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Matemática Aplicada do Instituto de Matemática da Universidade
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RESUMO

A finalidade deste trabalho é apresentar uma revisão da teoria do trans-

porte de part́ıculas em meios compostos por uma mistura aleatória binária. Para

atingir este objetivo nós apresentamos brevemente alguns conceitos básicos de teo-

ria do transporte, e então discutimos em detalhes a derivação de duas abordagens

desenvolvidas para a solução de tais problemas: os modelos de mistura atômica e de

Levermore-Pomraning. Providenciamos ainda, com o uso da formulação LTSN , com-

parações numéricas destes modelos com resultados de benchmark gerados através

de um processo de Monte Carlo.
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ABSTRACT

The aim of this work is to present a review of particle transport theory in

randomly mixed binary media. To accomplish this objective we briefly report some

basic concepts of transport theory, and then we discuss in detail the derivation of

two approaches developed to predict the solutions of such problems: the atomic mix

and the Levermore-Pomraning models. Also, using the LTSN formulation, we pro-

vide numerical comparisons of these models with benchmark calculations generated

through the use of a Monte Carlo procedure.
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My advisors, Professors Marco Túllio M. B. de Vilhena and Edward W.

Larsen. This work exists thanks to your advising, and I obtained the best result I

could expect from it: your friendship.

The professors of the Graduate Program in Applied Mathematics. In

particular, Professors Cynthia F. Segatto and Mark Thompson - your contribution

was essential to this work, as well as your kind attention and your patience.

The colleagues and friends from the Institute of Mathematics and from

the Department of Nuclear Engineering. The difficult became easy because of you.

The CNPq - Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-

nológico - for the financial support.
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1 INTRODUCTION

1.1 English Version

The mathematical description of the transport of particles such as neu-

trons, electrons, photons and molecules through a background material is commonly

called Transport Theory. The so-called transport equations can be described as the

mathematical statement of particle conservation in phase space. These equations

play a fundamental role in many different physical situations, such as nuclear reactor

physics, astrophysics, rarefied gas dynamics, charged particle transport, electromag-

netic radiation, plasma physics, etc. A vast range of literature exists for the cases

when the properties of the background material (as functions of space and time)

are specified. However, all materials in nature have a stochastic character to some

extent, and sometimes this stochasticity cannot be ignored.

The last several years have seen an increasing interest in formulating

particle transport descriptions in stochastic mixtures. By stochastic mixtures, we

mean that the properties of the background material are known only in a statistical

sense. This research area is known as Stochastic Transport Theory. The goal of this

theory is to find the ensemble average (expected value) of the particle intensity in

phase space, as well as higher moments, such as the variance.

A direct way to do this is to generate a large number of physical realiza-

tions of the problem, solve each realization deterministically, and then average the

solutions [1, 12, 38, 78, 90, 94]. However, one must keep in mind that the total num-

ber of possible physical realizations is infinite, and conceptually one must perform

these calculations an infinite number of times in order to obtain a zero statistical

error of the solution. In practice, a large number of such calculations is necessary

to get an accurate estimate of the ensemble-averaged intensity. For these reasons,

the task of developing improved models to predict the solution is the objective of

recent research (as neutron transport in pebble bed reactors [12], for example). In
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this work we will discuss the two most important models available: the Atomic Mix

and the Levermore-Pomraning models.

The term atomic mix applies to mixtures of two or more materials in

which the “chunks” of the materials are so small that we can assume mixing at

atomic level. Then the volume fraction of each material is used to calculate ho-

mogenized cross sections for the mixture. This notion appears to have been used in

chemistry over 200 years ago, to find rules for adding partial pressures of mixtures.

Maxwell [34], in his attempt to treat molecular diffusion coefficients, modeled atomic

mixtures of certain ideal gases in order to compute transport coefficients.

Nuclear engineering (as a distinct discipline of engineering) began in the

1940’s. It is reasonable to assume that physicists who knew the concept of atomic

mix adopted it to model neutron transport problems. In fact, much of the work

that was done from the 1940’s to the 1960’s regarding transport in mixtures used

the atomic mix approximation. The atomic mix model [12, 43, 90] is a widely-used

homogenization technique, which is valid when the system’s spatial heterogeneities

occur on a length scale which is small compared to a typical mean free path. This

assumption, however, is physically very restrictive.

These limitations leaded to the development of different approaches to

solve problems where the atomic mix assumptions were not valid. Under this moti-

vation, a formulation of a particle transport formalism in binary random media arose

in the mid-1980’s, providing the foundations for the so-called Levermore-Pomraning

method.

The first derivation of the Levermore-Pomraning method [25, 44] con-

sidered time independent transport in a purely absorbing medium. The mixture was

taken as Markovian, and using a projection operator technique known as the method

of smoothing [15, 17], an exact solution was obtained for the ensemble-averaged an-

gular flux. However, this derivation becomes algebraically too cumbersome to lead

to useful results when the scattering interaction is involved [43]. In fact, in scattering
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problems, the task of reducing this exact expression to an useable one is exceedingly

complex.

Later, Vanderhaegen [86] pointed out that the time independent, non-

scattering case can be treated exactly under the assumption of Markovian statistics.

He observed that in this case the stochastic problem is a joint Markov process, and

thus the Liouville master equation applies [18, 89]. Although this approach is not

valid when scattering is present [88], it was suggested [43, 49, 53] that the use of the

master equation might produce a useful approximate model for problems with time

dependence and scattering. In 1989, Adams, Larsen and Pomraning [1] introduced

a new derivation using the idea of stochastic balance, and Sahni obtained the same

results using techniques of nuclear reactor noise analysis [67] and by assuming that

each photon track is independent of prior tracks [68].

Since then, a vast literature has arisen on formulation and solution

methods, both analytical and numerical, for this model. Among these contri-

butions we underline the following: the development of a monoenergetic particle

transport model in a binary Markovian mixture within the framework of integral

transport theory [84, 95]; the development of several important asymptotic lim-

its [28, 29, 31, 54, 58, 59, 60, 70, 83]; the development of P1 and P2 diffusive

descriptions [82]; the development of flux-limiting algorithms [56, 69]; the devel-

opment of alternate closures and higher-order models [51, 55, 80, 81]; the treat-

ment of anisotropic scattering [36, 54, 76] and eigenvalue problems [65, 93]; and

the use of renewal theory to describe stochastic transport in non-Markovian mix-

tures [16, 26, 48, 50, 63, 78, 87, 94]. There is also a great number of papers

dealing with important applications for this kind of problem: atmospheric ap-

plications [32, 33, 59, 77, 79, 84, 85, 95]; applications in astrophysics [3, 4, 10];

applications in criticality problems [52, 91, 92]; applications in nuclear medicine

[36, 57, 58, 60, 66, 83]; etc.

The aim of the present work is to provide a detailed discussion regard-

ing the subject of Stochastic Transport Theory, focusing on the two models already
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mentioned. We report in detail the derivation steps and physical assumptions, and

we discuss the particularities encountered. We also present some new ideas regard-

ing the derivation of the Levermore-Pomraning method, and we perform numerical

calculations comparing both models with benchmark solutions. We are aware of very

few papers in which a systematic comparison of atomic mix, Levermore-Pomraning,

and benchmark calculations is done [12, 90], which leads us to believe in the impor-

tance of this contribution.

It is important to underline that all numerical simulations were per-

formed using the LTSN method [73, 74, 75], which analytically solves the discrete

ordinate (SN) approximation of the neutron transport equation in a slab for a wide

class of problems. To our knowledge, the work of Vasques et al. [90] is the first

in which the LTSN method is applied in the calculation of benchmark results for

this class of stochastic problems, as well as in the calculation of the atomic mix

and Levermore-Pomraning predictions. The power of the LTSN method makes it

well-suited to perform benchmark results for problems where solutions for a large

number of physical realizations are required. Therefore we improved the algorithms

used in [90] to include problems with internal sources, and we performed all numer-

ical calculations in such way that the statistical relative error is less than 1% with

95% confidence. A total of 117 problems are presented in this work.

The outline of this work is as follows:

• In Chapter 2, we first introduce the basic concepts needed to describe the

interaction of particles with matter (section 2.1). We then use particle conservation

to formulate the integro-differential transport equation in a nonstochastic medium

(section 2.2). We finish the chapter by deriving some important statistical results

that will be used often along the rest of the work, regarding the infinite line populated

statistically with alternating segments of two different materials (section 2.3).

• We start Chapter 3 presenting an empirical derivation of the atomic mix

equation (section 3.1). In section 3.2 we derive the atomic mix equation using the
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formal procedure of multiscale expansion technique [14]. We close the chapter with

a discussion regarding the limitations of the atomic mix model for the cases in

which its assumptions are not satisfied, and we show why the multiscale expansion

technique can be performed only as a formal procedure when deriving the atomic

mix equations (section 3.3).

• Chapter 4 presents a detailed discussion regarding the Levermore-Pomraning

method. We present two different derivations of this method in section 4.1: one using

the master equation approach [43, 49, 53, 86, 88]; and one using the idea introduced

by Adams, Larsen and Pomraning [1]. Here, however, the details of the derivation

are done following Vasques et al. [90], in such a manner that the reader may find

it more illuminating in terms of the physics of the problem. We go still further and

present a discussion whose main point is that the Levermore-Pomraning equations,

in their traditional form, are incorrect for random three dimensional geometries. In

section 4.2, we present a physical interpretation of the model developed by Sahni

[68] and discuss a possible flaw of the model for isotropic scattering. We also report

a new idea proposed by Larsen [20, 24] for a corrected model with a Sahni-like

interpretation. Section 4.3 discusses some of the important developments regarding

this research: the derivation of some asymptotic limits is treated in section 4.3.1;

and alternate closures, as well as higher order models, in section 4.3.2.

• Numerical results for time independent transport problems in planar geom-

etry are presented in Chapter 5. The numerical procedure to obtain the solutions is

described in section 5.1. In section 5.2, results for Reflection/Transmission problems

are reported. Simulations for source problems within a medium containing slabs of

two different densities of the same material are shown in section 5.3.

• Chapter 6 present our conclusions regarding the work developed, as well as

ideas for future work in this research line.
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1.2 Portuguese Version

A descrição matemática do transporte de part́ıculas tais como nêutrons,

elétrons, fótons e moléculas através de um determinado material é normalmente

denominada Teoria do Transporte. As chamadas equações do transporte podem ser

descritas como sendo a representação matemática da conservação de part́ıculas em

um espaço de fase. Estas equações têm um papel fundamental em um grande número

de situações f́ısicas, tais como f́ısica de reatores nucleares, astrof́ısica, dinâmica de

gases rarefeitos, transporte de part́ıculas carregadas, radiação eletromagnética, f́ısica

do plasma, etc. Existe uma vasta literatura para os casos em que as propriedades

do meio estão especificadas (como funções do espaço e do tempo). No entanto, todo

material na natureza possui um caráter aleatório até um certo ponto, e às vezes esta

aleatoriedade não pode ser ignorada.

Nos últimos anos, um interesse crescente na formulação de descrições do

transporte de part́ıculas em misturas estocásticas pode ser observado. Por misturas

estocásticas nos referimos aos casos nos quais as propriedades do meio são conhecidas

apenas de um modo estat́ıstico. Esta linha de pesquisa é conhecida como Teoria

do Transporte Estocástico. O objetivo desta teoria é encontrar a média (valor espe-

rado) do fluxo de part́ıculas em um espaço de fase, assim como momentos de ordem

superior, tais como a variância.

Um modo direto de se fazer isso é gerar um grande número de rea-

lizações f́ısicas do problema, resolver cada realização deterministicamente, e então

calcular a média das soluções [1, 12, 38, 78, 90, 94]. Entretanto, deve-se ter em

mente que o número total de realizações f́ısicas posśıveis é infinito, e conceitual-

mente estes cálculos deveriam ser realizados um número infinito de vezes para que

o erro estat́ıstico da solução fosse nulo. Na prática, é necessário que se resolva

um grande número destas realizações f́ısicas para se obter uma estimativa precisa

da solução média. Por estas razões, o desenvolvimento de modelos aperfeiçoados

que predigam esta solução média tem sido objeto de recentes pesquisas (como, por
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exemplo, no transporte de nêutrons em reatores “pebble bed” [12]). No presente

trabalho discutiremos os dois modelos mais importantes atualmente dispońıveis: os

modelos de Mistura Atômica (Atomic Mix ) e de Levermore-Pomraning.

O termo mistura atômica se aplica a misturas de dois ou mais materiais

onde os “pedaços” destes materiais são tão pequenos que podemos assumir que a

mistura se dá em ńıvel atômico. Isto nos permite utilizar a fração do volume de

cada material para calcular seções de choque homogeneizadas para a mistura. Esta

noção parece ter sido empregada em qúımica há mais de 200 anos, com o intuito

de se encontrar regras para a adição de pressões parciais de misturas. Maxwell [34],

na sua tentativa de lidar com coeficientes de difusão moleculares, modelou misturas

atômicas de certos gases ideais com a finalidade de computar os coeficientes de

transporte.

A engenharia nuclear, como uma área distinta da engenharia, teve seu

ińıcio na década de 1940. É razoável admitir que f́ısicos familiarizados com o conceito

de mistura atômica adotaram este conceito para modelar problemas de transporte

de nêutrons. De fato, grande parte do trabalho relacionado com transporte em

misturas realizado entre as décadas de 1940 e 1960 faz uso desta aproximação. O

modelo de mistura atômica [12, 43, 90] é uma técnica de homogeneização largamente

difundida, e é válido quando as heterogeneidades espaciais do sistema ocorrem em

um comprimento de escala pequeno em comparação com um livre caminho médio.

Contudo, esta hipótese é fisicamente muito restritiva.

Estas limitações levaram à busca de abordagens diferentes para a re-

solução de problemas onde as hipóteses de mistura atômica não fossem válidas.

Com esta motivação, uma formulação para o transporte de part́ıculas em um meio

estocástico binário surgiu em meados da década de 1980, fornecendo o alicerce para

o chamado método de Levermore-Pomraning.

A primeira derivação do método de Levermore-Pomraning [25, 44] trata-

va do transporte em um meio puramente absorvente sem dependência no tempo.
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Assumiu-se a estat́ıstica da mistura como sendo Markoviana, e uma solução exata

foi obtida para o fluxo angular médio através do uso de uma técnica de operadores

de projeção [15, 17]. No entanto, quando há espalhamento envolvido, esta derivação

se torna por demais complicada algebricamente para levar a resultados úteis [43].

De fato, em problemas com espalhamento, a tarefa de reduzir esta expressão exata

para uma expressão utilizável é excessivamente complexa.

Mais tarde, Vanderhaegen [86] fez notar que o caso sem dependência no

tempo e sem espalhamento poderia ser tratado de forma exata sob a hipótese de

estat́ıstica Markoviana. Ele observou que, neste caso, o problema estocástico é um

processo de Markov associado, e portanto a equação master de Liouville se aplica [18,

89]. Embora esta abordagem não seja válida quando há espalhamento envolvido [88],

foi sugerido [43, 49, 53] que o uso da equação master poderia produzir um modelo

aproximado útil para problemas com dependência no tempo e espalhamento. Em

1989, Adams, Larsen e Pomraning [1] apresentaram uma nova derivação utilizando a

idéia de balanço estocástico, e Sahni obteve os mesmos resultados através de técnicas

de análise de rúıdo de reatores nucleares [67] e assumindo que a trajetória de cada

fóton é independente das trajetórias anteriores [68].

Desde então, inúmeros trabalhos lidando com métodos anaĺıticos e numé-

ricos de formulação e solução para este modelo vêm sendo apresentados. Entre estas

contribuições nós destacamos as seguintes: o desenvolvimento de um modelo de

transporte de part́ıculas monoenergético em uma mistura Markoviana binária sob

a ótica da teoria do transporte integral [84, 95]; o desenvolvimento de diversos li-

mites assintóticos importantes [28, 29, 31, 54, 58, 59, 60, 70, 83]; o desenvolvimento

de descrições difusivas P1 e P2 [82]; o desenvolvimento de algoritmos “flux-limiting”

[56, 69]; o desenvolvimento de fechamentos alternativos e modelos de ordem superior

[51, 55, 80, 81]; o tratamento de espalhamento anisotrópico [36, 54, 76] e problemas

de autovalores [65, 93]; e o uso da chamada “renewal theory” para descrever o

transporte estocástico em misturas não-Markovianas [16, 26, 48, 50, 63, 78, 87, 94].

Existe também um grande número de artigos que lidam com importantes aplicações
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para este tipo de problema: aplicações atmosféricas [32, 33, 59, 77, 79, 84, 85, 95];

aplicações em astrof́ısica [3, 4, 10]; aplicações em problemas de criticalidade [52, 91,

92]; aplicações em medicina nuclear [36, 57, 58, 60, 66, 83]; etc.

O presente trabalho tem por meta apresentar uma discussão detalhada

no que se refere à Teoria do Transporte Estocástico, com ênfase nos dois modelos

já mencionados. As derivações e as hipóteses f́ısicas são apresentadas em detalhes,

e as particularidades encontradas são cuidadosamente discutidas. Apresentamos

também algumas novas idéias relacionadas com a derivação do método de Levermore-

Pomraning, assim como cálculos numéricos comparando ambos os modelos com

soluções de benchmark. Existem poucos trabalhos onde uma comparação sistemática

entre os resultados de benchmark e os modelos de mistura atômica e de Levermore-

Pomraning é feita [12, 90], o que nos leva a crer na importância desta contribuição.

É importante salientar que todas as simulações numéricas foram rea-

lizadas usando o método LTSN [73, 74, 75], que resolve analiticamente a aproximação

de ordenadas discretas (SN) da equação do transporte de nêutrons em uma placa.

Até onde sabemos, o trabalho de Vasques et al. [90] é o primeiro onde o método

LTSN é aplicado no cálculo de resultados de benchmark para esta classe de problemas

estocásticos, bem como no cálculo das estimativas dos modelos de mistura atômica e

de Levermore-Pomraning. O poder do método LTSN o faz se adaptar muito bem no

cálculo dos resultados de benchmark para problemas que requerem soluções para um

grande número de realizações f́ısicas. Portanto, os algoritmos usados em [90] foram

aperfeiçoados com a finalidade de incluir problemas com fonte interna, e todos os

cálculos numéricos foram realizados de modo que o erro estat́ıstico relativo é menor

que 1% com 95% de confiança. Um total de 117 problemas é apresentado neste

trabalho.

O trabalho é delineado da seguinte forma:

• No Caṕıtulo 2, os conceitos básicos necessários para descrever a interação

de part́ıculas com a matéria são introduzidos (seção 2.1). Após, faz-se uso do
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prinćıpio de conservação de part́ıculas para formular a equação do transporte ı́ntegro-

diferencial em um meio não-estocástico (seção 2.2). O caṕıtulo se encerra com a

derivação de alguns resultados estat́ısticos importantes que serão usados ao longo

do trabalho, relacionados à linha infinita estatisticamente preenchida com segmentos

alternados de dois materiais diferentes (seção 2.3).

• O Caṕıtulo 3 começa com a apresentação de uma derivação emṕırica da

equação de mistura atômica (seção 3.1). Na seção 3.2, a equação de mistura

atômica é derivada utilizando um procedimento formal de expansão multiscale [14].

O caṕıtulo é encerrado com uma discussão relacionada às limitações do modelo de

mistura atômica para os casos nos quais suas hipóteses não são satisfeitas, e o mo-

tivo pelo qual a técnica de expansão multiscale só poder ser utilizada como um

procedimento formal é apresentado (seção 3.3).

• O Caṕıtulo 4 fornece uma discussão detalhada sobre o método de Levermore-

Pomraning. Duas derivações diferentes deste método aparecem na seção 4.1: uma

utilizando a abordagem da equação master [43, 49, 53, 86, 88]; e uma usando a idéia

introduzida por Adams, Larsen e Pomraning [1]. Aqui, no entanto, os detalhes da

derivação são feitos de acordo com Vasques et al. [90], de maneira que o leitor pode

achá-la mais esclarecedora em termos da f́ısica do problema. Segue-se uma discussão

cujo ponto principal é o fato das equações de Levermore-Pomraning, na sua forma

tradicional, serem incorretas para geometrias tridimensionais aleatórias. Na seção

4.2 é apresentada uma interpretação f́ısica do modelo desenvolvida por Sahni [68], e

uma posśıvel falha do modelo para espalhamento isotrópico é discutida. Em seguida,

relata-se uma nova idéia proposta por Larsen [20, 24] para um modelo corrigido. A

seção 4.3 discute alguns importantes progressos relacionados a esta pesquisa: a

derivação de alguns limites assintóticos é tratada na seção 4.3.1; e fechamentos

alternativos, assim como modelos de ordem superior, na seção 4.3.2.

• Resultados numéricos para problemas de transporte em geometria pla-

nar sem dependência no tempo são apresentados no Caṕıtulo 5. O procedimento

numérico para a obtenção destas soluções é descrito na seção 5.1. Na seção 5.2, re-
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sultados para problemas de Reflexão/Transmissão são mostrados. Simulações para

problemas com fonte em um meio contendo placas de duas densidades diferentes de

um mesmo material são apresentadas na seção 5.3.

• O Caṕıtulo 6 apresenta as conclusões relacionadas ao trabalho desenvolvido,

assim como novas idéias para trabalhos futuros nesta linha de pesquisa.
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2 TRANSPORT IN A KNOWN MEDIUM

AND STATISTICAL CONSIDERATIONS

2.1 Basic Concepts

In this section, we introduce some basic concepts needed to describe the

interaction of particles with matter. (We refer the interested reader to [8, 9, 13, 19]

for a more detailed description of these concepts.) Let us consider neutral particles

flowing through a background material and interacting with it. Assuming that no

forces act on these particles, between collisions they will travel in a straight line at

a constant speed. At any time t, we use six variables to specify the position of any

particle in phase space: three position variables denoted by the vector r, the kinetic

energy E, and a unit vector Ω, which indicates the direction in which the particle

is traveling. With these variables we can define the distribution function

n = n(r, E, Ω, t), (2.1)

such that

n(r, E, Ω, t)drdEdΩ (2.2)

is the number of particles in a differential volume element dr at a spatial point r,

with energy in dE about E, traveling in a solid angle element dΩ about direction

Ω, at time t.

Let the vector r be described by the Cartesian coordinates x, y, z, and

the vector Ω be described by a polar angle θ measured with respect to the z-axis

and a corresponding azimuthal angle ϕ (Figure 2.1).

If we introduce µ = cos θ, then

dr = dxdydz, (2.3)

dΩ = sin θdθdϕ = dµdϕ. (2.4)
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Figure 2.1: State of a particle in a coordinate system

Here, a minus sign was omitted from Eq. (2.4), since µ runs from 1 to -1 when θ

runs from 0 to π. If v is the velocity vector, then Ω = v/|v|, and it is easy to see

that the components of the particle velocity in the Cartesian coordinates are given

by

ẋ = vΩx, (2.5)

ẏ = vΩy, (2.6)

ż = vΩz, (2.7)

where v is the particle speed in the nonrelativistic case, that is v =
√

2E/mp, with

mp denoting the particle mass. In fact, we can express the distribution function in

terms of the vector v:

n(r, E, Ω, t) =

(
v

mp

)
n(r, v, t), (2.8)

and integrating over these velocity space variables, we find the particle density

N(r, t) =

∫ ∞

0

n(r, v, t)dv =

∫ ∞

0

∫

4π

n(r, E, Ω, t)dΩdE. (2.9)
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Figure 2.2: Particles incident on an incremental surface area dA

It is conventional in linear transport theory to introduce a new function,

the angular flux, given by

ψ(r, E, Ω, t) = vn(r, E, Ω, t). (2.10)

Integrating ψ over E and Ω, we obtain the scalar flux φ:

φ(r, t) =

∫ ∞

0

∫

4π

ψ(r, E, Ω, t)dΩdE. (2.11)

Another important concept is the angular current density j(r, E, Ω, t), defined by

j(r, E, Ω, t) = Ωψ(r, E, Ω, t), (2.12)

such that

j(r, E, Ω, t) · nsdAdEdΩ = Ωψ(r, E, Ω, t) · nsdAdEdΩ (2.13)

is the rate at which particles, with energy in dE about E, with direction of flight

in dΩ about Ω, cross an incremental surface area dA (with unit outward normal ns)

at r, at time t (Figure 2.2). In a similar sense, we can introduce the scalar current

density J(r, t) given by

J(r, t) =

∫ ∞

0

∫

4π

j(r, E, Ω, t)dΩdE. (2.14)

One should notice that, while the angular flux ψ and the scalar flux φ are scalars,

both current densities defined by equations (2.12) and (2.14) are vectors.
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Since particles are expected to interact with the background material

through which they are flowing, we will introduce the concepts of the two basic

interactions between particles and matter: absorption and scattering. As a par-

ticle travels through matter, there is a probability that it will not scatter when

undergoing an interaction. In this case, the particle is said to have been absorbed.

As examples of absorption, we can mention radiative capture and nuclear fission,

common processes in reactor theory.

A basic assumption in absorption processes is that, in traveling a dis-

tance ds, the probability of absorption is proportional to ds, independent of the

past history of the particle. The proportionality constant between the probability

of absorption and the distance ds is called the macroscopic absorption cross section,

denoted by Σa(r, E, Ω, t). In general, the absorption cross section depends upon

the energy E of the particle as well as both space and time, since the background

material properties are (in general) functions of r and t. Assuming that the matter

is isotropic, the probability of absorption is independent of the direction of travel of

the particle:

Σa(r, E, t)ds = probability of absorption. (2.15)

Similar to absorption, a particle can scatter when interacting with mat-

ter. In this case, the particle does not disappear as in absorption, but continues

to exist with, in general, a different energy and direction of travel. If there is no

energy change upon scattering, the scattering is said to be coherent. We define the

macroscopic scattering cross section Σs(r, E, t) in analogy to the absorption cross

section such that, for a particle travelling a distance ds,

Σs(r, E, t)ds = probability of scattering. (2.16)

The changing of the particle’s energy and direction E ′ and Ω′ to a new energy and

direction E and Ω leads to the definition of the macroscopic differential scattering

cross section Σs(r, E
′ → E, Ω′ → Ω, t), such that the probability that a particle

travelling a distance ds will scatter from E ′ to dE at E and from Ω′ to dΩ at Ω is
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given by

Σs(r, E
′ → E, Ω′ → Ω, t)dEdΩds. (2.17)

When the scattering process is rotationally invariant, the probability that a particle

will scatter from direction Ω′ to direction Ω depends only on the scattering angle

(the angle between Ω′ and Ω), or, on µ0 = Ω′ · Ω = the cosine of this angle. In this

case, Eq. (2.17) becomes

Σs(r, E
′ → E, Ω′ · Ω, t)dEdΩds, (2.18)

and integrating this equation over all final energies and angles, we obtain the macro-

scopic scattering cross section at the initial energy, as defined by Eq. (2.16) [13]:

Σs(r, E, t) =

∫ ∞

0

∫

4π

Σs(r, E → E ′, Ω · Ω′, t)dΩ′dE ′. (2.19)

If in Eq. (2.18) the differential scattering cross section is independent of Ω′ · Ω, the

scattering process is said to be isotropic. In this case, when a particle with direction

Ω′ scatters, all outgoing directions Ω are equally probable.

Finally, the macroscopic total cross section is defined as

Σt(r, E, t) = Σa(r, E, t) + Σs(r, E, t), (2.20)

such that for a particle travelling a distance ds

Σt(r, E, t)ds = probability of undergoing an interaction. (2.21)

Consider a homogeneous medium, and let K(s) be the number of par-

ticles at position s in a directed beam of radiation. In traversing an additional

element of path length ds along this beam, the value of K(s) will be decreased by

the number of particles that have interacted during this process. From the definition

of the total cross section we have

−dK(s) = K(s)Σtds. (2.22)

Equation (2.22) can be integrated with the result

K(s) = K0e
−Σts, (2.23)
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which means that K0 particles initially in the beam will decrease exponentialy with

distance. It should be noted that, since K(s) refers to those particles that have not

interacted in travelling the distance s, the ratio

K(s)

K0

= e−Σts (2.24)

is the probability that a particle will move through this distance without interact-

ing. Now let us define p̃(s)ds as the probability that a particle will have its first

interaction in ds in the neighborhood of s. This is equal to the probability that the

particle reaches s without interacting times the probability that it does interact in

the additional distance ds, i.e.,

p̃(s)ds = e−Σts × Σtds = Σte
−Σtsds. (2.25)

The average distance between interactions is known as the mean free

path, denoted by `. This quantity is equal to the average value of s, the distance tra-

versed by a particle without interaction, over the interaction probability distribution

p̃(s). That is,

` =

∫∞
0

sp̃(s)ds∫∞
0

p̃(s)ds
= Σt

∫ ∞

0

se−Σtsds =
1

Σt

. (2.26)

Therefore, in a homogeneous medium the mean free path is just the inverse of the

total cross section
(
`(E) = Σ−1

t (E)
)
. If the material properties are functions of space

and time, the mean free path will depend upon these variables. In this situation,

Eq. (2.26) is taken as a definition of the mean free path:

` = `(r, E, t) =
1

Σt(r, E, t)
. (2.27)

By analogy, we can define absorption and scattering mean free paths as

`a(r, E, t) =
1

Σa(r, E, t)
, (2.28)

`s(r, E, t) =
1

Σs(r, E, t)
, (2.29)

and by Eq. (2.20), the inverse addition rule is satisfied:

1

`
=

1

`a

+
1

`s

. (2.30)
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2.2 The Integro-Differential Transport Equation

The transport equation was first introduced by Boltzmann in 1872, in

the kinetic theory of gases [5]. This equation describes the relationship between the

mechanisms of loss and gain of particles in any given volume of a phase space. Much

neutral particle transport work is based on this equation, or equations derived from

it.

Let the vectors r and Ω be described by the representation introduced

earlier, in such way that Eqs. (2.3-2.4) and Figure 2.1 are satisfied. We consider

a six dimensional volume (as a six dimensional cube) fixed in space, of dimensions

4x, 4y, 4z, 4E, 4µ, 4ϕ. Then, by Eq. (2.2), the number of particles within this

volume at time t is

n(r, E, Ω, t)4x4y4z4E4µ4ϕ = n(r, E, Ω, t)4P, (2.31)

where all arguments of n are “average” arguments in the increment of six dimensional

phase space 4P . The number of particles in this cube changes with time, and the

time rate of change is given by

4P
∂

∂t
n(r, E, Ω, t). (2.32)

This time rate of change is due to five separate processes. One is the rate of streaming

of particles out of the volume through the boundaries. The others occur within the

six dimensional “cube”: the rate of absorption; the rate of scattering from E, Ω to

all other energies and directions, known as outscattering; the rate of scattering into

E, Ω from all other energies and directions, known as inscattering; and the rate of

production of particles due to an internal source.

Now, let us consider the surfaces of the cube perpendicular to the x

axis. For the net rate of particles leaving the cube through these two surfaces we

have

(Streaming)x = ẋn(r, E, Ω, t) |x+4x
x 4y4z4E4µ4ϕ, (2.33)
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where ẋ is the x component of the particle velocity as defined by Eq. (2.5), and

4y4z4E4µ4ϕ is the surface area. Letting 4x go to the differential dx, we

rewrite Eq. (2.33) as

(Streaming)x = 4P
∂

∂x

[
ẋn(r, E, Ω, t)

]
. (2.34)

Using the same procedure for the flow from the cube in the other five directions, we

obtain

Streaming =

=

[
∂

∂x
(ẋn) +

∂

∂y
(ẏn) +

∂

∂z
(żn) +

∂

∂E
(Ėn) +

∂

∂µ
(µ̇n) +

∂

∂ϕ
(ϕ̇n)

]
4P,

(2.35)

where n = n(r, E, Ω, t).

The rate of absorption within the cube is the product of the number

of particles in the cube and the probability of absorption per particle per unit of

time. This probability is given by the product of the absorption cross section and

the particle speed v. That is,

Absorption = vΣa(r, E, t)n(r, E, Ω, t)4P. (2.36)

Using similar arguments and the fact that we need to sum the scattering

from (to) E, Ω to (from) all other energies and directions E ′, Ω′, we find

Outscattering = 4P

∫ ∞

0

∫

4π

vΣs(r, E → E ′, Ω · Ω′, t)n(r, E, Ω, t)dΩ′dE ′, (2.37)

Inscattering = 4P

∫ ∞

0

∫

4π

v′Σs(r, E
′ → E, Ω′ · Ω, t)n(r, E ′, Ω′, t)dΩ′dE ′, (2.38)

where Σs(r, E
′ → E, Ω′ · Ω, t) is the scattering kernel as defined earlier. Since the

distribution function in the integrand of Eq. (2.37) is independent of the integration

variables, we can rewrite this equation (using Eq. (2.19)) as

Outscattering = 4PvΣs(r, E, t)n(r, E, Ω, t). (2.39)

Finally, we need to consider the internal source of particles. We quantify

this source by introducing the function Q(r, E, Ω, t) such that the rate of introduction
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of particles into the cube is given by

Source = Q(r, E, Ω, t)4P. (2.40)

In order to build the transport equation, we sum Eqs. (2.35-2.38, 2.40),

with appropriate signs for loss and gain, to the overall rate given by Eq. (2.32).

Letting 4P approach a differential element and canceling it, we obtain

∂n

∂t
+

∂(ẋn)

∂x
+

∂(ẏn)

∂y
+

∂(żn)

∂z
+

∂(Ėn)

∂E
+

∂(µ̇n)

∂µ
+

∂(ϕ̇n)

∂ϕ
= −vΣa(r, E, t)n+

+

∫ ∞

0

∫

4π

v′Σs(r, E
′ → E, Ω′ · Ω, t)n(r, E ′, Ω′, t)dΩ′dE ′−

−
∫ ∞

0

∫

4π

vΣs(r, E → E ′, Ω · Ω′, t)n(r, E, Ω, t)dΩ′dE ′ + Q(r, E, Ω, t),

(2.41)

where n = n(r, E, Ω, t). Now, since a particle is assumed to travel in a straight line

between collisions, µ̇ = ϕ̇ = 0. Further, Ė = 0 because particles stream with no

change in energy. Finally, using Eqs. (2.5-2.7) and Eq. (2.10), and performing the

outscattering integral as shown in Eq. (2.39), Eq. (2.41) becomes

1

v

∂ψ

∂t
(r, E, Ω, t) + Ω · ∇ψ(r, E, Ω, t) + Σt(r, E, t)ψ(r, E, Ω, t) =

=

∫ ∞

0

∫

4π

Σs(r, E
′ → E, Ω′ · Ω, t)ψ(r, E ′, Ω′, t)dΩ′dE ′ + Q(r, E, Ω, t).

(2.42)

Equation (2.42) requires both spatial and temporal boundary condi-

tions. Assuming that the physical system of interest is nonreentrant (convex) and

characterized by a volume V , it is sufficient to specify the flux of particles at all

points of the bounding surface of the system in the incoming directions. This im-

plies

ψ(rs, E, Ω, t) = Γ(rs, E, Ω, t) n · Ω < 0, (2.43)

where Γ is a specified function, rs is a point on the surface, and n is a unit outward

normal vector at this point. In the time variable, we assume the range of interest

0 ≤ t < ∞ and specify the initial condition at t = 0, such that

ψ(r, E, Ω, 0) = α(r, E, Ω), (2.44)

where α is a specified function. In particular, Eq. (2.42) (together with the boundary

and initial conditions) completely specify the linear particle transport problem.
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2.3 Mixing Statistics

Consider two points x and y, with x ≤ y, on the infinite real line pop-

ulated statistically with alternating segments of different materials labeled 1 and 2.

Further, consider the closed interval [x, y], and define Ai(x, y) as the probability that

this interval is made up entirely of material i. Now, define pi(y) as the probability

that y is in material i, Bi(x, y) as the probability that [x, y] is in i given that y is in

i, and Ci(x, y) as the probability that [x, y] is in i given that y is a material interface,

with material i to the left. Following Pomraning [48], we have

pi(y) = Ai(y, y), (2.45)

Bi(x, y) =
Ai(x, y)

Ai(y, y)
, (2.46)

Ci(x, y) =
Ai(x, y)− Ai(x, y + dy)

Ai(y, y)− Ai(y, y + dy)
=

∂Ai(x, y)/∂y

[∂Ai(w, y)/∂y]w=y

. (2.47)

As a special case of these considerations, we consider homogeneous statistics. Phys-

ically, this means that all points on the line have identical statistical properties.

This implies that Ai, Bi and Ci depend only upon the single displacement argument

y − x, and that pi are constant, independent of y. If we simplify the notation by

writing Ai(x, y) = Ai(y − x) = Ai(z), we can rewrite Eqs. (2.45-2.47) by

pi = Ai(0), (2.48)

Bi(x, y) =
Ai(z)

Ai(0)
, (2.49)

Ci(x, y) =
A′

i(z)

A′
i(0)

. (2.50)

Now we consider a restricted class of homogeneous statistics. Let ηi(ξ)

be the probability density function for the length ξ of a segment of material i, defined

such that ηi(ξ)dξ is the probability of a segment of material i having a length lying

between ξ and ξ + dξ. We then have [48]

Ci(z) =

∫ ∞

z

ηi(ξ)dξ. (2.51)
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The mean chord length Λi in material i is given by

Λi =

∫ ∞

0

ξηi(ξ)dξ =

∫ ∞

0

Ci(ξ)dξ, (2.52)

and the probabilities pi are clearly related to Λi according to

pi =
Λi

Λ1 + Λ2

, (2.53)

since they are independent of position on the line. If we notice that Ai(∞) must be

zero, we can deduce from Eqs. (2.48,2.50,2.52) that

Ai(z) =
pi

Λi

∫ ∞

z

Ci(ξ)dξ, (2.54)

and then Eq. (2.49) provides

Bi(z) =
1

Λi

∫ ∞

z

Ci(ξ)dξ. (2.55)

If the chord lengths are exponentially distributed according to

ηi(ξ) =
1

Λi

e−ξ/Λi , (2.56)

then we have a special case of this class of homogeneous statistics, known as Markov

statistics. In this case, the mean is Λi (as expected), and we have

Ai(z) = pie
−z/Λi (2.57)

and

Bi(z) = Ci(z) = e−z/Λi . (2.58)

We next consider a more general Markov process without the homoge-

neous statistics restriction. Specifically, if the line consists of material i at position

y, then the probability of y + dy not being in material i is given by

Prob(i → j) =
dy

λi(y)
, (2.59)

where λi(y) is a nonnegative function of y. It is the y-dependence that makes this

statistics process inhomogeneous. According to Eq. (2.59), this Markov process has

no memory and is completely characterized by the two Markov transition lengths



23

λ1(y) and λ2(y). Also, this process is shown [48] to be equivalently characterized by

the unconditional probability of finding point y in material i, given by

pi(y) = 1−
∫ y

−∞

1

λi(y′)
exp

[
−

∫ y

y′

(
1

λ1(ξ)
+

1

λ2(ξ)

)
dξ

]
dy′, (2.60)

and by the correlation length λc(y), given by

2

λc(y)
=

1

p2(y)λ1(y)
+

1

p1(y)λ2(y)
. (2.61)

Further, in the case of homogeneous Markov statistics, one can establish [43]

λi =
λc

1− pi

= Λi, (2.62)

and
1

λc

=
1

λ1

+
1

λ2

. (2.63)
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3 ATOMIC MIX MODEL

3.1 The Atomic Mix Equation

Let us consider the integro-differential transport equation given by

Eq. (2.42). In a deterministic medium, the total cross section Σt, the scattering

kernel Σs, and the source Q are known prescribed functions of their arguments.

Thus, in order to find an expression for the angular flux ψ, one must solve this

equation subject to the boundary and initial conditions given by Eqs. (2.43-2.44).

Now we consider neutron transport in a heterogeneous volume V such

that the boundary ∂V of V is specified, but the interior structure of V is not.

Specifically, we restrict our attention to the case in which V consists of two random

immiscible materials denoted by an index i, with i = 1, 2. We can imagine V as

a heterogeneous volume consisting of randomly distributed chunks of random sizes

and shapes of material 1 imbedded in material 2. If we consider a particle traversing

the mixture along a random path, it will pass through alternating segments of these

two materials, as we can see in Figure 3.1.

The quantities Σt, Σs and Q are considered as discrete random variables.

That is, in the ith material these elements are denoted by Σti(r, E, t), Σsi(r, E
′ →

E, Ω′ ·Ω, t), and Qi(r, E, Ω, t). The stochasticity of the problem is that we have only

a probabilistic idea about which material occupies the space point r at a time t.

Therefore, since we are considering Σt, Σs and Q as random variables, we must also

consider the angular flux ψ as a random variable. We want to find an expression for
〈
ψ

〉
, the ensemble-averaged angular flux (expected value) of ψ.

For convenience, let us consider the case of transport in a nonscattering

medium. Thinking about Ω · ∇ in Eq. (2.42) as a directional derivative, we can

rewrite this equation as

1

v

∂ψ(s, t)

∂t
+

∂ψ(s, t)

∂s
+ Σt(s, t)ψ(s, t) = Q(s, t), (3.1)
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Figure 3.1: Particle traversing the mixture along a random path

where s denotes the spatial variable in the direction Ω. One must notice that

Eq. (3.1) describes particle transport at each energy E and direction Ω, which are

omitted since they are only parameters. We let
〈
W

〉
denote the ensemble average

of any random variable W , and define W̃ as the deviation of W from
〈
W

〉
. Then

〈
W̃

〉
= 0, and W =

〈
W

〉
+ W̃ . Using this notation we ensemble-average Eq. (3.1)

to obtain
1

v

∂
〈
ψ

〉

∂t
+

∂
〈
ψ

〉

∂s
+

〈
Σt

〉〈
ψ

〉
+

〈
Σ̃tψ̃

〉
=

〈
Q

〉
. (3.2)

The values of
〈
Σt

〉
and

〈
Q

〉
in this equation are defined in terms of the properties

of materials 1 and 2. Defining pi(s, t) as the probability of presence of the material

i at position s at time t, then

p1(s, t) + p2(s, t) = 1, (3.3)

and we can write

〈
Σt(s, t)

〉
= p1(s, t)Σt1(s, t) + p2(s, t)Σt2(s, t), (3.4)

〈
Q(s, t)

〉
= p1(s, t)Q1(s, t) + p2(s, t)Q2(s, t). (3.5)

Now, let us define the characteristic chord length for the chunks of

material i as Λi. Assuming that

ΣtiΛi ¿ 1, i = 1, 2, (3.6)
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a particle between collisions is likely to travel a distance that spans many chunks of

materials 1 and 2. Recalling the relationship given by Eq. (2.27), Eq. (3.6) means

that Λi is very small when compared with the mean free path `i. On physical

grounds, this assumption appropriately describes vanishingly small chunks in the

mixture, which can be understood as if the two components of the system were

mixed at the atomic level. When Eq. (3.6) is satisfied, it is physically intuitive that

the transport process will be well-approximated by the process that holds when the

chunk sizes are zero (the atomic mix limit). Moreover, when the chunk sizes shrink,

the deviations in the angular flux should also shrink, and ψ̃ will go to zero. Hence,

the cross correlation term
〈
Σ̃tψ̃

〉
in Eq. (3.2) is neglected, and Eq. (3.2) becomes

1

v

∂
〈
ψ

〉

∂t
+

∂
〈
ψ

〉

∂s
+

〈
Σt

〉〈
ψ

〉
=

〈
Q

〉
, (3.7)

which is closed for the ensemble-averaged angular flux
〈
ψ

〉
. This equation represents

the atomic mix description of Eq. (3.1).

Applying the same arguments above on Eqs. (2.42-2.44), the atomic mix

description of stochastic transport, including scattering, is given by

1

v

∂
〈
ψ(r, E, Ω, t)

〉

∂t
+ Ω · ∇〈

ψ(r, E, Ω, t)
〉

+
〈
Σt(r, E, t)

〉〈
ψ(r, E, Ω, t)

〉
=

=

∫ ∞

0

∫

4π

〈
Σs(r, E

′ → E, Ω′ · Ω, t)
〉〈

ψ(r, E ′, Ω′, t)
〉
dΩ′dE ′ +

〈
Q(r, E, Ω, t)

〉
,

(3.8)

with
〈
ψ(rs, E, Ω, t)

〉
=

〈
Γ(rs, E, Ω, t)

〉
, n · Ω < 0, (3.9)

〈
ψ(r, E, Ω, 0)

〉
=

〈
α(r, E, Ω)

〉
(3.10)

Here
〈
W

〉
= p1(r, t)W1 + p2(r, t)W2, (3.11)

where W stands for Σt, Σs and Q. The neglected cross correlation terms are
〈
Σ̃tψ̃

〉

and
〈
Σ̃sψ̃

〉
.
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Figure 3.2: Multilayered slab - transverse volume intersection

3.2 The Multiscale Expansion Technique

In the last section we discussed only an empirical way to obtain the

atomic mix equation. In Chapter 4 we will show in a rigorous way that the atomic

mix equation can be deduced mathematically from the Levermore-Pomraning model,

through asymptotic limits. For now, in order to illustrate the method, we will

derive the atomic mix equation using the formal procedure of multiscale expansions,

following the idea presented by Dumas and Golse [14].

Let us consider a three-dimensional volume in which heterogeneities

occur along one spatial dimension (z) only. Moreover, let this volume consist of

binary walls placed perpendicularly to the z-axis. A transverse intersection of this

volume is represented by the multilayered slab in Figure 3.2, where Λi is the mean

width of the regions of the homogeneous material i (i = 1, 2).

Denoting the mean free path of material i by `i, we define

Λ =
Λ1 + Λ2

2
and ` =

`1 + `2

2
, (3.12)

and assuming that Eq. (3.6) holds, which characterizes a mixture at atomic level,

we define the small parameter ε by

Λ

`
= ε ¿ 1. (3.13)
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Now we consider the case of time independent transport in this system.

For simplicity, we will assume that the scattering process is both coherent and

isotropic. We will also assume the source Q to be isotropic. It is therefore clear that

Σt, Σs, and Q will depend only upon the spatial variable z, since our assumptions

allow us to consider energy E as a simple parameter. In this case, Eq. (2.42) becomes

Ω · ∇ψ(r, Ω) + Σt(z)ψ(r, Ω) =
Σs(z)φ(r)

4π
+

Q(z)

4π
, (3.14)

where φ is the scalar flux as given by Eq. (2.11). The boundary condition is given

by

ψ(rs, Ω) = 0, n · Ω < 0, (3.15)

where rs is a point on the surface and n is a unit outward normal vector at this

point.

One must notice that the smaller is ε, the faster will be the oscillations

of the functions Σt, Σs, and Q. This corresponds to the different values of these

functions in each component of the mixture. For this reason, a scaling variable

w = z/ε is introduced [14, 21, 22, 23], and we define

Σt(z) = σt(w), (3.16)

Σs(z) = σs(w), (3.17)

Q(z) = q(w), (3.18)

ψ(r, Ω) = ψ̂(r, w, Ω). (3.19)

Clearly, this “fast” spatial variable w describes variations in the cross sections,

source and angular flux that occur over distances (along the z-axis) that are small

compared to a mean free path. Rewriting Eq. (3.14) in terms of this scaling variable,

we find

Ω ·∇wψ̂(r, w, Ω)+Ω ·∇ψ̂(r, w, Ω)+σt(w)ψ̂(r, w, Ω) =
σs(w)φ̂(r, w)

4π
+

q(w)

4π
, (3.20)

that is,

µ

ε

∂ψ̂

∂w
(r, w, Ω) + Ω · ∇ψ̂(r, w, Ω) + σt(w)ψ̂(r, w, Ω) =

σs(w)φ̂(r, w)

4π
+

q(w)

4π
, (3.21)
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where φ̂ follows the scalar flux definition regarding ψ̂.

Then, we seek ψ̂ as a multiscale expansion of the form

ψ̂(r, w, Ω) =
∑

k=0

εkψk(r, w, Ω). (3.22)

Here, we remark that this expansion is performed only as a formal procedure (we

will show in the next section that this analysis breaks down when we try to find

an expression for the terms ψk with k ≥ 1). Proceeding as in [14], we apply this

expansion in Eq. (3.21), and equating the coefficients of powers ε−1 and ε0, we

respectively obtain

µ
∂ψ0

∂w
(r, w, Ω) = 0, (3.23)

and

µ
∂ψ1

∂w
(r, w, Ω) = −Ω·∇ψ0(r, w, Ω)−σt(w)ψ0(r, w, Ω)+

σs(w)φ0(r, w)

4π
+

q(w)

4π
, (3.24)

where φ0 follows the scalar flux definition regarding ψ0. From Eq. (3.23) we deduce

that ψ0 does not depend on w. If we define a fast spatial averaging operator [21, 22,

23] by

f(r) = lim
ŵ→∞

[
1

2ŵ

∫ ŵ

−ŵ

f(r, w)dw

]
, (3.25)

it is easy to see that
∂ψ1

∂w
→ 0. (3.26)

Hence, applying this operator in Eq. (3.24), we obtain

Ω · ∇ψ0(r, Ω) + σt ψ0(r, Ω) =
σs φ0(r)

4π
+

q

4π
, (3.27)

which is the atomic mix representation of Eq. (3.14).

In fact, we can relate the present derivation with the discussion made

in the last section. It was said that the cross correlation terms can be neglected

when Eq. (3.6) is satisfied. Here, these terms can be thought of as being embodied

in the evaluation of the subsequent terms of the expansion in Eq. (3.22). This is

not strictly correct, since this expansion is only a formal procedure, but one can

envision that the cross correlation terms must be embodied in ψ′ = ψ̂ − ψ0.
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Furthermore, this derivation presents a simple approach to deal with

the system heterogeneities, but we will show in the next section that we are not

able to find a more accurate expression for ψ using only the mathematical tools

presented here.

3.3 Limitations of the Atomic Mix Model

Atomic mix is very appealing because of its simplicity. Since the cross

correlation terms are neglected, this model leads to a description that essentially does

not deal with stochastic effects. Assuming that the statistics of mixing is known, the

problem of solving Eq. (3.8) is not different than the one we face to solve Eq. (2.42).

However, when Eq. (3.6) is not satisfied, the atomic mix description is generally

inaccurate. Although there exist specified classes of problems in which atomic mix

is accurate even when the chunk sizes are not optically small [21, 22], in general

it fails quite badly in these situations. As an example, consider time independent

transport in a nonscattering medium without internal sources, given by

∂ψ(s)

∂s
+ Σt(s)ψ(s) = 0, (3.28)

with the boundary condition

ψ(0) = Γ0, (3.29)

where (0 ≤ s < ∞). Following Pomraning [43], let material 1 be composed of

optically thin packets such that Σt1Λ1 ¿ 1. Then, define material 2 as very sparse

optically thick chunks imbedded on material 1, in such way that Σt2Λ2 À 1 and

p2(s) ¿ 1. Here, Λi is the characteristic chord length of material i and p2 is the

probability of finding material 2 at position s. The physical description is that of

a near vacuum where sparse absorbing packets of (essentialy) infinite thickness can

be found. Particles travelling through this mixture tend to pass through it without

undergoing an interaction, at least on the average, as can be seen from Figure

3.3. On the other hand, if we write the atomic mix description of Eqs. (3.28-3.29)
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Figure 3.3: Particle travelling through a near void with sparse chunks

neglecting the cross correlation term
〈
Σ̃tψ̃

〉
:

∂
〈
ψ

〉

∂s
+

〈
Σt

〉〈
ψ

〉
= 0, (3.30)

〈
ψ(0)

〉
=

〈
Γ0

〉
, (3.31)

we will conclude that
〈
ψ

〉
will be exponentially attenuated, with a scale length

1/
〈
Σt

〉
, and it is clear that

〈
Σt

〉
is very large, since Σt2 is very large. Hence, this

modelling will lead to essentialy no transmission through the system. In general,

neglecting the cross correlation term will underestimate particle transmission.

Let us turn our attention to the problem with one-dimensional hetero-

geneities presented in last section. Since we have found an expression to ψ0 without

difficulties, we are tempted to seek an expression to ψ1 in order to define Eq. (3.22)

more accurately. Subtracting Eq. (3.27) from Eq. (3.24), we find

µ
∂ψ1

∂w
(r, w, Ω) =

[
σt − σt(w)

]
ψ0(r, Ω)−

[
σs − σs(w)

]
φ0(r)

4π
−

[
q − q(w)

]

4π
. (3.32)

We define

σt(w) = σt +
dgt

dw
(w), (3.33)

σs(w) = σs +
dgs

dw
(w), (3.34)

q(w) = q +
dgq

dw
(w), (3.35)
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Figure 3.4: Particle travelling in direction µ = 0

where the auxiliary functions gt, gs and gq (and their respective derivatives) are

suitable random functions with the same order of σt, σs and q regarding the scaling

variable w. Thus, the randomness in functions σt, σs and q is completely due to the

randomness in the g functions. Rewriting Eq. (3.32) in terms of these functions and

integrating over w, we find

µψ1(r, w, Ω) = −gt(w)ψ0(r, Ω) +
gs(w)φ0(r)

4π
+

gq(w)

4π
. (3.36)

However, Eq. (3.36) gives us

ψ1(r, w, Ω) =
1

µ

[
− gt(w)ψ0(r, Ω) +

gs(w)φ0(r)

4π
+

gq(w)

4π

]
, (3.37)

which is not bounded, given that −1 ≤ µ ≤ 1. Hence, this analysis breaks down. In

fact, it has been shown [14] that the multiscale expansion given in Eq. (3.22) cannot

in general be pursued, no matter in how many directions the heterogeneities occur.

Nevertheless, in this particular case we can envision a physical expla-

nation for this problem. While a particle travels through the medium described in

Figure 3.2 with µ 6= 0, it spans several walls of materials 1 and 2, as expected. But

if a particle scatters to a direction in which µ = 0, it will flow in a wall of one

material only, as can be seen from Figure 3.4. That is, the properties of the medium

in which this particle is travelling are not the same as we have in the atomic mix

description. A more complex analysis would be necessary in order to derive more

accurate results for this problem.
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We conclude this chapter by mentioning that some important contribu-

tions have been made regarding the mathematical analysis of homogenization prob-

lems. In particular, we refer to [14] for results on the treatment of high-frequency

oscillations, periodic homogenization, small divisor problems and stochastic inhomo-

geneities; and to [39] for strong convergence results to the solution of homogenized

problems (we also refer to the literature indicated there).
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4 THE LEVERMORE-POMRANING

METHOD

4.1 The Levermore-Pomraning Derivation

The first derivation of the Levermore-Pomraning method [25, 44] con-

sidered time independent transport in a purely absorbing medium. However, the

task of reducing this expression to an useable one when the scattering interaction is

involved is exceedingly complex [43]. For this reason we will not treat this derivation

in this work.

Later, Vanderhaegen [86] pointed out that in the time independent,

nonscattering case, the stochastic problem is a joint Markov process, and thus the

Liouville master equation applies [18, 89]. It was suggested [43, 49, 53] that the use

of this master equation might produce an useful approximate model for problems

with time dependence and scattering. This approach is the subject of section 4.1.1 .

In section 4.1.2 we discuss still another derivation of this model, which

was introduced by Adams, Larsen and Pomraning [1]. Here, the details of this

derivation follow Vasques et al. [90], in a manner that the reader may find illu-

minating from the physical viewpoint. We also present an argument pointing out

that the Levermore-Pomraning equations, in their traditional form, are incorrect for

random three dimensional geometries.

4.1.1 The Master Equation Approach

Let us consider time independent transport in a nonscattering, hetero-

geneous medium composed by materials 1 and 2. Then Eq. (2.42) becomes, at each

energy E,
dψ

ds
(s) + Σt(s)ψ(s) = Q(s), (4.1)
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with the boundary condition given by

ψ(0) = Γ0. (4.2)

Following Vanderhaegen [86], Eq. (4.1) can be thought of as an initial

value problem, with the spatial variable s playing the role of time. Hence, if we

define in terms of Eq. (2.59) the probability of not finding material i at s+ ds given

that the position s consists of material i, then we have a joint Markov process, and

the Liouville master equation [18, 89] applies. This equation describes the joint

probability density Pi(ψ, s), defined such that Pidψ is the probability of finding

material i at position s, and having the stochastic solution lie between ψ and ψ+dψ.

Thus, for i = 1, 2 and j 6= i, we have the coupled equations

∂Pi

∂s
− ∂

∂ψ

[
(Σtiψ −Qi)Pi

]
=

Pj

λj

− Pi

λi

. (4.3)

The boundary conditions of Eq. (4.3) are given by

Pi(ψ, 0) = pi(0)δ(ψ − Γ0), (4.4)

where pi(s), the probability of finding material i at position s, is related to Pi(ψ, s)

according to

pi(s) =

∫ ∞

0

Pi(ψ, s)dψ. (4.5)

If we define ψi(s) as the ensemble average of ψ(s) over all physical realizations such

that s is in material i, then we have

pi(s)ψi(s) =

∫ ∞

0

ψPi(ψ, s)dψ, (4.6)

and
〈
ψ(s)

〉
= p1(s)ψ1(s) + p2(s)ψ2(s). (4.7)

Further, if we multiply Eqs. (4.3-4.4) by ψ and integrate over 0 ≤ ψ < ∞, we find:

d(piψi)

ds
+ Σtipiψi = piQi +

pjψj

λj

− piψi

λi

, (4.8)

subject to the boundary conditions

ψi(0) = Γ0. (4.9)
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Equations (4.8) and (4.9) give an exact description for the ensemble-

averaged angular flux in binary Markovian mixtures for the problem given by Eq.

(4.1). Unfortunately, when scattering is included, the transport equation cannot be

thought of as an initial value problem, and therefore it does not describe a Markov

process even if the mixing process is assumed to be Markovian [88]. Hence the

Liouville master equation, if applied, would not produce an exact formulation.

On the other hand, it is possible to obtain a useful approximation for

particle transport in Markovian mixtures with scattering using the Liouville master

equation [43, 49, 53]. Let us consider the inscattering term given by Eq. (2.38).

The basic approximation consists of treating this term in the same way as the

internal source term Q. This approximation is performed in such way that the

continuous random variable ψ(r, E ′, Ω′, t) is replaced by a discrete random variable

ψi(r, E
′, Ω′, t), such that ψi is the ensemble average of ψ over the continuous states

found when the system is in material i at given r and t. In analogy with the non-

scattering case, we find the two coupled equations (with time dependence included)
(

1

v

∂

∂t
+ Ω · ∇

)
Pi − ∂

∂ψ

{[
Σtiψ + (Si − Σsi)ψi −Qi

]
Pi

}
=

Pj

λj

− Pi

λi

, (4.10)

where Si is the scattering operator for material i, defined by

Siψi = Σsiψi −
∫ ∞

0

∫

4π

Σsi(r, E
′ → E, Ω′ · Ω, t)ψi(r, E

′, Ω′, t)dΩ′dE ′. (4.11)

In Eq. (4.10), Pi(ψ, r, E, Ω, t)dψ is the probability of finding material i at position r

and time t, and having the stochastic solution lie between ψ and ψ + dψ. We define

pi(r, t), the probability of finding material i at position r and time t, in analogy

to Eq. (4.5). Hence ψi(r, E, Ω, t) is given in terms of Pi in analogy to Eq. (4.6).

Further, the Markov transition functions in Eq. (4.10) depend upon angle, space

and time; that is, λi = λi(r, Ω, t).

If we assign boundary and initial conditions for the transport equation

of the form

ψ(rs, E, Ω, t) = Γ(rs, E, Ω, t), n · Ω < 0, (4.12)

ψ(r, E, Ω, 0) = α(r, E, Ω), (4.13)
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where rs is a point on the surface of the system and n is a unit outward normal

vector at rs, then the boundary and initial conditions on Eq. (4.10) are given by

Pi(ψ, rs, E, Ω, t) = pi(rs, t)δ(ψ − Γ), n · Ω < 0, (4.14)

Pi(ψ, r, E, Ω, 0) = pi(r, 0)δ(ψ − α). (4.15)

Again, multiplying Eqs. (4.10,4.14-4.15) by ψ and integrating over 0 ≤ ψ < ∞, we

find

1

v

∂(piψi)

∂t
+ Ω · ∇(piψi) + (Σai + Si)(piψi) = piQi +

pjψj

λj

− piψi

λi

, (4.16)

subject to the boundary and initial conditions

ψi(rs, E, Ω, t) = Γ(rs, E, Ω, t), n · Ω < 0, (4.17)

ψi(r, E, Ω, 0) = α(r, E, Ω). (4.18)

Thus, the overall ensemble average of the angular flux is related to ψi according to

〈
ψ(r, E, Ω, t)

〉
= p1(r, t)ψ1(r, E, Ω, t) + p2(r, t)ψ2(r, E, Ω, t). (4.19)

Equations (4.16-4.18) are the “classic” Levermore-Pomraning equations.

4.1.2 Stochastic Balance Method

Now we will present a second derivation of this model. Following Adams,

Larsen and Pomraning [1] and Vasques et al. [90], we will initially restrict our

considerations to time-independent statistics (i.e., the configuration of materials 1

and 2 in any given physical realization of the mixing statistics is static).

For notation simplicity, we consider the transport equation with an

isotropic internal source, and we assume that the scattering process is both coherent

and isotropic. Thus we have

1

v

∂ψ

∂t
(r, Ω, t)+Ω ·∇ψ(r, Ω, t)+Σtψ(r, Ω, t) =

Σs

4π

∫

4π

ψ(r, Ω′, t)dΩ′+
Q(r, t)

4π
, (4.20)
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and we define boundary and initial conditions

ψ(rs, Ω, t) = Γ(rs, Ω, t), n · Ω < 0, (4.21)

ψ(r, Ω, 0) = α(r, Ω), (4.22)

where rs is a point on the surface of the system and n is a unit outward normal

vector at rs.

Now, we introduce the characteristic functions

χi(r) =

{
1, if r is in material i

0, if r is in material j 6= i
. (4.23)

The basic issue is that we do not know the functions χ1(r) and χ2(r), but we know

that they satisfy

χ1(r) + χ2(r) = 1. (4.24)

Multiplying Eq. (4.20) by χi(r), and using:

χi

(
Ω · ∇ψ

)
= Ω · ∇(χiψ)− ψ(Ω · ∇χi), (4.25)

χi(r)Σt(r) = Σtiχi(r), (4.26)

χi(r)Σs(r) = Σsiχi(r), (4.27)

χi(r)Q(r, t) = Qiχi(r), (4.28)

we find, for i = 1, 2,

1

v

∂(χiψ)

∂t
+ Ω · ∇(χiψ) + Σti(χiψ) =

Σsi

4π

∫

4π

χiψ(r, Ω′, t)dΩ′ +
Qiχi

4π
+ ψ(Ω · ∇χi).

(4.29)

The next step is to ensemble-average this result over all statistical realizations. The

probability of finding material i at point r is given by

pi(r) =
〈
χi(r)

〉
, (4.30)

and therefore we define

ψi(r, Ω, t) =

〈
χi(r)ψ(r, Ω, t)

〉
〈
χi(r)

〉 , (4.31)
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where, again, ψi is the ensemble average of ψ(r, Ω, t) over all physical realizations

such that r is in material i. Hence Eq. (4.29) becomes

1

v

∂(piψi)

∂t
+ Ω·∇(piψi) + Σti(piψi) =

=
Σsi

4π

∫

4π

piψi(r, Ω
′, t)dΩ′ +

piQi

4π
+

〈
ψ(Ω · ∇χi)

〉
.

(4.32)

Further, from Eqs. (4.24,4.30-4.31) we deduce that

〈
ψ(r, Ω, t)

〉
= p1(r)ψ1(r, Ω, t) + p2(r)ψ2(r, Ω, t), (4.33)

which is the overall ensemble average of the angular flux as defined earlier. Boundary

and initial conditions for ψi(r, Ω, t) are obtained by multiplying Eqs. (4.21-4.22) by

χi(r) and ensemble-averaging them:

ψi(rs, Ω, t) = Γ(rs, Ω, t), n · Ω < 0, (4.34)

ψi(r, Ω, 0) = α(r, Ω). (4.35)

Now, in order to obtain a closed system of equations and boundary

conditions for ψ1 and ψ2, it is necessary to evaluate the term

〈
fi(r, Ω, t)

〉
=

〈
ψ(r, Ω, t)[Ω · ∇χi]

〉
(4.36)

on the right hand side of Eq. (4.32). To do this, we consider the average value of

fi(r, Ω, t) over a volume V and take the limit as V approaches zero:

〈
fi(r, Ω, t)

〉
= lim

V→0

〈
ψ(r, Ω, t)

(
1

V

∫

V

Ω · ∇χi(r)dr

)〉
. (4.37)

The ensemble-average in Eq. (4.37) is over all realizations. However, for a given

realization, we have
∫

V
Ω·∇χi(r)dr 6= 0 only if there is an interface between materials

1 and 2 intersecting V . Therefore, we write

〈
ψ(r, Ω, t)

(
1

V

∫

V

Ω ·∇χi(r)dr

)〉
= P ∗

〈
ψ(r, Ω, t)

(
1

V

∫

V

Ω ·∇χi(r)dr

)〉∗
, (4.38)

where P ∗ is the probability that a realization has an interface that intersects V , and
〈 · 〉∗ is a restricted average defined to be an ensemble-average over all realizations

having an interface that intersects V .
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Figure 4.1: Intersection of the interface with the sphere V

Now we consider V to be a sphere of radius ε centered at r. Assuming

that there exists an interface intersecting this sphere, for ε small enough we can

regard this interface as a plane with normal vector ni pointing out of region i. If we

chose the z-axis perpendicular to this planar interface as shown in Figure 4.1, then

the intersection of the interface with the sphere is a disc of radius dε =
√

ε2 − z2
0

given by the intersection of the plane z = z0 with the sphere, and ni = êz. In this

coordinate system we have ∇χ(r) = −niδ(z − z0); thus

1

V

∫

V

Ω · ∇χi(r)dr =
3

4πε3

∫

V

(−Ω · ni)δ(z − z0)dxdydz =

=
3

4πε3
(−Ω · ni)πd2

ε =
3

4ε3
(−Ω · ni)d

2
ε,

(4.39)

and Eq. (4.37) becomes

〈
fi(r, Ω, t)

〉
= lim

ε→0

[
− 3

4ε3
P ∗

〈
(Ω · ni)ψ(r, Ω, t)d2

ε

〉∗]
. (4.40)

Let us define
〈 · 〉∗

Ω·ni>0
to be the ensemble-average over all realizations such that an

interface intersects V and Ω points out of material i. Then, since ni = −nj,
〈

(Ω · ni)ψ(r, Ω, t)d2
ε

〉∗
=

=

〈
(Ω · ni)ψ(r, Ω, t)d2

ε

〉∗

Ω·ni>0

+

〈
(Ω · ni)ψ(r, Ω, t)d2

ε

〉∗

Ω·ni<0

=

〈
(Ω · ni)ψ(r, Ω, t)d2

ε

〉∗

Ω·ni>0

−
〈

(Ω · nj)ψ(r, Ω, t)d2
ε

〉∗

Ω·nj>0

,

(4.41)
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Figure 4.2: Arbitrary infinite line intersecting interfaces perpendicularly

and defining

Ψε
i =

〈
(Ω · ni)ψ(r, Ω, t)d2

ε

〉∗
Ω·ni>0〈

(Ω · ni)d2
ε

〉∗
Ω·ni>0

, (4.42)

we can rewrite Eq. (4.40) as

〈
fi(r, Ω, t)

〉
=

= lim
ε→0

[
3

4ε3
P ∗

(
Ψε

j

〈
(Ω · nj)d

2
ε

〉∗
Ω·nj>0

−Ψε
i

〈
(Ω · ni)d

2
ε

〉∗
Ω·ni>0

)]
.

(4.43)

The geometrical quantities
〈
(Ω · ni)d

2
ε

〉∗
Ω·ni>0

in Eq. (4.43) are equal for i = 1, 2 and

can be explicitly evaluated if we assume that:

1) the points z0 in Figure 4.1 are uniformly distributed on −ε < z0 < ε;

2) the normal vectors of interfaces passing through V are uniformly

distributed on the unit sphere.

Then, using Ω · ni = µ and d2
ε = ε2 − z2

0 , we obtain for i = 1 and 2

〈
(Ω · ni)d

2
ε

〉∗
Ω·ni>0

=
〈
µ(ε2 − z2

0)
〉∗

µ>0

=

∫ 1

0

(
1

2ε

∫ ε

−ε

µ(ε2 − z2
0)dz0

)
dµ

=
ε2

3
.

(4.44)

Introducing this result into Eq. (4.43), we get

〈
fi(r, Ω, t)

〉
= lim

ε→0

[
3

4ε3

ε2

3
P ∗

(
Ψε

j −Ψε
i

)]
= lim

ε→0

[
1

4ε
P ∗

(
Ψε

j −Ψε
i

)]
. (4.45)

Further, it is possible to calculate P ∗. To do this, let us consider an arbitrary infinite

line through the point r, and let us assume (for the moment) that the interfaces all

intersect the line perpendicularly. Then, it can be seen from Figure 4.2 that an
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interface intersects V only if the point r lies within a distance ε of an interface. This

creates a line segment of width 2ε about each interface, such that if r is in one of

these segments, then an interface intersects V . Over a very large length of this line,

spanning m chunks of material i and m chunks of material j, we have

(2m)(2ε) = 4mε

=


 the length of the line segments such that if r lies on

one of these segments, then an interface intersects V


 ,

(4.46)

and

m(Λ1 + Λ2) ≈ (total length of the line). (4.47)

The ratio of Eqs. (4.46) and (4.47) is P ∗. That is,

P ∗ =
4ε

Λ1 + Λ2

. (4.48)

One can easily see that this expression has the right qualitative behavior. It correctly

limits to zero as ε → 0, and as Λ1, Λ2 →∞.

Introducing Eq. (4.48) into Eq. (4.45), we obtain

〈
fi(r, Ω, t)

〉
= lim

ε→0

[
1

4ε

(
4ε

Λ1 + Λ2

)(
Ψε

j−Ψε
i

)]
= lim

ε→0

[
1

Λ1 + Λ2

(
Ψε

j−Ψε
i

)]
. (4.49)

Finally, defining Ψi = lim
ε→0

Ψε
i and using Eq. (2.53), we have

〈
fi(r, Ω, t)

〉
=

1

Λ1 + Λ2

(
Ψj −Ψi

)

=

(
Λj

Λ1 + Λ2

)(
Ψj

Λj

)
−

(
Λi

Λ1 + Λ2

)(
Ψi

Λi

)

=
pjΨj

Λj

− piΨi

Λi

,

(4.50)

and this result is the Levermore-Pomraning expression for
〈
fi

〉
. Combining Eq. (4.32)

with Eq. (4.50), we obtain

1

v

∂(piψi)

∂t
+ Ω·∇(piψi) + Σti(piψi) =

=
Σsi

4π

∫

4π

piψi(r, Ω
′, t)dΩ′ +

piQi

4π
+

pjΨj

Λj

− piΨi

Λi

.
(4.51)
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Unfortunately, this result consists of two equations with four unknown functions,

namely ψ1, ψ2, Ψ1 and Ψ2; thus, a closure is needed to make this formalism useful.

No simple exact relationship seems to exist relating ψi (the ensemble average of

ψ over all physical realizations such that r is in material i) and Ψi (the ensemble

average of ψ at interface points for which Ω · ni > 0). Nevertheless, in analogy with

upwind differencing encountered in the numerical analysis of hyperbolic equations,

we approximate Ψi by simply equating it to ψi. Rewriting Eq. (4.51) with this

closure, we find

1

v

∂(piψi)

∂t
+ Ω·∇(piψi) + Σti(piψi) =

=
Σsi

4π

∫

4π

piψi(r, Ω
′, t)dΩ′ +

piQi

4π
+

pjψj

Λj

− piψi

Λi

,
(4.52)

and the general case (general scattering, arbitrary source) is straightforwardly given

by

1

v

∂(piψi)

∂t
+ Ω · ∇(piψi) + (Σai + Si)(piψi) = piQi +

pjψj

Λj

− piψi

Λi

, (4.53)

where Si is the scattering operator as defined by Eq. (4.11). Again, the coupled

equations (i = 1, 2) given by Eq. (4.53) are known as the “classic” Levermore-

Pomraning equations.

It is important to notice that this derivation applies to arbitrary homo-

geneous statistics (the homogeneity condition is implicit in assumptions 1 and 2 in

page 41). Particularly, in the case of Markov statistics we know from Eq. (2.62)

that Λi = λi, i.e., the characteristic chord lengths are simply the Markov transition

functions λi. Thus, when the mixture is taken as Markovian, Eq. (4.53) is identical

to the Liouville master equation result given by Eq. (4.16). Therefore, the exact-

ness for time independent, purely absorbing mixtures is clearly explained within the

present context, since the approximation Ψi = ψi is in this case exact. According to

Pomraning [43], this follows from the fact that for purely absorbing, time indepen-

dent transport, the solution at any point depends only upon the optical depths from

this point to the system boundary and the source points. For Markov statistics, the

ensemble-averaged optical depth between two spatial points is the same if one of the

points is an interface, or if this point is chosen at random in one of the materials.
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In order to extend these considerations to nonstatic physical realizations

of the mixing, we define

χi(r, t) =

{
1, if r is in material i at time t

0, if r is in material j 6= i at time t
. (4.54)

Multiplying Eq. (4.20) by χi(r, t), a new term will appear, given by (hi) in

1

v

(
χi

∂ψ

∂t

)
=

1

v

∂(χiψ)

∂t
− 1

v

(
ψ

∂χi

∂t

)

︸ ︷︷ ︸
.

(hi)

(4.55)

We define pi(r, t), the probability of finding material i at point r and time t, by

pi(r, t) =
〈
χi(r, t)

〉
, (4.56)

and the ensemble-averaged angular flux over all physical realizations such that r is

in material i at time t by

ψi(r, E, Ω, t) =

〈
χi(r, t)ψ(r, E, Ω, t)

〉
〈
χi(r, t)

〉 . (4.57)

Treating
〈
hi

〉
in analogy with the way we treated

〈
fi

〉
, we find [43]

1

v

∂(piψi)

∂t
+ Ω · ∇(piψi) + (Σai + Si)(piψi) = piQi+

+

(
pjΨj

Λj

− piΨi

Λi

)
+

(
pjΨ̂j

λ̂j

− piΨ̂i

λ̂i

)
,

(4.58)

where
pi(r, t)

λ̂i(r, t)
=

1

v
lim
T→0

[
1

T

〈
Ni

〉]
(4.59)

and

Ψ̂i =
〈
ψ

〉‡
i→j

. (4.60)

In Eq. (4.59), T is a time interval and Ni is the number of transitions from material

i to material j 6= i in T at space point r. In Eq. (4.60), the operator
〈 · 〉‡

i→j
is a

restricted average, defined to be an ensemble average over realizations that undergo

a transition from material i to material j at a given space point r at a time t.
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Figure 4.3: Interface intersecting an arbitrary line at an arbitrary angle

Again, a simple closure is obtained by setting Ψi = Ψ̂i = ψi. Also, we

can define a composite coupling coefficient λ̃i according to

1

λ̃i

=
1

Λi

+
1

λ̂i

, (4.61)

and applying these arguments in Eq. (4.58), it becomes identical to Eq. (4.53) (with

the terms Λi replaced by λ̃i).

We remark that the model we have just presented can be also derived

through other techniques. In the case of Markovian mixing statistics, one can obtain

the same result by using techniques of nuclear reactor noise analysis [67], or by

assuming that each particle track is independent of prior tracks [68].

At this point we must turn our attention to the assumption made in

Figure 4.2 that the interfaces all intersect an arbitrary line perpendicularly. This

assumption does lead to the “classic” Levermore-Pomraning equations, but we get

a different result when we relax this unphysical constraint.

Let us examine the case in which interfaces can intersect an arbitrary

line at arbitrary angles. In this case, Eq. (4.48) is incorrect. Let us consider an

arbitrary line through r pointing in a direction ê, and let the normal n to an arbitrary

interface have an angle θ′ measured with respect to this line. It can be seen from

Figure 4.3 that, if the point r lies within a distance
ε

|ê · n| of the interface, then the
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Figure 4.4: Arbitrary line through a slab in a planar geometry system

interface will intersect V . Hence, the intervals previously of width 2ε become wider,

and Eq. (4.48) must be written

P ∗ =

〈
1

|e · n|
〉(

4ε

Λ1 + Λ2

)
= β

(
4ε

Λ1 + Λ2

)
. (4.62)

It is easy to check that β is equal to unity in the case of one dimensional planar

geometries. To do this, let us consider an arbitrary line with direction µ through a

slab composed of m chunks of material 1 and m chunks of material 2. We can see

from Figure 4.4 that, if we place a sphere of radius ε in this slab, then this sphere

will intersect an interface only if its center lies inside the shaded areas. That is,

if the center of this sphere is located outside the shaded areas, the sphere will not

intersect an interface. The length of the line segments within the shaded areas is

4mε/|µ|, and the total length of the line is m(Λ1 + Λ2)/|µ|. The ratio of these two

quantities is P ∗:

P ∗ =
4mε/|µ|

m(Λ1 + Λ2)/|µ| =
4ε

(Λ1 + Λ2)
, (4.63)

and therefore we conclude that, in planar geometry systems, β = 1. However, this

is not true for random three dimensional geometries, as we shall see from the next

discussion.

Let us consider a large binary system consisting of materials 1 and 2.

We assume the chunks of material 1 as being uniform, non-overlapping spheres of

radius ρ, suspended in material 2 (the “host” medium). As a technical example,

this system is consistent with the geometry of a pebble bed reactor core. We seek
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Figure 4.5: Shell associated with a Vρ sphere

an expression to describe Pε, the probability that a sphere Vε of radius ε randomly

placed in this system will intersect the surface of a sphere of material 1.

We will denote any sphere of material 1 by Vρ. The mean chord length

across a chunk of material 1 is given by

Λ1 =
Volume of the sphere

Cross-sectional area of the sphere
=

4
3
πρ3

πρ2
=

4

3
ρ. (4.64)

Bearing in mind that the statistics is assumed to be homogeneous, equation (2.53)

holds, and therefore we can calculate Λ2 by using

Λ1

Λ2

=
p1

p2

=
p1

1− p1

, (4.65)

which gives us

Λ2 = Λ1

(
1− p1

p1

)
=

4

3
ρ

(
1− p1

p1

)
. (4.66)

To calculate Pε, we first assume that the spheres Vρ are greater than a

distance 2ε apart from each other. In this case Vε cannot intersect the surfaces of

two spheres of material 1. In a large volume V of the binary system the number M

of spheres Vρ in V satisfies

p1 =
M

V

4

3
πρ3 =⇒ M = V

3p1

4πρ3
. (4.67)

The sphere Vε intersects the surface of a Vρ only if the center of Vε lies within a

distance ε of the surface of Vρ. This defines a shell of volume

Vshell =
4

3
π
(
(ρ + ε)3 − (ρ− ε)3

)
=

4

3
π(6ρ2ε + 2ε2) = 8πρ2ε

(
1 +

ε2

3ρ2

)
(4.68)
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Figure 4.6: Lens-shaped region formed by two overlapping shells

associated with each Vρ, as can be seen in Figure 4.5. If the center of Vε lies within

any of these disjoint shells, then Vε intersects the surface of one chunk of material

1. We can now calculate

Pε =
MVshell

V
=

1

V

(
V

3p1

4πρ3

)
(8πρ2ε)

(
1 +

ε2

3ρ2

)
= 6ε

p1

ρ

(
1 +

ε2

3ρ2

)
. (4.69)

However, we have from Eqs. (4.64) and (4.66)

Λ1 + Λ2 =
4

3

ρ

p1

=⇒ p1

ρ
=

4

3

1

Λ1 + Λ2

, (4.70)

and therefore

Pε = 6ε

(
4

3

1

Λ1 + Λ2

)(
1 +

ε2

3ρ2

)
=

8ε

Λ1 + Λ2

(
1 +

ε2

3ρ2

)
. (4.71)

This result holds if the chunks of material 1 are greater than 2ε apart from each

other. Next, let us assume that the spheres Vρ can touch each other, and that the

average number of spheres Vρ in direct contact with a specific random V ′
ρ is m. When

two spheres of material 1 are in contact, a lens-shaped region of overlap between the

two shells occurs. The volume of this lens-shaped region (Figure 4.6) is given by

Vlens = 2

∫ ρ+ε

ρ

πy2dx = 2π

∫ ρ+ε

ρ

(
(ρ + ε)2 − x2

)
dx = 2π

(
ρε2 +

2ε3

3

)

= 2πε2

(
ρ +

2ε

3

)
.

(4.72)

Now, we can rewrite Eq. (4.69):

Pε =
M(Vshell −mVlens)

V
=

3p1

4πρ3

(
(8πρ2ε)

(
1+

ε2

3ρ2

)
−m(2πρ2)

(
ρ+

2ε

3

))
, (4.73)
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and using Eq. (4.70) we obtain

Pε =
8ε

Λ1 + Λ2

(
1 + O(ε)

)
. (4.74)

This result holds under all possible circumstances of non-overlapping spheres of

radius ρ (material 1) suspended in a host medium (material 2). Equation (4.74)

differs from the “classic” Levermore-Pomraning estimate by a factor of 2; that is,

the factor β in Eq. (4.62) should be replaced by 2 in this particular system. The

main point of this discussion is that Eq. (4.48) is not correct for random three

dimensional geometries.

4.2 Physical Interpretation of the Levermore-Pomraning

Model

In order to illustrate the physical relevance of the present model, we

will present a phenomenological interpretation developed by Sahni [68] and discuss

a possible deficiency of the model for isotropic scattering. We will also introduce an

idea for a corrected model for isotropic scattering, with a Sahni-like interpretation

[20, 24].

Let us assume static (time independent) homogeneous mixing statistics.

In this case, the (closed) Levermore-Pomraning equations are given by Eq. (4.53).

Now let us define Σli by

Σli =
1

Λi

. (4.75)

One should be attentive to the fact that Σ−1
li , in analogy to Eqs. (2.28-2.29), can be

thought of as the mean distance a particle must travel to “leak” out of material i.

Hence Eq. (4.53) can be written

1

v

∂(piψi)

∂t
+Ω·∇(piψi)+(Σti+Σli)(piψi) = (Σsi−Si)(piψi)+piQi+Σlj(pjψj). (4.76)

Now, suppose that a particle is “born” at a point in material i. We already know

that Σsi and Σai are the respective probabilities per unit path length that the particle
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Figure 4.7: Flow diagram for the Levermore-Pomraning equations

will scatter or be absorbed. We then notice that Σli is the probability per unit path

length that the particle will “leak” out of material i into a chunk of material j 6= i.

Thus, within this chunk of material i, three different “events” may occur regarding

this particle. We define the probabilities

psi =
Σsi

Σsi + Σai + Σli

,

pai =
Σai

Σsi + Σai + Σli

,

pli =
Σli

Σsi + Σai + Σli

,

(4.77)

which determine wheter the particle scatters, is absorbed, or leaks into material j.

If the particle scatters, then a new direction of flight is selected and the particle

continues on its history (in material i). If the particle is absorbed, the particle’s

history ends. If the particle leaks out of material i, then it is assumed to enter

material j with no change of direction.
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Figure 4.8: Mean distance to exit a chunk

Therefore, in Eq. (4.76) the term Σli(piψi) on the left side describes

particles that leak out of material i and enter material j, and the term Σlj(pjψj)

on the right side describes particles that leak out of material j and enter material

i. Further, one must notice that particles are neither created nor destroyed by

“leaking” from one material into another. In this interpretation particles travel a

mean distance of Λi in material i before passing into material j, and they travel a

mean distance of Λj in material j before passing into material i.

We present in Figure 4.7 a flow diagram for the Levermore-Pomraning

equations, where the processes that particles can experience are shown together with

their respective probability of occurrence per unit path length. Sahni’s interpreta-

tion of this model is quite reasonable from the physical viewpoint. It assures that

ψi and ψj are positive, and that the model cannot produce an unphysical negative

mean angular flux. However, a possible flaw in the model can be seen.

The present interpretation assumes that, for all particles, the mean

distance to exit a chunk of material i is given by Λi. Actually, this is true only for

particles that have not yet experienced a collision within the chunk. If a particle

scatters isotropically in a chunk with mean chord length given by Λ, then the mean

distance to this scattered particle exit this chunk will be given by Λ/2 (Figure 4.8).

That is, scattered particles are twice as likely to leak out of a chunk than unscattered

particles.
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Following Larsen [20, 24], we define ψu
i to be the flux of particles that

have leaked into a chunk of material i but have not yet experienced a collision

within this chunk, and ψs
i to be the flux of particles within a chunk of material i

that: (i) have experienced at least one scattering within this chunk; or (ii) have

been born from a source inside this chunk. Then we can build an improved system

of Levermore-Pomraning equations:

1

v

∂(piψ
u
i )

∂t
+ Ω · ∇(piψ

u
i ) + (Σti + Σli)(piψ

u
i ) = Σlj(pjψ

u
j ) + 2Σlj(pjψ

s
j ), (4.78)

1

v

∂(piψ
s
i )

∂t
+Ω ·∇(piψ

s
i )+(Σti +2Σli)(piψ

s
i ) = piQi +(Σsi−Si)(piψ

s
i +piψ

u
i ). (4.79)

This is to say that ψu
i describes particles that “see” a mean distance to exit a chunk

of material i of Λi, and that ψs
i describes particles that “see” a mean distance to

exit a chunk of material i of Λi/2.

In the absence of scattering and internal sources, one has ψs
i = 0, and

the above equations reduce to the original model. In this case, Eqs. (4.78-4.79) are

identical to the Levermore-Pomraning equations and, therefore, are exact. In Figure

4.9 a flow diagram for these equations can be seen.

A quantitative argument to justify this idea is as follows. Suppose that

the scalar flux within a chunk of average width Λ (−Λ/2 < x < Λ/2) is well-

represented by the two-term power series expansion

φ(x) = φ + xφ′, (4.80)

where φ and φ′ are O(1) constants (the error of this equation is O(Λ2)). Then for

µ > 0 the mean distance a scattered particle (travelling in direction µ) must travel

to exit the chunk is exactly

Dist(µ) =
1

µ

[ ∫ Λ/2

−Λ/2

(
Λ

2
− x

)(
Σs

2
φ(x)

)
dx

][ ∫ Λ/2

−Λ/2

(
Σs

2
φ(x)

)
dx

]−1

, 0 < µ ≤ 1.

(4.81)

Introducing Eq. (4.80) into Eq. (4.81) and evaluating the integrals, we obtain

Dist(µ) =
1

µ

(
Λ

2
− φ′

φ

Λ2

12

)
+ O(Λ3), 0 < µ ≤ 1. (4.82)
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Figure 4.9: Flow diagram for the revised equations

The Levermore-Pomraning method predicts, for 0 < µ ≤ 1,

DistLP (µ) ≈ Λ

µ
, (4.83)

and comparing Eq. (4.83) with Eq. (4.82) we see that the error in Eq. (4.83) is O(Λ).

The revised method predicts

Dist∗(µ) ≈ Λ

2µ
, (4.84)

and the error in this is O(Λ2 φ′/φ). This error is O(Λ2) provided that φ′/φ = O(1),

which is smaller than the Levermore-Pomraning error when Λ is small. Also, if

φ′/φ = ε is small, then this error can be small even if Λ = O(1).
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In the future we intend to work carefully in the development of this

idea, in order to obtain a theoretical procedure that would confirm the hypothe-

sized accuracy of the revised model over the Levermore-Pomraning method. At the

present moment we are working on numerical experiments to determine how much

effect these corrections will have.

4.3 Complementary Results

Thus far, we have discussed the derivation and physical interpretation

of the Lever-more-Pomraning method. We have also mentioned that Eq. (4.53) is

exact in the time independent, purely absorbing case. There is, in fact, an exact

formalism for treating a restricted class of stochastic problems with the scattering

interaction included [27, 45, 46, 47, 88]. The key to this analysis is the introduction of

an optical depth variable, defined in terms of the total cross section. This formalism

treats a class of planar geometry problems for which the total cross section Σt, the

scattering kernel Σs and the source Q all obey the same statistics, in the sense that

the functions Σs/Σt and Q/Σt are nonstochastic.

In this section we briefly discuss some developments that have arised

during the last two decades. In particular, we show that the Atomic Mix model can

be deduced from the Levermore-Pomraning equations through the use of asymp-

totic limits. For the rest of this section we will assume the mixing to be given by

homogeneous Markov statistics.

4.3.1 Asymptotic Limits of the Levermore-Pomraning Model

Let us consider Eq. (4.53). It is easy to see that if both Λi increase

without bound, then the interface terms vanish, and the equations for ψ1 and ψ2

decouple. Also, if one of the Λi vanishes, this equation is shown to be exact [28].

This follows from the fact that if Λ1 is vanishingly small and Λ2 is nonvanishing,
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then p1 = 0 and p2 = 1. In this case,
〈
ψ

〉
= ψ2, and the addition of Eq. (4.53) for

i = 1 and i = 2 gives the nonstochastic transport equation for material 2.

Now, we change dependent variables in Eq. (4.53) from ψ1 and ψ2 to
〈
ψ

〉
and ϑ [25, 43, 44, 62, 64] according to

〈
ψ

〉
= p1ψ1 + p2ψ2, (4.85)

ϑ =
√

p1p2 (ψ1 − ψ2). (4.86)

The inverse of this transformation is given by

ψ1 =
〈
ψ

〉
+

(
p2

p1

)1/2

ϑ, (4.87)

ψ2 =
〈
ψ

〉−
(

p1

p2

)1/2

ϑ, (4.88)

and Eq. (4.53) can be written in an algebraically different, but equivalent, form

[43, 62]:

(
1

v

∂

∂t
+Ω · ∇

)〈
ψ

〉
+

〈
Σt

〉〈
ψ

〉
+ νϑ =

〈
Q

〉
+

+

∫ ∞

0

∫

4π

〈
Σs(r, E

′ → E, Ω′ → Ω, t)
〉〈

ψ(r, E ′, Ω′, t)
〉
dΩ′dE ′+

+

∫ ∞

0

∫

4π

〈
νs(r, E

′ → E, Ω′ → Ω, t)ϑ(r, E ′, Ω′, t)dΩ′dE ′,

(4.89)

(
1

v

∂

∂t
+Ω · ∇

)
ϑ + ν

〈
ψ

〉
+ Σ̂tϑ = U+

+

∫ ∞

0

∫

4π

νs(r, E
′ → E, Ω′ → Ω, t)

〈
ψ(r, E ′, Ω′, t)

〉
dΩ′dE ′+

+

∫ ∞

0

∫

4π

〈
Σ̂s(r, E

′ → E, Ω′ → Ω, t)ϑ(r, E ′, Ω′, t)dΩ′dE ′.

(4.90)

Here,
〈
Σt

〉
,
〈
Σs

〉
and

〈
Q

〉
are defined in analogy with the general random variable

W in Eq. (3.11); and

U =
√

p1p2 (Q1 −Q2), (4.91)

ν =
√

p1p2 (Σt1 − Σt2), (4.92)

νs =
√

p1p2 (Σs1 − Σs2), (4.93)

Σ̂s = p2Σs1 + p1Σs2, (4.94)



56

Σ̂t = p2Σt1 + p1Σt2 + λ−1
c , (4.95)

where λc is the correlation length defined by Eq. (2.61). For simplicity, we rewrite

Eqs. (4.89-4.90) assuming that the scattering process is both coherent and isotropic:

(
1

v

∂

∂t
+ Ω · ∇

) 


〈
ψ

〉

ϑ


 +




〈
Σt

〉
ν

ν Σ̂t







〈
ψ

〉

ϑ


 =

1

4π




〈
Σs

〉
νs

νs Σ̂s







〈
φ
〉

ζ


 +




〈
Q

〉

U


 ,

(4.96)

where
〈
φ
〉

=

∫

4π

〈
ψ

〉
dΩ and ζ =

∫

4π

ϑdΩ. (4.97)

Now we consider the case when the average chord length through the

chunks of material i is small when compared to the particle mean free path in that

material. It can be seen from Eq. (2.61) that small chord lengths imply a small

correlation length. In this case, we have

λcΣti ¿ 1, (4.98)

and looking to Eqs. (4.92-4.95), we notice that Σ̂t À
〈
Σt

〉
,
〈
Σs

〉
, Σ̂s, ν, νs. Thus,

we introduce a smallness parameter ε into Eq. (4.96) by replacing Σ̂t with Σ̂t/ε. We

seek a solution for this equation as a power series in ε:

〈
ψ

〉
=

∑

k=0

εk
〈
ψ(k)

〉
, (4.99)

ϑ =
∑

k=0

εkϑ(k), (4.100)

where the power (k) in
〈
ψ(k)

〉
and ϑ(k) is just an index denoting the kth term in the

asymptotic expansion. Inserting Eqs. (4.99-4.100) into Eq. (4.96), with Σ̂t replaced

by Σ̂t/ε, and equating coefficients of powers of ε, we find for O(ε−1) that ϑ(0) = 0,

and for O(1) that

(
1

v

∂

∂t
+Ω·∇

)〈
ψ(0)

〉
+

〈
Σt

〉〈
ψ(0)

〉
+νϑ(0) =

1

4π

(〈
Σs

〉〈
φ(0)

〉
+νsζ

(0)
)

+
〈
Q

〉
, (4.101)

where
〈
φ(0)

〉
=

∫

4π

〈
ψ(0)

〉
dΩ and ζ(0) =

∫

4π

ϑ(0)dΩ. (4.102)
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Since ϑ(0) = 0, we have ζ(0) = 0, and recalling that
〈
ψ

〉
=

〈
ψ(0)

〉
+O(ε), Eq. (4.101)

becomes

(
1

v

∂

∂t
+ Ω · ∇

)〈
ψ

〉
+

〈
Σt

〉〈
ψ

〉
=

〈
Σs

〉〈
φ
〉

4π
+

〈
Q

〉
+ O(ε). (4.103)

One must notice that Eq. (4.103) is just the atomic mix description of Eq. (4.53) in

the case of coherent and isotropic scattering, where ε is a measure of the smallness

of the correlation length compared with the smallest particle mean free path in the

two materials 1 and 2. We conclude that this is a valid model when the assumptions

that lead to Eq. (4.98) are verified.

Another important asymptotic limit is that corresponding to a mixing

of a small amount of the large cross section material i with a large amount of the

small cross section material j [28]. In this case we find (for coherent and isotropic

scattering)
1

v

∂
〈
ψ

〉

∂t
+ Ω · ∇〈

ψ
〉

+ Σt,eff

〈
ψ

〉
=

Σs,eff

〈
φ
〉

4π
+ Qeff , (4.104)

where Σt,eff , Σs,eff and Qeff are nonstochastic “effective” quantities, given by

Σt,eff =
〈
Σt

〉− ν2

Σ̂t

, (4.105)

Σs,eff =
〈
Σs

〉− ν2

Σ̂t

− (ν − νs)
2

Σ̂t − Σ̂s

, (4.106)

Qeff =
〈
Q

〉−
(

Σ̂t(ν − νs) + 2νΣ̂s

Σ̂t(Σ̂t − Σ̂s)

)
U. (4.107)

Again,
〈
Σt

〉
,
〈
Σs

〉
and

〈
Q

〉
are defined in analogy with the general random variable

W in Eq. (3.11), and U , ν, νs, Σ̂s and Σ̂t are given by Eqs. (4.91-4.95). By using these

definitions in Eqs. (4.105-4.107), an algebraic calculation establishes that Σt,eff ,

Σs,eff and Qeff can never be negative for any nonnegative parameters pi, Σti, Σsi,

Qi and λc.

One should notice that Eq. (4.104) contains atomic mix as a limiting

case. This follows from the fact that when λc → 0, Σ̂t → ∞, and therefore the

quantities Σt,eff , Σs,eff and Qeff respectively converge to
〈
Σt

〉
,
〈
Σs

〉
and

〈
Q

〉
. Work

involving effective parameters as numerical calculations [30], and generalizations for
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arbitrary number of components in the mixture [29] and anisotropic scattering [59]

are available in the literature. Further, the development of a first order correction

in λc has also been reported [58, 60, 83].

Besides these cases, asymptotic limits leading to a diffusive description

of stochastic particle transport were obtained away from the atomic mix optics,

and were generalized to a mixture consisting of an arbitrary number of components

[31, 70]. Asymptotic diffusive descriptions have also been obtained in the presence

of anisotropic statistics [54]. Finally, there are still other results regarding diffusive

descriptions that did not arise from asymptotic analysis, as flux-limited diffusion

theories [56, 69] and spherical harmonic approximations [82].

We finish this section with an important remark. Although there is a

considerable literature applying a great deal of analysis to the Levermore-Pomraning

equations, there seems to be very few papers where the same analysis is applied

to the underlying physically correct Boltzmann equation. The analysis leading to

Eqs. (4.104-4.107) is an example of this; to our knowledge, it is still an open question

whether this result is physically correct. Indeed, there is a large number of such

problems in which a rigorous mathematical analysis is required in order to prove (or

disprove) the physical correctness of the results obtained. We hope to contemplate

this subject in the future.

4.3.2 Alternate Closures and Higher-Order Models

In section 4.1.2 we presented an upwind strategy to close Eq. (4.51)

consisting of the simple replacement of Ψi by ψi. Here, we briefly discuss alternate

closures for this equation, as well as the existence of higher-order models for problems

with scattering.

Within the context of monoenergetic particle transport with isotropic

scattering, we can mention two alternate closures [80] for the Levermore-Pomraning
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model, which have been suggested to improve the simpler closure presented early:

Ψi =

√〈
Σa

〉〈
Σt

〉 [〈
Σa

〉
(Σt1 − Σt2)

2 +
〈
Σt

〉
(Σa1 − Σa2)

2
]

[〈
Σa

〉
(Σt1 − Σt2)

]2
+

[〈
Σt

〉
(Σa1 − Σa2)

]2 ψi, (4.108)

where
〈
Σa

〉
=

〈
Σt

〉− 〈
Σs

〉
; and

Ψi =

(
ψi −

〈
Σs

〉
〈
Σt

〉 φi

4π

)( 〈
Σt

〉
〈
Σt

〉− 〈
Σs

〉
)1/2

. (4.109)

It is easy to see that both closures reduce to Ψi = ψi in the absence of scattering,

as one should expect. The qualitative difference between these two closures is that

Eq. (4.109) mixes the different directions through φi, the scalar flux term. Based

upon representative numerical calculations [80], both closures are shown to be, in

general, not inferior to the classic upwind closure, and in some cases they are even

better.

Beyond the task of finding a closure for Eq. (4.51), one may expect to

achieve better accuracy by going to higher order. By higher-order models we mean

that a stochastic balance equation for Ψi is derived, containing still more restricted

statistical ensemble averages. Then a closure is introduced for these terms, and

Eq. (4.51) is maintained in its exact form. Here we restrict ourselves to simply

present an example of this kind of model, without details, in order to illustrate the

idea of the method.

Consider source-free monoenergetic particle transport with isotropic

scattering in planar geometry. In this case Eq. (4.51) is written

1

v

∂(piψi)

∂t
+ µ

∂(piψi)

∂z
+ Σti(piψi) =

Σsi(piφi)

4π
+

pjΨj

Λj

− piΨi

Λi

. (4.110)

An equation for Ψi is then derived, by introducing a closure for the higher statistical

averages that occur in the exact balance equation [51, 55]:

1

v

∂(piΨi)

∂t
+ µ

∂(piΨi)

∂z
+ Σti(piΨi) =

Σsi(piUi)

4π
+

pjΨj

Λj

− piΨi

Λi

, (4.111)

where Ui is a collision term given by

Ui

2π
=

{∫ 0

−1
Ψj(µ

′)dµ′ +
∫ 1

0
Ψi(µ

′)dµ′ µ > 0
∫ 0

−1
Ψi(µ

′)dµ′ +
∫ 1

0
Ψj(µ

′)dµ′ µ < 0
. (4.112)
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This model is known as the interface model. One should notice that, since a closure

is required to obtain Eq. (4.111), this equation is only an approximate description for

Ψi, and therefore this model describes
〈
ψ

〉
= p1ψ1 + p2ψ2 also as an approximation.

However, in the case of purely absorbing systems, the interface model clearly imply

the exact expression Ψi = ψi, as we should expect.

This model, which is reasonably accurate for purely scattering problems,

was later modified by including an interpolation between its closure and the classic

closure, which is exact for purely absorbing problems. Equation (4.110) is then

written as [81]

1

v

∂(piψi)

∂t
+ µ

∂(piψi)

∂z
+ Σti(piψi) =

Σsi(piφi)

4π
+

pj(aψj + bΨj)

Λj

− pi(aψi + bΨi)

Λi

,

(4.113)

where Ψi satisfies Eq. (4.111) and

a =

(〈
Σa

〉
〈
Σt

〉
)1/2

,

b =

〈
Σa

〉〈
Σs

〉
(Σt1 − Σt2)

2

〈
Σt

〉[〈
Σa

〉
(Σt1 − Σt2)2 +

〈
Σt

〉
(Σa1 − Σa2)2

] .

(4.114)

The classic closure is clearly recovered for purely absorbing problems, since Eq. (4.114)

in this case yield a = 1 and b = 0. Similarly, with Σai = 0, Eq. (4.114) imply a = 0

and b = 1, and the interface model is characterized. Also, if Σt1 = Σt2, then b = 0

and the present model reduces to the model given by Eq. (4.108).



61

5 NUMERICAL RESULTS

In this chapter we present numerical results for time independent trans-

port problems in planar geometry. The medium is assumed to be composed of two

randomly mixed materials, and the statistics of the mixing is taken as a homoge-

neous Markov process. In this case, assuming isotropic and coherent scattering as

well as isotropic internal sources, Eq. (2.42) is written

µ
∂ψ

∂z
(z, µ) + Σt(z)ψ(z, µ) =

Σs(z)

2

∫ 1

−1

ψ(z, µ′)dµ′ +
Q(z)

2
, (5.1)

where µ is the cosine of the angle between the z-axis and the particle’s direction

of travel. We take Eq. (5.1) to hold on the interval 0 ≤ z ≤ Z, and we define the

isotropic boundary conditions

{
ψ(0, µ) = Γ0, µ > 0

ψ(Z, µ) = ΓZ , µ < 0
, (5.2)

where Γ0 and ΓZ are constants.

In order to well-represent this problem, the atomic mix equation (3.8)

is written

µ
∂
〈
ψ

〉

∂z
+

〈
Σt

〉〈
ψ

〉
=

〈
Σs

〉

2

∫ 1

−1

〈
ψ(z, µ′)

〉
dµ′ +

〈
Q

〉

2
, (5.3)

and its boundary conditions are given by

{ 〈
ψ(0, µ)

〉
= Γ0, µ > 0

〈
ψ(Z, µ)

〉
= ΓZ , µ < 0

. (5.4)

Also, the Levermore-Pomraning equations (4.53) are written

µ
∂(piψi)

∂z
+ Σti(piψi) =

Σsi

2

∫ 1

−1

piψi(z, µ
′)dµ′ + |µ|

(
pjψj

Λj

− piψi

Λi

)
+

piQi

2
, (5.5)

with the boundary conditions:

{
ψi(0, µ) = Γ0, µ > 0

ψi(Z, µ) = ΓZ , µ < 0
. (5.6)
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Figure 5.1: Binary planar system

At this point we must explain the term |µ| multiplying the gain-loss term between

the parenthesis at the right hand side of Eq. (5.5). If the mean slab thickness of

material i is Λi, then the mean chord length seen by a particle traveling at an angle

characterized by its cosine µ is Λi/|µ|. That is, the mean chord length through

material i is angularly dependent in planar geometry systems.

Next we will discuss the procedure used to obtain the benchmark results,

as well as the atomic mix and Levermore-Pomraning predictions.

5.1 Numerical Procedure

Let us consider time independent stochastic transport (including scat-

tering) in a layered planar geometry under the assumption of homogeneous Markov

mixing statistics for the two components of the random medium. The system is

taken to be statistically composed of alternating slabs of two materials (Figure 5.1),

such that each material has spatially independent cross sections Σt and Σs, and inde-

pendent internal sources Q. We already know from the previous discussion (section

2.3) that, if the statistics of this situation is assumed to be a homogeneous Markov

process, then the thickness of each slab of material i is chosen at random from an
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exponential distribution given by Eq. (2.56), reproduced here for convenience:

ηi(ξ) = Λ−1
i e−ξ/Λi . (5.7)

We remind the reader that in this equation ηi(ξ)dξ is the probability of a segment

of material i having a length lying between ξ and ξ + dξ, and Λi is the mean slab

thickness of material i.

At any point in this system, the probability pi of finding material i is

given by Eq. (2.53). Aiming at the attainment of ensemble-averaged results for the

scalar flux φ(z), we have first generated a physical realization of the statistics using

a Monte Carlo procedure, and for this realization we have solved the corresponding

transport problem using the LTSN formulation for a multi-region slab [75].

To obtain a physical realization we first choose the material present at

z = 0 statistically according to the probabilities pi. Then we sample from Eq. (5.7)

for the value of i so determined to establish the width ξ of the first segment of this

material, with its left-hand boundary at z = 0. We next sample from Eq. (5.7) with

the other material index to determine the width ξ of the next segment. We then

sample from Eq. (5.7) with the original index i to determine the width ξ of the third

segment. We continue this process until the entire interval 0 ≤ z ≤ Z is populated

with alternating segments of the two materials.

Repeating this process for a large number of physical realizations,

ensemble-averaged results for the scalar flux φ(z) follow from simple numerical

averages:

〈
φ(z)

〉
=

1

K

K∑

k=1

φk(z), (5.8)

where the index k denotes a particular realization of the statistics, and K represents

the number of realizations computed. We have also calculated the standard deviation

σ
(
φ(z)

)
of these results according to

σ
(
φ(z)

)
=

∣∣∣∣
〈
φ(z)

〉2 − 1

K

K∑

k=1

φ2
k(z)

∣∣∣∣
1/2

, (5.9)
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which gives an indication of the spread of the solutions about the means, and allows

us to use the results of the Central Limit Theorem [35].

The Central Limit Theorem is a fundamental result within the Stochas-

tic Processes Theory. Basically, it states that if a random variable can be represented

by the sum of any K independent random variables, provided that the contribution

of each one of these variables to the sum is small, then for K large enough the

distribution of this sum will be approximately the normal distribution. We present

a simple version of this theorem [35]:

Theorem 5.1.1. Let X1, X2, ..., XK be K independent random variables with the

same distribution. Let E(Xi) and V (Xi) be respectively the expected value and the

variance of these variables, and X =
K∑

i=1

Xi. Then E(X) = KE(Xi) and V (X) =

KV (Xi), and for K large enough the distribution of

TK =
X −KE(Xi)

V (Xi)
√

K
(5.10)

will be approximately the N(0,1) distribution. That is to say that

lim
K→∞

P (TK ≤ t) =
1√
2π

∫ t

−∞
e−x2/2dx, (5.11)

the N(0,1) distribution function.

In particular, Theorem (5.1.1) states that, for K large enough, the arith-

metic mean
1

K

K∑
i=1

Xi of K realizations of the same random variable has (approxi-

mately) a normal distribution.

Now, if we call
〈
φ(z)

〉
the “real” ensemble-averaged scalar flux,

〈
φK(z)

〉

the “sample” (after K realizations) ensemble-averaged scalar flux, and σK =

σK

(
φ(z)

)
the “sample” standard deviation, then we know from the theorem above

and from the properties of the normal distribution that

∣∣〈φK(z)
〉− 〈

φ(z)
〉∣∣ <

σK√
K

, with probability (≈) 0.68, (5.12)

∣∣〈φK(z)
〉− 〈

φ(z)
〉∣∣ <

2σK√
K

, with probability (≈) 0.95, (5.13)
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∣∣〈φK(z)
〉− 〈

φ(z)
〉∣∣ <

3σK√
K

, with probability (≈) 0.99. (5.14)

Let us choose Eq. (5.13). Dividing this equation by
〈
φK(z)

〉
we get

∣∣∣∣1−
〈
φ(z)

〉
〈
φK(z)

〉
∣∣∣∣ <

2σK〈
φK(z)

〉√
K

. (5.15)

The left side of this inequality is the relative error. The benchmark results for the

scalar flux were obtained for 50 points of z within the interval [0, 10], in order to

plot its behaviour. The number of realizations K was chosen for each problem in

such way that, for each one of these 50 points,

2σK〈
φK(z)

〉√
K

< 0.01. (5.16)

That is, the statistical relative error in the benchmark results is less than 1% with

95% confidence, for all simulations performed. This procedure consumed a large

computation time for those problems where the variation was not small, due to the

fact that we need K > 40, 000
σ2

K〈
φK(z)

〉2 to achieve this relative error of 1%. We un-

derline the power of the LTSN method in performing these benchmark calculations,

since there were cases where the number of physical realizations was much larger

than 1,000,000.

The atomic mix and Levermore-Pomraning predictions were also ob-

tained through the use of the LTSN method. Each realization of the benchmark

simulations, as well as the atomic mix and Levermore-Pomraning predictions, was

performed using an 8-point Gauss-Legendre quadrature set in the discrete ordinates

angular approximation (N = 8). The benchmark code run time varied between one

minute for the less expensive problems (Λi large, K small) to more than two days for

the most expensive problems (Λi small, K large). For comparison, both the atomic

mix and Levermore-Pomraning codes finished in approximately one second for all

problems. All numerical calculations were done on a Pentium III 1.0 GHz. Further,

the codes reproduced very accurately the results for the mean presented in [1] and

[12], as well as the standard deviations in the benchmark case.
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Figure 5.2: Models approximations to a benchmark ensemble-averaged scalar flux - Set 1

In section 5.2 we present numerical results for the Reflection/Transmis-

sion problem without internal sources. Simulations for problems with internal

sources will be presented in section 5.3.

5.2 The Reflection/Transmission Problem

Let us consider Eq. (5.1) without internal sources,

µ
∂ψ(z, µ)

∂z
+ Σt(z)ψ(z, µ) =

Σs(z)

2

∫ 1

−1

ψ(z, µ′)dµ′. (5.17)

Also, we consider an isotropic intensity normalized to a unit incoming flux incident

upon the planar system at z = 0; and no intensity incident upon the system at

z = Z. This corresponds to the boundary conditions

{
ψ(0, µ) = 2, µ > 0

ψ(Z, µ) = 0, µ < 0
. (5.18)
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Table 5.1: Set 1 - Parameters Simulated for the Reflection/Transmission Problems

Σt1 = 1.5 cm−1, Σs1 = c1Σt1, Λ1 = 0.125, 0.5, 1, 2, 8 cm
Σt2 = 0.5 cm−1, Σs2 = c2Σt2, Λ2 = Λ1/2, Λ1, 2Λ1 cm

Z = 10 cm Set 1.1 Set 1.2 Set 1.3 Set 1.4 Set 1.5 Set 1.6

c1 0.99 0.99 0.99 0.5 0.5 0.0
c2 0.99 0.5 0.0 0.5 0.99 0.99

Number of Cases 15 15 15 15 15 15

According to the previous discussion, we computed the ensemble-averaged scalar

flux for the system as well as the probabilities of reflection R and transmission T as

given by

R =

∫ 1

0

µψ(0,−µ)dµ, T =

∫ 1

0

µψ(Z, µ)dµ. (5.19)

The probability of absorption A follows from particle conservation, such that A =

1−R− T .

There are seven variable parameters that can be varied when considering

this particular problem, namely: the system length (Z), the mean chord length in

each material (Λi), the total cross section in each material (Σti) and the single scatter

albedo in each material (ci = Σsi/Σti). Since the main goal of these simulations is

to compare and contrast the accuracy of the atomic mix and Levermore-Pomraning

models, the set of parameters was chosen in order to facilitate the achievement of

this objective.

The Reflection/Transmission problem is the subject of several papers

dealing with benchmark results and approximations; however, to our knowledge,

a comparison of atomic mix, Levermore-Pomraning, and benchmark calculations

is treated in only two of these papers [12, 90]. In particular, Davis, Palmer and

Larsen [12] provide an interesting and elucidating examination of this problem for

“Solid-Void” mixtures. By “Solid-Void” we mean that one of the materials within

the system is a void (Σt = Σs = 0). In order to provide a new contribution to the

literature, we chose not to work with mixtures containing a void material.
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Figure 5.3: Variation coefficient comparison for different values of Λi - Set 1

Further, it was shown [94] that in systems of small length the proba-

bility of reflection and transmission does not vary with mixing statistics in planar

geometry. Therefore, we have fixed the system length at 10 cm for all problems, in

order to guarantee the influence of the mixing statistics to the problems. The set of

problems considered contains 90 cases in which the total cross sections of material

1 and 2 were respectively set to 1.5 cm−1 and 0.5 cm−1. The mean chord lengths

and the single scatter albedo of each material vary according to the values given at

Table 5.1.

It was found that, in the totality of the simulated problems, both the

atomic mix and Levermore-Pomraning predictions lie well within ±2 standard devi-

ations σ of the mean, as can be seen from the examples shown in Figure 5.2. Next,

we will examine in detail how the standard deviation of the benchmark solution and

the relative errors of the atomic mix and Levermore-Pomraning predictions vary

with changes in the mean chord lengths Λi and in the scatter albedo ci.
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Figure 5.4: Variation coefficient comparison for different values of ci - Set 1

When examining the standard deviation of these problems, we must pay

special attention to the variation coefficient γ given by

γ(z) =
σ
(
φ(z)

)
〈
φ(z)

〉 , (5.20)

since this quantity (also known as the relative standard deviation) provides a good

idea of the solution’s variation. As expected, there is more variation at the right

edge of the system than at the left edge. This is due to the material interfaces in the

interior of the system. It was observed that the variation coefficient generally grows

when the mean chord lengths increase. Also, there seems to be a relationship con-

necting the variation coefficient to the system’s diffusivity. Both of these behaviours

were observed in the computation process: in general, in order to obtain the relative

error of 1% with 95% confidence, problems with larger Λi required many more real-

izations than those with smaller Λi; and systems with low diffusivity required more

realizations than highly diffusive systems. However, there is another interesting de-

tail: the variation coefficient increases when the single scatter albedo of material 2

(which is optically thinner than material 1 in all cases - Σt2Λ2 < Σt1Λ1) becomes

greater than the single scatter albedo of material 1. This happens even when the

system becomes more diffusive. These trends can be seen in Figures 5.3 and 5.4,

where we present some plots comparing γ for different combinations of Λi and ci.
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Figure 5.5: Comparison of the atomic mix relative error (±1% with 95% confidence) for different
values of Λi - Set 1

The errors of the atomic mix and Levermore-Pomraning models relative

to the benchmark results were calculated by

Atomic Mix Relative Error (%) = 100

∣∣〈φ〉
AM

− 〈
φ
〉

Benchmark

∣∣
〈
φ
〉

Benchmark

,

Levermore-Pomraning Relative Error (%) = 100

∣∣〈φ〉
LP
− 〈

φ
〉

Benchmark

∣∣
〈
φ
〉

Benchmark

.

(5.21)

One must notice that since each benchmark result has itself a relative error of 1%

with 95% confidence, the true relative errors obtained by the formulas in Eq. (5.21)

will vary in 1% with 95% confidence. That is, if the relative error calculated by

Eq. (5.21) is (for example) 5%, then with 95% confidence the true relative error will

lie between 4% and 6%.

Bearing this information in mind we can examine the predictions errors.

As expected, the atomic mix accuracy deteriorates when Eq. (3.6) is not satisfied;

i.e, when the Λi become greater. The relative error increases as we get closer to
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Figure 5.6: Comparison of the atomic mix relative error (±1% with 95% confidence) for different
values of ci - Set 1

the right edge of the system, due to the solution’s variation. This can be checked

by examining the plots in Figure 5.5. Also, the changes in the system’s diffusivity

seem to affect the atomic mix result in the same way that affects the benchmark

solution’s variation. Comparing the plots in Figure 5.6 with those in Figure 5.4 we

see that the accuracy of the atomic mix model gets better (in general) when the

values of γ diminish.

In analogy to what happens with the atomic mix model, the accuracy

of the Levermore-Pomraning method also worsens when the mean chord lengths in-

crease. This is not unexpected, since we have proved that the Levermore-Pomraning

equations reduce to the atomic mix equation when the mean chord lengths tend to

zero. However, this bad effect in the prediction accuracy is weaker in the Levermore-

Pomraning model. Figure 5.7 contains representative plots of this behaviour. Again,

one must notice that the relative error is in general greater away from the left edge

of the system, due to the solution’s variation. Further, we know that the Levermore-

Pomraning equations are exact when considering nonscattering problems, and that

approximations are done to include the scattering process into the model. Therefore

we expect the accuracy of this method to be better in systems with low diffusivity.

In fact, the system’s diffusivity plays a fundamental role in the Levermore-

Pomraning prediction. As an example, we can see from Figure 5.8 that the Levermore-

Pomraning prediction achieves excelent results when c1 = c2 = 0.5, despite the high
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Figure 5.7: Comparison of the Levermore-Pomraning relative error (±1% with 95% confidence)
for different values of Λi - Set 1

values of γ for this case. As the system becomes more diffusive, the solution’s

variation has a stronger effect in the error of this method.

In the next pages, we present tables with the probabilities of Reflec-

tion and Transmission obtained by the benchmark, atomic mix and Levermore-

Pomraning methods for the 90 problems simulated (Tables 5.2-5.7). The number

of realizations simulated for each problem is displayed in the last column of these

tables. After each table, we present the respective plots of the models relative errors

(Figures 5.9-5.14).

For the systems with high diffusivity shown in Set 1.1, the atomic mix

model is more accurate than the Levermore-Pomraning for almost all choices of Λi.

However, as the mean chord lengths increase, the difference between the relative

errors of both methods diminish. In fact the Levermore-Pomraning predictions

are superior when compared with the predictions calculated using the atomic mix
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Figure 5.8: Comparison of the Levermore-Pomraning relative error (±1% with 95% confidence)
for different values of ci - Set 1

model for all other sets of problems. In particular, we underline the excellence

of its predictions in the lowest diffusive systems contained in Set 1.4. Further,

all trends mentioned in the above discussion, such as accuracy degradation with

Λi increasing and the variation’s solution influence in the relative error, can be

seen by examining this data. We ask the reader to pay special attention to the

Tables in which the Reflection/Transmission probabilities are displayed. Although

the relative error of the methods is quite large in some cases, this does not mean

that the absolute difference between the predictions and the benchmark results

is also large. Indeed, the absolute difference between the Levermore-Pomraning

predictions and the benchmark solutions never exceeds the second decimal digit.

Another interesting point to be remarked is the number of realizations calculated

for the benchmark solution of the 10th problem of Set 1.6: 12,960,000. Again we

remark the suitability of the LTSN method in solving this kind of problem.
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Table 5.2: Reflection and Transmission Results - Set 1.1
Σt1 = 1.5 cm−1, Σs1 = c1Σt1, c1 = 0.99
Σt2 = 0.5 cm−1, Σs2 = c2Σt2, c2 = 0.99

Z = 10 cm ** Benchmark Atomic Levermore Number of
Λ1 Λ2 ** Result Mix Pomraning Realizations
- - - - - - -

0.0625
〈
R

〉
0.800747 0.800784 0.799590 1024〈

T
〉

0.049501 0.049468 0.050286
0.125 0.125

〈
R

〉
0.796492 0.796689 0.794280 1024〈

T
〉

0.066907 0.066516 0.068405
0.25

〈
R

〉
0.788964 0.789233 0.785658 1024〈

T
〉

0.090316 0.090058 0.093171
0.25

〈
R

〉
0.800513 0.800784 0.796737 1024〈

T
〉

0.050200 0.049468 0.052307
0.5 0.5

〈
R

〉
0.796046 0.796689 0.789168 1600〈

T
〉

0.067646 0.066516 0.072569
1.0

〈
R

〉
0.787562 0.789233 0.779003 2500〈

T
〉

0.092786 0.090058 0.099163
0.5

〈
R

〉
0.800278 0.800784 0.793997 2500〈

T
〉

0.050720 0.049468 0.054349
1.0 1.0

〈
R

〉
0.795184 0.796689 0.784920 3600〈

T
〉

0.069324 0.066516 0.076225
2.0

〈
R

〉
0.786147 0.789233 0.774233 4900〈

T
〉

0.094832 0.090058 0.103680
1.0

〈
R

〉
0.799723 0.800784 0.790457 4900〈

T
〉

0.051953 0.049468 0.057188
2.0 2.0

〈
R

〉
0.793750 0.796689 0.780218 6400〈

T
〉

0.071787 0.066516 0.080611
4.0

〈
R

〉
0.783534 0.789233 0.769649 6400〈

T
〉

0.098940 0.090058 0.108394
4.0

〈
R

〉
0.796411 0.800784 0.784018 16900〈

T
〉

0.058176 0.049468 0.063926
8.0 8.0

〈
R

〉
0.787175 0.796689 0.773787 16900〈

T
〉

0.082836 0.066516 0.088911
16.0

〈
R

〉
0.775251 0.789233 0.764646 12100〈

T
〉

0.112087 0.090058 0.115903
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Figure 5.9: Relative errors of the atomic mix and Levermore-Pomraning methods (±1% with
95% confidence) - Set 1.1
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Table 5.3: Reflection and Transmission Results - Set 1.2
Σt1 = 1.5 cm−1, Σs1 = c1Σt1, c1 = 0.99
Σt2 = 0.5 cm−1, Σs2 = c2Σt2, c2 = 0.5

Z = 10 cm ** Benchmark Atomic Levermore Number of
Λ1 Λ2 ** Result Mix Pomraning Realizations
- - - - - - -

0.0625
〈
R

〉
0.533021 0.528754 0.529840 1600〈

T
〉

0.003167 0.002807 0.003050
0.125 0.125

〈
R

〉
0.437939 0.434291 0.434307 1024〈

T
〉

0.002354 0.001992 0.002287
0.25

〈
R

〉
0.344390 0.344518 0.342775 1024〈

T
〉

0.002384 0.002001 0.002364
0.25

〈
R

〉
0.544783 0.528754 0.532523 6400〈

T
〉

0.004213 0.002807 0.003677
0.5 0.5

〈
R

〉
0.443228 0.434291 0.434964 4900〈

T
〉

0.003300 0.001992 0.002999
1.0

〈
R

〉
0.350940 0.344518 0.340812 4900〈

T
〉

0.003273 0.002001 0.003139
0.5

〈
R

〉
0.552743 0.528754 0.535411 12100〈

T
〉

0.005439 0.002807 0.004358
1.0 1.0

〈
R

〉
0.448936 0.434291 0.436484 14400〈

T
〉

0.004390 0.001992 0.003703
2.0

〈
R

〉
0.351174 0.344518 0.340826 12100〈

T
〉

0.004216 0.002001 0.003807
1.0

〈
R

〉
0.558819 0.528754 0.540050 22500〈

T
〉

0.007528 0.002807 0.005403
2.0 2.0

〈
R

〉
0.457872 0.434291 0.439901 28900〈

T
〉

0.006291 0.001992 0.004683
4.0

〈
R

〉
0.356969 0.344518 0.342756 32400〈

T
〉

0.005639 0.002001 0.004616
4.0

〈
R

〉
0.575749 0.528754 0.555493 25600〈

T
〉

0.013679 0.002807 0.008754
8.0 8.0

〈
R

〉
0.470134 0.434291 0.453013 40000〈

T
〉

0.011445 0.001992 0.007431
16.0

〈
R

〉
0.361543 0.344518 0.352028 62500〈

T
〉

0.009276 0.002001 0.006555
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Figure 5.10: Relative errors of the atomic mix and Levermore-Pomraning methods (±1% with
95% confidence) - Set 1.2
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Table 5.4: Reflection and Transmission Results - Set 1.3
Σt1 = 1.5 cm−1, Σs1 = c1Σt1, c1 = 0.99
Σt2 = 0.5 cm−1, Σs2 = c2Σt2, c2 = 0.0

Z = 10 cm ** Benchmark Atomic Levermore Number of
Λ1 Λ2 ** Result Mix Pomraning Realizations
- - - - - - -

0.0625
〈
R

〉
0.417642 0.407756 0.413145 3600〈

T
〉

0.000650 0.000493 0.000591
0.125 0.125

〈
R

〉
0.305174 0.297147 0.302292 2500〈

T
〉

0.000435 0.000311 0.000407
0.25

〈
R

〉
0.205589 0.197812 0.200832 2500〈

T
〉

0.000484 0.000350 0.000468
0.25

〈
R

〉
0.440016 0.407756 0.424945 16900〈

T
〉

0.001198 0.000493 0.000877
0.5 0.5

〈
R

〉
0.325281 0.297147 0.312546 14400〈

T
〉

0.000850 0.000311 0.000676
1.0

〈
R

〉
0.215634 0.197812 0.206919 12100〈

T
〉

0.000861 0.000350 0.000760
0.5

〈
R

〉
0.458710 0.407756 0.435649 40000〈

T
〉

0.002023 0.000493 0.001236
1.0 1.0

〈
R

〉
0.338940 0.297147 0.321485 40000〈

T
〉

0.001467 0.000311 0.000994
2.0

〈
R

〉
0.225537 0.197812 0.212690 40000〈

T
〉

0.001344 0.000350 0.001054
1.0

〈
R

〉
0.476954 0.407756 0.449818 62500〈

T
〉

0.003743 0.000493 0.001887
2.0 2.0

〈
R

〉
0.355673 0.297147 0.333289 90000〈

T
〉

0.002809 0.000311 0.001525
4.0

〈
R

〉
0.237063 0.197812 0.220770 122500〈

T
〉

0.002291 0.000350 0.001474
4.0

〈
R

〉
0.512546 0.407756 0.484557 52900〈

T
〉

0.010449 0.000493 0.004821
8.0 8.0

〈
R

〉
0.380788 0.297147 0.361876 78400〈

T
〉

0.008096 0.000311 0.003739
16.0

〈
R

〉
0.254961 0.197812 0.240707 136900〈

T
〉

0.005890 0.000350 0.002967
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Figure 5.11: Relative errors of the atomic mix and Levermore-Pomraning methods (±1% with
95% confidence) - Set 1.3



80

Table 5.5: Reflection and Transmission Results - Set 1.4
Σt1 = 1.5 cm−1, Σs1 = c1Σt1, c1 = 0.5
Σt2 = 0.5 cm−1, Σs2 = c2Σt2, c2 = 0.5

Z = 10 cm ** Benchmark Atomic Levermore Number of
Λ1 Λ2 ** Result Mix Pomraning Realizations
- - - - - - -

0.0625
〈
R

〉
0.151766 0.151766 0.150430 8100〈

T
〉

0.000009 0.000008 0.000009
0.125 0.125

〈
R

〉
0.151766 0.151766 0.149376 14400〈

T
〉

0.000047 0.000040 0.000047
0.25

〈
R

〉
0.151766 0.151766 0.148694 16900〈

T
〉

0.000241 0.000204 0.000242
0.25

〈
R

〉
0.151766 0.151766 0.148290 62500〈

T
〉

0.000012 0.000008 0.000012
0.5 0.5

〈
R

〉
0.151766 0.151766 0.146455 40000〈

T
〉

0.000071 0.000040 0.000072
1.0

〈
R

〉
0.151766 0.151766 0.145885 122500〈

T
〉

0.000374 0.000204 0.000375
0.5

〈
R

〉
0.151766 0.151766 0.147159 160000〈

T
〉

0.000017 0.000008 0.000017
1.0 1.0

〈
R

〉
0.151766 0.151766 0.145517 202500〈

T
〉

0.000118 0.000040 0.000118
2.0

〈
R

〉
0.151766 0.151766 0.145530 108900〈

T
〉

0.000575 0.000204 0.000575
1.0

〈
R

〉
0.151766 0.151766 0.146659 562500〈

T
〉

0.000034 0.000008 0.000034
2.0 2.0

〈
R

〉
0.151766 0.151766 0.145723 302500〈

T
〉

0.000250 0.000040 0.000248
4.0

〈
R

〉
0.151766 0.151766 0.146372 108900〈

T
〉

0.000981 0.000204 0.000974
4.0

〈
R

〉
0.151766 0.151766 0.148260 422500〈

T
〉

0.000325 0.000008 0.000317
8.0 8.0

〈
R

〉
0.151766 0.151766 0.148548 122500〈

T
〉

0.001115 0.000040 0.001090
16.0

〈
R

〉
0.151765 0.151766 0.149362 62500〈

T
〉

0.002288 0.000204 0.002251
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Figure 5.12: Relative errors of the atomic mix and Levermore-Pomraning methods (±1% with
95% confidence) - Set 1.4
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Table 5.6: Reflection and Transmission Results - Set 1.5
Σt1 = 1.5 cm−1, Σs1 = c1Σt1, c1 = 0.5
Σt2 = 0.5 cm−1, Σs2 = c2Σt2, c2 = 0.99

Z = 10 cm ** Benchmark Atomic Levermore Number of
Λ1 Λ2 ** Result Mix Pomraning Realizations
- - - - - - -

0.0625
〈
R

〉
0.190241 0.185130 0.186986 14400〈

T
〉

0.000016 0.000014 0.000015
0.125 0.125

〈
R

〉
0.226168 0.213852 0.219074 25600〈

T
〉

0.000126 0.000095 0.000121
0.25

〈
R

〉
0.287015 0.261261 0.272731 40000〈

T
〉

0.001150 0.000750 0.001027
0.25

〈
R

〉
0.202419 0.185130 0.192409 102400〈

T
〉

0.000025 0.000014 0.000023
0.5 0.5

〈
R

〉
0.254473 0.213852 0.232827 302500〈

T
〉

0.000308 0.000095 0.000238
1.0

〈
R

〉
0.337296 0.261261 0.299420 250000〈

T
〉

0.003364 0.000750 0.002238
0.5

〈
R

〉
0.215414 0.185130 0.198973 902500〈

T
〉

0.000052 0.000014 0.000041
1.0 1.0

〈
R

〉
0.280586 0.213852 0.247838 902500〈

T
〉

0.000874 0.000095 0.000533
2.0

〈
R

〉
0.378615 0.261261 0.325588 302500〈

T
〉

0.008593 0.000750 0.004714
1.0

〈
R

〉
0.233952 0.185130 0.210080 4000000〈

T
〉

0.000229 0.000014 0.000126
2.0 2.0

〈
R

〉
0.315984 0.213852 0.270836 810000〈

T
〉

0.003786 0.000095 0.001755
4.0

〈
R

〉
0.427258 0.261261 0.361977 202500〈

T
〉

0.022207 0.000750 0.011519
4.0

〈
R

〉
0.286330 0.185130 0.249066 640000〈

T
〉

0.008102 0.000014 0.003425
8.0 8.0

〈
R

〉
0.391656 0.213852 0.338022 160000〈

T
〉

0.032186 0.000095 0.017538
16.0

〈
R

〉
0.504661 0.261261 0.450394 62500〈

T
〉

0.069793 0.000750 0.048187
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Figure 5.13: Relative errors of the atomic mix and Levermore-Pomraning methods (±1% with
95% confidence) - Set 1.5
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Table 5.7: Reflection and Transmission Results - Set 1.6
Σt1 = 1.5 cm−1, Σs1 = c1Σt1, c1 = 0.0
Σt2 = 0.5 cm−1, Σs2 = c2Σt2, c2 = 0.99

Z = 10 cm ** Benchmark Atomic Levermore Number of
Λ1 Λ2 ** Result Mix Pomraning Realizations
- - - - - - -

0.0625
〈
R

〉
0.040363 0.032882 0.039170 16900〈

T
〉

0.000002 0.000002 0.000002
0.125 0.125

〈
R

〉
0.080941 0.061623 0.076557 40000〈

T
〉

0.000019 0.000013 0.000019
0.25

〈
R

〉
0.149746 0.109973 0.138605 62500〈

T
〉

0.000235 0.000127 0.000213
0.25

〈
R

〉
0.058279 0.032882 0.053062 202500〈

T
〉

0.000004 0.000002 0.000003
0.5 0.5

〈
R

〉
0.121741 0.061623 0.106375 640000〈

T
〉

0.000064 0.000013 0.000051
1.0

〈
R

〉
0.223664 0.109973 0.190218 640000〈

T
〉

0.001239 0.000127 0.000761
0.5

〈
R

〉
0.076358 0.032882 0.066174 1960000〈

T
〉

0.000009 0.000002 0.000008
1.0 1.0

〈
R

〉
0.157910 0.061623 0.132296 2890000〈

T
〉

0.000312 0.000013 0.000172
2.0

〈
R

〉
0.280510 0.109973 0.231575 640000〈

T
〉

0.005064 0.000127 0.002402
1.0

〈
R

〉
0.101806 0.032882 0.084515 12960000〈

T
〉

0.000078 0.000002 0.000040
2.0 2.0

〈
R

〉
0.204516 0.061623 0.166214 1690000〈

T
〉

0.002350 0.000013 0.000951
4.0

〈
R

〉
0.344098 0.109973 0.281992 250000〈

T
〉

0.017844 0.000127 0.008261
4.0

〈
R

〉
0.169394 0.032882 0.136115 902500〈

T
〉

0.006956 0.000002 0.002775
8.0 8.0

〈
R

〉
0.300405 0.061623 0.250111 202500〈

T
〉

0.029699 0.000013 0.015765
16.0

〈
R

〉
0.442592 0.109973 0.389464 62500〈

T
〉

0.067397 0.000127 0.045569
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Figure 5.14: Relative errors of the atomic mix and Levermore-Pomraning methods (±1% with
95% confidence) - Set 1.6
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Figure 5.15: Models approximations to a benchmark ensemble-averaged scalar flux - Set 2

5.3 Problems With Constant Internal Sources

Here we consider Eq. (5.1) with vacuum boundary conditions at both

sides of the slab,
{

ψ(0, µ) = 0, µ > 0

ψ(Z, µ) = 0, µ < 0
, (5.22)

and constant internal sources Qi. There are nine variable parameters that we can

vary when considering the analysis of this problem: the same seven parameters

mentioned at the last section plus the internal source Qi of each material. As in the

last section, we have fixed the system length in 10 cm for all problems. The set of

problems considered contains 27 cases, in which the total cross sections of material

1 and 2 were respectively set to 2.0 cm−1 and 1.0 cm−1, and the internal sources

were defined by

Q1 = 0.6
neutrons

cm2s
, Q2 = 0.3

neutrons

cm2s
. (5.23)
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Figure 5.16: Variation coefficient comparison for different values of Λi - Set 2

The single scatter albedos of the materials were chosen such that c1 = c2 for all

cases. This choice of parameters was made in order to simulate a medium containing

slabs of two different densities of the same material. The three sets of parameters

simulated are shown in Table 5.8.

Table 5.8: Set 2 - Parameters Simulated for the Source Problems
Σt1 = 2.0 cm−1, Σs1 = c1Σt1, Λ1 = 0.5, 1, 2 cm, Q1 = 0.6 neutrons/cm2s
Σt2 = 1.0 cm−1, Σs2 = c2Σt2, Λ2 = Λ1/2, Λ1, 2Λ1 cm, Q2 = 0.3 neutrons/cm2s

Z = 10 cm Set 2.1 Set 2.2 Set 2.3

c1 0.0 0.5 0.9
c2 0.0 0.5 0.9

Number of Cases 9 9 9
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Figure 5.17: Variation coefficient comparison for different values of ci - Set 2

In analogy with what was shown in the last section, the atomic mix

and Levermore-Pomraning predictions in all problems lie well within ±2 standard

deviations σ of the mean. In Figure 5.15 the reader can see examples of this fact.

We outline the rest of this section following the same structure presented in the last

one: we first examine the variation of the benchmark solution and the behaviour of

the predictions when the parameters vary; then we present the data regarding the

relative errors of the complete set of problems.

Calculating the variation coefficient as given by Eq. (5.20), we see that

it assumes symmetric values within the system, as expected. Its maximum values

are localized near the edges, and the minimum values at the boundaries (due to the

vacuum condition prescribed) and at the center of the system. This trend is due

mainly to the fact that, in these systems, we allow only N(z) to vary, i.e., we allow

only the density of the material to vary randomly. In this situation, a particular

simple “infinite-medium” solution of the transport problem always exists:

ψ(z, µ) =
1

2

〈
Q

〉
〈
Σa

〉 , (5.24)

which is independent of z, independent of µ, and in particular independent of N(z),

hence has zero variance. If these physical systems were all very thick, the solution

of all these problems would limit, a few mean free paths away from the outer bound-

aries, to this infinite-medium solution, where the variance is zero. Near the outer

boundaries (z = 0 and z = 10), boundary layers exist, and there the variance is not
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Figure 5.18: Comparison of the atomic mix and Levermore-Pomraning relative errors (±1% with
95% confidence) for different values of Λi and ci - Set 2

zero. Again, the values of γ increase when the mean chord lengths grow (Figure

5.16). On the other hand, in contrast with the results of the last section, we observe

that the lower the diffusivity of the system, the smaller the solution’s variation.

This is not unexpected, since for problems with low diffusivity, the boundary layers

are narrow, and the solution moves to the infinite-medium solution already men-

tioned. However, in the problems with higher diffusivity, the boundary layers are

wider and extend deeper into the slab; hence the variance does not go to zero at the

center - although it does have a local minimum. One can make these observations

by examining the examples ploted in Figure 5.17.

Analysing the atomic mix and Levermore-Pomraning predictions for this

class of problems we see that, due to the small variation of the benchmark mean, the

relative errors obtained are also small. Their accuracy generally deteriorates when

the mean chord lengths increase and when the system becomes more diffusive, except
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for the points where the relative error is close to its maximum (Figure 5.18). In these

points we have observed some alternance in these trends. We have also observed that

these relative error curves present certain assymetric shapes (we will get back to this

subject soon). Further, we can observe that the behaviour of the relative errors is

strongly connected with the solution’s variation, as in the Reflection/Transmission

problems.

In the next pages we present the plots of the relative errors obtained

through the comparison of the benchmark, atomic mix, and Levermore-Pomraning

methods for this set of 27 problems (Figures 5.19-5.21). The reader will see that the

maximum error peaks of the Levermore-Pomraning method are generally greater

than those obtained by the atomic mix method, particularly in the mildly and

highly diffusive systems contained in Sets 2.2 and 2.3. Nevertheless, the Levermore-

Pomraning prediction is always more accurate than the atomic mix prediction at

the center of all systems, away from these peaks. We remark that, in comparison

with the relative errors obtained for the Reflection/Transmission problem, the errors

obtained for these particular source problems are considerably small. This leads us

to believe that both the numerical and the statistical errors have a significatively

greater effect in these results, which explains the assymmetric shapes encountered in

some curves. Finally, we mention that all trends discussed above, such as accuracy

degradation with increasing values of Λi and the variation’s solution influence in the

relative error, can be seen by examining this data. All benchmark simulations were

calculated for 10,000 physical realizations of the problem, although 1,000 realizations

would be enough for almost all cases.
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Figure 5.19: Relative errors of the atomic mix and Levermore-Pomraning methods (±1% with
95% confidence) - Set 2.1
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Figure 5.20: Relative errors of the atomic mix and Levermore-Pomraning methods (±1% with
95% confidence) - Set 2.2
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Figure 5.21: Relative errors of the atomic mix and Levermore-Pomraning methods (±1% with
95% confidence) - Set 2.3
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6 CONCLUSIONS

6.1 English Version

In this work we have presented a review of particle transport theory

in a binary stochastic medium. The reader may have noticed that the statistics

of the mixture was often assumed to be Markovian; this reflects the emphasis on

Markov mixing statistics encountered in the literature. For this special class of

statistics, many relatively simple results can be obtained. On the other hand, the

use of renewal theory to describe particle transport in a binary stochastic medium,

first suggested by Vanderhaegen [87], has provided important contributions in both

Markovian and non-Markovian mixing problems [16, 26, 48, 50, 63, 71, 78, 94]. This

theory uses the integral equation as the underlying description of particle transport,

rather than the integro-differential equation.

It is important to emphasize that the prediction of the variance (and

the standard deviation) of these systems are as important as the prediction of the

ensemble-averaged solution. The variance gives an indication of the magnitude of

the spread of the stochastic solution about the mean. A large variance implies a

large spread, and in this case a knowledge of the the mean solution alone is not

enough to fully understand what is going on within the system. The atomic mix

and Levermore-Pomraning models do not provide an estimate of the variance. As far

as we know, very little work has been done towards this particular objective [43, 61];

nevertheless, the interest in improving the existent models to predict the variance of

such problems has increased over the last years [2, 21, 22]. The development of error

estimates and convergence analysis for these problems is also a relevant feature of this

research line. Some recent work has been done in this sense [14, 38, 39] (especially

in regards to homogenization techniques), but there is still much to be done. We

hope to contemplate this work in the future.
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Analysing the results reported in Chapter 5, we conclude that, in gen-

eral, if a single model must be chosen, then the Levermore-Pomraning equations

should be used to model this class of transport problems. The Levermore-Pomraning

model is always an improvement over the atomic mix model in low and moder-

ately diffusive systems. For highly diffusive systems with small mean chord lengths,

the atomic mix prediction is more accurate than the Levermore-Pomraning predic-

tion. However, for such systems, when the chord lengths become sufficiently large,

the atomic mix and Levermore-Pomraning results become comparable in accuracy.

These trends were already observed by Davis, Palmer and Larsen [12], where prob-

lems in “Solid-Void” mixtures were examined, and by Vasques et al. [90], where

a 50-point Gauss-Legendre quadrature was used in the discrete ordinates angular

approximation.

Moreover, analysing the power demonstrated by the LTSN method in

the numerical calculations, and bearing in mind the proved convergence of the LTSN

approach [42], we are confident to stress that this method is robust (under the

computational point of view) to calculate benchmark results, as well as the atomic

mix and Levermore-Pomraning predictions. This paves the road to the generation

of extremely accurate benchmark solutions, which can be calculated using higher-

order Gauss-Legendre quadratures. Furthermore, recalling the equivalence between

the S2N and the AN approximations shown by Coppa et al. [11], we intend to develop

an algorithm to calculate benchmark results using the LTAN method [6, 7]. We also

want to apply this new algorithm to the generation of numerical results for the idea

proposed in section 4.2, as well as to work on the improvement of this idea.

6.2 Portuguese Version

Neste trabalho foi apresentada uma revisão da teoria do transporte

de part́ıculas em um meio estocástico binário. Pode-se notar que a estat́ıstica

da mistura foi frequentemente assumida como sendo Markoviana; isto reflete a



96

ênfase em estat́ıstica Markoviana encontrada na literatura. Para esta classe es-

pecial de estat́ıstica muitos resultados relativamente simples podem ser obtidos.

Por outro lado, o uso de “renewal theory” para descrever o transporte de part́ıculas

em um meio estocástico binário, primeiramente sugerido por Vanderhaegen [87], tem

fornecido importantes contribuições para problemas Markovianos e não-Markovianos

[16, 26, 48, 50, 63, 71, 78, 94]. Esta teoria usa a equação integral como descrição do

transporte de part́ıculas, ao invés da equação ı́ntegro-diferencial.

É importante enfatizar que a predição da variância e do desvio-padrão

destes sistemas é tão importante quanto a predição da solução média. A variância

fornece uma indicação da magnitude da variação da solução estocástica ao redor

da média. Uma grande variância implica uma grande variação, e neste caso um

conhecimento da solução média por si só não é suficiente para um completo en-

tendimento do comportamento do sistema. Os modelos de mistura atômica e de

Levermore-Pomraning não fornecem um estimativa da variância. Até onde sabe-

mos, muito pouco foi feito no que se refere a este objetivo em particular [43, 61];

mesmo assim, o interesse em aperfeiçoar os modelos existentes para a predição da

variância de tais problemas tem crescido nos últimos anos [2, 21, 22]. O desenvolvi-

mento de estimativas de erro e análise de convergência para estes problemas também

é uma caracteŕıstica relevante desta linha de pesquisa. Trabalhos recentes têm sido

realizados neste sentido [14, 38, 39] (especialmente no que se refere a técnicas de ho-

mogeneização), mas ainda há muito a ser feito. Esperamos contemplar este trabalho

no futuro.

Analisando os resultados apresentados no Caṕıtulo 5 conclúımos que, se

um modelo deve ser escolhido, então as equações de Levermore-Pomraning devem

ser em geral preferidas para modelar esta classe de problemas de transporte. O

modelo de Levermore-Pomraning é sempre um progresso quando comparado com

o modelo de mistura atômica em sistemas com difusividade baixa e moderada.

Para problemas altamente difusivos com pequenos comprimentos de corda médios,

a predição do modelo de mistura atômica é mais precisa que a predição do modelo
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de Levermore-Pomraning. Entretanto, para tais sistemas, quando os comprimentos

de corda médios se tornam grandes o suficiente, os resultados de ambos os modelos

se tornam comparáveis em precisão. Estes comportamentos já foram previamente

observados por Davis, Palmer e Larsen [12], onde problemas em misturas “Sólido-

Vácuo” foram examinados, e por Vasques et al. [90], onde uma quadratura de

Gauss-Legendre de 50 pontos foi usada na aproximação angular das ordenadas dis-

cretas.

Além disso, analisando o poder demonstrado pelo método LTSN nos

cálculos numéricos e tendo em mente a demonstrada convergência da abordagem

LTSN [42], estamos confiantes em afirmar que este método é robusto (sob o ponto

de vista computacional) para calcular resultados de benchmark, assim como as

predições dos modelos de mistura atômica e de Levermore-Pomraning. Isto abre

caminho para a geração de soluções de benchmark extremamente precisas, que po-

dem ser calculadas usando quadraturas de Gauss-Legendre de ordens mais altas.

Ainda, recordando a equivalência entre as aproximações S2N e AN mostradas por

Coppa et al. [11], pretendemos desenvolver um algoritmo para calcular resultados

de benchmark usando o método LTAN [6, 7]. Queremos também aplicar este novo

algoritmo na geração de resultados numéricos para a idéia proposta na seção 4.2,

assim como trabalhar no aperfeiçoamento desta idéia.
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