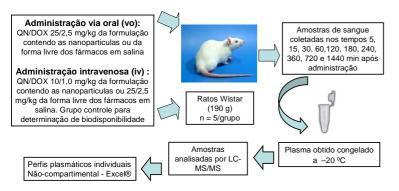
Avaliação da Farmacocinética Oral em Roedores da Associação Antimalárica Quinina/Doxiciclina Incorporada em Nanopartículas Lipídicas Sólidas

UFRGS 15

GALVES, Fernanda R.1, BRUM JÚNIOR, Liberato 2, GUTERRES, Sílvia S. 1,2, DALLA COSTA, Teresa 1,2

¹ Faculdade de Farmácia da UFRGS, ² Programa de Pós-Graduação em Ciências Farmacêuticas da UFRGS (nandagalves@hotmail.com)

INTRODUÇÃO


A malária, cujo agente etiológico é o protozoário do gênero *Plasmodium*, é uma das doenças mais importantes do mundo em desenvolvimento, matando cerca de 3 milhões de pessoas e infectando em torno de 500 milhões por ano (GARCIA, 2010). Devido à alta incidência de resistência aos fármacos antimaláricos, a associação de fármacos com mecanismos de ação diferentes tem sido utilizada. A associação entre quinina (QN), um antimalárico, e doxiciclina (DOX), um antibiótico, tem sido utilizada no Brasil (RASHEED & SAEED, 2008). O uso de sistemas nanoparticulados visando aumentar a eficácia e diminuir os efeitos adversos causados pela QN tem sido investigado em nosso grupo de pesquisa. Previamente, foram desenvolvidas nanocápsulas poliméricas de QN que aumentaram o efeito do fármaco em 35% devido ao incremento na sua penetração nos eritrócitos (HAAS *et al.*, 2009). Atualmente o grupo investiga o potencial terapêutico de nanopartículas lipídicas sólidas (NLS) preparadas com a associação DOX/QN na proporção 1:10, que é a proporção utilizada clinicamente.

OBJETIVO

Avaliar comparativamente a farmacocinética (PK) oral em roedores da associação entre QN/DOX na forma livre e encapsulada em NLS previamente desenvolvida e caracterizada.

MATERIAIS E MÉTODOS

Delineamento do experimento PK em ratos sadios

Aprovação pelo Comitê de Ética e Pesquisa da UFRGS (2008131).

RESULTADOS E DISCUSSÃO

Os parâmetros farmacocinéticos estimados pela abordagem nãocompartimental para o fármaco livre e nanoencapsulado estão descritos na Tabela 1.

Tabela 1. Parâmetros farmacocinéticos após administração de dose oral de

QN/DOX livre ou nanoencapsulada em ratos sadios QN NLS DOX livre DOX NLS Parâmetros' QN livre (2,5 mg/kg) (25 mg/kg) (25 mg/kg) (2,5 mg/kg) ke (h-1) 0.13 ± 0.03 0.15 ± 0.04 0.34 ± 0.11 0.35 ± 0.09 t½ (h) $5,32 \pm 1,09$ $5,03 \pm 1,46$ $2,21 \pm 0,64$ $2,07 \pm 0,58$ AUC_{0-∞} (μg.h/mL) 4.38 ± 1.18 1.83 ± 0.60 $4,11 \pm 1,72$ 3.26 ± 2.02 $C_{m\acute{a}x}(\mu g/mL)$ 1.00 ± 0.65 1.07 ± 0.74 0.76 ± 0.45 0.64 ± 0.55 $t_{máx}(h)$ 1,00 1,00 3.00 2.00 MRT (h) 4.97 ± 0.85 3.09 ± 0.71 5.30 ± 1.08 4.75 ± 0.81 CL (L/h/kg) $2,51 \pm 0,76$ $3,17 \pm 0,92$ $0,27 \pm 0,11$ 0.30 ± 0.16 0,41 0,22 0,35

 * n = 5/grupo; ke, constante de velocidade de eliminação; $t_{1/2}$, meia-vida; MRT, tempo de residência média; $C_{\rm max}$, concentração máxima plasmática; $t_{\rm max}$, tempo para concentração máxima; CL, *clearence* total; AUC_{0-m}, área sob a curva; $F_{\rm abe}$, biodisponibilidade absoluta. Teste * t de *Student* (a = 0,05).

Os perfis de concentração plasmática por tempo da DOX e QN observados após administração dos fármacos livres ou nas NLS podem ser observados nas Figuras 1 e 2, respectivamente.

Pode-se observar pelos dados da Tabela 1 e pela Figura 1 que não houve diferença significativa nos parâmetros determinados para DOX livre e incorporada na NLS, mantendo uma F_{abs} em torno de 30%, $t_{1/2}$ de 2 h e CL em torno de 0,30 L/h/kg.

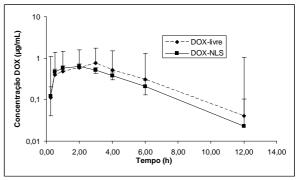
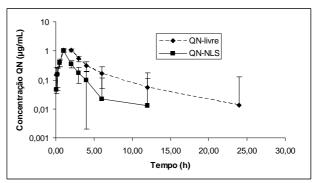



Figura 1. Perfil plasmático de DOX livre ou DOX-NLS após administração de dose oral (2,5 mg/kg) do fármaco livre e nanoencapsulado em ratos sadios (n = 5/grupo) (média ± EP).

Na Figura 2 o perfil plasmático da QN livre e nanoencapsulada demonstra a diminuição na área sob a curva A QN livre e incorporada em NLS apresentou diferença significativa na biodisponibilidade, ocorrendo uma diminuição de 41% para 22% devido a encapsulação, o t_½ manteve-se em 5 h e houve uma tendência de aumento no CL de 2,51 para 3,17 L/h/kg, que justifica a diminuição da biodisponibilidade.

Figura 2. Perfil plasmático de QN livre ou QN-NLS após administração de dose oral (25 mg/kg) do fármaco livre e nanoencapsulado em ratos sadios (n = 5/grupo) (média ± EP).

CONCLUSÕES

A absorção da DOX a partir da NLS é mais rápida que a absorção do fármaco na forma livre, não sendo a extensão de absorção influenciado pelas nanopartículas. Para a QN, a extensão de absorção foi reduzida.

A partir da avaliação não-compartimental dos perfis plasmáticos de QN e DOX livre e incorporadas em NLS pode-se sugerir que a farmacocinética da DOX não é afetada pela nanoencapsulação enquanto a QN tem sua biodisponibilidade oral diminuída.

REFERÊNCIAS

- 1. GARCIA, L.S. Malaria. Clin Lab Med, v. 30, p. 93-129, 2010.
- RASHEED, A.; SAEED, S. In vivo efficacy and safety of quinine- doxycycline combination in acute plasmodium falciparum malaria. J. Pak. Med. Assoc., v. 24, n. 5, p. 684-688, 2008.
- RAVICHANDRAN, R. Nanotechnology-based drug delivery systems. Nanobiotechnol., v. 5, p. 17-33, 2009.
- HAAS, S.E.; BETTONI, C.C.; OLIVEIRA, L.K. et al. Nanoencapsulation increases quinine antimalarial efficacy against Plasmodium berghei in vivo, Int. J. Antimicrob. Agents, v. 34, p. 156–161, 2009.

