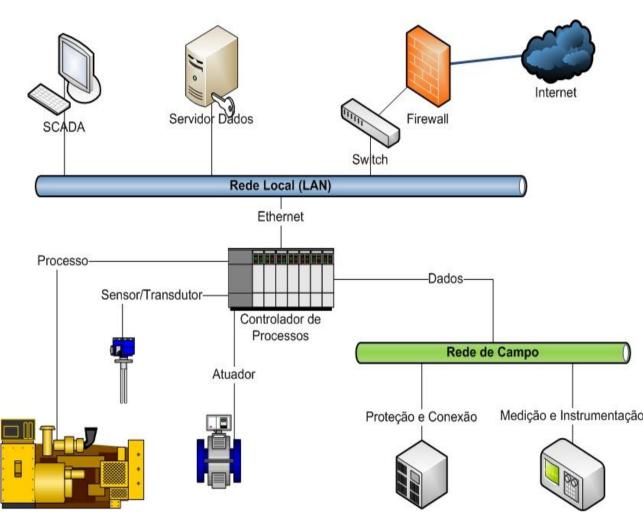


Sistema de Automação e Controle para Micro Usinas de Geração Distribuída

Alunos: Rafael Ghellere e Rodrigo Passos Orientador: Prof. Dr. Ály Ferreira Flores Filho Colaborador: MSc. Carlos Sonier Cardoso do Nascimento Laboratório de Máquinas Elétricas, Acionamentos e Energia e-mail: aly.flores@ufrgs.br Webpage: http://www.ufrgs.br/lmeae


Introdução

Este trabalho apresenta o desenvolvimento do sistema de automação, supervisão e controle, para operação remota de micro usinas de energia a gás, utilizando máquinas de indução operando como geradores.

Materiais e Métodos

Análise de requisitos: Estudo da legislação sobre proteção e operação de sistemas conectados à rede de distribuição de energia elétrica.

Projeto de arquitetura: Estudo e modelagem do sistema utilizando técnicas de engenharia de sistemas e engenharia auxiliada por computador (Computer Aided Engineering – CAE).

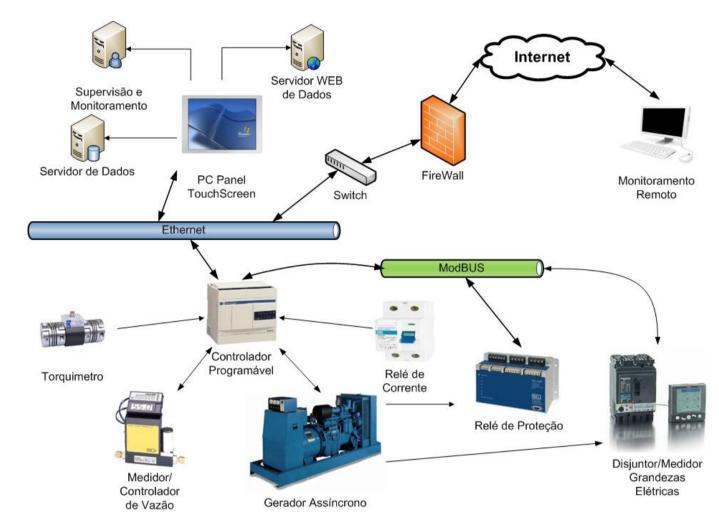
Arquitetura proposta para o sistema

Especificação: Dimensionamento dos componentes de hardware e software com base nos requisitos do sistema e conforme o projeto de arquitetura.

Diagrama do processo

Projeto elétrico: Desenvolvimento do projeto elétrico do painel de automação através de software para criação dos esquemas elétricos (Computer Aided Design – CAD)

Montagem: Alocação dos componentes de hardware dentro do painel e interligação elétrica entre as entradas e saídas dos equipamentos.


Software: Programação e configuração dos equipamentos de hardware e desenvolvimento das interfaces de software, utilizando ferramenta de programação gráfica LabView e aplicativos Schneider Electric e Schweitzer Engineering Laboratories.

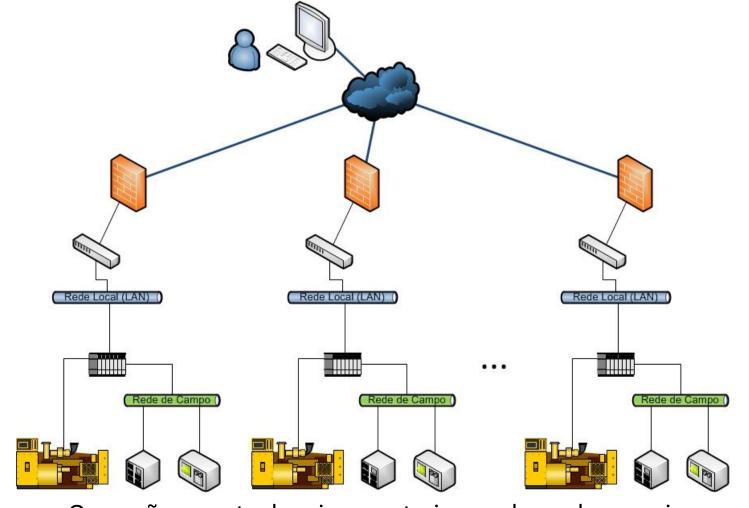
Resultados

automação desenvolvido de segue IEEE C37.1 – SCADA and recomendações das normas Automation Systems, IEEE 1547 – Interconnecting Distributed Resources with Electric Power Systems. Atende as resoluções da ANEEL, em específico a resolução 395 sobre os procedimentos de distribuição de energia elétrica no sistema elétrico nacional e os procedimentos de rede do ONS.

O software desenvolvido foi customizado para operação de micro usinas de até 100 kW. A solução utiliza componentes de software com tecnologia OPC UA para integração e padronização das interfaces entre os equipamentos de hardware e software.

Durante o projeto, soluções para melhoria do fator de potência, proteções contra motorização e contra operação em rede desenergizada foram desenvolvidas, permitindo a substituição de dispositivos como relés de potência reversa.

Arquitetura do sistema de automação com os componentes de hardware


Painel de comando com os componentes de hardware

Conclusões

Através do sistema de automação projetado, é possivel operar e gerenciar plantas de geração de energia remotamente em tempo real e executar o despacho agrupado das unidades de campo.

O desenvolvimento de equipamentos de medição e proteção, com tecnologia nacional e de baixo custo, proporciona a substituição dos equipamentos importados possibilitando o desenvolvimento tecnológico inovador no país.

Os impactos tecnológicos do desenvolvimento deste sistema são refletidos nos custos de implantação, no aumento da eficiência e rendimento da operação de micro usinas, que podem ser integradas aos sistemas de distribuição de energia em baixa tensão.

Operação remota de micro centrais geradoras de energia