
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

RODRIGO POSSAMAI BASTOS

Transient-Fault Robust Systems
Exploiting

Quasi-Delay Insensitive
Asynchronous Circuits

Thesis submitted to UFRGS and
Institut National Polytechnique de Grenoble
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy (PhD)
in Microelectronics

Prof. Dr. Ricardo Augusto da Luz Reis and
Prof. Dr. Marc Renaudin
Advisors

Prof. Dr. Fernanda Lima Kastensmidt and
Prof. Dr. Gilles Sicard
Co-advisors

Grenoble, France, July 9th 2010.

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do PGMicro: Prof. Ricardo Augusto da Luz Reis
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Bastos, Rodrigo Possamai

Transient-Fault Robust Systems Exploiting Quasi-Delay
Insensitive Asynchronous Circuits / Rodrigo Possamai Bastos –
Porto Alegre: Programa de Pós-Graduação em Microeletrônicas,
2010.

142 f.:il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica. Porto Alegre,
BR – RS, 2010. Advisors: Ricardo Augusto da Luz Reis and Marc
Renaudin.

1. Design of robust or fault-tolerant systems. 2. Quasi-delay
insensitive asynchronous circuits. 3. Transient faults. 4. Soft errors.
5. Evaluation of transient-fault effects. I. Reis, Ricardo Augusto da
Luz. I. Renaudin, Marc. III. Título.

To my parents Melita and Fernando,
my sister Fernanda,

and my aunt Elba.

CONTENTS

LIST OF ABBREVIATIONS 7

LIST OF FIGURES ... 9

LIST OF TABLES 11

ABSTRACT 13

RESUMO.. 15

1 INTRODUCTION ... 17

2 ASYNCHRONOUS CIRCUITS ... 19

2.1 Classes of Asynchronous Circuits .. 22

2.2 Quasi-Delay Insensitive Asynchronous Circuits ... 24

2.2.1 Communication Protocol .. 25
2.2.2 Data Codification .. 26
2.2.3 Logic Synthesis ... 28
2.3 Conclusions ... 30

3 TRANSIENT-FAULT EFFECTS ON INTEGRATED CIRCUITS 33

3.1 Transient Faults Induced by Environmental Perturbations 34

3.2 Types of Transient-Fault Effects .. 35

3.2.1 Harmful Effects of Transient Faults on Synchronous Circuits 36

3.2.2 Harmful Effects of Transient Faults on QDI Asynchronous Circuits................. 37

3.2.3 Harmless Effects of Transient Faults .. 37

3.2.4 Failures: the Effects of Soft Errors ... 38
3.2.5 Harmful Effects of Multiple-Transient Faults .. 39

3.2.6 Harmful Effects of Long-Duration Transient Faults .. 39

3.3 Conclusions ... 39

4 EVALUATING TRANSIENT-FAULT EFFECTS AT LOGICAL LEVEL 41

4.1 Method for Logical-Level Evaluation of Transient-Fault Effects 42
4.1.1 Modelling the Transient-Fault Effects .. 43

4.1.2 Dynamic of Fault-Injection Simulations ... 44

4.1.3 Evaluation Metrics .. 46
4.1.4 Reducing the Total Number of Simulations ... 48

4.1.5 The Method on Case-Study Circuits ... 48

4.2 Conclusions ... 53

6

5 ASYNCHRONOUS CIRCUITS AS ALTERNATIVE FOR MITIGATION OF
LONG-DURATION TRANSIENT FAULTS IN DEEP-SUBMICRON
TECHNOLOGIES ... 55

5.1 Natural Detection of Failures .. 56
5.1.1 Ability of QDI Asynchronous Systems .. 57

5.1.2 Inability of Synchronous Systems .. 58

5.2 Mitigation of Multiple-Transient Faults .. 58

5.3 Mitigation of Long-Duration Transient Faults ... 59

5.4 A Case-Study Analysis ... 60
5.5 Conclusions ... 61

6 TECHNIQUES FOR TRANSIENT-FAULT MITIGATION 63

6.1 Techniques at Logical and RT Abstraction Levels ... 64

6.1.1 Classic Spatial Redundancies ... 64
6.1.2 Temporal Redundancies ... 65
6.1.3 Spatial Redundancies by Gate Duplication .. 67

6.1.4 Spatial Redundancies by Codification .. 68

6.1.5 Techniques Dedicated to QDI Asynchronous Circuits 68

6.2 Techniques at Electrical Abstraction Level ... 70

6.2.1 Spatial Redundancies by Transistors .. 71

6.2.2 Robust Memory Cells ... 72
6.3 Costs of Mitigation Techniques at Different Abstraction Levels 73
6.4 Conclusions ... 74

7 EVALUATING TRANSIENT-FAULT EFFECTS ON C-ELEMENT’S
IMPLEMENTATIONS 77

7.1 Traditional C-element’s Implementations ... 78

7.2 Method for Electrical-Level Evaluation of Transient-Fault Effects 79
7.2.1 Modelling the Transient Faults ... 79
7.2.2 Situations of Transient-Fault Vulnerability .. 80

7.2.3 Perturbation Charge of a Circuit Node ... 81

7.3 Making Transient-Fault Robust the C-element .. 82

7.4 Evaluations of the C-element’s Implementations ... 84

7.4.1 Simulation Experiments .. 84
7.4.2 Simulation Results and Evaluations ... 85

7.5 Conclusions ... 90

8 CONCLUSIONS AND FUTURE WORKS 91

AUTHOR’S REFERENCES 95

REFERENCES ... 99

APPENDIX A SISTEMAS ROBUSTOS A FALHAS TRANSIENTES
EXPLORANDO CIRCUITOS ASSÍNCRONOS QUASE-INSENSÍVEIS AOS
ATRASOS 114

APPENDIX B SYSTEMES ROBUSTES AUX FAUTES TRANSITOIRE S
EXPLOITANT LA LOGIQUE ASYNCHRONE QUASI-INSENSIBLE A UX
DELAIS 127

LIST OF ABBREVIATIONS

ASIC Application Specific Integrated Circuit

CAD Computer-Aided Design

CMOS Complementary Metal-Oxide-Semiconductor

CPU Central Processor Unit

CPO Circuit’s Primary Output

CWSP Code Word State Preserving

DES Data Encryption Standard

DIMS Delay-Insensitive Minterm Synthesis

DNA Deoxyribonucleic Acid

dSE Direct Soft Error

DWC Duplication with Comparison

EDA Electronic Design Automation

EDAC Error Detection and Correction

EEATS Electronique, Electrotechnique, Automatique & Traitement du Signal

EMI Electromagnetic Interference

FDN Failure Detectable Naturally

FPGA Field Programmable Gate Array

FNN Failure Non-detectable Naturally

FTN Faults Tolerated Naturally

HC Hamming Code

HCMOS High-density Complementary Metal-Oxide-Semiconductor

HDL Hardware Description Language

IC Integrated Circuit

INPG Institut National Polytechnique de Grenoble

iSE Indirect Soft Error

LDT Long-Duration Transient

MBU Multiple-Bit Upset

8

MDD Multi-valued Decision Diagram

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

NOC Network-on-Chip

PDA Personal Digital Assistant

PGMicro Pós-Graduação em Microeletrônica

PPGC Programa de Pós-Graduação em Computação

QDI Quasi-Delay Insensitive

RAM Random Access Memory

RFID Radio Frequency Identification

ROM Read Only Memory

RT Register Transfer

SDF Standard Delay Format

SE Soft Error

SEO Signal of End Operation

SEE Single Event Effect

SER Soft Error Rate

SET Single-Event Transient

SEU Single Event Upset

SOC System-on-Chip

SOI Silicon-on-Insulator

SRAM Static Random Access Memory

TIMA Laboratoire de Techniques de l’Informatique et de la Microélectronique
pour l’Architecture des systèmes intégrés

TR Time Redundancy

TMR Triple Modular Redundancy

UFRGS Universidade Federal do Rio Grande do Sul

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

LIST OF FIGURES

Figure 2.1: The different classes of circuits in accord with the logic redundancy and the
number of timing assumptions ... 23
Figure 2.2: Communication between stages of a QDI asynchronous system 25

Figure 2.3: Four-phase protocol for a communication between stages 26

Figure 2.4: Dual-rail data codification by three states .. 27

Figure 2.5: A structure of a QDI system by analogy to a synchronous system 28

Figure 2.6: Function of a 2-input C-element gate .. 28

Figure 2.7: MDD-based logic synthesis of a delay-insensitive dual-rail XOR function
for the four-phase protocol ... 29
Figure 2.8: A QDI system operating through the four-phase protocol 30

Figure 3.1: A generic hardware module to represent either a synchronous systems or a
QDI asynchronous .. 36
Figure 4.1: Simulation scheme of a SET on an IC-design netlist 43

Figure 4.2: Modelling of a SET fault on a netlist’s wire .. 43

Figure 4.3: Fault-injection simulations into a synchronous circuit 44

Figure 4.4: Fault-injection simulations into a QDI asynchronous circuit with different
logic values at its C-element’s inputs ... 44
Figure 4.5: Fault-injection simulations into a QDI asynchronous circuit with equal logic
values at its C-element’s inputs .. 44
Figure 4.6: Simulation methodology for injection of SETs ... 45

Figure 4.7: The total number of injected transient faults and their consequences 47

Figure 4.8: Estimating a methodology’s evaluation metric (Sensitivity) 49
Figure 4.9: Circuits’ Sensitivities in terms of the ratio des_sync / des_async................ 50
Figure 4.10: System-robustness percentages .. 51

Figure 4.11: Circuits’ Sensitivities by considering between des_async and des_sync an
area factor of 2 and computation time factor of 1 .. 52
Figure 5.1: Transient-fault width vs. clock’s cycle time scaling (LISBOA, 2009) 56
Figure 5.2: A case study on a DES crypto-processor: system’s ability for detection in
function of transient fault durations.. 60
Figure 5.3: The stronger natural ability of a QDI asynchronous system for mitigation of
LDT faults in deep-submicron technologies .. 61
Figure 6.1: TMR scheme applied on a 1-bit register .. 65

Figure 6.2: TR+CWSP scheme applied on a 1-bit register .. 66

Figure 6.3: TR+CWSP scheme working on a 1-bit register ... 67

Figure 6.4: CWSP elements at logical abstraction level (NICOLAIDIS, 1999) 67
Figure 6.5: Duplication-based technique for computational logic of a QDI system
(MONNET, 2005-b) ... 70

10

Figure 6.6: Synchronization Technique for two bits of a data word in a QDI system
(MONNET, 2005-b) ... 70
Figure 6.7: CWSP elements at electrical abstraction level (NICOLAIDIS, 1999) 71
Figure 6.8: A robust latch (OMAÑA, 2007) .. 72

Figure 6.9: Costs of mitigation techniques at different abstraction levels 73

Figure 6.10: Area costs of traditional mitigation techniques in function of the memory-
core area ratio ... 74

Figure 7.1: The traditional C-element’s implementations .. 78

Figure 7.2: Modelling the perturbation-induced transient current ISET that temporally
discharges (off-state NMOS case) or charges (off-state PMOS case) the node out 80

Figure 7.3: Nodes’ logic states of the weak-feedback C-element version under a
situation of transient-fault vulnerability ... 80
Figure 7.4: The explicit-capacitor version of a weak-feedback C-element 83

Figure 7.5: GPCV increases vs. penalties in delay of C-element versions 86

Figure 7.6: GPCV increases vs. power-consumption overheads 87

Figure 7.7: GPCV increases vs. diffusion-area overheads .. 88

Figure 7.8: GPCV increases vs. C-element implementation costs 89

LIST OF TABLES

Table 3.1: Possible primary outputs of a module perturbed by transient faults 39

Table 3.2: Summary of transient-fault effects on synchronous and QDI asynchronous
circuits .. 40

Table 5.1: Possible CPOs of a system perturbed by transient faults 57

Table 7.1: Situations of transient-fault vulnerabilities on the traditional C-element’s
versions ... 81

Table 7.2: Diffusion widths WN4, WP4, WNI, WPI, WNE, WPE WNC, and WPC of the
NMOS and PMOS transistors in robust C-element cells ... 83

Tabela 1: Possiveis CPOs de um sistema perturbado por falhas transientes 119

Tableau 1: Possibles CPOs d'un système perturbé par fautes transitoires.................... 132

ABSTRACT

Recent deep-submicron technology-based ICs are significantly more vulnerable to
transient faults. The arisen errors are thus also more critical than they have ever been
before. This thesis presents a further novel benefit of the Quasi-Delay Insensitive (QDI)
asynchronous circuits in terms of reliability: their strong natural ability to mitigate long-
duration transient faults that are severe in modern synchronous circuits. A methodology
to evaluate comparatively the transient-fault effects on synchronous and QDI
asynchronous circuits is presented. Furthermore, a method to obtain the transient-fault
mitigation ability of the QDI circuits’ memory elements (i.e., the C-elements) is also
proposed. Finally, mitigation techniques are suggested to increase even more the C-
elements’ transient-fault attenuation, and thus also the QDI asynchronous systems’
robustness.

Keywords: Design of robust or fault-tolerant systems, QDI asynchronous circuits,
transient faults, soft errors, evaluation of transient-fault effects.

Sistemas Robustos a Falhas Transientes Explorando Circuitos
Assíncronos Quase-Insensíveis aos Atrasos

RESUMO

Os circuitos integrados recentes baseados em tecnologias nanoeletrônicas estão
significativamente mais vulneráveis a falhas transientes. Os erros gerados são assim
também mais críticos do que eram antes. Esta tese apresenta uma nova virtude em
termos de confiabilidade dos circuitos assíncronos quase-insensíveis aos atrasos (QDI):
a sua grande habilidade natural para mitigar falhas transientes de longa duração, que são
severas em circuitos síncronos modernos. Uma metodologia para avaliar
comparativamente os efeitos de falhas transientes tanto em circuitos síncronos como em
circuitos assíncronos QDI é apresentada. Além disso, um método para obter a
habilidade de mitigação de falhas transientes dos elementos de memória de circuitos
QDI (ou seja, os C-elements) é também proposto. Por fim, técnicas de mitigação são
sugeridas para aumentar ainda mais a atenuação de falhas transientes por parte dos C-
elements e, por consequência, também a robustez dos sistemas assíncronos QDI.

Palavras-Chave: projeto de sistemas robustos ou tolerantes a falhas, circuitos
assíncronos QDI, falhas transientes, Soft errors, avaliação dos efeitos de falhas
transientes.

1 INTRODUCTION

The IC fabrication technology’s evolution has allowed in last years the use of
nanometer scales to design semiconductor devices. Deeper-submicron technologies
enable thus the development of sophisticated electronic systems in small scale, high
density, high performance, and low power consumption.

On the other hand, the close proximity to the physical limits of the semiconductors
and the high complexity of such deep-submicron technology-based designs impose
considerable challenges to the IC reliability. The circuits indeed suffer harmful effects
that in older technologies were practically negligible.

There are many challenges imposed by deep-submicron technologies to the circuit
reliability. Several types of faults can thus occur in a circuit given its larger
vulnerability. Today nanoelectronic circuits are indeed more sensitive to variations of
fabrication process as well as environmental factors like temperature, radiations, and
electrical noise. IC-based systems are so more vulnerable to two effects of such
variations: timing alterations of the circuit delays and transient voltage modifications.

Such effects, in terms of voltage transients and delay variations, have motivated
many researches due to the severity of their consequences for the systems. In fact, these
effects, known respectively as transient faults and delay faults, can provoke errors in
circuit’s functional operations. If propagated, theses errors can lead the circuit to
produce inconsistent results at its primary outputs, and so making a system’s failure
scenario.

Normally, delay faults are arisen from fabrication process variations, however they
can also be induced by environmental factors. On the contrary, transient faults are
generated due to environmental or intentional-perturbation events. A single perturbation
event on an IC can produce a transient fault so-called as single-event transient (SET).
Moreover, there are lower-probability cases in which multiple-perturbation events or
even a single event can create multiple-transient faults. The worst transient-fault effects
on ICs are memory-bit flips that are non-permanent errors in memory cells named as
soft errors (SEs). If transient faults accomplish upsetting various memory cell’s bits, the
phenomenon is thus known as multiple-bit upset (MBU).

The transient and delay faults have even more severe effects in deeper-submicron
technologies where the circuit’s delays are inherently shorter. In these technologies, it is
possible that fault’s durations are comparable or even longer than the clock cycle’s
periods. In addition, most of the existing mitigation techniques require very-high power,
performance, and area overheads to deal with such long-duration transient (LDT) faults,
hence new solutions to protect the circuits are necessary (LISBOA, 2007-a). LDT faults

18

have clearly a much higher probability of not being masked, and therefore they also
stand a greater chance of producing a system’s failure.

In fact, such a higher error probability is due to the limitation of the clock period that
is thus fundamental for the severity of transient and delay faults. On the other hand, the
clock is a particularity of the traditional synchronous circuits which suffer thus much
more with the worse LDT consequences than clockless circuits. Hence, designing
circuits that are not controlled by a global clock but only by their internal data flow can
result in systems that are more robust against such LDT faults. It is the case of the
asynchronous circuits, and specially their most important class: the Quasi-Delay
Insensitive (QDI) circuits.

Essentially, QDI circuits are composed of C-elements, so-called Muller gates. Such
an element, which has a dual-behavior, works either as a buffer or as a memory cell.
These special gates ensure the QDI property and permit the synchronization between
circuit’s stages, where a handshaking protocol is applied by a multi-rail data path.

The multi-rail data codification and the asynchronous handshaking communication
of QDI systems make the detection and correction of errors easier (MONNET, 2007-a).
The absence of a clock tree allows them to emit less electromagnetic interference
(PANYASAK, 2004), and makes them more secure against malicious power analysis
(BOUESSE, 2005). Moreover, such a clockless property also leads to increased energy
savings (RIOS, 2008), and achieving high performance at the expense of using less than
twice larger area than their synchronous counterparts. A QDI circuit is also inherently
robust against delay faults on most of its paths due to its natural QDI property
(LAFRIEDA; MANORAR, 2004). In addition, its C-elements are fundamental to
implement more robust systems. In fact, even in synchronous systems, C-elements are
often used to filter transient faults, and so protecting the circuits against SEs
(NICOLAIDIS, 1999; MITRA et al, 2005; FAZELI et al, 2007). Then, QDI systems’ C-
elements improve the circuit’s ability for masking transient faults (MONNET, 2007-a).
Such inherent characteristics of QDI asynchronous designs ensure a high systems’
reliability without implementing costly hardware-based mitigation mechanisms which
in synchronous designs are practically indispensable to obtain similar immunity level.

As QDI asynchronous circuits are undeniably quite robust against delay faults, the
goal of this thesis was exploiting such a class of circuits in order to obtain more
transient-fault robust systems.

In this thesis, chapter 2 shows the benefits and features of the QDI asynchronous
systems. Chapter 3 outlines the different transient-fault effects on ICs. In Chapter 4, a
novel method is proposed to evaluate at logical level the transient-fault effects as on
synchronous circuits as on QDI asynchronous circuits. Chapter 5 presents and discusses
a new QDI asynchronous systems’ benefit in comparison with synchronous systems:
their better natural ability for mitigation of LDT faults in deep-submicron technologies.
In chapter 6, hardware-based transient-fault mitigation techniques and their costs to
protect synchronous circuits at different abstraction levels are discussed. Furthermore,
chapter 7 evaluates innovatively the transient-fault effects on traditional C-element’s
implementations and also presents for the first time the best C-element’s options to
further improve the QDI asynchronous systems’ robustness. Finally, chapter 8
highlights the main contributions of this thesis as well as the ideas to be discussed in
future works.

2 ASYNCHRONOUS CIRCUITS

Even nowadays the largest part of ICs in electronics equipments are based on an
oscillator to start, process, and finalize all of their operations. Such electronics systems
are synchronous circuits at a frequency of a signal well determined to reach all circuit
parts. However, in the last years, there are already systems in which their different
internal circuits operate without the need of the pace of a global clock. These circuits
then so-called asynchronous or clockless use their own data flow to locally govern the
computation and communication between parts of the system.

The asynchronous communication activity between circuit blocks, and even among
systems with their environments, had a significant increase (BRZOZOWKI; SEGER
1995). Indeed, the technological evolutions and their more complex ICs have required
asynchronous activities to face with design challenges. Synchronous blocks which
operate on different frequencies need asynchronous interfaces to efficiently exchange
data (SUTHERLAND, EBERGEN, 2002). In the last years, the use of asynchronous
approaches has also been targeted for electronics applications or embedded systems.
Asynchronous systems are thus mostly applied to achieve low power consumption,
reliability, robustness, and security. Then, applications such as smart cards, RFIDs,
pagers, PDAs, power management chips, electronics for automation and avionics,
sensor networks, cell phones, metering, medical, mobile, and battery-powered devices
are very feasible. In addition, high-performance applications like processors for
simulation, audio, video, images, signals, graphics, servers, and workstations may also
be designed by asynchronous logic (GEER, 2005; TIEMPO, 2009).

Asynchronous systems are not only applications for ICs. Synthetic biology uses
engineering principles to design genetic circuits. Such biological circuits constructed
from DNA (deoxyribonucleic acid) are inserted into bacteria to perform various tasks
(NGUYEN et al, 2007). As there is not a global clock, genetic circuits are inherently
asynchronous. Thus, asynchronous design techniques are also applied for many
applications of the synthetic biology, which contributes directly, for instance, in the
production of drugs to combat malaria (NGUYEN et al, 2007).

In fact, all digital systems, essentially, can be viewed as asynchronous
(BRZOZOWKI; SEGER 1995). Some fundamental concepts related to asynchronous
circuits support the operational characteristics of the synchronous (FLETCHER, 1980).
A synchronous circuit is designed based on rules of a particular project and operated
under special assumptions of its environment (BRZOZOWKI; SEGER 1995). Its
combinational circuits process their logic functions asynchronously within a clock
period. In addition, its hearts, the flip-flops, are structurally asynchronous sequential
machines that operate within the time conditions of set-up and hold. Several other

20

asynchronous machines, such as, latches and Muller C-elements, are also components
for the design of synchronous systems.

The concepts of asynchronous circuits are suggested since the middle of the last
century when there was the development of the first asynchronous machines
(FLETCHER, 1980). However, synchronous approaches prevailed in the
microelectronics industry due to the simplicity in the design implementation of the
control and logic circuit (FRAGOSO, 2005). Such a dominion nowadays is
accomplished by the maturity of commercial CAD tools dedicated to synchronous.
Although synchronous methods could be adapted for asynchronous (KONDRATYEV;
LWIN, 2002), they are optimized for synchronous. There is, therefore, a larger
complexity for the implementation of asynchronous designs by using such synchronous-
dedicated tools. Moreover, the resulting asynchronous circuits are poorly optimized. In
fact, these tools are not prepared to implement a local organization for asynchronous
communications between circuit blocks. Then, implementations of asynchronous
protocols are not optimized resulting thus in high overheads in terms of area and total
computation time.

On the other hand, a coordination of asynchronous actions also determines
additional hardware mechanisms and, therefore, costs in terms of area. Indeed, even
using an efficient synthesis method for asynchronous designs, the area of an
asynchronous system reaches the order of twice the size of an equivalent synchronous
system. However, this is practically the only cost paid to obtain the many inherent
advantages of an asynchronous system. The absence of a fixed rhythm of a global clock
allows several important benefits that are discussed in the following paragraphs
(SUTHERLAND, EBERGEN, 2002; FRAGOSO, 2005; SPARSO, 2006; FLETCHER,
1980; HAUCK, 1995; BRZOZOWKI; SEGER 1995):

• Sutherland and Ebergen (2002) observe that the efforts required to coordinate
asynchronous actions are small. An asynchronous system indeed may, on
average, be faster than a synchronous, especially in irregular IC designs in
which slower actions are infrequent. In fact, the data paths of asynchronous
circuits operate in the pace of their gate and wire delays. Thus, operations more
complex and less frequent take more time than average, and simple and frequent
ones take less. On the other hand, synchronous systems are always in the pace of
the longest circuit path. In addition, a margin to cope with variations of the clock
(jitter and skew), and manufacturing and environmental irregularities must be
also considered (GEER, 2005). Therefore, simple tasks in synchronous circuits
run slower to follow the pace of the more complex ones;

• In clocked systems, the delay differences between data paths of their circuits
generate the so-called static hazards (FLETCHER, 1980), which are tolerated by
using a global clock. Otherwise, such a kind of spurious switching is not allowed
in asynchronous design. By nature, indeed, asynchronous systems have no static
hazards. Therefore, dynamic power is not wasted. In addition, as there is not a
clock, a clock-distribution circuit is not required. Consequently, lower power
consumptions (GAGELDONK, 1998) are feasible. In fact, nowadays complex
synchronous chips, like microprocessors, have clock-tree circuits that represent a
good part of the system’s area (SUTHERLAND, EBERGEN, 2002). About 30%
of the power consumed by such chips is due to the clock and its distribution
circuit. Furthermore, as the clock is always working, the chip heats even though

21

it is not doing anything useful. Clockless systems, otherwise, allow easily
disable blocks of the circuit to reduce the power consumption;

• The need nowadays to distribute uniformly the clock signal in all parts of the
chips, which are faster and denser, has required synchronous designs even more
sophisticated in order to avoid different latching times within the clock-skew
problem. Given such a technological trend, asynchronous approaches arise as an
interesting alternative to avoid elaborate clock-tree designs in complex
circuits;

• Synchronization by a clock also requires more careful designs with signals from
a system’s asynchronous interface. An inadequate sampling of such signals can
put the synchronous circuit indefinitely in meta-stable states (FLETCHER, 1980;
HAUCK, 1995; BRZOZOWKI; SEGER 1995; MYERS, 2001). In contrast,
asynchronous systems by nature can wait the interfaces to meet stable conditions
in order to start a correct computation, and thus avoiding the metastability
phenomenon;

• The clock also limits the modularity of a synchronous system, which requires
special interfaces to perform communications with other systems of different
operation frequencies (SUTHERLAND, EBERGEN, 2002; FRAGOSO, 2005).
Asynchronous modules are much more flexible because their circuits do not
have to share a common rhythm, therefore, they easily allow designs of SOCs
and NOCs;

• The absence of a clock’s fixed rhythm allows also lower emissions of
electromagnetic interferences (EMI) (SUTHERLAND, EBERGEN, 2002;
PANYASAK, 2004). In contrast, synchronous systems emit stronger
electromagnetic signals at its clock frequency and harmonics. Besides being able
to produce internal noise in its own circuit, such signals can also interfere with
televisions, cellular phones, aircraft navigation systems, and any electronics
equipment operating at the same frequency band;

• More recently, asynchronous systems, especially the Quasi-Delay Insensitive
class (QDI Circuits), are suggested as a qualified alternative to design robust
and secure circuits. This topic is discussed at greater length in the following
sections of this chapter.

Given such many advantages, asynchronous applications certainly will evolve even
more in the IC market, especially when the various methods optimized for the
asynchronous design, like those in (VIVET, 2001; RIGAUD, 2002; MAURINE et al,
2003; DINH-DUC, 2003; FOLCO et al, 2005; FRAGOSO, 2005; BALSA, 2009;
TIEMPO, 2009), conquer more popular commercial dimensions. However, these
asynchronous qualities already encourage several efficient commercial applications
which perhaps still are little known by the scientific community and industry.

Asynchronous ICs indeed are already in commercial mass production
(SUTHERLAND, EBERGEN, 2002). The electronics company Sharp already released
asynchronous media chips devoted to edit graphics, video, and audio. Asynchronous
microcontrollers are used in pagers sold by Philips Electronics. Some synchronous
processors from Sun Microsystems include asynchronous blocks to organize
information from memory chips. Other hybrid applications are proposed but based on
the idea of globally asynchronous and locally synchronous designs (CHAPIRO, 1984;

22

IYER; MARCULESCU, 2002; TEEHAN, 2007). The Handshake Solutions and ARM
companies developed asynchronous cores for devices such as smart cards, consumer
electronics, and automotive applications (GEER, 2005). In addition, the Fulcrum
Microsystems offers asynchronous chips of high performance for networks, storage
devices, and embedded systems. The Theseus Logic company developed a low-power
and low-noise asynchronous version of a Freescale’s 8-bit microcontroller. It is for
signal-processing or battery-powered applications. Moreover, such a company with a
medical-equipment provider, the Medtronic, also produced asynchronous chips for
defibrillators and pacemakers. The French company Tiempo presents its asynchronous-
based solutions for applications of smart cards, RFIDs, cellular phones, mobile
handsets, power management, automobile, avionics, and medical systems. Tiempo’s
products include IP cores of microcontrollers, microprocessors, and crypto-processors,
as well as an asynchronous-dedicated EDA tool (TIEMPO, 2009). Besides these and
other companies, there are several asynchronous-dedicated research groups at
educational institutions like the California Institute of Technology, the University of
Manchester, the University of Tokyo, and the TIMA Laboratory in Grenoble.

According to the aim of this work, the following sections present the main
characteristics of this important asynchronous option to design, especially, low-power,
reliable, robust, and secure circuits.

2.1 Classes of Asynchronous Circuits
An asynchronous system has, as a natural feature, a well-coordinated activity of its

data switching (KONDRATYEV; LWIN, 2002). The computation flow is not modelled
with the aid of a clock but with the implementation of logic redundancy in parts of the
circuit. It thus prevents spurious switching, the hazards, which arise from the delay
differences in the gates and wires of the system. On the other hand, the design of a
synchronous system does not require, within a clock period, an exact timing sequence
coordination of the circuit’s switching activity. The design implementation, therefore,
requires less redundancy.

In the past decades, these features related to the lower design complexity and
smaller circuit area were very important for the synchronous design achieving today
such a maturity. However, given the current technological trends that require more
robust systems, the larger redundancy in asynchronous have made such circuits very
attractive.

The use of redundancy to ensure the correct circuit behaviour (i.e., a hazard-free
circuit) in any delay distribution of gates and wires can be costly and even impractical
(KONDRATYEV; LWIN, 2002). Therefore, certain timing assumptions are necessary
to enable implementations of any function type. Such timing assumptions have different
locality degrees that can be since matching delays on wire branches of some circuit’s
forks (as in Quasi-Delay Insensitive asynchronous systems, the QDI circuits) to balance
all circuit’s data paths (as in synchronous circuits) (KONDRATYEV; LWIN, 2002).

The different classes of circuits can thus be summarized by Figure 2.1 (VIVET,
2001; KONDRATYEV; LWIN, 2002). The figure’s vertical axis shows the redundancy
degree of the class, therefore the robustness degree as well as the complexity. The
horizontal axis indicates the number of timing assumptions, then also the degree of non-
locality and slack of the constraints on the assumptions. As greater as the number of
timing assumptions is, slacker timing constraints must be set and thus the circuits are

23

simpler (FRAGOSO, 2005). However, they are less robust, less modular, and the timing
assumptions are more difficult to meet (KONDRATYEV; LWIN, 2002).

Figure 2.1: The different classes of circuits in accord with the logic redundancy and the
number of timing assumptions

The Huffman circuits (HUFFMAN, 1954-a; HUFFMAN, 1954-b), which are also
known as asynchronous sequential machines, are the origin of the asynchronous systems
and therefore they well represent their fundamental mode. Such circuits consist of a set
of combinational gates, which compute the next state and circuit outputs, and a set of
feedback lines, which store the circuit states (ALMUKHAIZIM, 2008). Their inputs
must remain at a steady state for a minimum time that ensures the circuit stabilization.
The classic examples of Huffman circuits are the flip-flops, which must conserve the
time of set-up and hold to stabilize their outputs. Other asynchronous sequential
machines more complex are feasible, but they will be even more sensitive to the delays
of their gates and wires. Therefore, they are sensitive to delay variations beyond the
limits set by the designer, because they use a model known as bounded delay. The
circuits will be thus more sensitive to physical failures and more vulnerable to
fabrication defects (defined in chapter 3). The same bounded delay is also used in
synchronous circuits, so they are also subject to these vulnerabilities.

The Micropipeline circuits (SUTHERLAND, 1989) are asynchronous architectures
that, as the pipelines of synchronous approaches, compute and store data. The global
clock is replaced by a local-synchronization structure based on handshake. It is used to
control the elastic data pipeline in the circuit stages (FRAGOSO, 2005). The control
circuit operates independently of its gate and wires delays, so it uses an unbounded-
delay model. It means that no upper limit to the values of its delays is needed or
established, since there is an asynchronous communication by handshake between its
stages (HAUCK, 1995). Furthermore, the bounded-delay model is also used on the
Micropipeline circuits, but only on the architecture’s data path to circumvent the hazard
problem in its computation logic. Micropipeline circuits are thus also subject to those
vulnerabilities discussed in last paragraph for Huffman circuits.

The Speed Independent circuits (MILLER, 1961) use the unbounded-delay model
on all their gates, but the delays of all their wires are simply negligible or assumed
smaller than their smaller gate delays (HAUCK, 1995). Nowadays the wire delays are

Number of Timing Assumptions

Lo
gi

c
R

ed
un

da
nc

y Delay Insensitive

Quasi-Delay Insensitive

Speed Independent

Micropipeline
Huffman

Synchronous

Number of Timing Assumptions

Lo
gi

c
R

ed
un

da
nc

y Delay Insensitive

Quasi-Delay Insensitive

Speed Independent

Micropipeline
Huffman

Synchronous

24

increasingly more critical in complex systems based on deep-submicron technologies,
therefore Speed Independent circuits are not recommended (FRAGOSO, 2005).

On the other hand, the Delay Insensitive circuits (DI circuits) (WESLEY, 1967;
UDDING, 1986), which are built similarly to the Speed Independent ones, have no
timing assumption. Therefore, all gate and wire delays use the unbounded-delay model.
DI circuits would be thus the ideal ones to avoid physical failures and tolerating
fabrication defects, since they operate correctly under whatever delay condition in their
gates and wires. However, Martin (1990) highlighted that the implementation of DI
circuits is very limited and non-practical. In addition, he also presented the minimum
timing assumptions, which have the constraints with the least slack, to make practicable
the implementation of any circuit. In fact, Martin (1990) proved that the required timing
assumptions, called isochronic forks, are indeed those which characterize a QDI circuit.
Therefore, the class of the QDI circuits impose themselves as the most feasible.

2.2 Quasi-Delay Insensitive Asynchronous Circuits
The Quasi-Delay Insensitive circuits (QDI circuits) beyond using the unbounded-

delay model (discussed in the previous section) in all their gates, they also use it in
quasi-all their wires. The only timing assumptions of the QDI circuits are localized in
branches of some critical forks. In fact, such forks need be isochronic (i.e., they need to
have branches with similar delays) to enable the implementation of any circuit with the
quasi-delay insensitivity feature. The only timing-assumption requirement is thus to
have a negligible delay difference between the branches of isochronic forks. It must
indeed be negligible compared to the smallest gate delays of the circuit (MARTIN,
1990). Therefore, the branches of isochronic forks are the only wires in a QDI circuit
that do not use the unbounded-delay model.

The use of this unbounded-delay model results in a circuit that is no sensitive to the
delays of its gates and almost all its wires. The circuit thus has the QDI property. It has
no determined time to compute a certain input logic state, since all gates and almost all
wires can have any delay value. Therefore, the circuit’s inputs have to remain stable
also for an undetermined period of time in order to correctly compute the circuit’s logic
functions. Only after the end of the logic computation, the circuit’s inputs can be
stimulated again with a new logic state. On the contrary, a certain synchronous system’s
stage needs to have the logic state of its inputs kept by a certain determined time to
enable a correct computation. Stimulating a new logic state at its inputs is authorized
only after such a determined time, which is defined by the inverse of the maximum
system’s clock frequency.

On the other hand, in a QDI system generalized in Figure 2.2, each one of its stages
need abstract the absence of a clock and the unbounded-delay model in order to enable
the stimulus of a new logic state at their inputs. As this delay model considers that there
is not a determined time for a correct computation of a certain input logic state X of a
stage N, an emitter stage N-1 would have no guarantee that stage N has finished the
computation of state X. Hence, the emitter stage N-1 need to be informed by some
artifice. Otherwise, it could disturb the computation end of state X by means of sending
prematurely a certain new state Y. The QDI system need thus locally coordinate its
communication actions between the parts (stages) of its circuit. Therefore, a small
additional circuit is implemented to detect changes at stage’s outputs and indicating to

25

the emitter stage, by means of an acknowledgment signal, the computation end of a state
X. Thus, the correct computation of a state X and a new state Y are achievable.

Figure 2.2: Communication between stages of a QDI asynchronous system

Such an acknowledgment signal to the emitter stage need be always consistent to
ensure the QDI property of a system. Therefore, the circuit design of a QDI system’s
stage need also ensure that

• no hazards occur on any stage’s logic and

• whatever logic state transition at stage’s inputs results in some logic state change
at stage’s outputs.

Ensuring such conditions, eventual false acknowledgements to the emitter stage are
avoided because there are no hazards. In fact, these conditions eliminate any stage’s
input logic transition that does not generate logic state changes at stage’s outputs.
Hence, the outputs of a receiver stage will not fail to acknowledge an input transition. It
ensures, therefore, the feasibility to observe all possible input logic transitions of a
receiver stage by means of its output transitions. Finally, it also ensures an accurate
acknowledgement to the emitter stage that becomes enabled to send a new logic state to
the receiver stage’s inputs. Evidently, it is ensured because any output logic transition of
the receiver stage means, in theory, a correct computation of a logic state at its inputs.
Consequently, only ensuring these conditions there will be a guarantee that the emitter
stage will not stay without knowing about the computation end of the receiver stage.

To implement such conditions, three design mechanisms are used:

• a communication protocol between system’s stages that implements a handshake
by request and acknowledgement to start a certain computation and indicating its
end;

• a data codification that allows the stage to detect a computation request as well
identifying its end; and

• circuits of the logic functions synthesized in a certain way that do not allow the
hazard generation.

2.2.1 Communication Protocol

The communication between stages of a QDI system is organized by a protocol. It
allows agreeing a handshake by request and acknowledgment to control the data flow
and the computation. Therefore, any action produced by an emitter stage to modify the
input logic state of a receiver stage is necessarily authorized before by the receiver
stage’s outputs.

A traditional protocol uses two phases to achieve a cycle for computation of a
certain logic state X and authorization of a new one Y. However, the protocol that is
currently further used in QDI systems consists of four phases. This protocol guarantees
a simpler implementation (FRAGOSO, 2005; MONNET, 2007-a) because the detection

Stage N-1 Data0N

Data1N

Stage N

AcknowledgementN AcknowledgementN+1

Data0N+1

Data1N+1

Data0N-1

Data1N-1

AcknowledgementN-1

Stage N-1 Data0N

Data1N

Stage N

AcknowledgementN AcknowledgementN+1

Data0N+1

Data1N+1

Data0N-1

Data1N-1

AcknowledgementN-1

26

of its phases is performed by logical level rather than transition events, as it is done in
the two-phase protocol.

Figure 2.3 illustrates the four phases of such a protocol. In the first phase, Phase 1,
valid data are detected at the inputs of the receiver stage N that computes and generates,
by using its data outputs, a signal of acknowledgment at the computation end. In Phase
2, the acknowledgment is detected by the emitter stage N-1 that sends zero to all data
inputs of the receiver stage N. Such returns to zero level are known as invalid data that
are defined by a codification discussed in the next section. In Phase 3, the invalid data
are detected by the receiver stage N that generates again the signal of acknowledgment.
Finally, Phase 4, such an acknowledgment is detected by the emitter stage N-1 that is
thus authorized to send new valid data to the inputs of the receiver stage N.

Figure 2.3: Four-phase protocol for a communication between stages

2.2.2 Data Codification

A QDI system’s stage detects the presence of new input data only by its own data
switching. However, implementing such a mechanism requires necessarily a data
codification based on more than one wire to represent a data bit, i.e., a multi-rail
codification. The request to begin a new computation and the information of data
validity can thus be included in its own data (FRAGOSO, 2005).

Otherwise, by implementing a codification that has only one wire per data bit (i.e.,
single rail), the use of a specific additional signal to characterize the request would be
needed. In addition, the bounded-delay model would have to be used in the circuit’s
data path to thus ensure an end of the data computation before the end of the request
signal. In fact, a fixed delay in such a request signal would have to be defined for it goes
along with the computation of the slowest circuit logic. Therefore, the circuit would not
be a QDI, but a Micropipeline. Furthermore, in case of using a single-rail codification
without the aid of any request signal, a new logic state equal to the current state at data
inputs could not be detected without the implementation of a data packet. Moreover,
interpreting the beginning of the packet would require a memory bank in each stage. In
order to avoid the computation time in such a package interpretation, a data codification
using more than one wire per data bit would make easier not only the implementation of
the logic circuit responsible to identify a request but also the circuit for
acknowledgment generation.

The minimum data codification, which is thus the most traditional one, uses two
wires per data bit, i.e., it is the dual-rail codification. Based on two wires per data bit,
four states of data codification are available (00, 01, 10, and 11) to express two logic
values of a data bit (0 or 1) (MONNET, 2007-a).

Invalid Data
Return to 0

Valid Data

Valid Data Valid DataInvalid Data
Return to 0

Data Outputs
of a Receptor Stage N

Acknowledgement Output
of a Receptor Stage N ►

►

Valid DataInvalid Data
Return to 0

Data Inputs
of a Receptor Stage N ► Invalid Data

Return to 0

Phase 1 Phase 2 Phase 3 Phase 4 Phase 1 Phase 2Phase 4Phase 3

Cycle X Cycle X+1Cycle X-1

Invalid Data
Return to 0

Valid Data

Valid Data Valid DataInvalid Data
Return to 0

Data Outputs
of a Receptor Stage N

Acknowledgement Output
of a Receptor Stage N ►

►

Valid DataInvalid Data
Return to 0

Data Inputs
of a Receptor Stage N ► Invalid Data

Return to 0

Phase 1 Phase 2 Phase 3 Phase 4 Phase 1 Phase 2Phase 4Phase 3

Cycle X Cycle X+1Cycle X-1

27

For a two-phase protocol, the four states are used to ensure the codification of all
possible transition events of a data bit (0=>0, 0=>1, 1=>0, and 1=>1) (FRAGOSO,
2005). The least significant bit’s value of a codification state expresses the logic value
of the data. In addition, a new computation request is detected by the modification of
the codification state’s parity (“codification state 00” => parity even, logic value 0;
“state 01” => odd, value 1; “state 10” => odd, value 0; “state 11” => even, value 1).
Owing to such particularities, the implementation of this protocol is more complex and
less used.

For a four-phase protocol, only three states are required to code a valid-data logic
value 0, another 1, and a return to zero defined as an invalid data. A fourth state is thus
considered as forbidden or not used (FRAGOSO, 2005). This dual-rail data codification
by three states is illustrated in Figure 2.4. This approach ensures that the transition from
a certain state to another is always done by modifying only a single bit of the
codification state (MONNET, 2007-a). Hazards, therefore, are not tolerated because any
spurious switching could lead the circuit to an unwanted codification state. On the other
hand, the generation of the acknowledgment signal can be easily implemented by a
simple NOR gate monitoring the stage’s outputs.

Figure 2.4: Dual-rail data codification by three states

Even if the dual-rail codification is the most used in the design of QDI circuits, other
codifications based on N wires to represent a data bit are also feasible. In case of dual
rail, two wires (N=2) are thus used to represent a data bit. However, only one wire
(M=1) must be equal to logic level 1 to code a logic value of a data bit. To implement a
QDI circuit, any codification is possible for a data bit represented by N wire(s) at which
M of such wire(s) must be equal to logic level 1 to code a logic value. Unfortunately,
such codifications known as M-out-of-N increase the circuit design complexity.

Codifications M-out-of-N are redundant by nature, so they ensure a greater data bit
robustness to voltage variations due to environmental or intentional perturbation events.
For instance, by using codification 1-out-of-2 (dual rail), if one of the data bit wires
erroneously switching to a complementary logic state (as from 00 to 01; 01=>00;
01=>11; 00=>10; 10=>00; and 10=>11), the chance of the resulting erroneous state
being the forbidden state 11 is 2 / 6. Under correct circuit operation, this forbidden state
will never be used, therefore it can be monitored by a simple AND gate as a form of
error detection scheme. As the circuit has such a redundancy able to detect errors, it is
thus also more robust.

00
Invalid
Data

01
Valid Data

10
Valid Data

11
Forbidden

Error

State

State State

State

00
Invalid
Data

01
Valid Data

10
Valid Data

11
Forbidden

Error

State

State State

State

28

2.2.3 Logic Synthesis

The structure of a QDI system can be better understood by the blocks in Figure 2.5.
This illustration indeed shows a direct analogy to the typical stages of a synchronous
system (MONNET, 2007-a). The memory blocks in this figure would represent the
registers (groups of flip-flops) in a synchronous system. In addition, the computational
blocks would implement the combinational logic in the synchronous system. However,
the implementations of such blocks in a QDI system obviously have a different
construction, they use actually a particular gate known as C-element, or also Muller gate
(MULLER, 1959).

Figure 2.5: A structure of a QDI system by analogy to a synchronous system

In fact, the C-element is a key component in QDI asynchronous circuits to ensure
the QDI property. The basic function of a C-element, Figure 2.6, is comparing the logic
states at its inputs. Basically, if the inputs are identical, the state at its output will be
updated with such an input state. The C-element in this condition will work like a buffer
gate. On the other hand, when its inputs are not identical, the output state will be
preserved. Then, the C-element will work like a memory cell. There are several circuit
variations of the C-element implementation that may have, for example, more than two
inputs. The traditional circuit implementations of a C-element are presented in chapter
7.

Figure 2.6: Function of a 2-input C-element gate

Based on this particular C-element operation and the data codification M-out-of-N
(like the dual rail) associated to a communication protocol, the computational blocks in
Figure 2.5 can be synthesized as hazard-free logic functions (i.e., as delay insensitive
functions). The generation of a computational logic circuit operating according with the
four-phase protocol, for instance, can be made by any synthesis method traditionally
used in the design of synchronous circuits. The classic expression resulting from the
logic synthesis, the sum of minterms, can be used to map the logic circuit (SPARSO,
2006). However, the ANDs of the mini-terms are replaced by C-elements. Such a
method is thus known as Delay-Insensitive Minterm Synthesis (DIMS). The simplest
method for the synthesis of logic functions in codification M-out-of-N uses the so-called
MDDs (Multi-valued Decision Diagrams) (BREGIER, 2007). As an example, Figure
2.7 illustrates the MDD-based synthesis of a dual-rail XOR function for the four-phase
protocol (RIOS, 2008). More complex logic functions are also feasible using the same
method. As complex as the function is, smaller area overheads are achieved although

111

SC
-101

SC
-110

000

SCBA

111

SC
-101

SC
-110

000

SCBA

C
A

B
SCC

A

B
SC

Stage N-1

Data0N

Data1N

Computational
Logic Block

Memory
Block

Stage N

Computational
Logic Block

Memory
Block

AcknowledgementN AcknowledgementN+1

Data0N+1

Data1N+1

Data0N-1

Data1N-1

AcknowledgementN-1

Stage N-1

Data0N

Data1N

Computational
Logic Block

Memory
Block

Stage N

Computational
Logic Block

Memory
Block

AcknowledgementN AcknowledgementN+1

Data0N+1

Data1N+1

Data0N-1

Data1N-1

AcknowledgementN-1

29

the circuits’ areas continue to be greater than the conventional single-rail
implementations (SPARSO, 2006).

Figure 2.7: MDD-based logic synthesis of a delay-insensitive dual-rail XOR function
for the four-phase protocol

Figure 2.7 shows that the computational logic blocks of a QDI system, like in Figure
2.5, consist basically of C-elements and ORs. Unlike combinational blocks in a
synchronous system, the computational blocks of a QDI system contains memory
elements, since the C-elements can store logic states. However, such memory elements
when used in computational blocks are not intended to store the result of a computation.
They indeed implement a rendezvous behaviour and thus make the synchronization of
different signals (MONNET, 2007-a). The C-element’s memory property is required
only to ensure the QDI property of the computational block.

In stages of a QDI asynchronous system, C-elements are not only used in the design
of a computational blocks’ part. They, moreover, also implement the system’s memory
blocks in accordance with the communication protocol and the data codification. Figure
2.8 illustrates three stages of a QDI system operating through the four-phase protocol.
The memory blocks are implemented by half-buffers (RENAUDIN, 2000) characterized
by two C-elements. By using its memory function, the C-elements aid the stages in

A1

A0

B1

B0

XOR

XOR

S1

S0

A1

A0

B1

B0

XOR

XOR

S1

S0

C
A0

B1

C
A1

B0

OR
S1

C
A1

B1

C
A0

B0

OR
S0

A

0 1

B

0 1

B

0 1

0 1 1 0

XOR XOR

C
A0

B1

C
A1

B0

OR
S1

C
A1

B1

C
A0

B0

OR
S0

A

0 1

A

0 1

B

0 1

B

0 1

B

0 1

B

0 1

0 1 1 0

XOR XOR

30

retaining their output states until a computation end. They thus also aid in coordinating
the actions between each system’s stage.

Figure 2.8: A QDI system operating through the four-phase protocol

2.3 Conclusions
This chapter discusses the different classes of circuits and details specially the QDI

asynchronous systems. It shows that the inherent redundancy of such QDI systems
makes possible additional characteristics in terms of robustness and security which are
significantly better than those in synchronous systems. The following paragraphs
summarize these natural benefits:

• QDI systems have better resistance to attacks based on analysis of the power
consumption (e.g., differential power analysis, DPA) than their synchronous
counterparts. In fact, the data codification, the communication protocol, and the
local control rather than a global clock make the electrical activity of these
circuits with weaker current peaks. Hence, the correlations to obtain confidential
data through a DPA attack are more difficult. These natural features permit thus
improve the security properties of cryptographic devices used in confidential
systems (BOUSSE et al, 2004; BOUSSE et al, 2005; BOUSSE, 2005;
RENAUDIN el al, 2004; RENAUDIN; MONNET, 2006);

• As asynchronous systems generate weaker current peaks due to the absence of a
clock edge, they emit less EMI (Electromagnetic Interference) and so there is a
reduction of errors related as to noise within the circuits as to interference
with nearby devices (PANYASAK, 2004; GEER, 2005);

• The QDI property makes them largely robust by nature to timing variations
arisen from fabrication defects, environmental or intentional perturbation events
(MONNET et al, 2006-c; MONNET 2007-a) that are further discussed in chapter
3. A QDI asynchronous system automatically adapts itself to such timing
variations, which are known as delay faults. In theory, delay faults of any
duration are tolerated. Only those on branches of isochronic forks, which
represent a small part of the wires, are not tolerated;

• QDI circuits are potentially more able to tolerate any kind of transient
fluctuation . The use of C-elements and a communication protocol allows
particular masking forms of certain transient-fault effects. Such harmless effects
of transient faults are further discussed in chapter 3. In addition, asynchronous

Stage C

C
C

C

C
C

A0

A1

AB_ack

B1

B0

S1

S0

S_ack

Computational
Logic Block

Computational
Logic Block

Computational Logic
Block = Dual-Rail XOR

Memory
BlockMemory

Block

Memory
Block

E1

E0

Stage C

C
C

C

C
C

A0

A1

AB_ack

B1

B0

S1

S0

S_ack

Computational
Logic Block

Computational
Logic Block

Computational Logic
Block = Dual-Rail XOR

Memory
BlockMemory

Block

Memory
Block

E1

E0

31

systems are not vulnerable to perturbations on a clock-distribution circuit as the
synchronous systems are due to attacks by malicious fault injection (MONNET
et al, 2006-c; MONNET 2007-a) or even occurrence of natural transient faults;

• In QDI systems, the multi-rail codification schemes and the asynchronous
communication by handshake between computation stages make easier the
detection and correction of soft errors (KUANG et al., 2010). Multi-rail
codifications allow the system identifying theoretically inexistent logic states
(forbidden states) and, therefore, enable it detecting soft errors. Moreover, with a
little additional circuitry and the assistance of the asynchronous handshake, the
system can make a recomputation to correct the detected soft error before
propagating it to a next circuit’s computation stage.

32

3 TRANSIENT-FAULT EFFECTS ON INTEGRATED
CIRCUITS

An IC performs several operations to achieve functional goals of a system. In fact,
ICs implement functions providing results in accordance with input stimuli. In nornal
conditions, the circuits are stimulated through operational events controlled by their
applications. However, perturbation events arisen from internal or external sources can
stimulate along the circuit’s lifetime the occurrence of faults (ABRAMOVICI;
BREUER; FRIEDMAN, 1990). The presence of a fault in an IC’s functional element
can lead it to produce incorrect operations. The occurrence of such an error scenario in
one of the IC’s elements can still perturb the system as a whole. A failure of the
system’s functional goals is illustrated by the generation of inconsistent results at IC’s
primary outputs (LAPRIE, 1998).

Abramovici (1990) classifies types of faults, errors, and failures in the design of a
circuit. The design errors are thus due to faults during the circuit design, for example,
incomplete or inconsistent specifications, incorrect mapping between different
abstraction levels of design, or violations of design rules. There are also those
fabrication errors which occur during the circuit’s fabrication procedures as a direct
consequence of some human fault in the design implementation, for instance, wrong
configuration of factory’s equipments or the mistaken selection of materials or
components. On the other hand, there are those fabrication defects which are the result
of imperfections or variations in the fabrication process, such as, short or open circuits,
improper doping profiles, bad alignment of the layout’s masks, etc. Fabrication defects
give rise to stuck-at faults, which retain permanently the logic of circuit’s bits.
Furthermore, such defects can also generate delay faults that are delay variations of
circuit’s wires (internal connections) or gates.

Abramovici (1990) also classifies the physical failures that can occur during the
circuit’s lifetime. Such failures are indeed as instantaneous as short or long-term
consequences of transient, intermittent or permanent faults that are induced by
perturbation events arisen from environmental or intentional sources:

• Environmental perturbation events: variations of environmental factors in
terms of temperature, humidity, or vibration, as well any kind of natural
radiation (particles from cosmic rays or radioactive materials) or even artificial
radiation (electromagnetic emission from electronics equipments, external or
internal electrical noise in the circuits);

• Intentional perturbation events: malicious fault injections by radiation (light
flashes, sources of particles or laser), by voltage variation of circuit’s pins
(power, clock, inputs), or even by temperature variation. All of these injection

34

types work as a form of attack to break secret information in confidential
systems (RENAUDIN et al, 2004; MONNET, 2007-a).

The recent many technological advances in ICs have induced several researches
concerning the circuits’ susceptibility to faults, especially the transient faults.

In reality, the concern about the transient faults due to environmental perturbations
in ICs always existed. However, until the end of 20th century, before the emergence of
deep-submicron technologies, related researches were very focused on circuits located
in hostile environments. Evaluations of such faults in circuits and suggestions to protect
them were mostly developed for space and physics applications. With the recent deep-
submicron technologies, the circuits are today designed through tiny transistors which
thus determine smaller capacitances on their nodes. Moreover, the reduced voltages
generate lower currents and charges to supply them. All of these advances decrease the
circuit’s noise margin which along with the viability of higher clock’s frequency and
higher density makes them more vulnerable to faults (LIMA, 2003-b; KARNIK;
HAZUCHA; PATEL, 2004; KASTENSMIDT; CARRO; REIS, 2006). Hence, related
researches have also become more and more important in other ICs’ applications,
including therefore IC-based systems at ground level.

Furthermore, also due to technological advances, there is a growing need to ensure
the confidentiality in the communication of information between systems. This concern
indeed always existed on systems for banking, military, and government services that
require the preservation and protection of their secret information (MONNET, 2007-a).
However, in recent years the data communication between systems has remarkably
increased with the advances in the cellular telephony and Internet. Banking services and
electronic commerce through the world wide web of computers, as applications that
require security, are more and more common by using, for instance, smartcards
(MONNET, 2007-a). The confidentiality of such electronics transactions is ensured by
implementing secure systems based on cryptography algorithms. Nevertheless, on the
other hand, cryptanalysis methods have also evolved considerably in terms of efficiency
to break such secure systems. Novel classes of attacks, like the differential fault analysis
(DFA), are developed based, for instance, by injecting non-invasive transient faults in
system’s circuits.

In accordance with the goals of this thesis, this chapter discusses briefly the transient
faults induced by environmental perturbation events during the circuit’s lifetime.
Furthermore, the physical failures arisen from the different types of transient-fault
effects on synchronous and QDI asynchronous circuits are also detailed. Such
discussions render also the consequences of transient faults due to intentional
perturbation events, which indeed create very similar transient voltage modifications in
the circuits (MONNET, 2007-a).

3.1 Transient Faults Induced by Environmental Perturbations
Many recent researches indicate that transient faults in ICs are induced mostly by

environmental perturbations arisen from radiation sources.

About radiation, the physics explains as the process of propagating radiant energy in
the form of waves or particles. The radiation-induced particles can hit with atoms of
semiconductor devices transferring them their energy by means of ionizing or non-
ionizing processes. Depending on the energy and flow of the particles, the effects of

35

such energy transfers to devices can be transient, permanent, cumulative, or even
destructive (O’BRYAN et al, 1998; LABEL et al, 2000; LIMA, 2000-c; SROUR;
MARSHALL; MARSHALL, 2003).

The radiation-induced transient effects on ICs are caused specially by alpha particles
(released by radioactive impurities) and more importantly neutrons from cosmic rays.
Such types of environmental perturbations events can produce in silicon chips ionizing
processes that deposit charges on circuit’s nodes. The amount of ionization and current
arisen in the semiconductor devices is directly proportional to the energy lost by the
radiation-induced particles (LIMA, 2003-b; KARNIK; HAZUCHA; PATEL, 2004). In
fact, a current pulse generated by the charge deposition is considered a transient fault
that reflects also a transient voltage fluctuation at the circuit’s node
(KRISHNAMOHAN, MAHAPATRA, 2004). It is well-known as a transient arisen
from a single perturbation event (e.g., a particle flow in a certain circuit’s node), and so-
called as a single event transient (SET).

If the energy and flow of the radiation-induced particles are enough to deposit a
charge that creates a significant transient effect on a node, a volatile memory element of
the circuit may be perturbed (MASSENGILL et al, 2000). In this wrong way, a memory
element’s bit would be logically inverted featuring the well-known single event upset
(SEU), which by its non-permanent and non-recurring nature is also called as soft error
(SE).

These transient effects highlighted in previous paragraphs are also known as soft
effects arisen from a single event: the soft single event effects (Soft SEE).

3.2 Types of Transient-Fault Effects
The primary harmful transient-fault effects on systems are basically the generation

of soft errors highlighted in previous section and chapter 1. The most basic model to
represent a soft error is abstracted at logical level of a system design. The simple logic
inversion of a memory bit accurately models the characteristics of such an error.

On the other hand, soft errors give rise to secondary harmful transient-fault effects
which are the failures presented at primary outputs of systems’ modules.

Figure 3.1, which generalizes a module of whatever system, is used in the following
sections to illustrate further details of such transient-fault effects on synchronous
systems or on QDI asynchronous. The illustrated module abstracts RT-level blocks
characterized by K-bit registers and also combinational or computational macrocells of
K bits. The K-bit registers are represented by memory macrocells of N bits.

In synchronous systems, such memory macrocells are single rail, then N=1, and
typically represent flip-flops. While in QDI asynchronous systems, they are usually dual
rail, so N=2, and represent C-elements. The combinational macrocells for synchronous
systems are logic gates, and the computational macrocells for QDI asynchronous
systems are C-elements as well logic gates. In fact, in accordance with chapter 2, such
C-elements in computational macrocells do not work as registers but like AND gates
that prevent the generation of hazards.

36

Figure 3.1: A generic hardware module to represent either a synchronous systems or a
QDI asynchronous

All analysis in this chapter 3 assumes that such a module in Figure 3.1 is stimulated
at its K-bit primary inputs by a certain data X. The module requires a number I of
iterations along the time to process such a data X. After these I iterations, the module
will provide at its K-bit primary outputs a result Y from its functional operations on the
data X. Moreover, the module will also provide by a certain specific primary output an
indication signal (i.e., End_of_Operation in Figure 3.1) for the end of such a result Y’s
computation. In fact, It is used to indicate to another module the result Y’s availability
at its K-bit primary outputs.

The module thus needs I execution cycles (i.e., I iterations) to accomplish its
function. In a synchronous system, an execution cycle is a clock period, while in a QDI
asynchronous system, it is the time required to perform, for example, the four protocol’s
phases illustrated in Figure 2.3. Hence, the module’s operating frequency is defined
multiplying I by the inverse of the total computation time due to the I iterations. Such a
frequency for an asynchronous system is an average, while for a synchronous, it is
constant in accordance with the clock rhythm.

3.2.1 Harmful Effects of Transient Faults on Synchronous Circuits

The effects of transient faults on synchronous circuits are well defined by many
works (KARNIK; HAZUCHA; PATEL, 2004). Depending on the circuit part that a
transient fault is induced, different consequences arise on a synchronous system like
that abstracted in Figure 3.1. In fact, there are three cases based on occurrences of single
transient faults (i.e., SETs as explained in chapter 1 and previous section 3.1):

Case (1): A SET occurring on a D-flip-flop that implements a memory macrocell:
the worst effect is a direct soft error (dSE). It means the flip-flop’s output is wrongly
inverted until a next system’s event that updates such a memory. If the SET starts
during the latching window (set-up and hold times), the worst case is also a dSE;

Memory
Element

0DD

CC N

Out(0)

N

CM(0)

.

.

.
.
.
.

..

.
Combinational

or
Computational

Logic

BB

AA

N

In(K-2)

Memory
Element

K-2FF

EE N

Out(K-2)

N

CM(K-2)

Memory
Element

K-1HH

GG N

Out(K-1)

N

CM(K-1)

N

In(0)

N

In(K-1)

.

.

.

N

Primary_Out(0)

..

.

N

N

Primary_Out(K-2)

Primary_Out(K-1)

N

Primary_In(0)

..

.

N

N

Primary_In(K-2)

Primary_In(K-1)

1

End_of_Operation

37

Case (2): A SET on a D-latch which implements also a memory macrocell: the worst
situation is a dSE when the latch is not enabled. Otherwise, when the latch is enabled,
the worst effect is a SET propagation to the latch’s output;

Case (3): A SET on a combinational logic macrocell: the worst effect is the
combinational circuit propagates the SET up to the input of a memory circuit (flip-flop
or latch) generating an indirect Soft Error (iSE). Furthermore, the SET can reach a
non-registered primary output (i.e., a module’s output that ends nor by a memory
macrocell but by a combinational logic), and so the SET propagates to another module;

3.2.2 Harmful Effects of Transient Faults on QDI Asynchronous Circuits

A simple QDI asynchronous circuits’ analysis in terms of computational and
memory blocks allows a direct analogy with combinational and memory blocks in
synchronous circuits (MONNET; RENAUDIN; LEVEUGLE, 2005-b). Therefore,
transient-fault effects on synchronous circuits, discussed in previous section in
accordance with Figure 3.1, are easily transposed to QDI circuits by only including the
C-element’s concepts:

 Case (4): A SET occurring on a C-element that implements part of a memory
macrocell: the worst effect is a dSE when the C-element has different values at its
inputs. This is because the C-element would work as a memory circuit. In contrast,
when its inputs have the same value, the worst consequence is a SET appearing at its
output, since the C-element would work like a buffer;

Case (5): A SET on a computational logic macrocell: such a situation is similar to
case (3) detailed in the previous section for synchronous circuits, even though the
memory macrocells consists of C-elements. Observe however that computational
macrocells’ C-elements under transient faults never result in dSE because they do not
work as logic state registers of a system’s module. In fact, it may generate iSE in
memory macrocell’s C-elements that characterize the module’s registers.

3.2.3 Harmless Effects of Transient Faults

The transient-fault consequences discussed in previous sections normally result in
failures on modules like that in Figure 3.1, except if they are masked before arriving at
module’s primary outputs. Indeed, masking effects can eliminate SETs even before they
could cause dSEs or iSEs. In synchronous circuits there are three types of hardware-
level masking effects (KARNIK; HAZUCHA; PATEL, 2004):

Case (a): A logical masking occurs when the fault is masked due to a combinational
logic. The combinational macrocell does not propagate the fault up to the input of a
memory macrocell or up to a module’s primary output;

Case (b): An electrical masking is a SET attenuation as a result of the electrical
properties of gates on the propagation path. It also depends on the SET energy that
contributes to define the SET shape. Typically, a SET starts to be slightly attenuated by
a gate when its duration is smaller than the gate’s propagation time;

Case (c): A latching-window masking is when the SET reaches the input of a
memory macrocell but does not meet the time window, such as the set-up and hold
times or the enable signal, which are required to memorize a logic value;

38

Cases (a) and (b) occur in the same way for QDI asynchronous circuits. Moreover,
there are two other types of masking effects on QDI asynchronous circuits (MONNET,
2006-c):

Case (d): A masking through the C-element’s filter ability happens when a SET
arrives at a C-element’s input but it is not memorized. The reason is that another input
has a different logic value from that with SET, therefore the C-element’s output is not
modified and the SET is masked;

Case (e): Another masking is the communication protocol’s actions by means of a
natural tolerance to SET-induced delay faults. It is when a SET is memorized by a
C-element, i.e. a soft error happens, but the same logic value stored would be
memorized, earlier or later, anyway in normal fault-free conditions. Therefore, a delay
fault is induced at the C-element’s output. Nevertheless, such a premature or delayed
memorization is almost always naturally tolerated by the system’s QDI property.

3.2.4 Failures: the Effects of Soft Errors

Soft errors impose in most cases a failure on primary outputs of a module like that in
Figure 3.1. This means that a soft error leads to the computation of an inconsistent result
illustrated at module’s primary outputs.

If a module is able to indicate the end of the results’ computation by a specific
primary output (e.g., End_of_Operation signal in Figure 3.1), then eventual failures at
its primary outputs may be naturally detected by the system without requiring any
additional specific hardware mechanism for detection.

Therefore, two types of failure are defined:

• Failure Detectable Naturally (FDN): the natural detection of a failure occurs if
the End_of_Operation signal is not indicated within a period P estimated greater
than the total computation time of I module’s iterations that obtain a result. In
this failure scenario, peripheral nearby modules as well as software applications
of the system would normally notice the absence of such an indication.
Therefore, the failure would propagate naturally into higher abstraction levels
(e.g., software applications), where the system could easily as detect as correct it
by recomputation. In fact, a detection at software level, for instance, by using
timeout-based mechanisms and a subsequent request for recomputation would
eliminate easily such a failure;

• Failure Non-detectable Naturally (FNN): an eventual failure at other module’s
primary outputs that provide data or address results, for instance, cannot be
naturally detected if the module indicates the End_of_Operation within the
estimated period P. Therefore, additional hardware-level mechanisms have to be
implemented to enable failure detections.

If a module by each I iterations always provide a single result at its K-bit primary
outputs, then only a single failure is able to happen at the end of the I iterations. A
single failure could be thus generated by either a single or even multiple soft errors
occurred along the I module’s iterations. Hence, evaluating the number of failures,
which may occur during the total time to compute an amount of R results, does not
depend on the amount of occurred soft errors. The module’s immunity level to transient-
fault effects can be estimated by assessing various computation results. Each one would
be obtained under different perturbation conditions characterized during each group of I

39

iterations by initial instants, circuit places, durations, and amount of induced transient
faults.

Table 3.1 summarizes the transient-fault effects in accordance with the primary
outputs’ possibilities in a module like that in Figure 3.1 which is perturbed during a
group of I computation iterations.

Table 3.1: Possible primary outputs of a module perturbed by transient faults

Values at Module’s Primary Outputs

Output for Indication
of Computation End

(as End_of_Operation
in Figure 3.1)

Other Outputs for
Results (Data,
Addresses… as

Primary_Out(...) in
Figure 3.1)

Type of Effect Consequence

OK OK Harmless Faults Tolerated Naturally (FTN)

Inconsistent OK
Harmful Failure Detectable Naturally (FDN)

Inconsistent Inconsistent

OK Inconsistent Harmful Failure Non-detectable Naturally (FNN)

3.2.5 Harmful Effects of Multiple-Transient Faults

Multiple perturbation events or even a single one can create multiple-transient faults.
Such fault situations of lower probability than the single transient faults can create more
severe harmful effects because more than one memory macrocell can be upset, and so
multiple soft errors can be generated as in synchronous as QDI asynchronous circuits. In
fact, transient faults can perturb different memory macrocells, like those memory
elements in Figure 3.1, simultaneously as well as at different instants. Further issues
related to such section are discussed in chapter 5.

3.2.6 Harmful Effects of Long-Duration Transient Faults

Long duration transient (LDT) faults, which are typical in deep-submicron
technology-based circuits, can be longer than a clock period of a synchronous circuit.
As soft errors as failures are, therefore, very probable in any LDT situation.
Nevertheless, such a scenario is not so severe in QDI asynchronous circuits. The
absence of a clock imposes no limits to the system dealing much more efficiently with
such LDT faults. More details about such harmful effects of LDT faults are discussed in
chapter 5.

3.3 Conclusions
This chapter summarizes the different types of transient-fault effects as on

synchronous circuits as QDI asynchronous circuits. Table 3.2 briefly presents all of
them. Note that a single transient fault can result in multiple transient faults, and vice
versa (arrows in Table 3.2), as consequence of the circuit's delays. The multiple
transient faults can be as simultaneously (multiple at space) as at different instants
(multiple at time).

40

These types of transient-fault effects in Table 3.2 are arisen as from environmental
as intentional perturbation events. The basic difference between environmental and
intentional fault effects seems to be the amount of charge induced on the circuit's nodes.
Intentional perturbation events may have higher energy, and so they have a wider range
of transient voltage durations to upset the circuit. Therefore, the concept of LDT faults,
which is normally used in deep-submicron technology-based circuits due to
environmental perturbation events, seems also to be interesting to represent
consequences of intentional perturbation events as in deep-submicron as older
technology-based circuits.

Furthermore, failures were divided into FDN and FNN in order to highlight in the
following chapters the larger natural detection ability of QDI systems, especially in
terms of LDT faults. There are some particularities of the QDI circuits, mostly in terms
of harmless effects and FDN induction that quite contribute for their systems achieving
higher transient-fault immunity levels. On the other hand, there are some harmful and
harmless effects so similar on both circuit classes. The next chapters of this thesis better
discusses such QDI systems’ benefits.

Table 3.2: Summary of transient-fault effects on synchronous and QDI asynchronous
circuits

Transient Fault (TF) Soft Error (SE) Failure

Effect Multiplicity Duration Location Origin Multiplicity Type

Harmful

Single

Short
Memory Direct

Single Failure
Detectable
Naturally
(FDN) or
Failure
Non-

detectable
Naturally

(FNN)

Logic Indirect

Long
Memory Direct Single or

MultipleLogic Indirect

Multiple at
Time or Space

Short
Memory Direct Multiple

Logic Indirect
Single or
MultipleLong

Memory Direct

Logic Indirect

Harmless

Class Masking Effect

Synchronous Latching-Window Masking

Synchronous or
QDI Asynchronous

Electrical Masking

Logical Masking

QDI Asynchronous
Filter Ability of the C-elements in Memory Macro-cells

Natural Tolerance to Delay Faults induced by TFs

Transient Fault (TF) Soft Error (SE) Failure

Effect Multiplicity Duration Location Origin Multiplicity Type

Harmful

Single

Short
Memory Direct

Single Failure
Detectable
Naturally
(FDN) or
Failure
Non-

detectable
Naturally

(FNN)

Logic Indirect

Long
Memory Direct Single or

MultipleLogic Indirect

Multiple at
Time or Space

Short
Memory Direct Multiple

Logic Indirect
Single or
MultipleLong

Memory Direct

Logic Indirect

Harmless

Class Masking Effect

Synchronous Latching-Window Masking

Synchronous or
QDI Asynchronous

Electrical Masking

Logical Masking

QDI Asynchronous
Filter Ability of the C-elements in Memory Macro-cells

Natural Tolerance to Delay Faults induced by TFs

4 EVALUATING TRANSIENT-FAULT EFFECTS AT
LOGICAL LEVEL

IC designs necessarily have to be evaluated under the effects of different fault types,
given the scenario of errors and failures discussed in previous chapter. In fact, they have
to be tested whether their functional behaviours and immunity levels are satisfactory for
the purposes specified. Such assessments allow identifying potential vulnerability
situations of the circuit that can thus be redesigned or even protected by more efficient
mitigation mechanisms. Such testing evaluations to verify the circuit conditions can be
done at different abstraction levels of the system’s design. Abramovici (1990), Smith
(1997), and Wagner (2004) relate the usual abstraction levels from the lowest to the
highest one as shown below:

• Real-circuit level: circuits’ prototypes or circuits produced by physical materials
from a fabrication technology;

• Electrical level: circuits’ layout masks, circuits’ models based on transistors,
resistors, capacitors, and inductors. Some authors consider layout mask issues as
part of the labeled physical level, which may also used to denominate the real-
circuit level described above. However, in order to avoid confusions, this thesis
stands “physical level” only for the electrical-level-related issues discussed in
the first sentence of this paragraph. Moreover, other authors define switch level
as transistors modeled discretely (switches at logic level 0 or 1) and transistor
level as transistors characterized by non-linear models (e.g., exponential
equations);

• Logical level: circuits’ models based on flip-flops, latches, and logic gates,
besides library cells. EDA tools usually label a model in terms of logic gates as
gate level;

• Micro-architectural level or the well-known Register Transfer (RT) level: the
circuit models based on registers, multiplexers, and operators like adders,
subtracters, multipliers, and dividers, besides other macrocells. Some authors
label this level as behavioral level or even functional level in accordance with
the delay model used;

• Algorithmic level: the circuit models based on hardware modules. Modules,
cores, plans of power, ground, and clock;

• Systemic level: the circuit models based on processors, memories, and other
peripherals, besides circuit boards and their components.

Testing evaluations at real-circuit level by using prototypes or FPGA-based
reconfigurable platforms, for instance, does not always allow monitoring and

42

diagnosing certain internal errors. Furthermore, the configuration of a hardware
framework dedicated to test a specific type of fault in a target circuit is neither cheap
nor a simple task. Therefore, the evaluations usually fall on the electrical level by using
software-based tools (e.g., spice, spectre, hspice, etc), which allow simulating the circuit
behaviour through equations based on preliminary transistor characterization and
modelling. The different types of faults that may occur at real-circuit abstraction level
can thus also be characterized and modelled by representations at electrical abstraction
level.

However, an electrical-level fault-simulation alternative may consume too much
time and computational effort when the target circuits have a certain complexity. The
simulation task may even be much more difficult to evaluate the effects of faults with
temporal characteristics such as, for instance, the transient faults.

Hence, logical abstraction level simulations based on logic event-driven simulators
(e.g., modelsim, nclaunch, etc) are usually suggested in order to enable such a
computational task for evaluation of transient-fault effects. Even if they have no the best
accuracy to characterize and model the transient faults, they are able to provide
meaningful results to identify sensitive instants and zones of a circuit, and thus allowing
comparative analysis in terms of robustness in different circuits.

Nowadays, the evaluation of transient-fault effects on synchronous circuits is
evident through many simulation-based methods at logical level (MASSENGILL et al,
2000; ALEXANDRESCU; ANGHEL; NICOLAIDIS, 2002, 2004; REORDA;
VIOLANTE, 2004; HADJIAT, AMMARI, LEVEUGLE, 2005; NEVES et al, 2006-a;
NEVES et al, 2006-b). However, the same methodologies cannot be applied to
asynchronous circuits, since they are based on the clock of synchronous systems.
Furthermore, the particularities of the transient-fault effects on asynchronous systems’
C-elements are not considered. On the other hand, Monnet (2004, 2005-c 2006-c 2007-
a) was the only one to propose a method to evaluate the QDI asynchronous circuits’
sensitivity to such effects. However, his method cannot evaluate synchronous circuits,
since it provides a metric which represent the circuit’s sensitivity by only counting the
total time when the QDI system’s C-elements are vulnerable to transient faults. The
methodology, therefore, allows only comparing the sensitivities of QDI asynchronous
architectures. Any comparison of such specific metric for QDI circuits with metrics of
methods dedicated to synchronous circuits would not be possible.

Hence, a new methodology able to compare the sensitivities of both (synchronous
and asynchronous QDI circuits) is required to evaluate the best design options in terms
of transient-fault robustness. For that, the following sections propose a solution
presented also in (BASTOS et al, ETS 2009-a; BASTOS et al, IOLTS 2009-b) which
provides evaluation metrics common to both these classes of circuits.

4.1 Method for Logical-Level Evaluation of Transient-Fault Effects
This new methodology is developed by traditional means of transient-fault-injection

simulation campaigns in gate-level circuits’ designs. The clock period of synchronous
systems and the transient-fault vulnerability time of QDI asynchronous systems’ C-
elements are abstracted through a probability distribution which requires a sample of
small size (i.e., a small number of transient-fault-injection simulation situations). The
aim is made an evaluation of SET effects which cause system’s failures.

43

The methodology is able to analyze complex circuits under such faults by using a
commercial logic event-driven simulator, a gate-level circuit netlist, and its circuit
timing information in a SDF (Standard Delay Format) file. Furthermore, a typical
command of commercial simulators (e.g., “force”) models and injects the fault. Figure
4.1 briefly presents the simulation scheme employed by the methodology.

Figure 4.1: Simulation scheme of a SET on an IC-design netlist

4.1.1 Modelling the Transient-Fault Effects

A rectangular-pulse-based model detailed in (ALEXANDRSCU; ANGHEL;
NICOLAIDIS, 2004) is utilized to simulate a SET fault at gate level. The command
forces a netlist’s node (wire or signal of netlist) to its reverse value just during a time in
order to model a transient pulse width (i.e., a transient fault’s duration). Figure 4.2
illustrates such a modelling to inject a transient fault on a netlist’s wire.

Figure 4.2: Modelling of a SET fault on a netlist’s wire

For a complete evaluation of the SET effects, the methodology also considers the
possibility of dSE occurrences detailed in chapter 3. As the approach is over a gate-level
circuit, a SET happening inside a memory cell cannot be modeled in the same way
discussed in previous paragraph. Hence, the method considers each memory cell as an
extra netlist’s node. In fact, every simulation evaluating output wires of memory cells is
executed again but under a different fault-injection model. The same command “force”
is used with a different parameter to represent a dSE. This command is thus able to
deposit in an output wire of memory cell its reverse value. However, unlike a stuck-at
fault, such a deposit can be eliminated by a subsequent driver transaction.

On the other hand, as explained in chapter 3, the method must take into
consideration the C-element’s dual behaviour (memory-buffer) depending on its input

Pulse Width

Simulation of a Transient-Fault Injection on a :Netlist Wire

Pulse Width

Fault Initial Time Total Computation TimeInitial Computation Time

Logic Event -Driven Simulator

Gate-Level
Netlist (verilog)

Timing
Information

File (sdf)

Stimulus
Vector (vhdl)

Resultant
Simulation File

Golden
Resultant

Simulation File
X

Count Files with
Failure at Circuit Outputs

Netlist Wire

Pulse Width

Fault Initial Time

Configuration File (tcl)

44

values. If inputs are different, the C-element’s output is forced as a deposit (dSE), else if
inputs are equal, it is forced as a pulse (SET).

Therefore, for a set of a stimulus vector, a fault initial time, and a pulse width, each
simulation illustrated in Figure 4.3, Figure 4.4, and Figure 4.5 is separately executed
depending on the circuit’s class or logic values of C-element’s inputs. Other memory
types are also approached by considering their particularities.

Figure 4.3: Fault-injection simulations into a synchronous circuit

Figure 4.4: Fault-injection simulations into a QDI asynchronous circuit with different
logic values at its C-element’s inputs

Figure 4.5: Fault-injection simulations into a QDI asynchronous circuit with equal logic
values at its C-element’s inputs

4.1.2 Dynamic of Fault-Injection Simulations

The goal is to compare in a fair way the robustness of circuits functionally
equivalent but architecturally different. Therefore, the target circuits for comparison are

S
im

ul
at

io
n

3

S
E

T

C

Computational
Logic Block

Memory
Block

S
im

ul
at

io
n

1

S
E

T

S
im

ul
at

io
n

2

S
E

T

S
im

ul
at

io
n

4

S
E

T

S
im

ul
at

io
n

5

S
E

T

S
im

ul
at

io
n

6

S
E

T

0

0

S
im

ul
at

io
n

3

S
E

T

C

Computational
Logic Block

Memory
Block

S
im

ul
at

io
n

1

S
E

T

S
im

ul
at

io
n

2

S
E

T

S
im

ul
at

io
n

4

S
E

T

S
im

ul
at

io
n

5

S
E

T

S
im

ul
at

io
n

6

dS
E

1

0

S
im

ul
at

io
n

3

S
E

T

D-FF

Combin ational
Logic Block

Memory
Block

S
im

ul
at

io
n

1

S
E

T

S
im

ul
at

io
n

2

S
E

T
 Simulation

4
SET

S
im

ul
at

io
n

5

S
E

T

S
im

ul
at

io
n

6

dS
E

CLK

45

evaluated under similar simulation conditions. The scheme in Figure 4.1 is used several
times in accordance with Figure 4.6.

A same set of input vectors is randomly chosen to simulate functional operations of
the circuits. The initial instant to start the transient pulse is defined as a percentage of
the total computation time, which means the number of execution cycles multiplied by
the inverse of the circuit’s operating frequency, as defined in chapter 3. Then, in a first
simulation, a fault starts to be injected at 5 % of the total computation time. In another
simulation, the fault starts at 10 %. After that, the simulations go on in accordance with
Figure 4.6. Note that each one of all netlist wires is individually evaluated by an
independent fault-injection simulation.

Figure 4.6: Simulation methodology for injection of SETs

Furthermore, a typical range of pulse widths (DODD, 2004; FERLET-CAVROIS,
2006) is evaluated. Only a width by simulation set is chosen in order to estimate and
compare the target circuits’ robustness for a certain transient-fault characteristic.
Therefore, for each width chosen within the range, all nodes (netlist’s wires) of the
target circuits are evaluated under rectangular pulses that have obviously the same width
and the same magnitude Vdd, since it is a logical-level simulation.

Observe, however, that the characteristics of a SET depend largely on the perturbed
node’s capacitance and the charge deposited by the perturbation. As the nodes’
capacitances in the target circuits for comparison are often different, a same
perturbation charge occurring on different circuits would present also different transient
effects. Therefore, the SETs generated in each one of the target circuits would likely
have different characteristics in terms of amplitude, width, rise and fall times. Hence,
when all of the target circuits’ nodes are perturbed by a rectangular SET with the same
width and amplitude, the capacitances of all these nodes have to be considered similar if
the goal is analyzing comparatively the effects of a certain perturbation charge. On the
other hand, a comparative evaluation by using a set of widths, within the typical SET
range, allows considering approximately the different nodes’ capacitances in the target
circuits. Actually, at least the characteristics of different widths generated by a certain

 for each Stimulus Vector

next Stimulus Vector

for each Netlist Wire { all netlist wires }

next Netlist Wire

for each Fault Initial Time {
5% 10% … 90% 95% of total computation time }

next Fault Initial Time

for each Pulse Width { 250ps 500ps 750ps … }

next Pulse Width

SSiimmuullaattiioonn SScchheemmee ooff aa SSEETT

46

perturbation charge would be taken into account. Then, if such an approach based on
multiple widths is used, the nodes’ capacitances have not necessarily to be considered
similar. Consequently, a more accurate evaluation can be done, even though there are
certain inaccuracies mostly related to the SET’s amplitude as well the SET’s rise and
fall times.

Such simplifications, which are indeed typical in any method at logical abstraction
level, greatly reduce the simulation complexity in terms of computational efforts. On the
other hand, they also allow evaluating the behavior of a system under a certain
transient-fault profile (i.e., a pulse width) in all circuit’s nodes, regardless of its
capacitance and perturbation charge. Therefore, logical-level methods ensure thus a
very significant preliminary low-cost evaluation, even so new practical works based on
real-circuit-level experiments have yet to further explore how inaccurate exactly they
are.

The simulations of SETs causing dSEs follow the same methodology shown in
Figure 4.6. The difference is that only the netlist’s wires of memory cells’ outputs are
targets for injections. Therefore, pulse widths are not considered but a logic value to
deposit, as explained in previous section.

4.1.3 Evaluation Metrics

A set of configuration files, as described in Figure 4.1, defines different transient-
fault characteristics to be individually simulated. In fact, just a single transient fault is
injected by simulation in accordance with the SET-based model. Consequently, the total
number of injected transient faults is equal to the total number of simulations under
fault:

 TotNumSim TotNumFaul= (4.1)

The method provides a file after a simulation under the effect of an injected SET.
Then, such a resultant file is compared with another in fault-free simulation conditions
(golden file). If files are different, the target circuit’s primary outputs presented
inconsistent values. Therefore, the injected SET caused a system’s failure. By counting
every simulation that presented such a scenario, system-robustness percentages based
on the TotNumSim can be calculated. Note that just a failure by simulation is able to
happen.

The total number of eventual system’s failures is divided, as defined in chapter 3,
into failures detectable and non-detectable naturally (FDN and FNN) by the system:

 DetecNumFailNonecNumFailDetTotNumFail += (4.2)

So, the percentage of system’s Detection is defined as:

 100⋅=
TotNumSim

ecNumFailDet
Detection (4.3)

On the other hand, certain transient faults often cause no system’s failures. It means
the system naturally tolerates the injected faults by those masking effects explained in
chapter 3. The total number of faults tolerated naturally (FTN) is thus represented by:

 TotNumFailTotNumSimNumFaulTol −= (4.4)

47

As each one of the TotNumFail is provoked by a different single fault, the
TotNumFaul is divided as shown in Figure 4.7. Then, the percentage of system’s
Tolerance is expressed as:

 100⋅=
TotNumSim

NumFaulTol
Tolerance (4.5)

Figure 4.7: The total number of injected transient faults and their consequences

Another important system-robustness percentage is the resistance to faults. It
denotes how robust the system is to cope with the transient-fault effects. Such a
percentage of system’s Resistance is defined as the sum of the system’s Detection and
Tolerance detailed in equations 4.3 and 4.5:

 100⋅

 +=
TotNumSim

NumFaulTolecNumFailDet
Resistance (4.6)

4.1.3.1 Circuit’s Sensitivity to SET Effects

The methodology considers two basic concepts in order to compare the sensitivities
of different circuits:

• Any target always will have a higher probability to be hit by single perturbation
event, for instance, if its area is larger;

• The probability is also higher if the target is exposed longer time to attempts at
hitting it (i.e., to single perturbation events at hitting a circuit).

Therefore, the circuits’ area sizes and the total computation times are taken into
account to determine what circuit is the most sensitive to SET effects. For that, another
evaluation metric which uses units common to any circuit is defined. Only by means of
that, a comparison between sensitivities of different circuits, in terms of area or total
computation time, is feasible.

The methodology works with the area factor by using the logic idea that the total
number of nodes (TotNumNod) increases in function of enlarging the circuit’s area. The
circuit’s nodes (netlist’s wires) are targets of fault-injection simulations. In addition, the
system-robustness metrics, defined in previous section, take them into consideration. At
that abstraction level of the system’s design, which is used in such a methodology, the
evaluation is simplified by comparing simulations of different circuits under pulses,
with the same width, on each node. Hence, all nodes have the same capacitive
importance and the numbers of sensitive nodes identified in different circuits are

TotNumFaul
=

TotNumSim

NumFaulTol

NumFailDetec

NumFailNonDetec

TotNumFail

48

comparable. Such a number is defined by the Resistance’s complement multiplied by
the TotNumNod. Moreover, the Resistance is calculated for a certain computation time
(CompTim), and then this number of sensitive nodes is exposed to perturbations during
such a time. Therefore, the number of sensitive nodes multiplied by the time factor
CompTim defines the circuit’s Sensitivity to a certain effect of a perturbation source
(i.e., to a pulse of certain width induced by a perturbation event):

 CompTimTotNumNod
Resistance

ySensitivit ⋅⋅

 −=
100

1 (4.7)

In order to obtain a more accurate evaluation of the circuits’ sensitivities, a set of
SET widths must be taken into account to calculate the Resistance, as discussed in
previous section. The circuits’ nodes have thus different capacitive importances, and
therefore they have characteristics closer to reality.

4.1.4 Reducing the Total Number of Simulations

The methodology executes a large number of simulations under fault. This number
is defined through the multiplication of the number of stimulus vectors by the number of
fault initial times, by the total number of all netlist wires, and by the number of pulse
widths, as detailed in Figure 4.6. The result of such multiplications is still incremented
by the multiplication of the number of stimulus vectors by the number of fault initial
times, and by the total number of memory cells in the circuit.

The simulation considerations of all netlist wires, all memory cells, and the
robustness evaluation for a certain pulse width work around the problem in estimating
the methodology’s evaluation metrics to the stimulus vectors and the fault initial times.
Executing a lot of simulations for each possible stimulus vector as well for all range of
fault initial times would be impractical. Therefore, small samples are taken from the
stimulus-vector and fault-initial-time populations.

The resultant system-robustness percentages (detailed in previous section) from such
simulations are considered small samples of normally distributed populations. Hence,
the traditional Student’s t-distribution (GOSSET, 1908; FISHER, 1925) based on such
samples of small size is applied to estimate the means of these populations. It also
permits calculating an interval likely to estimate a system-robustness percentage. The
so-called confidence intervals are able to illustrate the reliability of the estimates. Figure
4.8 summarizes such a procedure to calculate a methodology’s evaluation metric.

4.1.5 The Method on Case-Study Circuits

A case study on a DES (Data Encryption Standard) crypto-processor in synchronous
and QDI asynchronous versions is evaluated by using the proposed methodology. The
crypto-processors are pretty popular in many security applications, especially in smart
cards.

4.1.5.1 The Target Circuits

The DES-based-circuit versions are functionally equivalent being composed of three
main blocks: a generator of sub-keys; a ciphering block; and a controller block
managing the 16 iterations defined by the traditional DES algorithm. A data and key of
64 bits each one are processed to a 64-bit output by a ciphering or deciphering
operation.

49

Figure 4.8: Estimating a methodology’s evaluation metric (Sensitivity)

The asynchronous version (des_async) is implemented by using the data codification
1-out-of-N and the four-phase protocol, which are discussed in chapter 2. On the other
hand, the synchronous version (des_sync) uses a single-rail data codification and the
traditional control by a global clock. Both architectures do not have any specific
mechanism to mitigate faults. These versions were designed and fabricated in previous
works (BOUESSE; RENAUDIN; GERMAIN, 2004; BOUESSE, 2005; MONNET et al,
2005-a; MONNET; RENAUDIN; LEVEUGLE, 2006-c; MONNET, 2007-a) by using a
130-nm CMOS technology.

4.1.5.2 Results

System’s failures provoked by those SETs, which were injected in accordance with
Figure 4.7, were counted to estimate the system-robustness percentages. Figure 4.9
summarizes such fault-injection simulations’ results for a confidence level of 85 %.
Therefore, taking several new samples of simulations and recalculating the confidence
interval from each one, 85 % of the confidence intervals calculated would include the
real mean of the system-robustness percentages’ population.

This graph in Figure 4.9 presents the factors of the Sensitivity‘s equation discussed
in previous section, actually, the ratio of the des_sync’s factors to the des_async. The
continuous curves represent the means and the dotted curves the confidence intervals of
the factors.

The highest curves in Figure 4.9 represent the Sensitivity’s factor related to the
Resistance, and show the des_sync between 1.7 and 4 times more sensitive than the
des_async. This trend well expresses the results of high Resistance presented by the
des_async in the third diagram in Figure 4.10, between 93% and 78% for the same
range of pulse widths shown in Figure 4.9. Similar results are not presented for the
des_sync, whose its Resistance stands between 88% and 30%. As Resistance is defined
by the combination of Detection plus Tolerance, such a trend is firstly explained by the
loop-based architecture of the des_async (like the module characterized in chapter 3),
where occurrences of SET-induced deadlocks are detectable. Therefore, a larger
Detection is possible as important the pulse width is. The first diagram in Figure 4.10

Populations:
All Memory CellsAll Netlist Wires

Small Sample of

Fault Initial Times Small Sample of

Stimulus Vectors

For a certain

Pulse Width

Populations:
All Memory CellsAll Netlist Wires

Small Sample of

Fault Initial Times Small Sample of

Stimulus Vectors

For a certain

Pulse Width

The resultant Sensitivities from the combination of these simulation conditions
are considered small samples of normally distributed populations .

The Student’s t-distribution based on such samples of small size is applied
to estimate the means and confidence intervals of these populations.

Populations:
All Memory CellsAll Netlist Wires

Small Sample of

Fault Initial Times Small Sample of

Stimulus Vectors

For a certain

Pulse Width

Populations:
All Memory CellsAll Netlist Wires

Small Sample of

Fault Initial Times Small Sample of

Stimulus Vectors

For a certain

Pulse Width

The resultant Sensitivities from the combination of these simulation conditions
are considered small samples of normally distributed populations .

The Student’s t-distribution based on such samples of small size is applied
to estimate the means and confidence intervals of these populations.

50

shows it. Furthermore, the Tolerance of the des_async is not quite reduced for larger
pulses as a result of the two particular masking effects (d) and (e), discussed in chapter
3, and the absence of the latching-window masking, which decreases in the des_sync. It
is detailed in the second diagram in Figure 4.10.

Figure 4.9: Circuits’ Sensitivities in terms of the ratio des_sync / des_async

The circuits’ area sizes and the computation times in the Sensitivity’s equation are
illustrated by the lowest curves in Figure 4.9. The larger size of the des_async (around 5
times the TotNumNod on the des_sync) leaves it approximately 5 times more sensitive
than the des_sync. Moreover, its larger computation time (around 4 times the CompTim
of the des_sync) leaves the des_async about 4 times yet more sensitive. As the lowest
curves show, the multiplication of all the Sensitivity’s factors determines the des_async
between 5 and 12 times more sensitive than the des_sync. It illustrates the importance of
the area and time factors that overcome the factor related to the Resistance in this case-
study. On the other hand, the des_async could be developed by using the advances in
synthesis tools and libraries of cells dedicated to asynchronous (MAURINE et al, 2003;
FOLCO et al, 2005; TIEMPO, 2009). It would optimize the area factor to 2 instead of 5
and could provide lower computation time than the des_sync. Therefore, the factor
related to the Resistance would be predominant and the des_async could be less
sensitive.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
3.40
3.50
3.60
3.70
3.80
3.90
4.00
4.10

50 250 450 650 850 1050 1250 1450 1650 1850 2050 2250
Pulse Width (ps)

(1-Resistance*100)*TotNumNod*CompTim

(1-Resistance/100)*TotNumNod

(1-Resistance/100)

de
s_

sy
nc

 Y
 ti

m
es

 m
or

e
S

E
T

 s
en

si
tiv

e

de
s_

as
yn

c
Y

 ti
m

es
 le

ss
 S

E
T

 s
en

si
tiv

e

Y

51

Figure 4.10: System-robustness percentages

Figure 4.11 was obtained by extrapolating from Figure 4.9’s trends. However, it also
considers typical trends of the novel synthesis methods for asynchronous (MAURINE et
al, 2003; FOLCO et al, 2005; TIEMPO, 2009), for instance, an area factor of 2 instead
of 5 and a computation time factor of 1 instead of 4. Figure 4.11 shows thus that the
des_sync can be up to twice more sensitive than the des_async by using such modern

System's Detection (%)

18.77

1.11

16.65

0.58

16.12

0.46

14.36

0.39

23.01

1.21

20.41

0.71

19.82

0.55

17.09

0.43

14.53

1.01

12.89

0.45

12.43

0.38

11.63

0.350

5

10

15

20

25

250ps 250ps 500ps 500ps 750ps 750ps2128ps2128ps

des_sync des_async

250 ps 500 ps 750 ps 2128 ps

Sytem's Tolerance (%)

64
.4

0

39
.7

2

69
.5

6

65
.0

1

70
.5

3

72
.8

8

75
.9

5

81
.6

4

66.70

49.76

71.7976.2772.8782.17
78.24

87.63

62.09

29.67

67.34
53.75

68.2063.5973.6675.65

0
10
20
30
40
50
60
70
80
90

100

250ps 250ps 500ps 500ps 750ps 750ps2128ps2128ps250 ps 500 ps 750 ps 2128 ps

des_sync des_async

Sytem's Resistance (%)

83
.2

4

40
.8

3

86
.2

5

65
.5

9

86
.8

3

73
.3

590
.5

3

82
.0

3

87.83

50.82

90.00

76.75

90.24

82.59

93.01
88.00

78.66

30.85

82.50

54.44

83.41

64.11

88.05

76.06

0
10
20
30
40
50
60
70
80
90

100

250ps 250ps 500ps 500ps 750ps 750ps2128ps2128ps

des_sync des_async

250 ps 500 ps 750 ps 2128 ps

52

synthesis tools. Note that Figure 4.11’s results as well as any logical-level evaluation for
shorter-duration transient faults (pulse widths lesser than 650ps) are not so accurate
because not all electrical-masking effects are able to be taken into account at logical
abstraction level. However, as asynchronous circuits have more gates and many C-
elements (which normally improve the transient-fault masking effects), it seems that the
use of a better electrical-masking evaluation accuracy would improve even more the
des_async’s results than the des_sync. In addition, the des_async had been designed
without alarm mechanisms, which have a very simple implementation in QDI
asynchronous circuits. Therefore, if such low-cost alarms were used, the des_async’s
Sensitivity would achieve close to 0 because very few failure situations would not be
able to be mitigated (MONNET; RENAUDIN; LEVEUGLE, 2006-c; 2007-b), and thus
the des_sync would be much more transient-fault sensitive than the des_async.

Figure 4.11: Circuits’ Sensitivities by considering between des_async and des_sync an
area factor of 2 and computation time factor of 1

One could argue that the Resistance’s results would change by using the modern
synthesis methods for asynchronous, and so such a Sensitivity’s analysis in last
paragraph could not be correct. Nevertheless, the improvements in the synthesis of QDI
circuits are mostly related to optimize the computational logic blocks as well as slightly
reducing the QDI property (i.e., setting slacker timing constraints on the assumptions

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

50 250 450 650 850 1050 1250 1450 1650 1850 2050 2250

Pulse Width (ps)

Y = Sensitivity(des_sync) / Sensitivity(des_async)

de
s_

sy
nc

 Y
 ti

m
es

 m
or

e
S

E
T

 s
en

si
tiv

e

de
s_

as
yn

c
Y

 ti
m

es
 le

ss
 S

E
T

 s
en

si
tiv

e

53

that require, in theory, similar delays in branches of isochronic forks). Therefore, the
Resistance’s results could be slightly different depending on an eventual reduction of
the des_async’s Tolerance, which would be perhaps modified due to its direct relation
with the logical-masking effects. Evidently, the des_async’s logical-masking effects
may be improved with the new logic synthesis methods and thus more FTN (faults
tolerated naturally) cases would happen. Actually, it is something yet to be further
investigated in future works. However, such methods clearly maintain the QDI
asynchronous circuits’ features (i.e., the data codification and the asynchronous
handshaking communication) that make possible the generation of deadlocks, and so
failures detectable naturally (FDN), as further discussed in chapter 5. Therefore, even
using these new synthesis methods, the very stronger QDI circuits’ natural ability to
often produce FDN instead of FNN is preserved as well as the higher des_async’s
Detection. In fact, the des_async’s Detection would be certainly improved because FTN
cases would become either FNN, which are detectable in most of the SE (soft errors)
situations (MONNET; RENAUDIN; LEVEUGLE, 2006-c; 2007-b) by implementing
alarms, or FDN (what is more probable, as discussed in chapter 5). Thus, even if there
could be a logical-masking diminution, FTN cases have greater chances of becoming
FDN. Similarly, a QDI property’s reduction would make the system more vulnerable to
failures but also very likely FDN, mostly in LDT (long-duration transient faults)
situations. Then, the Resistance’s results for QDI systems designed by modern
asynchronous-dedicated methods would be few modified, since in the worst case the
system’s Tolerance would be probably slightly reduced but the system’s Detection
would be certainly further improved. Furthermore, the implementation of alarms for
FNN situations always would ensure a very-strong and higher QDI system’s Resistance
in comparison with its synchronous counterpart.

4.2 Conclusions
A new SET-effect evaluation methodology common to both synchronous and

asynchronous circuits is shown in this chapter. It is based on the traditional fault-
injection simulations. However, a probability distribution and confidence intervals are
used to decrease the total number of simulations. Furthermore, the particularities of
asynchronous circuits are considered by analyzing the inputs of all C-elements in the
circuit. Metrics are provided to identify for a certain functional block (e.g., a multiplier,
an adder) the class or type of circuit design that is more transient-fault sensitive. It
means the methodology is interesting to compare different circuit implementations of a
functional block.

At the case study, the results show the des_sync less sensitive to SET effects just due
to its smaller area and lower computation time. However, the highest curves in Figure
4.9 as well as the extrapolation’s results in Figure 4.11 illustrate the high potential of the
des_async to have lower Sensitivity when using design methods more optimized in
terms of area and computation time. Aggregating it with the great ability to detect and
correct errors, and the features of lower EMI and higher security properties, the
asynchronous circuit becomes quite attractive to design a more robust system.

54

5 ASYNCHRONOUS CIRCUITS AS ALTERNATIVE FOR
MITIGATION OF LONG-DURATION TRANSIENT
FAULTS IN DEEP-SUBMICRON TECHNOLOGIES

Transient faults in deep-submicron technology-based ICs expose them to more
severe effects than in older technologies. Indeed, faster nanoelectronic circuits, for
instance, have shorter delays, and then transient faults’ durations have become
comparable or even longer than critical circuit paths’ delays. Electronics systems are
thus more vulnerable to failure situations.

Such a worse scenario in deeper-submicron technologies has been predicted by
many researches in last years. Tosaka et al. (1998) highlighted already considerable soft
error rates (SERs) in 350-nm CMOS ICs at ground level. Hazucha et al. (2003)
identified at sea level conditions that the SER per bit of SRAMs in 250 nm, 180 nm,
130 nm, and 90 nm technologies increases by 8% per generation. Such a SER’s increase
in deep-submicron technologies at ground level was also reported by Granlund (2003),
Borkar (2005), and many other works. In space or even at flight altitudes, this IC
vulnerability trend is obviously yet worse (NORMAND; BAKER, 1993; LABEL et al,
1996; BARTH, 1997; LABEL et al, 2000; NORMAND, 2001).

Past researches also showed that combinational logic in synchronous circuits is
much less sensitive to provoke SEs than memory elements (LIDÉN et al, 1994;
GAISLER, 1997). In fact, memories always were considered the most vulnerable to SEs
due to their spatial density and the amount of information that they can store
(MAHESHWARI; KOREN; BURLESON, 2003). Moreover, transient faults arisen
closer to memory elements, in theory, have higher probability to cause SEs. Therefore,
if a transient fault was generated in a memory element, the chance that it causes a SE
would be higher than a transient fault in a combinational logic, which would be farther
from a memory element. Nevertheless, deep-submicron technologies in last years allow
high IC’s complexities and higher clock’s frequencies, and so the SER arisen in
combinational logic circuits becomes as relevant as the SER in memory elements, as
Shivakumar (2002) predicted for synchronous systems.

Another lower-probability problem, investigated in more details since the deeper-
submicron technologies, is the occurrence of multiple-transient faults which may cause
multiple-bit upset (MBU). In fact, even a single transient fault (i.e., a SET) may, mostly
in more complex circuits, generate MBU. Moreover, transistors, in recent denser
circuits, are closer to each other, and then it may lead a single radiation-induced particle
(as an environmental perturbation event) upsetting different circuit’s nodes, and so
generates multiple-transient faults (MAIZ et al, 2003; NEUBERGER et al, 2003;
ROSSI et al, 2005).

56

Furthermore, other researches highlight that transient-fault durations really have
become in deeper-submicron technologies as important as the clock’s periods of
synchronous systems (DODD, 2004; FERLET-CAVROIS, 2006; LISBOA, 2007-a).
Lisboa (2009) characterizes such worse effects of transient faults in deeper-submicron
technologies as long-duration transient (LDT) faults. He proves (Figure 5.1) that widths
of transient faults, arisen from radiation-induced particles with modest linear energy
transfer (LET = 10 MeV-cm2/mg, for instance), can be longer than delays (cycle times)
of circuit paths (inverter chains) in 130-nm and 100-nm CMOS technologies. Lisboa
(2009) also shows that the costs to mitigate such LDT faults by using traditional spatial
or temporal redundancy-based techniques become very expensive in terms of system’s
overheads, especially because more redundancy is required to cope with these longer
effects.

Figure 5.1: Transient-fault width vs. clock’s cycle time scaling (LISBOA, 2009)

Deep-submicron technologies, therefore, bring along with their many benefits also
such vulnerabilities, and thus greater challenges to protect ICs. Nevertheless, this
chapter as well as the work in (BASTOS et al, ETS 2010-a; BASTOS et al, ESREF &
Microelectronics Reliability Journal 2010-c) shows innovatively that such a worse
scenario does not happen in QDI asynchronous systems, mostly due to their efficient
natural ability to mitigate LDT faults. Such an additional benefit pushes on the
asynchronous design as a better alternative for mitigation of transient faults in deep-
submicron technologies.

5.1 Natural Detection of Failures
As discussed in chapter 3, transient faults in ICs may be tolerated naturally (FTN:

faults tolerated naturally) by masking effects or they may provoke SEs. SEs almost
always imply a failure at circuit’s primary outputs (CPOs). However, as most of the ICs
control the amount of iteration cycles and indicate an output signal of end operation
(SEO, like in Figure 3.1), an eventual lack of indication due to a failure is easily
detectable by the system. Such a failure scenario is thus detectable naturally (FDN:

57

failure detectable naturally) without requiring any additional hardware and easily
corrected by recomputation. On the other hand, if the SEO is well indicated and a
failure arises at the other CPOs, extra hardware mechanisms for detection are necessary
to mitigate such a failure non-detectable naturally (FNN) without using costly software-
based techniques. Table 5.1, which is further discussed in chapter 3, summarizes these
effects of transient faults in accordance with the CPOs.

Table 5.1: Possible CPOs of a system perturbed by transient faults

Values at CPOs
Consequence

SEO Other CPOs
OK OK FTN

Inconsistent OK FDN
Inconsistent Inconsistent FDN

OK Inconsistent FNN

5.1.1 Ability of QDI Asynchronous Systems

Unlike synchronous circuits, the QDI asynchronous circuits have a natural ability to
transform most of the SE cases into FDN in any IC fabrication technology. It means that
the largest part of the failure situations are detectable by the QDI system without any
extra hardware. Such a natural property of a QDI circuit is justified by its architecture.

A QDI architecture controls the sequence of its data flow at the end of each one of
its iteration cycles. Each cycle needs to have all phases of the handshaking protocol, as
illustrated in Figure 2.3, for instance. Any event which perturbs the protocol’s phases
can lead the system to lose its correct data sequence. Such a loss of synchronization
between phases of a cycle induces a deadlock over the system’s data flow in most of the
SE cases (MONNET; RENAUDIN; LEVEUGLE, 2006-c; 2007-b). Indeed, an iteration
cycle does not succeed in finishing its goal, and thus a data element is lost or an
additional one is inserted.

Normally, in four-phase protocol, a deadlock situation happens when a SE occurs in
a memory element of a system’s stage N by switching from/to a valid or forbidden data
to/from an invalid data. Such a scenario indeed generates a wrong acknowledgment
(i.e., an acknowledgment in opposite logic state) to the previous system’s stage N-1.
Then, for instance, a valid data in a memory element of a system’s stage N can be lost
(i.e., become an invalid data) before the next system’s stage N+1 has processed and
acknowledged it. As worst consequence, the correct communication between stages is
broken, and a deadlock is characterized.

In a first impression, such a deadlock scenario may seem a behavior that disqualifies
the QDI systems. However, the majority of QDI architectures count their data elements
or even the amount of iteration cycles in order to report a SEO. Therefore, an eventual
deadlock always perturbs such a count, and so there is no SEO indication, and a FDN
always happens. On the other hand, almost all of the FNN cases are easily detectable by
implementing low-cost alarm mechanisms (MOORE et al, 2003; MONNET;
RENAUDIN; LEVEUGLE, 2006-c; 2007-b), which identify forbidden data states in the
protocol.

In fact, the multi-rail data paths of QDI circuits allow classifying the SEs due to
single transient faults into three cases (MONNET; RENAUDIN; LEVEUGLE, 2006-c;
2007-b):

58

• Generated data: a invalid data element becomes a valid data element, e.g., dual-
rail memory block in Figure 2.8 flipping a bit like 00=>01 or 00=>10;

• Vanished data: a valid data element into a invalid data element, e.g., 01=>00 or
10=>00; and

• Corrupted data: a forbidden data element is generated, e.g., 01=>11 or 10=>11.

All cases of corrupted data cause a FNN because the forbidden data is interpreted by
the system as a valid data, then the acknowledgment’s logic state is not modified, and
no deadlock happens. Such FNN cases are, however, detectable by adding the very
simple alarm circuitry (MOORE et al, 2003). On the other hand, only few cases of
generated data and vanished data result in no deadlocks, i.e., FNN (MONNET;
RENAUDIN; LEVEUGLE, 2006-c; 2007-b). All other cases, which represent the
majority of SE cases, produce FDN.

As the harmful transient-fault effects are either FDN or FNN in accordance with
Table 5.1, then the majority of failure situations in QDI asynchronous systems can be
easily mitigated either by natural detection or by alarm mechanisms.

5.1.2 Inability of Synchronous Systems

On the contrary, SE cases in synchronous circuits hardly result in FDN. As
consequence, the largest part of SEs cause FNN, and thus synchronous systems
practically have no that natural property for detection.

Notably, the presence of a fixed clock’s period ensures the system’s data
synchronization. Therefore, in contrast to the discussions of previous section for QDI
asynchronous circuits, in most SE cases, the SEO is indicated, and so a FNN is
generated instead of a FDN. FNN cases are thus predominant in synchronous circuits.

The few cases of FDN generation are mostly attributed to perturbations in the
registers that count the number of iteration cycles, since such memory elements aids in
implementing the SEO. Furthermore, transient faults either in the combinational circuit
that generates this SEO or in the clock tree’s circuit can also cause FDN.

5.2 Mitigation of Multiple-Transient Faults
The harmful effects of multiple-transient faults briefly discussed in chapter 3 would

be more critical if their probabilities of occurrence were higher. In fact, systems would
have to be protected by using even more redundancy to cope with such a phenomenon.
Furthermore, as explained in chapter 6, mitigation techniques are based on redundancy,
then faults occurring simultaneously in redundant parts can confound the detection
elements, which do the technique well working, leading it to fail. Most of the mitigation
approaches are thus vulnerable to the effects of multiple-transient faults.

The analysis of multiple transient-fault effects on synchronous systems is quite
similar to the discussions highlighted in previous section. However, as there are more
fault events in the systems, the probability of SE occurrences due to multiple transient-
faults and thus FNN is obviously higher than in cases of single transient-fault
occurrence.

On the other hand, on QDI asynchronous systems, the occurrence of multiple faults
in different memory blocks (like in Figure 2.8) also follows the same consequences

59

discussed in previous section, so there is a huge chance that they result in FDN. The
same scenario happens if multiple-transient faults occur at different instants.

Nevertheless, multiple-transient faults occurring in the same QDI system’s memory
block can also result in multiple SE, and thus for dual-rail codification, for example,
they cause FNN in most cases. Indeed, the SE situations are: 00=>11, which is a case of
corrupted data that likely generates a deadlock (i.e., FDN) because the
acknowledgment’s logic state is modified; and 01=>10, or 10=>01, which normally
produce no deadlocks (therefore FNN) because they keep on the acknowledgment’s
logic state. Monnet (2006-c) thus classifies a further SE case in addition to those
presented in previous section for single transient faults in QDI systems:

• Modified data: a valid data element is turned into another valid data element,
e.g., 01=>10 or 10=>01.

Unfortunately, cases of modified data have no a natural solution to be mitigated, and
then they require special extra mitigation mechanisms. However, as well discussed in
previous section, the cases of corrupted data that do not become a FDN are easily
detectable by a low-cost alarm mechanism (MOORE et al, 2003).

In addition, by using codification M-out-of-N, which is quite normal in QDI
circuit’s designs, the chances of corrupted-data cases are much higher, since there will
be greater codification redundancy. Therefore, the probability that forbidden data occurs
is higher, and so more SE cases are detectable by the alarm mechanism or even by
generating naturally deadlocks (FDN). A solution thus to reduce cases of modified data
is using a higher codification M-out-of-N than dual rail (i.e., 1-out-of-2).

Even though QDI asynchronous systems under multiple-transient faults do not have
the same performance to generate FDN than in single transient-fault situations, they
have, nevertheless, better natural mechanisms for mitigation of such multiple faults than
synchronous circuits.

5.3 Mitigation of Long-Duration Transient Faults
The harmful effects of LDT faults, typical in deep-submicron technologies, are

almost always disastrous for synchronous circuits. For instance, a transient that starts in
the second half of a clock cycle and finishes only in the following cycle. A SE scenario
is very probable as well a FNN. Moreover, large system’s overheads are necessary to
mitigate such a LDT fault (LISBOA, 2007-a).

Nevertheless, such faults in QDI circuits generate FDN in the largest part of SE
cases. Indeed, the probability of a deadlock is higher for longer faults, since the
transient remains for a longer time on the circuit’s path, and then the few delay-sensitive
circuit’s paths are easily reached. The chance of data elements being lost or inserted is
bigger.

In addition, even cases of corrupted data due to single faults, which always generate
FNN in submicron technologies, can produce deadlocks (i.e., FDN) in deeper-
submicron technologies. Such cases, however, happen when the LDT faults occur in
QDI system’s elements that are delay sensitive. There is thus a large chance of a SE due
to a corrupted data being followed in the next protocol’s phase by another SE that
produces a deadlock. Therefore, a longer fault can generate multiple SEs in sequence.
As the SE scenarios remain longer time and a larger part of them cause deadlocks (as

60

explained in previous sections), longer duration transient faults have a higher
probability to produce a FDN.

5.4 A Case-Study Analysis
A case study on a DES (Data Encryption Standard) crypto-processor in synchronous

and QDI asynchronous versions was evaluated by using the simulation-based method
presented in chapter 4. Additional results related to injections of single transient faults
are shown in Figure 5.2 and Figure 5.3.

Figure 5.2 illustrates at the vertical axis the system’s ability to detect FDN. At the
horizontal axis, both figures show the ratio of transient-fault durations to cycle periods,
which is the minimum clock period in the synchronous circuit and an average in the
asynchronous one. Higher ratios represent longer transients and thus typical transient-
fault scenarios if the circuits were based on deeper-submicron technologies, in which
fault durations are in the order of the cycle periods (LISBOA, 2007-a). For instance,
Figure 5.2 shows that the QDI system (des_async’s curve) is able to detect naturally
around 30% of the fault-injection situations in a duration-period ratio of 95% (i.e., the
transient-fault duration is equal to 95% of the cycle period). It means 30% of the
situations result in FDN and 70% either FTN or FNN. Figure 5.2 illustrates, therefore,
that the des_async, under a transient-fault scenario (e.g., the high ratio of 95%) which is
typical in deeper-submicron technologies, has a larger number of FDN cases than the
synchronous circuit (des_sync). Indeed, the number of deadlock cases in the des_async
quite increases by longer durations of transient faults.

Figure 5.2: A case study on a DES crypto-processor: system’s ability for detection in

function of transient fault durations

Figure 5.3 shows at the vertical axis the system abilities to tolerate faults (i.e., FTN)
and detect FDN. The QDI version follows a constant trend around 80% after a slight

0

3

6

9

12

15

18

21

24

27

30

33

36

0 10 20 30 40 50 60 70 80 90 100 110 120 130

%
 S

ys
te

m
 D

et
ec

tio
n

100 * Fault Duration / Cycle Period

Evaluation of Transient Fault Effects

des_async

des_sync

61

initial reduction. On the contrary, a downward trend is always present in the
synchronous circuit. It shows that the reduction of its particular latching-window
masking, discussed in chapter 3, plays much more than the masking diminution of the
QDI circuit. In the duration-period ratio of 95% by observing Figure 5.2 and Figure 5.3,
around 50% of the fault-injection situations in the QDI version result in FTN (80% from
Figure 5.3 less 30% from Figure 5.2), 30% FDN (from Figure 5.2), and 20% FNN
(100% less 80% from Figure 5.3). On the other hand, the synchronous version in the
same deep-submicron technology’s condition renders to FTN in 42% of the situations,
FDN in 1%, and FNN in 57%. If the QDI version was implemented with alarms
(MOORE et al, 2003), its system’s ability in Figure 5.3 would reach very close to 100%
even under LDT faults in deep-submicron technologies. Hence, it is clear to conclude
that LDT faults in deep-submicron technologies can be better dealt in the QDI
asynchronous circuit.

Figure 5.3: The stronger natural ability of a QDI asynchronous system for mitigation of

LDT faults in deep-submicron technologies

5.5 Conclusions
This chapter illustrates for the first time the natural ability of QDI asynchronous

circuits to mitigate transient faults under deep-submicron technology conditions. QDI
systems have a better performance than their synchronous counterparts to naturally
detect LDT faults as in computational logic as memory elements. In addition, they have
natural mechanisms (indeed the multi-rail codification and its forbidden data elements)
that make easier the error detection even under multiple-transient faults. Finally, QDI
systems aggregate such characteristics with their natural QDI property. It allows
tolerating most of the delay-fault cases, which today are also a great challenge in deep-
submicron technologies.

35

40

45

50

55

60

65

70

75

80

85

90

95

0 10 20 30 40 50 60 70 80 90 100 110 120 130

%
 S

ys
te

m
 T

ol
er

an
ce

 +
 %

 S
ys

te
m

 D
et

ec
tio

n

100 * Fault Duration / Cycle Period

Evaluation of Transient Fault Effects

des_async

des_sync

62

6 TECHNIQUES FOR TRANSIENT-FAULT MITIGATION

The level of immunity to physical failures and fabrication defects (discussed in
chapter 3) define the IC’s reliability (KRISHNAMOHAN; MAHAPATRA, 2004). As
the technology evolutions have increased the vulnerability to such effects, the circuits’
reliability has thus been greatly affected. Nevertheless, IC-embedded skills can improve
the robustness (resistance) to such effects in order to reach satisfactory reliabilities.

The IC’s robustness is normally increased by the implementation of protection
mechanisms based on mitigation techniques. In the last years many techniques have
been proposed to mitigate transient faults. There are several options for the different
abstraction levels of a design. In fact, nowadays any commercial low-complexity IC
had, at least at one abstraction level of its design, the implementation of a technique to
mitigate transient faults.

 Techniques for transient-fault mitigation can thus be classified according to the
usual abstraction levels of a design, which are detailed in chapter 4. This thesis divides
the techniques at low and high abstraction level.

The techniques at low abstraction level are developed at real-circuit level,
electrical, logical, or RT levels. Iyer (2005), Lima (2003-b), Kastensmidt (2006), and
many other authors list such low-level protection approaches as: advanced fabrication
technologies produced by specific physical processes like silicon-on-insulator (SOI); IC
package shielding; layout mask modifications; transistor sizing; transistor insertion;
schemes of robust memory cells; spatial or temporal hardware redundancy; hardware
codifications for error detection or correction; or any combination of these techniques.

On the other hand, the techniques at high abstraction level are those ones
implemented at algorithmic or systemic levels. Iyer (2005), Lisboa (2009), and several
other works cite such techniques as: hardware modules dedicated to the detection or
correction of errors; spatial or temporal hardware redundancy; spatial or temporal
software redundancy; software codifications for error detection or correction; hybrid
approaches combining hardware and software; or even any combination of these
techniques.

The implementation of any mitigation technique inherently increases the design
costs. However, such costs in terms of area, power consumption, performance, and
development (i.e., designers, design time, and fabrication) vary depending on the
technique choice as well as the target reliability (e.g., if design will operate in space or
on earth). Hence, a careful evaluation of the technique characteristics in accordance
with the design goals is always essential.

For this reason too, the scientific community has done in the last decades enormous
efforts to efficiently increase the synchronous systems’ reliability. Concerning transient-

64

fault effects, there are several techniques for soft-error mitigation. Many of them have
been designed to protect the system only against transient faults arisen in memory
elements, in which cause thus the direct soft errors. However, in recent years as a result
of the deep-submicron-technology challenges, several other techniques have been
developed to protect the system also against transient faults arisen in combinational
circuits, which may propagate them to memory elements and thus generating the
indirect soft errors. Most of these techniques for soft-error mitigation are dedicated to
synchronous systems (MONNET, 2007-a). Hence, in order to optimally make even
more robust asynchronous systems, specific techniques for them have also been
developed.

According to the purposes of this thesis, the following sections discuss the main
transient-fault mitigation techniques at logical, RT, and electrical levels. The few
alternatives for QDI asynchronous circuits are also discussed. In addition, the costs of
mitigation techniques applied at different abstraction levels are analyzed based on
experimental area-overhead results of complex synchronous systems.

6.1 Techniques at Logical and RT Abstraction Levels
Hardware-implemented techniques based on redundancy in space or time,

codifications for error detection or correction, or any combination of these ones can be
designed at different abstraction levels. However, most of them are usually designed at
logical and RT abstraction levels because thus there is a trade-off between the
development costs and system’s overheads, as further explained in section 6.3.

6.1.1 Classic Spatial Redundancies

The generic principle of hardware-implemented techniques based on spatial
redundancy is to replicate parts of the circuit and introducing a comparator element.
This element is able to indicate any eventual difference in the results of the parts as a
consequence of the fault occurrence on one of them.

The simplest redundancy scheme is the duplication with comparison (DWC), which
allows only error detection (WAKERLY, 1978). Hence, a recomputation must
necessarily be performed for the error correction. In fact, there are several techniques
derived from the DWC, like those presented by Nicolaidis (1999), Anghel (2000-a),
Lima (2003-a), Almukhaizim (2003); Monnet (2005-b).

Nicolaidis (1999) suggests DWC using a dynamic C-element only as a comparator
of the redundant combinational circuits’ results. This memory element (C-element),
which the author names as CWSP (Code Word State Preserving), is indeed inserted on
the circuit data path. It allows as detection as correction by filtering the transient faults
arisen in combinational circuits. It means no recomputation is required. This CWSP
scheme thus prevents the generation of indirect soft errors by the cost in performance
equals to, at least, the CWSP circuit’s delay plus the transient fault duration.

On the other hand, triple or superior redundancies are able to detect and also correct
direct soft errors through a purely combinational voter element. The most classic of
them is the well-known triple modular redundancy (TMR) (HENTSCHKE et al, 2002).
The TMR principle is traditional due to its simplicity and good efficiency for error
detection and correction. A common TMR application is to protect registers as shown in
Figure 6.1.

65

Figure 6.1: TMR scheme applied on a 1-bit register

Such techniques, which are based on comparison of N redundant parts, always
operate properly only if N-1 parts, at least, are free of faults. Hence, multiple-fault
occurrences, which although are cases of low probability, may affect redundant parts at
the same time, and thus the techniques may fail to accomplish the fault mitigation.

The triple redundancy (TMR) of a system ensures, nevertheless, a considerable
reliability. However, the costs in terms of area are evident and greater than 200%. The
performance is affected basically by the voter element’s delay. On the other hand, the
double redundancy (DWC) of a system would imply cost in terms of area greater than
100%, and the performance would suffer penalties as a consequence of the
recomputations for correction. Even if a logical-level DWC scheme by CWSP in
(NICOLAIDIS, 1999) could be applied to prevent such recomputations, it would work
to avoid only indirect soft errors. Direct soft errors in memory circuits would not be
detected by this logical-level approach by CWSP. Furthermore, the recomputations also
would hinder the reuse of system’s software applications, since the code instructions
would need to consider the extra cycles generated due to the fault occurrences.

The option to apply TMR only in certain critical parts of the system, like its memory
components, reduces greatly such overheads in terms of area and performance. In
addition, the system ensures a good reliability because it becomes robust to direct soft
errors. The only vulnerability related to direct soft errors is limited to occurrences of
lower probability in which simultaneous transient faults on two or three of the
redundant memory elements disrupt the voter circuit’s results. The work in (BASTOS,
2009-c) shows through three different commercial microprocessors that protecting only
their registers by TMR reduces largely the costs in terms of area, performance, and
software application development. The overheads in area of the robust microprocessors
reach 109% to 43% larger than the area of the non-protected systems. The penalties in
clock frequency are between 9% and 6%. Moreover, the reuse of software applications
is always feasible.

6.1.2 Temporal Redundancies

If applying TMR only in memory elements ensures a system with considerable
robustness to direct soft errors, the same cannot be said for indirect soft errors. A
transient fault arisen in combinational circuit could spread to the three redundant

C
om

bi
na

tio
na

l B
lo

ck

N
ex

t C
om

bi
na

tio
na

l B
lo

ck

Voter

R
eg

is
te

r

R
eg

is
te

r

R
eg

is
te

r

66

memory elements and thus causing simultaneously three indirect soft errors. The voter,
therefore, could not detect them. From such a need to tolerate indirect soft errors that
the hardware-implemented techniques based on temporal redundancy began to be
proposed by Nicolaidis (1999).

The basic temporal redundancy’s principle is evaluating the data in different
instants. It allows the detection of faults which have a temporal nature like the transient
ones. The implementation of such a principle requires the addition of an element able to
retain the data at past instant to compare them with data at the present instant. Nicolaidis
(1999) suggests as retention element a simple delay block that would be implemented,
for example, by buffers at the combinational circuits’ outputs. A double temporal
redundancy is thus characterized and therefore a temporal DWC can be implemented to
mitigate indirect soft errors by using the same CWSP scheme discussed in previous
section for a spatial DWC. Figure 6.2 and Figure 6.3 illustrate such a so-called scheme
of time redundancy (TR), where DDelay_Block and DCWSP are the propagation times of the
blocks and WMax_SET is the maximum transient-fault duration tolerated at the output of a
combinational circuit. The CWSP circuit in Figure 6.2 is an asynchronous sequential
machine characterizing a C-element implemented by combinational standard logic
gates. The logic function of a C-element is discussed in chapter 2. Nicolaidis (1999)
also suggests CWSP elements that work as logic to replace the last logic gates of a
combinational circuit like shown in Figure 6.4. In addition, more optimized CWSP
versions at electrical level are also proposed, as discussed in last sections of this chapter.

The small cost in area to implement the TR+CWSP scheme in Figure 6.2 is basically
due to the CWSP elements and the buffers or inverters used to characterize the delay
blocks. On the other hand, the performance can be quite affected depending on the
target maximum transient-fault width (WMax_SET) wanted to be tolerated. In fact,
WMax_SET must be lesser than the propagation time of the delay block (DDelay_Block), so as
larger as the WMax_SET is, the penalty in DDelay_Block and thus also in performance is
worse. The work in (BASTOS, 2006-e) shows indeed that this penalty is at least twice
greater than DDelay_Block.

Figure 6.2: TR+CWSP scheme applied on a 1-bit register

C
om

bi
na

tio
na

l B
lo

ck

N
ex

t C
om

bi
na

tio
na

l B
lo

ck

R
eg

is
te

r

CWSP

D
el

ay

Identity

67

Figure 6.3: TR+CWSP scheme working on a 1-bit register

Figure 6.4: CWSP elements at logical abstraction level (NICOLAIDIS, 1999)

Other TR-based solutions to tolerate soft errors are proposed by Nicolaidis (1999).
Moreover, there are several TR-derived techniques at logical abstraction level like, for
instance, the approaches in (ANGHEL; NICOLAIDIS, 2000-a; LIMA; CARRO; REIS,
2003-a). These TR-based techniques generally prevent the large area overheads (typical
in classic spatial redundancies) because the same operation can be computed several
times by the same circuit (IYER et al, 2005). However, TR-based schemes may quite
penalize the performance depending on the number of redundancies and the maximum
transient-fault duration (WMax_SET), as explained in the last paragraphs. Hence, they are
little used in memory elements to mitigate transient faults that generate direct soft
errors.

6.1.3 Spatial Redundancies by Gate Duplication

Other logical-level approaches based on spatial redundancy that mitigate transient
faults are proposed in (MOHANRAM; TOUBA, 2003; HEIJMEN; NIEUWLAND,
2006; NIEUWLAND; JASAREVIC; JERIN, 2006). The technique’s principle is a
simple duplication of some critical combinational logic gates by placing the copies in
parallel with the original gates. The circuit nodes’ capacitances are thus increased, and
so certain transient-fault effects generated in combinational circuits may be attenuated
avoiding, therefore, indirect soft errors. The costs in terms of area, power consumption,
and performance depend strongly on the wanted immunity levels.

Non-Delayed Input
of the CWSP Block

Clock

Output of the Register

Delayed Input of the
CWSP Block

Output of the CWSP Block

DDelay_Block

WSET
DCWSP

DCWSP WSET

Non-Delayed Input
of the CWSP Block

Clock

Output of the Register

Delayed Input of the
CWSP Block

Output of the CWSP Block

DDelay_Block

WSET
DCWSP

DCWSP WSET

NOT NOR NAND

a

a*

a

a*
b*

b
a

a*
b*

b

68

6.1.4 Spatial Redundancies by Codification

There are many mitigation techniques that apply spatial redundancy to encode the
data and thus obtaining codes for detection or correction. The most traditional of them
and also the most used in commercial ICs is the codification by parity from which
several other techniques like, for instance, those shown in (SOGOMONYAN, 1974;
ALMUKHAIZIM; MAKRIS, 2003; LISBOA; CARRO, 2008; PFLANZ et al, 2002;
PAPADOMANOLAKIS et al, 2001) are derived.

More sophisticated techniques known as error detection and correction (EDAC)
codes include the Reed Solomon code, the Hamming code, and several derivations of
them like, for instance, those proposed in (NEUBERGER et al, 2003; NEUBERGER;
LIMA; REIS, 2005; ARGYRIDES, 2007).

The codification by parity or EDAC codes are more effective for groups of memory
elements or memory arrays such as caches and register files (HENTSCHKE et al, 2002;
IYER et al, 2005). In fact, the costs to encode the circuit are amortized over the array
size. On the other hand, the use of such codes in individual microprocessor registers, for
instance, may imply enormous penalties. For the sake of it, Hentschke (2002) compared
the Hamming code with the traditional TMR. His results show that the Hamming code
is more suitable for use in access buses to groups of storage cells (e.g., RAM), while the
TMR is more appropriate to protect individual registers (e.g., CPU registers).

The codifications are thus usually used to mitigate direct soft errors, however
recently the Hamming code was investigated (LISBOA, 2009) to protect also
combinational circuits and therefore mitigating eventual indirect soft errors. Such an
investigation shows better results in terms of area, power consumption, and
performance than the TMR application in combinational circuits.

Furthermore, the data codifications M-out-of-N, discussed in chapter 2, are also
spatial redundancy forms which consist of N redundant wires to represent a data bit. In
the simplest and most traditional case, the codification 1-out-of-2 (dual rail) has four
codification states to represent two logic values (0 or 1). Any transient-fault occurrence,
therefore, may switch the data to non-existent states and thus both direct and indirect
soft errors can be detected. The approaches M-out-of-N are not only for asynchronous
circuits, although they have little use in applications of synchronous circuits.

6.1.5 Techniques Dedicated to QDI Asynchronous Circuits

Even though most of the techniques described above can be implemented in QDI
asynchronous systems, they were designed mostly based on the time limitation of a
clock. On the other hand, as presented in chapter 2, a QDI circuit has natural robustness
properties due to its data codification, communication protocol, and quasi-delay
insensitivity, and thus it already has certain inherent mitigation techniques.

Concerning the natural transient-fault robustness, a fault event may potentially
perturb the communication protocol and leading the system, for instance, to a deadlock,
which is indeed easily detectable (PISETRAK, 1995; MONNET, 2007-a), as discussed
in chapter 5. In this sense, in order to take advantage of such a natural redundancy,
techniques particularly dedicated to QDI circuits would optimize significantly the
designs which aim at achieving higher levels of transient-fault immunity.

There are several mitigation techniques dedicated to QDI asynchronous circuits’
subclasses (SAWIN; MAKI, 1974; VERDEL; MAKRIS, 2002; GARDINER, 2007;

69

KUANG, 2007; ALMUKHAIZIM; SHI; MAKRIS, 2008; KUANG et al, 2010), which
are indeed less-robust variations of the original ones detailed in chapter 2. However,
specific techniques for pure QDI circuits, there are still very few as described in the
following paragraphs.

Simple very-low-cost approaches for detection are similarly proposed in (DAVID;
GINOSAR, YOEL, 1995, MOORE, 2002, 2003, YANG et al, 2003) by taking
advantage of the QDI circuits’ redundancy qualities. Moore (2002) considers a dual-rail
system using the four-phase protocol and the codification by three states explained in
chapter 2. The author assumes that a data flow’s deadlock happens in the situations in
which the allowed codification states switch like 01=>00, 10=>00, 00=>10, or 00=>01
due to an event of a fault, and therefore the errors generated are easily detectable. On
the other hand, in the situations in which states change for forbidden states (01=>11 or
10=>11), the circuit reports wrong values, but no deadlock happens and therefore it is
not detectable. The author thus proposes a circuit to keep on with such an alarm 11 as a
way to ensure the system’s deadlock. The alarm code 11 could not, therefore, disappear
in subsequent computation iterations, and so it would enable the system to detect these
errors. Even if this technique can detect both indirect and direct soft error, it does not
guarantee the detection of all possible transient-fault effects. In fact, the switches to
allowed states, discussed above, do not always generate deadlock, and therefore they are
not always detectable (MONNET, 2007-a, 2007-b).

LaFrieda (2004) proposes error-detection mechanisms at RT level of a QDI system
design, moreover techniques at electrical level to prevent eventual delay faults on
isochronic forks are also suggested. For detection of indirect or direct soft errors as well
permanent-fault effects, the author follows the Moore’s idea (2002) which transforms
errors into system’s deadlocks. However, he suggests doubling the synchronization
signals that are used for request and acknowledgment between system’s stages. For
protection of the data signals, additional C-elements are used to synchronize the bits of
a data word and so making by groups the data reading or writing between system’s
stages. Unfortunately, these detection techniques impose severe overheads on the
system if they are applied on all circuit parts, especially in terms of area.

Peng (2005) presents a half buffer, which is a macrocell commonly used as QDI
systems’ memory block, able to make a system’s deadlock when errors happen due to
transient or permanent faults. The scheme can mitigate as direct as indirect soft error.
The cost in area is practically a duplication, and the penalty in performance is small.
The author also suggests a detector of system’s deadlock to determine the most
appropriate instant to perform a recomputation for error correction.

Another technique at RT level dedicated to mitigate indirect and direct soft errors is
proposed by Jang (2005). The basic principle is duplicating all blocks of the system’s
stages and synchronizing the duplicated outputs by two additional C-elements. In fact, a
circuit block would pass to have duplicated inputs and outputs. This approach thus
provides enormous penalties in terms of area and also performance, even more severe
than the LaFrieda’s techniques (2004).

Monnet (2005-b) suggests three techniques to mitigate indirect and direct soft errors
in QDI systems. In one of them, only the computational block of a stage is duplicated as
shown in Figure 6.5. The memory block is modified replacing, for example, the two-
input C-elements by other ones of three inputs. It increases the transient-fault masking
effects and thus also the circuit robustness. As this technique implies in duplicating the

70

computational parts, the costs in area become high if there are a large amount of
computational elements in the system, however the costs in performance are low.

Figure 6.5: Duplication-based technique for computational logic of a QDI system
(MONNET, 2005-b)

Figure 6.6 shows another Monnet’s suggestion (2005-b) to mitigate transient faults.
In this approach, pairs of bits from a data word are synchronized replacing the two-input
C-elements in the memory block by other ones of four inputs. A word’s bit is not stored
without the presence of the other one, only after both bits are memorized that the
acknowledgment signals are generated. When a fault is not filtered by the four-input C-
elements, a wrong code is generated and so it can often be detected by the Moore’s
technique (2002). The cost in area and performance are acceptable, as only a few
modifications are made in the memory block. Finally, Monnet (2005-b) proposed an
alternative very similar to such a synchronization technique for when a bit of a data
word does not have a pair to synchronize.

Figure 6.6: Synchronization Technique for two bits of a data word in a QDI system
(MONNET, 2005-b)

6.2 Techniques at Electrical Abstraction Level
Most electrical-level techniques for transient-fault mitigation include spatial

redundancies by transistors (i.e., transistor sizing or simply transistor inserting),
schemes of robust memory cells, or any combination of these techniques. Temporal
redundancies are usually used inside of robust memory cells. At this abstraction level

71

there are no techniques dedicated exclusively to mitigate transient faults in QDI
asynchronous circuits. In fact, many transistor-based spatial redundancies initially
proposed in synchronous circuits are also applicable in QDI circuits. On the other hand,
there are several schemes of robust memory cells that depend on a clock signal and,
therefore, are specific to synchronous circuits.

6.2.1 Spatial Redundancies by Transistors

These techniques consist basically of handling transistors in terms of their sizes or
simply including redundancy. The idea is producing schemes that allow transient-fault
mitigation by attenuation, total tolerance or even detection. Most of them focus on the
mitigation of indirect soft errors, although they can be also used to mitigate direct soft
errors.

Nicolaidis (1999) suggests duplicating the transistors of standard logic gates in order
to implement the functional characteristics of a CWSP element (discussed at logical
level in previous sections). Such Nicolaidis’s electrical-level approaches (1999),
detailed in Figure 6.7, considerably reduce the number of required transistors in relation
to their equivalent logical-level designs shown in Figure 6.4. Nevertheless,
technological trends may prevent the correct operation of such an approach due to the
high number of CMOS transistors in series.

Figure 6.7: CWSP elements at electrical abstraction level (NICOLAIDIS, 1999)

Some techniques seek to mitigate the transient-fault effects by sizing properly the
logic gates’ transistors (ZHOU; MOHANRAM, 2004; DHILLON et al, 2004;
CAZEAUX et al, 2005; ZHOU; MOHANRAM, 2006; RAO; BLAAUW;
SYLVESTER, 2006). Techniques based on symmetric and asymmetric transistor sizing
are discussed in (LAZZARI et al, 2007-a; LAZZARI, 2007-b; ASSIS et al, 2009-a;
ASSIS, 2009-b). The idea of these approaches is increasing the sizes of certain
transistors, mostly in terms of channel width, in order to add capacitance in critical
circuit nodes. The minimum charges required to upset a circuit thus become larger by
increasing the node capacities to attenuate transient faults.

a*

a

a

a*

b

b*

a

a*

b

b*
a

a*

b

b*

a

a*

b

b*

NOT NOR NAND

72

The transistor sizing techniques allow a greater control on adjusting the node
capacitance values, hence they can penalize less the circuit design than the gate
duplication approach discussed in previous section. However, as the gate duplication,
such penalties depend strongly on the immunity level required by the circuit
applications (e.g., if the circuit will operate in space or on earth).

Using the same idea of increasing the critical circuit nodes’ capacitances, other
techniques modify only the form used to control, in terms of design, the capacitance
values. Assis (2009-a, 2009-b) discusses the circuit ability to mitigate soft errors by the
use of folding, which doubles the transistors but divides their sizes by placing them in
parallel. Karnik et al. (2002) proposes adding an explicit capacitor on the weakest
circuit nodes through the insertion of capacitors built by NMOS and PMOS transistors.
Transistor-based schemes that make low-pass filters to filter out transients, especially
the short duration transients, are proposed in (KUMAR; TAHOORI, 2005; SASAKI;
NAMBA; ITO, 2006, 2008; UEMURA et al, 2008) by using pass transistors, Schmitt
trigger, or C-elements.

Other transient-fault mitigation approaches propose detection schemes for direct and
indirect soft errors based on current sensors (NDAI et al, 2005; NETO et al, 2006-a,
2006-b; LISBOA et al, 2007-b). These detection techniques result in small system’s
overheads, however they require error-correction methods at higher abstraction levels.

6.2.2 Robust Memory Cells

Many schemes of robust memory cells were proposed mostly to mitigate direct soft
errors like, for instance, those ones presented in (CALIN; NICOLAIDIS; VELAZCO,
1996; KARNIK et al, 2002; KOMATSU et al, 2004; ZHANG; SHANBHAG, 2005;
KRISHNAMOHAN, MAHAPATRA, 2005; SASAKI; NAMBA; ITO, 2006; FAZELI
et al, 2007; SASAKI; NAMBA; ITO, 2008; UEMURA et al, 2008).

Omaña (2003; 2007) suggests a latch doubling its feedback loop as shown in Figure
6.8. Such a robust latch thus results in small system’s overheads. However, if its output
load is not significant, its output node remains vulnerable even to short duration
transients. Robust cell alternatives based on temporal redundancy are proposed in
(KRISHNAMOHAN, MAHAPATRA, 2004; LAZZARI; ANGHEL; REIS, 2005). Most
of these robust memory cells include extra transistors on the data path, so they naturally
increase the system’s overheads. Moreover, they often implement redundancies that add
to the circuit more nodes vulnerable to transient faults.

Figure 6.8: A robust latch (OMAÑA, 2007)

73

6.3 Costs of Mitigation Techniques at Different Abstraction Levels
Techniques implemented at higher abstraction levels of a design are more

advantageous in terms of development costs (i.e., designers, design time, and
fabrication). However, they are naturally more expensive in terms of system’s
overheads (i.e., costs in area redundancy, power consumption, or performance). At
lower abstraction levels, the design is more optimized because is done through smaller
area slices that enable working more details. For instance, a cell from a library of gates
is optimized at lower levels. However, the design requires a larger effort and elaboration
time of the designers, so the development costs are greater. Figure 6.9 summarizes such
trends by showing generically the system’s overheads in function of the development
costs.

Figure 6.9: Costs of mitigation techniques at different abstraction levels

Such an idea was shown in (BASTOS, 2009-c) through the protection of
microprocessors against transient faults as in memory as in combinational blocks. This
work analyzed the area costs per register’s bit, and so an area overhead extrapolation
could be done for any synchronous architecture. The results showed thus that the area of
each register’s bit on any microprocessor is increased by a factor of 9 using a certain
RT-level protection scheme, which is based on traditional mitigation techniques.
Otherwise, using a similar scheme at electrical level, it is increased by 5. Figure 6.10
summarizes these results through different commercial synchronous systems. It shows
that such mitigation techniques, which were used in (BASTOS, 2009-c) aiming to avoid
recomputation, have lower area overheads by implementing at electrical level than at
RT level. Obviously, as the protection scheme is to mitigate transient faults, such an
area overhead increases in function of the memory area’s size, that is the sensitive zone
to be protected. Nevertheless, the design development of a RT-level protection scheme,
which can be reusable by register’s bit, is much simpler and faster than at electrical
level.

System’s overheads
(area,

performance, or
power consumption)

Costs of
development
(designers,

time-to-market, or
fabrication)

Techniques at the
Lowest Abstraction

Level

Techniques at the
Highest Abstraction

Level

They are not able to
detect all possibilities

of errors!

Techniques at
Intermediary Levels

Most of cases, they do not ensure the target IC reliability.

System’s overheads
(area,

performance, or
power consumption)

Costs of
development
(designers,

time-to-market, or
fabrication)

Techniques at the
Lowest Abstraction

Level

Techniques at the
Highest Abstraction

Level

They are not able to
detect all possibilities

of errors!

Techniques at
Intermediary Levels

Most of cases, they do not ensure the target IC reliability.

74

The development cost of an IC in terms of fabrication is also high if a technology
produced by a specific robust process is used. Moreover, such a technique at the lowest
abstraction level does not ensure high levels of immunity to transient-fault effects
(LIMA, 2003-b).

On the other hand, the techniques at the highest abstraction level, which are those
implemented in software, often determine high latency for error detection, and thus
large penalties in performance (IYER et al, 2005). Furthermore, such software-based
techniques are not able to detect a large number of soft errors because often certain
specific hardware registers cannot be accessed by system’s software applications. In
fact, software approaches are only able to detect transient-fault effects at later instants
when the error may have already propagated into many parts of the system (LISBOA,
2007-b). Differently, hardware-implemented techniques are able to detect soft errors as
soon as it happens, and thus they provide a low latency for error detection (IYER et al,
2005).

Figure 6.10: Area costs of traditional mitigation techniques in function of the memory-
core area ratio

6.4 Conclusions
This chapter studies transient-fault mitigation techniques at logical, RT, and

electrical levels. In addition, experimental results show that a certain traditional
protection applied in RT-level synchronous designs is approximately 1.8 times larger in
terms of area than the same protection at electrical level. Such a study thus highlights
the greater area-overhead optimization of protection implementations made at lower
abstraction levels, although the development costs in terms of design time are bigger
due to the higher design complexity, as generically illustrated in Figure 6.9.

In order to obtain an optimal trade-off between the development costs and system’s
overheads, Lisboa (2007-a, 2007-b) and Albrecht (2009) suggest applying mitigation

Systems Protected by Mitigation Schemes

DES_sync

MIPS

MC68HC11

8051

MIPS

MC68HC11

DES_sync

8051

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

MemoryArea / CoreArea

A
re

aO
ve

rh
ea

d

RT Level

Electric Level

75

techniques at different abstraction levels of the design to cope with the recent challenges
imposed by nanometer technologies. Lisboa (2009) points out that most of the current
mitigation techniques implement too many costs in terms of performance, area or power
consumption to tolerate certain transient-fault effects. In fact, he puts a question about
those effects on deep-submicron technologies that may last longer than a clock cycle.
Lisboa (2009) thus suggests low-cost alternatives proposing mitigation techniques
especially at higher abstraction levels. Moreover, Albrecht (2009) also recommends that
the error detection should be performed at lower abstraction levels of SOC designs,
while the error correction at higher abstraction levels. Such an idea is quite pertinent,
since lower levels offer greater ability to detect fault effects. Furthermore, the system’s
overheads due to the implementation of error-detection mechanisms at these levels are
naturally lower than alternatives at higher levels. About the error correction at such
higher abstraction levels, the simple procedure is to perform the recomputation, which
can add, through extra execution cycles, a high latency to the system. However, the low
probability of transient-fault occurrence does such a recomputation cost become almost
negligible (LISBOA, 2009).

Albrecht (2009) and Lisboa (2007-a, 2007-b, 2009) do not discuss an alternative that
is naturally robust to many deep-submicron-technology challenges: the design of QDI
asynchronous systems. This design style requires no additional mitigation mechanisms
to achieve satisfactory IC reliability. In these QDI circuits, the long duration transient
(LDT) faults in deep-submicron technologies, as defined by Lisboa (2007-a), have no
the same aggravating effects than in synchronous circuits. In fact, as there is no a
clock’s fixed timing reference, as longer as the transient duration is, the QDI systems
have a larger natural ability to detect it. Chapter 5 of this thesis shows that such an
absence of a clock to control the data flow, the multi-rail data codification, and the
handshaking asynchronous communication protocol induce the system more easily to
the deadlock by facing longer transients. A QDI system thus has a high potential to
detect such transient-fault effects.

This intrinsic robustness characteristic of QDI circuits, therefore, coincides with the
Albrecht’s idea (2009), which is the best approach today to face efficiently with the
deep-submicron-technology drawbacks, i.e. performing the detection at lower
abstraction levels. Moreover, a QDI system has other natural qualities which aggregate
most notably its high modularity, low power consumption, large insensitivity to delay
variations, high confidentiality, and low noise emission. All of these properties indeed
are naturally taken into account during the design development without using any
additional specific technique. Therefore, lower development efforts and shorter design
time (i.e., faster time-to-market) can be achieved when the design goal is to have such
properties. Obviously, it still depends on a greater commercial development of
asynchronous-dedicated EDA tools, as discussed in chapter 2. Furthermore, a QDI
circuit with such various benefits can even present a performance at least similar to its
synchronous counterpart by only paying for around a twice larger area. On the other
hand, synchronous systems, which are devoid of these natural QDI system’s qualities,
indeed would require much more area overheads to achieve these same benefits. Figure
6.10, that lists complex synchronous systems, already details large area overheads only
for mitigation of short duration transient faults. Imaging the protection against LDT
faults, delay faults, and security attacks would certainly increase such costs.

76

7 EVALUATING TRANSIENT-FAULT EFFECTS ON C-
ELEMENT’S IMPLEMENTATIONS

C-element cells, outlined in chapter 2, have a high importance to implement more
robust systems. They have been used even to protect synchronous circuits against
transient faults (NICOLAIDIS, 1999; MITRA et al, 2005; FAZELI et al, 2007).
Actually, their filter ability allows mitigating transient faults, and so avoiding SE
occurrences. However, in QDI asynchronous circuits, the C-elements are also used to
implement memory blocks, and then they are also directly sensitive to SEs.

On the other hand, most of the SE cases in QDI asynchronous systems are naturally
mitigated. As chapter 3, 4, and 5 discusses, such systems have intrinsically a good
capacity for transient-fault tolerance and an excellent ability for detection of failures
arisen from LDT faults. Then, a simple way to further increase the QDI systems’
robustness is improving the transient-fault tolerances of their C-elements, which by
nature already have filter abilities, and thus avoiding SE occurrences that would result
in failures. Such a solution would prevent recomputations for recovering the system
(correction process in FDN cases discussed in chapter 3). Furthermore, it could also
prevent the few FNN cases that are not able to be mitigated by alarm mechanisms as
highlighted in chapter 5.

The design of a QDI circuit can be accomplished through various traditional C-
element’s implementations at electrical level of abstraction. Therefore, the QDI
system’s design can be done by the selection of implementation options that have
mostly stronger abilities to tolerate shorter-duration transient faults, since longer-
duration transient faults are costly to be tolerated but are easily detectable at higher
abstraction levels of a QDI system. The QDI system’s C-elements would thus have a
better capacity for transient-fault tolerance, and so the system would be even more
transient-fault robust.

In order to obtain the best C-element’s implementation options in terms of transient-
fault robustness as well as in terms of costs in area, performance, and power
consumption, a novel methodology to evaluate at electrical level is required. Indeed, it
is necessary due to the C-element function’s particularities for asynchronous systems
that require an also particular method to assess the transient-fault effects on their C-
element circuit’s nodes. The existing methods for evaluation of such effects on memory
cells, for instance, are dedicated to clocked circuits, and thus they are so dependent on
the clock-timing characteristics (OMAÑA; ROSSI; METRA, 2007).

Hence, the following sections propose a novel solution discussed also in (BASTOS
et al, IOLTS 2010-b). Unlike related work in (VAIDYANATHAN et al, 2006), the new
methodology explained in this chapter presents and evaluates all situations of transient-

78

fault vulnerability on the traditional C-element’s versions for asynchronous systems.
The proposed method for electrical-level evaluation considers C-element’s
implementations designed under similar conditions. The concept of perturbation’s
charge is introduced and used to evaluate the C-element versions’ robustness.
Moreover, this chapter also suggests the application of electrical-level mitigation
techniques in the C-element’s versions to obtain them further transient-fault robust. The
best C-element’s options to design even more transient-fault robust systems are thus
innovatively presented (BASTOS et al, IOLTS 2010-b).

7.1 Traditional C-element’s Implementations
The dual-behaviour function of a C-element, either buffer or memory cell, is further

explained in chapter 2.

If the C-element is implemented by combinational standard cells, no optimal circuit
areas are achieved (MAURINE et al, 2003; FOLCO et al, 2005). Thus, it is mandatory
to use customized implementations like those traditional ones discussed in (SHAMS;
EBERGEN; ELMASRY, 1998). The basic version detailed in Figure 7.1 (A) is a
dynamic implementation, which preserves the steady state of output just during a while.
Especially for QDI circuits, this dynamic version is not interesting, since there is not a
keeper circuit to ensure the steady state of output until the next event driver of identical
inputs. In contrast, the three traditional static implementations illustrated in Figure 7.1
(B) (C) (D) work with such a keeper circuit.

Figure 7.1: The traditional C-element’s implementations

The designs of these traditional C-element cells can be sized by using the minimum
channel length of a CMOS technology. The diffusion widths of the PMOS and NMOS
transistors can be defined in accordance with the equations below, where Wmin is the
minimum diffusion width in the target CMOS technology, and fPMOS is the factor that
produces a C-element cell providing a voltage output of similar rise and fall times. Such
a factor fPMOS works thus to compensate the PMOS transistors, which are physically

n3

n2

(A) Dynamic

n4 n10

WP4

WN4

n0

n1

WPE

WPI

WNI

WNEn1

n0

n4 n10

WP4

WN4

Wmin

Wmin

n0

n1

WPE

WPI

WNI

WNEn1

n0

n0 n1
Wmin Wmin

n0n1
Wmin Wmin

n6

n7

n4 n10

WP4

WN4

Wmin

Wmin
n0

n1

WPE

WPI

WNI

WNEn1

n0

(B) Conventional

(D) Weak Feedback(C) Symmetric

n4 n10

WP4

WN4

Wmin

Wmin

n1

n0

WNE/2

WNI/2

WPI/2

WPE/2

n1

n0

n0

n1

WPE/2

WPI/2

WNI/2

WNE/2n1

n0

n2 n20

n3 n21

n2

n3

n2

n3

n3

n2

(A) Dynamic

n4 n10

WP4

WN4

n0

n1

WPE

WPI

WNI

WNEn1

n0

n4 n10

WP4

WN4

Wmin

Wmin

n0

n1

WPE

WPI

WNI

WNEn1

n0

n0 n1
Wmin Wmin

n0n1
Wmin Wmin

n6

n7

n4 n10

WP4

WN4

Wmin

Wmin
n0

n1

WPE

WPI

WNI

WNEn1

n0

(B) Conventional

(D) Weak Feedback(C) Symmetric

n4 n10

WP4

WN4

Wmin

Wmin

n1

n0

WNE/2

WNI/2

WPI/2

WPE/2

n1

n0

n0

n1

WPE/2

WPI/2

WNI/2

WNE/2n1

n0

n2 n20

n3 n21

n2

n3

n2

n3

79

slower than the NMOS ones. In addition, the factor fload makes the output cell capable to
drive the largest capacitive standard load of a target cell-drive capability defined in the
target CMOS technology.

 min4 WffWWW PMOSloadPPIPE ⋅⋅=== � (7.1)

 min4 WfWWW loadNNENI ⋅=== �. (7.2)

7.2 Method for Electrical-Level Evaluation of Transient-Fault Effects
A single perturbation event on an integrated circuit can produce a transient fault so-

called as SET (Single-Event Transient), as explained in chapter 3. The worst SET
effects on memory cells are the non-permanent errors defined as SEs.

In order to evaluate such effects on memory cells which do not depend on a clock,
like the C-element of QDI asynchronous circuits, the cell particularities need be taken
into account. A C-element cell of a QDI system uses frequently its two functions (either
buffer or memory cell) detailed in chapter 2. By using its buffer function, the worst SET
consequence is another SET appearing at the C-element’s output. It can provoke SEs
but on other memory cells ahead in the system. On the other hand, when the C-element
cell works like a memory function, the worst SET effect is evidently a SE.

7.2.1 Modelling the Transient Faults

The method in this chapter proposes evaluating the C-element cells based on the
classic model of charge injection well discussed in (CHA; PATEL, 1993). In such a
model, a double-exponential current source represents the SET effect due to the
perturbation of α-particles on a sensitive site of a CMOS circuit:

−⋅=

−−
βα ττ
tt

AmplitudeSET eeItI)(

 �(7.3)�

This fault-injection source has time constants (τα and τβ) that are factors related to the
technology process. The sensitive sites of a CMOS circuit are the off-state transistors
which have their drain nodes biased in the reverse state to their bulk nodes. Therefore,
the perturbation by means of its charged particles can create a transient current between
the drain and bulk discharging (for a NMOS transistor) or charging (PMOS transistor)
transiently the drain logic node, like shown in Figure 7.2. The source modeling the
current injects charge on the vulnerable drain node to represent such a phenomenon.

The model determines so that a drain node is vulnerable to a SET when the logic
states of the circuit nodes are set in certain conditions. Then, a circuit like a C-element
cell has a certain number of situations in terms of logic states which make it vulnerable
to a SET. For instance, the drain node n2 of any version in Figure 7.1 is vulnerable
when the cell has the nodes n0=1, n1=0, n4=0, and n10=1. Such a vulnerability situation
is further illustrated in Figure 7.3 for the weak-feedback version. Note that any
perturbation on the off-state PMOS transistor of WPE could produce a transient current
from its bulk (biased in Vdd) to the drain node n2, which would charge (0 to 1). As the
PMOS transistor of WPI is in on state, the node n4 would switch from 0 to 1 as well n10
from 1 to 0 provoking a SE if the perturbation-induced transient has enough energy. On

80

the other hand, when the cell has the nodes n0=1, n1=0, n4=1, and n10=0, the drain
node n2 is not vulnerable because it is already charged.

Figure 7.2: Modelling the perturbation-induced transient current ISET that temporally
discharges (off-state NMOS case) or charges (off-state PMOS case) the node out

Figure 7.3: Nodes’ logic states of the weak-feedback C-element version under a
situation of transient-fault vulnerability

7.2.2 Situations of Transient-Fault Vulnerability

Table 7.1 summarizes all situations in which the traditional C-element cells detailed
in previous section are vulnerable to a SET. Therefore, these 20 situations represent all
scenarios to be evaluated under a SET. Vulnerability situation 5 in Table 7.1 details the
example described in previous paragraph and Figure 7.3 for the node n2. Situations 11
and 13 do not happen on the dynamic version because its circuit does not have a
feedback. Moreover, situations 7 and 8 occur only on the symmetric version, since the
nodes n20 and n21 exist just in such a version. Thereby, the symmetric version has 20
vulnerability situations, the weak-feedback and conventional have 18, and the dynamic
has 16. Furthermore, as the output-net capacitance of a cell modifies significantly the
magnitude and duration of a SET on any cell node (ZHOU; MOHANRAM, 2006), the
same table of 20 situations is recommended to be evaluated for a range of output loads
and SET durations. In addition, unlike the internal and output nodes, the input nodes are
strongly influenced by the input nets. Then, the situations 1, 2, 3, and 4 related to such
nodes are also suggested to be evaluated under different input-net capacitances.

n4 = 0 ���� 1

WP4

WN4

Wmin

Wmin
n0 = 1

n1 = 0

WPE

WPI

WNI

WNE

n2 = 0 ���� 1

n3 = 0 ���� 1
n0 = 1

n1 = 0

n10 = 1 ���� 0n4 = 0 ���� 1

WP4

WN4

Wmin

Wmin
n0 = 1

n1 = 0

WPE

WPI

WNI

WNE

n2 = 0 ���� 1

n3 = 0 ���� 1
n0 = 1

n1 = 0

n10 = 1 ���� 0

in = 0 out = 1 ���� 0

PMOS
on

NMOS
off

ISET
in = 1 out = 0 ���� 1

PMOS
off

NMOS
on

ISET

Equivalent Circuit Model
����

ISET

ISET

Off-State NMOS Case Off-State PMOS Case

Cout

RPMOS

RNMOS

Cout

Equivalent Circuit Model
����

in = 0 out = 1 ���� 0

PMOS
on

NMOS
off

ISET
in = 1 out = 0 ���� 1

PMOS
off

NMOS
on

ISET

Equivalent Circuit Model
����

ISET

ISET

Off-State NMOS Case Off-State PMOS Case

Cout

RPMOS

RNMOS

Cout

Equivalent Circuit Model
����

81

Table 7.1: Situations of transient-fault vulnerabilities on the traditional C-element’s
versions

7.2.3 Perturbation Charge of a Circuit Node

The method of this chapter evaluates each situation detailed in Table 7.1 by
perturbing its circuit’s node through a current source. In fact, the injected double-
exponential current (equation 7.3) has its process-related factors modeled to produce a
target SET duration on the circuit’s node. The reference of a fixed SET width measured
at the half amplitude of the perturbation current is established. Hence, a certain SET-
pulse width PW can be preserved even increasing the current amplitude Iamplitude up to
achieve a circuit perturbation. Consequently, the area below the perturbation-current
curve in function of the time provides the minimum collected charge Q by a certain
circuit node N, and thus characterizes a perturbation profile for a certain PW on such a
node N:

 dttIQ SET ⋅= ∫
∞

0
)(�� �

 (7.4)�

Each situation in Table 7.1 has thus a minimum amount of charge that is capable to
perturb the circuit cell. The minimum charge on a certain node N to provoke a SE at a
memory-cell output is so-called critical charge Qcritical (ZHOU; MOHANRAM, 2006).
In theory, the Qcritical is calculated without taking into account the voltage limits
specified for a device. Hence, theoretical Qcritical of some nodes (which are normally
obtained by simulation) would produce in practice voltage amplitudes that are able to
permanently damage the circuit, instead of only generating transient effects like SETs.
In fact, such permanent consequences happen even due to the injection of charges lower

82

than the Qcritical, since certain target nodes have capacitances that are considered large in
comparison with other circuit’s nodes.

Therefore, a node N of large capacitance can have its Qcritical higher than the
minimum charge Qspecifications injected by a double-exponential current source to produce
on N a voltage amplitude VN that is considered above the device specifications. Hence,
the method of this chapter introduces the definition of perturbation charge PC on a
circuit node N. It allows based on an injected charge evaluating only the non-permanent
effects of the double-exponential current source. The PC for a certain PW is calculated
by increasing Iamplitude up to meet either Qspecifications or Qcritical. It takes into account VN >
1.10·Vdd. Therefore, the PC is equal either to Qspecifications or Qcritical.

As each C-element cell has several vulnerability situations in accordance with Table
7.1, it has also several PCs. Then, a metric combining such PCs of a cell is mandatory
to compare the SET robustness of different cells. The method of this chapter proposes
such a metric based on the following points:

• Vulnerability situations with the lowest PCs require obviously lower minimum
charges to perturb the circuit;

• In theory, there are much more perturbation events that can induce low charges
on the circuits, since such a kind of event can be generated even from weak
perturbation sources;

Therefore, as lower as higher perturbation-induced charges can upset the circuit in
vulnerability situations with the lowest PCs, and so the systems are exposed to a higher
amount of perturbation events. In this way, the lowest PCs have thus the widest ranges
of sensitivity to perturbation events, and then they have evidently the biggest chances of
provoking an error in the circuit. They are indeed the most transient-fault sensitive
situations.

Such PCs of the highest error probabilities must have the highest impacts on the
metric in order to valorize and evaluate the worst scenarios in terms of SET faults that a
cell can be exposed. Hence, a solution as metric to combine the several PCs of a cell is
using a mean that valorizes such lowest PCs. In theory, a weighted harmonic mean
tends strongly toward its lowest elements, and so the lowest PCs would have the highest
impacts on the mean. Therefore, the method of this chapter defines a global perturbation
charge GPCV as the weighted harmonic mean of the several PCs of a cell version V.

7.3 Making Transient-Fault Robust the C-element
There are many protection mechanisms in terms of transient-fault robustness which

are able to make robust a C-element circuit. The C-element is supposed to be used like a
cell of a library in order to obtain optimal circuit designs (MAURINE et al, 2003;
FOLCO et al, 2005). Then, the following paragraphs discuss transient-fault robust
implementations of C-element cells by using transistor-abstraction level mitigation
techniques. The target protection approaches work to increase the robustness of the cells
in the worst scenarios without including new vulnerability situations.

A mitigation technique proposed in (KARNIK et al, 2002) is suggested in
(VAIDYANATHAN et al, 2006) to make robust the C-element. Capacitors are
explicitly added at the weakest circuit nodes in terms of perturbation charge by using
PMOS and NMOS transistors as Figure 7.4 shows for the node n4.

83

Figure 7.4: The explicit-capacitor version of a weak-feedback C-element

Additionally, this section proposes a parameter labeled X to increase the transistor
diffusion widths WNC and WPC in accordance with the second row of Table 7.2 (factors
fPMOS and fload as well Wmin are defined in previous section 7.1). By amplifying X, the
diffusion area becomes larger, and so the node’s capacitance also increases. Thus, a
higher charge would be required to perturb the circuit. In addition, the node capability to
attenuate a SET would be also improved. Then, the parameter X, which must be always
greater than 1, would work to amplify the cell’s transient-fault robustness. The fourth
row of Table 7.2 details the other diffusion widths of this approach in Figure 7.4 as well
the diffusion widths of the traditional versions in Figure 7.1.

Table 7.2: Diffusion widths WN4, WP4, WNI, WPI, WNE, WPE WNC, and WPC of the
NMOS and PMOS transistors in robust C-element cells

n4 n10

WP4

WN4

Wmin

Wmin
n0

n1

WPE

WPI

WNI

WNEn1

n0 WNC

WPC

n3

n2

n4 n10

WP4

WN4

Wmin

Wmin
n0

n1

WPE

WPI

WNI

WNEn1

n0 WNC

WPC

n3

n2

84

Similarly, there are the mitigation techniques based on symmetric or asymmetric
sizing discussed in (ZHOU; MOHANRAM, 2006; LAZZARI et al, 2007) for
combinational cells. The idea is increasing the transistor sizes and thus inserting
additional capacitance on the circuit nodes. No extra transistors or nodes are included.
Thereby, this section proposes other robust C-element implementations by only sizing
their transistors in accord to Table 7.2. The circuits are the same detailed in Figure 7.1
but the diffusion widths WPE, WPI, WNI, and WNE are defined by Table 7.2. In fact, only
the widths on the grey boxes in Table 7.2 are increased by WNC or WPC, which work also
by the parameter X described in previous paragraph.

Other robust approaches can also be studied by implementing more sophisticated
keepers. Sizing its transistors or adapting robust latches like those in (FAZELI et al,
2007; SASAKI; NAMBA; ITO, 2008; LAZZARI; ANGHEL; REIS, 2005; OMAÑA;
ROSSI; METRA, 2007) can amplify the transient-fault robustness of the C-element
cells. However, such special latches include extra transistors on the data path.
Therefore, they naturally would increase the delay, area, and power consumption of the
cell. Moreover, they also would implement additional circuit nodes vulnerable to
transient faults. Other protection schemes in (MOHAMMADI; FURBER; GARSIDE,
2003; KUMA; TAHOORI, 2005; UEMURA et al, 2008) based on transistor insertions
can also improve the cell robustness but they also will include new vulnerability
situations.

7.4 Evaluations of the C-element’s Implementations
The traditional C-element cells illustrated in previous sections and their robust

versions defined in Table 7.2 were evaluated by using the methodology of this chapter.

7.4.1 Simulation Experiments

 The evaluation methodology requires fault-injection campaigns at transistor-
abstraction level. Then, HSPICE-based simulations were performed.

All C-element versions were created based on previous sections 7.1 and 7.3, and
Table 7.2 in order to design and evaluate them under similar conditions. The circuit
versions were designed by using a 65-nm CMOS technology, Vdd 1.2V, and typical
parameters. All of them were made to have the cell-drive capability X04, which is the
lowest one of similar cells (like AND or OR gates) in the target CMOS technology
library. Hence, the lowest capacitances possible to be implemented, which represent the
most transient-fault sensitive condition, were evaluated.

Moreover, all cells were sized to meet an output of rise and fall times in the order of
300ps, which is a reasonable and quite similar reference to the typical cells of the target
CMOS technology library. It was done by using the largest standard load of X04
(72.8fF) and the shortest input-net transition from the target technology library (5ps). In
this way, factors fPMOS and fload, discussed in section 7.1, were obtained for each one of
the cell versions.

The many simulations of fault injections on the cell nodes were done in accord to
Table 7.1. Each situation of this Table 7.1 was simulated for typical SET widths of
50ps, 100ps, and 250ps (DODD, 2004; FERLET-CAVROIS, 2006) by using the
minimum and maximum standard loads of X04. In addition, two of the lowest input-net

85

capacitances, which correspond to the worst scenarios in terms of perturbation charges
on the input nodes, were also evaluated for situations 1, 2, 3, and 4 of Table 7.1.

7.4.2 Simulation Results and Evaluations

The simulation results of the designed C-element versions are illustrated in the
figures of this section. In fact, the figures show the percent increases of each version in
relation to the results of the dynamic version detailed in Figure 7.1 (A), since it presents
the least values. The black triangle (▲) in figures represents the weak-feedback version,
the black circle (●) is the conventional version, and the black square (■) is the
symmetric version. The figures’ curves are plotted by increasing the parameter X, which
is defined in previous section as the factor to amplify the circuit robustness.

Figure 7.5 shows the percent increases in global perturbation charge GPCV, which is
defined in previous section, in function of the percent penalties in delay of the designed
C-element versions. The delay was calculated by the arithmetic mean of the rise delay
and the fall delay.

Firstly, taking into account only the C-element versions without transient-fault
mitigation techniques, the results in Figure 7.5 show that the symmetric version (black
square, ■) is 0.52% slower than dynamic version. The conventional (black circle, ●) is
3.33% and the weak-feedback (black triangle, ▲) is 14.24%. The resistance of the
feedback in the keeper works to penalty the delay when the input drivers are to switch
the output state. Furthermore, the GPCV results in Figure 7.5 prove that the weak-
feedback C-element is the strongest version in terms of transient-fault robustness. In
fact, the weak-feedback is 144.04% more robust than the dynamic version, i.e., the
minimum charges to perturb its nodes need be on average 144.04% larger than those to
perturb the dynamic version. On the other hand, the conventional and symmetric
versions are respectively 91.18% and 59.04% more robust. The weak-feedback version
has the highest GPCV basically because its internal node n2, n3, and n4 are designed
more capacitive to overcome the feedback resistance in the situations of output changes.
In addition, the symmetric version has more circuit nodes that are available to be
perturbed.

The curves in Figure 7.5 represent robust C-element versions. In fact, the figure
shows the versions protected by the techniques from Table 7.2. However, only those
versions that present the worst and the best trend in GPCV increases as functions of the
delay penalties were plotted. For instance, the weak_feedback_explicit_capacitor_Xw
curve beginning at the black triangle (▲) performs the worst trend among those
robustness techniques in Table 7.2 applied on the weak_feedback version. It means that
such an explicit_capacitor_Xw approach is the technique that further penalizes the
weak-feedback cell’s delay, since the goal is always achieving higher GPCV increases
by using lower delay penalties. On the other hand, the weak_feedback_sizing_external_
Xw curve is the best trend. If the goal is to increase the SET robustness of the
weak_feedback version around 165% larger than that of the dynamic version, the
sizing_external_Xw technique will introduce a penalty of 3% in delay in relation to the
fastest C-element version (dynamic). Otherwise, the explicit_capacitor_Xw will
increase by about 21% the delay.

The trends of the other mitigation techniques detailed in Table 7.2 also begin from
the black triangle (▲), circle (●), or square (■). However, they are placed in the range
between the best and the worst trend curves. These curves were also got by simulation

86

but they are not shown in the figures. Such an illustration in terms of the best and worst
trends of mitigation techniques were also done in the following figures of this section.

Figure 7.5: GPCV increases vs. penalties in delay of C-element versions

The results in GPCV increases as functions of delay penalties also illustrates that the
techniques of resizing_Xw, sizing_external_Xw, sizing_external_pmos_Xw, and
sizing_ external_nmos_Xw reduce the C-element’s delay in function of increasing the
parameter X to amplify the cell robustness. These techniques have in common to enlarge
the transistors connected to gnd or Vdd. It indicates that more current flows with less
resistance from its source or drain, thus the circuits are faster. The best trend among all
versions is the symmetric_sizing_external_Xw curve, thus it is ideal for designs
targeting high performances. Otherwise, for all other versions, the penalties in delay
tend to rise as greater as the parameter X amplifies. It is basically because the
capacitance on the internal node n4 increases by using such techniques, then the process
to charge it will be slower. The explicit_capacitor_Xw technique is the worst in terms of
delay for the reason that it includes explicit extra capacitance on the current’s path.

Figure 7.6 shows the GPCV increases as functions of the power-consumption
overheads of the C-element versions. The symmetric and conventional versions have
lower power consumption than the weak-feedback version (respectively 2.03%, 2.67%,
and 12.18%, as shown in Figure 7.6) because they cut off their keeper feedbacks to
switch their output states. The explicit_capacitor_Xw technique is the most power

55

65

75

85

95

105

115

125

135

145

155

165

175

185

195

205

-3 0 3 6 9 12 15 18 21
∆% Delay

∆% Global Perturbation Charge

weak_feedback_sizing_external_Xw

weak_feedback_explicit_capacitor_Xw

conventional_sizing_external_Xw

conventional_sizing_internal_pmos_Xw

symmetric_sizing_external_Xw

symmetric_explicit_capacitor_Xw

▲weak_feedback

● conventional

■ symmetric

87

efficient because each one of its transistors does not become as so larger as in the other
techniques. In addition, the conventional_explicit_capacitor_Xw versions have the best
trend curve among all versions basically due to the least efforts in the output switches. It
is recommended for designs that require low power. On the other hand, the
sizing_external_nmos_Xw and sizing_external_nmos_Xw approach are the most power
inefficient.

Figure 7.6: GPCV increases vs. power-consumption overheads

Figure 7.7 illustrates the GPCV increases as functions of the diffusion-area
overheads of the C-element versions. The diffusion area works like an estimate of the
total cell layout area. The diffusion area of the symmetric version is 5.55% greater than
the dynamic version, the conventional is 15.04% and the weak-feedback is 10.75%
larger. The sizing_internal_Xw technique is the best trend when the goal is low area.
Otherwise, the sizing_external_nmos_Xw and sizing_external_pmos_Xw protections
are not interesting for low-area cells.

55

65

75

85

95

105

115

125

135

145

155

165

175

185

195

205

215

225

235

0 3 6 9 12 15 18 21

∆% Power Consumption

∆% Global Perturbation Charge

weak_feedback_explicit_capacitor_Xw

weak_feedback_sizing_external_nmos_Xw

conventional_explicit_capacitor_Xw

conventional_sizing_external_nmos_Xw

symmetric_explicit_capacitor_Xw

symmetric_sizing_external_nmos_Xw

▲weak_feedback

● conventional

■ symmetric

88

Figure 7.7: GPCV increases vs. diffusion-area overheads

Figure 7.8 shows what C-element versions present higher perturbation charges by
using lower implementation costs. Taking into account that implementation cost is the
arithmetic mean of the overheads in terms of delay, power consumption, and diffusion
area plotted in Figure 7.5, Figure 7.6, and Figure 7.7. Figure 7.8 proves even more that
the weak-feedback version is the best robust option because it has an implementation
cost of around 12% larger than the dynamic version but is around 2.5 times more SET
robust. The other traditional versions would require a huge additional redundancy in
terms of implementations costs to achieve the same SET immunity level.

The curves of the weak-feedback versions in Figure 7.8 are higher in terms of GPCV
increases at least up to implementation costs of around 40% (point beyond the curve
shown in Figure 7.8), therefore such versions are more SET robust than the other ones
at least up to this point. In fact, such an intersection point at around 40% is only due to
the worst trend in GPCV increases for the weak_feedback version (weak_feedback
_sizing_external_nmos_Xw curve) with the best trend for the conventional version
(conventional_sizing_internal_nmos_Xw curve). The best trend for the weak_feedback
version (weak_feedback_sizing_internal_Xw curve) is not reached for the other
mitigation techniques because it has the highest rise rate. Therefore, such a
weak_feedback_sizing_internal_Xw technique is the best option to make more robust

55

65

75

85

95

105

115

125

135

145

155

165

175

185

195

205

0 5 10 15 20 25 30 35 40 45 50 55 60 65

∆% Diffusion Area

∆% Global Perturbation Charge

weak_feedback_sizing_internal_Xw

weak_feedback_sizing_external_nmos_Xw

conventional_sizing_internal_Xw

conventional_sizing_external_nmos_Xw

symmetric_sizing_internal_Xw

symmetric_sizing_external_pmos_Xw

▲weak_feedback

● conventional

■ symmetric

89

C-elements by using the lowest implementation costs. It achieves an efficient use of the
additional redundancies by getting the highest GPCV with the lowest penalties in delay,
power consumption, and diffusion area. The strongest point of this approach is the best
area trend among all versions, thus it is also recommended for designs that need
optimizing the area.

Figure 7.8: GPCV increases vs. C-element implementation costs

Making a weak_feedback_sizing_internal_Xw version with X=16, the smallest
perturbation charge (-7.5fC) occurs on the vulnerability situation 10 from Table 7.1 by
using the minimum standard load and a SET-pulse width of 50ps. It is because the
PMOS channel of the keeper, which maintains the node n4 at high level, is not so large
than its NMOS channel. Thus, the node n4 under a transient fault will be more easily
discharged than charged when the largest transistor of WNI and the transistor of WPI are
off. It is a situation that can be improved by sizing the keeper transistors. On the other
hand, the largest perturbation charges are in the order of 225fC. As a result of the GPCV
metric, this weak_feedback_sizing_internal_16w version resists to perturbation charges
on average in the order of 20fC. Typically, circuit nodes collect SET charges in the
order of fC, it depends on the CMOS technology and the perturbation events, which
produce the SET.

55

65

75

85

95

105

115

125

135

145

155

165

175

185

195

205

0 5 10 15 20 25 30 35

∆% Implementations Costs

∆% Global Perturbation Charge

weak_feedback_sizing_internal_Xw

weak_feedback_sizing_external_nmos_Xw

conventional_sizing_internal_nmos_Xw

conventional_sizing_external_nmos_Xw

symmetric_sizing_internal_Xw

symmetric_sizing_external_pmos_Xw

▲weak_feedback

● conventional

■ symmetric

90

7.5 Conclusions
A methodology able to evaluate SET effects on C-element implementations is

proposed in this work. A table with all SET vulnerability situations on traditional C-
element circuits is presented.

The results prove that the weak-feedback version is the most transient-fault robust
one among the traditional C-element options mainly because its design needs to face the
feedback resistance during output switches.

Options of robust C-element versions were studied by means of the concept of
perturbation charge, and the weak-feedback implementations based on symmetric sizing
of internal PMOS and NMOS transistors (sizing_internal_Xw) resulted as the best
approach against the SET problem. Thus, designers or even automatic synthesis tools
are able to get systems even more robust by taking the best C-element versions in terms
of SET robustness.

8 CONCLUSIONS AND FUTURE WORKS

Deep-submicron IC technologies have quite contributed to scientific development in
many ways. However, the huge IC reliability-related problems, mostly in synchronous
circuits, have pushed researchers into breaking old paradigms. Hence, this thesis aimed
at exploiting QDI asynchronous circuits in order to take advantage of their clockless
issues, and thus obtaining more robust systems.

Many QDI asynchronous circuits’ characteristics seem to be more interesting than
the synchronous circuits’ ones when the target is designing robust systems. This thesis
discussed comparatively the transient-fault effects on both these classes of circuits, and
pointed out benefits of such an important QDI asynchronous design’s alternative. In
addition, simple design techniques that make a QDI system even more transient-fault
robust are suggested. Then, the main thesis’s contributions are thus summarized below:

• A novel method for logical-level evaluation of transient-fault effects as on
synchronous as QDI asynchronous circuits (chapter 4; BASTOS et al, ETS
2009-a; BASTOS et al, IOLTS 2009-b);

• Highlighting for the first time in (chapter 5; BASTOS et al, ETS 2010-a;
BASTOS et al, ESREF & Microelectronics Reliability Journal 2010-c) the
excellent natural QDI asynchronous systems’ ability for mitigation of LDT faults
in deep-submicron technologies;

• Showing experimentally that the costs to protect complex synchronous systems
at different abstraction levels vary in terms of the system’s overheads and
development’s expenses, and that they can be very high depending on the
number of system’s memory elements (chapter 6; BASTOS et al,
Microelectronics Journal 2009-c);

• A novel method for electrical-level evaluation of transient-fault effects on C-
element’s cells as well as presenting for the first time the best traditional C-
element’s versions to design more transient-fault robust QDI asynchronous
systems (chapter 7; BASTOS et al, IOLTS 2010-b).

The novel method for logical-level transient-fault effect evaluation allows
comparing the sensitivity of circuits that are functionally equal but architecturally
different. Then, unlike related works, it takes into account the QDI asynchronous
systems’ particularities as well as the synchronous systems’ ones. Such a kind of
logical-level simulation-based method simplifies the transient-fault effects because the
real transient-fault features are not able to be characterized at such an abstraction level.
Therefore, certain evaluation’s accuracy is replaced by a more feasible simulation
complexity. Nevertheless, a very-meaningful preliminary assessment of such transient-

92

fault effects on the system’s designs can be done without the expenses of real-circuit
level testing platforms.

Beyond such a novel method, this thesis classifies two types of failures: detectable
naturally (FDN) and non-detectable naturally (FNN). It highlights innovatively the
natural QDI asynchronous systems’ ability to mitigate long-duration transient (LDT)
faults in deep-submicron technologies. In fact, as a long transient stays longer time in
data path, it has a higher probability to become a failure, and as most of the failure cases
in QDI systems are FDN due to the QDI asynchronous properties, such a kind of
transient fault is always more probable to become a FDN when is not tolerated
naturally. On the contrary, the clock’s period of synchronous systems imposes bounded
delays, then LDT faults very likely result in FNN.

These FDN-related issues were shown experimentally in a case study on a DES
crypto-processor in synchronous and QDI asynchronous versions. In addition, as the
largest part of FNN cases in QDI systems are arisen from forbidden codification states.
They are easily detectable by low-cost alarm mechanisms (MOORE et al, 2003), and
then a QDI system can achieve transient-fault immunity levels very close to 100 %. On
the other hand, a synchronous system would require modifying its architecture by
including expensive mitigation techniques as well as it would have higher development
costs in terms of additional designers, time-to-market, and fabrication. In fact, fully
protecting complex synchronous systems against transient faults rarely would cost less
than a circuit’s area duplication. Rare cases, as illustrated in Figure 6.10, would be
systems with a low amount of memory elements, even so they would not be protected
against LDT faults, delay faults, and DPA attacks.

On the contrary, one could argue that the case-study’s results showed the
synchronous DES’s version (des_sync) less sensitive to transient-fault effects than the
QDI asynchronous DES’s version (des_async). However, the results also showed a high
des_async’s potential to have lower transient-fault sensitivity than the des_sync. Indeed,
as no alarm mechanisms were embedded in such a des_async, it takes no advantage of
the forbidden codification cases. Then, if the alarms are installed, des_async’s
sensitivity certainly would close a lot to 0, and so would be lesser than the des_sync’s
sensitivity. Furthermore, the results also illustrated that the area and computation-time
factors were decisive to reach a sensitivity-related conclusion. Actually, the area and
computation time in such a case-study des_async are not the most optimized ones. This
des_async was designed before the new asynchronous-dedicated synthesis methods
(FOLCO et al, 2005; TIEMPO, 2009), and thus its natural higher transient-fault
resistance is suppressed due to its larger area and computation-time factors.

Nevertheless, modern QDI asynchronous systems, based on such novel synthesis
methods, can be designed by using less than twice larger area than their synchronous
counterparts as well as taking at least a comparable computation time. These QDI
systems’ improvements are mostly in terms of logic synthesis, and then their data
codification and asynchronous handshaking communication are not violated. Therefore,
their natural ability in transient-fault situations to often produce FDN instead of FNN
remains even by using these modern synthesis methods, and so their higher transient-
fault resistance prevails over the area and computation-time factors. Hence, the
des_async’s transient-fault sensitivity would be yet more reduced down the des_sync’s
sensitivity, i.e., the des_async would be more transient-fault robust than the des_sync.

93

This thesis still proposed a novel method for electrical-level transient-fault effect
evaluation that allows comparing the robustness of different C-element’s cells. Unlike
related works, it is able to evaluate cells’ circuits regardless of clock-related issues. As a
consequence, the transient-fault robustness of QDI asynchronous systems can be
considerably improved because from now on the designers or EDA tools know the best
C-element’s versions for such a design application target.

All these modern QDI asynchronous circuits’ improvements, discussed in last
paragraphs, linked with their natural properties in terms of QDI, low EMI, high DPA
security, high modularity, and low power consumption make them very attractive to
design robust systems.

As future works, an investigation could be done into other types of C-elements
beyond those ones evaluated in this thesis as well as exploiting the perturbation charges
on C-element’s implementations based on lower Vdd and smaller CMOS technologies,
which represent even worse scenarios for transient-fault effects. Furthermore, the strong
natural QDI asynchronous systems’ ability to mitigate LDT faults could be proved
formally by improving the symbolic simulation proposed in (MONNET; RENAUDIN;
LEVEUGLE, 2007-b) with the LDT characteristics. Another future work would be
integrating in EDA tools the knowledge of what C-element cells are the most transient-
fault robust.

Finally, an ongoing work will show a meaningful improvement of the C-element
cells’ transient-fault robustness. Actually, preliminary evaluations illustrate that the C-
element’s design based on a combination of folding and sizing increase even more the
cell robustness.

94

AUTHOR’S REFERENCES

• International Journals:

BASTOS, R. P.; KASTENSMIDT, F.; REIS, R. Design of a Soft-Error Robust
Microprocessor. Elsevier Microelectronics Journal, doi:10.1016/j.mejo.2008.10.001
(Nov. 2008), v.40, n.7, p. 1062-1068, Jul. 2009-c.

BASTOS, R. P.; SICARD, G.; KASTENSMIDT, F. L.; RENAUDIN, M.; REIS, R.
Asynchronous Circuits as Alternative for Mitigation of Long-Duration Transient Faults
in Deep-Submicron Technologies. In: EUROPEAN SYMPOSIUM ON REABILITY
OF ELECTRON DEVICES, FAILURE PHYSICS and ANALYSIS, ESREF, 21., 2010,
Monte Cassino Abbey and Gaeta, Italy. Elsevier Microelectronics Reliability Journal,
2010-c.

• International Conferences with Review Committee:

BASTOS, R. P.; SICARD, G.; KASTENSMIDT, F.; RENAUDIN, M.; REIS, R.
Evaluating Transient-Fault Effects on Traditional C-element‘s Implementations. In:
INTERNATIONAL ON-LINE TESTING SYMPOSIUM, IOLTS, 16., 2010, Corfu
Island, Greece. Proceedings... Los Alamitos, CA, USA : IEEE Computer Society,
2010-b.

BASTOS, R. P.; SICARD, G.; KASTENSMIDT, F. L.; RENAUDIN, M.; REIS, R.
Asynchronous Circuits as Alternative for Mitigation of Long-Duration Transient Faults
in Deep-Submicron Technologies. In: EUROPEAN TEST SYMPOSIUM, ETS, 15.,
2010, Prague, Czech Republic. Digest of Papers... [S.l.]: IEEE Computer Society,
2010-a.

BASTOS, R. P.; MONNET, Y.; SICARD, G.; KASTENSMIDT, F.; RENAUDIN, M.;
REIS, R. Comparing Transient-Fault Effects on Asynchronous and on Synchronous
Circuits. In: INTERNATIONAL ON-LINE TESTING SYMPOSIUM, IOLTS, 15.,
2009, Sesimbra-Lisbon, Portugal. Proceedings... Los Alamitos, CA, USA : IEEE
Computer Society, 2009-b.

BASTOS, R. P.; MONNET, Y.; SICARD, G.; KASTENSMIDT, F. L.; RENAUDIN,
M.; REIS, R. A Methodology to Evaluate Transient-Fault Effects on Asynchronous and
Synchronous Circuits. In: EUROPEAN TEST SYMPOSIUM, ETS, 14., 2009, Seville,
Spain. Digest of Papers... [S.l.] : IEEE Computer Society, 2009-a.

BASTOS, R. P.; KASTENSMIDT, F. L.; REIS, R. Design at High Level of a Robust 8-
Bit Microprocessor to Soft Errors by Using Only Standard Gates. In: SYMPOSIUM ON

96

INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 19., August 28 –
September 1, 2006, Ouro Preto, Brazil. Proceedings... [S.l.]: ACM, 2006-d. p. 196-201.

BASTOS, R. P.; KASTENSMIDT, F. L.; REIS, R. Design of a Robust 8-Bit
Microprocessor to Soft Errors. In: INTERNATIONAL ON-LINE TESTING
SYMPOSIUM, IOLTS, 12., July 10-12, 2006, Lake of Como, Italy. Proceedings...
[S.l.]: IEEE Computer Society, 2006-c. p. 195-196.

BASTOS, R. P.; KASTENSMIDT, F. L.; REIS, R. Design of a Robust 8-Bit
Microprocessor to Soft Single Event Effects. In: LATIN AMERICAN TEST
WORKSHOP, LATW, 7., March 26-29, 2006, Buenos Aires, Argentina. Digest of
Papers... [S.l.]: IEEE Computer Society, 2006-a. p. 137-142.

BASTOS, R. P.; KASTENSMIDT, F. L.; REIS, R. Designing Low Power Embedded
Software for Mass-Produced Microprocessor by Using a Loop Table in On-Chip
Memory. In: INTERNATIONAL WORKSHOP ON POWER AND TIMING
MODELING, OPTIMIZATION AND SIMULATION, PATMOS, 15., September 20-
23, 2005, Leuven, Belgium. Proceedings… Berlin, Germany: Springer, 2005-b. p. 59-
68. (Lecture Notes in Computer Science, LNCS, v. 3728).

• Works evaluated by an examining board:

BASTOS, R. P. Circuitos Assíncronos QDI: Uma Alternativa Naturalmente
Robusta a Desafios das Tecnologias Submicrônicas. 2009-d. 98 f. Thesis Proposal
(Ph.D) – PGMicro, Instituto de Informática, UFRGS, Porto Alegre.

BASTOS, R. P. Design of a Soft-Error Robust Microprocessor. 2006-e. 120 f. Thesis
(Master) – PPGC, Instituto de Informática, UFRGS, Porto Alegre.

• Regional Symposium with Review Committee:

BASTOS, R. P.; KASTENSMIDT, F. L.; REIS, R. Design of a Robust 8-Bit
Microprocessor to Soft Single Event Effects. In: SOUTH SYMPOSIUM ON
MICROELECTRONICS, SIM, 21., May 8, 2006, Porto Alegre, RS, Brazil.
Proceedings… Porto Alegre, RS, Brazil: Universidade de Federal do Rio Grande do
Sul, UFRGS, 2006-b. p. 151-155.

BASTOS, R. P.; KASTENSMIDT, F. L.; REIS, R. Designing Low Power Embedded
Software for Mass-Produced Microprocessor by Using a Loop Table in On-Chip
Memory. In: SOUTH SYMPOSIUM ON MICROELECTRONICS, SIM, 20., May 6-7,
2005, Santa Cruz do Sul, RS, Brazil. Proceedings… Porto Alegre, RS, Brazil:
Universidade de Santa Cruz do Sul, UNISC, 2005-a. p. 137-140.

• Regional Symposium:

CENTENO, P. C. ; BASTOS, R. P. ; REIS, R. . Simulação de Circuitos Assíncronos
QDI no Nível de Transistores sob o Efeito de Injeção de Falhas. In: SALÃO DE
INICIAÇÃO CIENTÍFICA, SIC, 18., 2007, Porto Alegre, RS. Livro de Resumos....
Porto Alegre, RS : Universidade Federal do Rio Grande do Sul, UFRGS: Resumo,
2007.

MANITO, R. ; BASTOS, R. P. ; REIS, R. . Simulação de Circuitos Robustos através de
Injeção de Falhas no Nível de Portas Lógicas.. In: SALÃO DE INICIAÇÃO

97

CIENTÍFICA, SIC, 17, 2006, Porto Alegre, RS. Livro de Resumos.... Porto Alegre, RS
: Universidade Federal do Rio Grande do Sul, UFRGS: Resumo, 2006.

BASTOS, R. P. ; PIAZZA, A. ; PALUDO, L. H. ; LOUREIRO, L. T. R. . Acionamento
Microcontrolado de Motor de Passo Através de Sinais Infravermelho Padrão RC5. In:
SALÃO DE INICIAÇÃO CIENTÍFICA, SIC, 13., 2001, Porto Alegre, RS. Livro de
Resumos.... Porto Alegre, RS : Universidade Federal do Rio Grande do Sul, UFRGS:
Resumo 002, 2001. p. 649.

BASTOS, R. P. ; SUSIN, A. A. . Sistema Microprocessado de Medição de Vibração
para Aquisição em Tempo Real. In: SALÃO DE INICIAÇÃO CIENTÍFICA, SIC, 13.,
2001, Porto Alegre, RS. Livro de Resumos.... Porto Alegre, RS : Universidade Federal
do Rio Grande do Sul, UFRGS: Resumo 191, 2001. p. 223.

BASTOS, R. P. ; NEGREIROS, M. ; SUSIN, A. A. ; PARDI JUNIOR, W. ; MARCAL,
R. F. M. Sistema de Medição de Vibração com Acelerômetro de Estado Sólido.. In:
SALÃO DE INICIAÇÃO CIENTÍFICA, SIC, 12., 2000, Porto Alegre, RS. Livro de
Resumos.... Porto Alegre, RS : Universidade Federal do Rio Grande do Sul, UFRGS:
Resumo 011, 2000. p. 539.

98

REFERENCES

ABRAMOVICI, M.; BREUER, M. A.; FRIEDMAN, A. D. Digital Systems Testing
and Testable Design. New York: IEEE, 1990.

ALBRECHT, C. et al. Towards a Flexible Fault-Tolerant System-on-Chip. In:
INTERNATIONAL CONFERENCE ON ARCHITECTURE OF COMPUTING
SYSTEMS, 22., 2009, ARC 2009, Karlsruhe, GER. Proceedings… Berlin, GER: VDE
Verlag GMBH, 2009, p. 83-90.

ALEXANDRESCU, D.; ANGHEL, L.; NICOLAIDIS, M. New Methods for Evaluating
the Impact of Single Event Transients in VDSM ICs. In: IEEE INTERNATIONAL
SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI SYSTEMS, DFT,
17., 2002. Proceedings… [S.l.]: IEEE Computer Society, 2002. p. 99-107.

ALEXANDRESCU, D.; ANGHEL, L.; NICOLAIDIS, M. Simulating Single Event
Transients in VDSM ICs for Ground Level Radiation. Journal of Electronic Testing:
Theory and Applications, [S.l.]: Kluwer Academic Publishers, v. 20, n. 4, p. 413-421,
2004.

ANGHEL, L.; NICOLAIDIS, M. Cost Reduction and Evaluation of a Temporary Faults
Detecting Technique. In: DESIGN, AUTOMATION AND TEST IN EUROPE
CONFERENCE AND EXHIBITION, DATE, 2000, Paris. Proceedings… Los
Alamitos: IEEE Computer Society, 2000-a. p. 591-598.

ANGHEL, L.; ALEXANDRESCU, D.; NICOLAIDIS, M. Evaluation of a Soft Error
Tolerance Technique Based on Time and/or Space Redundancy. In: SYMPOSIUM ON
INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 13., 2000, Manaus.
Proceedings… Los Alamitos: IEEE Computer Society, 2000-b. p. 237-242.

ALMUKHAIZIM, S.; MAKRIS, Y. Fault tolerant design of combinational and
sequential logic based on a parity check code. In: INTERNATIONAL SYMPOSIUM
ON DEFECT AND FAULT TOLERANCE IN VLSI SYSTEMS, 18., 2003, DFT 2003,
Boston, USA. Proceedings... Los Alamitos, USA: IEEE Computer Society, 2003, p.
344-351.

ALMUKHAIZIM, S.; SHI, F.; MAKRIS, Y. Coping with Soft Errors in Asynchronous
Burst-Mode Machines. In: INTERNATIONAL SYMPOSIUM ON ASYNCHRNOUS
CIRCUITS AND SYSTEMS, ASYNC, 14., 2008. Proceedings… [S.l.]: IEEE, 2008, p.
151-160.

100

ARGYRIDES, C.; ZARANDI, H. R.; PRADHAN, D. K. Matrix codes: multiple bit
upsets tolerant method for SRAM memories. In: IEEE INTERNATIONAL
SYMPOSIUM ON DEFECT AND FAULT-TOLERANCE IN VLSI SYSTEMS, 22.,
2007, DFT 2007, Rome, ITA. Proceedings… Washington, USA: IEEE Computer
Society, 2007, p. 340-348.

ASSIS, T.; KASTENSMIDT, F. L.; WIRTH, G.; REIS, R. Measuring the effectiveness
of symmetric and asymmetric transistor sizing for Single Event Transient mitigation in
CMOS 90nm technologies. In: LATIN AMERICAN TEST WORKSHOP, LATW, 10.,
2009. Proceedings... Los Alamitos: IEEE, 2009-a, p. 1-6.

ASSIS, T. Analysis of Transistor Sizing and Folding Effectiveness to Mitigate Soft
Errors . 2009-b. Thesis (Master) – PPGC, Instituto de Informática, UFRGS, Porto
Alegre.

BALSA. Asynchronous design and synthesis tool. England. Available at:
<http://intranet.cs.man.ac.uk/apt/>. Visited on November 2009.

BARTH, J. Applying Computer Simulation Tools to Radiation Effects Problems. In:
IEEE NUCLEAR SPACE RADIATION EFFECTS CONFERENCE, NSREC, 1997.
Proceedings… [S.l.]: IEEE Computer Society, 1997. p. 1-83.

BAUMANN, R.; SMITH, E. Neutron-Induced Boron Fission as a Major Source of Soft
Errors in Deep Submicron SRAM Devices. In: IEEE INTERNATIONAL ELIABILITY
PHYSICS SYMPOSIUM, 38., 2000. Proceedings… [S.l.]: IEEE Computer Society,
2000.

BAUMANN, R. C. Soft Errors in Advanced Semiconductor Devices—Part I: The Three
Radiation Sources. IEEE Transactions on Device and Materials Reliability, [S.l.], v.
1, n. 1, p. 17-22, Mar. 2001.

BORKAR, S. Designing Reliable Systems from Unreliable Components: The
Challenges of Transistor Variability and Degradation. IEEE Micro , [S.l.], v.25, n.6, p.
10-16, Nov.-Dec. 2005.

BOUESSE, G. F. et al. Asynchronous AES Crypto-processor Including Secured and
Optimized Blocks. Journal of Integrated Circuits and Systems, JICS, [S.l.:s.n], v.1,
n.1, 2004.

BOUESSE, G. F. et al. DPA on quasi delay insensitive asynchronous circuits:
formalization and improvement. In: DESIGN, AUTOMATION AND TEST IN
EUROPE CONFERENCE AND EXHIBITION, DATE, 2005. Proceedings… Los
Alamitos: IEEE Computer Society, 2005, p. 424-429.

BOUESSE, G. F. Contribution à la conception de circuits intégrés sécurisés :
l’alternative asynchrone. 2005. 202 f. Thesis (Ph.D) – EEATS, TIMA, INPG,
Grenoble, France.

BRZOZOWSKI, J. A.; SEGER, C. H. Asynchronous Circuits. New York: Springer-
Verlag, 1995.

101

BREGIER, V. Synthèse automatisée de circuits asynchrones optimisés prouvés
quasi insensibles aux délais. 2007. 116 f. Thesis (Ph.D) – EEATS, TIMA, INPG,
Grenoble, France.

CALIN, T.; VARGAS, F.L.; NICOLAIDIS, M. Upset-Tolerant CMOS SRAM Using
Current Monitoring: Prototype And Test Experiments. In: INTERNATIONAL TEST
CONFERENCE, ITC, 1995. Proceedings... [S.l.]: IEEE, 1995. p. 45-53.

CALIN, T.; NICOLAIDIS, M.; VELAZCO, R. Upset Hardened Memory Design for
Submicron CMOS Technology. IEEE Transactions on Nuclear Science, New York,
v.43, n.6, p. 2874 -2878, Dec. 1996.

CAZEAUX, J. M.; ROSSI, D.; OMANA, M.; METRA, C.; CHATTERJEE, A. On
Transistor Level Gate Sizing for Increased Robustness to Transient Faults. In: IEEE
INTERNATIONAL ON-LINE TESTING SYMPOSIUM, IOLTS, 2005.
Proceedings… Washington, USA: IEEE Computer Society, 2005, p. 23-28.

CHA, H.; PATEL, J. H. A Logic-Level Model for α-Particle Hits in CMOS Circuits. In:
COMPUTER DESIGN: VLSI IN COMPUTERS AND PROCESSORS, ICCD, 2004.
Proceedings... [S.l.]: IEEE, 1993. p. 538-542.

CHAPIRO, D. Globally-Asynchronous Locally-Synchronous Systems. 1984. Thesis
(Ph.D.) - Stanford University, USA.

COCHRAN, D. J. et al. Recent Total Ionizing Dose Results and Displacement Damage
Results for Candidate Spacecraft Electronics for NASA. In: RADIATION EFFECTS
DATA WORKSHOP, 2005. Proceedings... [S.l.]: IEEE, 2005. p. 149-155.

CONSTANTINESCU, C. Neutron SER Characterization of Microprocessors. In:
INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND
NETWORKS, DSN, 2005. Proceedings... [S.l.]: IEEE Computer Society, 2005. p. 754-
759.

COTA, E.; LIMA, F.; REZGUI, S.; CARRO, L.; VELAZCO, R.; LUBASZEWSKI, M.;
REIS, R. Synthesis of an 8051-like Micro-Controller Tolerant to Transient Faults.
Journal of Electronic Testing Theory and Applications, JETTA, MA, USA, v.17,
n.2, p. 149-161, 2001.

DAVID, I.; GINOSAR, R.; YOELI, M. Self-timed is self-checking. Journal of
Electronic Testing Theory and Applications, JETTA, MA, USA, v.6, n.2, p. 219-228,
1995.

DHARCHOUDHURY, A. et al. Fast timing simulation of transient faults in digital
circuits. In: IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-
AIDED DESIGN, ICCAD, 1994. Proceedings... Los Alamitos: IEEE Computer Society
Press, 1994. p.719–722.

DHILLON, Y. S.; DIRIL, A. U.; CHATTERJEE, A.; SINGH, A. D. Sizing CMOS
Circuits for Increased Transient Error Tolerance. In: INTERNATIONAL ON-LINE
TESTING SYMPOSIUM, IOLTS, 2004. Proceedings... Washington: IEEE Computer
Society, 2004. p.11.

102

DINH-DUC, A. Synthese Automatique de Circuits Asynchrones QDI. 2003. 186 f.
Thesis (Ph.D) – EEATS, TIMA, INPG, Grenoble, France.

DODD, P. E. et al. Neutron-Induced Soft Errors, Latchup, and Comparison of SER Test
Methods for SRAM Technologies. In: INTERNATIONAL ELECTRON DEVICES
MEETING, IEDM, 2002. Technical Digest... [S.l.]: IEEE, 2002. p. 333-336.

DODD, P.; MESSENGILL, L. Basic Mechanisms and Modeling of Single-Event Upset
in Digital Microelectronics. IEEE Transactions on Nuclear Science, [S.l.]: IEEE, v.
50, n. 3, p. 583–602, June 2003.

DODD, P. et al. Production and propagation of single-event transients in high-speed
digital logic ics. IEEE Transactions On Nuclear Science, Los Alamitos, USA: IEEE
Computer Society, 2004, v. 51, n. 6 (part 2), p.3278–3284.

FAZELI, M. et al. Feedback Redundancy: A Power Efficient SEU-Tolerant Latch
Design for Deep Sub-Micron Technologies. In: INTERNATIONAL CONFERENCE
ON DEPENDABLE SYSTEMS AND NETWORKS, DSN, 2007. Proceedings... [S.l.]:
IEEE Computer Society, 2007. p. 276-285.

FERLET-CAVROIS. V. et al. Direct measurement of transient pulses induced by laser
irradiation in deca-nanometer SOI devices. IEEE Transactions On Nuclear Science,
Los Alamitos, USA: IEEE Computer Society, v. 52, 2005.

FERLET-CAVROIS. V. et al. Statistical analysis of the charge collected in SOI and
bulk devices under heavy ion and proton irradiation—implications for digital SETs.
IEEE Transactions On Nuclear Science, Los Alamitos, USA: IEEE Computer
Society, v. 53, n. 6 (part 1), p. 3242-3252, 2006.

FISHER, R. A. Applications of "Student's" distribution. Metron , [S.l.:s.n], v. 5, p. 90-
104, 1925.

FOLCO, B. et al. Technology Mapping for Area Optimised Quasi Delay Insensitive
Circuits. In: INTERNATIONAL CONFERENCE ON VERY LARGE SCALE
INTEGRATION OF SYSTEM-ON-CHIP, VLSI-SOC, 2005. Proceedings... [S.l.]:
IFIP, 2005. p. 146-151.

FLETCHER, W. I. Engineering approach to digital design. Englewood Cliffs:
Prentice-Hall, 1980.

FRAGOSO, J. L. Conception Automatique de Chemins de Données en Logique
Asynchrone QDI. 2005. 181 f. Thesis (Ph.D) – EEATS, TIMA, INPG, Grenoble,
France.

GAGELDONK, H. et al. An Asynchronous Low-Power 80C51 Microcontroller. In:
INTERNATIONAL SYMPOSIUM ON ASYNCHRNOUS CIRCUITS AND
SYSTEMS, ASYNC, 4., 1998, USA. Proceedings… [S.l.]: IEEE, 1998, p. 96-107.

GAISLER, J. Evaluation of a 32-Bit Microprocessor with Built-in Concurrent Error-
Detection. In: INTERNATIONAL SYMPOSIUM ON FAULT-TOLERANT
COMPUTING, FTCS, 27., 1997. Digest of Papers... [S.l.]: IEEE, 1997. p. 42-46.

103

GARDINER, K. T.; YAKOVLEV, A.; BYSTROV, A. A C-element latch scheme with
increased transient fault tolerance for asynchronous circuits. In: IEEE
INTERNATIONAL ON-LINE TEST SYMPOSIUM, IOLTS, 13., 2007.
Proceedings… [S.l.]: IEEE Computer Society, 2007. p.223-230.

GEER, D. Is It Time for Clockless Chips?. IEEE Computer, [S.l.], v.38, n.3, p. 18-21,
Mar. 2005.

GOSSET, W. S. The probable error of a mean. Biometrika , [S.l.], v.6, n.1, p. 1-25,
doi:10.1093/biomet/6.1.1, March 1908.

GRANLUND, T.; GRANBOM, B.; OLSSON, N. Soft Error Rate Increase for New
Generations of SRAMs. IEEE Transactions on Nuclear Science, [S.l.], v.50, n.6, p.
2065-2068, Dec. 2003.

HADJIAT, K. et al. Early Functional Evaluation of SET Effects. In: EUROPEAN
CONFERENCE ON RADIATION AND ITS EFFECTS ON COMPONENTS AND
SYSTEMS, RADECS, 2005. Proceedings... [S.l.]: IEEE, 2005. p. C24-1-C24-7.

HARBOE-SORENSEN, R.; SUND, A. T. Radiation Pre-Screening of R3000/R3000A
Microprocessors. In: RADIATION EFFECTS DATA WORKSHOP, 1992. Workshop
Record... [S.l.]: IEEE, 1992. p. 34-41.

HASS, J. et al. Mitigating Single Event Upsets From Combinational Logic. In: NASA
SYMPOSIUM ON VLSI DESIGN, 7., 1998. Proceedings... [S.l.: s.n.], 1998.

HASS, J. Probabilistic Estimates of Upset Caused by Single Event Transients. In:
NASA SYMPOSIUM ON VLSI DESIGN, 8., 1999. Proceedings... [S.l.: s.n.], 1999.

HAZUCHA, P. et al. Neutron Soft Error Rate Measurements in a 90-nm CMOS Process
and Scaling Trends in SRAM from 0.25-µm to 90-nm Generation. In:
INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, 2003. Technical
Digest... [S.l.]: IEEE, 2003. p. 21.5.1-21.5.4.

HAUCK, S. Asynchronous Design Methodologies: An Overview. Proceedings of the
IEEE , [S.l.]: IEEE, v. 83, n. 1, p. 69-93, 1995.

HEIJMEN, T. Radiation induced soft errors in digital circuits: a literature survey,
Eindhoven, NDL: Philips Electronics National Laboratory, 2002.

HEIJMEN, T.; NIEUWLAND, A. Soft-Error Rate Testing of Deep-Submicron
Integrated Circuits. In: IEEE EUROPEAN TEST SYMPOSIUM, ETS, 2006.
Proceedings... Washington: IEEE Computer Society, 2006. p.247–252.

HENTSCHKE, R.; MARQUES, F.; LIMA, F.; CARRO, L.; SUSIN, A.; REIS, R.
Analyzing Area and Performance Penalty of Protecting Different Digital Modules with
Hamming Code and Triple Modular Redundancy. In: SYMPOSIUM ON
INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 15., 2002, Porto
Alegre. Proceedings... Los Alamitos: IEEE Computer Society, 2002. p. 95-100.

HOWARD, J. W. J. et al. Total Dose and Single Event Effects Testing of the Intel
Pentium III (P3) and AMD K7 Microprocessors. In: RADIATION EFFECTS DATA
WORKSHOP, 2001. Proceedings... [S.l.]: IEEE, 2001. p. 38-47.

104

HUFFMAN, D. A. The Synthesis of Sequential Switching Circuits. IRE Transactions
on Electronic Computers, [S.l.:s.n], v. 257, n. 3, p. 161-190, 1954-a.

HUFFMAN, D. A. The Synthesis of Sequential Switching Circuits. IRE Transactions
on Electronic Computers, [S.l.:s.n], v. 257, n. 4, p. 275-303, 1954-b.

HUTCHESON, G. D. Os Primeiros Nanochips. Scientific American Brasil, [S.l.],
n.24, p. 68-75, maio 2004.

IYER, A.; MARCULESCU, D. Power and Performance Evaluation of Globally
Asynchronous Locally Synchronous Processors. In: INTERNATIONAL SYMPOSIUM
ON COMPUTER ARCHITECTURE, 2002. Proceedings... [S.l.]: IEEE Computer
Society, 2002. p. 158-168.

IYER, R. K. et al. Recent Advances and New Avenues in Hardware-Level Reliability
Support. IEEE Micro , [S.l.], v.25, n.6, p. 18-29, Nov.-Dec. 2005.

JANG, W.; MARTIN, A. J. SEU-Tolerant QDI Circuits. In: INTERNATIONAL
SYMPOSIUM ON ASYNCHRNOUS CIRCUITS AND SYSTEMS, ASYNC, 11.,
2005. Proceedings… [S.l.]: IEEE, 2005, p. 156-165.

KARNIK, T. et al. Selective Node Engineering for Chip-Level Soft Error Rate
Improvement. In: SYMPOSIUM ON VERY LARGE SCALE INTEGRATION
CIRCUITS, 2002. Digest of Papers... [S.l.]: IEEE, 2002. p. 204-205.

KARNIK, T.; HAZUCHA, P.; PATEL, J. Characterization of Soft Errors Caused by
Single Event Upsets in CMOS Processes. IEEE Transactions on Dependable and
Secure Computing, [S.l.], v.1, n.2, p. 128-143, Apr.-June 2004.

KASTENSMIDT, F. L.; CARRO, L.; REIS, R. Fault-Tolerance Techniques for
SRAM-Based FPGA. [S.l.]: Springer, 2006.

KOMATSU et al. A soft-error hardened latch scheme for SoC in a 90 nm technology
and beyond. In: CUSTOM INTEGRATED CIRCUITS CONFERENCE, CICC, 2004.
Proceedings... [S.l.]: IEEE, 2004. p. 329-332.

KONDRATYEV, A.; LWIN, K. Design of asynchronous circuits using synchronous
CAD tools. Design & Test of Computers, [S.l.]: IEEE, v. 19, n. 4, p. 107-117, 2002.

KRISHNAMOHAN, S.; MAHAPATRA, N. R. A Highly-Efficient Technique for
Reducing Soft Errors in Static CMOS Circuits. In: COMPUTER DESIGN: VLSI IN
COMPUTERS AND PROCESSORS, ICCD, 2004. Proceedings... [S.l.]: IEEE
Computer Society, 2004. p. 126-131.

KUANG, W. et al. Soft error hardening for asynchronous circuits. In:
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN
VLSI SYSTEMS, DFT, 2007. Proceedings… [S.l.]: IEEE, 2007. p. 273-281.

KUANG, W. et al. Design of Asynchronous Circuits for High Soft Error Tolerance in
Deep Submicrometer CMOS Circuits. IEEE Transactions on VLSI Systems, [S.l.],
v.18, n.3, p. 410-422, Mar. 2010.

105

KUMAR, J.; TAHOORI, M. B. Use of pass transistor logic to minimize the impact of
soft errors in combinational circuits. In: WORKSHOP ON SYSTEM EFFECTS OF
LOGIC SOFT ERRORS, SELSE, 2005. Proceedings... [S.l.:s.n], 2005.

LABEL, K. A. et al. Commercial Microelectronics Technologies for Applications in the
Satellite Radiation Environment. In: AEROSPACE APPLICATIONS CONFERENCE,
1996. Proceedings... [S.l.]: IEEE, 1996. p. 375-390.

LABEL, K. A. et al. A Roadmap for NASA's Radiation Effects Research in Emerging
Microelectronics and Photonics. In: AEROSPACE CONFERENCE, 2000.
Proceedings... [S.l.]: IEEE, 2000. p. 535-545.

LAFRIEDA, C.; MANOHAR, R. Fault Detection and Isolation Techniques for Quasi
Delay-Insensitive Circuits. In: INTERNATIONAL CONFERENCE ON
DEPENDABLE SYSTEMS AND NETWORKS, DSN, 2004. Proceedings... [S.l.]:
IEEE Computer Society, 2004. p. 41-50.

LAPRIE, J. Dependability of Computer Systems: from Concepts to Limits. In: IFIP
INTERNATIONAL WORKSHOP ON DEPENDABLE COMPUTING AND ITS
APPLICATIONS, DCIA, 1998. Proceedings... Johannesburg: University of the
Witwatersrand, 1998. p. 108-126.

LAMBERT, D. et al. Neutron-Induced SEU in Bulk SRAMs in Terrestrial
Environment: Simulations and Experiments. IEEE Transactions on Nuclear Science,
[S.l.], v.51, n.6, p. 3435-3441, Dec. 2004.

LAZZARI, C.; ANGHEL, L.; REIS, R. On Implementing a Soft Error Hardening
Technique by Using an Automatic Layout Generator: Case Study. In:
INTERNATIONAL ON-LINE TESTING SYMPOSIUM, IOLTS, 11., 2005.
Proceedings... [S.l.]: IEEE Computer Society, 2005. p. 29-34.

LAZZARI, C. et al. Efficient Transistor Sizing for Soft Error Protection in
Combinational Logic Circuits. In: INTERNATIONAL WORKSHOP ON
DEPENDABLE CIRCUIT DESIGN, DECIDE, 2007. Proceedings... [S.l.:s.n], 2007-a.

LAZZARI, C. Transistor Level Automatic Generation of Radiation-Hardened
Circuits . 2007-b. 125 f. Thesis (Ph.D) – PGMicro, Instituto de Informática, UFRGS,
Porto Alegre.

LERAY, J. et al. Atmospheric Neutron Effects in Advanced Microelectronics,
Standards and Applications. In: INTERNATIONAL CONFERENCE ON
INTEGRATED CIRCUIT DESIGN AND TECHNOLOGY, ICICDT, 2004.
Proceedings... [S.l.]: IEEE, 2004. p. 311-321.

LIDÉN, P. et al. On Latching Probability of Particle Induced Transients in
Combinational Networks. In: INTERNATIONAL SYMPOSIUM ON FAULT-
TOLERANT COMPUTING, FTCS, 24., 1994. Digest of Papers... [S.l.]: IEEE, 1994.
p. 340-349.

LIMA, F.; COTA, E.; CARRO, L.; LUBASZEWSKI, M.; REIS, R.; VELAZCO, R.;
REZGUI, S. Designing a Radiation Hardened 8051-Like Micro-Controller. In:

106

SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI,
13., 2000. Proceedings... Los Alamitos: IEEE Computer Society, 2000-a. p. 255-260.

LIMA, F.; REZGUI, S.; COTA, E.; CARRO, L.; LUBASZEWSKI, M.; VELAZCO, R.;
REIS, R. Designing and Testing a Radiation Hardened 8051-like Micro-controller. In:
INTERNATIONAL CONFERENCE ON MILITARY AND AEROSPACE
APPLICATIONS OF PROGRAMMABLE LOGIC DEVICES, MAPLD, 2000.
Proceedings... [S.l.:s.n.], 2000-b.

LIMA, F.; REZGUI, S.; CARRO, L.; VELAZCO, R.; REIS, R. On the Use of VHDL
Simulation and Emulation to Derive Error Rates. In: EUROPEAN CONFERENCE ON
RADIATION AND ITS EFFECTS ON COMPONENTS AND SYSTEMS, RADECS,
2001. Proceedings... [S.l.]: IEEE Computer Society, 2001-a. p. 253-260.

LIMA, F.; CARMICHAEL, C.; FABULA, J.; PADOVANI, R.; REIS, R. A Fault
Injection Analysis of Virtex FPGA TMR Design Methodology. In: EUROPEAN
CONFERENCE ON RADIATION AND ITS EFFECTS ON COMPONENTS AND
SYSTEMS, RADECS, 2001. Proceedings... [S.l.]: IEEE Computer Society, 2001-b. p.
275 -282.

LIMA, F.; CARRO, L.; VELAZCO, R.; REIS, R. Injecting Multiple Upsets in a SEU
Tolerant 8051 Micro-Controller. In: LATIN AMERICAN TEST WORKSHOP, LATW,
2002. Proceedings... Amissville: IEEE Computer Society, 2002-a.

LIMA, F.; CARRO, L.; VELAZCO, R.; REIS, R. Injecting Multiple Upsets in a SEU
Tolerant 8051 Micro-Controller. In: IEEE INTERNATIONAL ON-LINE TESTING
WORKSHOP, IOLTW, 8., 2002. Proceedings... [S.l.]: IEEE Computer Society, 2002-
b. p. 194.

LIMA, F.; CARRO, L; REIS, R. Techniques for Reconfigurable Logic Applications:
Designing Fault Tolerant Systems into SRAM-based FPGAs. In: INTERNATIONAL
DESIGN AUTOMATION CONFERENCE, DAC, 2003. Proceedings... New York:
ACM, 2003-a. p. 650-655.

LIMA, F. Designing Single Event Upset Mitigation Techniques for Large SRAM-
Based FPGA Components. 2003-b. 157 f. Thesis (Ph.D) – PPGC, Instituto de
Informática, UFRGS, Porto Alegre.

LISBOA, C.; ERIGSON, M.; CARRO, L. System level approaches for mitigation of
long duration transient faults in future technologies. In: IEEE EUROPEAN TEST
SYMPOSIUM, 12., ETS, 2007, Freiburg, DEU. Proceedings… Los Alamitos, USA:
IEEE Computer Society, 2007-a, p. 165-170.

LISBOA, C. A. L.; KASTENSMIDT, F. L.; HENES NETO, E.; WIRTH, G.; CARRO,
L. Using Built-in Sensors to Cope with Long Duration Transient Faults in Future
Technologies. In: INTERNATIONAL TEST CONFERENCE, ITC, 2007, Otawa, CAN.
Proceedings… New York, USA: IEEE Computer Society, 2007-b, paper 24.3.

LISBOA, C.; CARRO, L. XOR-based low cost checkers for combinational logic. In:
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN
VLSI SYSTEMS, DFT, 2008, Boston, USA. Proceedings… Washington, USA: IEEE
Computer Society, 2008. p. 281-289.

107

LISBOA, C. A. L. Dealing with Radiation Induced Long Duration Transient Faults
in Future Technologies. 2009. 113 f. Thesis (Ph.D) – PPGC, Instituto de Informática,
UFRGS, Porto Alegre.

MAHESHWARI, A.; KOREN, I.; BURLESON, N. Techniques for Transient Fault
Sensitivity Analysis and Reduction in VLSI Circuits. In: INTERNATIONAL
SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI SYSTEMS, 18.,
2003. Proceedings... [S.l.]: IEEE, 2003. p. 597-604.

MAIZ, J. et al. Characterization of Multi-bit Soft Error Events in Advanced SRAMs. In:
INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, 2003. Technical
Digest... [S.l.]: IEEE, 2003. p. 21.4.1-21.4.4.

MARTIN, A. J. The limitations to delay-insensitivity in asynchronous circuits. In: MIT
CONFERENCE ON ADVANCED RESEARCH IN VERY LARGE SCALE
INTEGRATION, 6., 1990. Proceedings… [S.l.]: MIT Press, 1990. p. 263-278.

MASSENGILL, L. W. et al. Analysis of Single-Event Effects in Combinational Logic –
Simulation of the AM2901 Bitslice Processor. IEEE Transactions on Nuclear
Science, Reno, NV, USA, v. 47, n. 6, p. 2609-2615, Dec. 2000.

MAURINE, P. et al. Static Implementation of QDI Asynchronous Primitives. In:
INTERNATIONAL WORKSHOP ON POWER AND TIMING MODELING,
OPTIMIZATION AND SIMULATION, PATMOS, 13., 2003. Proceedings… [S.l.]:
Springer, 2003. p. 181-191. (Lecture Notes in Computer Science, LNCS, v. 2799).

MENTOR GRAPHICS CORPORATION. ModelSim Manuals. USA, March 2004.

MESSENGER, G. Collection of charge on junction nodes from ion tracks. IEEE
Transactions on Nuclear Science, [S.l.], p.2024–2031, 1982.

MILLER, R. E. An Introduction to Speed Independent Circuit Theory. In:
SYMPOSIUM ON SWITCHING CIRCUIT THEORY AND LOGICAL DESIGN,
SWCT, 2., 1961. Proceedings… [S.l.]: IEEE, 1961. p. 87-93.

MITRA, S. et al. Robust system design with built-in soft-error resilience. IEEE
Computer, [S.l.]: IEEE Computer Society, v. 38, n. 2, p. 43-52, 2005.

MOHAMMADI, S.; FURBER, S.; GARSIDE, J. Designing robust asynchronous circuit
components. IEE Proceedings Circuits, Devices & Systems, [S.l.], v. 150, n. 3, p.
161-166, 2003.

MOHANRAM, K.; TOUBA, N. A. Cost-Effective Approach for Reducing Soft Error
Failure Rate in Logic Circuits. In: ITC, 2003. Proceedings... Los Alamitos: IEEE
Computer Society, 2003.

MONNET, Y.; RENAUDIN, M.; LEVEUGLE, R. Asynchronous Circuits Sensitivity to
Fault Injection. In: IEEE INTERNATIONAL ON-LINE TESTING SYMPOSIUM,
IOLTS, 10., 2004. Proceedings… [S.l.]: IEEE Computer Society, 2004, p. 121-126.

MONNET, Y. et al. An Asynchronous DES Crypto-Processor Secured against Fault
Attacks. In: INTERNATIONAL CONFERENCE ON VERY LARGE SCALE

108

INTEGRATION OF SYSTEM-ON-CHIP, VLSI-SOC, 2005. Proceedings... [S.l.]:
IFIP, 2005-a. p. 21-26.

MONNET, Y.; RENAUDIN, M.; LEVEUGLE, R. Hardening Techniques against
Transient Faults for Asynchronous Circuits. In: IEEE INTERNATIONAL ON-LINE
TESTING SYMPOSIUM, IOLTS, 11., 2005. Proceedings… [S.l.]: IEEE Computer
Society, 2005-b, p. 129-134.

MONNET, Y.; RENAUDIN, M.; LEVEUGLE, R. Asynchronous circuits transient
faults sensitivity evaluation. In: INTERNATIONAL DESIGN AUTOMATION
CONFERENCE, DAC, 42., 2005. Proceedings... New York: ACM, 2005-c. p. 863-
868.

MONNET, Y. et al. Practical Evaluation of Fault Countermeasures on an Asynchronous
DES Crypto Processor. In: IEEE INTERNATIONAL ON-LINE TESTING
SYMPOSIUM, IOLTS, 12., 2006. Proceedings… [S.l.]: IEEE Computer Society,
2006-a, p. 125-130.

MONNET, Y. et al. Case Study of a Fault Attack on Asynchronous DES Crypto-
Processors. WORKSHOP ON FAULT DIAGNOSIS AND TOLERANCE IN
CRYPTOGRAPHY, FDTC, 3., 2006. Proceedings… [S.l.]: Springer-Verlag, 2006-b.
p.88-97. (Lecture Notes in Computer Science, LNCS, v. 4236).

MONNET, Y.; RENAUDIN, M.; LEVEUGLE, R. Designing Resistant Circuits against
Malicious Faults Injection Using Asynchronous Logic. IEEE Transactions on
Computers, [S.l.], v. 55, n. 9, p. 1104-1115, Sep. 2006-c.

MONNET, Y. Étude et modélisation de circuits résistants aux attaques non
intrusives par injection de fautes. 2007-a. 152 f. Thesis (Ph.D) – EEATS, TIMA,
INPG, Grenoble, France.

MONNET, Y.; RENAUDIN, M.; LEVEUGLE, R. Formal Analysis of Quasi Delay
Insensitive Circuits Behavior in the Presence of SEUs. In: IEEE INTERNATIONAL
ON-LINE TESTING SYMPOSIUM, IOLTS, 13., 2007. Proceedings… [S.l.]: IEEE
Computer Society, 2007-b, p. 113-120.

MOORE, S. et al. Improving Smart Card security using Self-timed Circuits. In:
INTERNATIONAL SYMPOSIUM ON ASYNCHRNOUS CIRCUITS AND
SYSTEMS, ASYNC, 8., 2002. Proceedings… [S.l.]: IEEE, 2002, p. 211-218.

MOORE, S. et al. Balanced self-checking asynchronous logic for smart card
applications. Microprocessors and Microsystems, [S.l.]: Elsevier Science Publishers,
v. 27, p. 421-430, 2003.

MULLER, D. E.; BARTKY, W.S. A Theory of Asynchronous Circuits. In:
INTERNATIONAL SYMPOSIUM ON THEORY OF SWITCHING, 1954.
Proceedings… [S.l.]: Harvard University Press, 1959. p. 204-243. (Part 1)

MYERS, C. Asynchrnonous Circuit Design. [S.l.]: John Wiley & Sons, 2001.

NASA. Draft Single Event Effects Specification. USA. Available at:
<http://radhome.gsfc.nasa.gov/radhome/papers/seespec.htm>. Visited on November
2009.

109

NDAI et al. A Soft Error Monitor Using Switching Current Detection. In:
INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, ICCD, 2005.
Proceedings... [S.l.]: IEEE Computer Society, 2005.

NEVES, C.; HENES-NETO, E.; RIBEIRO, I.; WIRTH, G.; KASTENSMIDT, F. L.;
GUNTZEL, J. L. A. Automatic Evaluation of Single Event Transient Propagation in
CMOS Logic Circuits Based on Topological Timing Analysis. In: LATIN AMERICAN
TEST WORKSHOP, LATW, 7., March 26-29, 2006, Buenos Aires, Argentina.
Proceedings... [S.l.]: IEEE Computer Society, 2006-a.

NEVES, C.; HENES-NETO, E.; RIBEIRO, I.; WIRTH, G.; KASTENSMIDT, F. L.;
GUNTZEL, J. L. A. Avoiding Circuit Simulation for the Analysis of Single Event
Transient Propagation in Combinational Circuits. In: EUROPEAN TEST
SYMPOSIUM, ETS, 2006. Proceedings... [S.l.]: IEEE, 2006-b.

NETO, E.; WIRTH, G.; KASTENSMIDT, F. L. A. Using Bulk Built-In Current
Sensors to Detect Transient Faults in SRAM Memory Architectures. In: LATIN
AMERICAN TEST WORKSHOP, LATW, 7., March 26-29, 2006, Buenos Aires,
Argentina. Proceedings... [S.l.]: IEEE Computer Society, 2006-a.

NETO, E.; RIBEIRO, I.; VIEIRA, M.; WIRTH, G.; KASTENSMIDT, F. Using Bulk
Built-in current sensors to detect soft errors. IEEE Micro , [S.l.: s.n.], 2006-b, n. 5, p.
10-18.

NEUBERGER, G.; LIMA, F.; CARRO, L.; REIS, R. A multiple bit upset tolerant
SRAM memory. ACM Transaction on Design Automation of Electronic Systems,
[S.l.: ACM?], 2003, v. 8, n. 4, p. 577-590. DOI 10.1145/944027.944038.

NEUBERGER, G.; LIMA, F.; REIS, R. Designing an automatic technique for
optimization of reed-solomon codes to improve fault-tolerance in memories. IEEE
Design & Test, [S.l.]: IEEE Computer Society, 2005, p. 50-58. DOI
10.1109/MDT.2005.2.

NGUYEN, N. D. et al. The Design of a Genetic Muller C-Element. In:
INTERNATIONAL SYMPOSIUM ON ASYNCHRNOUS CIRCUITS AND
SYSTEMS, ASYNC, 13., 2007. Proceedings… [S.l.]: IEEE Computer Society, 2007,
p. 95-104.

NICOLAIDIS, M. Time Redundancy Based Soft-Error Tolerance to Rescue Nanometer
Technologies. In: VLSI TEST SYMPOSIUM, VTS, 17., 1999. Proceedings... [S.l.]:
IEEE, 1999. p. 86-94.

NICOLAIDIS, M.; PEREZ, R. Measuring the Width of Transient Pulses Induced by
Ionising Radiation. In: INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM,
41., 2003. Proceedings... [S.l.]: IEEE, 2003. p. 56-59.

NIEUWLAND, A.; JASAREVIC, S.; JERIN, G. Combinational logic soft error analysis
and protection. In: IEEE INTERNATIONAL ON-LINE TEST SYMPOSIUM, 12.,
IOLTS 2006, Lake of Como, ITA. Proceedings… Los Alamitos, USA: IEEE Computer
Society, 2006. p. 99-104.

110

NORMAND, E.; BAKER, T. J. Altitude and Latitude Variations in Avionics SEU and
Atmospheric Neutron Flux. IEEE Transactions on Nuclear Science, New York, v.40,
n.6, p. 1484-1490, Dec. 1993.

NORMAND, E. et al. Single Event Upset and Charge Collection Measurements Using
High Energy Protons and Neutrons. IEEE Transactions on Nuclear Science, [S.l.],
v.41, n.6, p. 2203-2209, Dec. 1994.

NORMAND, E. Single-Event Effects in Avionics. IEEE Transactions on Nuclear
Science, [S.l.], v.43, n.2, p. 461-474, Apr. 1996-a.

NORMAND, E. Single Event Upset at Ground Level. IEEE Transactions on Nuclear
Science, New York, v.43, n.6, p. 2742-2750, Dec. 1996-b.

NORMAND, E. Correlation of In-Flight Neutron Dosimeter and SEU Measurements
with Atmospheric Neutron Model. IEEE Transactions on Nuclear Science, New
York, v.48, n.6, p. 1996-2003, Dec. 2001.

O'BRYAN, M. V. et al. Single Event Effect and Radiation Damage Results for
Candidate Spacecraft Electronics. In: RADIATION EFFECTS DATA WORKSHOP,
1998. Proceedings... [S.l.]: IEEE, 1998. p. 39-50.

O'BRYAN, M. V. et al. Recent Single Event Effects Results for Candidate Spacecraft
Electronics for NASA. In: RADIATION EFFECTS DATA WORKSHOP, 2005.
Proceedings... [S.l.]: IEEE, 2005. p. 26-35.

OMAÑA, M.; ROSSI, D.; METRA, C. Novel Transient Fault Hardened Static Latch.
In: INTERNATIONAL TEST CONFERENCE, ITC, 2003. Proceedings… [S.l.]: IEEE
Computer Society, 2003. p. 886-892.

OMAÑA, M.; ROSSI, D.; METRA, C. Latch Suceptibility to Transient Faults and New
Hardening Approach. IEEE Transactions on Computers, [S.l.], v. 56, n. 9, p. 1255-
1268, 2007.

PAPADOMANOLAKIS, K.S. et al. A Comparative Study on Fault Secure Signed
Multiplication Designs. In: INTERNATIONAL CONFERENCE ON VERY LARGE
SCALE INTEGRATION OF SYSTEM-ON-CHIP, VLSI-SOC, 11., 2001.
Proceedings... [S.l.]: IFIP, 2001. p.183-188.

PANYASAK, D. Réduction de l’Emission Electromagnetique des Circuits
Intègres : l’Alternative Asynchrone. 2004. 246 f. Thesis (Ph.D) – EEATS, TIMA,
INPG, Grenoble, France.

PENG, S.; MANOHAR, R. Efficient failure detection in pipelined asynchronous
circuits. In: INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT
TOLERANCE IN VLSI SYSTEMS, DFT, 2005. Proceedings… [S.l.]: IEEE, 2005. p.
484-493.

PISETRAK, S. J.; NANYA, T. Toward totally self-checking delay-insensitive systems.
In: INTERNATIONAL SYMPOSIUM ON FAULT-TOLERANT COMPUTING,
FTCS, 25., 1995. Digest of Papers... [S.l.]: IEEE, 1995. p. 228-237.

111

PFLANZ, M. et al. On-Line Detection and Correction in Storage Elements with Cross-
Parity Check. In: IEEE INTERNATIONAL ON-LINE TESTING WORKSHOP,
IOLTW, 8., 2002. Proceedings... [S.l.]: IEEE Computer Society, 2002. P. 69-73.

RAO, R. R.; BLAAUW, D.; SYLVESTER, D. Soft Error Reduction in Combinational
Logic Using Gate Resizing and Flipflop Selection. In: IEEE/ACM INTERNATIONAL
CONFERENCE ON COMPUTER-AIDED DESIGN, ICCAD, 2006. Proceedings...
New York: ACM, 2006. p.502–509.

REORDA, M. S.; VIOLANTE, M. A New Approach to the Analysis of Single Event
Transients in VLSI Circuits. Journal of Electronic Testing: Theory and
Applications, [S.l.]: Kluwer Academic Publishers, v. 20, n. 4, p. 511–521, 2004.

RENAUDIN, M. Asynchronous Circuits and Systems: a promising design alternative.
In: MICROELECTRONICS FOR TELECOMMUNICATIONS: MANAGING HIGH
COMPLEXITY AND MOBILITY, MIGAS, 2000. Microelectronics-Engineering
Journal, v. 54, n. 1-2, p. 133-149, Dec. 2000.

RENAUDIN, M. et al. High-Security Smartcards. In: DESIGN, AUTOMATION AND
TEST IN EUROPE CONFERENCE AND EXHIBITION, DATE, 2004. Proceedings…
Los Alamitos: IEEE Computer Society, 2004. p. 228-232.

RENAUDIN, M.; MONNET, Y. Asynchronous design: fault robustness and security
characteristics. In: INTERNATIONAL ON-LINE TESTING SYMPOSIUM, IOLTS,
12., July 10-12, 2006, Lake of Como, Italy. Proceedings... [S.l.]: IEEE Computer
Society, 2006. p. 92-95.

RIGAUD, J. B. Specification de Bibliotheques pour la Synthese de Circuits
Asynchrones. 2002. 203 f. Thesis (Ph.D) – EEATS, TIMA, INPG, Grenoble, France.

RIOS, D. Systemes a microprocesseurs asynchrones basse consommation. 2008. 175
f. Thesis (Ph.D) – EEATS, TIMA, INPG, Grenoble, France.

ROSSI, D. et al. Multiple transient faults in logic: an issue for next generation ICs? In:
IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE
IN VLSI SYSTEMS, 20., DFT, 2005, Monterey, USA. Proceedings… Los Alamitos,
USA: IEEE Computer Society, 2005, p. 352-360.

SAGGESE, P. G. et al. An Experimental Study of Soft Errors in Microprocessors.
IEEE Micro , [S.l.], v.25, n.6, p. 30-39, Nov.-Dec. 2005.

SASAKI, Y., NAMBA, K., ITO, H. Soft Error Masking Circuit and Latch Using
Schmitt Trigger Circuit In: IEEE INTERNATIONAL SYMPOSIUM ON DEFECT
AND FAULT TOLERANCE IN VLSI SYSTEMS, 21., DFT 2006, 2006.
Proceedings… Los Alamitos, USA: IEEE Computer Society, 2006, p. 327-335.

SASAKI, Y.; NAMBA, K.; ITO, H. Circuit and Latch Capable of Masking Soft Errors
with Schmitt Trigger. Journal of Electronic Testing: Theory and Applications, [S.l.]:
Kluwer Academic Publishers, v. 24, n. 1-3, p. 11-19, 2008.

SAWIN, D. H.; MAKI, G. K. Asynchronous Sequential Machines Designed for Fault
Detection. IEEE Transactions on Computers, [S.l.], v. C-23, p. 239-249, March 1974.

112

SHAMS, M.; EBERGEN, J. C.; ELMASRY, M. I. Modeling and Comparing CMOS
Implementations of the C-Element. IEEE Transactions on VLSI Systems, [S.l.], v. 6,
n. 4, p. 563-567, 1998.

SHIVAKUMAR, P. et al. Modeling the Effect of Technology Trends on the Soft Error
Rate of Combinational Logic. In: INTERNATIONAL CONFERENCE ON
DEPENDABLE SYSTEMS AND NETWORKS, DSN, 2002. Proceedings... [S.l.]:
IEEE Computer Society, 2002. p. 389-398.

SMITH, M. J. S. Application-Specific Integrated Circuits. Reading: Addison-Wesley,
1997.

SOGOMONYAN, E. Design of built-in self-checking monitoring circuits for
combinational devices. Automation and Remote Control. North Stetson, GER:
Springer Science, 1974, v. 35, n. 2, p. 280-289.

SPARSO, J.; FURBER, S. Principles of asynchronous circuit design: A systems
perspective. [S.l.]: Kluwer academic publishers, 2001.

SROUR, J. R.; MARSHALL, C. J.; MARSHALL, P. W. Review of Displacement
Damage Effects in Silicon Devices. IEEE Transactions on Nuclear Science, [S.l.],
v.50, n.3, p. 653-670, June 2003.

SUTHERLAND, I. E.; EBERGEN, J. Computers without Clocks. Scientific American,
[S.l.], August 2002.

SYNOPSYS, INC. Tool Manuals. USA, June 2004.

TEEHAN, P.; GRENSTREET, M.; LEMIEUX, G. A survey and taxonomy of GALS
design styles. IEEE Design & Test, [S.l.], v. 24, n. 5, p. 418-428, 2007.

TIEMPO. Design of innovative clockless integrated circuits. France. Available at:
<http://www.tiempo-ic.com/>. Visited on November 2009.

TOSAKA, Y. et al. Measurement and Analysis of Neutron-Induced Soft Errors in Sub-
Half-Micron CMOS Circuits. IEEE Transactions on Electron Devices, [S.l.], v. 45, n.
7, p. 1453-1458, July 1998.

UDDING, J. T. A formal model for defining and classifying delay-insensitive circuits.
Distributed Computing, [S.l.]: Springer-Verlag, v. 1, n. 4, p. 197-204, 1986.

UEMURA, T. et al. Using Low Pass Filters in Mitigation Techniques against Single-
Event Transients in 45nm technology LSIs. In: IEEE INTERNATIONAL ON-LINE
TESTING SYMPOSIUM, IOLTS, 2008. Proceedings… [S.l.]: IEEE Computer
Society, 2008, p. 117-122.

VAIDYANATHAN, B. et al. Soft Error Analysis and Optimizations of C-elements in
Asynchronous Circuits. In: WORKSHOP ON SYSTEM EFFECTS OF LOGIC SOFT
ERRORS, SELSE, 2., 2006. Proceedings... [S.l.:s.n], 2006.

VERDEL, T.; MAKRIS, Y. Duplication-Based Concurrent Error Detection in
Asynchronous Circuits: Shortcomings and Remedies. In: INTERNATIONAL

113

SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI SYSTEMS, DFT,
17., 2002. Proceedings… [S.l.]: IEEE Computer Society, 2002, p. 345-353.

VELAZCO, R.; KAROUI, S.; CHAPUIS, T. SEU Testing of 32-Bit Microprocessors.
In: RADIATION EFFECTS DATA WORKSHOP, 1992. Workshop Record... [S.l.]:
IEEE, 1992. p. 16-20.

VIVET, P. Une Methodologie de Conception de CIs QDI...Processeur RISC 16-bit
Asynchrone. 2001. 257 f. Thesis (Ph.D) – EEATS, TIMA, INPG, Grenoble, France.

WAGNER, F. R. Metodologias de Projeto. Aula 2 da Disciplina de Arquitetura e
Projeto de Sistemas VLSI I, 2004. PPGC, Instituto de Informática, UFRGS, Porto
Alegre.

WAKERLY, J. Error detecting codes, self-checking circuits and applications. New
York, USA: North-Holland, 1978.

WESLEY, A. C. Macromodular computer systems. In: AFIPS JOINT COMPUTER
CONFERENCES, 1967. Proceedings… New York, USA: ACM, 1967. p. 335-336.

YANG, J. L. et al. Design for self-checking and self-timed datapath. In: VLSI TEST
SYMPOSIUM, VTS, 2003. Proceedings... [S.l.]: IEEE, 2003. p. 417-422.

ZHANG, M.; SHANBHAG, N. R. An Energy-efficient Circuit Technique for Single
Event Transient Noise-Tolerance. In: INTERNATIONAL SYMPOSIUM ON
CIRCUITS AND SYSTEMS, ISCAS, 2005. Proceedings... [S.l.]: IEEE, 2005. p. 636-
639.

ZHOU, Q.; MOHANRAM, K. Transistor sizing for radiation hardening. In:
INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, 2004. Proceedings...
[S.l.]: IEEE, 2004. p. 310-315.

ZHOU, Q.; MOHANRAM, K. Gate sizing to radiation harden combinational logic.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, [S.l.], v. 25, n. 1, p. 155-166, Jan. 2006.

ZIEGLER, J. F. et al. IBM Experiments in Soft Fails in Computer Electronics (1978-
1994). IBM Journal of Research and Development, [S.l.], v.40, n.1, p. 3-18, Jan.
1996.

ZIEGLER, J. F. et al. Cosmic Ray Soft Error Rates of 16-Mb DRAM Memory Chips.
IEEE Journal of Solid-State Circuits, [S.l.], v.33, n.2, p. 246-252, Feb. 1998.

APPENDIX A SISTEMAS ROBUSTOS A FALHAS
TRANSIENTES EXPLORANDO CIRCUITOS

ASSÍNCRONOS QUASE-INSENSÍVEIS AOS ATRASOS

Resumo da Tese em Português

1 Introdução

As tecnologias submicrônicas profundas (do inglês: deep-submicron technologies,

DSTs) para fabricação de circuitos integrados inegavelmente tem revolucionado o

projeto de sistemas eletrônicos. Entretanto, elas também impõem consideráveis desafios

para a confiabilidade dos circuitos integrados. Na realidade, os hoje nanoeletrônicos

circuitos são mais sensíveis tanto a variações do processo de fabricação como também a

fatores ambientais como temperatura, radiações e ruído elétrico. Mais

predominantemente, circuitos integrados modernos são significativamente mais

vulneráveis a dois principais efeitos de tais variações: as alterações temporais dos

atrasos dos circuitos, conhecidas como falhas de atraso; e as modificações transientes de

tensão, chamadas falhas transientes.

Essas falhas, as de atraso, mas principalmente as falhas transientes, podem perturbar

a operação dos circuitos integrados provocando inversões de bits de memória

conhecidas como soft errors (SEs) (KARNIK; HAZUCHA; PATEL, 2004). Se

propagados, esses erros podem levar o circuito a produzir resultados inconsistentes em

suas saídas primarias caracterizando assim um cenário de circuit’s failure. Tais falhas

tem ainda mais severos efeitos em DSTs, onde é possível que as durações de falhas

sejam comparáveis ou mesmo mais longas que os períodos de ciclos de relógio

(LISBOA; ERIGSON; CARRO, 2007), como ilustrado na Figura 1. Além disso, a

maioria das técnicas de mitigação existentes (NICOLAIDIS, 1999; IYER et al, 2005)

requerem elevados custos para tratar tais falhas transientes de longa duração (do inglês:

115

long-duration transient, LDT) e, portanto, novas soluções para proteger os circuitos são

necessárias (LISBOA; ERIGSON; CARRO, 2007).

Falhas LDTs tem claramente uma maior probabilidade de não ser mascarada e por

isto elas também sustentam uma maior chance de produzir um circuit’s failure. Na

realidade, tal maior probabilidade de erro é devido à limitação do período de relógio que

é assim fundamental para a severidade das falhas de atraso e falhas transientes. Pelo

outro lado, o relógio é uma particularidade dos tradicionais circuitos síncronos que

devem então sofrer muito mais com as piores consequências dos LDTs do que os

circuitos sem relógio. Por essa razão, projetar circuitos que não são controlados por um

relógio global, mas somente pelos seus fluxos de dados internos, pode resultar em

sistemas que são mais robustos contra tais falhas LDTs. Isso é o caso dos circuitos

assíncronos e especialmente sua mais importante classe: os circuitos quase-insensíveis

aos atrasos (do inglês: Quasi-Delay Insensitive, QDI) (LAFRIEDA; MANOHAR, 2004;

JANG; MARTIN, 2005; PENG; MANOHAR, 2005; MONNET; RENAUDIN;

LEVEUGLE, 2006; KUANG et al, 2007; GARDINER; YAKOVLEV; BYSTROV,

2007; ALMUKHAIZIM; SHI; MAKRIS, 2008; KUANG et al, 2010).

Essencialmente circuitos QDI são compostos de C-elements, também conhecidos

como portas Muller. A função de um C-element é basicamente comparar os estados

lógicos de suas entradas. Quando as entradas são idênticas, o estado de sua saída será

atualizado para refletir o estado das suas entradas. O C-element nesta condição funciona

como um buffer. No caso quando suas entradas não são idênticas, o estado de saída será

preservado. Neste caso o C-element funciona como um elemento de memória.

Este tipo de porta assegura a propriedade QDI e permite a sincronização entre

estágios do circuito, como mostrado na Figura 2, onde um típico protocolo de

Figura 1: Uma falha transiente de longa duração (LDT)

Any circuitAny circuit’’s node:s node:

CircuitCircuit’’s clock:s clock:

Any circuitAny circuit’’s node:s node:

CircuitCircuit’’s clock:s clock:

116

handshaking, baseado em quatro fases, é aplicado em um caminho de dados dual rail. O

protocolo detalhado na Figura 3 impõe na verdade uma fase de retorno para zero entre

os pedidos de dados e, portanto, um dado inválido (exemplo dua rail: 00), dados válidos

(exemplo: 01; 10), e um dado proibido (11, em caso de erro) são possíveis no caminho

de dados.

O esquema de codificação multi-rail e a comunicação assíncrona por handshaking de

sistemas QDI tornam a detecção e a correção de erros mais fáceis (MONNET;

RENAUDIN; LEVEUGLE, 2006). A ausência de uma árvore de relógio possibilita a

tais sistemas emitir menos interferência eletromagnética como também os produz mais

seguros contra análises maliciosas da suas potências (BOUESSE et al, 2004). Além

disso, tal propriedade também leva a aumentos na economia de energia bem como

atingir altas performances com o custo de usar menos do que duas vezes maior área do

que seus correlativos síncronos. Um circuito QDI é também inerentemente robusto

contra falhas de atrasos na maioria de seus caminhos (LAFRIEDA; MANOHAR, 2004).

Mais além, seus C-elements são fundamentais para implementar sistemas mais robustos.

Na realidade, mesmo em sistemas síncronos, C-elements são bastante usados para filtrar

falhas transientes e assim proteger os circuitos contra SEs (NICOLAIDIS, 1999;

MITRA et al, 2005; FAZELI et al, 2007). Dessa forma, C-elements de sistemas QDI

melhoram a habilidade do circuito de mascarar falhas transientes (MONNET;

RENAUDIN; LEVEUGLE, 2006), mas eles também produzem os blocos de memória

dos sistemas QDI e como tal são então também diretamente sensíveis a SEs (MONNET;

RENAUDIN; LEVEUGLE, 2006-c).

Stage C

C
C

C

C
C

A0

A1

AB_ack

B1

B0

S1

S0

S_ack

Computational
Logic Block

Computational
Logic Block

Computational L ogic
Block = Dual-Rail XOR

Memory
Block Memory

Block

Memory
Block

Figura 2: Um circuito QDI funcionando no protocolo quatro fases

117

Este resumo de tese discute e apresenta, de forma inovadora, outro novo beneficio

dos circuitos assíncronos QDI e sua aplicação para o projeto de sistemas

nanoeletrônicos: sua forte habilidade natural para mitigação de falhas LDT simples em

DSTs.

2 Efeitos de falhas transientes em circuitos integrados

Falhas transientes em circuitos integrados podem ser toleradas naturalmente (do

inglês: faults tolerated naturally, FTN) por efeitos de mascaramento ou elas podem

provocar SEs.

2.1 Efeitos de mascaramento

Em circuitos síncronos existem três tipos de mascaramento em nível de hardware

(KARNIK; HAZUCHA; PATEL, 2004):

Caso (a): Um mascaramento lógico ocorre quando a falha é mascarada devido a

uma lógica combinacional. O bloco combinacional não propaga a falha até a entrada de

um bloco de memória ou até uma saída primária do circuit;

Caso (b): Um mascaramento elétrico é a atenuação do SET como um resultado das

propriedades elétricas das portas no caminho de propagação. Isto também depende da

energia da falha transiente que contribui para definir o formato do pulso SET.

Tipicamente, um SET começa a ser levemente atenuado por uma porta quando sua

largura é menor do que o tempo de propagação da porta;

Caso (c): Um mascaramento da janela de armazenamento (do inglês latching

window) é quando o SET alcança a entrada de um bloco de memória, mas ele não

Invalid Data
Return to 0

Valid Data

Valid Data Valid DataInvalid Data
Return to 0

Data Outputs
of a Receptor Stage N

Acknowledgement Output
of a Receptor Stage N ►

►

Valid DataInvalid Data
Return to 0

Data Inputs
of a Receptor Stage N ► Invalid Data

Return to 0

Phase 1 Phase 2 Phase 3 Phase 4 Phase 1 Phase 2Phase 4Phase 3

Cycle X Cycle X+1Cycle X-1

Invalid Data
Return to 0

Valid Data

Valid Data Valid DataInvalid Data
Return to 0

Data Outputs
of a Receptor Stage N

Acknowledgement Output
of a Receptor Stage N ►

►

Valid DataInvalid Data
Return to 0

Data Inputs
of a Receptor Stage N ► Invalid Data

Return to 0

Phase 1 Phase 2 Phase 3 Phase 4 Phase 1 Phase 2Phase 4Phase 3

Cycle X Cycle X+1Cycle X-1

Figura 3: Protocolo quatro fases para uma comunicação entre estágios de um
sistema assíncrono QDI

118

encontra a janela temporal, tais como os tempos de set-up e hold ou o sinal de enable,

requeridos para memorizar um valor lógico;

Os casos (a) e (b) ocorrem da mesma forma para circuitos assíncronos QDI. Além

deles, existem dois outros tipos de mascaramento em circuitos QDI (MONNET;

RENAUDIN; LEVEUGLE, 2006-c):

Caso (d): Um mascaramento através da capacidade de filtragem do C-element

acontece quando um SET chega em uma entrada de um C-element, mas ele não é

memorizado. A razão é que uma outra entrada apresenta um valor diferente daquela

entrada com o SET, assim a saída do C-element não é modificada e o SET é mascarado;

Caso (e) Outro mascaramento é as ações do protocolo de comunicação por meio de

uma tolerância natural a falhas de atraso induzidas por SETs. Isto ocorre quando

um SET é memorizado por um C-element, ou seja, um soft error acontece, mas o

mesmo valor armazenado, mais cedo ou mais tarde, seria memorizado de qualquer

maneira em condições normais livres de falhas. Assim, uma falha de atraso é induzida

na saída do C-element. Contudo, tal memorização prematura ou atrasada é naturalmente

tolerada pela propriedade QDI do circuito.

2.2 Failures: os efeitos dos soft errors

Soft errors implicam na maioria das vezes em um failure apresentado nas saídas

primárias de um circuito de um sistema. Isto significa que um soft error levaria à

computação de um resultado inconsistente ilustrado nas saídas primárias do circuito (do

inglês: circuit’s primary outputs, CPOs).

Quando um circuito é capaz de indicar o término da computação de resultados por

uma saída primária específica (por exemplo, um sinal de fim de operação SEO, do

inglês signal of end operation), eventuais failures nas suas saídas primárias de

resultados podem ser detectados naturalmente pelo sistema sem a necessidade de

qualquer mecanismo adicional em hardware específico para detecção.

Dessa forma, dois tipos de failure são definidos:

• Failure Detectável Naturalmente (FDN): a detecção natural de um failure

ocorre se o sinal de fim de operação SEO não é indicado dentro de um período

estimado superior ao tempo total de computação para obter um resultado. Nesse

cenário de failure, módulos periféricos vizinhos como também aplicações de

119

software do sistema normalmente perceberiam a ausência de tal indicação e,

assim, o failure se propagaria naturalmente para níveis de abstração superiores

(exemplo: aplicações de software), onde o sistema poderia facilmente tanto

detectá-lo como corrigi-lo por recomputação. Na verdade, a detecção em nível

de software, por exemplo, por mecanismos de monitoração por tempo de

interrupção (do inglês timeout) e uma consequente solicitação de recomputação

facilmente eliminariam tal failure;

• Failure Não-detectável Naturalmente (FNN): um eventual failure em outras

CPOs, que fornecem resultados de dados ou endereços, por exemplo, não pode

ser detectado naturalmente se o circuito indica o sinal de fim de operação SEO

dentro do período estimado, logo mecanismos adicionais em hardware precisam

ser implementados para viabilizar detecções de failures sem usar custosas

técnicas baseadas em softwares.

3 Detecção natural de failures

A maioria dos circuitos integrados controla a quantidade de ciclos de iteração e

indica um sinal de saída no fim da operação (SEO), dessa forma uma eventual carência

de indicação devido a um failure é facilmente detectável pelo sistema, ou seja, como

definido na seção anterior, o failure é detectável naturalmente (FDN) sem requerer

qualquer hardware adicional e facilmente corrigido por recomputação. Pelo outro lado,

se o SEO é bem indicado e um failure surge nas outras CPOs, o failure é não-detectável

naturalmente (FDN) e assim extras mecanismos de hardware para detecção são

necessários para mitigá-lo sem ter altos custos com software. Tabela 1 sumariza esses

efeitos de falhas transientes de acordo com as CPOs.

Tabela 1: Possiveis CPOs de um sistema perturbado por falhas transientes

Valores nas CPOs
Consequência

SEO Outras CPOs
OK OK FTN

Inconsistente OK FDN
Inconsistente Inconsistente FDN

OK Inconsistente FNN

120

3.1 Habilidade dos sistemas assíncronos QDI

Diferentemente dos circuitos síncronos, os circuitos assíncronos QDI tem uma

habilidade natural para transformar a maioria dos casos de SE em FDN em qualquer

tecnologia de fabricação de circuito integrado. Isso significa que a maior parte das

situações de failure são detectáveis pelo sistema QDI sem qualquer hardware extra. Tal

propriedade natural de um circuito QDI é justificada pela sua arquitetura.

Uma arquitetura QDI controla a sequência do seu fluxo de dados no final de cada

um dos seus ciclos de iteração. Cada ciclo precisa ter todas as fases do protocolo de

handshaking, como ilustrado na Figura 3, por exemplo. Qualquer evento que perturbe as

fases do protocolo pode levar o sistema a perder sua correta sequência de dados. Tal

perda de sincronização entre fases de um ciclo induz um bloqueio (do inglês deadlock)

sobre o fluxo de dados do sistema na maioria dos casos de SE (MONNET;

RENAUDIN; LEVEUGLE, 2007-b; MOORE et al., 2003). Na verdade, um ciclo de

iteração não finaliza com sucesso seu objetivo e assim um elemento de dado é perdido

ou um adicional é inserido.

Normalmente, no protocolo quatro fases, uma situação de deadlock acontece quando

um SE ocorre em um elemento de memória de um estágio N de um sistema chaveando

de/para um dado válido ou proibido para/de um dado inválido. Tal cenário na realidade

gera um acknowledgment errado (ou seja, um acknowledgment em estado lógico

oposto) para o estágio prévio N-1 do sistema. Assim, por exemplo, um dado válido em

um elemento de memória de um estágio N pode ser perdido (ou seja, tornar-se um dado

inválido) antes que o próximo estágio N+1 tenha processado e feito acknowledgment

dele. Como pior consequência, a correta comunicação entre estágios é quebrada e um

deadlock é caracterizado.

Em uma primeira impressão, tal cenário de deadlock pode parecer um

comportamento que desqualifique os sistemas QDI. Entretanto, a maioria das

arquiteturas QDI contam seus elementos de dados ou ainda a quantidade de ciclos de

iteração a fim de indicar um SEO. Portanto, um eventual deadlock sempre perturba tal

contagem e assim não há indicação de SEO e um FDN sempre acontece. Pelo outro

lado, quase todos os casos de FNN são facilmente detectáveis através da implementação

de mecanismos de alarme de baixo custo (MONNET; RENAUDIN; LEVEUGLE,

121

2006-c; 2007-b; MOORE et al., 2003) que identificam estados de dados proibidos no

protocolo.

Na realidade, os caminhos de dados multi rail dos circuitos QDI permitem classificar

os SEs devido a falhas transientes únicas em três casos (MONNET; RENAUDIN;

LEVEUGLE, 2006-c; 2007-b):

• Dado gerado: um elemento de dado inválido torna-se um elemento de dado

válido, por exemplo, o bloco de memória dual rail na Figura 2 trocando um bit

como 00=>01 ou 00=>10;

• Dado desaparecido: um elemento de dado válido para um elemento de dado

inválido, por exemplo, 01=>00 ou 10=>00; e

• Dado corrompido: um elemento de dado proibido é gerado, por exemplo,

01=>11 ou 10=>11.

Todos os casos de dados corrompidos causam um FNN porque um dado proibido é

interpretado pelo sistema como um dado válido, assim o estado lógico do

acknowledgment não é modificado e um deadlock não acontece. Tais casos de FNN

são, entretanto, detectáveis pela adição de um bastante simples circuito de alarme

(MOORE et al., 2003). Pelo outro lado, somente poucos casos de dados gerados e dados

desaparecidos não resultam em deadlock, ou seja, FNN (MONNET; RENAUDIN;

LEVEUGLE, 2006-c; 2007-b). Todos os outros casos, que representam a maioria de

casos de SEs, produzem FDN.

Como os efeitos nocivos de falhas transientes são FDN ou FNN de acordo com a

Tabela 1, assim a maioria das situações de failure em sistemas assíncronos QDI podem

ser facilmente mitigadas ou por detecção natural ou por mecanismos de alarme.

3.2 Inabilidade dos sistemas síncronos

Pelo outro lado, casos de SEs em circuitos síncronos dificilmente resultam em FDN.

Como consequência, a maior parte dos SEs causam FNN e assim sistemas síncronos

praticamente não tem aquela propriedade natural para detecção.

Notadamente, a presença de um período fixo de relógio assegura a sincronização dos

dados do sistema. Portanto, em contraste com as discussões da seção prévia para os

circuitos assíncronos QDI, na maioria dos casos de SEs, o SEO é indicado e assim um

122

FNN é gerado ao invés de um FDN. Casos de FNN são assim predominantes em

circuitos síncronos.

Os poucos casos de geração de FDN são principalmente atribuídos a perturbações

nos registradores que contam o número de ciclos de iteração, já que tais elementos de

memória auxiliam na implementação do SEO. Alem disso, falhas transientes, ou em

circuitos combinacionais que gerem esse SEO ou em circuitos da árvore de relógio,

podem também causar FDN.

4 Mitigação de múltiplas falhas transientes

Múltiplos eventos de perturbação ou mesmo eventos únicos podem criar múltiplas

falhas transientes. Tais situações de falha, que são de mais baixa probabilidade do que

as falhas transientes únicas, podem criar mais severos efeitos nocivos porque mais de

um bloco de memória pode ser perturbado e assim múltiplos soft errors podem ser

gerados tanto em circuitos síncronos quanto em circuitos assíncronos QDI. Na

realidade, falhas transientes podem perturbar diferentes blocos de memória (como

aqueles elementos de memória na Figura 2) tanto simultaneamente como também em

diferentes instantes.

Os efeitos nocivos de múltiplas falhas transientes seriam mais críticos se suas

probabilidades de ocorrência fossem maiores. Na verdade os sistemas teriam que ser

protegidos usando ainda mais redundância para enfrentar tal fenômeno.

Além disso, como técnicas de mitigação são baseadas em redundância, falhas

ocorrendo simultaneamente em partes redundantes podem confundir os elementos de

detecção (que fazem a técnica trabalhar corretamente) levando-os a falhar. A maioria

das abordagens de mitigação são assim vulneráveis aos efeitos nocivos de múltiplas

falhas transientes.

A análise dos efeitos de múltiplas falhas transientes em circuitos síncronos é

bastante similar às discussões salientadas na seção anterior. Contudo, como há mais

eventos de falhas no sistema, a probabilidade de ocorrências de SEs devido a múltiplas

falhas transientes, e assim de um FNN, é obviamente maior do que nos casos de

ocorrência de falhas transientes únicas.

123

Pelo outro lado, em sistemas assíncronos QDI, a ocorrência de múltiplas falhas em

diferentes blocos de memória (como na Figura 2) também segue as mesmas

consequências discutidas na seção anterior, assim há uma grande chance que eles

resultem em FDN. O mesmo cenário acontece se múltiplas falhas transientes ocorrem

em diferentes instantes.

Contudo, múltiplas falhas transientes ocorrendo no mesmo bloco de memória de um

sistema QDI podem também resultar em múltiplos SEs e assim para uma codificação

dual rail, por exemplo, elas causam FNN na maioria dos casos. Na realidade, as

situações de SEs são: 00=>11, que é um caso de dado corrompido que provavelmente

gera um deadlock (ou seja, um FDN) porque o estado lógico do acknowledgment é

modificado; e 01=>10, ou 10=>01, que normalmente não produzem deadlocks (portanto

FNN) porque elas mantem o estado lógico do acknowledgment. Monnet (2006-c) assim

classifica um caso a mais de SE em relação aqueles apresentados na seção anterior para

falhas transientes únicas em sistemas QDI:

• Dado modificado: um elemento de dado válido é revertido para outro elemento

de dado válido, por exemplo, 01=>10 ou 10=>01.

Infelizmente casos de dados modificados não tem uma solução natural para serem

mitigados e, dessa forma, eles requerem mecanismos de mitigação suplementares.

Contudo, como bem discutido na seção anterior, os casos de dados corrompidos que não

se tornam um FDN são facilmente detectáveis por um mecanismo de alarme de baixo-

custo (MOORE et al., 2003).

Além disso, através do uso de codificação M-out-of-N (multi-rail), que é bastante

normal em projetos de circuitos QDI, as chances casos de dados corrompidos são muito

maiores, visto que haverá uma maior redundância da codificação. Portanto, a

probabilidade que dados proibidos ocorram é maior e, dessa forma, mais casos de SEs

são detectáveis através do mecanismo de alarme ou mesmo gerando naturalmente

deadlocks (FDN). Uma solução, portanto, para reduzir casos de dados modificados é

usar uma maior codificação M-out-of-N do que o dual rail (ou seja, 1-out-of-2).

Mesmo que sistemas assíncronos QDI sob múltiplas falhas transientes não tenham a

mesma performance para gerar FDN do que situações de falhas transientes únicas, eles

tem, contudo, melhores mecanismos naturais para a mitigação de tais falhas múltiplas

do que circuitos síncronos.

124

5 Mitigação de falhas transientes de longa duração

Os efeitos nocivos de falhas LDTs, típicas em DSTs, são quase sempre catastróficos

para circuitos síncronos. Por exemplo, um transiente que comece na segunda metade de

um ciclo de relógio e termine somente no ciclo seguinte: um cenário de SE é muito

provável como também um FNN. Além disso, grandes overheads no sistema são

necessários para mitigar tal falha LDT (LISBOA; ERIGSON; CARRO, 2007).

Contudo, tais falhas em circuitos QDI geram FDN na maior parte dos casos de SEs.

Na realidade, a probabilidade de um deadlock é maior para falhas mais longas, visto que

o transiente permanece por um maior tempo em um caminho do circuito e, então, os

poucos caminhos sensíveis aos atrasos são mais facilmente alcançados. A chance de

elementos de dados serem perdidos ou inseridos é maior.

Além disso, mesmo casos de dados corrompidos devido a falhas únicas, que sempre

geram FNN em tecnologias submicrônicas, podem produzir deadlocks (ou seja, FDN)

em DSTs. Tais casos, entretanto, acontecem quando as falhas LDTs ocorrem em

elementos do sistema QDI que são sensíveis aos atrasos. Há assim uma grande chance

de um SE devido a um dado corrompido ser seguido na próxima fase do protocolo por

outro SE que produz um deadlock. Portanto, uma falha mais longa pode gerar múltiplos

SEs em sequência. Como os cenários de SEs permanecem por maior tempo e uma maior

parte deles causam deadlocks (como explicado nas seções anteriores), falhas transientes

de maior duração tem uma maior probabilidade de produzir um FDN.

6 Análise de um estudo de caso

Um estudo de caso de um criptoprocessador DES (Data Encryption Standard) em

versões assíncrona QDI e síncrona foi avaliado através do método baseado em

simulações apresentado em (BASTOS et al, IOLTS 2009-b). Resultados adicionais

relacionados a injeções de falhas transientes únicas são mostrados nas Figura 4 e 5.

Figura 4 ilustra no seu eixo vertical a habilidade do sistema para detectar FDN. No

eixo horizontal, ambas as figuras mostram a razão entre durações das falhas transientes

com períodos de ciclos, que são o mínimo período de relógio no circuito síncrono e uma

média no circuito assíncrono. Maiores valores nesta razão representam transientes mais

longos e assim cenários de falhas transientes típicos se os circuitos fossem baseados em

DSTs, cujas durações de falhas são da ordem de períodos de ciclos (LISBOA;

125

ERIGSON; CARRO, 2007). Por exemplo, Figura 4 mostra que o sistema QDI (curva do

des_async) é capaz de detectar naturalmente cerca de 30% das situações de injeção de

falhas em uma razão duração/período de 95% (ou seja, a duração da falha transiente é

igual a 95% do período de ciclo). Isto significa que 30% das situações resultam em FDN

e 70% ou em FTN ou em FNN. A Figura 4 ilustra, portanto, que o des_async, sob um

cenário de falha transiente (ou seja, na alta razão duração/período de 95%) que é típico

em DSTs, tem um maior número de casos de FDN do que o circuito síncrono

(des_sync). Na realidade, o número de casos de deadlock no des_async aumenta

significativamente em função de mais longas durações de falhas transientes.

Figura 5 mostra no seu eixo vertical a habilidade do sistema para tolerar falhas (ou

seja, FTN) e para detectar FDN. A versão QDI segue uma tendência constante em torno

de 80% depois de uma leve redução inicial. De forma diferente, uma tendência

decrescente é sempre presente no circuito síncrono. Isto mostra que a redução no seu

caso particular de mascaramento da janela de armazenamento, discutido em seção

prévia, joga muito mais do que a diminuição no mascaramento do circuito QDI. Na

razão duração/período de 95% observando a Figura 4 e 5, cerca de 50% das situações de

injeção de falhas na versão QDI (80% da Figura 5 menos 30% da Figura 4) resultam em

Figura 4: Um estudo de caso de um cryptoprocessador DES: habilidade do
sistema para detecção em função de durações de falhas transientes

0

3

6

9

12

15

18

21

24

27

30

33

36

0 10 20 30 40 50 60 70 80 90 100 110 120 130

%
 S

ys
te

m
 D

et
ec

tio
n

100 * Fault Duration / Cycle Period

Evaluation of Transient Fault Effects

des_async

des_sync

126

FTN, 30% FDN (da Figura 4) e 20% FNN (100% menos 80% da Figura 5). Pelo outro

lado, a versão síncrona na mesma condição de DST apresenta FTN em 42% das

situações, FDN em 1% e FNN em 57%. Se a versão QDI fosse implementada com

alarmes (MOORE et al., 2003), a sua habilidade na Figura 5 alcançaria muito próximo

de 100% mesmo sob falhas LDTs em DSTs. Dessa forma, fica claro concluir que falhas

LDTs em DSTs podem ser melhores tratadas no circuito assíncrono QDI.

6 Conclusões

Este resumo de tese ilustra pela primeira vez a habilidade natural dos circuitos

assíncronos QDI para mitigar falhas transientes sob condições de DSTs. Sistemas QDI

tem uma melhor performance do que seus equivalentes síncronos para naturalmente

detectar falhas LDTs tanto em lógica computacional quanto em elementos de memória.

Além disso, eles tem mecanismos naturais (na realidade a codificação multi-rail e seus

elementos de dados proibidos) que facilitam a detecção de erro mesmo sob falhas

transientes múltiplas. Por fim, sistemas QDI agregam tais características com sua

propriedade QDI natural. Isto permite tolerar a maioria dos casos de falhas de atraso,

que hoje são também um grande desafio em DSTs.

35

40

45

50

55

60

65

70

75

80

85

90

95

0 10 20 30 40 50 60 70 80 90 100 110 120 130

%
 S

ys
te

m
 T

ol
er

an
ce

 +
 %

 S
ys

te
m

 D
et

ec
tio

n

100 * Fault Duration / Cycle Period

Evaluation of Transient Fault Effects

des_async

des_sync

Figura 5. A mais forte habilidade natural de um sistema assincrono QDI para
mitigação de falhas LDTs em DSTs

APPENDIX B SYSTEMES ROBUSTES AUX FAUTES
TRANSITOIRES EXPLOITANT LA LOGIQUE

ASYNCHRONE QUASI-INSENSIBLE AUX DELAIS

Résumé de la Thèse en Français

1 Introduction

Les technologies submicroniques profondes (de l'anglais: deep-submicron

technologies, DSTs) pour la fabrication de circuits intégrés ont indéniablement

révolutionné la conception des systèmes électroniques. Toutefois, elles imposent

également des défis considérables pour la fiabilité des circuits intégrés. En fait,

aujourd'hui, les circuits nanoélectroniques sont plus sensibles aux variations du

processus de fabrication ainsi que des facteurs environnementaux comme la

température, les radiations et le bruit électrique. Plus notamment, les circuits intégrés

modernes sont beaucoup plus vulnérables à deux principaux effets de ces variations: les

altérations temporaires des délais des circuits, appelées les fautes de délais; et les

modifications transitoires de voltage, connues comme les fautes transitoires.

Ces deux types de fautes, mais surtout les fautes transitoires peuvent perturber le

fonctionnement des circuits intégrés provoquant des inversions des bits de mémoire

connues sous le nom en anglais soft errors (SEs) (KARNIK; HAZUCHA; PATEL,

2004). Si propagées, ces erreurs peuvent entraîner le circuit à produire des résultats

incohérents en ses sorties primaires rendant ainsi un scénario connu en anglais comme

circuit's failure. Ces fautes ont des effets encore plus graves dans les DSTs, où il est

possible que les durées de fautes soient comparables ou même plus longues que les

périodes de cycles d'horloge (LISBOA; ERIGSON; CARRO, 2007), comme illustré

dans la Figure 1. En outre, la plupart des techniques de protection existantes

(NICOLAIDIS, 1999; IYER et al, 2005) exigent des surcoûts très hautes pour faire face

128

à ces fautes transitoires de longue durée (de l'anglais: long-duration transient, LDT) et

donc de nouvelles solutions pour protéger les circuits sont nécessaires (LISBOA;

ERIGSON; CARRO, 2007).

Les fautes LDTs ont clairement une probabilité beaucoup plus élevée de ne pas être

masquées et donc ils ont aussi plus de chances de produire un circuit's failure. En

réalité, cette probabilité plus élevée d'erreur est due à la limitation de la période

d'horloge qui est ainsi fondamentale pour la gravité des fautes de délai et des fautes

transitoires. D'autre part, l'horloge est une particularité des circuits synchrones

traditionnels qui souffrent donc beaucoup plus avec les pires conséquences des LDTs

que les circuits sans horloge. Par conséquent, la conception de circuits qui ne sont pas

contrôlés par une horloge globale, mais seulement par leur fluxes de données internes,

peut entraîner en systèmes qui sont plus robustes contre ces fautes LDTs. Cela est le cas

des circuits asynchrones et spécialement leur plus importante classe: les circuits quasi-

insensibles aux délais (de l'anglais: Quasi-Delay Insensitive, QDI) (LAFRIEDA;

MANOHAR, 2004; JANG; MARTIN, 2005; PENG; MANOHAR, 2005; MONNET;

RENAUDIN; LEVEUGLE, 2006; KUANG et al, 2007; GARDINER; YAKOVLEV;

BYSTROV, 2007; ALMUKHAIZIM; SHI; MAKRIS, 2008; KUANG et al, 2010).

Essentiellement les circuits QDI sont composés de C-éléments, aussi connus comme

les portes de Muller. La fonction d'un C-élément est simplement comparer les états

logiques de ses entrées. Lorsque les entrées sont identiques, l'état de sa sortie sera mis à

jour afin de refléter l'état des ses entrées. Le C-élément dans cet état fonctionne comme

un buffer. Dans le cas où ses entrées ne sont pas identiques, l'état de sortie sera préservé.

Dans ce cas-là le C-élément fonctionne comme un élément de mémoire.

Ce type de porte assure la propriété QDI et permet la synchronisation entre les

différents stages du circuit, comme montré dans la Figure 2, où un typique protocole de

Figure 1: Une faute transitoire de longue durée (LDT)

Any circuitAny circuit’’s node:s node:

CircuitCircuit’’s clock:s clock:

Any circuitAny circuit’’s node:s node:

CircuitCircuit’’s clock:s clock:

129

handshaking, basé en quatre phases, est appliqué dans un chemin de données double

rail. Le protocole détaillé dans la Figure 3 impose en fait une phase de retour à zéro

entre les requêtes de données et donc une donnée invalide (exemple double rail: 00), des

données valides (exemple: 01; 10) et une donnée interdite (11, en cas d'erreur) sont

possibles sur le chemin de données.

Le schéma de codification multi-rail et la communication asynchrone par

handshaking de systèmes QDI permettent une plus facile détection et correction de

erreurs (MONNET; RENAUDIN; LEVEUGLE, 2006). L'absence d'un arbre d'horloge

permet à ces systèmes d'émettre moins interférences électromagnétiques et les rend plus

sécurisés contre les analyses malicieuses de leurs puissances (BOUESSE et al, 2004).

En outre, cette propriété entraîne également des augmentations dans l'économie

d'énergie, et la réalisation de hautes performances aux coûts de l'utilisation de moins de

deux fois plus grande superficie que leurs homologues synchrones. Un circuit QDI est

aussi intrinsèquement robuste aux fautes de délais dans la plupart de ses chemins

(LAFRIEDA; MANOHAR, 2004). Par ailleurs, ses C-éléments sont fondamentaux pour

mettre en œuvre systèmes plus robustes. En fait, même dans les systèmes synchrones,

C-éléments sont souvent utilisés pour filtrer les fautes transitoires et donc protéger les

circuits contre SEs (NICOLAIDIS, 1999; MITRA et al, 2005; FAZELI et al, 2007). Par

conséquent, C-éléments de systèmes QDI améliorent la capacité du circuit de masquage

de fautes transitoires (MONNET; RENAUDIN; LEVEUGLE, 2006), mais ils font aussi

les blocs de mémoire des systèmes QDI et donc ils sont également directement sensibles

aux SEs (MONNET; RENAUDIN; LEVEUGLE, 2006-c).

Stage C

C
C

C

C
C

A0

A1

AB_ack

B1

B0

S1

S0

S_ack

Computational
Logic Block

Computational
Logic Block

Computational L ogic
Block = Dual-Rail XOR

Memory
Block Memory

Block

Memory
Block

Figure 2: Un circuit QDI fonctionnant à partir du protocole quatre phases

130

Ce résume de thèse discute et présente, de façon innovante, un autre avantage des

circuits asynchrones QDI et leur application pour la conception de systèmes

nanoélectroniques: leur forte capacité naturelle pour résister aux fautes LDTs unique en

DSTs.

2 Les effets de fautes transitoires dans les circuits intégrés

Les fautes transitoires dans les circuits intégrés peuvent être tolérées naturellement

(de l'anglais: faults tolerated naturally, FTN) par des effets de masquage ou ils peuvent

provoquer des SEs.

2.1 Les effets de masquage

Dans les circuits synchrones il y a trois types d'effets de masquage au niveau

matériel (KARNIK; HAZUCHA; PATEL, 2004):

Cas (a): Un masquage logique se produit lorsque la faute est masquée en raison

d'une logique combinatoire. Le bloc combinatoire ne propage pas la faute à l'entrée d'un

bloc de mémoire ou à une sortie primaire du circuit;

Cas (b): Un masquage électrique est une atténuation du SET comme une

conséquence des propriétés électriques des portes dans le chemin de propagation. Cela

dépend aussi de l'énergie du SET qui contribue pour définir la forme du pulse SET.

Typiquement, un SET commence à être légèrement atténué par une porte lorsque sa

durée est inférieure au temps de propagation de la porte;

Cas (c): Un masquage de la fenêtre de stockage (de l'anglais latching window) est

quand l'SET atteint l'entrée d'un bloc de mémoire, mais il ne trouve pas la fenêtre de

Invalid Data
Return to 0

Valid Data

Valid Data Valid DataInvalid Data
Return to 0

Data Outputs
of a Receptor Stage N

Acknowledgement Output
of a Receptor Stage N ►

►

Valid DataInvalid Data
Return to 0

Data Inputs
of a Receptor Stage N ► Invalid Data

Return to 0

Phase 1 Phase 2 Phase 3 Phase 4 Phase 1 Phase 2Phase 4Phase 3

Cycle X Cycle X+1Cycle X-1

Invalid Data
Return to 0

Valid Data

Valid Data Valid DataInvalid Data
Return to 0

Data Outputs
of a Receptor Stage N

Acknowledgement Output
of a Receptor Stage N ►

►

Valid DataInvalid Data
Return to 0

Data Inputs
of a Receptor Stage N ► Invalid Data

Return to 0

Phase 1 Phase 2 Phase 3 Phase 4 Phase 1 Phase 2Phase 4Phase 3

Cycle X Cycle X+1Cycle X-1

Figure 3: Protocole quatre phases pour une communication entre stages d’un
système asynchrone QDI

131

temps, comme les temps de set-up et hold ou le sinal de enable, qui sont nécessaires

pour mémoriser une valeur logique;

Cas (a) et (b) se produisent de la même manière pour les circuits asynchrones QDI.

Par ailleurs, il y a deux autres types d'effets de masquage dans les circuits asynchrones

QDI (MONNET; RENAUDIN; LEVEUGLE, 2006-c):

Cas (d): Un masquage grâce à la capacité de filtrer du C-élément qui se passe

quand un SET arrive à l'entrée d'un C-élément, mais il n'est pas mémorisé. La raison est

qu'une autre entrée a une valeur logique différente de celle avec l'SET, par conséquent,

la sortie du C-élément n'est pas modifiée et le SET est masqué;

Cas (e): Un autre masquage est les actions du protocole de communication à partir

d'une tolérance naturelle aux fautes de délais induites par SETs. Cela se produit

quand un SET est mémorisé par un C-élément, c'est-à-dire, un soft error se produit, mais

la même valeur logique serait, plus tôt ou plus tard, stockée en mémoire de toute façon

sous des conditions normales sans fautes. Par conséquent, une faute de délais est induite

dans la sortie du C-élément. Néanmoins, cette mémorisation prématurée ou retardée est

presque toujours naturellement tolérée par la propriété QDI du circuit.

2.2 Les failures: les effets des soft errors

Soft errors imposent dans la plupart des cas un failure aux sorties primaires d'un

circuit d'un système. Cela signifie qu'un soft error conduit au calcul d'un résultat

inconsistant illustré aux sorties primaires du circuit (de l'anglais: circuit’s primary

outputs, CPOs).

Si un circuit est en mesure d'indiquer la fin du calcul des résultats par une sortie

primaire spécifique (par exemple, un signal de la fin de l'opération SEO, de l'anglais:

signal of end operation), éventuels failures aux sorties primaires de résultats peuvent

être naturellement détecté par le système sans nécessiter de quelconque mécanisme

supplémentaire au niveau matériel spécifique pour la détection.

Par conséquent, deux types de failures sont définis:

• Failure Détectable Naturellement (FDN): la détection naturelle d'un failure se

produit si le signal de la fin de l''opération SEO n'est pas indiqué dans un délai

estimé supérieur au temps total de calcul pour obtenir un résultat. Dans ce

scénario de failure, modules périphériques à proximité ainsi que les applications

132

logicielles du système normalement remarqueraient l'absence de ce indication.

Par conséquent, le failure serait propagé naturellement aux niveaux d'abstraction

plus élevé (par exemple, les applications logicielles), où le système pourrait

facilement le détecter ainsi que le corriger par un recalcul. En fait, une détection

au niveau logiciel, par exemple, en utilisant des mécanismes de surveillance par

temps d'interruption (du anglais timeout) et une ultérieure demande de recalcul

permettraient d'éliminer facilement ce failure;

• Failure Non-détectable Naturellement (FNN): un éventuel failure aux autres

CPOs, qui fournissent les résultats des données ou adresses, par exemple, ne peut

pas être détecté naturellement si le circuit indique le signal de la fin de

l''opération SEO dans le délai prévu. Par conséquent, des mécanismes

additionnels au niveau matériel doivent être mis en œuvre pour permettre la

détection de failures sans l'aide de coûteuses techniques au niveau logiciel.

3 La détection naturelle de failures

La plupart des circuits intégrés contrôle la quantité de cycles d'itération et indique un

signal de sortie à la fin de l'opération (SEO), puis un éventuel manque de l'indication en

raison d'un failure est facilement détectable par le système. C'est-à-dire, comme défini

dans la section précédente, le failure est détectable naturellement (FDN) sans nécessiter

aucun matériel supplémentaire et facilement corrigé par recalcule. D'autre part, si le

SEO est bien indiqué et un failure se produit aux autres CPOs, le failure est non

détectable naturellement (FDN) et donc des mécanismes supplémentaires au niveau

matériel pour la détection sont nécessaires afin de le combattre sans avoir de hauts coûts

au niveau logiciel. Le Tableau 1 résume ces effets de fautes transitoires en conformité

avec le CPOs.

Tableau 1: Possibles CPOs d'un système perturbé par fautes transitoires

Valeurs aux CPOs
Conséquence

SEO Autres CPOs
OK OK FTN

Inconsistant OK FDN
Inconsistant Inconsistant FDN

OK Inconsistant FNN

133

3.1 L’habilité des systèmes asynchrones QDI

Contrairement aux circuits synchrones, les circuits asynchrones QDI ont une habilité

naturelle à transformer la plupart des cas de SE en FDN, quelle que soit la technologie

de fabrication de circuit intégré. Cela signifie que la plus grande partie des situations de

failure sont détectables par le système QDI sans aucun dispositif matériel

supplémentaire. Cette propriété naturelle d'un circuit QDI est justifiée par son

architecture.

Une architecture QDI contrôle la séquence de son flux de données à la fin de chacun

de ses cycles d'itération. Chaque cycle doit avoir toutes les phases du protocole de

handshaking, comme illustré dans la Figure 3, par exemple. Tout événement qui

perturbe les phases du protocole peut conduire le système à perdre de sa séquence

correcte des données. Cette perte de synchronisation entre les phases d'un cycle induit

un blocage (du anglais deadlock) sur le flux de données du système dans la plupart des

cas de SE (MONNET; RENAUDIN; LEVEUGLE, 2007-b; MOORE et al, 2003). En

effet, un cycle d'itération ne parvient pas à terminer son objectif et donc un élément de

donnée est perdu ou un autre supplémentaire est inséré.

Normalement, dans le protocole en quatre phases, une situation de deadlock se

produit quand un SE est généré dans un élément de mémoire d'un stage N d'un système

en commutant de / vers une donnée valide ou interdite vers / de une donnée invalide. Ce

scénario génère en effet un acquittement erroné (c'est-à-dire, un acquittement à l'état

logique inverse) vers le stage précédent N-1 du système. Alors, par exemple, une

donnée valide dans un élément de mémoire de le stage N d'un système peut être perdu

(c'est-à-dire, devenir une donnée invalide) avant que le stage suivant N+1 du système ait

traité et fait le acquittement de lui. Comme la pire conséquence, la communication entre

les stages est cassée et un deadlock est caractérisé.

Dans une première impression, ce scénario de deadlock peut sembler un

comportement qui disqualifie les systèmes QDI. Toutefois, la majorité des architectures

QDI comptent leurs éléments de données ou même la quantité de cycles d'itération afin

de signaler un SEO. Par conséquent, un éventuel deadlock toujours perturbe ce compte

et ainsi il n'y a pas indication de SEO et un FDN arrive toujours. D'autre part, la quasi-

totalité des cas de FNN sont facilement détectables par la mise en œuvre des

mécanismes d'alarme à faible coût (MONNET; RENAUDIN; LEVEUGLE, 2006-c;

134

2007-b; MOORE et al, 2003), qui identifient les états de données interdits dans le

protocole.

En fait, les chemins de données multi rail des circuits QDI permettent classer les SEs

en raison du à fautes transitoires uniques dans trois cas (MONNET; RENAUDIN;

LEVEUGLE, 2006-c; 2007-b):

• Donnée générée: un élément de donnée invalide devient un élément de donnée

valide, par exemple, le bloc de mémoire dual rail de la Figure 2 changeant un bit

comme 00=>01 ou 00=>10;

• Donnée disparue: un élément de donnée valide vers un élément de donnée

invalide, par exemple, 01=>00 ou 10=>00, et

• Donnée corrompue: un élément de donnée interdite est généré, par exemple,

01=>11 ou 10=>11.

Tous les cas de données corrompues causent un FNN car une donnée interdite est

interprétée par le système comme une donnée valide, ainsi l'état logique de

l’acquittement n'est pas modifié et un deadlock ne se produit pas. Ces cas de FNN sont,

cependant, détectables en ajoutant un très simple circuit d'alarme (MOORE et al, 2003).

D'autre part, seulement quelques cas de données générées et de données disparues ne

produisent pas un deadlock, c'est à dire, un FNN (MONNET; RENAUDIN;

LEVEUGLE, 2006-c; 2007-b). Tous les autres cas, qui représentent la majorité des cas

de SEs, produisent un FDN.

Comme les effets nocifs de fautes transitoires sont les FDN ou les FNN,

conformément au tableau 1, ainsi la majorité des situations de failures dans les systèmes

asynchrones QDI peuvent facilement être éliminées soit par la détection naturelle soit

par les mécanismes d'alarme.

3.2 L’inhabilité des systèmes synchrones

D'autre part, les cas de SEs dans les circuits synchrones difficilement entraînent un

FDN. Par conséquent, la plus grande partie des SEs causent un FNN et ainsi des

systèmes synchrones n'ont pratiquement aucune propriété naturelle pour la détection.

Notamment, la présence de la période fixe d'horloge garantit la synchronisation des

données du système. En conséquence, contrairement aux discussions de la section

135

précédente pour les circuits asynchrones QDI, dans la plus part des cas de SEs, le SEO

est indiqué et ainsi un FNN est généré au lieu d'un FDN. Cas de FNN sont donc

prédominant dans les circuits synchrones.

Les quelques cas de génération de FDN sont surtout attribués à des perturbations

dans les registres qui comptent le nombre de cycles d'itération, car ces éléments de

mémoire aident dans la mise en œuvre du SEO. En outre, fautes transitoires, soit dans

les circuits combinatoires qui génèrent ce SEO soit dans les circuits de l'arbre d'horloge,

peut également causer un FDN.

4 La résistance aux multiples fautes transitoires

Des multiples événements de perturbation ou même des événements uniques

peuvent créer des multiples fautes transitoires. Ces situations de fautes, qui ont plus

faible probabilité que les fautes transitoires uniques, peuvent créer des plus graves effets

nocifs car plus d'un bloc de mémoire peut être perturbé et ainsi des multiples SEs

peuvent être générés dans les circuits synchrones bien que dans les asynchrones QDI.

En réalité, fautes transitoires peuvent perturber des différents blocs de mémoire (comme

ceux éléments de mémoire sur la Figure 2) simultanément ainsi qu'à des différents

instants.

Les effets nocifs de multiples fautes transitoires seraient plus critiques si leurs

probabilités d'occurrence fussent plus élevées. En fait les systèmes devraient être

protégés en utilisant encore plus de la redondance pour faire face à ce tel phénomène.

En outre, comme les techniques de protection sont basées en la redondance, les

fautes en se produisant simultanément dans des parties redondantes peuvent confondre

les éléments de détection (qui font la technique bien travailler) en les conduisant à

faillir. La plupart des approches de protection sont donc vulnérables aux effets des

multiples fautes transitoires.

L'analyse des effets de multiples fautes transitoires dans les systèmes synchrones est

assez semblable à la discussion mise en évidence dans la section précédente. Toutefois,

comme il y a plus des événements de fautes dans les systèmes, la probabilité

d'occurrences de SEs en raison de multiples fautes transitoires, et donc d'un FNN, est

évidemment plus élevé que dans les cas d'occurrence de fautes transitoires uniques.

136

D'autre part, dans les systèmes asynchrones QDI, l'occurrence de multiples fautes

dans différents blocs de mémoire (comme dans la Figure 2) suit également les mêmes

conséquences discutées dans la section précédente, il y a donc une chance énorme qu'ils

entrainent un FDN. Le même scénario se produit si des multiples fautes transitoires sont

générées à des instants différents.

Toutefois, des multiples fautes transitoires en se produisant dans un même bloc de

mémoire d'un système QDI peuvent également entraîner des multiples SEs et donc pour

la codification double rail, par exemple, ils provoquent un FNN dans la plupart des cas.

En réalité, les situations de SEs sont: 00=>11, qui est un cas de donnée corrompue qui

probablement génère un deadlock (c'est-à-dire, un FDN); et 01=>10, ou 10=>01, qui ne

produisent pas normalement des deadlocks (donc des FNN) car elles tiennent l'état

logique de l'acquittement. Monnet (2006-c) classifie ainsi un nouveau cas de SE, en plus

de ceux présentés dans la section précédente pour les fautes transitoires uniques dans les

systèmes de QDI:

• Donnée modifiée: un élément de donnée valide est transformé en un autre

élément de donnée valide, par exemple, 01=>10 ou 10=>01.

Malheureusement les cas de données modifiées n'ont pas une solution naturelle pour

être combattus, et donc ils nécessitent de mécanismes de protection supplémentaires.

Toutefois, comme bien discuté à la section précédente, les cas de données corrompues

qui ne devient pas un FDN sont facilement détectables par un mécanisme d'alarme à

faible coût (MOORE et al, 2003).

En outre, en utilisant la codification M-out-of-N (multi-rail), ce qui est tout à fait

normal dans la conception de circuits QDI, les chances de cas de données corrompues

sont beaucoup plus élevées, car il y aura une plus grande redondance codification. Par

conséquent, la probabilité que les données interdites se produisent est plus élevée, et

donc plus des cas de SEs sont détectables par le mécanisme d'alarme ou même en

générant naturellement des deadlocks (FDN). Une solution donc pour réduire les cas de

données modifiées est utiliser une plus élevée codification M-out-of-N que le double

rail (c'est-à-dire 1-out-of-2).

Même si les systèmes asynchrones QDI sous multiples fautes transitoires n'ont pas le

même performance pour générer des FDN que les situations de fautes transitoires

137

uniques, ils ont, néanmoins, des meilleurs mécanismes naturels de protection contre ces

multiples fautes que les circuits synchrones.

5 La résistance aux fautes transitoires de longue durée

Les effets nocifs des fautes LDT, typiques dans les DSTs, sont presque toujours

désastreux pour les circuits synchrones. Par exemple, un transitoire qui commence dans

la seconde moitié d'un cycle d'horloge et finit que dans le cycle suivant: un scénario de

SE est très probable ainsi qu'un FNN. En outre, des gros coûts dans le système sont

nécessaires pour combattre cette telle faute LDT (LISBOA; ERIGSON; CARRO,

2007).

Néanmoins, ces fautes dans les circuits QDI génèrent des FDN dans la plupart des

cas de SEs. En fait, la probabilité d'un deadlock est plus élevée pour les fautes plus

longues, vu que le transitoire reste plus longtemps dans un chemin du circuit et, donc,

les peu chemins sensibles aux délais sont facilement atteints. La chance d'éléments de

données soient perdues ou insérées est plus grande.

En outre, même des cas de données corrompues créé de fautes uniques, qui génèrent

toujours FNN dans les technologies submicroniques, peuvent produire des deadlocks

(c'est-à-dire des FDN) dans les DSTs. Ces cas, cependant, se produisent lorsque les

fautes LDT sont générées dans les éléments du système QDI qui sont sensibles aux

délais. Il y a donc une importante chance d'un SE en raison d'une donnée corrompue

être suivi dans la phase suivant du protocole par un autre SE qui produit un deadlock.

Par conséquent, une faute plus longue peut générer des multiples SEs en séquence.

Comme les scénarios de SEs restent plus longtemps et la plupart d'eux causent des

deadlocks (comme expliqué dans les sections précédentes), des fautes transitoires de

longue durée ont une probabilité plus élevée pour produire un FDN.

6 L’analyse d’une étude de cas

Une étude de cas d'un crypto-processeur DES (de l'anglais Data Encryption

Standard) en versions asynchrone QDI et synchrone a été évaluée en utilisant la

méthode basée des simulations présentée dans (BASTOS et al, IOLTS 2009-b). Des

résultats supplémentaires liés à des injections de fautes transitoires uniques sont montrés

dans les Figure 4 et 5.

138

La Figure 4 illustre à l'axe vertical l’habilité du système à détecter les FDN. À l'axe

horizontal, les deux figures indiquent le rapport des durées de fautes transitoires avec

des périodes de cycles, qui sont la minimale période d'horloge dans le circuit synchrone

et une moyenne dans le circuit asynchrone. Des plus grandes valeurs dans ce rapport

représentent transitoires plus longues et donc des scénarios typiques de fautes

transitoires si les circuits sont conçus à partir des DSTs, où les durées de fautes sont

dans l'ordre de périodes de cycles (LISBOA; ERIGSON; CARRO, 2007). Par exemple,

la Figure 4 montre que le système QDI (courbe du des_async) est capable de détecter

naturellement autour de 30% des cas d'injection de fautes dans un rapport durée/période

de 95% (c'est-à-dire, la durée de la faute transitoire est égale à 95% de la période de

cycle). Cela signifie que 30% des cas entraînent un FDN et 70% soit un FTN soit un

FNN. La Figure 4 donc illustre que le des_async, sous un scénario de faute transitoire

(c'est-à-dire, dans un élevé rapport durée/période de 95%) qui est typique dans les

DSTs, a un plus grand nombre de cas de FDN que le circuit synchrone (des_sync). En

réalité, le nombre de cas de deadlock dans le des_async augmente significativement en

fonction de plus longues durées de fautes transitoires.

Figure 4: Une étude de cas d'un crypto-processeur DES: habilité du système pour
la détection en fonction de durées de fautes transitoires

0

3

6

9

12

15

18

21

24

27

30

33

36

0 10 20 30 40 50 60 70 80 90 100 110 120 130

%
 S

ys
te

m
 D

et
ec

tio
n

100 * Fault Duration / Cycle Period

Evaluation of Transient Fault Effects

des_async

des_sync

139

La Figure 5 montre à l'axe vertical l’habilité du système à tolérer les fautes (c'est-à-

dire, les FTN) et à détecter les FDN. La version QDI suit une tendance constante autour

de 80% après une légère réduction initiale. Au contraire, une tendance à la baisse est

toujours présente dans le circuit synchrone. Cela montre que la réduction de son cas

particulier de masquage de la fenêtre de stockage, discuté dans une section précédente,

joue beaucoup plus que la diminution de masquage du circuit QDI. Dans le rapport

durée/période de 95% en observant la Figure 4 et 5, environ 50% des cas d'injection de

fautes dans la version QDI (80% de la Figure 5 moins 30% de la Figure 4) entraînent un

FTN, 30% un FDN (à partir de la Figure 4), et 20% un FNN (100 % moins 80% de la

Figure 5). D'autre part, la version synchrone dans la même condition de DST présente

un FTN dans 42% des cas, un FDN dans 1%, et un FNN dans 57%. Si la version QDI

fût réalisée en utilisant des alarmes (MOORE et al, 2003), sa habilité de la Figure 5

serait portée très proche de 100%, même sous les fautes LDT dans les DSTs. Par

conséquent, il est évident de conclure que les fautes LDT dans les DSTs peuvent être

mieux traités dans le circuit asynchrone QDI.

35

40

45

50

55

60

65

70

75

80

85

90

95

0 10 20 30 40 50 60 70 80 90 100 110 120 130

%
 S

ys
te

m
 T

ol
er

an
ce

 +
 %

 S
ys

te
m

 D
et

ec
tio

n

100 * Fault Duration / Cycle Period

Evaluation of Transient Fault Effects

des_async

des_sync

Figure 5. La plus forte habilité naturelle d’un système asynchrone QDI pour
résister aux fautes LDT dans les DSTs

140

6 Conclusions

Ce résumé de thèse illustre pour la première fois l’habilité naturelle des circuits

asynchrones QDI pour résister aux fautes transitoires sous les conditions de DSTs. Des

systèmes QDI ont une meilleure performance que leurs homologues synchrones pour

naturellement détecter les fautes LDT soient elles dans la logique de calcul soient dans

les éléments de mémoire. En outre, ils ont des mécanismes naturels (en réalité la

codification multi-rail et ses éléments de données interdites) qui rendent plus facile la

détection d'erreurs même sous des multiples fautes transitoires. Enfin, les systèmes QDI

englobent ces caractéristiques avec leur propriété QDI naturelle. Cela permet de tolérer

la plupart des cas de fautes de délais, qui sont aujourd'hui aussi un grand défi dans les

DSTs.

141

