used several 
times in accordance with Figure 4.6. 

A same set of input vectors is randomly chosen to simulate functional operations of 
the circuits. The initial instant to start the transient pulse is defined as a percentage of 
the total computation time, which means the number of execution cycles multiplied by 
the inverse of the circuit’s operating frequency, as defined in chapter 3. Then, in a first 
simulation, a fault starts to be injected at 5 % of the total computation time. In another 
simulation, the fault starts at 10 %. After that, the simulations go on in accordance with 
Figure 4.6. Note that each one of all netlist wires is individually evaluated by an 
independent fault-injection simulation. 

 

Figure 4.6: Simulation methodology for injection of SETs 

Furthermore, a typical range of pulse widths (DODD, 2004; FERLET-CAVROIS, 
2006) is evaluated. Only a width by simulation set is chosen in order to estimate and 
compare the target circuits’ robustness for a certain transient-fault characteristic. 
Therefore, for each width chosen within the range, all nodes (netlist’s wires) of the 
target circuits are evaluated under rectangular pulses that have obviously the same width 
and the same magnitude Vdd, since it is a logical-level simulation. 

Observe, however, that the characteristics of a SET depend largely on the perturbed 
node’s capacitance and the charge deposited by the perturbation. As the nodes’ 
capacitances in the target circuits for comparison are often different, a same 
perturbation charge occurring on different circuits would present also different transient 
effects. Therefore, the SETs generated in each one of the target circuits would likely 
have different characteristics in terms of amplitude, width, rise and fall times. Hence, 
when all of the target circuits’ nodes are perturbed by a rectangular SET with the same 
width and amplitude, the capacitances of all these nodes have to be considered similar if 
the goal is analyzing comparatively the effects of a certain perturbation charge. On the 
other hand, a comparative evaluation by using a set of widths, within the typical SET 
range, allows considering approximately the different nodes’ capacitances in the target 
circuits. Actually, at least the characteristics of different widths generated by a certain 
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perturbation charge would be taken into account. Then, if such an approach based on 
multiple widths is used, the nodes’ capacitances have not necessarily to be considered 
similar. Consequently, a more accurate evaluation can be done, even though there are 
certain inaccuracies mostly related to the SET’s amplitude as well the SET’s rise and 
fall times. 

Such simplifications, which are indeed typical in any method at logical abstraction 
level, greatly reduce the simulation complexity in terms of computational efforts. On the 
other hand, they also allow evaluating the behavior of a system under a certain 
transient-fault profile (i.e., a pulse width) in all circuit’s nodes, regardless of its 
capacitance and perturbation charge. Therefore, logical-level methods ensure thus a 
very significant preliminary low-cost evaluation, even so new practical works based on 
real-circuit-level experiments have yet to further explore how inaccurate exactly they 
are. 

The simulations of SETs causing dSEs follow the same methodology shown in 
Figure 4.6. The difference is that only the netlist’s wires of memory cells’ outputs are 
targets for injections. Therefore, pulse widths are not considered but a logic value to 
deposit, as explained in previous section. 

4.1.3 Evaluation Metrics 

A set of configuration files, as described in Figure 4.1, defines different transient-
fault characteristics to be individually simulated. In fact, just a single transient fault is 
injected by simulation in accordance with the SET-based model. Consequently, the total 
number of injected transient faults is equal to the total number of simulations under 
fault: 

 TotNumSim  TotNumFaul=   (4.1) 

The method provides a file after a simulation under the effect of an injected SET. 
Then, such a resultant file is compared with another in fault-free simulation conditions 
(golden file). If files are different, the target circuit’s primary outputs presented 
inconsistent values. Therefore, the injected SET caused a system’s failure. By counting 
every simulation that presented such a scenario, system-robustness percentages based 
on the TotNumSim can be calculated. Note that just a failure by simulation is able to 
happen. 

The total number of eventual system’s failures is divided, as defined in chapter 3, 
into failures detectable and non-detectable naturally (FDN and FNN) by the system: 

 DetecNumFailNonecNumFailDetTotNumFail +=   (4.2) 

So, the percentage of system’s Detection is defined as: 

 100⋅=
TotNumSim

ecNumFailDet
Detection   (4.3) 

On the other hand, certain transient faults often cause no system’s failures. It means 
the system naturally tolerates the injected faults by those masking effects explained in 
chapter 3. The total number of faults tolerated naturally (FTN) is thus represented by: 

 TotNumFailTotNumSimNumFaulTol −=   (4.4) 
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As each one of the TotNumFail is provoked by a different single fault, the 
TotNumFaul is divided as shown in Figure 4.7. Then, the percentage of system’s 
Tolerance is expressed as: 

 100⋅=
TotNumSim

NumFaulTol
Tolerance   (4.5) 

 

 

Figure 4.7: The total number of injected transient faults and their consequences 

Another important system-robustness percentage is the resistance to faults. It 
denotes how robust the system is to cope with the transient-fault effects. Such a 
percentage of system’s Resistance is defined as the sum of the system’s Detection and 
Tolerance detailed in equations 4.3 and 4.5: 

 100⋅






 +=
TotNumSim

NumFaulTolecNumFailDet
Resistance   (4.6) 

4.1.3.1 Circuit’s Sensitivity to SET Effects 

The methodology considers two basic concepts in order to compare the sensitivities 
of different circuits: 

• Any target always will have a higher probability to be hit by single perturbation 
event, for instance, if its area is larger; 

• The probability is also higher if the target is exposed longer time to attempts at 
hitting it (i.e., to single perturbation events at hitting a circuit). 

Therefore, the circuits’ area sizes and the total computation times are taken into 
account to determine what circuit is the most sensitive to SET effects. For that, another 
evaluation metric which uses units common to any circuit is defined. Only by means of 
that, a comparison between sensitivities of different circuits, in terms of area or total 
computation time, is feasible. 

The methodology works with the area factor by using the logic idea that the total 
number of nodes (TotNumNod) increases in function of enlarging the circuit’s area. The 
circuit’s nodes (netlist’s wires) are targets of fault-injection simulations. In addition, the 
system-robustness metrics, defined in previous section, take them into consideration. At 
that abstraction level of the system’s design, which is used in such a methodology, the 
evaluation is simplified by comparing simulations of different circuits under pulses, 
with the same width, on each node. Hence, all nodes have the same capacitive 
importance and the numbers of sensitive nodes identified in different circuits are 

 

TotNumFaul 
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TotNumSim 

NumFaulTol 

NumFailDetec 
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comparable. Such a number is defined by the Resistance’s complement multiplied by 
the TotNumNod. Moreover, the Resistance is calculated for a certain computation time 
(CompTim), and then this number of sensitive nodes is exposed to perturbations during 
such a time. Therefore, the number of sensitive nodes multiplied by the time factor 
CompTim defines the circuit’s Sensitivity to a certain effect of a perturbation source 
(i.e., to a pulse of certain width induced by a perturbation event): 

 CompTimTotNumNod
Resistance

ySensitivit ⋅⋅






 −=
100

1   (4.7) 

In order to obtain a more accurate evaluation of the circuits’ sensitivities, a set of 
SET widths must be taken into account to calculate the Resistance, as discussed in 
previous section. The circuits’ nodes have thus different capacitive importances, and 
therefore they have characteristics closer to reality. 

4.1.4 Reducing the Total Number of Simulations 

The methodology executes a large number of simulations under fault. This number 
is defined through the multiplication of the number of stimulus vectors by the number of 
fault initial times, by the total number of all netlist wires, and by the number of pulse 
widths, as detailed in Figure 4.6. The result of such multiplications is still incremented 
by the multiplication of the number of stimulus vectors by the number of fault initial 
times, and by the total number of memory cells in the circuit. 

The simulation considerations of all netlist wires, all memory cells, and the 
robustness evaluation for a certain pulse width work around the problem in estimating 
the methodology’s evaluation metrics to the stimulus vectors and the fault initial times. 
Executing a lot of simulations for each possible stimulus vector as well for all range of 
fault initial times would be impractical. Therefore, small samples are taken from the 
stimulus-vector and fault-initial-time populations. 

The resultant system-robustness percentages (detailed in previous section) from such 
simulations are considered small samples of normally distributed populations. Hence, 
the traditional Student’s t-distribution (GOSSET, 1908; FISHER, 1925) based on such 
samples of small size is applied to estimate the means of these populations. It also 
permits calculating an interval likely to estimate a system-robustness percentage. The 
so-called confidence intervals are able to illustrate the reliability of the estimates. Figure 
4.8 summarizes such a procedure to calculate a methodology’s evaluation metric. 

4.1.5 The Method on Case-Study Circuits 

A case study on a DES (Data Encryption Standard) crypto-processor in synchronous 
and QDI asynchronous versions is evaluated by using the proposed methodology. The 
crypto-processors are pretty popular in many security applications, especially in smart 
cards. 

4.1.5.1 The Target Circuits 

The DES-based-circuit versions are functionally equivalent being composed of three 
main blocks: a generator of sub-keys; a ciphering block; and a controller block 
managing the 16 iterations defined by the traditional DES algorithm. A data and key of 
64 bits each one are processed to a 64-bit output by a ciphering or deciphering 
operation. 
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Figure 4.8: Estimating a methodology’s evaluation metric (Sensitivity) 

The asynchronous version (des_async) is implemented by using the data codification 
1-out-of-N and the four-phase protocol, which are discussed in chapter 2. On the other 
hand, the synchronous version (des_sync) uses a single-rail data codification and the 
traditional control by a global clock. Both architectures do not have any specific 
mechanism to mitigate faults. These versions were designed and fabricated in previous 
works (BOUESSE; RENAUDIN; GERMAIN, 2004; BOUESSE, 2005; MONNET et al, 
2005-a; MONNET; RENAUDIN; LEVEUGLE, 2006-c; MONNET, 2007-a) by using a 
130-nm CMOS technology. 

4.1.5.2 Results 

System’s failures provoked by those SETs, which were injected in accordance with 
Figure 4.7, were counted to estimate the system-robustness percentages. Figure 4.9 
summarizes such fault-injection simulations’ results for a confidence level of 85 %. 
Therefore, taking several new samples of simulations and recalculating the confidence 
interval from each one, 85 % of the confidence intervals calculated would include the 
real mean of the system-robustness percentages’ population. 

This graph in Figure 4.9 presents the factors of the Sensitivity‘s equation discussed 
in previous section, actually, the ratio of the des_sync’s factors to the des_async. The 
continuous curves represent the means and the dotted curves the confidence intervals of 
the factors. 

The highest curves in Figure 4.9 represent the Sensitivity’s factor related to the 
Resistance, and show the des_sync between 1.7 and 4 times more sensitive than the 
des_async. This trend well expresses the results of high Resistance presented by the 
des_async in the third diagram in Figure 4.10, between 93% and 78% for the same 
range of pulse widths shown in Figure 4.9. Similar results are not presented for the 
des_sync, whose its Resistance stands between 88% and 30%. As Resistance is defined 
by the combination of Detection plus Tolerance, such a trend is firstly explained by the 
loop-based architecture of the des_async (like the module characterized in chapter 3), 
where occurrences of SET-induced deadlocks are detectable. Therefore, a larger 
Detection is possible as important the pulse width is. The first diagram in Figure 4.10 
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shows it. Furthermore, the Tolerance of the des_async is not quite reduced for larger 
pulses as a result of the two particular masking effects (d) and (e), discussed in chapter 
3, and the absence of the latching-window masking, which decreases in the des_sync. It 
is detailed in the second diagram in Figure 4.10. 

 

Figure 4.9: Circuits’ Sensitivities in terms of the ratio des_sync / des_async  

The circuits’ area sizes and the computation times in the Sensitivity’s equation are 
illustrated by the lowest curves in Figure 4.9. The larger size of the des_async (around 5 
times the TotNumNod on the des_sync) leaves it approximately 5 times more sensitive 
than the des_sync. Moreover, its larger computation time (around 4 times the CompTim 
of the des_sync) leaves the des_async about 4 times yet more sensitive.  As the lowest 
curves show, the multiplication of all the Sensitivity’s factors determines the des_async 
between 5 and 12 times more sensitive than the des_sync. It illustrates the importance of 
the area and time factors that overcome the factor related to the Resistance in this case-
study. On the other hand, the des_async could be developed by using the advances in 
synthesis tools and libraries of cells dedicated to asynchronous (MAURINE et al, 2003; 
FOLCO et al, 2005; TIEMPO, 2009). It would optimize the area factor to 2 instead of 5 
and could provide lower computation time than the des_sync. Therefore, the factor 
related to the Resistance would be predominant and the des_async could be less 
sensitive. 
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Figure 4.10: System-robustness percentages 

Figure 4.11 was obtained by extrapolating from Figure 4.9’s trends. However, it also 
considers typical trends of the novel synthesis methods for asynchronous (MAURINE et 
al, 2003; FOLCO et al, 2005; TIEMPO, 2009), for instance, an area factor of 2 instead 
of 5 and a computation time factor of 1 instead of 4. Figure 4.11 shows thus that the 
des_sync can be up to twice more sensitive than the des_async by using such modern 
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synthesis tools. Note that Figure 4.11’s results as well as any logical-level evaluation for 
shorter-duration transient faults (pulse widths lesser than 650ps) are not so accurate 
because not all electrical-masking effects are able to be taken into account at logical 
abstraction level. However, as asynchronous circuits have more gates and many C-
elements (which normally improve the transient-fault masking effects), it seems that the 
use of a better electrical-masking evaluation accuracy would improve even more the 
des_async’s results than the des_sync. In addition, the des_async had been designed 
without alarm mechanisms, which have a very simple implementation in QDI 
asynchronous circuits. Therefore, if such low-cost alarms were used, the des_async’s 
Sensitivity would achieve close to 0 because very few failure situations would not be 
able to be mitigated (MONNET; RENAUDIN; LEVEUGLE, 2006-c; 2007-b), and thus 
the des_sync would be much more transient-fault sensitive than the des_async. 

 

Figure 4.11: Circuits’ Sensitivities by considering between des_async and des_sync an 
area factor of 2 and computation time factor of 1 

One could argue that the Resistance’s results would change by using the modern 
synthesis methods for asynchronous, and so such a Sensitivity’s analysis in last 
paragraph could not be correct. Nevertheless, the improvements in the synthesis of QDI 
circuits are mostly related to optimize the computational logic blocks as well as slightly 
reducing the QDI property (i.e., setting slacker timing constraints on the assumptions 
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that require, in theory, similar delays in branches of isochronic forks). Therefore, the 
Resistance’s results could be slightly different depending on an eventual reduction of 
the des_async’s Tolerance, which would be perhaps modified due to its direct relation 
with the logical-masking effects. Evidently, the des_async’s logical-masking effects 
may be improved with the new logic synthesis methods and thus more FTN (faults 
tolerated naturally) cases would happen. Actually, it is something yet to be further 
investigated in future works. However, such methods clearly maintain the QDI 
asynchronous circuits’ features (i.e., the data codification and the asynchronous 
handshaking communication) that make possible the generation of deadlocks, and so 
failures detectable naturally (FDN), as further discussed in chapter 5. Therefore, even 
using these new synthesis methods, the very stronger QDI circuits’ natural ability to 
often produce FDN instead of FNN is preserved as well as the higher des_async’s 
Detection. In fact, the des_async’s Detection would be certainly improved because FTN 
cases would become either FNN, which are detectable in most of the SE (soft errors) 
situations (MONNET; RENAUDIN; LEVEUGLE, 2006-c; 2007-b) by implementing 
alarms, or FDN (what is more probable, as discussed in chapter 5). Thus, even if there 
could be a logical-masking diminution, FTN cases have greater chances of becoming 
FDN. Similarly, a QDI property’s reduction would make the system more vulnerable to 
failures but also very likely FDN, mostly in LDT (long-duration transient faults) 
situations. Then, the Resistance’s results for QDI systems designed by modern 
asynchronous-dedicated methods would be few modified, since in the worst case the 
system’s Tolerance would be probably slightly reduced but the system’s Detection 
would be certainly further improved. Furthermore, the implementation of alarms for 
FNN situations always would ensure a very-strong and higher QDI system’s Resistance 
in comparison with its synchronous counterpart. 

4.2 Conclusions 
A new SET-effect evaluation methodology common to both synchronous and 

asynchronous circuits is shown in this chapter. It is based on the traditional fault-
injection simulations. However, a probability distribution and confidence intervals are 
used to decrease the total number of simulations. Furthermore, the particularities of 
asynchronous circuits are considered by analyzing the inputs of all C-elements in the 
circuit. Metrics are provided to identify for a certain functional block (e.g., a multiplier, 
an adder) the class or type of circuit design that is more transient-fault sensitive. It 
means the methodology is interesting to compare different circuit implementations of a 
functional block.  

At the case study, the results show the des_sync less sensitive to SET effects just due 
to its smaller area and lower computation time. However, the highest curves in Figure 
4.9 as well as the extrapolation’s results in Figure 4.11 illustrate the high potential of the 
des_async to have lower Sensitivity when using design methods more optimized in 
terms of area and computation time. Aggregating it with the great ability to detect and 
correct errors, and the features of lower EMI and higher security properties, the 
asynchronous circuit becomes quite attractive to design a more robust system. 
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5 ASYNCHRONOUS CIRCUITS AS ALTERNATIVE FOR 
MITIGATION OF LONG-DURATION TRANSIENT 
FAULTS IN DEEP-SUBMICRON TECHNOLOGIES 

Transient faults in deep-submicron technology-based ICs expose them to more 
severe effects than in older technologies. Indeed, faster nanoelectronic circuits, for 
instance, have shorter delays, and then transient faults’ durations have become 
comparable or even longer than critical circuit paths’ delays. Electronics systems are 
thus more vulnerable to failure situations. 

Such a worse scenario in deeper-submicron technologies has been predicted by 
many researches in last years. Tosaka et al. (1998) highlighted already considerable soft 
error rates (SERs) in 350-nm CMOS ICs at ground level. Hazucha et al. (2003) 
identified at sea level conditions that the SER per bit of SRAMs in 250 nm, 180 nm, 
130 nm, and 90 nm technologies increases by 8% per generation. Such a SER’s increase 
in deep-submicron technologies at ground level was also reported by Granlund (2003), 
Borkar (2005), and many other works. In space or even at flight altitudes, this IC 
vulnerability trend is obviously yet worse (NORMAND; BAKER, 1993; LABEL et al, 
1996; BARTH, 1997; LABEL et al, 2000; NORMAND, 2001). 

Past researches also showed that combinational logic in synchronous circuits is 
much less sensitive to provoke SEs than memory elements (LIDÉN et al, 1994; 
GAISLER, 1997). In fact, memories always were considered the most vulnerable to SEs 
due to their spatial density and the amount of information that they can store 
(MAHESHWARI; KOREN; BURLESON, 2003). Moreover, transient faults arisen 
closer to memory elements, in theory, have higher probability to cause SEs. Therefore, 
if a transient fault was generated in a memory element, the chance that it causes a SE 
would be higher than a transient fault in a combinational logic, which would be farther 
from a memory element. Nevertheless, deep-submicron technologies in last years allow 
high IC’s complexities and higher clock’s frequencies, and so the SER arisen in 
combinational logic circuits becomes as relevant as the SER in memory elements, as 
Shivakumar (2002) predicted for synchronous systems. 

Another lower-probability problem, investigated in more details since the deeper-
submicron technologies, is the occurrence of multiple-transient faults which may cause 
multiple-bit upset (MBU). In fact, even a single transient fault (i.e., a SET) may, mostly 
in more complex circuits, generate MBU. Moreover, transistors, in recent denser 
circuits, are closer to each other, and then it may lead a single radiation-induced particle 
(as an environmental perturbation event) upsetting different circuit’s nodes, and so 
generates multiple-transient faults (MAIZ et al, 2003; NEUBERGER et al, 2003; 
ROSSI et al, 2005). 
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Furthermore, other researches highlight that transient-fault durations really have 
become in deeper-submicron technologies as important as the clock’s periods of 
synchronous systems (DODD, 2004; FERLET-CAVROIS, 2006; LISBOA, 2007-a). 
Lisboa (2009) characterizes such worse effects of transient faults in deeper-submicron 
technologies as long-duration transient (LDT) faults. He proves (Figure 5.1) that widths 
of transient faults, arisen from radiation-induced particles with modest linear energy 
transfer (LET = 10 MeV-cm2/mg, for instance), can be longer than delays (cycle times) 
of circuit paths (inverter chains) in 130-nm and 100-nm CMOS technologies. Lisboa 
(2009) also shows that the costs to mitigate such LDT faults by using traditional spatial 
or temporal redundancy-based techniques become very expensive in terms of system’s 
overheads, especially because more redundancy is required to cope with these longer 
effects. 

 

Figure 5.1: Transient-fault width vs. clock’s cycle time scaling (LISBOA, 2009) 

Deep-submicron technologies, therefore, bring along with their many benefits also 
such vulnerabilities, and thus greater challenges to protect ICs. Nevertheless, this 
chapter as well as the work in (BASTOS et al, ETS 2010-a; BASTOS et al, ESREF & 
Microelectronics Reliability Journal 2010-c) shows innovatively that such a worse 
scenario does not happen in QDI asynchronous systems, mostly due to their efficient 
natural ability to mitigate LDT faults. Such an additional benefit pushes on the 
asynchronous design as a better alternative for mitigation of transient faults in deep-
submicron technologies. 

5.1 Natural Detection of Failures 
As discussed in chapter 3, transient faults in ICs may be tolerated naturally (FTN: 

faults tolerated naturally) by masking effects or they may provoke SEs. SEs almost 
always imply a failure at circuit’s primary outputs (CPOs). However, as most of the ICs 
control the amount of iteration cycles and indicate an output signal of end operation 
(SEO, like in Figure 3.1), an eventual lack of indication due to a failure is easily 
detectable by the system. Such a failure scenario is thus detectable naturally (FDN: 
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failure detectable naturally) without requiring any additional hardware and easily 
corrected by recomputation. On the other hand, if the SEO is well indicated and a 
failure arises at the other CPOs, extra hardware mechanisms for detection are necessary 
to mitigate such a failure non-detectable naturally (FNN) without using costly software-
based techniques. Table 5.1, which is further discussed in chapter 3, summarizes these 
effects of transient faults in accordance with the CPOs. 

Table 5.1: Possible CPOs of a system perturbed by transient faults 

Values at CPOs 
Consequence 

SEO Other CPOs 
OK OK FTN 

Inconsistent OK FDN 
Inconsistent Inconsistent FDN 

OK Inconsistent FNN 

5.1.1 Ability of QDI Asynchronous Systems 

Unlike synchronous circuits, the QDI asynchronous circuits have a natural ability to 
transform most of the SE cases into FDN in any IC fabrication technology. It means that 
the largest part of the failure situations are detectable by the QDI system without any 
extra hardware. Such a natural property of a QDI circuit is justified by its architecture. 

A QDI architecture controls the sequence of its data flow at the end of each one of 
its iteration cycles. Each cycle needs to have all phases of the handshaking protocol, as 
illustrated in Figure 2.3, for instance. Any event which perturbs the protocol’s phases 
can lead the system to lose its correct data sequence. Such a loss of synchronization 
between phases of a cycle induces a deadlock over the system’s data flow in most of the 
SE cases (MONNET; RENAUDIN; LEVEUGLE, 2006-c; 2007-b). Indeed, an iteration 
cycle does not succeed in finishing its goal, and thus a data element is lost or an 
additional one is inserted. 

Normally, in four-phase protocol, a deadlock situation happens when a SE occurs in 
a memory element of a system’s stage N by switching from/to a valid or forbidden data 
to/from an invalid data. Such a scenario indeed generates a wrong acknowledgment 
(i.e., an acknowledgment in opposite logic state) to the previous system’s stage N-1. 
Then, for instance, a valid data in a memory element of a system’s stage N can be lost 
(i.e., become an invalid data) before the next system’s stage N+1 has processed and 
acknowledged it. As worst consequence, the correct communication between stages is 
broken, and a deadlock is characterized. 

In a first impression, such a deadlock scenario may seem a behavior that disqualifies 
the QDI systems. However, the majority of QDI architectures count their data elements 
or even the amount of iteration cycles in order to report a SEO. Therefore, an eventual 
deadlock always perturbs such a count, and so there is no SEO indication, and a FDN 
always happens. On the other hand, almost all of the FNN cases are easily detectable by 
implementing low-cost alarm mechanisms (MOORE et al, 2003; MONNET; 
RENAUDIN; LEVEUGLE, 2006-c; 2007-b), which identify forbidden data states in the 
protocol. 

In fact, the multi-rail data paths of QDI circuits allow classifying the SEs due to 
single transient faults into three cases (MONNET; RENAUDIN; LEVEUGLE, 2006-c; 
2007-b): 
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• Generated data: a invalid data element becomes a valid data element, e.g., dual-
rail memory block in Figure 2.8 flipping a bit like 00=>01 or 00=>10; 

• Vanished data: a valid data element into a invalid data element, e.g., 01=>00 or 
10=>00; and 

• Corrupted data: a forbidden data element is generated, e.g., 01=>11 or 10=>11. 

All cases of corrupted data cause a FNN because the forbidden data is interpreted by 
the system as a valid data, then the acknowledgment’s logic state is not modified, and 
no deadlock happens. Such FNN cases are, however, detectable by adding the very 
simple alarm circuitry (MOORE et al, 2003). On the other hand, only few cases of 
generated data and vanished data result in no deadlocks, i.e., FNN (MONNET; 
RENAUDIN; LEVEUGLE, 2006-c; 2007-b). All other cases, which represent the 
majority of SE cases, produce FDN. 

As the harmful transient-fault effects are either FDN or FNN in accordance with 
Table 5.1, then the majority of failure situations in QDI asynchronous systems can be 
easily mitigated either by natural detection or by alarm mechanisms. 

5.1.2 Inability of Synchronous Systems 

On the contrary, SE cases in synchronous circuits hardly result in FDN. As 
consequence, the largest part of SEs cause FNN, and thus synchronous systems 
practically have no that natural property for detection. 

Notably, the presence of a fixed clock’s period ensures the system’s data 
synchronization. Therefore, in contrast to the discussions of previous section for QDI 
asynchronous circuits, in most SE cases, the SEO is indicated, and so a FNN is 
generated instead of a FDN. FNN cases are thus predominant in synchronous circuits. 

The few cases of FDN generation are mostly attributed to perturbations in the 
registers that count the number of iteration cycles, since such memory elements aids in 
implementing the SEO. Furthermore, transient faults either in the combinational circuit 
that generates this SEO or in the clock tree’s circuit can also cause FDN. 

5.2 Mitigation of Multiple-Transient Faults 
The harmful effects of multiple-transient faults briefly discussed in chapter 3 would 

be more critical if their probabilities of occurrence were higher. In fact, systems would 
have to be protected by using even more redundancy to cope with such a phenomenon. 
Furthermore, as explained in chapter 6, mitigation techniques are based on redundancy, 
then faults occurring simultaneously in redundant parts can confound the detection 
elements, which do the technique well working, leading it to fail. Most of the mitigation 
approaches are thus vulnerable to the effects of multiple-transient faults. 

The analysis of multiple transient-fault effects on synchronous systems is quite 
similar to the discussions highlighted in previous section. However, as there are more 
fault events in the systems, the probability of SE occurrences due to multiple transient-
faults and thus FNN is obviously higher than in cases of single transient-fault 
occurrence. 

On the other hand, on QDI asynchronous systems, the occurrence of multiple faults 
in different memory blocks (like in Figure 2.8) also follows the same consequences 
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discussed in previous section, so there is a huge chance that they result in FDN. The 
same scenario happens if multiple-transient faults occur at different instants.  

Nevertheless, multiple-transient faults occurring in the same QDI system’s memory 
block can also result in multiple SE, and thus for dual-rail codification, for example, 
they cause FNN in most cases. Indeed, the SE situations are: 00=>11, which is a case of 
corrupted data that likely generates a deadlock (i.e., FDN) because the 
acknowledgment’s logic state is modified; and 01=>10, or 10=>01, which normally 
produce no deadlocks (therefore FNN) because they keep on the acknowledgment’s 
logic state. Monnet (2006-c) thus classifies a further SE case in addition to those 
presented in previous section for single transient faults in QDI systems: 

• Modified data: a valid data element is turned into another valid data element, 
e.g., 01=>10 or 10=>01. 

Unfortunately, cases of modified data have no a natural solution to be mitigated, and 
then they require special extra mitigation mechanisms. However, as well discussed in 
previous section, the cases of corrupted data that do not become a FDN are easily 
detectable by a low-cost alarm mechanism (MOORE et al, 2003). 

In addition, by using codification M-out-of-N, which is quite normal in QDI 
circuit’s designs, the chances of corrupted-data cases are much higher, since there will 
be greater codification redundancy. Therefore, the probability that forbidden data occurs 
is higher, and so more SE cases are detectable by the alarm mechanism or even by 
generating naturally deadlocks (FDN). A solution thus to reduce cases of modified data 
is using a higher codification M-out-of-N than dual rail (i.e., 1-out-of-2). 

Even though QDI asynchronous systems under multiple-transient faults do not have 
the same performance to generate FDN than in single transient-fault situations, they 
have, nevertheless, better natural mechanisms for mitigation of such multiple faults than 
synchronous circuits. 

5.3 Mitigation of Long-Duration Transient Faults 
The harmful effects of LDT faults, typical in deep-submicron technologies, are 

almost always disastrous for synchronous circuits. For instance, a transient that starts in 
the second half of a clock cycle and finishes only in the following cycle. A SE scenario 
is very probable as well a FNN. Moreover, large system’s overheads are necessary to 
mitigate such a LDT fault (LISBOA, 2007-a). 

Nevertheless, such faults in QDI circuits generate FDN in the largest part of SE 
cases. Indeed, the probability of a deadlock is higher for longer faults, since the 
transient remains for a longer time on the circuit’s path, and then the few delay-sensitive 
circuit’s paths are easily reached. The chance of data elements being lost or inserted is 
bigger. 

In addition, even cases of corrupted data due to single faults, which always generate 
FNN in submicron technologies, can produce deadlocks (i.e., FDN) in deeper-
submicron technologies. Such cases, however, happen when the LDT faults occur in 
QDI system’s elements that are delay sensitive. There is thus a large chance of a SE due 
to a corrupted data being followed in the next protocol’s phase by another SE that 
produces a deadlock. Therefore, a longer fault can generate multiple SEs in sequence. 
As the SE scenarios remain longer time and a larger part of them cause deadlocks (as 
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explained in previous sections), longer duration transient faults have a higher 
probability to produce a FDN. 

5.4 A Case-Study Analysis 
A case study on a DES (Data Encryption Standard) crypto-processor in synchronous 

and QDI asynchronous versions was evaluated by using the simulation-based method 
presented in chapter 4. Additional results related to injections of single transient faults 
are shown in Figure 5.2 and Figure 5.3. 

Figure 5.2 illustrates at the vertical axis the system’s ability to detect FDN. At the 
horizontal axis, both figures show the ratio of transient-fault durations to cycle periods, 
which is the minimum clock period in the synchronous circuit and an average in the 
asynchronous one. Higher ratios represent longer transients and thus typical transient-
fault scenarios if the circuits were based on deeper-submicron technologies, in which 
fault durations are in the order of the cycle periods (LISBOA, 2007-a). For instance, 
Figure 5.2 shows that the QDI system (des_async’s curve) is able to detect naturally 
around 30% of the fault-injection situations in a duration-period ratio of 95% (i.e., the 
transient-fault duration is equal to 95% of the cycle period). It means 30% of the 
situations result in FDN and 70% either FTN or FNN. Figure 5.2 illustrates, therefore, 
that the des_async, under a transient-fault scenario (e.g., the high ratio of 95%) which is 
typical in deeper-submicron technologies, has a larger number of FDN cases than the 
synchronous circuit (des_sync). Indeed, the number of deadlock cases in the des_async 
quite increases by longer durations of transient faults. 

 
Figure 5.2: A case study on a DES crypto-processor: system’s ability for detection in 

function of transient fault durations 

Figure 5.3 shows at the vertical axis the system abilities to tolerate faults (i.e., FTN) 
and detect FDN. The QDI version follows a constant trend around 80% after a slight 
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initial reduction. On the contrary, a downward trend is always present in the 
synchronous circuit. It shows that the reduction of its particular latching-window 
masking, discussed in chapter 3, plays much more than the masking diminution of the 
QDI circuit. In the duration-period ratio of 95% by observing Figure 5.2 and Figure 5.3, 
around 50% of the fault-injection situations in the QDI version result in FTN (80% from 
Figure 5.3 less 30% from Figure 5.2), 30% FDN (from Figure 5.2), and 20% FNN 
(100% less 80% from Figure 5.3). On the other hand, the synchronous version in the 
same deep-submicron technology’s condition renders to FTN in 42% of the situations, 
FDN in 1%, and FNN in 57%. If the QDI version was implemented with alarms 
(MOORE et al, 2003), its system’s ability in Figure 5.3 would reach very close to 100% 
even under LDT faults in deep-submicron technologies. Hence, it is clear to conclude 
that LDT faults in deep-submicron technologies can be better dealt in the QDI 
asynchronous circuit. 

 
Figure 5.3: The stronger natural ability of a QDI asynchronous system for mitigation of 

LDT faults in deep-submicron technologies 

5.5 Conclusions 
This chapter illustrates for the first time the natural ability of QDI asynchronous 

circuits to mitigate transient faults under deep-submicron technology conditions. QDI 
systems have a better performance than their synchronous counterparts to naturally 
detect LDT faults as in computational logic as memory elements. In addition, they have 
natural mechanisms (indeed the multi-rail codification and its forbidden data elements) 
that make easier the error detection even under multiple-transient faults. Finally, QDI 
systems aggregate such characteristics with their natural QDI property. It allows 
tolerating most of the delay-fault cases, which today are also a great challenge in deep-
submicron technologies. 
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6 TECHNIQUES FOR TRANSIENT-FAULT MITIGATION 

The level of immunity to physical failures and fabrication defects (discussed in 
chapter 3) define the IC’s reliability (KRISHNAMOHAN; MAHAPATRA, 2004). As 
the technology evolutions have increased the vulnerability to such effects, the circuits’ 
reliability has thus been greatly affected. Nevertheless, IC-embedded skills can improve 
the robustness (resistance) to such effects in order to reach satisfactory reliabilities. 

The IC’s robustness is normally increased by the implementation of protection 
mechanisms based on mitigation techniques. In the last years many techniques have 
been proposed to mitigate transient faults. There are several options for the different 
abstraction levels of a design. In fact, nowadays any commercial low-complexity IC 
had, at least at one abstraction level of its design, the implementation of a technique to 
mitigate transient faults. 

 Techniques for transient-fault mitigation can thus be classified according to the 
usual abstraction levels of a design, which are detailed in chapter 4. This thesis divides 
the techniques at low and high abstraction level. 

The techniques at low abstraction level are developed at real-circuit level, 
electrical, logical, or RT levels. Iyer (2005), Lima (2003-b), Kastensmidt (2006), and 
many other authors list such low-level protection approaches as: advanced fabrication 
technologies produced by specific physical processes like silicon-on-insulator (SOI); IC 
package shielding; layout mask modifications; transistor sizing; transistor insertion; 
schemes of robust memory cells; spatial or temporal hardware redundancy; hardware 
codifications for error detection or correction; or any combination of these techniques. 

On the other hand, the techniques at high abstraction level are those ones 
implemented at algorithmic or systemic levels. Iyer (2005), Lisboa (2009), and several 
other works cite such techniques as: hardware modules dedicated to the detection or 
correction of errors; spatial or temporal hardware redundancy; spatial or temporal 
software redundancy; software codifications for error detection or correction; hybrid 
approaches combining hardware and software; or even any combination of these 
techniques. 

The implementation of any mitigation technique inherently increases the design 
costs. However, such costs in terms of area, power consumption, performance, and 
development (i.e., designers, design time, and fabrication) vary depending on the 
technique choice as well as the target reliability (e.g., if design will operate in space or 
on earth). Hence, a careful evaluation of the technique characteristics in accordance 
with the design goals is always essential. 

For this reason too, the scientific community has done in the last decades enormous 
efforts to efficiently increase the synchronous systems’ reliability. Concerning transient-
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fault effects, there are several techniques for soft-error mitigation. Many of them have 
been designed to protect the system only against transient faults arisen in memory 
elements, in which cause thus the direct soft errors. However, in recent years as a result 
of the deep-submicron-technology challenges, several other techniques have been 
developed to protect the system also against transient faults arisen in combinational 
circuits, which may propagate them to memory elements and thus generating the 
indirect soft errors. Most of these techniques for soft-error mitigation are dedicated to 
synchronous systems (MONNET, 2007-a). Hence, in order to optimally make even 
more robust asynchronous systems, specific techniques for them have also been 
developed. 

According to the purposes of this thesis, the following sections discuss the main 
transient-fault mitigation techniques at logical, RT, and electrical levels. The few 
alternatives for QDI asynchronous circuits are also discussed. In addition, the costs of 
mitigation techniques applied at different abstraction levels are analyzed based on 
experimental area-overhead results of complex synchronous systems. 

6.1 Techniques at Logical and RT Abstraction Levels 
Hardware-implemented techniques based on redundancy in space or time, 

codifications for error detection or correction, or any combination of these ones can be 
designed at different abstraction levels. However, most of them are usually designed at 
logical and RT abstraction levels because thus there is a trade-off between the 
development costs and system’s overheads, as further explained in section 6.3. 

6.1.1 Classic Spatial Redundancies 

The generic principle of hardware-implemented techniques based on spatial 
redundancy is to replicate parts of the circuit and introducing a comparator element. 
This element is able to indicate any eventual difference in the results of the parts as a 
consequence of the fault occurrence on one of them. 

The simplest redundancy scheme is the duplication with comparison (DWC), which 
allows only error detection (WAKERLY, 1978). Hence, a recomputation must 
necessarily be performed for the error correction. In fact, there are several techniques 
derived from the DWC, like those presented by Nicolaidis (1999), Anghel (2000-a), 
Lima (2003-a), Almukhaizim (2003); Monnet (2005-b). 

Nicolaidis (1999) suggests DWC using a dynamic C-element only as a comparator 
of the redundant combinational circuits’ results. This memory element (C-element), 
which the author names as CWSP (Code Word State Preserving), is indeed inserted on 
the circuit data path. It allows as detection as correction by filtering the transient faults 
arisen in combinational circuits. It means no recomputation is required. This CWSP 
scheme thus prevents the generation of indirect soft errors by the cost in performance 
equals to, at least, the CWSP circuit’s delay plus the transient fault duration. 

On the other hand, triple or superior redundancies are able to detect and also correct 
direct soft errors through a purely combinational voter element. The most classic of 
them is the well-known triple modular redundancy (TMR) (HENTSCHKE et al, 2002). 
The TMR principle is traditional due to its simplicity and good efficiency for error 
detection and correction. A common TMR application is to protect registers as shown in 
Figure 6.1.  
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Figure 6.1: TMR scheme applied on a 1-bit register 

Such techniques, which are based on comparison of N redundant parts, always 
operate properly only if N-1 parts, at least, are free of faults. Hence, multiple-fault 
occurrences, which although are cases of low probability, may affect redundant parts at 
the same time, and thus the techniques may fail to accomplish the fault mitigation. 

The triple redundancy (TMR) of a system ensures, nevertheless, a considerable 
reliability. However, the costs in terms of area are evident and greater than 200%. The 
performance is affected basically by the voter element’s delay. On the other hand, the 
double redundancy (DWC) of a system would imply cost in terms of area greater than 
100%, and the performance would suffer penalties as a consequence of the 
recomputations for correction. Even if a logical-level DWC scheme by CWSP in 
(NICOLAIDIS, 1999) could be applied to prevent such recomputations, it would work 
to avoid only indirect soft errors. Direct soft errors in memory circuits would not be 
detected by this logical-level approach by CWSP. Furthermore, the recomputations also 
would hinder the reuse of system’s software applications, since the code instructions 
would need to consider the extra cycles generated due to the fault occurrences. 

The option to apply TMR only in certain critical parts of the system, like its memory 
components, reduces greatly such overheads in terms of area and performance. In 
addition, the system ensures a good reliability because it becomes robust to direct soft 
errors. The only vulnerability related to direct soft errors is limited to occurrences of 
lower probability in which simultaneous transient faults on two or three of the 
redundant memory elements disrupt the voter circuit’s results. The work in (BASTOS, 
2009-c) shows through three different commercial microprocessors that protecting only 
their registers by TMR reduces largely the costs in terms of area, performance, and 
software application development. The overheads in area of the robust microprocessors 
reach 109% to 43% larger than the area of the non-protected systems. The penalties in 
clock frequency are between 9% and 6%. Moreover, the reuse of software applications 
is always feasible. 

6.1.2 Temporal Redundancies 

If applying TMR only in memory elements ensures a system with considerable 
robustness to direct soft errors, the same cannot be said for indirect soft errors. A 
transient fault arisen in combinational circuit could spread to the three redundant 
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memory elements and thus causing simultaneously three indirect soft errors. The voter, 
therefore, could not detect them. From such a need to tolerate indirect soft errors that 
the hardware-implemented techniques based on temporal redundancy began to be 
proposed by Nicolaidis (1999). 

The basic temporal redundancy’s principle is evaluating the data in different 
instants. It allows the detection of faults which have a temporal nature like the transient 
ones. The implementation of such a principle requires the addition of an element able to 
retain the data at past instant to compare them with data at the present instant. Nicolaidis 
(1999) suggests as retention element a simple delay block that would be implemented, 
for example, by buffers at the combinational circuits’ outputs. A double temporal 
redundancy is thus characterized and therefore a temporal DWC can be implemented to 
mitigate indirect soft errors by using the same CWSP scheme discussed in previous 
section for a spatial DWC. Figure 6.2 and Figure 6.3 illustrate such a so-called scheme 
of time redundancy (TR), where DDelay_Block and DCWSP are the propagation times of the 
blocks and WMax_SET is the maximum transient-fault duration tolerated at the output of a 
combinational circuit. The CWSP circuit in Figure 6.2 is an asynchronous sequential 
machine characterizing a C-element implemented by combinational standard logic 
gates. The logic function of a C-element is discussed in chapter 2. Nicolaidis (1999) 
also suggests CWSP elements that work as logic to replace the last logic gates of a 
combinational circuit like shown in Figure 6.4. In addition, more optimized CWSP 
versions at electrical level are also proposed, as discussed in last sections of this chapter. 

The small cost in area to implement the TR+CWSP scheme in Figure 6.2 is basically 
due to the CWSP elements and the buffers or inverters used to characterize the delay 
blocks. On the other hand, the performance can be quite affected depending on the 
target maximum transient-fault width (WMax_SET) wanted to be tolerated. In fact, 
WMax_SET must be lesser than the propagation time of the delay block (DDelay_Block), so as 
larger as the WMax_SET is, the penalty in DDelay_Block and thus also in performance is 
worse. The work in (BASTOS, 2006-e) shows indeed that this penalty is at least twice 
greater than DDelay_Block. 

 

Figure 6.2: TR+CWSP scheme applied on a 1-bit register 
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Figure 6.3: TR+CWSP scheme working on a 1-bit register 

 

Figure 6.4: CWSP elements at logical abstraction level (NICOLAIDIS, 1999) 

Other TR-based solutions to tolerate soft errors are proposed by Nicolaidis (1999). 
Moreover, there are several TR-derived techniques at logical abstraction level like, for 
instance, the approaches in (ANGHEL; NICOLAIDIS, 2000-a; LIMA; CARRO; REIS, 
2003-a). These TR-based techniques generally prevent the large area overheads (typical 
in classic spatial redundancies) because the same operation can be computed several 
times by the same circuit (IYER et al, 2005). However, TR-based schemes may quite 
penalize the performance depending on the number of redundancies and the maximum 
transient-fault duration (WMax_SET), as explained in the last paragraphs. Hence, they are 
little used in memory elements to mitigate transient faults that generate direct soft 
errors. 

6.1.3 Spatial Redundancies by Gate Duplication 

Other logical-level approaches based on spatial redundancy that mitigate transient 
faults are proposed in (MOHANRAM; TOUBA, 2003; HEIJMEN; NIEUWLAND, 
2006; NIEUWLAND; JASAREVIC; JERIN, 2006). The technique’s principle is a 
simple duplication of some critical combinational logic gates by placing the copies in 
parallel with the original gates. The circuit nodes’ capacitances are thus increased, and 
so certain transient-fault effects generated in combinational circuits may be attenuated 
avoiding, therefore, indirect soft errors. The costs in terms of area, power consumption, 
and performance depend strongly on the wanted immunity levels. 
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6.1.4 Spatial Redundancies by Codification 

There are many mitigation techniques that apply spatial redundancy to encode the 
data and thus obtaining codes for detection or correction. The most traditional of them 
and also the most used in commercial ICs is the codification by parity from which 
several other techniques like, for instance, those shown in (SOGOMONYAN, 1974; 
ALMUKHAIZIM; MAKRIS, 2003; LISBOA; CARRO, 2008; PFLANZ et al, 2002; 
PAPADOMANOLAKIS et al, 2001) are derived. 

More sophisticated techniques known as error detection and correction (EDAC) 
codes include the Reed Solomon code, the Hamming code, and several derivations of 
them like, for instance, those proposed in (NEUBERGER et al, 2003; NEUBERGER; 
LIMA; REIS, 2005; ARGYRIDES, 2007). 

The codification by parity or EDAC codes are more effective for groups of memory 
elements or memory arrays such as caches and register files (HENTSCHKE et al, 2002; 
IYER et al, 2005). In fact, the costs to encode the circuit are amortized over the array 
size. On the other hand, the use of such codes in individual microprocessor registers, for 
instance, may imply enormous penalties. For the sake of it, Hentschke (2002) compared 
the Hamming code with the traditional TMR. His results show that the Hamming code 
is more suitable for use in access buses to groups of storage cells (e.g., RAM), while the 
TMR is more appropriate to protect individual registers (e.g., CPU registers). 

The codifications are thus usually used to mitigate direct soft errors, however 
recently the Hamming code was investigated (LISBOA, 2009) to protect also 
combinational circuits and therefore mitigating eventual indirect soft errors. Such an 
investigation shows better results in terms of area, power consumption, and 
performance than the TMR application in combinational circuits. 

Furthermore, the data codifications M-out-of-N, discussed in chapter 2, are also 
spatial redundancy forms which consist of N redundant wires to represent a data bit. In 
the simplest and most traditional case, the codification 1-out-of-2 (dual rail) has four 
codification states to represent two logic values (0 or 1). Any transient-fault occurrence, 
therefore, may switch the data to non-existent states and thus both direct and indirect 
soft errors can be detected. The approaches M-out-of-N are not only for asynchronous 
circuits, although they have little use in applications of synchronous circuits. 

6.1.5 Techniques Dedicated to QDI Asynchronous Circuits 

Even though most of the techniques described above can be implemented in QDI 
asynchronous systems, they were designed mostly based on the time limitation of a 
clock. On the other hand, as presented in chapter 2, a QDI circuit has natural robustness 
properties due to its data codification, communication protocol, and quasi-delay 
insensitivity, and thus it already has certain inherent mitigation techniques. 

Concerning the natural transient-fault robustness, a fault event may potentially 
perturb the communication protocol and leading the system, for instance, to a deadlock, 
which is indeed easily detectable (PISETRAK, 1995; MONNET, 2007-a), as discussed 
in chapter 5. In this sense, in order to take advantage of such a natural redundancy, 
techniques particularly dedicated to QDI circuits would optimize significantly the 
designs which aim at achieving higher levels of transient-fault immunity. 

There are several mitigation techniques dedicated to QDI asynchronous circuits’ 
subclasses (SAWIN; MAKI, 1974; VERDEL; MAKRIS, 2002; GARDINER, 2007; 
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KUANG, 2007; ALMUKHAIZIM; SHI; MAKRIS, 2008; KUANG et al, 2010), which 
are indeed less-robust variations of the original ones detailed in chapter 2. However, 
specific techniques for pure QDI circuits, there are still very few as described in the 
following paragraphs. 

Simple very-low-cost approaches for detection are similarly proposed in (DAVID; 
GINOSAR, YOEL, 1995, MOORE, 2002, 2003, YANG et al, 2003) by taking 
advantage of the QDI circuits’ redundancy qualities. Moore (2002) considers a dual-rail 
system using the four-phase protocol and the codification by three states explained in 
chapter 2. The author assumes that a data flow’s deadlock happens in the situations in 
which the allowed codification states switch like 01=>00, 10=>00, 00=>10, or 00=>01 
due to an event of a fault, and therefore the errors generated are easily detectable. On 
the other hand, in the situations in which states change for forbidden states (01=>11 or 
10=>11), the circuit reports wrong values, but no deadlock happens and therefore it is 
not detectable. The author thus proposes a circuit to keep on with such an alarm 11 as a 
way to ensure the system’s deadlock. The alarm code 11 could not, therefore, disappear 
in subsequent computation iterations, and so it would enable the system to detect these 
errors. Even if this technique can detect both indirect and direct soft error, it does not 
guarantee the detection of all possible transient-fault effects. In fact, the switches to 
allowed states, discussed above, do not always generate deadlock, and therefore they are 
not always detectable (MONNET, 2007-a, 2007-b). 

LaFrieda (2004) proposes error-detection mechanisms at RT level of a QDI system 
design, moreover techniques at electrical level to prevent eventual delay faults on 
isochronic forks are also suggested. For detection of indirect or direct soft errors as well 
permanent-fault effects, the author follows the Moore’s idea (2002) which transforms 
errors into system’s deadlocks. However, he suggests doubling the synchronization 
signals that are used for request and acknowledgment between system’s stages. For 
protection of the data signals, additional C-elements are used to synchronize the bits of 
a data word and so making by groups the data reading or writing between system’s 
stages. Unfortunately, these detection techniques impose severe overheads on the 
system if they are applied on all circuit parts, especially in terms of area.  

Peng (2005) presents a half buffer, which is a macrocell commonly used as QDI 
systems’ memory block, able to make a system’s deadlock when errors happen due to 
transient or permanent faults. The scheme can mitigate as direct as indirect soft error. 
The cost in area is practically a duplication, and the penalty in performance is small. 
The author also suggests a detector of system’s deadlock to determine the most 
appropriate instant to perform a recomputation for error correction.  

Another technique at RT level dedicated to mitigate indirect and direct soft errors is 
proposed by Jang (2005). The basic principle is duplicating all blocks of the system’s 
stages and synchronizing the duplicated outputs by two additional C-elements. In fact, a 
circuit block would pass to have duplicated inputs and outputs. This approach thus 
provides enormous penalties in terms of area and also performance, even more severe 
than the LaFrieda’s techniques (2004).  

Monnet (2005-b) suggests three techniques to mitigate indirect and direct soft errors 
in QDI systems. In one of them, only the computational block of a stage is duplicated as 
shown in Figure 6.5. The memory block is modified replacing, for example, the two-
input C-elements by other ones of three inputs. It increases the transient-fault masking 
effects and thus also the circuit robustness. As this technique implies in duplicating the 



 

 

70 

computational parts, the costs in area become high if there are a large amount of 
computational elements in the system, however the costs in performance are low. 

 

Figure 6.5: Duplication-based technique for computational logic of a QDI system 
(MONNET, 2005-b) 

Figure 6.6 shows another Monnet’s suggestion (2005-b) to mitigate transient faults. 
In this approach, pairs of bits from a data word are synchronized replacing the two-input 
C-elements in the memory block by other ones of four inputs. A word’s bit is not stored 
without the presence of the other one, only after both bits are memorized that the 
acknowledgment signals are generated. When a fault is not filtered by the four-input C-
elements, a wrong code is generated and so it can often be detected by the Moore’s 
technique (2002). The cost in area and performance are acceptable, as only a few 
modifications are made in the memory block. Finally, Monnet (2005-b) proposed an 
alternative very similar to such a synchronization technique for when a bit of a data 
word does not have a pair to synchronize. 

 

Figure 6.6: Synchronization Technique for two bits of a data word in a QDI system 
(MONNET, 2005-b) 

6.2 Techniques at Electrical Abstraction Level 
Most electrical-level techniques for transient-fault mitigation include spatial 

redundancies by transistors (i.e., transistor sizing or simply transistor inserting), 
schemes of robust memory cells, or any combination of these techniques. Temporal 
redundancies are usually used inside of robust memory cells. At this abstraction level 
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there are no techniques dedicated exclusively to mitigate transient faults in QDI 
asynchronous circuits. In fact, many transistor-based spatial redundancies initially 
proposed in synchronous circuits are also applicable in QDI circuits. On the other hand, 
there are several schemes of robust memory cells that depend on a clock signal and, 
therefore, are specific to synchronous circuits. 

6.2.1 Spatial Redundancies by Transistors 

These techniques consist basically of handling transistors in terms of their sizes or 
simply including redundancy. The idea is producing schemes that allow transient-fault 
mitigation by attenuation, total tolerance or even detection. Most of them focus on the 
mitigation of indirect soft errors, although they can be also used to mitigate direct soft 
errors. 

Nicolaidis (1999) suggests duplicating the transistors of standard logic gates in order 
to implement the functional characteristics of a CWSP element (discussed at logical 
level in previous sections). Such Nicolaidis’s electrical-level approaches (1999), 
detailed in Figure 6.7, considerably reduce the number of required transistors in relation 
to their equivalent logical-level designs shown in Figure 6.4. Nevertheless, 
technological trends may prevent the correct operation of such an approach due to the 
high number of CMOS transistors in series. 

 

Figure 6.7: CWSP elements at electrical abstraction level (NICOLAIDIS, 1999) 

Some techniques seek to mitigate the transient-fault effects by sizing properly the 
logic gates’ transistors (ZHOU; MOHANRAM, 2004; DHILLON et al, 2004; 
CAZEAUX et al, 2005; ZHOU; MOHANRAM, 2006; RAO; BLAAUW; 
SYLVESTER, 2006). Techniques based on symmetric and asymmetric transistor sizing 
are discussed in (LAZZARI et al, 2007-a; LAZZARI, 2007-b; ASSIS et al, 2009-a; 
ASSIS, 2009-b). The idea of these approaches is increasing the sizes of certain 
transistors, mostly in terms of channel width, in order to add capacitance in critical 
circuit nodes. The minimum charges required to upset a circuit thus become larger by 
increasing the node capacities to attenuate transient faults. 
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The transistor sizing techniques allow a greater control on adjusting the node 
capacitance values, hence they can penalize less the circuit design than the gate 
duplication approach discussed in previous section. However, as the gate duplication, 
such penalties depend strongly on the immunity level required by the circuit 
applications (e.g., if the circuit will operate in space or on earth). 

Using the same idea of increasing the critical circuit nodes’ capacitances, other 
techniques modify only the form used to control, in terms of design, the capacitance 
values. Assis (2009-a, 2009-b) discusses the circuit ability to mitigate soft errors by the 
use of folding, which doubles the transistors but divides their sizes by placing them in 
parallel. Karnik et al. (2002) proposes adding an explicit capacitor on the weakest 
circuit nodes through the insertion of capacitors built by NMOS and PMOS transistors. 
Transistor-based schemes that make low-pass filters to filter out transients, especially 
the short duration transients, are proposed in (KUMAR; TAHOORI, 2005; SASAKI; 
NAMBA; ITO, 2006, 2008; UEMURA et al, 2008) by using pass transistors, Schmitt 
trigger, or C-elements. 

Other transient-fault mitigation approaches propose detection schemes for direct and 
indirect soft errors based on current sensors (NDAI et al, 2005; NETO et al, 2006-a, 
2006-b; LISBOA et al, 2007-b). These detection techniques result in small system’s 
overheads, however they require error-correction methods at higher abstraction levels. 

6.2.2 Robust Memory Cells 

Many schemes of robust memory cells were proposed mostly to mitigate direct soft 
errors like, for instance, those ones presented in (CALIN; NICOLAIDIS; VELAZCO, 
1996; KARNIK et al, 2002; KOMATSU et al, 2004; ZHANG; SHANBHAG, 2005; 
KRISHNAMOHAN, MAHAPATRA, 2005; SASAKI; NAMBA; ITO, 2006; FAZELI 
et al, 2007; SASAKI; NAMBA; ITO, 2008; UEMURA et al, 2008). 

Omaña (2003; 2007) suggests a latch doubling its feedback loop as shown in Figure 
6.8. Such a robust latch thus results in small system’s overheads. However, if its output 
load is not significant, its output node remains vulnerable even to short duration 
transients. Robust cell alternatives based on temporal redundancy are proposed in 
(KRISHNAMOHAN, MAHAPATRA, 2004; LAZZARI; ANGHEL; REIS, 2005). Most 
of these robust memory cells include extra transistors on the data path, so they naturally 
increase the system’s overheads. Moreover, they often implement redundancies that add 
to the circuit more nodes vulnerable to transient faults. 

 

Figure 6.8: A robust latch (OMAÑA, 2007) 
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6.3 Costs of Mitigation Techniques at Different Abstraction Levels 
Techniques implemented at higher abstraction levels of a design are more 

advantageous in terms of development costs (i.e., designers, design time, and 
fabrication). However, they are naturally more expensive in terms of system’s 
overheads (i.e., costs in area redundancy, power consumption, or performance). At 
lower abstraction levels, the design is more optimized because is done through smaller 
area slices that enable working more details. For instance, a cell from a library of gates 
is optimized at lower levels. However, the design requires a larger effort and elaboration 
time of the designers, so the development costs are greater. Figure 6.9 summarizes such 
trends by showing generically the system’s overheads in function of the development 
costs. 

 

Figure 6.9: Costs of mitigation techniques at different abstraction levels 

Such an idea was shown in (BASTOS, 2009-c) through the protection of 
microprocessors against transient faults as in memory as in combinational blocks. This 
work analyzed the area costs per register’s bit, and so an area overhead extrapolation 
could be done for any synchronous architecture. The results showed thus that the area of 
each register’s bit on any microprocessor is increased by a factor of 9 using a certain 
RT-level protection scheme, which is based on traditional mitigation techniques. 
Otherwise, using a similar scheme at electrical level, it is increased by 5. Figure 6.10 
summarizes these results through different commercial synchronous systems. It shows 
that such mitigation techniques, which were used in (BASTOS, 2009-c) aiming to avoid 
recomputation, have lower area overheads by implementing at electrical level than at 
RT level. Obviously, as the protection scheme is to mitigate transient faults, such an 
area overhead increases in function of the memory area’s size, that is the sensitive zone 
to be protected. Nevertheless, the design development of a RT-level protection scheme, 
which can be reusable by register’s bit, is much simpler and faster than at electrical 
level. 
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The development cost of an IC in terms of fabrication is also high if a technology 
produced by a specific robust process is used. Moreover, such a technique at the lowest 
abstraction level does not ensure high levels of immunity to transient-fault effects 
(LIMA, 2003-b). 

On the other hand, the techniques at the highest abstraction level, which are those 
implemented in software, often determine high latency for error detection, and thus 
large penalties in performance (IYER et al, 2005). Furthermore, such software-based 
techniques are not able to detect a large number of soft errors because often certain 
specific hardware registers cannot be accessed by system’s software applications. In 
fact, software approaches are only able to detect transient-fault effects at later instants 
when the error may have already propagated into many parts of the system (LISBOA, 
2007-b). Differently, hardware-implemented techniques are able to detect soft errors as 
soon as it happens, and thus they provide a low latency for error detection (IYER et al, 
2005). 

 

Figure 6.10: Area costs of traditional mitigation techniques in function of the memory-
core area ratio 

6.4 Conclusions 
This chapter studies transient-fault mitigation techniques at logical, RT, and 

electrical levels. In addition, experimental results show that a certain traditional 
protection applied in RT-level synchronous designs is approximately 1.8 times larger in 
terms of area than the same protection at electrical level. Such a study thus highlights 
the greater area-overhead optimization of protection implementations made at lower 
abstraction levels, although the development costs in terms of design time are bigger 
due to the higher design complexity, as generically illustrated in Figure 6.9. 

In order to obtain an optimal trade-off between the development costs and system’s 
overheads, Lisboa (2007-a, 2007-b) and Albrecht (2009) suggest applying mitigation 

Systems Protected by Mitigation Schemes

DES_sync

MIPS

MC68HC11

8051

MIPS

MC68HC11

DES_sync

8051

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

MemoryArea / CoreArea

A
re

aO
ve

rh
ea

d

RT Level

Electric Level



 

 

75 

 

techniques at different abstraction levels of the design to cope with the recent challenges 
imposed by nanometer technologies. Lisboa (2009) points out that most of the current 
mitigation techniques implement too many costs in terms of performance, area or power 
consumption to tolerate certain transient-fault effects. In fact, he puts a question about 
those effects on deep-submicron technologies that may last longer than a clock cycle. 
Lisboa (2009) thus suggests low-cost alternatives proposing mitigation techniques 
especially at higher abstraction levels. Moreover, Albrecht (2009) also recommends that 
the error detection should be performed at lower abstraction levels of SOC designs, 
while the error correction at higher abstraction levels. Such an idea is quite pertinent, 
since lower levels offer greater ability to detect fault effects. Furthermore, the system’s 
overheads due to the implementation of error-detection mechanisms at these levels are 
naturally lower than alternatives at higher levels. About the error correction at such 
higher abstraction levels, the simple procedure is to perform the recomputation, which 
can add, through extra execution cycles, a high latency to the system. However, the low 
probability of transient-fault occurrence does such a recomputation cost become almost 
negligible (LISBOA, 2009). 

Albrecht (2009) and Lisboa (2007-a, 2007-b, 2009) do not discuss an alternative that 
is naturally robust to many deep-submicron-technology challenges: the design of QDI 
asynchronous systems. This design style requires no additional mitigation mechanisms 
to achieve satisfactory IC reliability. In these QDI circuits, the long duration transient 
(LDT) faults in deep-submicron technologies, as defined by Lisboa (2007-a), have no 
the same aggravating effects than in synchronous circuits. In fact, as there is no a 
clock’s fixed timing reference, as longer as the transient duration is, the QDI systems 
have a larger natural ability to detect it. Chapter 5 of this thesis shows that such an 
absence of a clock to control the data flow, the multi-rail data codification, and the 
handshaking asynchronous communication protocol induce the system more easily to 
the deadlock by facing longer transients. A QDI system thus has a high potential to 
detect such transient-fault effects. 

This intrinsic robustness characteristic of QDI circuits, therefore, coincides with the 
Albrecht’s idea (2009), which is the best approach today to face efficiently with the 
deep-submicron-technology drawbacks, i.e. performing the detection at lower 
abstraction levels. Moreover, a QDI system has other natural qualities which aggregate 
most notably its high modularity, low power consumption, large insensitivity to delay 
variations, high confidentiality, and low noise emission. All of these properties indeed 
are naturally taken into account during the design development without using any 
additional specific technique. Therefore, lower development efforts and shorter design 
time (i.e., faster time-to-market) can be achieved when the design goal is to have such 
properties. Obviously, it still depends on a greater commercial development of 
asynchronous-dedicated EDA tools, as discussed in chapter 2. Furthermore, a QDI 
circuit with such various benefits can even present a performance at least similar to its 
synchronous counterpart by only paying for around a twice larger area. On the other 
hand, synchronous systems, which are devoid of these natural QDI system’s qualities, 
indeed would require much more area overheads to achieve these same benefits. Figure 
6.10, that lists complex synchronous systems, already details large area overheads only 
for mitigation of short duration transient faults. Imaging the protection against LDT 
faults, delay faults, and security attacks would certainly increase such costs. 

 



 

 

76 

 



7 EVALUATING TRANSIENT-FAULT EFFECTS ON C-
ELEMENT’S IMPLEMENTATIONS 

C-element cells, outlined in chapter 2, have a high importance to implement more 
robust systems. They have been used even to protect synchronous circuits against 
transient faults (NICOLAIDIS, 1999; MITRA et al, 2005; FAZELI et al, 2007). 
Actually, their filter ability allows mitigating transient faults, and so avoiding SE 
occurrences. However, in QDI asynchronous circuits, the C-elements are also used to 
implement memory blocks, and then they are also directly sensitive to SEs. 

On the other hand, most of the SE cases in QDI asynchronous systems are naturally 
mitigated. As chapter 3, 4, and 5 discusses, such systems have intrinsically a good 
capacity for transient-fault tolerance and an excellent ability for detection of failures 
arisen from LDT faults. Then, a simple way to further increase the QDI systems’ 
robustness is improving the transient-fault tolerances of their C-elements, which by 
nature already have filter abilities, and thus avoiding SE occurrences that would result 
in failures. Such a solution would prevent recomputations for recovering the system 
(correction process in FDN cases discussed in chapter 3). Furthermore, it could also 
prevent the few FNN cases that are not able to be mitigated by alarm mechanisms as 
highlighted in chapter 5. 

The design of a QDI circuit can be accomplished through various traditional C-
element’s implementations at electrical level of abstraction. Therefore, the QDI 
system’s design can be done by the selection of implementation options that have 
mostly stronger abilities to tolerate shorter-duration transient faults, since longer-
duration transient faults are costly to be tolerated but are easily detectable at higher 
abstraction levels of a QDI system. The QDI system’s C-elements would thus have a 
better capacity for transient-fault tolerance, and so the system would be even more 
transient-fault robust. 

In order to obtain the best C-element’s implementation options in terms of transient-
fault robustness as well as in terms of costs in area, performance, and power 
consumption, a novel methodology to evaluate at electrical level is required. Indeed, it 
is necessary due to the C-element function’s particularities for asynchronous systems 
that require an also particular method to assess the transient-fault effects on their C-
element circuit’s nodes. The existing methods for evaluation of such effects on memory 
cells, for instance, are dedicated to clocked circuits, and thus they are so dependent on 
the clock-timing characteristics (OMAÑA; ROSSI; METRA, 2007). 

Hence, the following sections propose a novel solution discussed also in (BASTOS 
et al, IOLTS 2010-b). Unlike related work in (VAIDYANATHAN et al, 2006), the new 
methodology explained in this chapter presents and evaluates all situations of transient-
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fault vulnerability on the traditional C-element’s versions for asynchronous systems. 
The proposed method for electrical-level evaluation considers C-element’s 
implementations designed under similar conditions. The concept of perturbation’s 
charge is introduced and used to evaluate the C-element versions’ robustness. 
Moreover, this chapter also suggests the application of electrical-level mitigation 
techniques in the C-element’s versions to obtain them further transient-fault robust. The 
best C-element’s options to design even more transient-fault robust systems are thus 
innovatively presented (BASTOS et al, IOLTS 2010-b). 

7.1 Traditional C-element’s Implementations 
The dual-behaviour function of a C-element, either buffer or memory cell, is further 

explained in chapter 2. 

If the C-element is implemented by combinational standard cells, no optimal circuit 
areas are achieved (MAURINE et al, 2003; FOLCO et al, 2005). Thus, it is mandatory 
to use customized implementations like those traditional ones discussed in (SHAMS; 
EBERGEN; ELMASRY, 1998). The basic version detailed in Figure 7.1 (A) is a 
dynamic implementation, which preserves the steady state of output just during a while. 
Especially for QDI circuits, this dynamic version is not interesting, since there is not a 
keeper circuit to ensure the steady state of output until the next event driver of identical 
inputs. In contrast, the three traditional static implementations illustrated in Figure 7.1 
(B) (C) (D) work with such a keeper circuit. 

 

Figure 7.1: The traditional C-element’s implementations 

The designs of these traditional C-element cells can be sized by using the minimum 
channel length of a CMOS technology. The diffusion widths of the PMOS and NMOS 
transistors can be defined in accordance with the equations below, where Wmin is the 
minimum diffusion width in the target CMOS technology, and fPMOS is the factor that 
produces a C-element cell providing a voltage output of similar rise and fall times. Such 
a factor fPMOS works thus to compensate the PMOS transistors, which are physically 
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slower than the NMOS ones. In addition, the factor fload makes the output cell capable to 
drive the largest capacitive standard load of a target cell-drive capability defined in the 
target CMOS technology. 

 min4 WffWWW PMOSloadPPIPE ⋅⋅=== �  (7.1) 

 min4 WfWWW loadNNENI ⋅=== �.  (7.2) 

7.2 Method for Electrical-Level Evaluation of Transient-Fault Effects 
A single perturbation event on an integrated circuit can produce a transient fault so-

called as SET (Single-Event Transient), as explained in chapter 3. The worst SET 
effects on memory cells are the non-permanent errors defined as SEs. 

In order to evaluate such effects on memory cells which do not depend on a clock, 
like the C-element of QDI asynchronous circuits, the cell particularities need be taken 
into account. A C-element cell of a QDI system uses frequently its two functions (either 
buffer or memory cell) detailed in chapter 2. By using its buffer function, the worst SET 
consequence is another SET appearing at the C-element’s output. It can provoke SEs 
but on other memory cells ahead in the system. On the other hand, when the C-element 
cell works like a memory function, the worst SET effect is evidently a SE. 

7.2.1 Modelling the Transient Faults 

The method in this chapter proposes evaluating the C-element cells based on the 
classic model of charge injection well discussed in (CHA; PATEL, 1993). In such a 
model, a double-exponential current source represents the SET effect due to the 
perturbation of α-particles on a sensitive site of a CMOS circuit: 
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This fault-injection source has time constants (τα and τβ) that are factors related to the 
technology process. The sensitive sites of a CMOS circuit are the off-state transistors 
which have their drain nodes biased in the reverse state to their bulk nodes. Therefore, 
the perturbation by means of its charged particles can create a transient current between 
the drain and bulk discharging (for a NMOS transistor) or charging (PMOS transistor) 
transiently the drain logic node, like shown in Figure 7.2. The source modeling the 
current injects charge on the vulnerable drain node to represent such a phenomenon. 

The model determines so that a drain node is vulnerable to a SET when the logic 
states of the circuit nodes are set in certain conditions. Then, a circuit like a C-element 
cell has a certain number of situations in terms of logic states which make it vulnerable 
to a SET. For instance, the drain node n2 of any version in Figure 7.1 is vulnerable 
when the cell has the nodes n0=1, n1=0, n4=0, and n10=1. Such a vulnerability situation 
is further illustrated in Figure 7.3 for the weak-feedback version. Note that any 
perturbation on the off-state PMOS transistor of WPE could produce a transient current 
from its bulk (biased in Vdd) to the drain node n2, which would charge (0 to 1). As the 
PMOS transistor of WPI is in on state, the node n4 would switch from 0 to 1 as well n10 
from 1 to 0 provoking a SE if the perturbation-induced transient has enough energy. On 
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the other hand, when the cell has the nodes n0=1, n1=0, n4=1, and n10=0, the drain 
node n2 is not vulnerable because it is already charged. 

 

Figure 7.2: Modelling the perturbation-induced transient current ISET that temporally 
discharges (off-state NMOS case) or charges (off-state PMOS case) the node out 

 

Figure 7.3: Nodes’ logic states of the weak-feedback C-element version under a 
situation of transient-fault vulnerability 

7.2.2 Situations of Transient-Fault Vulnerability 

Table 7.1 summarizes all situations in which the traditional C-element cells detailed 
in previous section are vulnerable to a SET. Therefore, these 20 situations represent all 
scenarios to be evaluated under a SET. Vulnerability situation 5 in Table 7.1 details the 
example described in previous paragraph and Figure 7.3 for the node n2. Situations 11 
and 13 do not happen on the dynamic version because its circuit does not have a 
feedback. Moreover, situations 7 and 8 occur only on the symmetric version, since the 
nodes n20 and n21 exist just in such a version. Thereby, the symmetric version has 20 
vulnerability situations, the weak-feedback and conventional have 18, and the dynamic 
has 16. Furthermore, as the output-net capacitance of a cell modifies significantly the 
magnitude and duration of a SET on any cell node (ZHOU; MOHANRAM, 2006), the 
same table of 20 situations is recommended to be evaluated for a range of output loads 
and SET durations. In addition, unlike the internal and output nodes, the input nodes are 
strongly influenced by the input nets. Then, the situations 1, 2, 3, and 4 related to such 
nodes are also suggested to be evaluated under different input-net capacitances. 
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Table 7.1: Situations of transient-fault vulnerabilities on the traditional C-element’s 
versions 

 

7.2.3 Perturbation Charge of a Circuit Node 

The method of this chapter evaluates each situation detailed in Table 7.1 by 
perturbing its circuit’s node through a current source. In fact, the injected double-
exponential current (equation 7.3) has its process-related factors modeled to produce a 
target SET duration on the circuit’s node. The reference of a fixed SET width measured 
at the half amplitude of the perturbation current is established. Hence, a certain SET-
pulse width PW can be preserved even increasing the current amplitude Iamplitude up to 
achieve a circuit perturbation. Consequently, the area below the perturbation-current 
curve in function of the time provides the minimum collected charge Q by a certain 
circuit node N, and thus characterizes a perturbation profile for a certain PW on such a 
node N: 

  dttIQ SET ⋅= ∫
∞

0
)( �� �

 (7.4)� 

Each situation in Table 7.1 has thus a minimum amount of charge that is capable to 
perturb the circuit cell. The minimum charge on a certain node N to provoke a SE at a 
memory-cell output is so-called critical charge Qcritical (ZHOU; MOHANRAM, 2006). 
In theory, the Qcritical is calculated without taking into account the voltage limits 
specified for a device. Hence, theoretical Qcritical of some nodes (which are normally 
obtained by simulation) would produce in practice voltage amplitudes that are able to 
permanently damage the circuit, instead of only generating transient effects like SETs. 
In fact, such permanent consequences happen even due to the injection of charges lower 
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than the Qcritical, since certain target nodes have capacitances that are considered large in 
comparison with other circuit’s nodes. 

Therefore, a node N of large capacitance can have its Qcritical higher than the 
minimum charge Qspecifications injected by a double-exponential current source to produce 
on N a voltage amplitude VN that is considered above the device specifications. Hence, 
the method of this chapter introduces the definition of perturbation charge PC on a 
circuit node N. It allows based on an injected charge evaluating only the non-permanent 
effects of the double-exponential current source. The PC for a certain PW is calculated 
by increasing Iamplitude up to meet either Qspecifications or Qcritical. It takes into account VN > 
1.10·Vdd. Therefore, the PC is equal either to Qspecifications or Qcritical. 

As each C-element cell has several vulnerability situations in accordance with Table 
7.1, it has also several PCs. Then, a metric combining such PCs of a cell is mandatory 
to compare the SET robustness of different cells. The method of this chapter proposes 
such a metric based on the following points: 

• Vulnerability situations with the lowest PCs require obviously lower minimum 
charges to perturb the circuit; 

• In theory, there are much more perturbation events that can induce low charges 
on the circuits, since such a kind of event can be generated even from weak 
perturbation sources; 

Therefore, as lower as higher perturbation-induced charges can upset the circuit in 
vulnerability situations with the lowest PCs, and so the systems are exposed to a higher 
amount of perturbation events. In this way, the lowest PCs have thus the widest ranges 
of sensitivity to perturbation events, and then they have evidently the biggest chances of 
provoking an error in the circuit. They are indeed the most transient-fault sensitive 
situations. 

Such PCs of the highest error probabilities must have the highest impacts on the 
metric in order to valorize and evaluate the worst scenarios in terms of SET faults that a 
cell can be exposed. Hence, a solution as metric to combine the several PCs of a cell is 
using a mean that valorizes such lowest PCs. In theory, a weighted harmonic mean 
tends strongly toward its lowest elements, and so the lowest PCs would have the highest 
impacts on the mean. Therefore, the method of this chapter defines a global perturbation 
charge GPCV as the weighted harmonic mean of the several PCs of a cell version V. 

7.3 Making Transient-Fault Robust the C-element 
There are many protection mechanisms in terms of transient-fault robustness which 

are able to make robust a C-element circuit. The C-element is supposed to be used like a 
cell of a library in order to obtain optimal circuit designs (MAURINE et al, 2003; 
FOLCO et al, 2005). Then, the following paragraphs discuss transient-fault robust 
implementations of C-element cells by using transistor-abstraction level mitigation 
techniques. The target protection approaches work to increase the robustness of the cells 
in the worst scenarios without including new vulnerability situations. 

A mitigation technique proposed in (KARNIK et al, 2002) is suggested in 
(VAIDYANATHAN et al, 2006) to make robust the C-element. Capacitors are 
explicitly added at the weakest circuit nodes in terms of perturbation charge by using 
PMOS and NMOS transistors as Figure 7.4 shows for the node n4. 
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Figure 7.4: The explicit-capacitor version of a weak-feedback C-element 

Additionally, this section proposes a parameter labeled X to increase the transistor 
diffusion widths WNC and WPC in accordance with the second row of Table 7.2 (factors 
fPMOS and fload as well Wmin are defined in previous section 7.1). By amplifying X, the 
diffusion area becomes larger, and so the node’s capacitance also increases. Thus, a 
higher charge would be required to perturb the circuit. In addition, the node capability to 
attenuate a SET would be also improved. Then, the parameter X, which must be always 
greater than 1, would work to amplify the cell’s transient-fault robustness. The fourth 
row of Table 7.2 details the other diffusion widths of this approach in Figure 7.4 as well 
the diffusion widths of the traditional versions in Figure 7.1. 

Table 7.2: Diffusion widths WN4, WP4, WNI, WPI, WNE, WPE WNC, and WPC of the 
NMOS and PMOS transistors in robust C-element cells 
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Similarly, there are the mitigation techniques based on symmetric or asymmetric 
sizing discussed in (ZHOU; MOHANRAM, 2006; LAZZARI et al, 2007) for 
combinational cells. The idea is increasing the transistor sizes and thus inserting 
additional capacitance on the circuit nodes. No extra transistors or nodes are included. 
Thereby, this section proposes other robust C-element implementations by only sizing 
their transistors in accord to Table 7.2. The circuits are the same detailed in Figure 7.1 
but the diffusion widths WPE, WPI, WNI, and WNE are defined by Table 7.2. In fact, only 
the widths on the grey boxes in Table 7.2 are increased by WNC or WPC, which work also 
by the parameter X described in previous paragraph. 

Other robust approaches can also be studied by implementing more sophisticated 
keepers. Sizing its transistors or adapting robust latches like those in (FAZELI et al, 
2007; SASAKI; NAMBA; ITO, 2008; LAZZARI; ANGHEL; REIS, 2005; OMAÑA; 
ROSSI; METRA, 2007) can amplify the transient-fault robustness of the C-element 
cells. However, such special latches include extra transistors on the data path. 
Therefore, they naturally would increase the delay, area, and power consumption of the 
cell. Moreover, they also would implement additional circuit nodes vulnerable to 
transient faults. Other protection schemes in (MOHAMMADI; FURBER; GARSIDE, 
2003; KUMA; TAHOORI, 2005; UEMURA et al, 2008) based on transistor insertions 
can also improve the cell robustness but they also will include new vulnerability 
situations. 

7.4 Evaluations of the C-element’s Implementations 
The traditional C-element cells illustrated in previous sections and their robust 

versions defined in Table 7.2 were evaluated by using the methodology of this chapter. 

7.4.1 Simulation Experiments 

 The evaluation methodology requires fault-injection campaigns at transistor-
abstraction level. Then, HSPICE-based simulations were performed. 

All C-element versions were created based on previous sections 7.1 and 7.3, and 
Table 7.2 in order to design and evaluate them under similar conditions. The circuit 
versions were designed by using a 65-nm CMOS technology, Vdd 1.2V, and typical 
parameters. All of them were made to have the cell-drive capability X04, which is the 
lowest one of similar cells (like AND or OR gates) in the target CMOS technology 
library. Hence, the lowest capacitances possible to be implemented, which represent the 
most transient-fault sensitive condition, were evaluated. 

Moreover, all cells were sized to meet an output of rise and fall times in the order of 
300ps, which is a reasonable and quite similar reference to the typical cells of the target 
CMOS technology library. It was done by using the largest standard load of X04 
(72.8fF) and the shortest input-net transition from the target technology library (5ps). In 
this way, factors fPMOS and fload, discussed in section 7.1, were obtained for each one of 
the cell versions. 

The many simulations of fault injections on the cell nodes were done in accord to 
Table 7.1. Each situation of this Table 7.1 was simulated for typical SET widths of 
50ps, 100ps, and 250ps (DODD, 2004; FERLET-CAVROIS, 2006) by using the 
minimum and maximum standard loads of X04. In addition, two of the lowest input-net 
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capacitances, which correspond to the worst scenarios in terms of perturbation charges 
on the input nodes, were also evaluated for situations 1, 2, 3, and 4 of Table 7.1. 

7.4.2 Simulation Results and Evaluations 

The simulation results of the designed C-element versions are illustrated in the 
figures of this section. In fact, the figures show the percent increases of each version in 
relation to the results of the dynamic version detailed in Figure 7.1 (A), since it presents 
the least values. The black triangle (▲) in figures represents the weak-feedback version, 
the black circle (●) is the conventional version, and the black square (■) is the 
symmetric version. The figures’ curves are plotted by increasing the parameter X, which 
is defined in previous section as the factor to amplify the circuit robustness. 

Figure 7.5 shows the percent increases in global perturbation charge GPCV, which is 
defined in previous section, in function of the percent penalties in delay of the designed 
C-element versions. The delay was calculated by the arithmetic mean of the rise delay 
and the fall delay. 

Firstly, taking into account only the C-element versions without transient-fault 
mitigation techniques, the results in Figure 7.5 show that the symmetric version (black 
square, ■) is 0.52% slower than dynamic version. The conventional (black circle, ●) is 
3.33% and the weak-feedback (black triangle, ▲) is 14.24%. The resistance of the 
feedback in the keeper works to penalty the delay when the input drivers are to switch 
the output state. Furthermore, the GPCV results in Figure 7.5 prove that the weak-
feedback C-element is the strongest version in terms of transient-fault robustness. In 
fact, the weak-feedback is 144.04% more robust than the dynamic version, i.e., the 
minimum charges to perturb its nodes need be on average 144.04% larger than those to 
perturb the dynamic version. On the other hand, the conventional and symmetric 
versions are respectively 91.18% and 59.04% more robust. The weak-feedback version 
has the highest GPCV basically because its internal node n2, n3, and n4 are designed 
more capacitive to overcome the feedback resistance in the situations of output changes. 
In addition, the symmetric version has more circuit nodes that are available to be 
perturbed. 

The curves in Figure 7.5 represent robust C-element versions. In fact, the figure 
shows the versions protected by the techniques from Table 7.2. However, only those 
versions that present the worst and the best trend in GPCV increases as functions of the 
delay penalties were plotted. For instance, the weak_feedback_explicit_capacitor_Xw 
curve beginning at the black triangle (▲) performs the worst trend among those 
robustness techniques in Table 7.2 applied on the weak_feedback version. It means that 
such an explicit_capacitor_Xw approach is the technique that further penalizes the 
weak-feedback cell’s delay, since the goal is always achieving higher GPCV increases 
by using lower delay penalties. On the other hand, the weak_feedback_sizing_external_ 
Xw curve is the best trend. If the goal is to increase the SET robustness of the 
weak_feedback version around 165% larger than that of the dynamic version, the 
sizing_external_Xw technique will introduce a penalty of 3% in delay in relation to the 
fastest C-element version (dynamic). Otherwise, the explicit_capacitor_Xw will 
increase by about 21% the delay. 

The trends of the other mitigation techniques detailed in Table 7.2 also begin from 
the black triangle (▲), circle (●), or square (■). However, they are placed in the range 
between the best and the worst trend curves. These curves were also got by simulation 
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but they are not shown in the figures. Such an illustration in terms of the best and worst 
trends of mitigation techniques were also done in the following figures of this section. 

 

Figure 7.5: GPCV increases vs. penalties in delay of C-element versions 

The results in GPCV increases as functions of delay penalties also illustrates that the 
techniques of resizing_Xw, sizing_external_Xw, sizing_external_pmos_Xw, and 
sizing_ external_nmos_Xw reduce the C-element’s delay in function of increasing the 
parameter X to amplify the cell robustness. These techniques have in common to enlarge 
the transistors connected to gnd or Vdd. It indicates that more current flows with less 
resistance from its source or drain, thus the circuits are faster. The best trend among all 
versions is the symmetric_sizing_external_Xw curve, thus it is ideal for designs 
targeting high performances. Otherwise, for all other versions, the penalties in delay 
tend to rise as greater as the parameter X amplifies. It is basically because the 
capacitance on the internal node n4 increases by using such techniques, then the process 
to charge it will be slower. The explicit_capacitor_Xw technique is the worst in terms of 
delay for the reason that it includes explicit extra capacitance on the current’s path. 

Figure 7.6 shows the GPCV increases as functions of the power-consumption 
overheads of the C-element versions. The symmetric and conventional versions have 
lower power consumption than the weak-feedback version (respectively 2.03%, 2.67%, 
and 12.18%, as shown in Figure 7.6) because they cut off their keeper feedbacks to 
switch their output states. The explicit_capacitor_Xw technique is the most power 
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efficient because each one of its transistors does not become as so larger as in the other 
techniques. In addition, the conventional_explicit_capacitor_Xw versions have the best 
trend curve among all versions basically due to the least efforts in the output switches. It 
is recommended for designs that require low power. On the other hand, the 
sizing_external_nmos_Xw and sizing_external_nmos_Xw approach are the most power 
inefficient. 

 

Figure 7.6: GPCV increases vs. power-consumption overheads 

Figure 7.7 illustrates the GPCV increases as functions of the diffusion-area 
overheads of the C-element versions. The diffusion area works like an estimate of the 
total cell layout area. The diffusion area of the symmetric version is 5.55% greater than 
the dynamic version, the conventional is 15.04% and the weak-feedback is 10.75% 
larger. The sizing_internal_Xw technique is the best trend when the goal is low area. 
Otherwise, the sizing_external_nmos_Xw and sizing_external_pmos_Xw protections 
are not interesting for low-area cells. 
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Figure 7.7: GPCV increases vs. diffusion-area overheads 

Figure 7.8 shows what C-element versions present higher perturbation charges by 
using lower implementation costs. Taking into account that implementation cost is the 
arithmetic mean of the overheads in terms of delay, power consumption, and diffusion 
area plotted in Figure 7.5, Figure 7.6, and Figure 7.7. Figure 7.8 proves even more that 
the weak-feedback version is the best robust option because it has an implementation 
cost of around 12% larger than the dynamic version but is around 2.5 times more SET 
robust. The other traditional versions would require a huge additional redundancy in 
terms of implementations costs to achieve the same SET immunity level. 

The curves of the weak-feedback versions in Figure 7.8 are higher in terms of GPCV 
increases at least up to implementation costs of around 40% (point beyond the curve 
shown in Figure 7.8), therefore such versions are more SET robust than the other ones 
at least up to this point. In fact, such an intersection point at around 40% is only due to 
the worst trend in GPCV increases for the weak_feedback version (weak_feedback 
_sizing_external_nmos_Xw curve) with the best trend for the conventional version 
(conventional_sizing_internal_nmos_Xw curve). The best trend for the weak_feedback 
version (weak_feedback_sizing_internal_Xw curve) is not reached for the other 
mitigation techniques because it has the highest rise rate. Therefore, such a 
weak_feedback_sizing_internal_Xw technique is the best option to make more robust 
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C-elements by using the lowest implementation costs. It achieves an efficient use of the 
additional redundancies by getting the highest GPCV with the lowest penalties in delay, 
power consumption, and diffusion area. The strongest point of this approach is the best 
area trend among all versions, thus it is also recommended for designs that need 
optimizing the area. 

 

Figure 7.8: GPCV increases vs. C-element implementation costs 

Making a weak_feedback_sizing_internal_Xw version with X=16, the smallest 
perturbation charge (-7.5fC) occurs on the vulnerability situation 10 from Table 7.1 by 
using the minimum standard load and a SET-pulse width of 50ps. It is because the 
PMOS channel of the keeper, which maintains the node n4 at high level, is not so large 
than its NMOS channel. Thus, the node n4 under a transient fault will be more easily 
discharged than charged when the largest transistor of WNI and the transistor of WPI are 
off. It is a situation that can be improved by sizing the keeper transistors. On the other 
hand, the largest perturbation charges are in the order of 225fC. As a result of the GPCV 
metric, this weak_feedback_sizing_internal_16w version resists to perturbation charges 
on average in the order of 20fC. Typically, circuit nodes collect SET charges in the 
order of fC, it depends on the CMOS technology and the perturbation events, which 
produce the SET. 
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7.5 Conclusions 
A methodology able to evaluate SET effects on C-element implementations is 

proposed in this work. A table with all SET vulnerability situations on traditional C-
element circuits is presented. 

The results prove that the weak-feedback version is the most transient-fault robust 
one among the traditional C-element options mainly because its design needs to face the 
feedback resistance during output switches. 

Options of robust C-element versions were studied by means of the concept of 
perturbation charge, and the weak-feedback implementations based on symmetric sizing 
of internal PMOS and NMOS transistors (sizing_internal_Xw) resulted as the best 
approach against the SET problem. Thus, designers or even automatic synthesis tools 
are able to get systems even more robust by taking the best C-element versions in terms 
of SET robustness. 



8 CONCLUSIONS AND FUTURE WORKS 

Deep-submicron IC technologies have quite contributed to scientific development in 
many ways. However, the huge IC reliability-related problems, mostly in synchronous 
circuits, have pushed researchers into breaking old paradigms. Hence, this thesis aimed 
at exploiting QDI asynchronous circuits in order to take advantage of their clockless 
issues, and thus obtaining more robust systems. 

Many QDI asynchronous circuits’ characteristics seem to be more interesting than 
the synchronous circuits’ ones when the target is designing robust systems. This thesis 
discussed comparatively the transient-fault effects on both these classes of circuits, and 
pointed out benefits of such an important QDI asynchronous design’s alternative. In 
addition, simple design techniques that make a QDI system even more transient-fault 
robust are suggested. Then, the main thesis’s contributions are thus summarized below: 

• A novel method for logical-level evaluation of transient-fault effects as on 
synchronous as QDI asynchronous circuits (chapter 4; BASTOS et al, ETS 
2009-a; BASTOS et al, IOLTS 2009-b); 

• Highlighting for the first time in (chapter 5; BASTOS et al, ETS 2010-a; 
BASTOS et al, ESREF & Microelectronics Reliability Journal 2010-c) the 
excellent natural QDI asynchronous systems’ ability for mitigation of LDT faults 
in deep-submicron technologies; 

• Showing experimentally that the costs to protect complex synchronous systems 
at different abstraction levels vary in terms of the system’s overheads and 
development’s expenses, and that they can be very high depending on the 
number of system’s memory elements (chapter 6; BASTOS et al, 
Microelectronics Journal 2009-c); 

• A novel method for electrical-level evaluation of transient-fault effects on C-
element’s cells as well as presenting for the first time the best traditional C-
element’s versions to design more transient-fault robust QDI asynchronous 
systems (chapter 7; BASTOS et al, IOLTS 2010-b). 

The novel method for logical-level transient-fault effect evaluation allows 
comparing the sensitivity of circuits that are functionally equal but architecturally 
different. Then, unlike related works, it takes into account the QDI asynchronous 
systems’ particularities as well as the synchronous systems’ ones. Such a kind of 
logical-level simulation-based method simplifies the transient-fault effects because the 
real transient-fault features are not able to be characterized at such an abstraction level. 
Therefore, certain evaluation’s accuracy is replaced by a more feasible simulation 
complexity. Nevertheless, a very-meaningful preliminary assessment of such transient-
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fault effects on the system’s designs can be done without the expenses of real-circuit 
level testing platforms. 

Beyond such a novel method, this thesis classifies two types of failures: detectable 
naturally (FDN) and non-detectable naturally (FNN). It highlights innovatively the 
natural QDI asynchronous systems’ ability to mitigate long-duration transient (LDT) 
faults in deep-submicron technologies. In fact, as a long transient stays longer time in 
data path, it has a higher probability to become a failure, and as most of the failure cases 
in QDI systems are FDN due to the QDI asynchronous properties, such a kind of 
transient fault is always more probable to become a FDN when is not tolerated 
naturally. On the contrary, the clock’s period of synchronous systems imposes bounded 
delays, then LDT faults very likely result in FNN. 

These FDN-related issues were shown experimentally in a case study on a DES 
crypto-processor in synchronous and QDI asynchronous versions. In addition, as the 
largest part of FNN cases in QDI systems are arisen from forbidden codification states. 
They are easily detectable by low-cost alarm mechanisms (MOORE et al, 2003), and 
then a QDI system can achieve transient-fault immunity levels very close to 100 %. On 
the other hand, a synchronous system would require modifying its architecture by 
including expensive mitigation techniques as well as it would have higher development 
costs in terms of additional designers, time-to-market, and fabrication. In fact, fully 
protecting complex synchronous systems against transient faults rarely would cost less 
than a circuit’s area duplication. Rare cases, as illustrated in Figure 6.10, would be 
systems with a low amount of memory elements, even so they would not be protected 
against LDT faults, delay faults, and DPA attacks. 

On the contrary, one could argue that the case-study’s results showed the 
synchronous DES’s version (des_sync) less sensitive to transient-fault effects than the 
QDI asynchronous DES’s version (des_async). However, the results also showed a high 
des_async’s potential to have lower transient-fault sensitivity than the des_sync. Indeed, 
as no alarm mechanisms were embedded in such a des_async, it takes no advantage of 
the forbidden codification cases. Then, if the alarms are installed, des_async’s 
sensitivity certainly would close a lot to 0, and so would be lesser than the des_sync’s 
sensitivity. Furthermore, the results also illustrated that the area and computation-time 
factors were decisive to reach a sensitivity-related conclusion. Actually, the area and 
computation time in such a case-study des_async are not the most optimized ones. This 
des_async was designed before the new asynchronous-dedicated synthesis methods 
(FOLCO et al, 2005; TIEMPO, 2009), and thus its natural higher transient-fault 
resistance is suppressed due to its larger area and computation-time factors.  

Nevertheless, modern QDI asynchronous systems, based on such novel synthesis 
methods, can be designed by using less than twice larger area than their synchronous 
counterparts as well as taking at least a comparable computation time. These QDI 
systems’ improvements are mostly in terms of logic synthesis, and then their data 
codification and asynchronous handshaking communication are not violated. Therefore, 
their natural ability in transient-fault situations to often produce FDN instead of FNN 
remains even by using these modern synthesis methods, and so their higher transient-
fault resistance prevails over the area and computation-time factors. Hence, the 
des_async’s transient-fault sensitivity would be yet more reduced down the des_sync’s 
sensitivity, i.e., the des_async would be more transient-fault robust than the des_sync. 
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This thesis still proposed a novel method for electrical-level transient-fault effect 
evaluation that allows comparing the robustness of different C-element’s cells. Unlike 
related works, it is able to evaluate cells’ circuits regardless of clock-related issues. As a 
consequence, the transient-fault robustness of QDI asynchronous systems can be 
considerably improved because from now on the designers or EDA tools know the best 
C-element’s versions for such a design application target.  

All these modern QDI asynchronous circuits’ improvements, discussed in last 
paragraphs, linked with their natural properties in terms of QDI, low EMI, high DPA 
security, high modularity, and low power consumption make them very attractive to 
design robust systems. 

As future works, an investigation could be done into other types of C-elements 
beyond those ones evaluated in this thesis as well as exploiting the perturbation charges 
on C-element’s implementations based on lower Vdd and smaller CMOS technologies, 
which represent even worse scenarios for transient-fault effects. Furthermore, the strong 
natural QDI asynchronous systems’ ability to mitigate LDT faults could be proved 
formally by improving the symbolic simulation proposed in (MONNET; RENAUDIN; 
LEVEUGLE, 2007-b) with the LDT characteristics. Another future work would be 
integrating in EDA tools the knowledge of what C-element cells are the most transient-
fault robust. 

Finally, an ongoing work will show a meaningful improvement of the C-element 
cells’ transient-fault robustness. Actually, preliminary evaluations illustrate that the C-
element’s design based on a combination of folding and sizing increase even more the 
cell robustness. 
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APPENDIX A SISTEMAS ROBUSTOS A FALHAS 
TRANSIENTES EXPLORANDO CIRCUITOS 

ASSÍNCRONOS QUASE-INSENSÍVEIS AOS ATRASOS 

Resumo da Tese em Português 

1 Introdução 

As tecnologias submicrônicas profundas (do inglês: deep-submicron technologies, 

DSTs) para fabricação de circuitos integrados inegavelmente tem revolucionado o 

projeto de sistemas eletrônicos. Entretanto, elas também impõem consideráveis desafios 

para a confiabilidade dos circuitos integrados. Na realidade, os hoje nanoeletrônicos 

circuitos são mais sensíveis tanto a variações do processo de fabricação como também a 

fatores ambientais como temperatura, radiações e ruído elétrico. Mais 

predominantemente, circuitos integrados modernos são significativamente mais 

vulneráveis a dois principais efeitos de tais variações: as alterações temporais dos 

atrasos dos circuitos, conhecidas como falhas de atraso; e as modificações transientes de 

tensão, chamadas falhas transientes. 

Essas falhas, as de atraso, mas principalmente as falhas transientes, podem perturbar 

a operação dos circuitos integrados provocando inversões de bits de memória 

conhecidas como soft errors (SEs) (KARNIK; HAZUCHA; PATEL, 2004). Se 

propagados, esses erros podem levar o circuito a produzir resultados inconsistentes em 

suas saídas primarias caracterizando assim um cenário de circuit’s failure. Tais falhas 

tem ainda mais severos efeitos em DSTs, onde é possível que as durações de falhas 

sejam comparáveis ou mesmo mais longas que os períodos de ciclos de relógio 

(LISBOA; ERIGSON; CARRO, 2007), como ilustrado na Figura 1. Além disso, a 

maioria das técnicas de mitigação existentes (NICOLAIDIS, 1999; IYER et al, 2005) 

requerem elevados custos para tratar tais falhas transientes de longa duração (do inglês: 
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long-duration transient, LDT) e, portanto, novas soluções para proteger os circuitos são 

necessárias (LISBOA; ERIGSON; CARRO, 2007). 

 

Falhas LDTs tem claramente uma maior probabilidade de não ser mascarada e por 

isto elas também sustentam uma maior chance de produzir um circuit’s failure. Na 

realidade, tal maior probabilidade de erro é devido à limitação do período de relógio que 

é assim fundamental para a severidade das falhas de atraso e falhas transientes. Pelo 

outro lado, o relógio é uma particularidade dos tradicionais circuitos síncronos que 

devem então sofrer muito mais com as piores consequências dos LDTs do que os 

circuitos sem relógio. Por essa razão, projetar circuitos que não são controlados por um 

relógio global, mas somente pelos seus fluxos de dados internos, pode resultar em 

sistemas que são mais robustos contra tais falhas LDTs. Isso é o caso dos circuitos 

assíncronos e especialmente sua mais importante classe: os circuitos quase-insensíveis 

aos atrasos (do inglês: Quasi-Delay Insensitive, QDI) (LAFRIEDA; MANOHAR, 2004; 

JANG; MARTIN, 2005; PENG; MANOHAR, 2005; MONNET; RENAUDIN; 

LEVEUGLE, 2006; KUANG et al, 2007; GARDINER; YAKOVLEV; BYSTROV, 

2007; ALMUKHAIZIM; SHI; MAKRIS, 2008; KUANG et al, 2010). 

Essencialmente circuitos QDI são compostos de C-elements, também conhecidos 

como portas Muller. A função de um C-element é basicamente comparar os estados 

lógicos de suas entradas. Quando as entradas são idênticas, o estado de sua saída será 

atualizado para refletir o estado das suas entradas. O C-element nesta condição funciona 

como um buffer. No caso quando suas entradas não são idênticas, o estado de saída será 

preservado. Neste caso o C-element funciona como um elemento de memória. 

Este tipo de porta assegura a propriedade QDI e permite a sincronização entre 

estágios do circuito, como mostrado na Figura 2, onde um típico protocolo de 

Figura 1: Uma falha transiente de longa duração (LDT) 

Any circuitAny circuit’’s node:s node:

CircuitCircuit’’s clock:s clock:

Any circuitAny circuit’’s node:s node:

CircuitCircuit’’s clock:s clock:
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handshaking, baseado em quatro fases, é aplicado em um caminho de dados dual rail. O 

protocolo detalhado na Figura 3 impõe na verdade uma fase de retorno para zero entre 

os pedidos de dados e, portanto, um dado inválido (exemplo dua rail: 00), dados válidos 

(exemplo: 01; 10), e um dado proibido (11, em caso de erro) são possíveis no caminho 

de dados. 

 

O esquema de codificação multi-rail e a comunicação assíncrona por handshaking de 

sistemas QDI tornam a detecção e a correção de erros mais fáceis (MONNET; 

RENAUDIN; LEVEUGLE, 2006). A ausência de uma árvore de relógio possibilita a 

tais sistemas emitir menos interferência eletromagnética como também os produz mais 

seguros contra análises maliciosas da suas potências (BOUESSE et al, 2004). Além 

disso, tal propriedade também leva a aumentos na economia de energia bem como 

atingir altas performances com o custo de usar menos do que duas vezes maior área do 

que seus correlativos síncronos. Um circuito QDI é também inerentemente robusto 

contra falhas de atrasos na maioria de seus caminhos (LAFRIEDA; MANOHAR, 2004). 

Mais além, seus C-elements são fundamentais para implementar sistemas mais robustos. 

Na realidade, mesmo em sistemas síncronos, C-elements são bastante usados para filtrar 

falhas transientes e assim proteger os circuitos contra SEs (NICOLAIDIS, 1999; 

MITRA et al, 2005; FAZELI et al, 2007). Dessa forma, C-elements de sistemas QDI 

melhoram a habilidade do circuito de mascarar falhas transientes (MONNET; 

RENAUDIN; LEVEUGLE, 2006), mas eles também produzem os blocos de memória 

dos sistemas QDI e como tal são então também diretamente sensíveis a SEs (MONNET; 

RENAUDIN; LEVEUGLE, 2006-c). 
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Figura 2: Um circuito QDI funcionando no protocolo quatro fases 
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Este resumo de tese discute e apresenta, de forma inovadora, outro novo beneficio 

dos circuitos assíncronos QDI e sua aplicação para o projeto de sistemas 

nanoeletrônicos: sua forte habilidade natural para mitigação de falhas LDT simples em 

DSTs. 

2 Efeitos de falhas transientes em circuitos integrados 

Falhas transientes em circuitos integrados podem ser toleradas naturalmente (do 

inglês: faults tolerated naturally, FTN) por efeitos de mascaramento ou elas podem 

provocar SEs. 

2.1 Efeitos de mascaramento 

Em circuitos síncronos existem três tipos de mascaramento em nível de hardware 

(KARNIK; HAZUCHA; PATEL, 2004): 

Caso (a): Um mascaramento lógico ocorre quando a falha é mascarada devido a 

uma lógica combinacional. O bloco combinacional não propaga a falha até a entrada de 

um bloco de memória ou até uma saída primária do circuit; 

Caso (b): Um mascaramento elétrico é a atenuação do SET como um resultado das 

propriedades elétricas das portas no caminho de propagação. Isto também depende da 

energia da falha transiente que contribui para definir o formato do pulso SET. 

Tipicamente, um SET começa a ser levemente atenuado por uma porta quando sua 

largura é menor do que o tempo de propagação da porta; 

Caso (c): Um mascaramento da janela de armazenamento (do inglês latching 

window) é quando o SET alcança a entrada de um bloco de memória, mas ele não 

Invalid Data
Return to 0

Valid Data

Valid Data Valid DataInvalid Data
Return to 0

Data Outputs
of a Receptor Stage N

Acknowledgement Output 
of a Receptor Stage N ►

►

Valid DataInvalid Data
Return to 0

Data Inputs
of a Receptor Stage N ► Invalid Data

Return to 0

Phase 1 Phase 2 Phase 3 Phase 4 Phase 1 Phase 2Phase 4Phase 3

Cycle X Cycle X+1Cycle X-1

Invalid Data
Return to 0

Valid Data

Valid Data Valid DataInvalid Data
Return to 0

Data Outputs
of a Receptor Stage N

Acknowledgement Output 
of a Receptor Stage N ►

►

Valid DataInvalid Data
Return to 0

Data Inputs
of a Receptor Stage N ► Invalid Data

Return to 0

Phase 1 Phase 2 Phase 3 Phase 4 Phase 1 Phase 2Phase 4Phase 3

Cycle X Cycle X+1Cycle X-1

Figura 3: Protocolo quatro fases para uma comunicação entre estágios de um 
sistema assíncrono QDI 
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encontra a janela temporal, tais como os tempos de set-up e hold ou o sinal de enable, 

requeridos para memorizar um valor lógico; 

Os casos (a) e (b) ocorrem da mesma forma para circuitos assíncronos QDI. Além 

deles, existem dois outros tipos de mascaramento em circuitos QDI (MONNET; 

RENAUDIN; LEVEUGLE, 2006-c): 

Caso (d): Um mascaramento através da capacidade de filtragem do C-element 

acontece quando um SET chega em uma entrada de um C-element, mas ele não é 

memorizado. A razão é que uma outra entrada apresenta um valor diferente daquela 

entrada com o SET, assim a saída do C-element não é modificada e o SET é mascarado; 

Caso (e) Outro mascaramento é as ações do protocolo de comunicação por meio de 

uma tolerância natural a falhas de atraso induzidas por SETs. Isto ocorre quando 

um SET é memorizado por um C-element, ou seja, um soft error acontece, mas o 

mesmo valor armazenado, mais cedo ou mais tarde, seria memorizado de qualquer 

maneira em condições normais livres de falhas. Assim, uma falha de atraso é induzida 

na saída do C-element. Contudo, tal memorização prematura ou atrasada é naturalmente 

tolerada pela propriedade QDI do circuito. 

2.2 Failures: os efeitos dos soft errors 

Soft errors implicam na maioria das vezes em um failure apresentado nas saídas 

primárias de um circuito de um sistema. Isto significa que um soft error levaria à 

computação de um resultado inconsistente ilustrado nas saídas primárias do circuito (do 

inglês: circuit’s primary outputs, CPOs). 

Quando um circuito é capaz de indicar o término da computação de resultados por 

uma saída primária específica (por exemplo, um sinal de fim de operação SEO, do 

inglês signal of end operation), eventuais failures nas suas saídas primárias de 

resultados podem ser detectados naturalmente pelo sistema sem a necessidade de 

qualquer mecanismo adicional em hardware específico para detecção. 

Dessa forma, dois tipos de failure são definidos: 

• Failure Detectável Naturalmente (FDN): a detecção natural de um failure 

ocorre se o sinal de fim de operação SEO não é indicado dentro de um período 

estimado superior ao tempo total de computação para obter um resultado. Nesse 

cenário de failure, módulos periféricos vizinhos como também aplicações de 



 

 

119 

 

software do sistema normalmente perceberiam a ausência de tal indicação e, 

assim, o failure se propagaria naturalmente para níveis de abstração superiores 

(exemplo: aplicações de software), onde o sistema poderia facilmente tanto 

detectá-lo como corrigi-lo por recomputação. Na verdade, a detecção em nível 

de software, por exemplo, por mecanismos de monitoração por tempo de 

interrupção (do inglês timeout) e uma consequente solicitação de recomputação 

facilmente eliminariam tal failure; 

• Failure Não-detectável Naturalmente (FNN): um eventual failure em outras 

CPOs, que fornecem resultados de dados ou endereços, por exemplo, não pode 

ser detectado naturalmente se o circuito indica o sinal de fim de operação SEO 

dentro do período estimado, logo mecanismos adicionais em hardware precisam 

ser implementados para viabilizar detecções de failures sem usar custosas 

técnicas baseadas em softwares. 

3 Detecção natural de failures 

A maioria dos circuitos integrados controla a quantidade de ciclos de iteração e 

indica um sinal de saída no fim da operação (SEO), dessa forma uma eventual carência 

de indicação devido a um failure é facilmente detectável pelo sistema, ou seja, como 

definido na seção anterior, o failure é detectável naturalmente (FDN) sem requerer 

qualquer hardware adicional e facilmente corrigido por recomputação. Pelo outro lado, 

se o SEO é bem indicado e um failure surge nas outras CPOs, o failure é não-detectável 

naturalmente (FDN) e assim extras mecanismos de hardware para detecção são 

necessários para mitigá-lo sem ter altos custos com software. Tabela 1 sumariza esses 

efeitos de falhas transientes de acordo com as CPOs. 

Tabela 1: Possiveis CPOs de um sistema perturbado por falhas transientes 

Valores nas CPOs 
Consequência 

SEO Outras CPOs 
OK OK FTN 

Inconsistente OK FDN 
Inconsistente Inconsistente FDN 

OK Inconsistente FNN 
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3.1 Habilidade dos sistemas assíncronos QDI 

Diferentemente dos circuitos síncronos, os circuitos assíncronos QDI tem uma 

habilidade natural para transformar a maioria dos casos de SE em FDN em qualquer 

tecnologia de fabricação de circuito integrado. Isso significa que a maior parte das 

situações de failure são detectáveis pelo sistema QDI sem qualquer hardware extra. Tal 

propriedade natural de um circuito QDI é justificada pela sua arquitetura. 

Uma arquitetura QDI controla a sequência do seu fluxo de dados no final de cada 

um dos seus ciclos de iteração. Cada ciclo precisa ter todas as fases do protocolo de 

handshaking, como ilustrado na Figura 3, por exemplo. Qualquer evento que perturbe as 

fases do protocolo pode levar o sistema a perder sua correta sequência de dados. Tal 

perda de sincronização entre fases de um ciclo induz um bloqueio (do inglês deadlock) 

sobre o fluxo de dados do sistema na maioria dos casos de SE (MONNET; 

RENAUDIN; LEVEUGLE, 2007-b; MOORE et al., 2003). Na verdade, um ciclo de 

iteração não finaliza com sucesso seu objetivo e assim um elemento de dado é perdido 

ou um adicional é inserido. 

Normalmente, no protocolo quatro fases, uma situação de deadlock acontece quando 

um SE ocorre em um elemento de memória de um estágio N de um sistema chaveando 

de/para um dado válido ou proibido para/de um dado inválido. Tal cenário na realidade 

gera um acknowledgment errado (ou seja, um acknowledgment em estado lógico 

oposto) para o estágio prévio N-1 do sistema. Assim, por exemplo, um dado válido em 

um elemento de memória de um estágio N pode ser perdido (ou seja, tornar-se um dado 

inválido) antes que o próximo estágio N+1 tenha processado e feito acknowledgment 

dele. Como pior consequência, a correta comunicação entre estágios é quebrada e um 

deadlock é caracterizado. 

Em uma primeira impressão, tal cenário de deadlock pode parecer um 

comportamento que desqualifique os sistemas QDI. Entretanto, a maioria das 

arquiteturas QDI contam seus elementos de dados ou ainda a quantidade de ciclos de 

iteração a fim de indicar um SEO. Portanto, um eventual deadlock sempre perturba tal 

contagem e assim não há indicação de SEO e um FDN sempre acontece. Pelo outro 

lado, quase todos os casos de FNN são facilmente detectáveis através da implementação 

de mecanismos de alarme de baixo custo (MONNET; RENAUDIN; LEVEUGLE, 
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2006-c; 2007-b; MOORE et al., 2003) que identificam estados de dados proibidos no 

protocolo. 

Na realidade, os caminhos de dados multi rail dos circuitos QDI permitem classificar 

os SEs devido a falhas transientes únicas em três casos (MONNET; RENAUDIN; 

LEVEUGLE, 2006-c; 2007-b): 

• Dado gerado: um elemento de dado inválido torna-se um elemento de dado 

válido, por exemplo, o bloco de memória dual rail na Figura 2 trocando um bit 

como 00=>01 ou 00=>10; 

• Dado desaparecido: um elemento de dado válido para um elemento de dado 

inválido, por exemplo, 01=>00 ou 10=>00; e 

• Dado corrompido: um elemento de dado proibido é gerado, por exemplo, 

01=>11 ou 10=>11. 

Todos os casos de dados corrompidos causam um FNN porque um dado proibido é 

interpretado pelo sistema como um dado válido, assim o estado lógico do 

acknowledgment não é modificado e um deadlock não acontece. Tais casos de FNN 

são, entretanto, detectáveis pela adição de um bastante simples circuito de alarme 

(MOORE et al., 2003). Pelo outro lado, somente poucos casos de dados gerados e dados 

desaparecidos não resultam em deadlock, ou seja, FNN (MONNET; RENAUDIN; 

LEVEUGLE, 2006-c; 2007-b). Todos os outros casos, que representam a maioria de 

casos de SEs, produzem FDN. 

Como os efeitos nocivos de falhas transientes são FDN ou FNN de acordo com a 

Tabela 1, assim a maioria das situações de failure em sistemas assíncronos QDI podem 

ser facilmente mitigadas ou por detecção natural ou por mecanismos de alarme. 

3.2 Inabilidade dos sistemas síncronos 

Pelo outro lado, casos de SEs em circuitos síncronos dificilmente resultam em FDN. 

Como consequência, a maior parte dos SEs causam FNN e assim sistemas síncronos 

praticamente não tem aquela propriedade natural para detecção. 

Notadamente, a presença de um período fixo de relógio assegura a sincronização dos 

dados do sistema. Portanto, em contraste com as discussões da seção prévia para os 

circuitos assíncronos QDI, na maioria dos casos de SEs, o SEO é indicado e assim um 
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FNN é gerado ao invés de um FDN. Casos de FNN são assim predominantes em 

circuitos síncronos. 

Os poucos casos de geração de FDN são principalmente atribuídos a perturbações 

nos registradores que contam o número de ciclos de iteração, já que tais elementos de 

memória auxiliam na implementação do SEO. Alem disso, falhas transientes, ou em 

circuitos combinacionais que gerem esse SEO ou em circuitos da árvore de relógio, 

podem também causar FDN.  

4 Mitigação de múltiplas falhas transientes 

Múltiplos eventos de perturbação ou mesmo eventos únicos podem criar múltiplas 

falhas transientes. Tais situações de falha, que são de mais baixa probabilidade do que 

as falhas transientes únicas, podem criar mais severos efeitos nocivos porque mais de 

um bloco de memória pode ser perturbado e assim múltiplos soft errors podem ser 

gerados tanto em circuitos síncronos quanto em circuitos assíncronos QDI. Na 

realidade, falhas transientes podem perturbar diferentes blocos de memória (como 

aqueles elementos de memória na Figura 2) tanto simultaneamente como também em 

diferentes instantes. 

Os efeitos nocivos de múltiplas falhas transientes seriam mais críticos se suas 

probabilidades de ocorrência fossem maiores. Na verdade os sistemas teriam que ser 

protegidos usando ainda mais redundância para enfrentar tal fenômeno. 

Além disso, como técnicas de mitigação são baseadas em redundância, falhas 

ocorrendo simultaneamente em partes redundantes podem confundir os elementos de 

detecção (que fazem a técnica trabalhar corretamente) levando-os a falhar. A maioria 

das abordagens de mitigação são assim vulneráveis aos efeitos nocivos de múltiplas 

falhas transientes. 

A análise dos efeitos de múltiplas falhas transientes em circuitos síncronos é 

bastante similar às discussões salientadas na seção anterior. Contudo, como há mais 

eventos de falhas no sistema, a probabilidade de ocorrências de SEs devido a múltiplas 

falhas transientes, e assim de um FNN, é obviamente maior do que nos casos de 

ocorrência de falhas transientes únicas. 
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Pelo outro lado, em sistemas assíncronos QDI, a ocorrência de múltiplas falhas em 

diferentes blocos de memória (como na Figura 2) também segue as mesmas 

consequências discutidas na seção anterior, assim há uma grande chance que eles 

resultem em FDN. O mesmo cenário acontece se múltiplas falhas transientes ocorrem 

em diferentes instantes. 

Contudo, múltiplas falhas transientes ocorrendo no mesmo bloco de memória de um 

sistema QDI podem também resultar em múltiplos SEs e assim para uma codificação 

dual rail, por exemplo, elas causam FNN na maioria dos casos. Na realidade, as 

situações de SEs são: 00=>11, que é um caso de dado corrompido que provavelmente 

gera um deadlock (ou seja, um FDN) porque o estado lógico do acknowledgment é 

modificado; e 01=>10, ou 10=>01, que normalmente não produzem deadlocks (portanto 

FNN) porque elas mantem o estado lógico do acknowledgment. Monnet (2006-c) assim 

classifica um caso a mais de SE em relação aqueles apresentados na seção anterior para 

falhas transientes únicas em sistemas QDI: 

• Dado modificado: um elemento de dado válido é revertido para outro elemento 

de dado válido, por exemplo, 01=>10 ou 10=>01. 

Infelizmente casos de dados modificados não tem uma solução natural para serem 

mitigados e, dessa forma, eles requerem mecanismos de mitigação suplementares. 

Contudo, como bem discutido na seção anterior, os casos de dados corrompidos que não 

se tornam um FDN são facilmente detectáveis por um mecanismo de alarme de baixo-

custo (MOORE et al., 2003). 

Além disso, através do uso de codificação M-out-of-N (multi-rail), que é bastante 

normal em projetos de circuitos QDI, as chances casos de dados corrompidos são muito 

maiores, visto que haverá uma maior redundância da codificação. Portanto, a 

probabilidade que dados proibidos ocorram é maior e, dessa forma, mais casos de SEs 

são detectáveis através do mecanismo de alarme ou mesmo gerando naturalmente 

deadlocks (FDN). Uma solução, portanto, para reduzir casos de dados modificados é 

usar uma maior codificação M-out-of-N do que o dual rail (ou seja, 1-out-of-2). 

Mesmo que sistemas assíncronos QDI sob múltiplas falhas transientes não tenham a 

mesma performance para gerar FDN do que situações de falhas transientes únicas, eles 

tem, contudo, melhores mecanismos naturais para a mitigação de tais falhas múltiplas 

do que circuitos síncronos. 
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5 Mitigação de falhas transientes de longa duração 

Os efeitos nocivos de falhas LDTs, típicas em DSTs, são quase sempre catastróficos 

para circuitos síncronos. Por exemplo, um transiente que comece na segunda metade de 

um ciclo de relógio e termine somente no ciclo seguinte: um cenário de SE é muito 

provável como também um FNN. Além disso, grandes overheads no sistema são 

necessários para mitigar tal falha LDT (LISBOA; ERIGSON; CARRO, 2007). 

Contudo, tais falhas em circuitos QDI geram FDN na maior parte dos casos de SEs. 

Na realidade, a probabilidade de um deadlock é maior para falhas mais longas, visto que 

o transiente permanece por um maior tempo em um caminho do circuito e, então, os 

poucos caminhos sensíveis aos atrasos são mais facilmente alcançados. A chance de 

elementos de dados serem perdidos ou inseridos é maior. 

Além disso, mesmo casos de dados corrompidos devido a falhas únicas, que sempre 

geram FNN em tecnologias submicrônicas, podem produzir deadlocks (ou seja, FDN) 

em DSTs. Tais casos, entretanto, acontecem quando as falhas LDTs ocorrem em 

elementos do sistema QDI que são sensíveis aos atrasos. Há assim uma grande chance 

de um SE devido a um dado corrompido ser seguido na próxima fase do protocolo por 

outro SE que produz um deadlock. Portanto, uma falha mais longa pode gerar múltiplos 

SEs em sequência. Como os cenários de SEs permanecem por maior tempo e uma maior 

parte deles causam deadlocks (como explicado nas seções anteriores), falhas transientes 

de maior duração tem uma maior probabilidade de produzir um FDN. 

6 Análise de um estudo de caso 

Um estudo de caso de um criptoprocessador DES (Data Encryption Standard) em 

versões assíncrona QDI e síncrona foi avaliado através do método baseado em 

simulações apresentado em (BASTOS et al, IOLTS 2009-b). Resultados adicionais 

relacionados a injeções de falhas transientes únicas são mostrados nas Figura 4 e 5. 

Figura 4 ilustra no seu eixo vertical a habilidade do sistema para detectar FDN. No 

eixo horizontal, ambas as figuras mostram a razão entre durações das falhas transientes 

com períodos de ciclos, que são o mínimo período de relógio no circuito síncrono e uma 

média no circuito assíncrono. Maiores valores nesta razão representam transientes mais 

longos e assim cenários de falhas transientes típicos se os circuitos fossem baseados em 

DSTs, cujas durações de falhas são da ordem de períodos de ciclos (LISBOA; 
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ERIGSON; CARRO, 2007). Por exemplo, Figura 4 mostra que o sistema QDI (curva do 

des_async) é capaz de detectar naturalmente cerca de 30% das situações de injeção de 

falhas em uma razão duração/período de 95% (ou seja, a duração da falha transiente é 

igual a 95% do período de ciclo). Isto significa que 30% das situações resultam em FDN 

e 70% ou em FTN ou em FNN. A Figura 4 ilustra, portanto, que o des_async, sob um 

cenário de falha transiente (ou seja, na alta razão duração/período de 95%) que é típico 

em DSTs, tem um maior número de casos de FDN do que o circuito síncrono 

(des_sync). Na realidade, o número de casos de deadlock no des_async aumenta 

significativamente em função de mais longas durações de falhas transientes. 

 

Figura 5 mostra no seu eixo vertical a habilidade do sistema para tolerar falhas (ou 

seja, FTN) e para detectar FDN. A versão QDI segue uma tendência constante em torno 

de 80% depois de uma leve redução inicial. De forma diferente, uma tendência 

decrescente é sempre presente no circuito síncrono. Isto mostra que a redução no seu 

caso particular de mascaramento da janela de armazenamento, discutido em seção 

prévia, joga muito mais do que a diminuição no mascaramento do circuito QDI. Na 

razão duração/período de 95% observando a Figura 4 e 5, cerca de 50% das situações de 

injeção de falhas na versão QDI (80% da Figura 5 menos 30% da Figura 4) resultam em 

Figura 4: Um estudo de caso de um cryptoprocessador DES: habilidade do 
sistema para detecção em função de durações de falhas transientes 
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FTN, 30% FDN (da Figura 4) e 20% FNN (100% menos 80% da Figura 5). Pelo outro 

lado, a versão síncrona na mesma condição de DST apresenta FTN em 42% das 

situações, FDN em 1% e FNN em 57%. Se a versão QDI fosse implementada com 

alarmes (MOORE et al., 2003), a sua habilidade na Figura 5 alcançaria muito próximo 

de 100% mesmo sob falhas LDTs em DSTs. Dessa forma, fica claro concluir que falhas 

LDTs em DSTs podem ser melhores tratadas no circuito assíncrono QDI. 

 

6 Conclusões 

Este resumo de tese ilustra pela primeira vez a habilidade natural dos circuitos 

assíncronos QDI para mitigar falhas transientes sob condições de DSTs. Sistemas QDI 

tem uma melhor performance do que seus equivalentes síncronos para naturalmente 

detectar falhas LDTs tanto em lógica computacional quanto em elementos de memória. 

Além disso, eles tem mecanismos naturais (na realidade a codificação multi-rail e seus 

elementos de dados proibidos) que facilitam a detecção de erro mesmo sob falhas 

transientes múltiplas. Por fim, sistemas QDI agregam tais características com sua 

propriedade QDI natural. Isto permite tolerar a maioria dos casos de falhas de atraso, 

que hoje são também um grande desafio em DSTs. 
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mitigação de falhas LDTs em DSTs 



APPENDIX B SYSTEMES ROBUSTES AUX FAUTES 
TRANSITOIRES EXPLOITANT LA LOGIQUE 

ASYNCHRONE QUASI-INSENSIBLE AUX DELAIS 

Résumé de la Thèse en Français 

1 Introduction 

Les technologies submicroniques profondes (de l'anglais: deep-submicron 

technologies, DSTs) pour la fabrication de circuits intégrés ont indéniablement 

révolutionné la conception des systèmes électroniques. Toutefois, elles imposent 

également des défis considérables pour la fiabilité des circuits intégrés. En fait, 

aujourd'hui, les circuits nanoélectroniques sont plus sensibles aux variations du 

processus de fabrication ainsi que des facteurs environnementaux comme la 

température, les radiations et le bruit électrique. Plus notamment, les circuits intégrés 

modernes sont beaucoup plus vulnérables à deux principaux effets de ces variations: les 

altérations temporaires des délais des circuits, appelées les fautes de délais; et les 

modifications transitoires de voltage, connues comme les fautes transitoires. 

Ces deux types de fautes, mais surtout les fautes transitoires peuvent perturber le 

fonctionnement des circuits intégrés provoquant des inversions des bits de mémoire 

connues sous le nom en anglais soft errors (SEs) (KARNIK; HAZUCHA; PATEL, 

2004). Si propagées, ces erreurs peuvent entraîner le circuit à produire des résultats 

incohérents en ses sorties primaires rendant ainsi un scénario connu en anglais comme 

circuit's failure. Ces fautes ont des effets encore plus graves dans les DSTs, où il est 

possible que les durées de fautes soient comparables ou même plus longues que les 

périodes de cycles d'horloge (LISBOA; ERIGSON; CARRO, 2007), comme illustré 

dans la Figure 1. En outre, la plupart des techniques de protection existantes 

(NICOLAIDIS, 1999; IYER et al, 2005) exigent des surcoûts très hautes pour faire face 
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à ces fautes transitoires de longue durée (de l'anglais: long-duration transient, LDT) et 

donc de nouvelles solutions pour protéger les circuits sont nécessaires (LISBOA; 

ERIGSON; CARRO, 2007). 

 

Les fautes LDTs ont clairement une probabilité beaucoup plus élevée de ne pas être 

masquées et donc ils ont aussi plus de chances de produire un circuit's failure. En 

réalité, cette probabilité plus élevée d'erreur est due à la limitation de la période 

d'horloge qui est ainsi fondamentale pour la gravité des fautes de délai et des fautes 

transitoires. D'autre part, l'horloge est une particularité des circuits synchrones 

traditionnels qui souffrent donc beaucoup plus avec les pires conséquences des LDTs 

que les circuits sans horloge. Par conséquent, la conception de circuits qui ne sont pas 

contrôlés par une horloge globale, mais seulement par leur fluxes de données internes, 

peut entraîner en systèmes qui sont plus robustes contre ces fautes LDTs. Cela est le cas 

des circuits asynchrones et spécialement leur plus importante classe: les circuits quasi-

insensibles aux délais (de l'anglais: Quasi-Delay Insensitive, QDI) (LAFRIEDA; 

MANOHAR, 2004; JANG; MARTIN, 2005; PENG; MANOHAR, 2005; MONNET; 

RENAUDIN; LEVEUGLE, 2006; KUANG et al, 2007; GARDINER; YAKOVLEV; 

BYSTROV, 2007; ALMUKHAIZIM; SHI; MAKRIS, 2008; KUANG et al, 2010). 

Essentiellement les circuits QDI sont composés de C-éléments, aussi connus comme 

les portes de Muller. La fonction d'un C-élément est simplement comparer les états 

logiques de ses entrées. Lorsque les entrées sont identiques, l'état de sa sortie sera mis à 

jour afin de refléter l'état des ses entrées. Le C-élément dans cet état fonctionne comme 

un buffer. Dans le cas où ses entrées ne sont pas identiques, l'état de sortie sera préservé. 

Dans ce cas-là le C-élément fonctionne comme un élément de mémoire. 

Ce type de porte assure la propriété QDI et permet la synchronisation entre les 

différents stages du circuit, comme montré dans la Figure 2, où un typique protocole de 

Figure 1: Une faute transitoire de longue durée (LDT) 

Any circuitAny circuit’’s node:s node:

CircuitCircuit’’s clock:s clock:

Any circuitAny circuit’’s node:s node:

CircuitCircuit’’s clock:s clock:
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handshaking, basé en quatre phases, est appliqué dans un chemin de données double 

rail. Le protocole détaillé dans la Figure 3 impose en fait une phase de retour à zéro 

entre les requêtes de données et donc une donnée invalide (exemple double rail: 00), des 

données valides (exemple: 01; 10) et une donnée interdite (11, en cas d'erreur) sont 

possibles sur le chemin de données. 

 

Le schéma de codification multi-rail et la communication asynchrone par 

handshaking de systèmes QDI permettent une plus facile détection et correction de 

erreurs (MONNET; RENAUDIN; LEVEUGLE, 2006). L'absence d'un arbre d'horloge 

permet à ces systèmes d'émettre moins interférences électromagnétiques et les rend plus 

sécurisés contre les analyses malicieuses de leurs puissances (BOUESSE et al, 2004). 

En outre, cette propriété entraîne également des augmentations dans l'économie 

d'énergie, et la réalisation de hautes performances aux coûts de l'utilisation de moins de 

deux fois plus grande superficie que leurs homologues synchrones. Un circuit QDI est 

aussi intrinsèquement robuste aux fautes de délais dans la plupart de ses chemins 

(LAFRIEDA; MANOHAR, 2004). Par ailleurs, ses C-éléments sont fondamentaux pour 

mettre en œuvre systèmes plus robustes. En fait, même dans les systèmes synchrones, 

C-éléments sont souvent utilisés pour filtrer les fautes transitoires et donc protéger les 

circuits contre SEs (NICOLAIDIS, 1999; MITRA et al, 2005; FAZELI et al, 2007). Par 

conséquent, C-éléments de systèmes QDI améliorent la capacité du circuit de masquage 

de fautes transitoires (MONNET; RENAUDIN; LEVEUGLE, 2006), mais ils font aussi 

les blocs de mémoire des systèmes QDI et donc ils sont également directement sensibles 

aux SEs (MONNET; RENAUDIN; LEVEUGLE, 2006-c). 

 

Stage C 

C 
C 

C 

C 
C 

A0 

A1 

AB_ack 

B1 

B0 

S1 

S0 

S_ack 

Computational 
Logic Block 

Computational 
Logic Block 

Computational L ogic  
Block = Dual-Rail XOR  

Memory  
Block Memory  

Block 

Memory  
Block 

Figure 2: Un circuit QDI fonctionnant à partir du protocole quatre phases 
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Ce résume de thèse discute et présente, de façon innovante, un autre avantage des 

circuits asynchrones QDI et leur application pour la conception de systèmes 

nanoélectroniques: leur forte capacité naturelle pour résister aux fautes LDTs unique en 

DSTs. 

2 Les effets de fautes transitoires dans les circuits intégrés 

Les fautes transitoires dans les circuits intégrés peuvent être tolérées naturellement 

(de l'anglais: faults tolerated naturally, FTN) par des effets de masquage ou ils peuvent 

provoquer des SEs. 

2.1 Les effets de masquage 

Dans les circuits synchrones il y a trois types d'effets de masquage au niveau 

matériel (KARNIK; HAZUCHA; PATEL, 2004): 

Cas (a): Un masquage logique se produit lorsque la faute est masquée en raison 

d'une logique combinatoire. Le bloc combinatoire ne propage pas la faute à l'entrée d'un 

bloc de mémoire ou à une sortie primaire du circuit; 

Cas (b): Un masquage électrique est une atténuation du SET comme une 

conséquence des propriétés électriques des portes dans le chemin de propagation. Cela 

dépend aussi de l'énergie du SET qui contribue pour définir la forme du pulse SET. 

Typiquement, un SET commence à être légèrement atténué par une porte lorsque sa 

durée est inférieure au temps de propagation de la porte; 

Cas (c): Un masquage de la fenêtre de stockage (de l'anglais latching window) est 

quand l'SET atteint l'entrée d'un bloc de mémoire, mais il ne trouve pas la fenêtre de 

Invalid Data
Return to 0

Valid Data

Valid Data Valid DataInvalid Data
Return to 0

Data Outputs
of a Receptor Stage N

Acknowledgement Output 
of a Receptor Stage N ►

►

Valid DataInvalid Data
Return to 0

Data Inputs
of a Receptor Stage N ► Invalid Data

Return to 0

Phase 1 Phase 2 Phase 3 Phase 4 Phase 1 Phase 2Phase 4Phase 3

Cycle X Cycle X+1Cycle X-1
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Return to 0

Valid Data

Valid Data Valid DataInvalid Data
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of a Receptor Stage N

Acknowledgement Output 
of a Receptor Stage N ►

►
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Data Inputs
of a Receptor Stage N ► Invalid Data
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Figure 3: Protocole quatre phases pour une communication entre stages d’un 
système asynchrone QDI 



 

 

131 

 

temps, comme les temps de set-up et hold ou le sinal de enable, qui sont nécessaires 

pour mémoriser une valeur logique; 

Cas (a) et (b) se produisent de la même manière pour les circuits asynchrones QDI. 

Par ailleurs, il y a deux autres types d'effets de masquage dans les circuits asynchrones 

QDI (MONNET; RENAUDIN; LEVEUGLE, 2006-c): 

Cas (d): Un masquage grâce à la capacité de filtrer du C-élément qui se passe 

quand un SET arrive à l'entrée d'un C-élément, mais il n'est pas mémorisé. La raison est 

qu'une autre entrée a une valeur logique différente de celle avec l'SET, par conséquent, 

la sortie du C-élément n'est pas modifiée et le SET est masqué; 

Cas (e): Un autre masquage est les actions du protocole de communication à partir 

d'une tolérance naturelle aux fautes de délais induites par SETs. Cela se produit 

quand un SET est mémorisé par un C-élément, c'est-à-dire, un soft error se produit, mais 

la même valeur logique serait, plus tôt ou plus tard, stockée en mémoire de toute façon 

sous des conditions normales sans fautes. Par conséquent, une faute de délais est induite 

dans la sortie du C-élément. Néanmoins, cette mémorisation prématurée ou retardée est 

presque toujours naturellement tolérée par la propriété QDI du circuit. 

2.2 Les failures: les effets des soft errors 

Soft errors imposent dans la plupart des cas un failure aux sorties primaires d'un 

circuit d'un système. Cela signifie qu'un soft error conduit au calcul d'un résultat 

inconsistant illustré aux sorties primaires du circuit (de l'anglais: circuit’s primary 

outputs, CPOs). 

Si un circuit est en mesure d'indiquer la fin du calcul des résultats par une sortie 

primaire spécifique (par exemple, un signal de la fin de l'opération SEO, de l'anglais: 

signal of end operation), éventuels failures aux sorties primaires de résultats peuvent 

être naturellement détecté par le système sans nécessiter de quelconque mécanisme 

supplémentaire au niveau matériel spécifique pour la détection. 

Par conséquent, deux types de failures sont définis: 

• Failure Détectable Naturellement (FDN): la détection naturelle d'un failure se 

produit si le signal de la fin de l''opération SEO n'est pas indiqué dans un délai 

estimé supérieur au temps total de calcul pour obtenir un résultat. Dans ce 

scénario de failure, modules périphériques à proximité ainsi que les applications 
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logicielles du système normalement remarqueraient l'absence de ce indication. 

Par conséquent, le failure serait propagé naturellement aux niveaux d'abstraction 

plus élevé (par exemple, les applications logicielles), où le système pourrait 

facilement le détecter ainsi que le corriger par un recalcul. En fait, une détection 

au niveau logiciel, par exemple, en utilisant des mécanismes de surveillance par 

temps d'interruption (du anglais timeout) et une ultérieure demande de recalcul 

permettraient d'éliminer facilement ce failure; 

• Failure Non-détectable Naturellement (FNN): un éventuel failure aux autres 

CPOs, qui fournissent les résultats des données ou adresses, par exemple, ne peut 

pas être détecté naturellement si le circuit indique le signal de la fin de 

l''opération SEO dans le délai prévu. Par conséquent, des mécanismes 

additionnels au niveau matériel doivent être mis en œuvre pour permettre la 

détection de failures sans l'aide de coûteuses techniques au niveau logiciel. 

3 La détection naturelle de failures 

La plupart des circuits intégrés contrôle la quantité de cycles d'itération et indique un 

signal de sortie à la fin de l'opération (SEO), puis un éventuel manque de l'indication en 

raison d'un failure est facilement détectable par le système. C'est-à-dire, comme défini 

dans la section précédente, le failure est détectable naturellement (FDN) sans nécessiter 

aucun matériel supplémentaire et facilement corrigé par recalcule. D'autre part, si le 

SEO est bien indiqué et un failure se produit aux autres CPOs, le failure est non 

détectable naturellement (FDN) et donc des mécanismes supplémentaires au niveau 

matériel pour la détection sont nécessaires afin de le combattre sans avoir de hauts coûts 

au niveau logiciel. Le Tableau 1 résume ces effets de fautes transitoires en conformité 

avec le CPOs. 

Tableau 1: Possibles CPOs d'un système perturbé par fautes transitoires 

Valeurs aux CPOs 
Conséquence 

SEO Autres CPOs 
OK OK FTN 

Inconsistant OK FDN 
Inconsistant Inconsistant FDN 

OK Inconsistant FNN 
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3.1 L’habilité des systèmes asynchrones QDI 

Contrairement aux circuits synchrones, les circuits asynchrones QDI ont une habilité 

naturelle à transformer la plupart des cas de SE en FDN, quelle que soit la technologie 

de fabrication de circuit intégré. Cela signifie que la plus grande partie des situations de 

failure sont détectables par le système QDI sans aucun dispositif matériel 

supplémentaire. Cette propriété naturelle d'un circuit QDI est justifiée par son 

architecture. 

Une architecture QDI contrôle la séquence de son flux de données à la fin de chacun 

de ses cycles d'itération. Chaque cycle doit avoir toutes les phases du protocole de 

handshaking, comme illustré dans la Figure 3, par exemple. Tout événement qui 

perturbe les phases du protocole peut conduire le système à perdre de sa séquence 

correcte des données. Cette perte de synchronisation entre les phases d'un cycle induit 

un blocage (du anglais deadlock) sur le flux de données du système dans la plupart des 

cas de SE (MONNET; RENAUDIN; LEVEUGLE, 2007-b; MOORE et al, 2003). En 

effet, un cycle d'itération ne parvient pas à terminer son objectif et donc un élément de 

donnée est perdu ou un autre supplémentaire est inséré. 

Normalement, dans le protocole en quatre phases, une situation de deadlock se 

produit quand un SE est généré dans un élément de mémoire d'un stage N d'un système 

en commutant de / vers une donnée valide ou interdite vers / de une donnée invalide. Ce 

scénario génère en effet un acquittement erroné (c'est-à-dire, un acquittement à l'état 

logique inverse) vers le stage précédent N-1 du système. Alors, par exemple, une 

donnée valide dans un élément de mémoire de le stage N d'un système peut être perdu 

(c'est-à-dire, devenir une donnée invalide) avant que le stage suivant N+1 du système ait 

traité et fait le acquittement de lui. Comme la pire conséquence, la communication entre 

les stages est cassée et un deadlock est caractérisé. 

Dans une première impression, ce scénario de deadlock peut sembler un 

comportement qui disqualifie les systèmes QDI. Toutefois, la majorité des architectures 

QDI comptent leurs éléments de données ou même la quantité de cycles d'itération afin 

de signaler un SEO. Par conséquent, un éventuel deadlock toujours perturbe ce compte 

et ainsi il n'y a pas indication de SEO et un FDN arrive toujours. D'autre part, la quasi-

totalité des cas de FNN sont facilement détectables par la mise en œuvre des 

mécanismes d'alarme à faible coût (MONNET; RENAUDIN; LEVEUGLE, 2006-c; 
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2007-b; MOORE et al, 2003), qui identifient les états de données interdits dans le 

protocole. 

En fait, les chemins de données multi rail des circuits QDI permettent classer les SEs 

en raison du à fautes transitoires uniques dans trois cas (MONNET; RENAUDIN; 

LEVEUGLE, 2006-c; 2007-b): 

• Donnée générée: un élément de donnée invalide devient un élément de donnée 

valide, par exemple, le bloc de mémoire dual rail de la Figure 2 changeant un bit 

comme 00=>01 ou 00=>10; 

• Donnée disparue: un élément de donnée valide vers un élément de donnée 

invalide, par exemple, 01=>00 ou 10=>00, et 

• Donnée corrompue: un élément de donnée interdite est généré, par exemple, 

01=>11 ou 10=>11. 

Tous les cas de données corrompues causent un FNN car une donnée interdite est 

interprétée par le système comme une donnée valide, ainsi l'état logique de 

l’acquittement n'est pas modifié et un deadlock ne se produit pas. Ces cas de FNN sont, 

cependant, détectables en ajoutant un très simple circuit d'alarme (MOORE et al, 2003). 

D'autre part, seulement quelques cas de données générées et de données disparues ne 

produisent pas un deadlock, c'est à dire, un FNN (MONNET; RENAUDIN; 

LEVEUGLE, 2006-c; 2007-b). Tous les autres cas, qui représentent la majorité des cas 

de SEs, produisent un FDN. 

Comme les effets nocifs de fautes transitoires sont les FDN ou les FNN, 

conformément au tableau 1, ainsi la majorité des situations de failures dans les systèmes 

asynchrones QDI peuvent facilement être éliminées soit par la détection naturelle soit 

par les mécanismes d'alarme. 

3.2 L’inhabilité des systèmes synchrones 

D'autre part, les cas de SEs dans les circuits synchrones difficilement entraînent un 

FDN. Par conséquent, la plus grande partie des SEs causent un FNN et ainsi des 

systèmes synchrones n'ont pratiquement aucune propriété naturelle pour la détection. 

Notamment, la présence de la période fixe d'horloge garantit la synchronisation des 

données du système. En conséquence, contrairement aux discussions de la section 
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précédente pour les circuits asynchrones QDI, dans la plus part des cas de SEs, le SEO 

est indiqué et ainsi un FNN est généré au lieu d'un FDN. Cas de FNN sont donc 

prédominant dans les circuits synchrones. 

Les quelques cas de génération de FDN sont surtout attribués à des perturbations 

dans les registres qui comptent le nombre de cycles d'itération, car ces éléments de 

mémoire aident dans la mise en œuvre du SEO. En outre, fautes transitoires, soit dans 

les circuits combinatoires qui génèrent ce SEO soit dans les circuits de l'arbre d'horloge, 

peut également causer un FDN. 

4 La résistance aux multiples fautes transitoires 

Des multiples événements de perturbation ou même des événements uniques 

peuvent créer des multiples fautes transitoires. Ces situations de fautes, qui ont plus 

faible probabilité que les fautes transitoires uniques, peuvent créer des plus graves effets 

nocifs car plus d'un bloc de mémoire peut être perturbé et ainsi des multiples SEs 

peuvent être générés dans les circuits synchrones bien que dans les asynchrones QDI. 

En réalité, fautes transitoires peuvent perturber des différents blocs de mémoire (comme 

ceux éléments de mémoire sur la Figure 2) simultanément ainsi qu'à des différents 

instants. 

Les effets nocifs de multiples fautes transitoires seraient plus critiques si leurs 

probabilités d'occurrence fussent plus élevées. En fait les systèmes devraient être 

protégés en utilisant encore plus de la redondance pour faire face à ce tel phénomène. 

En outre, comme les techniques de protection sont basées en la redondance, les 

fautes en se produisant simultanément dans des parties redondantes peuvent confondre 

les éléments de détection (qui font la technique bien travailler) en les conduisant à 

faillir. La plupart des approches de protection sont donc vulnérables aux effets des 

multiples fautes transitoires. 

L'analyse des effets de multiples fautes transitoires dans les systèmes synchrones est 

assez semblable à la discussion mise en évidence dans la section précédente. Toutefois, 

comme il y a plus des événements de fautes dans les systèmes, la probabilité 

d'occurrences de SEs en raison de multiples fautes transitoires, et donc d'un FNN, est 

évidemment plus élevé que dans les cas d'occurrence de fautes transitoires uniques. 
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D'autre part, dans les systèmes asynchrones QDI, l'occurrence de multiples fautes 

dans différents blocs de mémoire (comme dans la Figure 2) suit également les mêmes 

conséquences discutées dans la section précédente, il y a donc une chance énorme qu'ils 

entrainent un FDN. Le même scénario se produit si des multiples fautes transitoires sont 

générées à des instants différents. 

Toutefois, des multiples fautes transitoires en se produisant dans un même bloc de 

mémoire d'un système QDI peuvent également entraîner des multiples SEs et donc pour 

la codification double rail, par exemple, ils provoquent un FNN dans la plupart des cas. 

En réalité, les situations de SEs sont: 00=>11, qui est un cas de donnée corrompue qui 

probablement génère un deadlock (c'est-à-dire, un FDN); et 01=>10, ou 10=>01, qui ne 

produisent pas normalement des deadlocks (donc des FNN) car elles tiennent l'état 

logique de l'acquittement. Monnet (2006-c) classifie ainsi un nouveau cas de SE, en plus 

de ceux présentés dans la section précédente pour les fautes transitoires uniques dans les 

systèmes de QDI: 

• Donnée modifiée: un élément de donnée valide est transformé en un autre 

élément de donnée valide, par exemple, 01=>10 ou 10=>01. 

Malheureusement les cas de données modifiées n'ont pas une solution naturelle pour 

être combattus, et donc ils nécessitent de mécanismes de protection supplémentaires. 

Toutefois, comme bien discuté à la section précédente, les cas de données corrompues 

qui ne devient pas un FDN sont facilement détectables par un mécanisme d'alarme à 

faible coût (MOORE et al, 2003). 

En outre, en utilisant la codification M-out-of-N (multi-rail), ce qui est tout à fait 

normal dans la conception de circuits QDI, les chances de cas de données corrompues 

sont beaucoup plus élevées, car il y aura une plus grande redondance codification. Par 

conséquent, la probabilité que les données interdites se produisent est plus élevée, et 

donc plus des cas de SEs sont détectables par le mécanisme d'alarme ou même en 

générant naturellement des deadlocks (FDN). Une solution donc pour réduire les cas de 

données modifiées est utiliser une plus élevée codification M-out-of-N que le double 

rail (c'est-à-dire 1-out-of-2). 

Même si les systèmes asynchrones QDI sous multiples fautes transitoires n'ont pas le 

même performance pour générer des FDN que les situations de fautes transitoires 
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uniques, ils ont, néanmoins, des meilleurs mécanismes naturels de protection contre ces 

multiples fautes que les circuits synchrones. 

5 La résistance aux fautes transitoires de longue durée 

Les effets nocifs des fautes LDT, typiques dans les DSTs, sont presque toujours 

désastreux pour les circuits synchrones. Par exemple, un transitoire qui commence dans 

la seconde moitié d'un cycle d'horloge et finit que dans le cycle suivant: un scénario de 

SE est très probable ainsi qu'un FNN. En outre, des gros coûts dans le système sont 

nécessaires pour combattre cette telle faute LDT (LISBOA; ERIGSON; CARRO, 

2007). 

Néanmoins, ces fautes dans les circuits QDI génèrent des FDN dans la plupart des 

cas de SEs. En fait, la probabilité d'un deadlock est plus élevée pour les fautes plus 

longues, vu que le transitoire reste plus longtemps dans un chemin du circuit et, donc, 

les peu chemins sensibles aux délais sont facilement atteints. La chance d'éléments de 

données soient perdues ou insérées est plus grande. 

En outre, même des cas de données corrompues créé de fautes uniques, qui génèrent 

toujours FNN dans les technologies submicroniques, peuvent produire des deadlocks 

(c'est-à-dire des FDN) dans les DSTs. Ces cas, cependant, se produisent lorsque les 

fautes LDT sont générées dans les éléments du système QDI qui sont sensibles aux 

délais. Il y a donc une importante chance d'un SE en raison d'une donnée corrompue 

être suivi dans la phase suivant du protocole par un autre SE qui produit un deadlock. 

Par conséquent, une faute plus longue peut générer des multiples SEs en séquence. 

Comme les scénarios de SEs restent plus longtemps et la plupart d'eux causent des 

deadlocks (comme expliqué dans les sections précédentes), des fautes transitoires de 

longue durée ont une probabilité plus élevée pour produire un FDN. 

6 L’analyse d’une étude de cas 

Une étude de cas d'un crypto-processeur DES (de l'anglais Data Encryption 

Standard) en versions asynchrone QDI et synchrone a été évaluée en utilisant la 

méthode basée des simulations présentée dans (BASTOS et al, IOLTS 2009-b). Des 

résultats supplémentaires liés à des injections de fautes transitoires uniques sont montrés 

dans les Figure 4 et 5.  
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La Figure 4 illustre à l'axe vertical l’habilité du système à détecter les FDN. À l'axe 

horizontal, les deux figures indiquent le rapport des durées de fautes transitoires avec 

des périodes de cycles, qui sont la minimale période d'horloge dans le circuit synchrone 

et une moyenne dans le circuit asynchrone. Des plus grandes valeurs dans ce rapport 

représentent transitoires plus longues et donc des scénarios typiques de fautes 

transitoires si les circuits sont conçus à partir des DSTs, où les durées de fautes sont 

dans l'ordre de périodes de cycles (LISBOA; ERIGSON; CARRO, 2007). Par exemple, 

la Figure 4 montre que le système QDI (courbe du des_async) est capable de détecter 

naturellement autour de 30% des cas d'injection de fautes dans un rapport durée/période 

de 95% (c'est-à-dire, la durée de la faute transitoire est égale à 95% de la période de 

cycle). Cela signifie que 30% des cas entraînent un FDN et 70% soit un FTN soit un 

FNN. La Figure 4 donc illustre que le des_async, sous un scénario de faute transitoire 

(c'est-à-dire, dans un élevé rapport durée/période de 95%) qui est typique dans les 

DSTs, a un plus grand nombre de cas de FDN que le circuit synchrone (des_sync). En 

réalité, le nombre de cas de deadlock dans le des_async augmente significativement en 

fonction de plus longues durées de fautes transitoires. 

 

Figure 4: Une étude de cas d'un crypto-processeur DES: habilité du système pour 
la détection en fonction de durées de fautes transitoires 
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La Figure 5 montre à l'axe vertical l’habilité du système à tolérer les fautes (c'est-à-

dire, les FTN) et à détecter les FDN. La version QDI suit une tendance constante autour 

de 80% après une légère réduction initiale. Au contraire, une tendance à la baisse est 

toujours présente dans le circuit synchrone. Cela montre que la réduction de son cas 

particulier de masquage de la fenêtre de stockage, discuté dans une section précédente, 

joue beaucoup plus que la diminution de masquage du circuit QDI. Dans le rapport 

durée/période de 95% en observant la Figure 4 et 5, environ 50% des cas d'injection de 

fautes dans la version QDI (80% de la Figure 5 moins 30% de la Figure 4) entraînent un 

FTN, 30% un FDN (à partir de la Figure 4), et 20% un FNN (100 % moins 80% de la 

Figure 5). D'autre part, la version synchrone dans la même condition de DST présente 

un FTN dans 42% des cas, un FDN dans 1%, et un FNN dans 57%. Si la version QDI 

fût réalisée en utilisant des alarmes (MOORE et al, 2003), sa habilité de la Figure 5 

serait portée très proche de 100%, même sous les fautes LDT dans les DSTs. Par 

conséquent, il est évident de conclure que les fautes LDT dans les DSTs peuvent être 

mieux traités dans le circuit asynchrone QDI. 
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Figure 5. La plus forte habilité naturelle d’un système asynchrone QDI pour 
résister aux fautes LDT dans les DSTs 
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6 Conclusions 

Ce résumé de thèse illustre pour la première fois l’habilité naturelle des circuits 

asynchrones QDI pour résister aux fautes transitoires sous les conditions de DSTs. Des 

systèmes QDI ont une meilleure performance que leurs homologues synchrones pour 

naturellement détecter les fautes LDT soient elles dans la logique de calcul soient dans 

les éléments de mémoire. En outre, ils ont des mécanismes naturels (en réalité la 

codification multi-rail et ses éléments de données interdites) qui rendent plus facile la 

détection d'erreurs même sous des multiples fautes transitoires. Enfin, les systèmes QDI 

englobent ces caractéristiques avec leur propriété QDI naturelle. Cela permet de tolérer 

la plupart des cas de fautes de délais, qui sont aujourd'hui aussi un grand défi dans les 

DSTs. 
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