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“Usai moderação depois do triunfo.
O menor insulto às pessoas (...) será uma mancha em vossa glória.”

— GENERAL BENTO GONÇALVES
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ABSTRACT

High dynamic range (HDR) rendering is becoming an increasingly popular technique
in computer graphics. Its challenge consists on mapping the resulting images’ large range
of intensities to the much narrower ones of the display devices in a way that preserves
contrastive details. Local tone-mapping operators effectively perform the required com-
pression by adapting the luminance level of each pixel with respect to its neighborhood.
While they generate significantly better results when compared to global operators, their
computational costs are considerably higher, thus preventing their use in real-time ap-
plications. This work presents a real-time technique for approximating the photographic
local tone reproduction that runs entirely on the GPU and is significantly faster than ex-
isting implementations that produce similar results. Our approach is based on the use
of summed-area tables for accelerating the convolution of the local neighborhoods with
a box filter and provides an attractive solution for HDR rendering applications that re-
quire high performance without compromising image quality. A survey of prefix sum
algorithms and possible improvements are also presented.

Keywords: Realistic image synthesis, Real-time rendering, High dynamic range imaging,
Tone-mapping, Brightness perception model, Prefix sum, Summed-area tables.



RESUMO

Reprodução Fotográfica Local de Tons em Tempo Real Usando Tabelas de Áreas
Acumuladas

A síntese de imagens com alta faixa dinâmica é uma prática cada vez mais comum em
computação gráfica. O desafio consiste em relacionar o grande conjunto de intensidades
da imagem sintetizada com um sub-conjunto muito inferior suportado por um dispositivo
de exibição, evitando a perda de detalhes contrastivos. Os operadores locais de repro-
dução de tons (local tone-mapping operators) são capazes de realizar tal compressão,
adaptando o nível de luminância de cada pixel com respeito à sua vizinhança. Embora
produzam resultados significativamente superiores aos operadores globais, o custo com-
putacional é consideravelmente maior, o que vem impedindo sua utilização em aplicações
em tempo real. Este trabalho apresenta uma técnica para aproximar o operador fotográ-
fico local de reprodução de tons. Todas as etapas da técnica são implementadas em GPU,
adequando-se ao cenário de aplicações em tempo real, sendo significativamente mais rá-
pida que implementações existentes e produzindo resultados semelhantes. A abordagem
é baseada no uso de tabelas de áreas acumuladas (summed-area tables) para acelerar a
convolução das vizinhanças, usando filtros da média (box-filter), proporcionando uma
solução elegante para aplicações que utilizam imagens em alta faixa dinâmica e que ne-
cessitam de performance sem comprometer a qualidade da imagem sintetizada. Uma
investigação sobre algoritmos para a geração de somatórios pré-fixados (prefix sum) e
uma possível melhoria para um deles também são apresentada

Palavras-chave: Síntese de imagens realísticas, Renderização em tempo-real, Imagens
em ampla faixa dinâmica, Reprodução de tonalidades, Modelo de percepção de brilho,
Somatórios pré-fixados, Tabelas de áreas acumuladas.
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1 INTRODUCTION

One of the most relevant subjects in computer graphics is realistic image synthesis,
leading an observer to a similar visual experience when faced with a real world scene and
a computer-generated image. Such class of images are widely used in the entertainment
industry (movies and games), industrial design, architecture, engineering, publicity, ge-
ology, to cite a few. One of the critical parts of realistic image synthesis is the proper
simulation of the interaction of light with the surfaces and materials that constitute a syn-
thetic scene. For this purpose, an accurate representation of the light intensities becomes
necessary.

Such light intensities are commonly measured as luminances, which can be under-
stood as the amount of light that arrives (or leaves) a particular area in a given direction.
Thus, the luminance of the sunset is much higher than the one of the moonlight. Such a
distance between the largest and lowest luminance is referred as dynamic range. Addition-
ally, some details that are visible during the sunset might not be perceptible at moonlight.
The human visual system (HVS) is unable to instantly distinguish all the luminances (dy-
namic range) of the real world. Instead, it tends to increasingly discern additional details,
adapting from one lighting condition to another.

Figure 1.1: Motion blur in low and high dynamic range images. From left to right: a
scanned photograph; the resulting simulation of motion blur using a low dynamic range
image; the same motion blur applied to a high dynamic range image; motion blur pro-
duced using a real camera. Source: (DEBEVEC; MALIK, 1997).

While many devices allow to capture the large dynamic range of a real world scene,
most current display devices have a fixed range of intensities for which they can effec-
tively emit light. For this reason, a common practice is to represent images using only
a small range of intensities (e.g. 8-bit integers), so that they respect the limitations of
the target device. Such a process may imply in a huge loss of information. For realistic
rendering, these encodings need to be replaced by others that are more suitable to accom-
modate the results of proportional physically-accurate intensities (e.g. 32-bit floats). Such
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class of images is then referred as high dynamic range (HDR) images. This recalls to the
initial problem: how to display HDR content in a device with limited dynamic range? The
focus of this thesis is on how to provide a satisfactory answer to this question in real-time.
Figure 1.1 shows the importance of HDR in realistic rendering.

The proper presentation of HDR content requires that the display devices support the
dynamic range of the images. Otherwise, the resulting pictures will look either underex-
posed or overexposed, as can be seen in Figure 1.2. Current HDR displays are very ex-
pensive and still have a narrower dynamic range when compared to the real world (SEET-
ZEN; WHITEHEAD; WARD, 2003; SEETZEN et al., 2004; Bit-Tech, 2008; Toshiba
Corporation; Canon Inc, 2008; Dolby Laboratories, 2008). Compressing such large lumi-
nance ranges so that they fit into the much narrower ones supported by display devices,
in a way that the resulting images are perceptually equivalent to the original scenes is
known as digital tone reproduction, also known as tone-mapping (TUMBLIN; RUSH-
MEIER, 1993; REINHARD et al., 2006). For a illustrative comparison of some existing
operators, refer to Figure 1.3.

Figure 1.2: A HDR image displayed in three ways: without any processing (left) is not
suitable for display, as almost all details are lost; the use of gamma correction (middle)
enhances the image quality, but a tone-mapping operator (right) can do much better. The
memorial church image is courtesy of Paul Debevec.

Digital tone-mapping operators can be classified as global (spatially uniform), or lo-
cal (spatially varying) (REINHARD et al., 2006). Global operators use the same parame-
ters to process all the pixels of the image (TUMBLIN; RUSHMEIER, 1993; SCHLICK,
1994; WARD, 1994a; FERWERDA et al., 1996; WARD LARSON; RUSHMEIER; PI-
ATKO, 1997; REINHARD et al., 2002; DRAGO et al., 2003; REINHARD; DEVLIN,
2005). In contrast, local operators try to find an optimal set of parameters for each pixel
individually, considering a variable-size neighborhood around it (CHIU et al., 1993; PAT-
TANAIK et al., 1998; ASHIKHMIN, 2002; FATTAL; LISCHINSKI; WERMAN, 2002;
REINHARD et al., 2002; PATTANAIK; YEE, 2002; DURAND; DORSEY, 2002; YEE;
PATTANAIK, 2003). For images with large dynamic ranges, local operators tend to pro-
duce significantly better results in terms of contrast preservation. This comes from the
fact that the amount of compression is locally adapted to the different regions of the input
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images. For this reason, local tone-mapping operators are computationally much more
expensive than global ones. An illustrative comparisons between a global and a local
operator is provided in Figure 1.4.

Figure 1.3: Example of a high dynamic range image (12 orders of magnitude) processed
with various tone-mapping operators. Source: (REINHARD et al., 2002).

The photographic tone reproduction operator proposed by Reinhard et al. produces
attractive results and it is probably the most balanced operator available, due to its simplic-
ity, automacity, robustness, and perceptually-driven approach (REINHARD et al., 2002).
Their method comprises both a global and a local operator (Figure 1.4). The former is
fast, but potentially looses relevant contrastive detail. The later compresses an image’s
dynamic range, by using the average luminance around each pixel at different scales. To
estimate these averages, Reinhard et al. used a brightness perception model presented
by Blommaert and Martens, which is essentially a set of differences of Gaussian-filtered
luminance images (BLOMMAERT; MARTENS, 1990). Unfortunately, the convolution
with Gaussian kernels of various scales is an expensive operation.

In practice, interactive applications currently limit themselves to global operators (an
observation that is valid to all tone-mapping operators and not limited to Reinhard et
al.’s). An exception is the work of Goodnight et al. (GOODNIGHT et al., 2003), which
efficiently implemented the 2D Gaussian convolution using separable 1D kernels on the
GPU. However, despite all their optimization efforts, their technique can handle only a
few scales of the original operator to run at interactive rates. A more efficient approach
to approximate the convolutions was presented by Krawczyk et al., but it introduces no-
ticeable halo artifacts in the resulting image (KRAWCZYK; MYSZKOWSKI; SEIDEL,
2005). Figure 1.5 compares the result produced by Krawczyk et al.’s technique and the
one obtained with the approach proposed in this thesis.

This document presents a novel GPU-based technique for performing Reinhard et
al.’s photographic local tone reproduction in real time. The approach uses a summed-
area table (CROW, 1984) to efficiently evaluate an approximation of Blommaert’s and
Martens’s brightness perception model (BLOMMAERT; MARTENS, 1990), which is the
most expensive part of the operator. The proposed technique produces results that are
comparable to the original local operator (see Figure 1.5), but is significantly faster than
previous GPU-based attempts. The approach is based on the following key observations:
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• Local contrast can be estimated from the largest isoluminant region around each
pixel. Identifying such regions is usually performed using differences of Gaussian-
filtered luminance images which are then compared with a specified threshold. Sim-
ilar results can be obtained using box-filtered differences and a lower threshold.

• Convolution with a box-filter is an average over a rectangular region, and it can
be efficiently performed using summed-area tables for a fraction of the cost of a
Gaussian convolution.

Figure 1.4: A comparison between the global and the local photographic operators intro-
duced by Reinhard et al. (REINHARD et al., 2002). The original image (left) is submitted
to the global operator (middle). Since many perceptive details are lost, its local variant
(right) preserves contrastive details. Cathedral glass image courtesy of Greg Ward.

Figure 1.5: A comparison between existing implementations. Left: resulting image using
the original photographic operator. Middle: resulting image using Krawczyk et al. im-
plementation of the operator, introducing noticeable halos. Right: Resulting image from
the proposed technique, which is nearly identical to the original operator. Atrium image
courtesy of Greg Ward.

These two observations were used to create a real-time approximation of Reinhard et
al.’s local tone reproduction operator. Compared to the approach described by Goodnight
et al., the proposed technique achieves an average speedup of about five to ten times,
while producing very similar results. Compared with Krawczyk et al.’s approximation,
the speedup is about two to three times, also lowering the memory requirements and min-
imizing the occurrence of halo artifacts that their method potentially introduces (see Fig-
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ure 1.5). The proposed technique then provides an attractive solution for HDR rendering
applications that require high performance without compromising image quality.

Computer graphics researches tend to rely on recursive doubling approaches (DUBOIS;
RODRIGUE, 1977) to perform the prefix sum operations required to generate a summed-
area table (HENSLEY et al., 2005; LAURITZEN, 2007). However, a more work-efficient
method is available in the literature since 1990, relying on balanced trees (BLELLOCH,
1990), which is further improved in thesis, thus accelerating the computation of summed-
area tables.

1.1 Thesis Contributions

The main contributions of this work can be stated as:

• An approximation for the Reinhard et al.’s photographic local tone reproduction
operator that produces very similar results to the original technique. The proposed
approach runs entirely on the GPU and achieves real-time performance for current
display resolutions;

• An efficient approximation of the Blommaert and Martens brightness perception
model that might be suitable to other classes of applications.

Besides the above contributions, this thesis also introduces the following contribu-
tions, not entirely related with tone-mapping:

• A survey on prefix sum algorithms on GPU and a comparison among them;

• An improved balanced tree algorithm for prefix sum that produces a scan without
the need of being derived from a prescan;

• An alternative for generating prefix sums of large arrays using partially-generated
summed-area tables and for which its performance on a GPU implementation pro-
vides a slight speedup when compared to an existing CUDA variation.

1.2 Structure of the Thesis

The remaining of the text is organized as follows:

• Chapter 2, Dynamic Range, introduces the terms related with dynamic range and
associates them with the human visual system, imaging display devices and tone-
mapping;

• Chapter 3, Exiting Tone-Mapping Operators, presents the existing tone-mapping
operators;

• Chapter 4, The Photographic Operator, reviews the Reihard et al.’s operator and
shows its qualities compared with the existing ones from Chapter 3;

• Chapter 5, Summed-Area Tables, offers a survey on summed-area tables and GPU
algorithms for their generation;

• Chapter 6, Improvements on Prefix Sum Algorithms, presents the proposed im-
provements;
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• Chapter 7, Photographic Operator with Summed-Area Tables, describes the pro-
posed technique for approximating the photographic tone-mapping operator using
summed-area tables;

• Chapter 8, Conclusion, summarizes the thesis and its contributions;

• Chapter 9, Future Work, points future directions for the results obtained in this
thesis.

The thesis also includes five appendices:

• Appendix A, Complexity Analysis on Prefix Sum Algorithms, derives the complex-
ity for the prefix sums and summed-area tables algorithms cited in the thesis;

• Appendix B, HDR Image Formats, briefly discusses the most widely used HDR
image formats;

• Appendix C, HDR Acquisition and Rendering, provides some background about
natural light acquisition and its use for realistic image synthesis.

• Appendix D, An Optimal Prefix-Sums Algorithm, includes a photocopy of an op-
timal prefix-sum algorithm similar to the one proposed in this thesis (see Section
6.1).

• Appendix E, Resumo Estendido em Português, offers an extended summary of this
thesis written in Portuguese language.



17

2 DYNAMIC RANGE

Dynamic range is a term used to describe the distance between the lowest and highest
intensity values of a varying quantity, such as sound or light. In the field of imaging,
dynamic range is measured as the ratio of the highest and the lowest luminance values
presented in the image. Real world scenes usually have a wide range of luminances
covering about 14 orders of magnitude, ranging from sunlight (from 105cd/m2 up to
108cd/m2) to starlight (10−3 down to 10−6cd/m2) (LEDDA et al., 2005). Figure 2.1
shows a HDR image (left) and a false color representation of its luminances (right). The
dynamic range of a HDR image or display device is often called contrast ratio. The
measure of contrast ratio is expressed with the notation C : 1, meaning that the highest
luminance is C times greater than the lowest one. For the real world case, the contrast
ratio is expressed as 100, 000, 000, 000, 000 : 1 or, compactly, 1014 : 1.

Figure 2.1: A high dynamic range image, without tone-mapping (left), and a correspond-
ing false color representation for its luminance values (right). This image is used as a
reference in the remaining of the chapter. Image courtesy of WebHDR Team.

2.1 Human Visual System Overview

The human visual system (HVS) is not able to instantly cover the wide range of lu-
minosity present in the world. Actually, the HVS is limited to a much narrower range of
only 4 orders of magnitude at any given time. An adaptation process shifts the perceptible
range up or down in order to cover the luminosity range of a scene. This adaptation is
not an instantaneous process: leaving a bright environment and entering a dark one may
take several minutes to properly adapt to the new lighting condition, while the inverse sit-
uation is faster, requiring just a few seconds for a proper adaptation (LEDDA; SANTOS;
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CHALMERS, 2004).

Figure 2.2: The dynamic range of the real world and the human visual system responses to
it. In a given instant, the HVS is able to cover a small range of only 4 orders of magnitude,
adapting to dark or bright areas accordingly. The overall luminance of the scene is a
determinant factor for color and contrast perception. Illustration adapted from (LEDDA
et al., 2005).

However, even with this adaptation process, the HVS is unable to equally perceive all
the magnitude present in the world (see Figure 2.2). The HVS possesses many physical
constraints regarding its response to intensity, color and shape, which lead to an impre-
cise perception of the details of a scene (SHLAER, 1937; CRAWFORD, 1949). In low-
lighting conditions (scotopic vision), the HVS cone photoreceptors tend to be inhibited
and the rods photoreceptors take the place since they can effectively deal with small lumi-
nance variations, but this leads to poor color dysfunction and poor visual acuity. On the
other hand, at well-lit environments (photopic vision), rods become inhibited and cones
take place, being responsible for sharp vision and color perception. The transition zone
between scotopic and photopic visions is called mesopic vision. Figure 2.3 illustrates the
effects of scotopic and photopic vision.

Figure 2.3: Examples of loss of visual acuity and color perception. In low-light envi-
ronments (left) the HVS is unable to properly distinguish colors and high contrast edges.
As the amount of light increases, more details and colors are perceived more accurately
(middle and right). Source: (SCHLICK, 1994).

The HVS has a logarithmic curve of response to light intensities. Psychophysical
studies have shown that, over a wide range of intensities, the minimum distinguishable
difference between two intensities lies in about 1%, usually referred as visible threshold
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or noticeable difference (SHLAER, 1937; STEVENS; STEVENS, 1960; REINHARD
et al., 2006). These observations are critical in the design of image encoding formats and
display devices technologies (See Appendix B and the next section). Figure 2.4 shows a
simulation of how the HVS of an individual with normal vision perceives the HDR image
from Figure 2.1.

Figure 2.4: RADIANCE software simulation of human visual system responses for the
image of Figure 2.1 (WARD, 1994b).

An additional characteristic of the HVS is that colors and luminances are not faithfully
perceived, i.e., the same color or luminance tends to look dark or bright depending on its
surrounding (CRAWFORD, 1949; GILCHRIST et al., 1999). Such interesting behavior
of the HSV is called simultaneous contrast (or hue induction, specifically for colors), and
is caused by a visual phenomena called lateral inhibition. Actually, the lateral inhibition
phenomena lies at the heart of many optical illusions (see Figure 2.5, middle and right).
Although it seems to be a flaw of the HVS, practical situations can take advantage of
it, which is the case of the widely used display technique called dithering (Figure 2.5,
left) (WIEGAND; WALOSZEK, 2003). Blommaert and Martens’s investigated how to
reproduce the lateral inhibition phenomena in their brightness perception model (BLOM-
MAERT; MARTENS, 1990). This model was lately used by Reinhard et al. to guide
the local luminance adaptation process in their photographic tone reproduction opera-
tor (REINHARD et al., 2002).

2.2 Dynamic Range Compression

Similarly to the human visual system, display devices are unable to cover the wide
range of luminances of real world scenes. Moreover, these devices have a fixed dynamic
range and can not adapt to particular lighting conditions. A traditional CRT has a dy-
namic range of about 2 orders of magnitude (WARD, 2005; FATTAL; LISCHINSKI;
WERMAN, 2002). Current LCD and plasma display technology can hold 3 or 4 or-
ders of magnitude (YEE; PATTANAIK, 2003; SEETZEN; WHITEHEAD; WARD, 2003;
Reuters, 2008). Some specific HDR displays can reproduce 5 orders of magnitude, but
they are very expensive and even such high displayable range is several times smaller
than the real world range (Bit-Tech, 2008; Toshiba Corporation; Canon Inc, 2008; Dolby
Laboratories, 2008). This constraint is not limited to electronic display devices. Photo-
graphic paper has a much narrower dynamic range than photographic film, which also has
a limited dynamic range when compared to a real world scene. In fact, the dynamic range
compression problem was addressed almost two decades ago by photographers (ADAMS,
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1983; WHITE; ZAKIA; LORENZ, 1984; WOODS, 1993; REINHARD et al., 2002).

Figure 2.5: The lateral inhibition phenomena in action. Left: dithering is a process of
placing different-colored pixels next to each other to create an illusion of additional col-
ors; the eye sees the two adjacent colors, and the mind blends them into a third one. Mid-
dle: color contrast intensifies complementary colors; the same central colors look less
intensive with other surrounding colors. Right: simultaneous contrast lets the central gray
square look differently, depending on the surrounding gray level, although all the central
squares are composed of the same shade of gray. Source: (WIEGAND; WALOSZEK,
2003).

The proper presentation of imaging content requires that the display devices support
the dynamic range of the image. When this is not possible, the dynamic range of the
image must be compressed to fit into the displayable range capabilities. Without such
compression, the resulting image might look excessively dark or bright (as can be seen
in Figure 2.1). The most straight-forward approach to high dynamic range compression
is a linear map, normalizing each pixel luminance using the largest luminance of the
image, but that leads to poor image quality, except in some isolated situations. For such a
reason, the use of non-linear mapping is more suitable to fit the HVS logarithmic curve of
responses, and image capture and display devices usually employ non-linear quantization
techniques to avoid the loss of perceptive details (e.g. gamma encoding) (ADAMS, 1983;
CGSD, 1990; POYNTON, 2003). Refer to Figure 2.6 for an example.

Since brightness perception by the HVS behaves according to a logarithmic function
(i.e. brightness is perceived non-linear), taking fixed steps to quantize luminances (lin-
ear encoding) produces abrupt changes in darker regions, which tend to become smooth
in bright ones, as shown in Figure 2.7. A gamma encoding uses varying step sizes: as
the luminance grows the step size grows as well, providing more uniform smooth tran-
sitions (CGSD, 1990). An effective encoding keeps the difference between two close
quantized values below the visible threshold of the HVS (1%) (WARD, 2005).

Gamma encoding seems to be an attractive solution to encode and display HDR con-
tent. However, since luminance ranges from small fractions to millions, it is impossible
to assume that an observer is adapted to a particular level, and the simple addition of bits
to a gamma encoding will not produce a good distribution of steps (WARD, 2005). To
properly display HDR content, more sophisticated compressions approaches must be em-



21

Figure 2.6: Automatic luminance compression using a linear scaling (left) and a gamma
compression (right). The former loses almost all of the details of the image. A gamma
compression is more attractive, but it still is far away from the results expected from
Figure 2.4.

Figure 2.7: A linear encoding (left) takes fixed steps to quantize luminances. Since lu-
minances are perceived non-linearly, in a logarithm fashion, abrupt changes are more
noticeable in darker regions. A gamma encoding (right) uses a variable step size for
quantization, providing a better fitting for the logarithm nature of the HVS responses to
luminances. A good encoding keeps the relative difference of two close quantized inten-
sities below the visible threshold of 1%. Source: (WARD, 2005).

ployed, and it is important to drive this compression in a way that it handles perceptual
characteristics of the human visual system. Tone mapping operators provide such kind of
compression scheme (TUMBLIN; RUSHMEIER, 1993).

2.3 Tone-Mapping Operators

Tone reproduction is a practice being addressed by photographers for almost two cen-
turies (LONDON; UPTON, 1998). Its goal consists on reproducing relevant details of
a photographed scene on a limited photographic paper. Similarly, digital tone-mapping
is a technique to scale the luminances of a digital HDR image to the displayable range
of the target devices. In the context of this work, unless explicitly stated otherwise, all
references to tone-mapping or tone-reproduction have the word digital implicitly placed
before them.

A theoretical basis for tone reproduction operators’ design was introduced in computer
graphics by Tumbling and Rushmeier (TUMBLIN; RUSHMEIER, 1993), although Miller
et al. and Upstill early stated the problem of brightness matching between real scenes and
device-displayed ones (MILLER; NGAI; D., 1984; UPSTILL, 1985). An overview of
their theoretical basis is illustrated in Figure 2.8.

Basically, Figure 2.8 states that a good tone reproduction operator must give the same
perceptual response to a viewer faced with a tone-mapped image and its respective real
scene. Although this is a simple and intuitive model, the development of such a robust
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Figure 2.8: A theoretical model for tone-mapping operators’ design. A good operator
must be able to produce the same visual response to a viewer faced with the original
scene and with the tone-mapped one.

operator is a challenge. Such challenge is closely related to the subjective nature of the
HVS as well as with the limited displayable range of the target devices. Note that the
model also requires a proper solution to acquire and store a HDR image, and an overview
on this topic is available in Appendices B and C.

Figure 2.9: The resulting image after applying Reinhard et al.’s photographic tone-
mapping operator (REINHARD et al., 2002). Note the similarities with the simulated
results on RADIANCE in Figure 2.4.

Tone-mapping operators can be either global (spatially uniform) or local (spatially
varying). Due to the perceptual evocation, operators tend to rely on psychophysical ex-
periments, and many were proposed to effectively fulfill Tumblin and Rushmeier’s frame-
work requirements. Refer to Figure 2.9 for an example of tone-mapped image using a
perceptually-driven operator.

There is another class of tone reproduction operators that tries to maximize the detail
preservation, exploring all the capabilities of the device. However, such class of operators
often ignores any psychophysical characteristic of the HVS, relying only on mathematical
models. Although they can allegedly produce artistically appealing results, they tend to
look unnatural (see Figure 2.10). In the field of realistic image synthesis, perceptual data
is crucial and should not be ignored. For such reason, this class of operators is not covered
in this work.

An important note about any tone-mapping operators is that they are not a physically-
sound approach. They comprise just a practical solution to properly display HDR content
in limited devices, preventing the loss of perceptible contrastive details as much as possi-
ble. An overview on exiting tone-mapping operators is available in Chapter 3.
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Figure 2.10: All images above were taken from real scenes and submitted to a special
tone-mapping operator. The process maximized details so strongly that the resulting im-
ages appear to be unreal. Source: HDR Japan.

2.4 A Few Words on Exposure Control

It is common to confuse exposure control with tone-mapping. A simple exposure
control of a HDR image does not imply that the dynamic range of the resulting image
will fit in the displayable range. In contrast, tone-mapping operators effectively fulfill this
requirement.

A similar approach to a tone-mapping operator can be achieved just by changing ex-
posure and gamma correction parameters (NVIDIA Corporation, 2004). Although fast,
it has serious limitations. The first limitation is that it is not a true tone-mapping oper-
ator, since it just jumps from an exposure to another, which does not guarantee that the
resulting image range of intensities will fit in the display range (see Figure 2.11). The sec-
ond limitation is that gamma compression can not properly deal with high dynamic range
intensities. Another limitation is that it is not robust enough to be applied together with
environment mapping, since a proper exposure and gamma parameter must be determined
for each viewing directions and for each environment map. This requires a lot of manual
intervention by an artist to optimally setup the parameters. The last limitation is that it
does not reproduce HVS perceptual effects. For these reasons, more robust operators are
desirable.

Figure 2.11: A simple exposure control on a HDR image does not ensure that the lumi-
nances will fit in the displayable range. At each figure, from left to right, the exposure
was doubled.
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3 EXISTING TONE-MAPPING OPERATORS

This chapter presents the related work concerning existing tone-mapping operators,
and Chapter 4 reviews in detail the photographic tone reproduction operator (REINHARD
et al., 2002). Devlin’s survey on tone-mapping operators (DEVLIN, 2002) and Reinhard
et al.’s book on HDR rendering (REINHARD et al., 2006) provide further information
about the operators cited in this chapter.

3.1 Global Tone-Mapping Operators

Global (spatially uniform) tone-mapping operators use the same set of parameters to
compress the intensity of any pixel of the image. Since both linear map and gamma
compression are not suitable for HDR images, Tumbling and Rushmeier used a non-
linear mapping, based on the brightness perception measurements of Stevens and Stevens
(STEVENS; STEVENS, 1960), to mimic the human visual system responses (TUM-
BLIN; RUSHMEIER, 1993). A slightly different approach was presented by Ward, en-
suring that the smallest perceptual difference in the real scene matches the smallest per-
ceptible difference in the displayed image (WARD, 1994a).

Ferwerda et al. presented an operator that deals with color perception at different
lighting conditions (FERWERDA et al., 1996). By monitoring the color sensitivity acu-
ity, it can gradually move from scotopic (lowlight) vision to photopic (well-lit) vision.
Ward et al. proposed a histogram-based operator that iterates until finding an acceptable
adjustment that matches with the display capabilities (WARD LARSON; RUSHMEIER;
PIATKO, 1997). Just like Ferwerda et al.’s operator, it deals with scotopic, mesopic,
and photopic vision. Tumblin et al. then presented two new operators in the same
work (TUMBLIN; HODGINS; GUENTER, 1999): the former is based on a layered HVS
model and is suitable only for synthetic scenes, since layered data must be stored along
with the image; the latter requires manual intervention to select regions where fine details
must be preserved, compressing the remainder. Following the perceptually-driven ap-
proach of Tumblin and Rushmeier’s operator, Pattanaik et al. developed a time-dependent
operator, making it suitable for dynamic scenes and video (PATTANAIK et al., 2000).ed a
time-dependent operator, making it suitable for dynamic scenes and video (PATTANAIK
et al., 2000).

More recent global tone-mapping algorithms include Drago et al. biased logarithmic
luminance compression (DRAGO et al., 2003), and Reinhard et al. photographic global
operator (REINHARD et al., 2002). Both are simple and fast, but the former tends to
reduce the overall contrast of the image. The latter is based on a photographic technique
called Zone System (WHITE; ZAKIA; LORENZ, 1984), which effectively maps the im-
age’s average luminances to the medium intensity of a target display. Examples of the
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various global tone-mapping operators cited so far are given in Figure 3.1.

Figure 3.1: A plate of resulting images from various global tone-mapping operators. In
yellow, the source of each image.

Although most of them are fast enough to pursuit real-time performance, global op-
erators fail to preserve relevant contrastive details of the image. To surpass this limita-
tion, more sophisticated operators can be employed, comprising the class of local tone-
mapping operators.

3.2 Local Tone-Mapping Operators

Local (spatially-varying) tone-mapping operators essentially work by adjusting each
pixel’s luminance based on its neighborhood. By potentially applying a separate function
to each pixel of the image, they are able to successfully compress much larger dynamic
ranges and tend to produce images with better contrast of high-frequency details when
compared to global ones. This comes at the expense of higher computational efforts and,
in some cases, the need of many user-specified parameters or manual intervention, which
has prevented their use in real-time applications. The support for high-precision floating-
point buffers in modern GPUs and the availability of a large number of HDR environment
maps is making HDR rendering increasingly popular, but essentially restricted to the use
of global operators, due to the performance drawbacks and tunning constraints introduced
by local operators.

Chiu et al. presented the first work regarding spatially-varying luminance compres-
sion (CHIU et al., 1993). They used an average of luminances at each pixel neighborhood
to perform dynamic range compression. On images with low frequency transitions, their
approach proved to be satisfactory. As for high frequency variations, halos artifacts are
clearly noticeable. Lately, Schlick et al. used polynomial functions to perform luminance
compression and most of their results also suffered from strong halos artifacts (SCHLICK,
1994). Pattanaik et al. presented a multi-resolution HVS-based local operator that deals
with scotopic and photopic visions (PATTANAIK et al., 1998). Their technique comprises
two stages: the visual model, encoding both the perceived chromatic and achromatic con-
trasts; and the display model, which takes the encoded data to output a reconstructed
image. They also suffered from serious halo artifacts. As can be seen, a feature common
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to all local tone-mapping operators is the occurrence of such visible halos around high-
contrast edges. The nature of such halos is often not well understood, but it essentially
results from the mixing of low and high luminance values across high-contrast edges in
certain pixel neighborhoods. This affects the average luminance used to compress the
pixel’s own luminance, resulting in such undesirable artifacts (REINHARD; DEVLIN,
2005; REINHARD et al., 2006). Although all local tone-mapping operators are prone to
this kind of artifacts, good operators try to minimize their occurrence.

Reinhard et al. presented an elegant photographic-based technique to perform tone
reproduction (REINHARD et al., 2002). Their automatic spatially-varying filter enhances
contrastive details, driven by a HVS-based brightness perception model (BLOMMAERT;
MARTENS, 1990), and prevents the occurrence of halos. They confronted their results
with a large number of existing operators and HDR images, proving its effectiveness. The
photographic operator is probably the most balanced and robust operator available. A
complete review of the photographic operator is available in Chapter 4.

Figure 3.2: A plate of resulting images from various local tone-mapping operators. In
yellow, the source of each image.

Recent works on local tone-reproduction include the work of Fattal et al., which uses
luminance gradient attenuation to compress large gradients and insert fine details (FAT-
TAL; LISCHINSKI; WERMAN, 2002). However, the operator is not perceptually-driven
and, while fast, its performance is not acceptable for real-time purposes. Goodnight et al.
also stated that a reproduction of Fattal et al.’s operator in GPU is challenging (GOOD-
NIGHT et al., 2003). Lately, Durand and Dorsey used an edge-preserving filter, the
bilateral filter (DURAND; DORSEY, 2002), to split the image in two layers: a base
layer, consisting of large intensity variations; and a detail layer, consisting of fine de-
tails. Their approach minimizes halo artifacts but is expensive and does not address well
time-dependent situations. In a similar way from the two previously cited operators, Pat-
tanaik et al. proposed a method to evaluate the influence of the surrounding pixel inten-
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sities based on absolute magnitude changes (PATTANAIK; YEE, 2002). They used some
photographic standards to guide the operator in order to find the proper acceptable iso-
luminant neighborhood (HUNT, 1996). This approach reduces halo artifacts, but is not
suitable for time-dependent rendering and does not address well the perceptual evocation.

Lately, Ashikhmin used an interesting multi-pass approach to reinsert relevant details
that were lost due to luminance compression (ASHIKHMIN, 2002). First, local adap-
tation luminance of each pixel is estimated, followed by a simple compression function
to map them into the displayable range. Lost details are identified and reintroduced in a
final pass. His approach is simple, fast, and produces good results, but the author himself
claimed that Reinhard et al.’s photographic operator produces better results and handles
a wider range of images. The latest local tone-mapping operators comprises the work
of Yee et al. (YEE; PATTANAIK, 2003) and Chen et al. (CHEN; PARIS; DURAND,
2007). The former uses image segmentation, grouping and graph operations to locally
adapt luminance. The technique suffers from many parameters’ tunning and from flood-
fill operations, which are not GPU friendly (LEFOHN et al., 2003; EISEMANN; DÉ-
CORET, 2008). The latter presents an attractive data structure, the bilateral grid, allowing
fast edge-aware image processing, which includes Durand and Dorsey’s bilateral-filtering
tone-mapping operator (DURAND; DORSEY, 2002). Although it effectively accelerates
the operator, interactive rates are possible only on small regions, requiring manual inter-
vention to select small areas where the image must be locally adapted. Examples of the
various local tone-mapping operators cited here are given in Figure 3.2.
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4 THE PHOTOGRAPHIC OPERATOR

Reinhard et al. digital photographic tone reproduction operator (REINHARD et al.,
2002) is based on a photographic technique called Zone System (WHITE; ZAKIA; LORENZ,
1984). The term photographic on its name is solely related to the nature of the photog-
raphy background used to develop the operator. Their method does not intend to exactly
mimic the photographic process, but instead uses its basic conceptual framework to man-
age tone reproduction choices (REINHARD et al., 2002). It is important to emphasize
that, unless explicitly stated otherwise, all claims to the terms tone-mapping or tone-
reproduction have the word digital implicitly placed before them.

The photographic operator has many advantages over existing operators, which can
be summarized as follows:

• Simplicity: requires few parameters. Some of them can be automatically adjusted,
while default settings for the remaining are effective in most cases;

• Automaticity: requires no user intervention. The operator enhances details in the
whole image and no manual user intervention is required to mark interest regions;

• Robustness: suitable for a wide range of images, from overexposed to underex-
posed, indoor to outdoor scenes, and enhances contrast even in low dynamic range
ones;

• Perceptually driven: enhances relevant contrastive details relying on a model of
brightness perception of the human visual system;

• Popularity: its global operator is fast and GPU implementations are available in
traditional graphics SDKs (Microsoft Corporation, 2004; NVIDIA Corporation,
2005). In a system that already uses it, the local variant is easy to adapt.

Although the original operator was unable to deal with some important perceptual ef-
fects of the HVS, further research successfully extended it to surpass these limitations in a
way that introduces a minimal performance overhead. Goodnight et al. shown how to add
temporal luminance adaptation to the operator, making it suitable to be used in real-time
and video applications (GOODNIGHT et al., 2003). Krawczyk et al. presented a method
to derive perceptual effects of the HVS directly from the set of Gaussian-filtered lumi-
nance images computed by the local operator, simulating loss of visual acuity, scotopic
and photopic vision, and veiling luminance effects (KRAWCZYK; MYSZKOWSKI; SEI-
DEL, 2005). Renihard and Krawczyk et al. also proposed approaches for automatically
estimating some parameters of the operator, deriving them from the contents of the input
image (REINHARD et al., 2002; KRAWCZYK; MYSZKOWSKI; SEIDEL, 2005).
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Such perceptual effects and additional automaticity are certainly desirable features,
but they are not critical requirements. Thus, the present work focus mainly on the perfor-
mance speedup of the most costly part of the local operator, the convolution at different
scales. The photographic tone reproduction operator can be summarized as:

• Obtain a luminance representation of the input HDR image;

• Produce a relative luminance image for which the middle-tone of the original image
matches the middle intensity of the display device;

• Apply a spatially-uniform filter or a spatially-varying filter to refine the compres-
sion, ensuring that the resulting image intensities will fit in the displayable range;

• Scale the original chromatic components accordingly to the compressed luminance.

Before going any further in the photographic operator algorithm, it is useful to un-
derstand the nature and the goals of the photographic technique that inspired it: the Zone
System.

4.1 The Zone System

The Zone System was introduced in the photography field by Adams and Archer in
early 1940 (ADAMS, 1983; WHITE; ZAKIA; LORENZ, 1984). Basically, it can be
defined as a set of zones that maps real scene luminances (scene zones) to the reflectance
capabilities of a photographic print (print zones). Such concept is similar to dynamic
range compression, but photographers have a subjective concept of dynamic range, since
they are more interested in the ratio between the highest and lowest luminance regions
where detail is visible (REINHARD et al., 2002).

The zone system is discretized in eleven print zones, ranging from the lowest to the
highest reflectance permitted by the print. The extreme zones are called pure black (zone
0) and pure white (zone X), respectively, and the middle zone V corresponds to 18% of the
print reflectance (the middle-gray of the print). Each zone differs from the preceding or
following zone by a factor of two, so that zone I exposure is twice the one of zone 0, and
so forth. The Zone System is illustrated in Figure4.1. Actually, the useful range comprises
zone I to zone IX; Adams stated that zone 0 and zone X correspond to extreme situations
where detail will never be perceived (ADAMS, 1983). In the Zone System, the dynamic
range is then stated as the distinguishable difference between zones (REINHARD et al.,
2002).

To perform tone reproduction, relying on a photometer or on his own photographic
skills, a photographer must select what he believes to be the middle-gray tone of the
entire scene. This is indeed a subjective choice, but there are guidelines to assist the
photographer in this task, which is the case of the key value (see Figure 4.2).

Bright scenes are said to be high-key, while dark ones are low-key. In typical scenes
(medium-key), it is reasonable to think to map the middle-gray tone of the scene to the
medium zone of the print (zone V). When the results are not satisfactory, the photographer
can favor bright or dark areas, just by altering the key value (see Figure 4.2). This prevents
the photographer having to take taking several subjective measurements of the scene’s
middle-gray, being able to work only with the print zones. Note that one can also think in
keeping the key value unchanged and varying the middle-zone of the print, but since the
reflectance of the print is not a subjective value, altering the key value is more appropriate.
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Figure 4.1: The Zone System maps scene zones into print zones. The proper middle-gray
tone of the scene is mapped to the middle-zone of the print, which typically is 18% of
the reflectance of the print. Each print zone comprises twice the scene luminance of the
previous one.

Figure 4.2: A photographer estimates what he believes to be the proper key value of the
scene (left). That value is used to map the luminances to the print reflectance using the
Zone System. If the resulting image looks dark (middle), a low-key was estimated and
can adjusted it to perform a high-key map (right), enhancing the overall image quality.
As can be seen in the leftmost image, it is useful to also keep notes about the highest and
lowest luminances of the scene. When the luminance range of the scene exceeds the nine
intermediate zones, the photographer can use this information to locally adapt the contrast
of the image. Source: (REINHARD et al., 2002).

An experienced photographer might also predict printing problems, taking notes about
the darkest and brightest areas of the scene. If the dynamic range of the scene is com-
patible with what the print is able to reproduce, a proper choice of a middle-gray tone
guarantees that all contrastive details will be properly noticed. Otherwise, perceptible de-
tails will certainly be lost. Note that such loss of contrastive details might be acceptable
in some cases to suppress excessively dark or bright regions.

The photographer can then simply ignore the exceedings, which will be automatically
mapped to pure black and pure white. However, this rarely leads to good results. To
prevent such a loss, the photographer can compresses the lowest and highest luminances
using a transfer function. Although this improves the overall quality, the resulting image
appears to be blurred due to potential contrast reduction. As a final resource, the pho-
tographer can employ a dodging-and-burning technique and locally adapt the contrast for
each region, independently, thus preserving substantial contrastive details. However, this
process is exhaustive and very difficult to generalize and automate.
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4.2 The Digital Photographic Operator

Reinhard et al.’s digital photographic tone reproduction operator performs the stages
of the Zone System and also provides an automatic process for dodging-and-burning to
enhance relevant contrastive details. Since the process requires to work with luminances,
a mapping between color and luminance (and vice-versa) is required. For a given input
HDR image I , the RGB components of a pixel with coordinates (x, y) are expressed as:

I(x, y) = (I(x, y)r, I(x, y)g, I(x, y)b) (4.1)

and the luminance L of the given pixel is defined as a weighted sum over each of its color
components, as follows:

L(x, y) = 0.299 · I(x, y)r + 0.587 · I(x, y)g + 0.114 · I(x, y)b (4.2)

Figure 4.3 shows an example of such RGB to luminance conversion.

Figure 4.3: The unprocessed HDR RGB image (left) and its corresponding HDR lumi-
nance image (right), obtained by the evaluation of Equation 4.2 for each of the color
pixels.

After dynamic range compression (this will be described later in this chapter), the
resulting tone-mapped image is obtained by scaling the original RGB color components
of each pixel I(x, y) according to its compressed luminance L′ as follows:

I ′(x, y) = L′(x, y) ·
((

I(x, y)r
L(x, y)

)γ
,

(
I(x, y)g
L(x, y)

)γ
,

(
I(x, y)b
L(x, y)

)γ)
(4.3)

where γ is used to perform gamma correction, which controls the saturation of the recov-
ery, typically ranging from 0.4 to 0.8 (GOODNIGHT et al., 2003).

From the statements above, a more formal definition of the photographic operator is
as follows:

L 7−→ L 7−→ L′ 7−→ I ′ (4.4)

where the first and the last mappings are performed according to Equations 4.2 and 4.3,
respectively.

The challenge now is to find an appropriate mapping for L 7−→ L′. For such a goal,
the photographic operator uses the background provided by the Zone System, and the first
requirement is to find an adequate key value for the whole scene. The logarithmic average
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of luminance of the image proved to be a good approximation, as stated by previous
researches (TUMBLIN; RUSHMEIER, 1993; WARD, 1994a), and is evaluated as:

L̃ = exp

(
1

N

∑
x,y

log(L(x, y) + δ)

)
(4.5)

where N is the number of pixels in the image and δ is a small value to prevent log(0).
Next, each pixel luminance must be linearly scaled, according to the Zone System

print zones. Supposing that the input image has normal key, it is desirable to map the
image’s key value, L̃, to the middle zone of the target print, 18%, suggesting the following
equation:

Lr(x, y) = α
L(x, y)

L̃
(4.6)

with α being 0.18, in a scale ranging from 0 to 1.
Note that the parameter α must be adjusted for low or high-key images because it

relates to the key of the image after applying the scaling. However, in practical terms,
α can also be used to favor dark or bright areas, no matter if the input image has low or
high-key. Typically, a value of α = 0.18 is the same used in automatic exposure control
systems in cameras (GOODNIGHT et al., 2003).

The equation above gives a measurement of relative luminance of the image. How-
ever, it does not ensure that all values will fit in the displayable range of the target display
device. Recall that, in the original Zone System, when such happens, the photographer
can do three things: (i) accept the potential loss of detail, mapping the bounding lumi-
nances to pure black and pure white; (ii) apply a transfer function to compress the ex-
ceeding luminances; (iii) or employ a dodging-and-burning process to locally adapt the
contrast.

Figure 4.4: The relative luminance image (left) obtained by evaluating Equation 4.6 on the
luminance image of Figure 4.3. At the right, the resulting tone-mapped image obtained by
plugging the relative luminances on Equation 4.3 (i.e., making L′(x, y) = Lr(x, y)). As
can be seen, the resulting image barely improved the quality of the unprocessed image,
since it has a dynamic range higher than the one that is support to display it.

4.3 The Global Operator

The global variant of the photographic operator is basically a transfer function to
compress any luminance that exceeds the displayable range. Reinhard et al. employed
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a function that mimics the same characteristics of the ones commonly used by photogra-
phers (MITCHELL, 1984), performing a non-linear mapping, as defined below:

Ld(x, y) =
Lr(x, y)

1 + Lr(x, y)
(4.7)

where Ld(x, y) is agreeably inside the output displayable range of [0, 1). A plot of this
function over a high dynamic range is shown in Figure 4.5.

Figure 4.5: A plot of the spatially uniform filtering function (Equation 4.7) of the pho-
tographic operator. This functions ensures that the compressed luminances will fit in the
displayable range of the target display. The x-axis represents the logarithm of the input
relative luminance (Lr(x, y)), while the y-axis represents the compressed value within
the displayable range of [0, 1).

Such a simple spatially-uniform filter is able to gracefully map the relative luminance
Lr(x, y) = 1 to the pixel intensity Ld(x, y) = 0.5, thus effectively mapping the middle
luminance of the scene to the the middle intensity of the device. The display device can
then present the resulting image contents using its own encoding procedure. However, due
to the extensive contrast compression, it only preserves details in low-contrast regions.
Perceptible details tend to be lost in very bright regions as well as in high-frequency
textures. See Figure 4.6 for an example of the global operator.

4.4 The Local Operator

The local photographic operator replaces the spatially-uniform function of its global
variant with a spatially-varying one. The goal is to automatically simulate dodging-
and-burning in photography, which is applied over regions bounded by large contrasts
(ADAMS, 1983; REINHARD et al., 2002). Using the background given in previous sec-
tions, one can think about it as selecting a proper value for for each individual pixel.

To find such large contrasts, one approach concerns the determination of the size of
each local region, thus giving a measure of the local contrast (PELI, 1990). This can
be estimated convolving the image using different center-surround functions at multiple
spatial scales. Typical solutions employ the difference between Gaussian-blurred images,
which is the case of Blommaert and Martens’ model for brightness perception (BLOM-
MAERT; MARTENS, 1990), which proved to give the best results for the photographic
operator (REINHARD et al., 2002).

The spatially-varying function is obtained directly from Equation 4.7 by replacing the
relative luminance Lr(x, y) in the denominator with the weighted average V (x, y, smax)
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Figure 4.6: The result of evaluating Equation 4.5 with the relative luminance image from
Figure 4.4. Color was recovered by evaluating Equation 4.3 with L′(x, y) = Ld(x, y).
The spatially-uniform function ensures that the resulting compressed luminances will fit
the displayable range. Although the resulting image quality is superior to the one of
Figure 4.4, a spatially-varying function is able to produce better results.

of the approximately isoluminant neighborhood of the given pixel:

Ld(x, y) =
Lr(x, y)

1 + V (x, y, smax)
(4.8)

The choice of an appropriate scale smax is a determinant factor to adapt local contrast.
If a small scale is assumed, details can be lost. Such statement is intuitive: if one uses
a Gaussian hierarchy of just one level, no differences are computed and no threshold is
applied, reverting Equation 4.8 back to the spatially-uniform filter of Equation 4.7. On
the other hand, a large scale potentially introduces halos in the resulting image, due to the
mixing of low and high luminance values across high-contrast edges (Figure 4.7).

To determine the appropriate scale smax, a set of Gaussian-filtered images is generated
from the relative luminance image Lr of Equation 4.6, at successive scales s:

V (x, y, s) = Lr(x, y)⊗G(x, y, s) (4.9)

where ⊗ is the convolution operator and G(x, y, s) is a rotationally-symmetric Gaussian
kernel, as defined below:

G(x, y, s) =
1

πσ2
e−

x2+y2

σ2 (4.10)
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where σ = 1
2
√
2
s and s is the scale. The choices for the sizes of each scale will be ex-

plained later. Figure 4.8 shows some Gaussian-filtered images produced from the relative
luminance one from Figure 4.4.

Figure 4.7: Example of scale selection. The left image shows kernels at different sizes,
and the images at the right shows the results of particular choices to scale selection. Detail
is lost when a small scale is chosen, but halos start to appear when the scale is too large.
Source: (REINHARD et al., 2002).

Each resulting image in the hierarchy of filtered images, defined by Equation 4.9, is
referred in this context as an adaptation zone (the term zone in this context bears no
connection to the zones of the Zone System). These adaptation zones are then used to
compute normalized differences, according to the brightness perception model proposed
by Blommaert and Martens (BLOMMAERT; MARTENS, 1990):

W (x, y, si) =
V (x, y, si)− V (x, y, si+1)

2φ/s2 + V (x, y, si)
(4.11)

where α is the key value from Equation 4.6, and the entire denominator is a normalization
factor guided by a sharpening factor, which typically is φ = 8 (REINHARD et al., 2002).
Although φ is able to control edge enhancement, it has a small influence over the resulting
compressed image (REINHARD et al., 2006). Krawczyk et al. made 2φ/s2 = 1 in their
work (KRAWCZYK; MYSZKOWSKI; SEIDEL, 2005). Figure 4.9 shows the normalized
difference images applied to the Gaussian-filtered images from Figure 4.8.

Finally, to determine the appropriate scale smax for a given pixel, the technique looks
for the largest scaled difference between two consecutive adaptation zones that do not
exceed a given threshold ε, suggesting the following equation:

|W (x, y, smax)| < ε (4.12)

Such a scale smax represents the largest Gaussian-modulated neighborhood around a pixel
for which no substantial luminance variation occurs. Reinhard et al. optimized the thresh-
old empirically, setting it to ε = 0.05 (REINHARD et al., 2002, 2006). The resulting
largest scale is then used to measure the local contrast of the given pixel, V (x, y, smax),
performing its local compression as defined in Equation 4.8. Figure 4.10 shows a false
color representation of the estimated maximum scale smax for each pixel of the relative
luminance image from Figure 4.4, as well as their corresponding local contrast measure-
ment V (x, y, smax). The resulting tone-mapped image is shown in Figure 4.11.
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Although an arbitrary number of adaptation zones is possible, a total of 8 is sufficient,
due to the lateral inhibition phenomena of the human visual system, where the com-
petition between the photoreceptors is more intense over small scales (BLOMMAERT;
MARTENS, 1990; WIEGAND; WALOSZEK, 2003). The first scale is 1 pixel wide, and
each subsequent scale is 1.6 times larger than the previous. Considering only the center
surround kernels (where their sizes are odd numbers) one has s ∈ {1, 3, 5, 7, 11, 17, 27, 43}
(REINHARD et al., 2002).

Figure 4.8: A set of Gaussian-filtered images from the relative luminance from Figure 4.4,
according to Equation 4.9. The kernel sizes are, from left to right, top to bottom, 1, 3, 5,
7, 11, 17, 27 and 43, respectively.

4.5 Summary of the Operator

By identifying the image’s key value, the operator is able to compress its dynamic
range into a displayable one. A simple spatially-uniform function can be used to non-
linearly compress the luminance range, but this mapping only preserves details in low-
contrast areas. A spatially-varying filter that simulates dodging-and-burning in pho-
tography effectively enhances perceptive detail, using center-surround Gaussian kernels
derived from Blommaert and Martens’ brightness perception model (BLOMMAERT;
MARTENS, 1990). The choice of an appropriate scale for the kernel allows contrast
to be locally adapted in regions bounded by large contrasts, preventing the occurrence of
halo artifacts thus enhancing perceptual contrastive details in the resulting images. How-
ever, this process requires the computation of a set of differences of Gaussian-filtered
luminance images, which is a computationally expensive operation. Figure 4.12 shows
some examples of images that were produced using the photographic operator.
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Figure 4.9: The set of normalized differences according to Equation 4.11. The first image
is the normalized difference of the first and second Gaussian-filtered images from Fig-
ure 4.8, while the second one represents the difference of the second and third images
from Figure 4.8, and so forth.

4.6 Photographic Operator on GPU

The global version of the operator requires only the relative luminance image (Equa-
tion 4.7). The key value of the image (Equation 4.5) can be computed on the GPU using
mip-mapping (GOODNIGHT et al., 2003). The remaining of the global operator can be
implemented as a single additional rendering pass. Implementations of the global operator
in GPU are available in common graphics SDK (Microsoft Corporation, 2004; NVIDIA
Corporation, 2005). However, a fast and plausible algorithm to evaluate its spatially-
varying (i.e. local) operator remains as a challenge.

Further research provided approaches to accelerate the local operator also with the aid
of modern programmable graphics hardware. Goodnight et al. implemented 2D Gaussian
convolutions using a two-pass 1D convolution method (GOODNIGHT et al., 2003). Their
approach accelerated the operator, but interactive rates were possible only when using a
limited number of adaptation zones (two zones, against the eight zones used by Reinhard
et al.). The use of such a limited range of adaptation zones is very similar to the use of the
global operator. The authors have also included a time-dependent luminance adaptation in
a way that introduces a minimal performance overhead. Temporal luminance adaptation
is required when dealing with real-time applications or video.

Krawczyk et al. reduced the cost of the Gaussian convolutions implementing an ap-
proximation of Goodnight et al. technique (KRAWCZYK; MYSZKOWSKI; SEIDEL,
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Figure 4.10: The choice of the proper scale for each pixel. At the left, a false color rep-
resentation of the size of the local neighborhood (smax) for each pixel. They are obtained
by the evaluation of Equation 4.12 over the set of normalized difference images from
Figure 4.9. Dark pixels means smaller isoluminant neighborhoods. At the right, the cor-
responding estimation of local contrast for each pixel (V (xy, smax)). This image will be
used to perform the tone-mapping, accordingly to Equations 4.8 and 4.3.

2005). Their method consists of down-sampling the relative luminance images to 1/4,
1/16, and 1/64 of the original size and convolving them using smaller approximate Gaus-
sian kernels. The filtered images are up-sampled back and used to compute the normalized
differencesW (x, y, si). This approach significantly speeds up the algorithm, but has some
inherent constraints: the down-sampling blurs high-contrast edges and the up-sampling
that follows implies additional blurring. The occurrence of excessive blurring across the
high contrast edges tends to introduce clearly noticeable halo artifacts. Their approach is
also memory intensive, requiring, in an optimal implementation, five times the required
memory to store the input image.

In the remaining of this work, a novel approach to accelerate the local photographic
operator will be presented. The method uses summed-area tables (CROW, 1984) to ap-
proximate the costly Gaussian-filtering process, providing results that are very similar to
the ones produced by the original operator. The performance is up to two to ten times
faster than existing implementations. The proposed technique is not tied to a limited
number of local adaptation zones, is less prone to halo artifacts and has a lower mem-
ory requirements than existing methods. Before entering in details on the new approach,
Chapter 5 offers a survey on summed-area tables generation, presenting the technique that
will be used to perform box-filtering.
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Figure 4.11: The resulting tone-mapped image using the local variant of the photographic
operator. The luminance of each pixel is evaluated with Equation 4.8, using its corre-
sponding estimation of local contrast V (x, y, smax) from Figure 4.10. Note that the local
operator enhances more contrastive details when compared with its global variant from
Figure 4.6.

Figure 4.12: A plate of resulting images obtained from the use of the photographic tone
reproduction operator. Values inside the yellow boxes represent the dynamic range of the
original images. Source: (REINHARD et al., 2002).
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5 SUMMED-AREA TABLES

Summed-area tables (SATs) were introduced in computer graphics by Crow as a tex-
ture filtering technique (CROW, 1984). His method proved to be useful to efficiently
simulate glossy reflections, depth of field, transparency effects and soft-shadows (HENS-
LEY et al., 2005; LAURITZEN, 2007). The use of a summed-area table for filtering is
quite simple and, for invariant data, a SAT can be computed offline. However, for vari-
able data, typically in real-time and dynamic environments, new SATs must be computed
on-the-fly and the key for its effectiveness lies in the time required to generate them.

A SAT is a cumulative table, where each of its cell corresponds to the sum of all
elements above and to the left of its location in the original table. For a given input table
T with dimensionsw×h, its corresponding summed-area table S has the same dimensions
and is computed as follows:

S(x, y) =
x∑
i=1

y∑
j=1

T (i, j) (5.1)

for all 1 ≤ x ≤ w and 1 ≤ y ≤ h, as illustrated in Figure 5.1.

Figure 5.1: A table of dimensions 6 × 5 (left) and its corresponding summed-area table
(right). Each cell of a SAT is the sum of all elements to the left and above from it in the
original table, as can be seen in the highlighted blue cell on the SAT, where is the sum of
all the highlighted ones in the original table.

Once a SAT is generated, it can be used to sum or filter areas on the original table. The
most remarkable feature is that, for rectangular regions, this can be done by performing
only four lookups in the SAT. A rectangular region R on T can be filtered using the
following equation (see Figure 5.2):

Filter(R) =
Sum(R)

Rwidth ·Rheight

(5.2)
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where Sum(R) is defined as:

Sum(R) = A(R)−B(R)− C(R) +D(R) (5.3)

and the key cells A(R), B(R), C(R) and D(R) are obtained as follows:

A(R) = S(Rxmax, Rymax) (5.4)

B(R) = S(Rxmin−1, Rymax) (5.5)

C(R) = S(Rxmax, Rymin−1) (5.6)

D(R) = S(Rxmin−1, Rymin−1) (5.7)

Figure 5.2: Example of filtering with a SAT. A rectangular region (in green) of a table
(left) can be filtered using only four cells (red cells A, B C and D) of its corresponding
SAT (right). In this example, the filtering result is 54−6−25+4

4·2 = 27
8
= 3.375.

When a region has boundary cells that lie outside the limits of the table, it must be
adjusted. Lower and right bounds ofR are clamped accordingly to the lower-right bounds
of T , as well as for the upper-left bounds, producing an adapted region R′, as defined
below. In practice, a region R is always clamped before being used to perform filtering
(in most of cases, R′ = R).

R′xmin = max(Rxmin, 1) (5.8)

R′ymin = max(Rymin, 1) (5.9)

R′xmax = min(Rxmax, w) (5.10)

R′ymax = min(Rymax, h) (5.11)

Note that even after being adjusted, the boundary cells B(R′), C(R′) and D(R′) may
still lie outside the upper-left bounds of S, in some cases. When such happens, it is
ensured that they exceeds the bounds in a maximum distance of 1. This behavior is
desirable and, for such cells it is assumed that they have zero value. Refer to Figure 5.3
for an example of a filtering that exceeds the boundaries of a table.

Another interesting feature of a summed-area table is that it can effectively replace
the entire input table. To recover the value of a specific cell of the original table from its
corresponding SAT, one just needs to filter that cell’s unit region on the SAT.

Summed-area tables offer an elegant solution to filter rectangular regions in constant
time (O(1)), and the challenge is to find a fast way to compute the SATs. Fortunately,
there is a class of problems related to parallel processing that uses a similar build: a SAT
can be seen as a bi-dimensional generalization of an one-dimensional operation called
inclusive prefix sum.
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Figure 5.3: An example of filtering an area that exceeds the dimensions of the table. The
green area (left) is clamped to the yellow one (middle), respecting the dimensions of the
table. On the SAT (right), the key cellsB, C andD are permitted to lie outside the bounds
and, when this happens, they are assumed to have zero value.

5.1 Prefix Sum

Prefix sum comprises a versatile building block for parallel algorithms, as well as a
good example of a computation that seems inherently sequential, but for which there is
an efficient parallel algorithm (BLELLOCH, 1990). A prefix sum can be either inclusive
(all-prefix-sum or simply scan) or exclusive (prescan), and there are several applications
that benefits from it, such as lexical analysis, regular expressions, polynomial evaluation,
radix sort and quicksort, to cite a few (BLELLOCH, 1990; HARRIS, 2007).

For a given input array A with n elements and an associative operator ⊕:

A = [a1, a2, ..., an] (5.12)

a scan returns an array such as:

I = [a1, (a1 ⊕ a2), ..., (a1 ⊕ a2 ⊕ ...⊕ an)] (5.13)

and assuming that ⊕ has a neutral element ω, a prescan computes:

E = [ω, a1, (a1 ⊕ a2), ..., (a1 ⊕ a2 ⊕ ...⊕ an−1)] (5.14)

Note that a scan can be derived from a prescan in two ways: shifting all the elements
to the left by one and placing at the end the operation between the last element of the
input array and the last element of the prescan; or simply by operating each element
of the prescan with its corresponding element in the input. Analogously, a prescan can
be derived from a scan by shifting all its elements to the right and inserting the neutral
element at the beginning.

Although a prefix sum can be performed with any associative operator, it is more intu-
itive to explain and illustrate the algorithms assuming the addition operator on R. More-
over, since a summed-area table is a grid of accumulated elements, any other operator
would be out of the scope of this work. Thus, compact expressions can be written:

I(x) =
x∑
i=1

A(i) (5.15)

E(x) =

{
0 if x = 1∑x−1

i=1 A(i) if 1 < x ≤ n
(5.16)
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For a real example, recall the input table from Figure 5.1. Let its first row to be
the input array. Its corresponding inclusive and exclusive prefix sums, with respect to
Equations 5.15 and 5.16, respectively, are illustrated in Figure 5.4.

Figure 5.4: Examples of prefix sums on an array. The leftmost is the input array. At mid-
dle, its corresponding inclusive prefix sum (scan), followed by its corresponding exclusive
prefix sum (prescan) at right.

The most straightforward way to perform a prefix sum is using a brute force algorithm,
solving Equation 5.15 or 5.16 for each element of the array. This is a rather inefficient
choice, since it is easy to figure out that this leads to a O(n2) algorithm. Efficient parallel
algorithms exist and they can be mapped to a GPU implementation. Basically, there are
two algorithmic patterns to assist the operation: recursive doubling and balanced trees.
The former is O(n log(n)), while the later is O(n) but requires twice the number of steps.
Additionally, the later is said to be naturally exclusive, or in other words, produces only a
prescan. Refer to Appendix A for a complexity analysis of the algorithms.

5.1.1 Recursive Doubling Overview

Relying on the recursive doubling pattern, a parallel gather operation amongst an array
with n elements is performed in log(n) steps (DUBOIS; RODRIGUE, 1977). Each step
consists on updating a number of elements that will then be used in the next step. The
best way to introduce the algorithm is with an illustrative example, such as the one of
Figure 5.5.

Figure 5.5: An example of prefix sum using the recursive doubling pattern. At each step,
two elements are retrieved from the previous one and accumulated. The first parcel (blue
arrow) has the same index of the element currently being computed. The second parcel
(red arrow) is distanced to the former by an offset that grows as the passes are executed.
In a typical recursive doubling, the offset starts at 1 and is doubled at each step. Any
reading outside the bounds of the array is assumed to has zero value.

Figure 5.5 shows that, at each pass, all the elements of the array reads two values
from the previous pass and performs one addition operation. For a given element, the
first retrieved element has its same index (blue arrow), while the second one is distanced
to the left by an offset (red arrow). The offset increases with the passes, and when an
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offset falls out of the array, it is assumed to be zero. From the example, one can conclude
that, for some pass i, the offset is 2i−1. Another look at Figure 5.5 also suggests some
improvements. As can be seen, at each pass i, the first 2i−1 elements are already computed
and do not require to be updated anymore. Processing such elements again will only imply
in the addition of them with zero. One can then just focus on updating the remaining
n− 2i−1 elements. Figure 5.6 illustrates this.

Figure 5.6: An improved execution of the example in Figure 5.5. Only the latest elements
(blue) require to be updated, while the remaining (green) are already computed.

Typically, the recursive doubling accumulates only two elements per update (DUBOIS;
RODRIGUE, 1977; HENSLEY et al., 2005). However, the method is not tied to this as-
sumption and can be generalized to perform more accumulations per update. Accumulat-
ing k ≥ 2 elements, leads to the following:

• a total of dlogk(n)e passes

• for each pass i:

– the first ki−1 elements are already computed and are kept unchanged

– and the latest n− ki−1 elements must be updated

• for each updated element:

– a total of k elements are retrieved from the previous step

– the offset between the samples is given by ki−1

– and k − 1 addition operations are performed

From the statements above, one can conclude that a higher number for k might im-
prove the performance, since it lowers the number of steps as well as the overall number
of updated elements. However, it raises the number of reads per update and the number of
addition operations. An optimal value for k depends on the array size and on features of
the intended platform, such as the number of processors and concurrent memory access
latency.

The recursive doubling approach requires only one caution: for a given pass, all the
elements of the array must be read before they can be effectively updated; otherwise, the
output will be unstable. In parallel computing terms, this implies in a synchronization
process amongst the processors; in GPU terms, things get more complicated, as described
in Section 5.1.2. Assuming that such caution was taken, at the end of the execution of
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the algorithm the input array is replaced by its corresponding scan. Recursive doubling
can be adapted to perform a prescan instead of a scan (avoiding further conversions). For
such a goal, the first element of the input array is replaced by the neutral element and
the algorithm is kept unchanged. The complexity of the recursive doubling prefix sum
algorithm is O(n log(n)) (see Appendix A).

5.1.2 Recursive Doubling on GPU

Just as before, a GPU can accumulate results so that log(n) passes are need for a
prefix sum using the recursive doubling pattern (HENSLEY et al., 2005). However, a
GPU-based implementation requires extra caution: the input array is stored in texture
memory and it is not possible to read and write simultaneously on such memory.

The solution comes with additional memory. Using two arrays, the input and an
auxiliary one, each of them updates the required elements by retrieving data from the other
one. When a pass finishes, the two arrays are swapped and the algorithm continues. Due
to this behavior, the data stability between both arrays must be ensured before starting a
new pass. In the original approach in Section 5.1.1, the algorithm works on a single array,
and the first 2i−1 elements of a step i are simply ignored since they are already computed.
However, on a GPU implementation, both arrays must stay synchronized, otherwise the
algorithm leads to unstable results, as shown in Figure 5.7.

Figure 5.7: An example of an unstable execution of the recursive doubling on GPU. In the
beginning, just the input array has stable data (unstable data are X-valued cells). As the
passes proceed and the arrays are swapped, unstable data of the auxiliary array are mixed
with stable data, thus compromising the result. At the bottom right, the expected prefix
sum output. Values highlighted in red represent the misleading results.

To prevent data instability, some values must be copied from one array to another be-
fore the pass switching. One way to do this is to always update all the elements of the
array (recalling to a similar case to the one of Figure 5.5), which is not an attractive solu-
tion. A more efficient alternative is to identify the elements that require synchronization
and update them together with the remaining. As shown in Figure 5.8, in a given pass i,
the first b2i−2c elements are already synchronized in both arrays and the latest n − 2i−1

require update (highlighted in blue). The remaining elements (in green) then require to
be synchronized along with the updates.

Note that, a the end of the execution of the algorithm, the input array may not contain
the prefix sum. Since the arrays are swapped at each step, the last one might write to the
auxiliary one. When such happens, one can copy the latest updates to the input array. To
avoid these copies, another choice is to warn the caller that the required prefix sum lies in
another array, returning an identifier.
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Figure 5.8: A work-efficient and stable execution of recursive doubling in GPU. Elements
marked in yellow are already synchronized in both arrays and are kept unchanged. Green
elements must be updated along with the remaining (blue cells). As can be seen, the
resulting array matches with the expected at bottom-right.

The GPU implementation can also be generalized to accumulate more elements per
update. Assuming a value k ≥ 2, the summary of the algorithm is similar to the one of
Section 5.1.2, but with the following requirements:

• An additional array of size n

• Each pass i preforms a swap between the arrays, where:

– the first bki−2c elements are kept unchanged

– the latest n− bki−2c elements require update

Hensley et al. stated that the optimal value for k (in a GPU-based implementation)
is related to the context switching overhead between passes, texture fetching latency and
texture cache accuracy (since offset sizes increase exponentially) of the intended hard-
ware (HENSLEY et al., 2005).

As programmable graphics hardware continues to evolve from rendering-oriented to
a more parallel computing-oriented tasks, constraints regarding texture memory access
tend to disappear (NVIDIA Corporation, 2007). However, this is not the case yet and
the vast majority of commodity GPUs available today does not support such advanced
architectures. And even those that support require specific drivers that still behaves un-
stably. For a GPU, CUDA-based implementation of recursive doubling, refer to Harris’s
report (HARRIS, 2007).

5.1.3 Balanced Tree Overview

Blelloch presented a novel parallel algorithm to perform prescan (BLELLOCH, 1990).
A scan operation can be derived from a prescan using one of the methods described in
Section 5.1. Blelloch replaced the recursive doubling building block by a more work-
efficient one: a balanced binary tree. Basically, the input is submitted to a reduction
process and its intermediate results are used later to generate a new tree, in a bottom-up-
and-top-down fashion. The resulting leaves of the later tree correspond to a prescan array.
A binary tree with n leaves has dlog2(n)e + 1 levels, and each of its nodes can have up
to 2 children. This leads to O(n) cost for both reduction and expansion stages (refer to
Appendix A for details).

The process starts with a reduction stage, which consists on accumulating two nodes
of the previous level. The leaves of the reduction tree are nothing but the input array.
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Each level of the tree then corresponds to a set of partial sums on the input. The last level
will be a single node (the root) comprising the sum of all elements of the input array. A
complete execution of the reduction stage is illustrated in Figure 5.9.

Figure 5.9: The reduction phase of the binary balanced tree pattern. Starting from the
leaves (the input array), they are accumulated and stored in a parent node. The process
repeats until the root is generated, containing the sum of all of the elements of the input
array. The entire tree is called a reduction tree.

As for the expansion stage, the root node is replaced by the neutral element. For each
remaining level of the expansion tree, the parent’s value propagates to its left child, and
the right child is evaluated as the accumulation of the parent’s value with the value of its
left sibling node on the reduction tree. The process can be a little confusing, so a complete
execution is illustrated in Figure 5.10.

Figure 5.10: The expansion phase of the balanced binary tree pattern. The root node is
replaced by the neutral element (zero). From the root node, two new nodes are generated.
The root’s value is propagated to its left child (green arrow), while the right child is the
sum of the root’s value (orange arrow) and its left sibling (pink arrow) on the reduction
tree. The process is repeated for each intermediate node until the entire tree is produced.
The leaves of the last level comprise a prescan on the input array.

Note that Blelloch’s algorithm also requires caution. Intermediate results from the
reduction stage are used by the expansion stage and the later tree can not simply reuses
the former’s tree nodes (the later requires reading the former’s nodes, and the only excep-
tion is the root node which can be directly replaced by the neutral element). In parallel
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computing terms, this requires a synchronization process to ensure data stability. Blelloch
presented an efficient implementation of the algorithm that requires no additional mem-
ory, only the input array (BLELLOCH, 1990). Figure 5.11 illustrates the technique. In
GPU terms, however, this implies in additional memory, as usual.

Figure 5.11: A complete execution of Blelloch’s algorithm using only one array. At each
step, updates are placed in special cells (marked in colors) and it is ensured that all the
processors that are executing a step will not update their values until all of them allegedly
retrieved the required data. In the expansion phase (right), green arrows show the propa-
gated values, while orange and pink ones represents the parcels that are accumulated on
that update.

Blelloch’s algorithm is not restricted to binary trees: any tree with a maximum of k
children per node can be used. The reduction pass is straight-forward, just by accumulat-
ing k nodes from the previous level. The expansion pass is more complicated: the parent
node is propagated to the leftmost child, and each remaining child is the result of accu-
mulating the parent node with all of its left siblings on the reduction tree. Note that the
nodes of the expansion tree do not perform the same number of computation. Indexing
the children nodes of a given parent with 1 ≤ d ≤ k, from left to right, a total of d read-
ings and d− 1 operations are performed on that child. The upper bound is k readings and
k − 1 additions (the rightmost child). To summarize the method:

• Two trees with dlogk(n)e+ 1 levels each are generated

– giving a total of 2dlogk(n)e+ 1 passes (excluding the leaves when reducing)

• Each node of the reduction tree (except the leaves) performs

– a total of k readings on the previous level

– a total of k − 1 addition operations

• Each node of the expansion tree performs

– a maximum of k readings

– a maximum of k − 1 addition operations
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Just like the recursive doubling case, a higher value for k might improve the perfor-
mance, but for the same reasons, an optimal value for k is hard to define analytically.

Note that Blelloch’s algorithm produces only a prescan. When a scan is desired, it
must be derived from the prescan using one of the two methods described in Section
5.1. However, both methods require that the input be available in order to perform such
conversion. Since the algorithm destroys the input, more memory is required to keep the
input array unchanged.

5.1.4 Balanced Tree on GPU

For the same reasons of Section 5.1.2, a GPU-based implementation of the balanced
tree approach requires extra caution to preserve data stability, and this basically requires
the use of some additional textures. This Section provides some guidelines to assist a real
GPU-based implementation of Blelloch’s algorithm.

The approach requires two additional arrays, with the same size of the input one. For
the reduction stage, in the first pass, the input is reduced to one of the auxiliary arrays. In
the second pass, the remaining auxiliary array reduces the data obtained from the previous
pass, with an increasingly stride. For the remaining passes, only the auxiliary arrays are
swapped (the input is kept unchanged, since it will be required in the expansion stage), the
stride increases, and the data is reduced. The reduction phase is illustrated in Figure 5.12.

Figure 5.12: The reduction stage on a GPU implementation, using two auxiliary arrays.
In the first step, the input array is read and, in the remaining ones, only the auxiliary arrays
are used. Updates are performed as usual, but at each step, a stride is applied. Note that,
at the end of the reduction phase, some values of the arrays still contain unstable data (X
and Y-valued cells). These gaps will be filled in the expansion stage.

The expansion stage starts by replacing the root node by zero (note that due to this
replacement, the last pass of the reduction tree can be skipped). The algorithm then
continues the expansion operations, swapping the arrays at end of each step. As can be
seen in Figure 5.13, the gaps produced by the reduction stage are filled by the expansion
nodes.

The last step was omitted in Figure 5.13 and there is a reason for such. The last expan-
sion pass requires reading from both input array and the last written array. The remaining
auxiliary array reads their values and, finally, holds the prescan. This is illustrated in
Figure 5.14.

From the examples given, one should note that the last element of both auxiliary arrays
was not used. This is because a full balanced binary tree has n − 1 intermediate nodes.
However, they can not be simply removed since the last pass must have space to store all
the prefix sum elements. A possible optimization is to save memory in one of the arrays
and ensure that the last pass will write on the larger one.
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Figure 5.13: The expansion stage on GPU. First, the zero is placed in the swapped array.
At each remaining step, elements with odd indices receive a copy of their corresponding
parent node (green arrows). Even elements are the accumulation of their parent’s value
(orange arrows) with their left siblings in the reduction phase (pink arrows). Swapping
is performed at the end of each step, as usual. The last one was omitted because it is a
special case.

Figure 5.14: The last step of the expansion stage. The input array is read together with
the auxiliary one. Odd elements are propagated from their parent’s value (green arrows),
while even elements are computed as the addition of their parent’s value on the auxiliary
array (orange arrows) with their left siblings on the input (pink arrows).

Analyzing the statement above, a bigger value for k can potentially reduce the memory
usage, since less intermediate nodes are produced. Similarly to the case of the binary tree,
one of the arrays just needs to have storage for the intermediate nodes, while the other one
must have size n, thus ensuring that the last pass will write to the later. For instance, from
a given input array with size n = 25 and k = 5, a total of 6 intermediate nodes are
produced on each tree. One array of size 6 and another of size 25 are sufficient to a full
execution of the algorithm.

The algorithm’s summary is similar to the one of Section 5.1.3, with the following
additional requirements:

• An additional array with size n

• An additional array with size
∑dlogk(n)e

i=1

⌈
n
ki

⌉
• A total of 2dlogk(n)e array swappings

• For each reduction pass i:

– a stride is applied

– a total of dlogk(n)e intermediate levels are produced

– each intermediate level 1 ≤ L ≤ dlogk(n)e has
⌈
n
kL

⌉
nodes

• Expansion is similar to reduction, but removes strides and produces the leaves
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As can be seen, Blelloch’s algorithm is tricky to optimize for a GPU-based imple-
mentation. This section provided an overview on the workflow of the algorithm, but im-
provements regarding memory usage can be employed. The main drawback of Blelloch’s
algorithm is the number of swappings, the double of the required in a recursive doubling
pattern. However, it is still faster since it reduces considerably (O(log(n))) the amount of
processing. Another drawback is the need to derive the scan from the prescan.

5.2 Deriving SATs From Prefix Sum

As stated in the beginning of this chapter, a SAT can be seen as a bi-dimensional scan
operation. Relying on a scan algorithm (inclusive prefix sum), a summed-area table can
generated in two phases. First, a scan is performed on each row of the input table, as
shown in Figure 5.15:

Figure 5.15: From the input table of Figure 5.1, the first step to generate its summed-area
table is to perform a scan on each of its rows. The resulting table is said to be a partial
summed-area table.

and then another scan is applied on each resulting column, as can be see in Figure 5.16:

Figure 5.16: The full summed-area table of the input table in Figure 5.1 is generated by
applying a scan operation on each column of its partially generated one from Figure 5.15.

Similarly, one could think in scan the columns before the rows. The results are the
same, as well as the amount of computation, so the convention used is a matter of con-
venience. A more formal conclusion for this multi-step approach can be obtained by
matching Equations 5.1 and 5.15. Rearranging the order of the sums in Equation 5.1, one
has:

S(x, y) =

y∑
j=1

[
x∑
i=1

T (i, j)

]
(5.17)
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and since the sum inside the brackets is fixed to a specific row j, it reduces to an inter-
mediate set of scan operations on (horizontal) one-dimensional arrays (Equation 5.17),
conveniently expressed as:

I(x, j) =
x∑
i=1

T (i, j) (5.18)

and plugging the above expression back to Equation 5.17 gives:

S(x, y) =

y∑
j=1

I(x, j) (5.19)

and since x is now fixed and only j varies, this reduces again to another set of scan
operations on (vertical) one-dimensional arrays.

Not only prefix sums on arrays are useful to generate summed-area tables, but the
inverse process might be interesting as well, when there are restrictions concerning the
maximum size of an array. As one of the contributions of the present work, a simple
algorithm to produce the prefix sum of large input arrays is presented, using the graceful
arrangement of partially generated SATs. Details are presented in Chapter 6.

5.3 Summed-Area Table Generation on GPU

In order to generate SATs on GPU, for each pass, a screen-aligned quad is rendered.
This region must cover all pixels that require to be updated. To avoid the need of any con-
ditional statements in the shaders to deal with fetches outside the bounds of the textures,
their samplers can be set to use clamp to border color mode with the border color set to
0, or rendering a black border manually around them and activating clamp to edge mode.

Specifically for the case of the balanced tree approach, after finishing a phase, the
produced results must be converted from a prescan to a scan, and this procedure has to be
applied for both the horizontal and vertical phases. Some computational effort could be
saved if a way to directly perform a scan was available. For such a goal, a modification
on the algorithm is presented in Chapter 6.

Summed-area tables may suffer from precision constraints, since they are monotonic
functions. As the indices grows, their values grows as well, and the floating-point repre-
sentation becomes more prone to loss of precision. Artifacts start to appear when comput-
ing the difference between relatively large finite precision numbers with very close values
on the SAT, as can be seen in the middle column of Figure 5.17.

To avoid such loss of precision, Hensley et al. proposed a simple and efficient solution.
It basically consists on centering each pixel value based on the average value of the entire
image, i.e., subtracting the average of the image from each of its pixels. This modification
benefits precision in two ways: there is a 1-bit gain in precision because the sign bit now
becomes useful; and the summed-area function becomes non-monotonic, and therefore
the maximum value reached has a relatively lower magnitude (HENSLEY et al., 2005).
Results of their improvement are shown in the last column of Figure 5.17.

5.4 Discussion

Computer graphics techniques that benefits from summed-area tables tend to rely on
recursive doubling algorithms (HENSLEY et al., 2005; LAURITZEN, 2007). The rea-
sons behind the choice for such pattern by the authors remains unclear since Blelloch



53

Figure 5.17: Example of precision loss on summed-area tables. In the first column, the
original table (image). The middle column is a reconstruction of the original image using
its corresponding summed-area table. The last column is an improved reconstruction that
minimizes the precision loss. Bottom images are zoomed versions of the top images.
All SATs were built using 24-bit floats. Note that the artifacts appear in the top-right
portion of the image, instead of the bottom-right. This is because, in OpenGL, textures are
parametrized from left to right and bottom to up, so the resulting SAT is flipped vertically.
Source: (HENSLEY et al., 2005).

presented a better work-efficient algorithm in early 1990 based on a balanced tree pat-
tern (BLELLOCH, 1990).

One possibility is that recursive doubling was used since it can immediately produce a
scan, contrasting with Blelloch’s approach which only produces a prescan. Another pos-
sibility lies in the fact that Blelloch’s prescan requires more memory and more steps in a
GPU-based implementation. However, these facts do not justify their decisions, since a
balanced tree prefix sum computes O(log(n)) less elements than recursive doubling. Ac-
tually, neither Hensley et al. nor Lauritzen mention the existence of Blelloch’s algorithm
or any related work (HENSLEY et al., 2005; LAURITZEN, 2007).

It seems that only recently Blelloch’s prescan algorithm was used in computer graph-
ics, being introduced by researchers working on GPGPU (SENGUPTA; LEFOHN; OWENS,
2006; SENGUPTA et al., 2007), and in CUDA (HARRIS, 2007). Harris also presented
implementations for recursive doubling and enforced the superiority of the balanced-tree
approach (HARRIS, 2007).

Harris provided an API on CUDAPP to perform multi-scan, so that it can be used
to generate SATs (HARRIS, 2007; HARRIS et al., 2008), but it also requires to lately
convert them from a prescan to a scan. Also, his multi-scan algorithm is designed to deal
with horizontal arrays only. For the summed-area table case, after the first multi-scan on
its rows, there is a need to rearrange the resulting columns in rows, performs the second
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multi-scan, and then rearrange them back to the original placement. Unfortunately, Harris
did not provided results for the summed-area table case on his work (HARRIS, 2007).

One contribution of this work is an alternate method to perform scan operations on the
balanced tree pattern without the need of deriving them from a prescan ones. Although
it does not reduces the overall complexity, it can save some computation and improve
performance. Details of these novel approaches are available in Chapter 6.
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6 IMPROVEMENTS ON PREFIX SUM ALGORITHMS

This chapter introduces an improvement to the balanced tree approach for prefix sum.
It basically consists in an alternate way to produce a scan without the need of deriving it
from a prescan. This improvement can benefit existing techniques that rely on summed-
area tables or prefix sum, including the proposed approximation for the photographic tone
reproduction operator, presented in Chapter 7. This chapter also introduces an alternate
method to generate prefix sums for large arrays, derived from partially generated summed-
area tables. This is useful when constraints are imposed on the maximum size of the input
array.

6.1 Addendum

The improvement to the balanced tree algorithm for prefix sums described in Sec-
tion 6.2, although initially thought to be a novel, efficient approach to the problem, was
later found to be analogous to a procedure already available in the literature. Unfortu-
nately, it was not possible to track the proper reference to this publication, but a photo-
copy of the document follows attached to this thesis in Appendix D. This fact was only
noticed after the results of the thesis were already officially presented to and evaluated by
the examination committee.

In short, the reduction stage is identical for both strategies, diverging only during the
expansion stage. While the proposed approach (Section 6.2) performs subtractions over
the partial sum sets originated from the reduction stage, the algorithm in Appendix D
guides the expansion stage by performing additions over the same partial sum sets. The
net result, algorithm complexity, number of read/write and arithmetic operations, how-
ever, remain the same.

Curiously, further investigations have shown that the proposed algorithm (Section 6.2)
tends to run slightly faster than a GPU-based implementation of the approach described
in Appendix D. However, such performance gain is only marginal, thus there are no clear
advantages in favoring one algorithm over the other.

Interesting enough, the technique described in Appendix D can be seen as a particular
implementation of the algorithm presented by Meijer and Akl (MEIJER; AKL, 1987).
The latter produces optimal-prefix sums through a hierarchy of intercommunicating pro-
cessors, while the former adapts this processor topology to a more robust pool of indepen-
dent processors that share memory; the same topology used by Blelloch (BLELLOCH,
1990). It is also worth noting that Meijer and Akl’s method predates Blelloch’s algorihtm,
even though no reference is made by Blelloch to the Meijer and Akl’s work.

The remainder of the contents of this Chapter will provide an in-depth, illustrative
description of the initially proposed algorithm only. Nevertheless, the information accu-
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mulated in the following pages can be browsed as a reference to understand the opera-
tional semantics behind the already available, but rather unknown algorithm described in
Appendix D.

6.2 Moving from a Balanced Tree Prescan to a Scan

Blelloch’s algorithm (BLELLOCH, 1990) can be easily modified to perform a scan
instead of a prescan. The proposed algorithm works for the addition operator, although
it might work for other associative operators that happen to have inverse operators with
the same neutral element. This work does not provides a formal proof for this conjecture.

Figure 6.1: The reduction phase is as usual. As for the expansion, the root node is replaced
by the root node of the reduction tree. From the expansion’s root node, two new nodes
are generated. The root’s value is propagated to its right child (green arrow), while the
left child is the subtraction of the root’s value (orange arrow) with its right sibling (pink
arrow) on the reduction tree. The process is repeated for each generated node until the
entire tree is generated. The leaves of last level comprises a scan on the input array.

The reduction stage is performed as usual. However, the root element remains as the
sum of the input array and is not replaced by the neutral element. The expansion stage
then propagates the parent node to its rightmost child. Each remaining children is then
evaluated as the subtraction of the parent node with all of its right siblings in the reduction
tree. Figure 6.1 illustrates the steps of the algorithm.

Now, for the GPU case, reduction is performed as described in Section 5.1.4 (however,
its last pass can not be skipped, since the entire sum is required in the expansion stage).
For convenience, a copy of Figure 5.12 is reproduced in Figure 6.2.

The expansion stage is similar, but instead of replacing its root node by zero, it is
replaced by a copy of the root node of the reduction tree. As for the remaining, the parent’s
value is propagated to the right child, and the left child is the result of the parent’s value
minus its right sibling’s value from the reduction tree, as show in Figure 6.3.

The last expansion pass is performed just like before, reading both the input array
and an auxiliary one, writing the results in the remaining auxiliary array, as illustrated in
Figure 6.4.

With this simple procedure, one can avoid the need of converting a prescan to a scan.
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Figure 6.2: The reduction stage on a GPU implementation is the same exemplified in
Figure 5.12. However, in order to perform a scan, the last pass can not be skipped.

Figure 6.3: The expansion stage in GPU is similar to the one of Figure 5.13. However,
instead of replacing the expansion tree root node by zero, it is replaced by a copy of the
reduction tree root node. At each remaining pass, elements with even indices receive a
copy of their corresponding parent node (green arrows). Odd elements are the result of
their parent’s value (orange arrows) subtracting their right siblings in the reduction phase
(pink arrows).

Recall that, in a summed-area table, such conversions happens to both rows and columns,
requiring two additional steps over its entire area. Although it is a simple modification,
no reference for such a procedure was found in the literature. Like the original algorithm
of the Section 5.1.3, this new method is not restricted to binary trees and can be extended
for any k ≥ 2.

Results from recursive doubling (RD), balanced tree (BT) and the proposed improve-
ment (BT*) on the balanced tree are shown in the following tables. Such tables provides
the time to generate a full summed-area table (in milliseconds) in a GeForce FX5200, a
GeForce 6800GT and a GeForce 8800GTX, respectively (see the top-row of each table).
All computers were running Windows XP Professional with Service Pack 2, the latest
NVIDIA drivers (169.21 WHQL) and OpenGL 2.1.2. As for the shaders, they were de-
veloped in NVIDIA Cg, and the runtime version used was Cg 2.0 (January 2008). The
overall speedup of the proposed improvement is about 2.7 times when compared with
recursive doubling, and 1.4 times when compared with the traditional balanced tree with
conversions from prescan to scans.

The main bottleneck in the performance is caused by the amount of context switch-
ing required for the multi-stage approach of the summed-area table generation. For such
a reason, the balanced tree approach tends to have lower performance on small images,
since it performs twice the number of context switching than recursive doubling. Note
that the proposed balanced tree (BT*) algorithm significantly improves the overall perfor-
mance when compared to the traditional approach that requires conversion from a prescan
to a scan (BT).
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Figure 6.4: The last step of the expansion stage in GPU is similar to the one of Figure 5.14.
The input array is read together with the auxiliary one. Even elements are propagated from
their parent’s value (green arrows), while odd elements are computed as the subtraction
of their parent’s value on the auxiliary array (orange arrows) with their right siblings on
the input (pink arrows).

FX5200 Time (ms)
image size k=2 k=3 k=4 k=5 k=6 k=8

RD 4.172 4.720 5.046 6.213 5.801 7.646
128x128 BT 6.385 5.977 5.936 6.155 6.646 7.228

BT* 4.514 3.982 4.067 4.276 4.702 5.298
RD 18.238 21.595 20.572 24.605 29.687 30.096

256x256 BT 16.191 16.905 17.512 19.419 20.700 24.073
BT* 11.810 12.504 13.028 14.908 16.486 19.741
RD 37.984 39.146 44.792 46.714 55.173 56.446

400x300 BT 29.440 29.388 30.841 33.003 36.182 42.043
BT* 22.086 21.891 23.692 25.423 28.713 34.260
RD 86.825 87.630 100.635 103.763 122.883 126.709

512x512 BT 61.365 63.564 66.969 72.698 78.429 90.878
BT* 44.795 47.052 49.808 55.941 62.170 74.923
RD 104.075 102.197 117.050 133.612 143.003 167.199

640x480 BT 69.599 71.110 73.669 79.965 89.281 102.190
BT* 52.974 53.538 57.305 63.551 71.985 85.494
RD 173.848 174.851 187.212 214.230 229.859 296.214

800x600 BT 111.439 109.717 115.687 127.208 139.632 161.861
BT* 85.819 84.899 89.518 101.803 113.660 136.750
RD 301.383 309.596 314.886 389.801 386.764 499.813

1024x768 BT 198.989 198.211 211.684 228.001 242.267 284.121
BT* 137.019 139.190 150.716 165.457 181.608 223.527
RD 398.329 422.940 421.657 523.650 523.215 667.012

1024x1024 BT 266.042 276.124 293.529 315.354 334.954 380.918
BT* 181.540 196.563 211.854 233.648 251.439 296.819
RD 563.628 562.069 614.966 712.459 700.383 887.591

1280x1024 BT 296.262 293.702 308.499 338.993 372.071 432.453
BT* 234.464 228.797 246.796 274.688 307.084 367.447

Table 6.1: Performance results for summed-area table generation from a GeForce FX5200
with 128MB RAM installed on an AGP bus of an AMD Athlon Thunderbird 1.4GHz CPU
with 256MB RAM.
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6800GT Time (ms)
image size k=2 k=3 k=4 k=5 k=6 k=8

RD 9.841 7.406 7.447 7.446 7.309 7.405
128x128 BT 26.819 24.199 21.818 22.227 22.270 21.055

BT* 14.915 12.215 10.028 9.958 9.464 9.119
RD 10.364 7.932 7.808 8.054 8.269 6.056

256x256 BT 27.891 24.791 22.954 22.354 23.523 20.474
BT* 15.354 12.664 10.282 10.413 10.447 8.302
RD 10.502 8.461 8.729 8.753 9.141 9.182

400x300 BT 29.388 26.341 23.800 23.977 23.201 21.702
BT* 16.131 13.141 10.864 10.861 10.925 8.879
RD 13.107 9.888 10.551 10.618 11.429 11.448

512x512 BT 30.750 25.743 24.844 25.571 25.923 24.097
BT* 16.798 12.739 11.725 12.032 12.155 11.165
RD 13.727 10.489 11.130 11.754 12.167 13.067

640x480 BT 31.366 26.594 25.789 26.369 26.434 26.684
BT* 17.452 12.475 12.157 12.558 12.492 13.464
RD 16.352 12.718 13.342 14.297 14.932 17.574

800x600 BT 33.455 28.161 28.403 28.474 28.084 30.672
BT* 18.865 14.050 13.250 14.127 14.048 15.515
RD 21.599 16.776 17.202 19.878 19.834 24.188

1024x768 BT 37.391 33.410 32.287 32.630 33.251 35.156
BT* 20.948 17.274 15.355 16.601 16.754 19.257
RD 25.599 20.403 20.471 24.198 23.994 29.827

1024x1024 BT 41.110 37.832 34.530 36.958 36.840 39.964
BT* 22.298 19.011 17.005 18.685 18.913 22.308
RD 65.919 51.634 66.189 69.605 65.142 79.610

1280x1024 BT 63.831 57.216 57.867 63.631 63.690 71.413
BT* 38.004 30.302 31.801 36.393 36.929 44.354
RD 106.649 80.298 89.866 89.921 94.824 106.335

1600x1200 BT 81.330 74.925 73.797 81.175 82.709 93.992
BT* 48.546 42.065 42.194 48.319 49.734 60.422
RD 111.356 116.923 122.770 128.908 135.353 149.227

2048x2048 BT 108.068 113.227 112.040 115.456 119.740 123.664
BT* 69.570 71.657 73.807 76.021 78.301 83.070

Table 6.2: Performance results for summed-area table generation from a GeForce 6800GT
with 256MB RAM installed on an AGP bus of an Intel Pentium 4 2.8GHz CPU with 1GB
RAM.
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8800GTX Time (ms)
image size k=2 k=3 k=4 k=5 k=6 k=8

RD 2.846 2.732 2.814 2.669 2.647 2.348
128x128 BT 6.927 6.393 6.349 6.493 6.561 6.398

BT* 2.994 2.506 2.138 2.427 2.677 2.359
RD 1.705 1.687 1.682 1.531 1.527 1.303

256x256 BT 7.412 6.915 6.937 6.706 6.330 6.113
BT* 3.163 2.876 2.734 2.502 2.244 1.843
RD 2.870 3.067 2.610 2.663 2.445 1.414

400x300 BT 10.139 9.432 9.476 8.996 8.778 8.223
BT* 4.806 4.025 3.999 3.755 3.491 3.030
RD 3.299 2.930 2.971 3.480 3.510 4.012

512x512 BT 9.595 9.356 9.196 8.675 7.889 8.673
BT* 3.933 3.623 3.518 3.026 2.119 2.699
RD 3.464 3.126 3.071 3.270 3.666 4.232

640x480 BT 7.759 5.886 5.812 5.333 6.223 6.182
BT* 4.199 3.255 3.132 2.838 2.773 2.869
RD 5.326 6.015 6.076 6.251 6.371 6.897

800x600 BT 5.964 4.818 4.712 4.769 4.780 8.891
BT* 3.061 1.953 1.770 1.943 1.838 6.000
RD 7.559 5.495 5.596 5.805 5.577 6.099

1024x768 BT 9.241 8.268 8.099 6.427 6.443 7.391
BT* 5.642 4.559 4.252 2.914 2.924 3.602
RD 6.098 5.974 5.809 6.108 6.618 8.257

1024x1024 BT 5.270 5.380 5.402 5.351 5.456 5.660
BT* 2.920 3.040 2.968 2.999 3.194 3.366
RD 6.373 6.368 6.636 7.687 8.139 8.572

1280x1024 BT 5.809 5.728 5.272 5.574 6.082 6.176
BT* 3.626 3.626 3.123 3.393 3.970 4.026
RD 10.753 9.591 13.213 14.070 14.156 16.077

1600x1200 BT 8.250 6.872 6.439 6.888 7.474 7.234
BT* 5.034 4.402 5.446 5.229 5.865 6.112
RD 24.173 24.630 27.258 30.664 34.477 36.559

2048x2048 BT 27.218 27.029 30.361 35.597 35.990 36.789
BT* 7.290 7.040 11.710 16.241 16.788 16.981
RD 86.159 88.056 88.502 110.566 115.983 118.023

4096x4096 BT 57.156 61.349 63.148 67.281 73.849 77.548
BT* 26.549 28.549 30.460 36.264 43.693 45.887

Table 6.3: Performance results for summed-area table generation from a GeForce
8800GTX with 768MB RAM installed on an AGP bus of an AMD Athlon XP 64-bit
2.21GHz CPU with 2GB RAM.
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6.3 Deriving Large Prefix Sums From SATs

It is known that a prefix sum can assist the generation of a summed-area table. Ad-
ditionally, a partially generated summed-area table can be used to produce a prefix sum.
Such procedure is interesting when there are constraints regarding the maximum size of
the input array. Current GPU technology does not allow 1D texture with more than 8192
texels, but a 2D texture can have up to 8192× 8192 texels.

Harris also suffered from such limitation on his CUDA implementation (HARRIS,
2007). The array size is limited due to the number of computation allowed in a single
thread block. In his work, he used only binary trees (k = 2), leading to a limit of 1024
elements. If he has used a larger value for k, the number of additions would have grow as
well, reducing even more the maximum size of the array. He surpassed this limitation by
dividing the large array into smaller ones. A scan operation is performed on each of these
smaller arrays, individually. The resulting sums (the last element of the scan) are placed
in a new array and another scan operation is performed (a superscan). Each partial scan is
then visited again, accumulating to its cells an appropriate element of the superscan. Note
that Harris performs prescans and they must be converted into scans for the algorithm to
work properly. Such conversions could be avoided using the algorithm proposed in the
previous section.

The proposed method is similar to Harris’ approach, but it has no constraints regard-
ing the choices for k. The only one is related to the maximum texture size allowed by
the hardware (as well as the maximum viewport size). First, the input array must be ar-
ranged in a matrix that can hold all of its elements (and respects any imposed dimension
constraints). For a given input array A with size n, and a matrix M with h rows and
w columns, a mapping of an index i on the array to its corresponding matrix row y and
column x can be expressed as follows:

i = (y − 1) · w + x (6.1)

x = mod(i, w) + 1 (6.2)

M(x, y) =

⌈
i

w

⌉
(6.3)

where mod(a, b) is the remainder of the division of a by b. With such parametrization, its
corresponding matrix is defined as:

E(x) =

{
A(i) if 1 ≤ i ≤ n
ω if (n+ 1) ≤ i ≤ (w · h) (6.4)

and automatically deals with padding, required in some arrangements, using the neutral
element ω of the scan operation.

From such matrix, a scan operation is performed on each of its rows, generating a
partial summed-area table. At this point, instead of repeating the scan process to all of its
columns, only the last column is used. After this isolated scan operation (superscan), each
cell of the partially generated SAT is accumulated with its corresponding predecessor row
on the superscan. A complete execution of the algorithm is shown in Figure 6.5.

One can then use the same parametrization of Equations 6.1, 6.2 and 6.3 to perform
operations on the array using its matrix representation without the need of fetching the
entire matrix and building a new array. Table 6.4 compares the results of the technique
described above with the ones obtained using Harris’s method in CUDA. Speedup starts
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Figure 6.5: Generating a prefix-sum of a large arrays using summed-area tables. First, the
array is decomposed in a matrix (table) and a scan operation is applied to all of its rows,
resulting in a partial-summed area table. Next, only the last resulting column is submitted
to another scan operation. The resulting column (superscan) is the accumulated with the
entire partial SAT.

to appear only on the bigger arrays, but Harris’s approach generates only a prescan (HAR-
RIS, 2007). Times are given in milliseconds, corresponding to executions on a GeForce
8800GTX. For the proposed technique results, the optimal value for k from Table 6.3 was
used.

Time (ms)
array size HARRIS, 2007 Partial SAT

65536 0.137006 0.834288
262144 0.326900 1.056221

1048576 1.118091 1.359830
4194304 4.062923 3.810231

16777216 15.854781 13.738720

Table 6.4: Comparative results of Harris’s method and the proposed approach to generate
prefix-sum of large arrays. Performance was measured using a GeForce 8800GTX with
768MB RAM. Note that the performance of the proposed technique tends to loose to
Harris’s method for some array sizes. This is because of the context switching overhead
between the auxiliary textures.
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7 PHOTOGRAPHIC OPERATOR WITH SUMMED-AREA
TABLES

This chapter presents a novel technique to approximate the Reinhard et al.’s photo-
graphic tone reproduction operator on GPU (REINHARD et al., 2002). The results are
very similar to the ones obtained using a software-based implementation of the local oper-
ator but the presented technique is significantly faster than previous GPU implementations
of the algorithm, making it suitable for real time applications. The proposed approach is
based on the following key observations:

• Reinhard et al. used normalized differences of Gaussian-filtered luminance images
to identify the largest approximately isoluminant region around each pixel (REIN-
HARD et al., 2002). This is performed by checking whether these normalized dif-
ferences are smaller than a specified threshold. Note that the actual (approximately)
isoluminant region around a pixel can have arbitrary shapes, whereas the used Gaus-
sian kernels are rotationally symmetric and do not perfectly fit these regions. Thus,
the algorithm computes an approximate scale for each region. Similar results can
be obtained using normalized differences of box-filtered luminance images;

• Since a convolution with a box filter is just an average over a rectangular region,
it can be efficiently implemented using a summed-area table (CROW, 1984), for a
fraction of the cost of a Gaussian convolution. Compared to the approach described
by Goodnight et al. (GOODNIGHT et al., 2003), the proposed technique achieves
an average speedup of about five to ten times, while producing very similar results.
Compared with Krawczyk et al.’s approximation (KRAWCZYK; MYSZKOWSKI;
SEIDEL, 2005), the speedup achieved with the proposed technique is about three
times, lowering the memory requirements, and also significantly reducing the oc-
currence of halo artifacts that Krawczyk et al.’s technique may introduce.

7.1 Method Overview

The most computationally expensive operation of the local photographic operator is
the evaluation of the Gaussian-filtered images, used in Blommaert and Martens’ model
for brightness perception (BLOMMAERT; MARTENS, 1990; REINHARD et al., 2002).
To accelerate the convolutions, the proposed approximation replaces the Gaussian kernels
from Equation 4.9 with box kernels, as below:

V (x, y, s) = Lr(x, y)⊗BOX(x, y, s) (7.1)

where ⊗ is the convolution operator and BOX(x, y, s) is a box-kernel with scale s.
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Such replacement is plausible for the operator since it does not display the filtered
images; instead, it evaluates differences on the Gaussian hierarchy to find the largest
region for which no sudden luminance variation occurs (the optimal measurement of the
local contrast for a given pixel). Using summed-area tables, such regions can be filtered
much faster than the original Gaussian-filtered ones.

A box-filter can effectively perform this task as well, but since it weights the contribu-
tions of all pixels in the neighborhood equally, the tone-mapped images produced might
be more prone to halo artifacts than the ones produced with Gaussian-filters of the same
scale. Fortunately, it is possible to minimize their occurrence by reducing the threshold
used to estimate the local contrast. However, even with the same threshold of ε = 0.05,
results are similar to the ones produced with the original operator.

A summed-area table is then generated from the relative luminance image from Equa-
tion 4.6. Once it is ready, it can be used to filter rectangular regions on it, centered on
arbitrary pixels. Moreover, the cost to evaluate a higher scale is the same as a smaller one,
since filtering on a SAT has cost O(1).

The resulting images of this approximation reduce the occurrence halos artifacts that
Krawczyk et al.’s method tends to introduce (KRAWCZYK; MYSZKOWSKI; SEIDEL,
2005). Additionally, the proposed technique is approximately three times faster than
Krawczyk et al.’s algorithm. When compared to Goodnight et al.’s results, the approxi-
mation is not restricted to a small number of adaptation zones to run at interactive rates,
since the cost to evaluate the filtering is constant. In this case, the speedup is about ten
times (GOODNIGHT et al., 2005). Quality comparison with these techniques is available
in Section 7.4.1. Performance is discussed in Section 7.4.2. A complete description of
the workflow of the proposed method is available in Section 7.4.

7.2 Box-filter: Mip-Map versus SAT

Together with summed-area tables, mip-mapping also provides a fast way to perform
box-filtering. However, the latter does not center the filtering kernel at the individual
pixels, leading to excessive blurring across high-contrast edges, preventing an accurate
estimation of the local contrast, thus potentially introducing halos artifacts. Examples of
box-filtering using SAT and Mip-Map are illustrated in Figure 7.1.

Figure 7.1: The original image (left) is submitted to a box-filter of radius 10 using mip-
mapping (middle) and summed-area tables (right). Note that mip-mapping does not center
the convolution in arbitrary pixels.
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7.3 Precision Constraints

As mentioned in Section 5.3, summed-area tables may suffer from lack of precision,
and when used with HDR content, this issue becomes more relevant. Due to the nature
of HDR images, some pixels can have high intensity values, while others can have very
low ones. When such pixels are close to each other, a summed-area table can suffer from
several precision problems. In the proposed technique, a summed-area table is generated
for the relative luminance image (Equation 4.6), which has lower values than the original
luminance. However such compression might not mitigate the lack of precision. When
this happens, loss of precision can not be simply ignored since it can potentially introduce
artifacts as the ones shown in Figure 7.2.

Figure 7.2: On the left, a zoomed version of the Nave image, with marks to show the
luminances at the window and internal wall. On the right, the tone-mapped image using
the SAT-based approximation without caring with precision problems.

To avoid such loss of precision, the solution proposed by Hensley et al. was em-
ployed (HENSLEY et al., 2005) and effectively removed the artifacts, as presented in
Section 5.3. The process requires two additional stages before the SAT can be effectively
generated. The first one is to produce the mip-map levels of the relative luminance texture
in order to retrieve its average value. The second one consists on subtracting this average
from all pixel values. The remaining of the method is kept unchanged, only being careful
to decode the values when fetches on the summed-area table are performed. These two
extra steps introduce small additional computational effort when compared to the time
required to generate the SAT.

7.4 The Local Photographic Operator Using SAT

As mentioned in Section 4.6, the key value L̃ of an input image I can be obtained
using mip-mapping, followed by an exponentiation. For such, the corresponding log-
luminance image, Llog of I , is obtained by evaluating the log(L(x, y) + δ) (Equation 4.5)
for each of its pixels. An example of such log-luminance image is shown in Figure 7.3
(right).

FromLlog (Figure 7.3, right), all of its mip-map levels are generated. The last mip-map
level holds the averaged sum of Equation 4.5 (but still without the exponential function).
The mip-map levels from the log-luminance image from Figure 7.3 (right) are illustrated
in Figure 7.4.

To obtain the key value L̃ of the image I , the exponential function is applied to the
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Figure 7.3: The input HDR RGB image (left), followed by its corresponding luminance
image (middle), accordingly to Equation 4.2, and the log-luminance image (right).

Figure 7.4: The mip-map levels of the log-luminance image Llog. The single texel of the
last mip-map level is the averaged sum of Equation 4.5, but still without the exponential
function.

single texel of the last mip-map level of Llog. The result of this operation is equivalent to
the entire expression in Equation 4.5. With the key value, L̃, the relative luminance image
Lr can be generated, according to Equation 4.6. Figure 7.5 shows the resulting relative
luminance image Lr of the input image I from Figure 7.3.

Figure 7.5: The relative luminance image, obtained using Equation 4.6.

As described in Section 7.1, from this point, a summed-area table can be generated
from Lr. However, to avoid the precision problems discussed in Section 7.3, the rela-
tive luminance image Lr is submitted to a new mip-mapping process. The same texture
memory from the previous mip-map of Llog can be used. The resulting texel of the last
mip-map level will then store the average intensity Lr of the entire relative luminance
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image Lr. Figure 7.6 illustrates the mip-map levels produced from the relative luminance
image from Figure 7.5.

A new pass over the relative luminance image Lr is performed, subtracting from each
of its pixels the average value Lr, producing a new image Lrsub. Figure 7.7 illustrates
the resulting pixel’s subtraction from Figure 7.5 according to its average value (the last
mip-map level from Figure 7.6).

Figure 7.6: The mip-map levels of the relative luminance image Lr. The single texel of
the last mip-map level is the average Lr of the entire relative luminance image.

Figure 7.7: The relative luminance image Lr from Figure 7.5 subtracted from its average
Lr (the single texel of the last mip-map level from Figure 7.6).

A summed-area table is then produced from the subtracted image Lrsub (Figure 7.7),
mitigating possible precision constraints. Once the SAT is ready, the tone-mapping stage
can finally start.

For each pixel, the box-filtered values for the required scales, V (x, y, s), from Equa-
tion 7.1), are obtained by fetching their corresponding key cells (A, B, C and D) on the
SAT, as defined in Section 5.2. It is important to remember to add Lr back after filtering,
since the SAT was generated from Lrsub. Figure 7.8 shows the filtered relative luminance
images V (x, y, s) for each required scale.

The normalized differences are evaluated as originally defined in Equation 4.11 (Fig-
ure 7.9). When the largest scale smax for each pixel is found (satisfying Equation 4.12),
it is used to estimate the measurement of local contrast of that pixel (V (x, y, smax)). Fig-
ure 7.10 shows the largest scale smax for each pixel (White means bigger neighborhood)
and its corresponding estimation of local contrast, V (x, y, smax).
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The measurement of local contrast V (x, y, smax) is used to perform the luminance
compression, resulting in normalized displayable intensity Ld, according to Equation 4.8.
The last step then scales the original HDR color components using the compressed lumi-
nance Ld, as described in Equation 4.3, with L′ = Ld. The resulting image is then the
tone-mapped version of the input image I . Figure 7.11 shows a comparison between the
tone-mapped image using the original operator (left) and the approximation described in
this section (right).

Figure 7.8: The relative luminance image filtered at different scales (adaptation zones),
obtained using box-filtering (Equation 7.1). The kernel sizes are the same from Figure 7.8.



69

Figure 7.9: The seven normalized differences of the adaptation zones from Figure7.8,
accordingly to Equation 4.11.

Figure 7.10: The representation of the size of the maximum approximately isoluminant
neighborhood of each pixel (smax). White means bigger neighborhood. The image on the
right shows the estimated local contrast of each pixel (V (x, y, smax)). This values will
be used to perform dynamic range compression (Equation 4.8). Results obtained using
box-filtering, according to the images from Figure 7.8 and 7.9. Note the similarities with
the ones using Gaussian filters from Figure 4.10.
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Figure 7.11: A comparison between the result produced by the original operator (left),
which uses Gaussian-filtering, and the proposed approximation which uses box-filtering
(right). Note that the approximated result is very similar to the original one.

7.4.1 Image Quality Comparison

Although Goodnight et al’s method can reproduce the same results of the Reinhard et
al.’s technique (GOODNIGHT et al., 2003; REINHARD et al., 2002), it does not run at
interactive rates when using more than two adaptation zones for current display resolu-
tions. Krawczyk et al.’s method introduces noticeable halos due to the excessive blur on
the relative luminance filtered images (KRAWCZYK; MYSZKOWSKI; SEIDEL, 2005).
In the proposed technique, the occurrence of halos is minimized, since the filtering for
each scale is centered at each pixel. Compared with existing GPU implementations, the
proposed technique produces better results.

The use of the threshold 0.025 < ε < 0.05 can make some difference for certain im-
ages. Figures 7.12 and 7.13, compare the quality of the results produced by the proposed
technique and by Krawcyzk et al.’s approach, using the S-CIELAB color difference met-
ric described in (ZHANG et al., 1997). The S-CIELAB is a spatial extension to the CIE
L*a*b* DeltaE color difference metric that incorporates the pattern-color sensitivity mea-
surements by Poirson and Wandell (ZHANG et al., 1997). In these error images, white
means bigger error.

Figures 7.14 to 7.22 provide illustrative comparisons between the original local photo-
graphic operator (left) (REINHARD et al., 2002), Krawczyk et al.’s approximation (mid-
dle) (KRAWCZYK; MYSZKOWSKI; SEIDEL, 2005), and the proposed SAT-based ap-
proximation presented in this thesis (right). For all these images, ε = 0.05 was used.
Krawczyk et al.’s method potentially introduces noticeable halos. The proposed approx-
imation is less prone to such artifacts and the achieved image quality is very similar to
the original local photographic operator. Note the occurrence of halos in Krawczyk et
al.’s results. Figure 7.23 shows additional results of images processed with the proposed
approximation of the photographic operator.
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Figure 7.12: Comparison of the results produced by Krawczyk et al.’s and the proposed
technique, using ε = 0.05. Top row: tone-mapped image using Reinhard et al. original
operator (left); Krawczyk et al.’s technique (middle), and the proposed method (right).
Bottom row: the respective per-pixel perceptual error computed with the S-CIELAB color
difference metric, using the result from the original operator as reference. White means
bigger errors.

Figure 7.13: Comparison of the results produced by Krawczyk et al.’s and the proposed
technique, using ε = 0.025. Top row: tone-mapped image using Reinhard et al. original
operator (left); Krawczyk et al.’s technique (middle), and the proposed method (right).
Bottom row: the respective per-pixel perceptual error computed with the S-CIELAB color
difference metric, using the result from the original operator as reference. White means
bigger errors.
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Figure 7.14: Image quality comparison between the original Reinhard et al.’s local op-
erator (left), Krawczyk et al.’s approximation (middle), and the proposed approximation
described in this thesis (right). For all images, ε = 0.05. Dynamic range of the input
image: 106 : 1.

Figure 7.15: Image quality comparison between the original Reinhard et al.’s local op-
erator (left), Krawczyk et al.’s approximation (middle), and the proposed approximation
described in this thesis (right). For all images, ε = 0.05. Dynamic range of the input
image: 109 : 1.

Figure 7.16: Image quality comparison between the original Reinhard et al.’s local op-
erator (left), Krawczyk et al.’s approximation (middle), and the proposed approximation
described in this thesis (right). For all images, ε = 0.05. Dynamic range of the input
image: 1010 : 1.
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Figure 7.17: Image quality comparison between the original Reinhard et al.’s local op-
erator (left), Krawczyk et al.’s approximation (middle), and the proposed approximation
described in this thesis (right). For all images, ε = 0.05. Dynamic range of the input
image: 109 : 1.

Figure 7.18: Image quality comparison between the original Reinhard et al.’s local op-
erator (left), Krawczyk et al.’s approximation (middle), and the proposed approximation
described in this thesis (right). For all images, ε = 0.05. Dynamic range of the input
image: 105 : 1.

Figure 7.19: Image quality comparison between the original Reinhard et al.’s local op-
erator (left), Krawczyk et al.’s approximation (middle), and the proposed approximation
described in this thesis (right). For all images, ε = 0.05. Dynamic range of the input
image: 106 : 1.
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Figure 7.20: Image quality comparison between the original Reinhard et al.’s local op-
erator (left), Krawczyk et al.’s approximation (middle), and the proposed approximation
described in this thesis (right). For all images, ε = 0.05. Dynamic range of the input
image: 1010 : 1.

Figure 7.21: Image quality comparison between the original Reinhard et al.’s local op-
erator (left), Krawczyk et al.’s approximation (middle), and the proposed approximation
described in this thesis (right). For all images, ε = 0.05. Dynamic range of the input
image: 1011 : 1.

Figure 7.22: Image quality comparison between the original Reinhard et al.’s local op-
erator (left), Krawczyk et al.’s approximation (middle), and the proposed approximation
described in this thesis (right). For all images, ε = 0.05. Dynamic range of the input
image: 1012 : 1.
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Figure 7.23: Additional examples of tone-mapped images using the proposed approxima-
tion of the local photographic operator. Dynamic range of the input images are, 1011 : 1,
109 : 1 and 107 : 1, respectively.

7.4.2 Performance Comparison

The proposed approximation described in this Chapter is significantly faster than pre-
vious GPU implementations of the same operator. The performance results were mea-
sured using the improved balanced tree algorithm described in Section 6.1, with the best
values for k, according to the Tables 6.1, 6.1 and 6.1. The computer configurations for
each graphics card are the same from the ones of Section 6.1.

Krawczyk et al.’s approximation (KRAWCZYK; MYSZKOWSKI; SEIDEL, 2005) is
about four times faster than Goodnight et al.’s approach (GOODNIGHT et al., 2003). For
such reason, the performance measurements of Table 7.1 compare the proposed technique
results only with Krawczyk et al.’s approach. The approximation described in this chapter
achieves a speedup of about three times in a GeForce 8800GTX, when compared with
Krawczyk et al.’s approximation (KRAWCZYK; MYSZKOWSKI; SEIDEL, 2005).

Krawczyk et al.’s method (KRAWCZYK; MYSZKOWSKI; SEIDEL, 2005) requires
five textures of 1-channel each, with the same dimensions of the input image. The pro-
posed technique described in this thesis requires only 2 and 1/3 (2 full-sized textures for
the balanced tree scan and 1/3 to store the required mip-map levels). Also note that as k
becomes higher, the texture size of one of the auxiliary textures lowers (Section 5.1.4).
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FPS speedup
SAT-based KRAWCZYK, 2007

FX5200 62 34 1.823529
128x128 6800GT 41 32 1.281250

8800GTX 186 114 1.631579
FX5200 17 12 1.416667

256x256 6800GT 40 32 1.250000
8800GTX 174 79 2.202532

FX5200 10 5 2.000000
400x300 6800GT 37 29 1.275862

8800GTX 172 67 2.567164
FX5200 5 2 2.500000

512x512 6800GT 31 23 1.347826
8800GTX 168 59 2.847458

FX5200 4 2 2.000000
640x480 6800GT 28 22 1.272727

8800GTX 145 56 2.589286
FX5200 3 1 3.000000

800x600 6800GT 25 18 1.388889
8800GTX 152 51 2.980392

FX5200 2 1 2.000000
1024x768 6800GT 20 14 1.428571

8800GTX 145 50 2.900000
FX5200 1 1 1.000000

1024x1024 6800GT 17 14 1.214286
8800GTX 163 45 3.622222

1280x1024 6800GT 12 6 2.000000
8800GTX 149 41 3.634146

1600x1200 6800GT 10 3 3.333333
8800GTX 94 35 2.685714

2048x2048 6800GT 4 3 1.333333
8800GTX 77 17 4.529412

4196x4196 8800GTX 13 3 4.333333

Table 7.1: Performance results of the SAT-based approximation for the local photographic
operator and Krawczyk et al. approximation (KRAWCZYK; MYSZKOWSKI; SEIDEL,
2005).
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8 CONCLUSION

This thesis presented a new technique to accelerate the photographic local tone-mapping
operator (REINHARD et al., 2002). The proposed solution does not exactly reproduce
the original operator, but provides an approximation that leads to very similar results
and whose performance is up to three to ten times faster than exiting GPU implementa-
tions (KRAWCZYK; MYSZKOWSKI; SEIDEL, 2005; GOODNIGHT et al., 2003).

The choice for the photographic operator comes from its simplicity, automaticity, ro-
bustness and perceptually-driven approach (REINHARD et al., 2002). It can effectively
deal with a wide range of HDR content, preserving noticeable details by evaluating dif-
ferences in a set of Gaussian-filtered images (adaptation zones), based on a model of
brightness perception (BLOMMAERT; MARTENS, 1990). Existing GPU implementa-
tions limit the number of adaptation zones in order to run at interactive rates (GOOD-
NIGHT et al., 2003), or introduces noticeable halos artifacts due to excessive blur along
contrastive edges (KRAWCZYK; MYSZKOWSKI; SEIDEL, 2005).

The achieved speedup is obtained by replacing the Gaussian-filtered hierarchy of rela-
tive luminances images with a set of box-filtered ones. For such filtering, a summed-area
table is employed since it can filter an arbitrary rectangular region of an image in constant
time (CROW, 1984). As a result, only one summed-area table has to be generated from
the first relative luminance image, from which all other filtered levels can be queried.

Such filtering replacement is possible because the operator only uses the Gaussian-
filtered images to estimate the largest neighborhood for each pixel where no sudden lu-
minance variation occurs. A box-filter can effectively performs this task, but since it
weights the contributions of all pixels in the neighborhood equally, the tone-mapped im-
ages are more prone to halo artifacts than the ones produced with Gaussian-filters of the
same scale. Fortunately, it is possible to minimize the occurrence of halos by reducing
the threshold used to estimate the local contrast. Mip-mapping also provides a fast way to
perform box-filtering, but it does not center the filtering on arbitrary pixels and might lead
to excessive blurring across high contrast edges (CROW, 1984; HENSLEY et al., 2005).

Summed-area tables can be created using either recursive doubling (DUBOIS; RO-
DRIGUE, 1977) or balanced trees (BLELLOCH, 1990). The former has cost O(nlog(n))
while the cost of the latter is O(n), but it requires twice the number of passes used in
recursive doubling. In the computer graphics literature, authors tend to rely on recursive
doubling for unclear reasons (HENSLEY et al., 2005; LAURITZEN, 2007), and only re-
cently some researches started to use the balanced tree approach (SENGUPTA; LEFOHN;
OWENS, 2006; SENGUPTA et al., 2007; HARRIS, 2007).

This thesis presented an algorithmic improvement for the balanced tree approach.
Although it does not reduce the asymptotic complexity of the algorithm, it avoids unnec-
essary computation. The improvement allows a balanced tree algorithm to perform scan
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operations without the need of deriving them from prescan ones. The modification does
not change the overall structure of the original algorithm. Additionally, an alternative
way to perform the scan of larger arrays, similarly to the one presented by Harris (HAR-
RIS, 2007), was described. Using a partially generated summed-area table, only its last
column is submitted to another scan operation which is then combined with the partial
results. Although relying on simple ideas, none of these improvements were found in the
literature, and any application that uses prefix sums can benefit from them.

Due to the considerable speedup and the good approximation obtained, this work pro-
vides an attractive solution for HDR rendering applications that require high performance
without compromising image quality.
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9 FUTURE WORK

Not only HDR rendering and prefix sum applications can benefit from the contribu-
tions of this work. Since the proposed SAT-based approximation for the photographic op-
erator implements an instance of Blommaert and Martens (BLOMMAERT; MARTENS,
1990) brightness perception model, any application that uses similar models can also
benefit from the results of this thesis. When performance is desirable, one can replace the
exact model with the approximation described in this thesis. Thus, there are at least three
classes of applications that can immediately benefit from the proposed approximation:
illustration generation, feature line detection, and image retargeting.

Figure 9.1: Example of automatic human facial illustration generation. The original im-
age (left) processed using Gooch et al.’s technique (GOOCH; REINHARD; GOOCH,
2004) using Gaussian filters to evaluate Blommaert and Martens’s model for brightness
perception (BLOMMAERT; MARTENS, 1990) (middle), and using the box-filter-based
approximation of the Blommaert and Martens’s model presented in this thesis (right).

Gooch et al. introduced a technique for automatic generation of human facial il-
lustration (GOOCH; REINHARD; GOOCH, 2004) that uses Blommaert and Martens’s
model (BLOMMAERT; MARTENS, 1990). Their work is not restricted to non-photorealistic
rendering (NPR) or data transfer: using psychophysical studies, the authors concluded
that illustrations can assist and accelerate recognition and learning tasks, since they re-
produce only the most relevant features of a face. Although performance was not crucial
in their work, one can envision artistic effects, such as rotoscopy, which basically consists
on drawing lines over images. The process can then automatically suggests relevant lines
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to guide an artist, be plugged in a video stream, or be used as a NPR post-effect in a game.
For such classes of applications, performance is desirable, and they can benefit from the
results of this thesis. However, since the content may change at each frame, some effort
might be required to avoid flickering artifacts over time. Figure 9.1 shows some partial
results in the context of human facial illustrations, obtained by replacing the Gaussian fil-
ters by the box-filter approximation. Figure 9.2 shows more general results, not restricted
to faces.

Figure 9.2: Example of automatic illustrations generated using Gooch et al.’s tech-
nique (GOOCH; REINHARD; GOOCH, 2004). Left column: the original colored
images. Middle column: the resulting illustration using Gaussian filters to evaluate
Blommaert and Martens’s model for brightness perception (BLOMMAERT; MARTENS,
1990). Right column: the resulting illustration using the box-filter-based approximation
of the Blommaert and Martens’s model presented in this thesis.

There are several applications that benefit from feature line detection. They are basi-
cally used for NPR rendering, for visualization and to assist a manual task in an interactive
application, thus a fast way to detect these lines is desirable. Moreover, the determination
of lines that are most noticeable can be a powerful tool. Legeai uses perceptual informa-
tion to identify feature lines (LEGEAI, 2005). An interesting fact about his research is that
he is also using Blommaert and Martens brightness perception model (BLOMMAERT;
MARTENS, 1990) in order to extract potential feature lines in a perceptual way. Since the
evaluation of this model is time demanding, it can be accelerated using the proposed ap-
proximation for the brightness perception model. Figure 9.3 shows some results produced
by Legeai’s technique.

The third class of potential applications for using the results of this thesis is image
retargeting. Due to the diversity and popularity of digital display equipments that exist
in many resolutions and sizes, from cell phones, portable video-games, palm computers
and widescreen displays, to cite a few, it is desirable to display existing imaging con-
tent on them in a fashioned way. Real-time performance is also desirable when dealing
with video streams on such devices. A simple resizing may not produce a pleasant result,
since it should not rely only on geometric constraints, but must consider imaging content
as well. The most remarkable work on imaging retargeting was recently introduced by
Avidan and Shamir (AVIDAN; SHAMIR, 2007). They presented an operator called seam



81

carving, where a seam is basically defined as a connected path of pixels, optimality identi-
fied using an energy function. An image is then resized by removing (or inserting) seams.
For the energy function, they found that a simple gradient magnitude analysis often pro-
duces good results, although they have also considered saliency and eye-tracking analysis.
However, they did not used any brightness perception function, such as the Blommaert
and Martens model. Such function seems to be a good choice to guide the process since
it will potentially remove seams that are noticeably more irrelevant. See Figure 9.4 for an
example of image retargeting.

From the investigation on human facial illustration and feature line detection, the ap-
proximation of Blommaert and Martens brightness perception model provided in this
work also seems to be an attractive alternative for further research on interactive illus-
trations for visualization.

Finally, it would be desirable to obtain a formal proof to the correctness of the im-
proved balanced tree algorithm for scan operations, ensuring that it produces correct re-
sults with any associative operator that has an inverse operator with the same neutral
element.

Figure 9.3: Legeai’s results for feature line detection (LEGEAI, 2005). From left to right:
diffuse model using Gouraud shading; brightness map of the Gouraud shaded image; crest
line representation of the Gouraud shaded image; and a brightness map applied to the crest
line image in order to identify the most relevant feature lines. Source: (LEGEAI, 2005).

Figure 9.4: An example of image retargeting using the seam carving technique from
Avidan and Shamir (AVIDAN; SHAMIR, 2007). The original image (left) resized using
a traditional approach (top-right) and using the seam carving method (bottom-right). The
red paths of the input image are examples of seams. Source: (AVIDAN; SHAMIR, 2007).
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APPENDIX A COMPLEXITY ANALYSIS ON PREFIX SUM
ALGORITHMS

This appendix presents a detailed analysis of the complexity of the three algorithms
described in this work to generate prefix sums: brute force, recursive doubling and bal-
anced trees. The analysis comprises only the sequential execution, i.e., using a single
processor. First, each algorithm is analyzed for the case of arrays of size n, and then they
are used to derive the complexity for the summed-area table computation. For simplicity,
the ceiling function is omitted, for the cases when logk(n) /∈ N.

For both recursive doubling and balanced tree algorithms, a number k must be chosen
and it is assumed to be:

2 ≤ k � n (A.1)

The complexity analysis of converting a prescan into a scan and vice versa is not
detailed. A shift operation in an array of size n takes O(n) time and the update of a single
element in the end of an array is O(1); similarly, an element-wise operation of two arrays
of the same size has cost O(n).

A.1 Brute Force

The cost of a brute force prefix sum algorithm is O(n2).

The brute force algorithm is simple. For each element i of the output, i values are read
from the input array and i−1 operations are performed. For convenience, since i > i−1,
the operation chosen here to derive the complexity is the number of readings per element.
This statement leads to the following expression:

n∑
i=1

i (A.2)

which is an instance of an arithmetic series such as:

n∑
i=m

i =
(n−m+ 1)(n+m)

2
(A.3)

and relying on such property, A.2 can be rewritten as:

n∑
i=1

i =
(n− 1 + 1)(n+ 1)

2
=
n(n+ 1)

2
(A.4)
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thus leading to the conclusion that

n∑
i=1

i =
n2 + n

2
(A.5)

which clearly is O(n2).

A.2 Recursive Doubling

The cost of a recursive doubling prefix sum algorithm is O(n logk(n)).

The recursive doubling approach requires logk(n) passes. At each pass i ≥ 1, a
total of n−ki−1 elements are updated and, before switching between the arrays, ki−ki−1
elements are copied in order to ensure data stability. The resulting complexity will then be
the sum of the updates and copies. Since the number of copies is smaller than the number
of updates, the complexity analysis follows just considering the number of updates. At
each step, a total of n − ki−1 elements are updated. Each of them retrieves k elements
from the previous pass and performs k − 1 operations. Since the number of operations
remains constant for all the elements — and from the assumption on A.1 — it will be
omitted and the analysis follows solely considering the number of updated elements. This
statement leads to the following expression:

logk(n)∑
i=1

(n− ki−1) (A.6)

which can be expressed as: logk(n)∑
i=1

n

−
logk(n)∑

i=1

ki−1

 (A.7)

and the first sum can be rewritten as:

logk(n)∑
i=1

n = n

logk(n)∑
i=1

1

 (A.8)

in which the expression inside the brackets is an instance of the following summation
property:

n∑
i=m

1 = n−m+ 1 (A.9)

and matching the resulting bracketed expression in A.8 with the property above gives

logk(n)∑
i=1

1 = logk(n)− 1 + 1 = logk(n) (A.10)

thus plugging it on A.8 reduces to:

logk(n)∑
i=1

n = n logk(n) (A.11)
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This gives a hint about the complexity of the algorithm. The derivation could be
stopped here since the parcels on the second sum of A.7 does not heavily rely on n (just
on a much lower logk(n)) and will not have strength enough to nullify any of the terms of
A.11. However, for a more formal conclusion, the derivation will continue.

The second sum of A.7 can be rearranged as:

logk(n)∑
i=1

ki−1 =

logk(n)∑
i=1

kik−1 = k−1

logk(n)∑
i=1

ki

 =
1

k

logk(n)∑
i=1

ki

 (A.12)

where the expression inside the brackets is an instance of a geometric series, defined as:

n∑
i=m

ri =
rn+1 − rm

r − 1
(A.13)

where r is the ratio of the progression, and, in A.12, this ratio is k. Matching the geometric
series definition above with A.12 gives:

1

k
· k

logk(n)+1 − k1

k − 1
=

1

k
· k

logk(n)k1 − k
k − 1

=
1

k
· nk − k
k − 1

=
1

k
· k(n− 1)

k − 1
=
n− 1

k − 1
(A.14)

and finally, by replacing A.11 and A.14 in A.7 gives:

logk(n)∑
i=1

(n− ki−1) = n logk(n)−
n− 1

k − 1
(A.15)

which, given the assumption of A.1, leads to the conclusion that the updates areO(n logk(n)).

Now, to finish the analysis, one must add the cost of the copies and updates, O(n) +
O(n logk(n)), which is O(n logk(n)).

A.3 Balanced Tree

The cost of a balanced tree prefix sum algorithm is O(n).

The balanced-tree approach requires the building of two trees: one for the reduction
stage and another for the expansion one. For a given number of leaves n, the number of
cells of a single tree is given by the summation expression below:

logk(n)∑
i=0

n

ki
(A.16)

but recall that two of them must be generated, so:

2

logk(n)∑
i=0

n

ki

 (A.17)
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and also recall that the leaves of the reduction tree do not need to be generated, since they
comprise the input array of size n - and are already computed - they can be removed from
the expression above as follows:

2

logk(n)∑
i=0

n

ki

− n (A.18)

The number of operations in the reduction and expansion stages are not the same: the
reduction tree reads k elements and performs k− 1 operations while in the expansion tree
the number of readings depends on the index of the children nodes. From a given child
index 1 ≤ d ≤ k, a total of d fetches and d− 1 operations are performed, thus leading to
the worst case when d = k. Assuming the worst case always, the number of operations
performed at each node in both trees will be k− 1 and remains constant. Relying on A.1,
the analysis then follows solely considering the total of elements produced.

Recall the expression inside the brackets in A.18. It can be rearranged as follows:

logk(n)∑
i=0

n

ki
= n

logk(n)∑
i=0

1

ki

 = n

logk(n)∑
i=0

(ki)−1

 (A.19)

and since (ki)−1 = (k−1)i , it can be conveniently expressed as:

logk(n)∑
i=0

(k−1)i (A.20)

which is an instance of a geometric series, defined in A.13, where r is the ratio of the
progression, and, in A.20, this ratio is k − 1. Matching the expression above with the
geometric series definition produces:

logk(n)∑
i=0

(k−1)i =
(k−1)logk(n) − (k−1)0

k−1 − 1
=
k−1k−logk(n)+1 − 1

k−1 − 1
(A.21)

and since k−logk(n) = n−1, the previous statement simplifies to:

k−1n−1 − 1

k−1 − 1
(A.22)

for which the occurrences of 1 in the expression above can be replaced by kk−1, since:

kk−1 =
k

k
= 1 (A.23)

leading to the following:

k−1n−1 − kk−1

k−1 − kk−1
=
k−1(n−1 − k)
k−1(1− k)

=
n−1 − k
1− k

(A.24)
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which is equivalent to(
1

n
− k
)(

1

1− k

)
=

(
1− kn
n

)(
1

1− k

)
=

1− kn
n(1− k)

(A.25)

and can be plugged back on A.19, simplifying it:

n

logk(n)∑
i=0

(ki)−1

 = n

(
1− kn
n(1− k)

)
=

1− kn
1− k

=
kn− 1

k − 1
(A.26)

thus finally being replaced in A.18:

2

(
kn− 1

k − 1

)
− n =

2kn− 2

k − 1
− n (A.27)

and expressing the above statement in the same denominator gives:

2kn− 2− n(k − 1)

k − 1
=

2kn− 2− kn+ n

k − 1
=
kn+ n− 2

k − 1
=
n(k + 1)− 2

k − 1
(A.28)

which, from the assumption of A.1, is O(n).

A.4 SAT Generation Algorithms

A summed-area table is obtained running multiple instances of prefix sums on each
of its rows and then on each of its resulting columns. Given an prefix sum algorithm
Ascan(n) for arrays of size n, the complexity of an algorithm to generate a summed-area
table with dimensions w × h can be expressed as:

h ·O(Ascan(w)) + w ·O(Ascan(h)) (A.29)

and is also useful to keep in mind that:

N = w · h (A.30)

being N the number of cells of the SAT.

Here follows the complexity analysis for the summed-area table case using the algo-
rithms presented in this appendix:

• A SAT can be generated using a brute force prefix sum algorithm in O(N(w+h)):

plugging the brute force algorithm on A.29 gives:

h · w2 + w · h2 = h · w · w + w · h · h = w · h(w + h) (A.31)

thus, from A.30, the expression above can be written as:

N(w + h) (A.32)

and cannot be reduced anymore, leading to O(N(w + h)).
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• A SAT can be generated using a recursive doubling prefix sum algorithm inO(N logk(N)):

plugging the recursive doubling algorithm on A.29 gives:

h · (w logk(w)) + w · (h logk(h)) = h · w logk(w) + w · h logk(h) (A.33)

thus, from A.30, the expression above can be written as:

N logk(w) +N logk(h) = N (logk(w) + logk(h)) (A.34)

and from the following property of the logarithms:

logk(a) + logk(b) = logk(a · b) (A.35)

the former expression can be conveniently expressed as:

N logk(w · h) (A.36)

and again, from A.30, it reduces to:

N logk(N) (A.37)

which is O(N logk(N)).

• A SAT can be generated using a balanced tree prefix sum algorithm in O(N):

plugging the balanced tree algorithm on A.29 gives:

h · w + w · h (A.38)

thus, from A.30, the expression above can be written as:

2N (A.39)

which is O(N).
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APPENDIX B HDR IMAGE FORMATS

Ward introduced the use of high dynamic range images in computer graphics and de-
veloped the first HDR image format in 1985, the RGBE8 format, together with his render-
ing application RADIANCE (WARD, 1994c,b). This allowed the use of more physically
accurate measurements for radiance intensities and the resulting synthesized images are
said to be scene-referred in contrast to traditional device-referred images.

The RGBE8 format offers a compact representation (32-bit per pixel) and a large
range of intensities, covering about 76 orders of magnitude. However, the RGBE8 has
a relative precision of 1% (the quantization step between two close intensities), which is
the limit of the acceptable human perceptible level (REINHARD et al., 2006). Also, 76
orders of magnitude is exaggerated when compared to real world scenes, which typically
covers 14 orders of magnitude (108cd/m2 being sunlight and 10−6cd/m2 being starlight).

The SGI/TIFF 32-bit LogLuv format (WARD, 1998) covers 38 orders of magnitude
and has a relative precision of 0.3%. However, the format deviates from the traditional
RGB color space and this seems to have prevented its widespread use. At a cost of extra
memory, the ILM OpenEXR 48-bit format holds about 11 orders of magnitude with a
relative precision of 0.1%, but this may not suffice to store all the intensity range of a real
world scene (Industrial Light and Magic, 2002).

The Portable Floatmap format can deal with 79 orders of magnitude and has a neg-
ligible relative precision of only 0.000003%, but requires 96-bit per pixel and any noise
present in the last half of the mantissa can compromise further compression (BOURKE,
2003).

There are more HDR image formats, such as Microsoft/HP scRGB, Kodak Cineon/DPX,
Pixar/TIFF Log Encoding and JPEG 2000, to cite a few. As any other format, they deal
with limitations on storage, magnitude range and relative precision. A detailed description
about these different formats can be found in (WARD, 2005; HOLZER, 2006).

For the reasons above, the RGBE8 format (.hdr file) remains as the most widely used,
and the vast majority of HDR content available today uses this format. The nature of
the input HDR image format does not affects the evaluation process of tone-mapping
operators. The content is decoded to floating-point values and the operator deals only with
this representation, without the need of knowing the image’s format encoding details.
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APPENDIX C HDR ACQUISITION AND RENDERING

In a high dynamic range image, each pixel stores proportional radiance measurements
from its corresponding scene. In low dynamic range images, these values rarely matches
the true radiance of the original scene, due to the nonlinear nature of the quantization pro-
cesses performed by the acquisition device or imaging encoding (DEBEVEC; MALIK,
1997). Such quantization can be seen as a simple instance of dynamic range compression
(tone-mapping) for the particular target device capabilities.

Debevec et al. developed an approach to recover HDR images from low dynamic
range ones (DEBEVEC; MALIK, 1997). They noticed that a set of photographs of a
scene, each taken at a different exposure time, captures almost all the intensities of the
scene. These LDR pictures can then be assembled into a single high dynamic range image,
which they called a radiance map (see Figure C.1).

Later, Debevec showed how to capture natural lights to use them for image-based
lighting (DEBEVEC, 1998). Relying on the knowledge from his previous work, a series
of photographs of a mirrored ball inserted in a scene are taken and assembled into a single
HDR image, as shown in Figure C.2 (DEBEVEC; MALIK, 1997). The resulting image
is an angular map, that he called a light probe, and can be used in reflection-mapping
as well as an omni-directional light source in a global illumination technique. To avoid
the presence of the camera (and photographer) in the angular map, the same acquisition
process is repeated at a different angle — 90 degrees — of the mirrored ball. An image
registration process is then applied to both sets of images, removing any unwanted ob-
ject. This process also leads to a better sampling and representation of incoming radiance
arriving backwards the sphere of the first set of pictures. A light probe can be converted
to others omni-directional map formats, such as cube-maps and latitude-longitude maps
(see Figure C.2).

These works comprise a mark in HDR and realistic rendering (DEBEVEC; MALIK,
1997; DEBEVEC, 1998). Following their ideas, several researchers developed sophis-
ticated rendering algorithms, enhancing the overall image quality relying on captured
HDR natural lights (RAMAMOORTHI; HANRAHAN, 2001; SLOAN; KAUTZ; SNY-
DER, 2002; NG; RAMAMOORTHI; HANRAHAN, 2004; SLOMP; OLIVEIRA, 2005;
PEERS et al., 2007). Figure C.3 provides examples of some of these works.

High dynamic range rendering is becoming an increasingly popular technique in com-
puter graphics (Valve Software, 2005; Unigine Corp, 2005; BLYTHE, 2006; Crytek,
2007; Epic Games, 2007; Irrlicht Team, 2007) and such popularity is closely related to a
set of features found in the current programmable graphics hardware: high performance,
low cost and floating point texture support (CEBENOYAN, 2005; BLYTHE, 2006). HDR
imaging tends to become even more popular with the widespread use of high-definition
television and video, medias with increasingly storage capacities, next generation of video
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Figure C.1: Radiance map generated from photographs. First, a set of photographs are
taken, each at an increasingly exposure time (all small images on top) and then are assem-
bled into a single HDR image (bottom, middle). At bottom-left, a photograph taken with
a common camera, subjected to the later encoding. At bottom-right, a false-color repre-
sentation and the corresponding radiance scales from the radiance map (bottom, middle).
Source: (DEBEVEC; MALIK, 1997).

games and recent developments on display devices technologies (Toshiba Corporation;
Canon Inc, 2008; Dolby Laboratories, 2008). Figure C.4 compares the image quality
between low and high dynamic range rendering in a gaming scenario.
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Figure C.2: Natural light can be captured and stored in a light probe (top-right), generated
from a set of photographs of a mirrored ball (top-left). A light probe can be converted to
an alternate format, such as cube-map faces (bottom-left) or a latitude-longitude map
(bottom-right). Source: (DEBEVEC, 1998).
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Figure C.3: Rendering with natural lights: Devebec used natural light to render solely
synthetic objects (upper-left) and to insert virtual objects into real scenes (upper-right;
the spheres in the middle of the table are virtual, while the remaining scene is real) (DE-
BEVEC, 1998). On the bottom row, some works that benefits from image-based light-
ing. From left to right: irradiance maps for fast diffuse lighting (RAMAMOORTHI;
HANRAHAN, 2001); precomputed radiance transfer with translucency effects (SLOAN;
KAUTZ; SNYDER, 2002); high frequency triple-product rendering (NG; RAMAMOOR-
THI; HANRAHAN, 2004); precomputed radiance transfer with thickened specular ef-
fects (SLOMP; OLIVEIRA, 2005).

Figure C.4: Two screenshots from the game FarCry: the image on the left does not use
HDR rendering, while the one on the right performs, using a tone-mapping operator to
compress the dynamic range of the image. Source: Wikipedia.
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APPENDIX D AN OPTIMAL PREFIX-SUMS ALGORITHM
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APPENDIX E RESUMO ESTENDIDO EM PORTUGUÊS

O uso de imagens em ampla faixa dinâmica (high dynamic range, ou abreviadamente,
HDR) em computação gráfica vem se intensificando desde o início da década. O prob-
lema central com tais imagens é o fato de que a faixa de luminância da imagem não
necessariamente corresponde com a faixa de luminância que o dispositivo de exibição é
capaz de reproduzir. A solução desse problema encontra-se no emprego de operadores
de reprodução de tonalidades (tone-mapping operators ou tone reproduction operators,
abreviadamente, TMO).

O funcionamento de um operador de reprodução de tonalidades é, de certo modo,
similar ao processo de adaptação à luminosidade realizado pelo sistema visual humano.
Assim como dispositivos de exibição, o sistema visual humano não é capaz de distin-
guir, simultaneamente, todo a faixa de luminosidade presente no mundo real. Entretanto,
diferentemente dos dispositivos de exibição, o olho humano é capaz de se ajustar dinami-
camente à determinadas condições de iluminação. Devido a tal imutabilidade na faixa
de luminância em que dispositivos são capazes de operar, o projeto de operadores de
reprodução de tonalidades torna-se demasiadamente complexo.

Existem duas categorias de operadores, globais e locais. Um operador global procura
comprimir a faixa de luminância de uma imagem aplicando o mesmo conjunto de parâmet-
ros sobre todos os pixels da imagem, uniformimente. Já em um operador local, um con-
junto ótimo de parâmetros é estabelecido, individualmente, para cada pixel da imagem,
um processo que tipicamente involve investigar uma vizinhança de tamanho variável ao
redor de cada pixel. Operadores globais são computacionalmente baratos de se execu-
tar, embora acabem por suprimir diversos detalhes de mais alta frequência presentes na
imagem. Os operadores locais são capazes de reter tais detalhes, mas a um custo com-
putacional muito mais elevado.

Na prática, aplicações interativas tais como jogos, visualizadores e simuladores ficam
limitados a operadores globais. Mesmo com o imenso poder de processamento paralelo
presente no atual hardware gráfico programável (GPU), a implementação de operadores
locais em GPU mostra-se incapaz de manter alto grau de interatividade. O objetivo desta
tese é fornecer uma solução satisfatória, implementada em GPU, para a versão local do
operador fotográfico digital de reprodução de tonalidades apresentado por Reinhard et
al. (REINHARD et al., 2002). A abordagem utilizada faz uso de tabelas de áreas acumu-
ladas (summed-area tables, ou abreviadamente, SAT) (CROW, 1984) para aproximar de
modo eficiente a computação do modelo de percepção de brilho proposto por Blommaert
e Martens (BLOMMAERT; MARTENS, 1990), que corresponde à parte mais custosa do
operador fotográfico digital de Reinhard et al. Além disso, a tese também proporciona
possíveis melhorias aos algoritmos de somas prefixadas, peça-chave na geraçáo eficiente
de SATs em GPU.
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O operador fotográfico digital de reprodução de tonalidades baseia-se em um pro-
cesso de revelação de filmes fotográficos conhecido como Sistema de Zonas (Zone Sys-
tem) (WHITE; ZAKIA; LORENZ, 1984). O Sistema de Zonas opera através de um ma-
peamento entre a tonalidade média da cena fotografada e a refletividade de luz média do
papel de revelação. Para tanto, o fotógrafo precisa determinar, subjetivamente, o que ele
acredita ser o tom de cinza médio da cena (middle-gray). Após a revelação, se a fotografia
aparecer muito clara ou muito escura, o fotógrafo pode revelá-la novamente ajustando ad-
equadamente o tom de cinza médio. De qualquer modo, tal mapeamento sempre está
sujeito à perdas de detalhe contrastivo. Quando isso ocorre, o fotógrafo pode empregar
um processo de subexposição-e-superexposição (dodge-and-burning) de modo a adap-
tar localmente o contraste em cada região; um processo bastante exaustivo e de difícil
automatição.

Reinhard et al., na versão local de seu operador, automatiza tal processo para fo-
tografias digitais. A busca por detalhes contrastivos é guiada pelo modelo de percepção de
brilho apresentado por Blommaert e Martens, que é, por sua vez, implementado através
de diferenças de filtros Gaussianos. Tal procedimento mostra-se adequado para a sim-
ulação da característica de inibição lateral (lateral inhibition) presente no sistema visual
humano, que faz com que uma mesma tonalidade pareça mais clara ou escura dependendo
das tonalidades presentes ao seu redor. As filtragens Gaussianas necessárias ao operador
ocorrem em diversas escalas, tipicamente entre 1 pixel e 47 pixels. Mesmo através da
decomposição de filtros Gaussianos e do poder de processamento das atuais GPUs, es-
sas filtragens consomem tempo computacional demasiado, o que impede o emprego do
operador em aplicações interativas.

Tentativas para aceleração da versão local do operador fotográfico digital foram in-
vestigadas. A primeira delas, apresentada por Goodnight et al. utiliza decomposição
de filtros Gaussianos e é capaz de reproduzir autenticamente os resultados do operador
original, embora apenas um número limitado de filtros faz-se adequado de modo a man-
ter interatividade, limitando significativamente a quantidade de detalhes contrastivos que
o operador original é capaz de reproduzir (GOODNIGHT et al., 2003). Outra abor-
dagem, porposta por Krawczyk et al., aproxima tais filtragens através de um processo de
sub-amostragem e super-amostragem de modo a condensar o tamanho dos filtros Gaus-
sianos (KRAWCZYK; MYSZKOWSKI; SEIDEL, 2005); embora isso acelere o algo-
ritmo de forma substancial, o processo de sub-amostragem acaba por borrar demasiada-
mente bordas de alto contraste e, consequentemente durante a super-amostragem, mais
borramento é introduzido, causando o aparecimento de halos na imagem resultante.

A técnica proposta neste trabalho ameniza consideravelmente a ocorrencia de halos,
além de acelerar ainda mais o operador. O componente principal da nova abordagem é
a substituição dos filtros Gaussianos por filtros da média que, por sua vez, podem ser
eficientemente computados através do emprego de tabelas de áreas acumuladas. Os resul-
tados obtidos são muito próximos e perceptualmente indistingüíveis daqueles produzidos
pelo operador original.

Uma tabela de áreas acumuladas é uma tabela cumulativa em que cada elemento cor-
responde ao somatório de todos os outros elementos acima e à esquerda do elemento em
questão na tabela original (CROW, 1984). A principal propriedade de uma SAT é o fato de
permitir a obtenção de somas ou filtragens em regiões retangulares arbitrárias em tempo
constante O(1) — ou, mais especificamente, através da inspeção de apenas quatro células
da SAT. A geração de SATs em paralelo é adequada ao hardware gráfico programável,
através de algoritmos de somatório pré-fixado sobre vetores (prefix sum), dentre os quais
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detaca-se a abordagem baseada em árvores balanceadas (balanced trees) proposta por
Blelloch (BLELLOCH, 1990). O processo de síntese de uma SAT então restringe-se à
aplicação de somatórios pré-fixados sobre cada uma de suas linhas e, posteriormente,
sobre cada uma das colunas resultantes.

De modo similar a uma SAT, um somatório pré-fixado representa um vetor cumula-
tivo no qual cada elemento corresponde ao somatório de todos os elementos à esquerda
daquele em questão. O algoritmo paralelo de somatório pré-fixado através de árvores bal-
anceadas opera em duas fases: redução e expansão. Na primeira, cada elemento do vetor é
tratado como um nodo final da árvore, e nodos-pai são construídos através da acumulação
dos valores de dois nodos-filhos; processo esse que se repete até que o nodo-raíz é obtido.
O algoritmo então prossegue para a fase de expansão que, partindo do nodo-raiz, constrói
uma segunda árvore que, ao final, fará com que os nodos-finais contenham o resultado do
somatório pré-fixado.

O processo de expansão é pouco trivial e requer certos cuidados. O nodo-raíz da
árvore de expansão é substituído pelo elemento neturo da operação em questão utilizada
no somatório pré-fixado. No caso daeração de SATs, tal operação é a adição em R, sendo
zero o elemento neutro. Desse nodo raíz, dois nodos-filhos são produzidos, sendo o valor
do nodo-pai propagado ao filho da esquerda. O valor do nodo-filho à direita é calculado
através da soma do nodo-pai com o valor de seu nodo-irmão (i.e., à esquerda) na árvore
de redução. O processo então se repete, recursivamente, a cada nodo-filho até que os
nodos finais sejam computados.

É importante perceber que o vetor resultante (i.e., os nodos finais da árvore de expan-
são) não representam exatamente um somatório pré-fixado completo já que o primeiro
elemento sempre será o elemento neutro, propagado aos demais elementos. O processo
de conversão de tal vetor resultante (exclusive prefix sum ou prescan) em um somatório
pré-fixado completo (inclusive prefix sum, ou scan) pode ser facilmente obtido de duas
maneiras: (i) somando-se o primeiro elemento do vetor original à cada elemento do vetor
resultante; ou (ii) deslocando todo o vetor resultante à esquerda e substituíndo seu último
elemento pela soma do último elemento do vetor de original com o penúltimo elemento
do vetor resultante deslocado.

Em uma execução seqüencial, tal conversão é de ordem O(n); já uma execução par-
alela resulta em O(1), mas requer sincronização ou memória adicional de modo a preser-
var sua semântica. O presente trabalho apresenta uma melhoria ao algoritmo de modo
que, durante a fase de expansão, o vetor resultante corresponda à um somatório pré-fixado
completo, elmininando a necessidade de conversões. A modificação proposta funciona
para o caso do operador de adição em R e não afeta a estrutura geral do algoritmo.

Em sumo, em vez de substituir e propagar o elemento neutro durante a expansão,
o valor bruto acumulado na raíz da árvore de redução é propagado à raiz da árvore de
expansão. Ambos os nodos-filhos são produzidos, mas o valor do nodo-pai é propagado
ao filho da direita. O valor do nodo-filho à esquerda é estabelecido através da subtração
do valor do nodo-pai pelo valor do seu respectivo nodo-irmão (à direita) na árvore de
redução. Repetindo-se esse processo recursivamente, ao final da fase de expansão, um
somatório pré-fixado completo é produzido. Sem a necessidade de tais conversões, o
ganho em performance pode chegar até 50% quando empregado na geração de uma SAT.

Uma vez garantida uma implementação eficiente para a geração de SATs em GPU,
a modificação proposta neste trabalho sobre a versão local do operador fotográfico de
reprodução de tonalidades torna-se simples. As filtragens Gaussianas, de tamanhos vari-
ados, sobre a imagem de luminância relativa requeridas pelo operador são substituídas
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por consultas à SAT correspondente. O restante do operador permanece intacto, salvo
ao parâmetro limiar (threshold) que controla a busca pela vizinhança isoluminante ideal:
de modo geral, não é necessário ajustar o limiar padrão oferecido pelo operador orig-
inal, mas resultados mostram que limiares até duas vezes menores proporcionam mais
fidelidade quando comparado aos resultados do operador original. A explicação de tal
fato vem da observação de que filtros da média resultam em contribuições maiores (uni-
forme) de luminâncias na vizinhança de cada pixel do que àqueles obtidos através de
filtragens Gaussianas. O parâmetro de limiar, presente no operador original, proporciona
um método integrado para ajustar o resultado final, se necessário.

Por fim, as modificações propostas sobre a versão local do operador fotográfico dig-
ital de reprodução de tonalidades não apenas permitem níveis bastante satisfatórios de
interatividade — de duas até dez vezes mais rápido do que as abordagens propostas
por Krawczyk et al. (KRAWCZYK; MYSZKOWSKI; SEIDEL, 2005) e Goodnight et
al. (GOODNIGHT et al., 2003), respectivamente — como também proporcionam um
alto grau de fidelidade quando comparado ao operador original proposto por Reinhard et
al. (REINHARD et al., 2002). O presente trabalho oferece uma solução atrativa para apli-
cações HDR que necessitam alta performance sem comprometer a qualidade das imagens
exibidas.

A aproximação das filtragens Gaussianas, requeridas pelo modelo de percepção de
brilho de Blommaert e Martens, através de filtros da média computados com o auxílio
de tabelas de áreas acumuladas, não se restringe apenas à reprodução de tonalidades.
Acredita-se que tal modelo pode ser aplicado em outros contextos para acelerar proces-
sos tais como: (i) geração automática de ilustrações (GOOCH; REINHARD; GOOCH,
2004); (ii) detecção de bordas significativas (feature line detection) (LEGEAI, 2005);
(iii) e redirecionamento de imagens em dispositivos (retargeting) (AVIDAN; SHAMIR,
2007).
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