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ABSTRACT

WattDB is a locally distributed database system that runs on a cluster of lightweight
nodes. It aims to balance power consumption proportionally to the system’s load by
dynamically powering its nodes individually up and down. Monitoring can serve as a
basic building block for enabling adaptive and autonomic techniques, taking a special
place in the cluster dynamics. This work provides a framework for monitoring and storing
system usage counters and events of interest within the database. Monitored information
is mapped, collected and consolidated to be saved in a historical database, which can be
used to predict future query workloads in the cluster. This framework aims to be accurate,
provide relevant and timely data, incurring low overhead in the nodes and in the network.

Keywords: WattDB, database, distributed-monitoring, database-monitoring, energy-proportionality.





RESUMO

WattDB é um sistema de banco de dados localmente distribuído. Seu objetivo é ba-
lancear proporcionalmente o consumo de energia com a carga de trabalho do sistema,
dinamicamente ligando e desligando seus nodos individualmente. A monitoração do sis-
tema é um bloco básico para possibilitar medidas adaptativas e autônomas, tendo um pa-
pel especial dentro das dinâmicas do cluster. Esse trabalho contribui com um framework
para monitorar e armazenar estatísticas de uso do sistema e eventos de interesse dentro do
escopo do banco de dados. As informações monitoradas são mapeadas, coletadas, conso-
lidadas para então serem salvas num banco de dados histórico, que pode ser usado para
prever futuras cargas de trabalho no cluster. Este framework visa ser preciso, fornecer
dados relevantes e constantes, sem provocar sobrecarga de trabalho nos nós e na rede.

Palavras-chave: WattDB, database, distributed-monitoring, database-monitoring, energy-
proportionality.
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1 INTRODUCTION

This chapter provides an introduction for this bachelor’s thesis, which is the design
and implementation of a monitoring system for a distributed database. It collects and
serves information about the database nodes to support the cluster management. Also the
motivation behind the work and the project will be discussed. The objectives will be listed
and defined. Finally, the organization of the text will be detailed.

1.1 Motivation

Nowadays the whole technology industry — including database systems — dedicates
several efforts to become green. Sustainable development is not only driven by govern-
ment and non-governmental organizations (NGO) pressures anymore; curb the negative
impacts of human involvement became a concern for every company. Energy problem
is not exclusive from database systems — not even solely of computers. Energy effi-
ciency use tries to reduce the amount of energy required to provide products and services;
e.g., building insulating, fluorescent lights and smart fan systems. In computers, three
types of energy efficiency can be reached: educational, hardware and software efficiency
(Bray 2006). Educational energy efficiency relies in user habit of turning off their com-
puters and monitors when not in use — also called manual power management. It can
achieve impressive results, nevertheless only for home and office environments, comput-
ers with directly users — it is not a scalable solution for clusters and clouds, scenario
where database systems mainly play their role.

For hardware energetic efficiency, the smaller transistor size, the principal reason to-
wards increased performance and reduced costs in computers (as can be seen in Fig-
ure 1.1), also results in power use reduction. This explains why the industry has been
able to improve computational performance and electrical efficiency at similar rates
(Koomey et al. 2009). Within a few years, the conventional CMOS transistors will no
longer be able to scale down at a Moore’s Law pace. But energy efficiency is not enough
(Härder et al. 2011) to achieve the large amount of energy saving aimed.

Figure 1.2 shows computations per kWh grew about as fast as performance for desk-
top computers starting in 1981. Doubling every 1.5 years, a pace of change in compu-
tational efficiency comparable to that from 1946 to the present. Computations per kWh
grew even more quickly during the vacuum tube computing era and during the transition
from tubes to transistors but more slowly during the era of discrete transistors. As ex-
pected, the transition from tubes to transistors shows a large jump in computations per
kWh (Koomey et al. 2009).

Ideally, the power consumption of a component (and the system) should be determined
by its utilization. This energy proportional behavior, also called energy proportionality,
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Figure 1.1: CPU transistor counts between 1971 and 2008 and Moore’s law. Extracted
from (Koomey et al. 2009).

is well developed by CPUs since processors are adopting energy-efficiency techniques
more aggressively than other system components (Barroso e Hölzle 2007). Main-memory
power usage, however, is more or less independent of system utilization and increases
linearly with the memory size, following (Härder et al. 2011). If not all components in
a system hardware architecture can provide energy proportionality, how should a server
system be designed to address the server’ energy efficiency characteristics with respect to
server workloads?

Automatically power management relies in software techniques to power down ma-
chines or its components when not needed and to turn them on when the workload de-
mands. Simulate by software the proportional behavior found in some hardware com-
ponents can be the key technique to accomplish energy savings in large, industrial scale
while preserving the necessary computational performance. The WattDB project, de-
scribed in Section 2.4, uses simple hardware due to budget restrictions; nevertheless even
huge companies, with unlimited access to state of the art hardware components, still have
energy issues — economical or environmental. The solution, today, is beyond hardware
technologies. Facebook is deploying an entire new server farm in the Article Circle,
using the natural cold climate to handle the grid overheat (Ritter 2011). To attend the
desired data throughput for a company as large as Google (which response easily one bil-
lion requests every day (Google 2011)) the physical structure needed in terms of servers,
switches, routers, cables, buildings and refrigerating is something never seen before.

Successful businesses are not impelled only by mathematical modeling and optimiza-
tion in production, logistic and consumption models anymore; accurate, relevant and
timely information is the key ingredient to effective decision-making in almost any man-
agement position in different industry fields — energy, finance, government, health, legal,
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Figure 1.2: Computations per kWh over time. Extracted from (Koomey et al. 2009).
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Figure 1.3: Monitoring system provides data to historical database, consumed by predic-
tion system. Both systems feed a decision-making system, responsible for acting in the
cluster dynamics.

manufacturing, just to name a few. Learn the value of it, generated not only by customers
withal during the whole production process, is fundamental for surviving in any compet-
itive market.

As the importance of information grows, the storage demand for it in an organized,
meaningful and accessible way, emphasizing the relevant aspects of reality, grows on the
same basis. Database systems are a strategic tool in this field, as businesses rely upon
the information stored in it for a myriad of purposes. Together with this development,
the energy consumption of database systems evolved from an energy budget problem to a
global environmental question, which affects all of us; a typical database server consumes
about 60% of its peak energy consumption when idle (Tsirogiannis et al. 2010). The need
for a solution addressing significant energy savings while not compromising data access
performance and quality is urgent.

1.2 Objective

This work provides a monitoring distributed framework for WattDB. Its main goal is
to provide accurate, relevant and timely data, incurring low overhead in the nodes and in
the network. Monitoring the cluster can improve the centralized management to execute
actions across the cluster. This monitoring system must collect data — system usage
statistics and events of interest within the database — from every node (slaves and master),
store it in a historical internal database to be aggregated or serving it directly for on
time reactions, as can be seen in Figure 1.3. The values measured from these nodes can
be used by a decision-making engine to make an informed decision about what actions
to take to control the cluster dynamics. Also, the study of past query execution in the
database can help determining future workloads, node activation and deactivation polices
and supporting energy proportional behavior. New monitored data is used to always check
if the previously actions executed by the master had the desired impact on the cluster, or
if new actions need to be taken.
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1.3 Organization of the Text

The remainder of this work is organized as follows: Chapter 2 discusses the state
of the art of the research in distributed monitoring, and also defines the basic concepts
used in this work. Chapter 3 discusses what data is relevant to be collected, where to
collect it, how to consolidate this data and how to expose it to others components inside
the database. Chapter 4 shows how the framework is implemented, the development
environment and its modules. Chapter 5 presents the results achieved by the monitoring
system with respect to all the tests performed. Concluding remarks and future challenges
are outlined in Chapter 6.
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2 THE CONCEPTS OF DISTRIBUTED MONITORING

Despite the huge data centers that nowadays operate all kind of web services, cluster
node management was until recently based only in archaic methods like the “ping” com-
mand — where a remote node should reply to a received packet, or it would be considered
inactive. It is crucial to review the recent frameworks proposed to monitor clusters, as well
to define some basic concepts about monitoring. As this work is a component of a dis-
tributed database, contextualize the monitoring concepts inside WattDB is fundamental.

2.1 Monitoring

Monitoring is the observation and the regular record of an application activity. It
is a permanent data collection service executing over many different aspects of the
monitored application or system. Monitoring is to check the progress of the running
applications, that is, a systematic observation with well defined goals. As seen in
(Sottile e Minnich 2002), monitoring contributes to management. The data read from
sensors can be used to make informed decisions about what actions to take — by a human
or by a reaction software. After these actions were executed, the sensors are probed again
and the data collected can be analyzed to check if the previously actions improved the
state of the system or if other actions must be taken.

A monitoring which executes in parallel with the monitored application is an intrusive
monitor, sharing the computational power which would be used only by the application.
This demands the monitor to be lightweight, in order to interfere the minimum as possible
in the global system. A monitoring application will keep track of the changes caused by
any other running software in the system or even other systems which may interact with
the monitored one. This data is then collected and should be served, as a report for
administrators or to the main application use, staying aware about the system state. For
example, in a medical heart rate controller software would be interesting monitor every
action that the controller may take — increasing or decreasing the heart rate. If other
medical devices interact with the controller, is necessary to record their actions also, so
any change in the heart rate software behavior is registered. If suddenly the heart rate
in the patience starts decreasing, a report over the monitored data can help the doctor to
understand the situation and correct the problem as soon as possible.

The first perturbation caused by the monitoring process is the execution of its own
extra instruction. Nevertheless, a second wave of perturbations can derive from no code
optimization between the running application and the monitoring software and operation
system’s overhead (Malony et al. 1992). How much intrusion will be tolerated depends
on the nature of the running application and the desired monitoring precision. To deter-
mine this trade-off, it is important to understand that an intrusive monitor will interfere
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arbitrarily in the execution of the monitored application. This change may:

1. generate incorrect results;

2. created (or disguise) deadlock situations, when the thread’s event order is affected;

3. increase drastically the executing time of the monitored application;

4. make the understanding process of a distributed application even harder.

It is a project challenge to understand the application’s characteristics and design a mon-
itoring software that can cooperate with it, helping administrators and other softwares to
make the best informed decision.

Monitoring can also execute as a service inside the applications, where it assumes a
logging task. In this case, the objective is to collect data generated by the own software —
how many times a function executed, how many locks over a specific resource were de-
manded — and provide this data to an administrator or internal decision-making system,
which can make use of it inside the application. In WattDB, the cluster and the database
system are being monitored, using a mix of the both approaches.

2.2 Distributed Monitoring

Monitoring a cluster means to execute the monitoring tasks over (possibly) all ma-
chines that are part of the cluster. The data collection process can represent the individual
state of every single machine (intra-monitoring) or the whole cluster as a single node
(inter-monitoring). Intra-monitoring is useful to schedule jobs inside a data center, when
inter-monitoring is necessary to address the problem of capacity planning for the provi-
sion of cloud data centers (Costa et al. 2010). The monitoring framework presented in
this text focus in intra-monitoring, which is the scenario where the WattDB operates.

Distributed and parallel programming are know as more complex then sequential pro-
gramming. Many independent tasks, communication and synchronization are some rea-
sons for that. This increase in complexity is negatively translated in the quality of dis-
tributed applications. Distributed monitoring is normally performed to identify software
and hardware problems that may occur. Software problems, like performance bottlenecks
or wrong results in the applications are identified tracing the distributed applications. A
cluster administrator uses the collected information to analyze and possible fix the prob-
lem. It is possible to also have another software acting to resolve unstable situations; this
software will consume the monitored data and try to fix the bottleneck — rescheduling
tasks or jobs, killing process, etc. In a distributed system, since we have more machines,
the chance to have hardware problems (bad memory sectors, bad hard drive disk, etc.) also
grows. It is too costly (in terms of money and time) to a human administrate hardware
failures in today’s data-centers — which can achieved easily more than 10000 machines.
The need for a tool that can probe hardware is essential.

There is no silver bullet in terms of distributed monitoring applications. Depending
what kind of information is needed, a different tool must be deployed. Different infor-
mations are the network linking nodes, execution and data flows, energy, temperature,
humidity, etc., for example. Multiple monitors increase the system’s complexity due the
independence of each tool in:

1. Collecting the data,
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2. Storing this data after being collected and

3. Consume it later by another software or an administrator.

Normally different monitoring applications have different collecting methods. There
is no standard way to gather all sorts of data at a glance. Applications must be traced,
infrastructure must be sensored, hardware must be probed. This plurality results in many
different monitoring solutions. Store the collected data in binary files or in XML files
is useful when another software will consume the data, however humans will need a
visualization tool to analyze that data. Analyzing many different information sources
naturally increase the complexity of monitoring solutions.

2.3 Database Monitoring

Database monitoring refers to the problem of observing various parameters related to
the execution of a query in a database system. It contributes to: detecting performance
problems, bottlenecks, or abnormal conditions; auditing usage of system resources and
tracking trends; and deciding resource allocation, capacity planning and adaptive query
processing techniques, collecting comparable data on a regular timely basis. Monitor-
ing is desirable in a variety of scenarios. When a database system is overloaded, a
database administrator (DBA) can use dynamic query monitoring information to decide
which queries are consuming resources and which queries are close to completion. In a
distributed database, monitoring can collect information like node current state, activity
metrics since the node instance started, how the nodes are configured and which of them
are currently running.

Provide accurate, relevant and timely data incurring low overhead in the nodes is
the main objective of this work. The performance of the monitoring system has two
main aspects: the impact on the monitored system (low overhead) and the efficiency of
the monitoring (accuracy and relevance). Ideally the monitoring is a tiny fraction on
the applications trace; it must be lightweight and imply low impact in the nodes. The
second aspect demands the monitor to execute all monitoring tasks in a timely manner,
within the desired period and with respect to the wanted components. The monitoring
system must scale to handle an arbitrarily large number of nodes, without compromising
its fundamental properties.

2.4 The WattDB Project

The WattDB project aims to reproduce the energy-proportional behavior on a database
cluster of wimpy (Andersen et al. 2009) shared nothing computing nodes (also called Am-
dahl blades (Szalay et al. 2010)), replacing the one power DB server machine. The clus-
ter is centered in one single node, which can attach further nodes while handling DB
processing uninterrupted. In this manner, the cluster can scale up to n nodes, being able
to smoothly grow and shrink dynamically. Cluster nodes can be seen as processors cores
— increasing system utilization proportional to power consumption as needed. Using a
single computing node we would never come close to the ideal characteristics of energy
proportionality, as seen in (Härder et al. 2011). Dynamically powering nodes impacts all
layers of database software, like storage mapping, query processing and cluster coordina-
tion — being the last one the long term objective of this work. The ideal and the observed
behaviors are ilustrated in Figure 2.1.
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Figure 2.1: Power use over system utilization: single computing node.

The centered, single node (also called master node) is responsible for all coordination
tasks (Schall e Hudlet 2011). Beyond housekeeping polices, some tasks need more than
centralized control to operate — they need information. Cluster dynamics is the redis-
tribution of responsibilities as an implication two main factors: the first is the number of
currently running nodes — or cluster size. If you have an operation over a huge table,
it is faster to parallel compute it in as many nodes as possible. If the database does not
have enough nodes on, it must activate them. However, there is a second main factor to
consider — the activation and deactivation time spans. How long takes for a node become
fully available after being reactivated to handle an overload situation? How long should
the master wait for a low-utilized node be deactivated and disconnected from the cluster?
In some situations (e.g., a batch report execution during the night) the total time of the
processing is not important as long as the report is ready in the morning. The master
can then focus in energy saving measures, using as few nodes as possible to accomplish
the task in time. On the other hand, e-commerce applications need an almost real-time
response; the cluster must assure a very low answer to clients’ request. Cluster dynamics
control requires cluster events observation as well usage data to be collect, analyzed and
served. This analysis provides expected workload shifts. With this information the master
can take the necessary decisions to support the coordinate measures which maintain the
whole system operating in an energetic proportionality way.

2.5 Related Work

While many network administrators rely in primitive measures like the previously
cited “ping” command to control and manage the clusters under their supervision, some
works have been proposed to deal with this important task in a sophisticated approach.
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They aim to evolve the cluster monitoring from an undisciplined set of actions executed
only in reaction to some problem to a science which can help avoiding failures in the
nodes.

ClusterProbe (Liang et al. 1999) is a Java-based tool. It implements a multiple-
protocol communication interface, allowing it to connect to a myriad of external sources.
The tool scale up easily due its cascading hierarchical architecture. It returns the currently
resource utilization of the nodes, information which can be used to guide the scheduling
of new parallel applications or re-organization of the ones currently executing. An inter-
esting feature is the capability to download a new monitoring interface (new code from
the server), enabling to change the resources which are being monitored by the client
(e.g., if the nodes suffer a hardware update). One main feature of the ClusterProbe is the
open environment communication, which allow other subsystems and other application
to consume its monitored data. This is not needed in WattDB, because it is designed to
run totally alone in the cluster. The cascading hierarchy of monitoring domains results
in monitoring proxies, each one being considered a special agent that can manage other
agents within its domain, filtering monitored data or deploying new monitoring interfaces.

Supermon system (Sottile e Minnich 2002) defends the idea that for Tera-scale and
beyond clusters basic tools (as ping) cannot handle the job in terms of the number of ma-
chines and its workloads. Supermon aims periodic monitoring of cluster nodes, making
better use of the available data, a strategy similar to our own. A mon server on every
node serves monitoring data on a TCP port. A Supermon server collects this data by
serially connecting to each mon server. The system does not keep history metrics, mak-
ing time-series measurement (as CPU load) difficult. This is a fundamental requirements
for WattDB system, as many workloads in a database system repeat during a specific
time frame (weekly, monthly, etc.) and is impossible to forecast future workloads with-
out studying the past ones. The mon agents are lightweight and support extremely rapid
polling rates, due the implementation of a kernel module in Linux which inserts the mon-
itored data into the /proc/sys tree. As described in the next chapter, this work also uses the
/proc file system to collect the desired monitored data, nevertheless it parses the already
existing virtual files created by Linux kernel. More than that, we think that a parser for the
well-formated /proc is simple to develop, deploy and maintain than a new kernel module.

Another monitoring tool existent is Ganglia (Massie et al. 2003), which is a scalable
distributed monitoring system designed for high performance computing systems such as
widely distributed grids. It uses uses a multicast protocol to achieve efficient real-time
monitoring. This work is focused on the wide-area clusters, differently from WattDB
today, which does not have this as main feature. Ganglia is able to monitor several com-
puters inside the cluster and, for each of them, the level of CPU usage, memory and disk
I/O. However, it cannot collect specific application monitoring traces.

A monitoring system for WattDB must attend to the following requisites:

1. One single process: each node in the database cluster must run only WattDB pro-
cess, besides Linux kernel;

2. Easy deploy: WattDB currently runs on Linux, but it is designed to be deployed in
any Unix distribution with few or no modifications at all. So must be its monitoring
system;

3. Hybrid monitoring: hardware utilization and database tracing both must be col-
lected, storage and served.
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3 DESIGNING A MONITORING SYSTEM FOR WATTDB

This chapter discusses the design of the monitoring system, splited in four topics:
data’s relevance, data’s collection, data’s consolidation and information exposure. Archi-
tecture issues will be presented and discussed.

3.1 Design Overview

Within WattDB, monitoring can serve as a basic building block for enabling adaptive
and autonomic techniques. The master node needs information to control the cluster
dynamics — the resizing of the cluster and the time span to do it. Storage can focus in
energy efficiency requirements (consolidating data to as few disks as possible, turning off
the unused ones) or high-performance needs (distributing data for faster parallel access
across the nodes); to achieve that, centralized coordination of storage mapping must be
aware of data distribution. Query processing also needs information to determine where
to send some specific query plan, based on the current hardware components or software
characteristics of the nodes. For example, when the workload is too heavy for the current
running nodes process or when the nodes have finished their tasks and then starting to
become idle, the master node need to initiate counter measures keep the response times
low or save energy, depending on the case. If a table has a high-traffic area, it can be split
into several smaller partitions. The monitoring system is a vigilant tool which collects
data from the nodes, consolidate them and make them available to different components
of the system. Problems detection, usage auditing and precise decision making can be
easily achieved. Still, is important define what data is relevant, how it should be collected
and consolidate. Is also fundamental define an interface which the monitoring can use to
serve the monitored data for other components.

3.2 Relevant Data

In this text, the term “data" is used to describe raw, direct values probed from cluster.
Data can be collected from different sources inside the cluster. These sources are classi-
fied in: measurable system statistics (counters) and observable events. “Information” is
any relevant data that can assist a decision-making process, aggregated or not. Reacting
tasks require the ability to filter dynamically counters or to access aggregate maintained
values of them when some event or threshold is met. Usually, live statistics inform how
the system is behaving in a specifically time frame, while aggregate counters express sys-
tem’s historical performance. If an unexpected workload needs to be processed, counter’s
data can be used to react accordingly. Over a period of time, fine-grained information
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can be obtained, stored for analysis of resources bottlenecks and further tuning of the sys-
tem. Hence, some counters can be interpreted directly as information — relevant data for
reacting purposes.

A node must attend some requirements to execute a database operation. WattDB is
distributed, having a client-server hierarchy inside the cluster. The communication be-
tween the single master (server) to the slaves (clients) is done through an internal net-
work. While the request processing is being carried by the CPU the data received stay in
main memory. Since the nodes are shared-nothing, is interesting to have a hard-disk not
to save processing results yet to be able to swap data during the execution — if neces-
sary. The node sends the results after completed the operation. Hence, monitoring these
components during the execution of operations provides valuable metrics about system’s
performance. Monitoring tasks require observation of a large number of events in the
cluster, however, actions to be taken as a consequence of monitored data are often based
on a smaller volume of information that is typically filtered and/or aggregated. Delegat-
ing a memory-bound operation to a node can rely just on the free space available, but the
memory probing will also measure buffer and cache size, occupancy indexes, etc.

3.2.1 Counters

Basic counters are associated with system usage. These counters include CPU, mem-
ory, network and disk usage statistics — amount of free memory space, number of pack-
ages over the network, CPU load level, etc. These counters provide information about the
current load of node. Monitoring the number of active connections with the server and
the number of currently executing queries can also have a straightforward influence in
the cluster behavior. Differently from usage statistics, which must be probed from every
node and sent to the master before it can react based on that data, active connections and
total running queries are values know by the master. It can start adaptive measures before
detecting overhead parameters in the nodes — if the number of active connection meets
a defined threshold, master may know in advance that the current running nodes will not
support that workload. However, in a scenario with few but heavy queries, the master can
only react based on the incoming monitoring data from the nodes. Monitor master and
slaves in combination is necessary for a full understanding of actual system state.

3.2.2 Events

Monitoring events are also interesting for the system, beyond the counters. They play
an important part in decision-making, since they trigger counter measures necessary to
keep the cluster shifting performance up and down conform as needed. For example,
after some specified time, idle a node can fire an idle node event, reporting to the master
its vacant state; the master then decides if the node must remain activate (there is an
incoming workload for the node) or not. Soft events (SEV) are related to query execution,
such as SQL statement execution begin and end, locks acquire and release by queries
over resources, query commit, etc. Hard events (HEV) are cluster events, like no space in
hard-disks for swapping, connection lost between master and slave, counters thresholds
(e.g., CPU load over 80%, for a single node or in average). SEV usually happen in
the master node, due to the centralized query processing. HEV can be trigger in every
instance of the cluster — including the master. As in the relation between slave and
master counters, monitoring both kinds of events is necessary to provide relevant timely
data for cluster central control. They provide different important information. If some
kind of maintenance policy needs to be fired and cannot be attached to a semantic event,
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is possible to create a timer object, artificially triggering it in a regular timely basis.
There are some counters associated to events as well. Query execution start and end

time can be useful to design a behavioral patterns of the database regime along the day —
which can be extended to weeks, months, and so on. These patterns (aggregated counter
values) are used by the master to forecast the incoming workloads — e.g., every last
Wednesday of the month between 10h and 18h run employee time table verification. In
such case, the employee tables are spread across free nodes (employee from A to D in
node one, from E to H in node two, and so on) and the desired script run in parallel in
each one of them. The duration of some events can also be relevant to detect overhead in
the components. Master node requests (send) a query plan for a node executes, waiting
for a response (answer). When the time span between send and receive is too long, the
cluster may be experiencing a network or node over-utilization.

3.3 Collecting Data

Events can be directly observed during program execution. Event handlers are in
close integration between monitoring and server code, attempting to incur low overhead
to the system. However, to get system usage statistics we must go beyond the database
code. WattDB is currently running exclusively on Linux platform, which implements the
useful /proc/ directory — also called proc file system (procfs). This file system contains
a hierarchy of special files which represent the current state of the system — allowing
applications and users to peek into the kernel’s view of the system. Inside /proc/ directory
one can find a wealth of data detailing the system hardware and any process currently
running (RedHat 2007).

3.3.1 The Proc File System

Proc file system is often referred to as a virtual file system. In Linux, all data is stored
as files — which, normally, are text or binary files. But the /proc/ directory contains
another type of file — virtual files. An effort has been made to keep the information
formatted in a consistent and compatible way over time. The files content are constantly
updated, fact reflected by the current time and data of them. In addition, files containing
similar information are grouped into virtual directories and sub-directories, allowing easy
and organized way to look for relevant files. Files containing specific process data are
inside a folder /proc/[pid]/, where [pid] is the current ID of the process.

Collecting data from procfs is fine while WattDB focus only in Linux. Many modern
UNIX systems only allow privileged processes to read data about running process. In
those operation systems we need a more generic way. LibGTop is a standalone library
to get this data, like CPU and memory usage, on those systems where special privileges
are needed (Baulig e Poó-Caamaño). GTop library biggest advantage relay on portability
across any UNIX distribution; it is the most portable option to acquire system usage data
for monitoring purposes in multi-platform applications.

WattDB monitoring system uses procfs instead of GTop library as project decision.
The files in proc are special and will not be memory cached, so all reads are real and
reflect current information from the kernel. Today WattDB does not have the ambition
to be portable across all UNIX -distributions, as a proof of concept without commercial
intentions in the short run. Thus, using the library would only add an unnecessary layer
in the data collecting flow, since in Linux, GTop must parse the virtual file system as well
to obtain the data.
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Figure 3.1: Non human-readable procfs file (/proc/diskstats).

Figure 3.2: Human readable procfs file (/proc/meminfo).

3.3.2 Procfs Files Parsed

The parser developed attends specifically WattDB monitoring needs. As seen in sec-
tion 3.2, not all system hardware needs to be probed; hence just some files are relevant
for data collection. The main files used are:

• /proc/[pid]/statm: status of the memory in use by the process WattDB. Some statis-
tics reported by this file are total program size, number of pages shared, of code and
of data/stack.

• /proc/[pid]/stat: contains a variety of status information about the process, like state
(running, sleeping, waiting), parent pid, virtual memory size, start time and more.

• /proc/stat: contains a variety of different statistics about the system since it was
last restarted. Mainly used for obtaining CPU processing times.

• /proc/cpuinfo: identifies the type of processor used by the system, with fields like
vendor, model, MHz. It is being used to determine the number of cores (siblings)
of the CPU in use.

• /proc/meminfo: contain a large amount of information about the system RAM
usage, not specifically to any process. Total memory installed, free, buffers and
cached sizes are some examples.

• /proc/net/dev: lists the various network devices configured on the system, complete
with transmit and receive statistics. Contain the number of inbound and outbound
packets and more.

• /proc/diskstats: extensive disk statistics to help measure disk activity. Field exam-
ples are number of complete reads and writes, number of sectors written, number
of I/O currently in progress.

3.3.3 Procfs Parsing Process

Procfs are in many different formats. Some of them are human readable (like
/proc/meminfo), some of them are not (like /proc/stat). The parsing process must han-
dle these characteristics. Basically, the virtual file is open and loaded to a stream reader
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Figure 3.3: Client server WattDB communication architecture.

— see Appendix C.1. Overloads of this method return the first or the n-th line of the file
being read for efficiency purposes, as in most of the cases not all file data is needed. The
files non-readable for humans normally contain all statistics with respect to some counter
grouped in one line — the diskstats file, for example, have all the disk usage metrics for a
determined partition per line (Figure 3.1); human readable files have the “counter: value”
structure, and are normally one per line written in the virtual files (Figure 3.2). In any
case, the lines read have to be split in several singles values. A split method (Appendix
C.2) receives one string (one line of the file), one delimiter to use as limit for each sub-
string and a vector to return the sub-strings computed. E.g., with a delimiter “;” the split
of the string “a;b;c” would result in sub-strings “a”, “b” and “c”. Some data cleaning is
executed, removing white spaces and colon punctuation marks.

3.3.4 Communication Architecture

Once the correct files are located and their data is collected, nodes need to send it to
master, responsible for collecting the whole cluster statistics, use and store them. The
monitoring service for WattDB runs in every node, because the database system must be
homogeneously monitored. But just the master can take advantage from the monitored
data, since the centralized control approach. Figure 3.3 shows how the communication
is architected inside WattDB. Following the client-server model, the cluster has n nodes
connected to a single master. Every slave node runs a client service, responsible for exe-
cuting query physical plans over set of database data received from the master. The client
service has an interface called Info Client for sending and receiving data (not exclusive to
monitoring, query logical/physical plans, tables, and other database structures too) which
communicates with the master node. The master has a similar interface to handle the
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data exchange, running over the master service. To avoid producer-consumer problems,
the Info Server handle each client on a separate thread, parallel handling requests and re-
sponses over the network. The slave collects the usage statistics from its procfs and then
serializes this data, which is asynchronously sent through the master. The client node
keeps sending monitored data to the server without being requested; if for some reason
this data cannot be handled in the server, the packages are discarded.

Data must be collected on a regular timely basis. If the gathering interval is too big
— performed infrequently — monitoring can lose valuable information about the system
usage. If data is gathered too frequently, the monitoring service can impose significant
overhead on the server — in terms of processing and storage. Today monitoring system
peeks procfs every 10s; the ideal resolution within WattDB stills an open question, to be
solved in future work.

3.4 Consolidating Data

Generally, collected data is not ready to be consumed — directly procfs statistics are
not always useful information. Data consolidation is a process that takes various data
sources and compiles them into another data structure, with more semantic value than the
original. If from a frame of system active metrics the master node can take immediate
actions, it would be better to rely in a solid information background to make better de-
cisions. Auditing requires consolidation over the collected data; the system needs some
statistical study to be able find points outside the curve, unusual performance metrics.

3.4.1 Historical Internal Database

The ability to keep state or history information about probes is provided thought a
historical internal database (HDB). Collections of monitored objects are stored to keep
history of system state. This storage could be done in CSV or XML files, to be analyzed
later by some specific tool. But that would add unnecessary work to WattDB, since we
can use its own relational engine to store and process all collected counters. The basic
storage architecture between the monitoring system, the prediction system and the his-
torical internal database can be seen in Figure 3.4. While not fully operational, WattDB
will take advantage of SQLite (Hipp 2011) to support the historical database. SQLite
is self-contained (require minimal support from external libraries or operating system),
server less (the process that wants to access the database reads and writes directly from
the database files on disk, there is no separate server process), zero-configuration (there
is no server to be started, stopped or configured), transactional (all changes and queries
appear to be ACID 1) database engine. These properties make it easy to use inside the
WattDB code, because there is no need for access drivers and no server process to concur
for system resources. The historical database has five main tables: a Time table, which
holds the time stamps of each measurement. It has seconds’ precision. The table Node
lists the current nodes in the cluster, using the same node ID used inside the application.
Usage tables hold the counter values, measured from the relevant system components —
as CPU, memory, disk and network. Each of these tables has a foreign key to Time and
Node tables. For a specific node at a specific time there must be only one row of usage
values. Figure 3.5 shows the relaton between the tables; more details about the structure
of each table are described in Appendix B.

1Atomicity, consistency, isolation, durability.
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Figure 3.4: Monitoring saves data in a historical database, used by the prediction system
to consolidate usage counters and forecast future workloads.

Figure 3.5: Measurements are time-stamp and node-value unique (e.g., usage values for
node x at time y).



38

Figure 3.6: Cluster dynamics can consume live data directly from monitoring system and
aggregated data from historical database.

3.4.2 The Aggregation Price

Consolidating data can be an expensive operation for the database, depending on the
amount of data to process. The precision of any statistic study regarding the activity
metrics of the system increase with the volume of data monitored. The system cannot
delegate resources for data aggregation too frequently; otherwise query processing would
be affected. Data consolidation must run in a non-priority schedule, possibly at night
or weekends, and must reuse previously results, which are also saved in the historical
database. This way, clients of the database (e.g. query processing or cluster dynamics
control) can query it without imposing too much overhead — just a selection operation
in the already processed information. The most important consumer of the historical
database is a prediction system, responsible for aggregating the data stored. The predic-
tion system in detail is beyond the scope of this text.

3.5 Exposing Information

The distributed architecture of WattDB implies a more complicated database admin-
istration, fact aggravated by the dynamically powering of the nodes. The main objective
of the monitoring system is to provide relevant and accurate data to support the clus-
ter control. To achieve that, the data collected and consolidated must be available to be
consumed. As seen in Section 3.3.1, information can be supplied directly or indirectly
(aggregated) from the monitored data. Query processing can use monitored information
to decide to which node sends some query plan to be executed or which queries are near
of completion. Cluster coordination can use threshold information or idle times to decide
if more nodes should be turned on or if there is any node that can be deactivated.
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The use of monitoring information happens in the master node. The monitoring ser-
vice in the master is responsible for not only storing the data collected in the HDB, but
also to make it available. The monitoring manager (MM) holds objects for each moni-
tored component. These components are updated in the same frequency as the monitored
data is produced. Every time new packages arrive through the Info Server; CPU, mem-
ory, disk and network usage statistics are constantly refreshed in the monitoring manager.
Components of the system read information about the desired node from the MM. This
way, live data about the cluster usage is always available in the master node (Figure 3.6).

It can be useful to compare the current cluster situation to a specific previously situa-
tion or to the average of some of them. To do so, the master service will need the historical
information in the HDB, which keeps state of the collected probes. Views can be defined
over main attributes, facilitating the query for information. Provide access to relevant data
from the HDB still an open problem, to be solved as future work.
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4 IMPLEMENTATION OF THE MONITORING MANAGER

This chapter discusses the implementation of the monitoring system. An architecture
diagram will be presented, and the classes and objects will be detailed.

4.1 Implementation Overview

Monitoring system is architected to work as a service in the nodes — master and
slaves. It runs in parallel to other services, like query processing, storage mapping and
housekeeping activities in the master and parallel to the execution of operation in the
slave nodes. The main class, Monitoring Manager, is responsible for encapsulating the
data gathering and data cleaning. The manager holds four different kinds of objects to
execute those tasks — hardware and software system information and a node information
gathering. A historical database manager is responsible for building the queries to insert
data in the HDB. An overview of WattDB architecture can be seen in Figure 4.1.

4.2 Gathering the Data

NodeInfoGather will gather the data and load it into process and system usage ob-
jects. It gathers this data implementing any library for system usage statistic collecting
compatible with the operating system which WattDB is currently running on. Today, it im-
plements it’s own parser (as described in Section 3.3.2), ProcInfoParser, which will meet
the parsing needs of the monitoring system while the project is running on Linux. If the
database has to migrate to other UNIX distribution which does not implement procfs, an-
other library for obtaining system usage statistics, replacing the current ProcInfoParser,
has to be used. This change is transparent for the monitoring system, since the details
about the implementation of the parsing process are encapsulated by the NodeInfoGather
object — no matter how its collecting process works underneath. ProcInfoParser returns
a simple string vector containing the values read from the virtual files. These values are
populated in the appropriate objects. The master node has to handle n slave nodes. The
slave nodes must send the monitored counters already parsed into useful data types (inte-
ger or float, in most of the cases) to save master’s processing time. NodeInfoGather does
that, converting the values distributed across the nodes.

4.3 Hardware System Information

The HardwareSystemInfo class is not currently in use, as WattDB is a hardware-
homogeneous cluster — every single node has the same hardware class, maker and model.
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Figure 4.1: The monitoring system architecture.
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The class purpose, however, is to give even more detailed information for the decision-
making entities — not only in the cluster dynamics, but also queries processing. In a
scenario with heterogeneous devices (nodes with different hardware configurations), the
decision to which node send some specifically query plan can benefit, not only from us-
age statistics, but also from the available hardware information. E.g., send CPU bound
operations to a node with a faster processor or send memory bound operation to machines
with more installed memory can reduce response time. High parallelizable operations can
benefit from GPUs, as seen in (Reus 2012). Still, since not all operations are GPU bound,
it is not necessary to add graphic processing hardware in every node. As a future work,
the implementation of a node value index (NVI) can summarize the machine’s hardware
characteristics, with higher values for nodes with faster CPU, larger memory and smaller
I/O access times or containing singular components as GPUs or SSD drives. This index
is useful in a heterogeneous cluster, even though have no meaning when the computers
have the same components.

4.4 Process System Information

The word “system” in this context refers to Linux kernel and WattDB process running
together in a node. The ProcessSystemInfo class consolidates the usage objects. It holds
one instance of each component monitored: CPU, memory, disk, network. WattDB is
the only process running, besides the kernel. Thus, is no problem for some of these
components reflect global system statistics — like disk (reads and writes completed),
network (number of packages received and sent) and CPU (the amount of time that the
system spent in user mode or idle).

4.4.1 Memory

Show the status of the memory in use by the process. MemoryUsage object specifies
WattDB process measures, but also include system information. This is useful because
the difference between the database and operating system buffer policies. The first eight
members refer specifically to WattDB process; members from nine to twelve refer to
whole system, not only WattDB process.

1. Size: total number of pages of memory (total program size in kilobytes).

2. Rss: resident set size.

3. Share: number of pages of shared memory

4. Text: number of pages that are code.

5. Data: number of pages of data plus stack.

6. Vsize: virtual memory size in bytes.

7. Rss: resident set number of pages the process has in real memory. This is just the
pages which count toward text, data, or stack space. This does not include pages
which have not been demand-loaded in, or which are swapped out.

8. Rsslim: current limit (in bytes) of the rss of the process; usually 2,147,483,647.

9. MemTotal: total amount of memory available in the system.
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10. MemFree: contains the amount of memory available on the heap. This field is used
as a reference for allocation amount.

11. MemUsed: the difference between MemTotal and MemFree.

12. MemBuffers: the amount of memory used by system buffers.

13. MemCached: the amount of memory being cached.

4.4.2 Disk

The disk is being measured through its physical Partitions today. This means that first
the monitoring system maps the current Partitions of the installed node hard disk (from
/proc/Partitions2), and then start gathering the disk usage statistics for those Partitions
— the DiskUsage class is composed by Partitions. This is monitoring is just focused in
hardware use metrics; in future, the monitoring system should collect partition storing
information with respect to storage mapping. All fields are cumulative since boot, except
“I/O currently in progress”.

1. Major: the major number of the divide with this partition.

2. Minor: the minor number of the device with this partition. This serves to separate
the Partitions into different physical devices and relates to the number at the end of
the name of the partition.

3. Blocks: lists the number of physical disk blocks contained in a particular partition.

4. Name: the name of the partition.

5. ReadsCompleted: this is the total number of reads completed successfully.

6. ReadsMerged: reads and writes which are adjacent to each other may be merged
for efficiency. Thus, two 4K reads may become one 8K read before it is ultimately
handed to the disk, and so it will be counted (and queued).

7. WritesMerged: see ReadsMerged.

8. SectorsRead: the total number of sectors read successfully.

9. MillisecondsReading: this is the total number of milliseconds spent by all reads1.

10. WritesCompleted: the total number of writes completed successfully.

11. SectorsWritten: the total number of sectors written successfully.

12. MillisecondsWritting: the total number of milliseconds spent by all writes.

13. IosInProgress: The only field that should go to zero. Incremented as requests are
given to appropriate struct request_queue and decremented as they finish.

14. MillisecondsSpentInIO: this field increases so long as field IOs currently in progress
is nonzero.

1Measured from __make_request() to end_that_request_last().
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15. WeightedMillisecondsDoingIO: this field is incremented at each I/O start, I/O com-
pletion, I/O merge, or read of these stats by the number of I/Os in progress (member
13) times the number of milliseconds spent doing I/O since the last update of this
field. This can provide an easy measure of both I/O completion time and the back-
log that may be accumulating.

4.4.3 CPU

CPU times are being monitored for the whole system. User and nice members, how-
ever, represent the WattDB processing times, as it is the unique process running. The
statistics are measured for each core of the processor; CpuUsage class maintains a list of
CpuCore objects. There is one more CpuCore object, with the total times for processor
(sum of all cores). The fields correspond to the amount of time, measured in USER_HZ2

that the system spent in:

1. User: user mode.

2. Nice: user mode with low priority.

3. Sysmode: system mode.

4. Idle: idle task.

5. Iowait: waiting for I/O to complete.

6. Irq: time servicing interrupts.

7. Softirq: time serving softirqs.

8. Steal: stolen time, which is the time spent in other operating systems when running
in a virtualized environment.

9. Guest: time spent running a virtual CPU for guest operating systems under the
control of the Linux kernel.

10. CoreId: the number of the core being measure in the cluster.

4.4.4 Network

Network received and transmitted packages statistics are measure from the network
interfaces of the current system. NetworkUsage is composed by NetInterfaces. A network
interface object has the name of the interface (local host, Ethernet, infrared or wireless), a
Receive and Transmit objects (which share some common members) which the counters
values. NodeInfoGather class creates the usage objects to populate the ProcessSystemInfo
class; the creation of a NetworkUsage object as example can be seen in Appendix C.3.

1. Receive: the network received statistics.

2. Transmit: the network transmitted statistics.

3. InterfaceName: the name of the interface.

21/100ths of a second on most architectures, use sysconf(_SC_CLK_TCK) to obtain the right value
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4.5 Monitoring Manager

Once the usage statistics are loaded from the node information gather, they are
packed into a serialized object and sent to the master using boost serialization method
(Ramey 2004). Monitoring manager running in the slave nodes can send the ProcessSys-
temInfo class, with the usage objects. However, to consolidate the data collected, the
monitoring system on the server side must insert these objects data into the historical
database. With the purpose of not overhead the master node, these insert statements are
built (with the data from ProcessSystemInfo) in every slave; the nodes have the responsi-
bility of sending valid insert SQL statements to the master. MonitoredData class works as
a container for that, having a string member for each necessary table of HDB. This class
is then serialized and sent, also using boost serialization methods. Currently, monitoring
system does not send ProcessSystemInfo, as there is no consumer for the data; Monitored-
Data is being sent to test the historical database. As mentioned in Section 3.3.4, the slaves
send data to the master asynchronously. Once the client service is started, the monitoring
service also starts to run, collecting data since the node became active. As soon as the
master receives its first package of data, it can save it in the historical database.
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5 MONITORING SYSTEM RESULTS

This work aimed three main objectives: provide relevant, accurate data and incurring
low overhead to the system. In this chapter, the results achieved by the monitoring system
will checked against this objectives and discussed.

5.1 Accuracy and Relevance

The accuracy objective was achieved: the data being collect reflect real and current
usage metrics from the system. Procfs plays a big part on this, providing an easy to
use and constantly updated file system for providing the information needed. It has a
wide quantity of files with several fields containing information about process, kernel and
hardware. We are sure that the monitoring can be severely extent to a variety of counter
and configuration info; We believe, however, the most interesting components for current
stage of the database were measured. It is hard to define how relevant the data monitored
is, because there is no currently working system making use of it. Once the WattDB starts
taking advantage of the monitored data to benefit storage mapping, query processing,
buffer policies, cluster dynamics and other database functions, the monitoring system can
be tuned to attend the future cluster needs.

5.2 Overhead

To validate if the proposed monitoring system incurs low overhead compared to the
original WattDB, several tests were executed over both databases – the original one and
the monitored one. The test results were analyzed and compared.

WattDB Benchmark Tool Overview

The testing process used the existing benchmark tool for WattDB. The tool executes
four basic database pre-defined operations – select, join, insert and delete. It executes
these operations over an artificially created database – Cinema. The Cinema database has
the following tables:

1. Studio: with id and name columns;

2. Producer: with id, first name and surname columns;

3. Actor: with id, first name and surname columns;

4. Movie: with id, studio, producer, title, release and genre columns;
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5. Role: with id, movie id, actor id and name.

Some not exhaustive examples of the pre-defined operations are:

1. SELECT T i t l e , Genre , R e l e a s e
FROM MOVIE;

2. SELECT s . Name , p . F i r s t Name , p . Surname ,
m. T i t l e , m. Genre , m. R e l e a s e

FROM MOVIE m, STUDIO s , PRODUCER p
WHERE s . Id =m. S t u d i o AND m. P r o d u c e r =p . Id ;

3. INSERT INTO MOVIE
( Id , S tud io , P roduce r , T i t l e , Re lease , Genre )
VALUES
( 1 , Warner Bros , S p i e l b e r g , ET , 1982 , Adven tu re ) ;

4. DELETE FROM ACTOR WHERE Id =100;

In a nutshell, the benchmark tool works like this: each of the basic four operations
has an executing ratio, which determines the percentage of that operation in relation to
the benchmark. This way, we can test just one operation (setting it ratio to 1) as we can
define a mix of operations (e.g., 0.5 selects, 0.3 joins, 0.2 inserts and 0 deletes). The
benchmark tool uses an extensive list of values generated by a RandomDataGenerator to
populate the test database and create operations over this data. Also, it chooses randomly
from a collection of pre-defined queries which ones to execute. The precise definition of
the benchmark tool is beyond the scope of this text.

Experiments Configuration

This section describes the hardware, operation system, compiler and the benchmark
configurations used in the experiments.

Hardware

The CPU used is an Intel Xeon CPU 5130@2.00GHz, 4 cores and 4096KB of L2
cache. The machine has 3960MB of memory, and no swap space is defined.

Operation system, IDE and compiler

Ubuntu 10.04 LTS – Lucid Lynx. The monitoring system for WattDB was developed
under Eclipse C/C++ Development Tools version 6.0.2 and compiled in CC Ubuntu/Li-
nage 4.6.3-1Ubuntu5.

Benchmark configuration

Both databases were benchmarked with the configurations showed in Table 5.1.
Select, join and insert operations were single executed from Test 1 to Test 9. Delete

operations were not executed solo because they are basically inserting operations. Tests
10 to 12 execute all operations, trying to simulate a real database workload, despite the
identical ratios. The database system and the benchmark tool run on the same single



49

Select Join Insert Delete Clients Transactions
Test 1 1 0 0 0 1 10000
Test 2 1 0 0 0 2 10000
Test 3 1 0 0 0 4 10000
Test 4 0 1 0 0 1 10000
Test 5 0 1 0 0 2 10000
Test 6 0 1 0 0 4 10000
Test 7 0 0 1 0 1 5000
Test 8 0 0 1 0 2 5000
Test 9 0 0 1 0 4 5000
Test 10 0.25 0.25 0.25 0.25 1 10000
Test 11 0.25 0.25 0.25 0.25 2 10000
Test 12 0.25 0.25 0.25 0.25 4 10000

Table 5.1: The transactions configurations for testing the monitoring system.

machine. Executions with more than one client were simulated by the benchmark tool,
which runs each client in a different thread. All tests were performed with 1, 2 and 4
clients. The benchmark tool executed 10000 transactions in the select, join and in the
mixed tests (Test 1 to 6 and 10 to 12).

For the insert experiment, this number must be reduced to 5000. The database stor-
age used for the experimentations has a fixed size, because the database still in de-
velopment. When a partition in the database storage is full, it throws an OnPartion-
Fill(partition_number) exception, when the master node tries to reallocate data from full
partitions to any other which still have space. After several insert operations, the database
system execution starts to just handle partition full exceptions – until the point that there
is absolutely no space anymore. Executing 5000 insert transaction is a reasonable number
since even fulfilling some partitions the master node kept handling the incoming opera-
tions.

Experiments Results

Here are presented the dataset resulted from the experiments. The test results are
grouped by transaction, so we can compare the performance of WattDB with and without
the monitoring system. Each configuration was repeated 30 times, and the collected re-
sults from each system were paired compared. The confidence interval used to compare
the observations was 90%. Here, the term "original database" stands for the WattDB with-
out the monitoring system, and "monitored database" means the WattDB instance running
with the monitoring service.

Select

The observations from the tests 1, 2 and 3 show that the configuration with only
one client constantly selecting the original database is visually faster than the monitored
database, as we can see in Figure 5.1. Select is a cheap operation in terms of query
processing; setting up the monitoring manager, the creation of historical database and
other basic administrative tasks of the monitor have a greater impact on the system per-
formance. This overhead is not so significant as the number of clients increase, since the
own database system have more work to do, handling multiple client connections. Statis-
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Figure 5.1: Comparison between select tests 1, 2 and 3

tically, the configuration with four clients shows that both systems are not different (Table
A.3).

Join

Figure 5.2: Comparison between join tests 4, 5 and 6

Differently from select operation, joining tables requires the database system to gener-
ate many intermediate results and operating over them. The monitored database introduce
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no significant overhead in the scenario with one client. However, the intrusiveness of the
monitoring system in the configurations with two and four clients was more significant.
When the system is overloaded, turning off services that are not essential (like housekeep-
ing polices and even the monitoring) could increase response times. Figure 5.2 shows the
comparison for join transactions. Table A.4 shows no difference for both systems running
one client at time, as Table A.5 and Table A.6 conclude that monitoring the database while
it executes join operations can increase response times.

Insert

Figure 5.3: Comparison between insert tests 7, 8 and 9

Insert operations have a very specific interpretation. Figure 5.3 show a quite faster
monitored database in comparison with the original database. This result derives from
the prior discussion about OnPartionFill. With only one client inserting into the original
database, there is no context switching between clients; it operates at full throttle. This
leads to fulfill the storage partitions sooner than the monitored WattDB. The original
system starts reallocating data after some partitions are full. In the end, it spends more
time handling OnPartionFill exceptions than the monitored database. Two and four clients
configuration are statistically indifferent (Tables A.8 and A.9), since data is distributively
inserted in the available space by the different clients, it takes longer to fill partitions.

All Transactions

The objective for the configurations in tests 10, 11 and 12 is a balanced set of op-
erations, to simulate a more real database workload. The statistical analysis shows an
expected overhead in the monitored database compared to the original system for one
and four clients configuration (Tables A.10 and A.12), and presents no difference for 2
clients (Table A.11). We conclude that the performance provided this monitoring sys-
tem, slower than the one found in Supermon system for example, is enough for WattDB
needs. In respect to the possible overhead which could be caused, the monitoring service
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Figure 5.4: Comparison between mixed configuration tests 10, 11 and 12

is a lightweight service to system. In half of the tests executed it performed at least as
good as the original database system. As all procfs files reside in memory, all operations
over them (open, read, parse the data to variables, close) are executed extremely fast. One
identified bottleneck today is the historical database for two reasons: first, the master node
(through the InfoServer) receives the monitored data packages in parallel. However, just
the single monitoring manager thread stores that data. And this happens due the second
reason: the SQLite. As it implements the database in a file, concurrently opening this
file to execute the data operations requires locking it. We could have distributed SQLite
databases through the clients and, time to time, synchronize this small sets of monitored
data into the master. But SQLite intends to be a temporary solution until the WattDB is
fully functional, so this question will have to be answered in the future.

These experimentations were executed on a single machine due architectural reasons
— the available cluster at UFRGS have 32bit processors, and WattDB is designed to run
on 64bit machines. Split the clients from the master may produce even better results,
specially for the client machines.

The static monitoring does not incur an acceptable overhead to the cluster. The
amount of monitored events and counters associated with query processing, however,
are in function of the number of queries being executed; this means that the more queries
the database is handling more monitored data will be generated, known as dynamically
monitoring. One second issue is the current bottleneck in storing monitored data. Now,
data is distributed collected (over the n wimpy nodes), but centralized stored (in the mas-
ter). Depending on the number of slave nodes, store the collected data can be a several
overhead in the master node. These questions still open, and should be answered in future
work.
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5.3 Historical Database Size

One big concern about maintaining state of measured counter in a historical database
is how much storage space it would cost. Nowadays WattDB uses the SQLite to keep
the data, where the INTEGER type consumes 1, 2, 3, 4, 6, or 8 bytes depending on the
magnitude of the value (Hipp 2011). For a pessimist calculation, each INTEGER used in
the tables will be counter as 8 bytes. The TEXT type of SQLite is saved in a text string,
stored using the database encoding (UTF-8, UTF-16BE or UTF-16LE). In the same way
as the INTEGER type, each character in the string will be expressed in 16 bits (or 2 bytes).
For simplicity, every TEXT field will supposedly have 10 characters, resulting in 20 bytes
each. The sumary of each table storage space can be seen in Table 5.2:

Table name Integer
fields

Text
field

Total integer
fields (in
bytes)

Total text
fields (in
bytes)

Total (in
bytes)

Time 11 0 88 0 88
Node 2 0 16 0 16
CpuUsage 13 0 104 0 104
DiskUsage 15 1 120 20 140
MemoryUsage 15 1 120 20 140
NetworkUsage 19 1 74 152 20 172

TOTAL 660

Table 5.2: Amount of data required for each table of the Historical database.

This means that monitored data in a 10 seconds interval would produce 1979MB of
data in an year, as can be seen in Table 5.3:

Measure unit Size (in megabytes)
Minute 0.003
Hour 0.226
Day 5.438
Week 38.06
Year 1 979.516

Table 5.3: Total amount of stored monitored data.

Proximately 2 GB/node in data for currently storage capacities in a year is plenty
acceptable. This leaves any the prediction system with plenty of usage statistics to work
with, as the same time does not sacrifice database hard disk space. Aggregation will
produce more data; nevertheless even doubling the size of the HDB is not a problem for
WattDB. Here, we not take in account any compression or aging methods, which would
reduce the size of the storage needed.
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6 CONCLUSION

This work presented the design and implementation of a Monitoring System for an
energy-proportional database cluster. All the relevant concepts were presented, the design
was described and the implementation and testing processes were shown.

Initially, the theoretical foundations for this work were presented. Monitoring is a
well know discipline with a lot of material to work with. However, distributed monitoring
is a research area with work to do. Workstation clusters for distributed computing have
become popular only in the last few years, with the emergence of low-cost, powerful
workstations and high-speed networking facilities. In order to properly situate this work,
a brief overview about the very modern energy problem was presented, together with new
enterprise needs — which demands an even bigger amount of natural resources every
day. Also, was presented the WattDB project, a distributed database system which aims
to balance performance with energy consumption proportionally.

The main aspects which defined the monitoring system architecture were discussed.
What kind of data should be collected and from which components; how to collect this
data and how to process it once its monitored are questions answered. The communication
architecture which connects the slave nodes to the master node inside WattDB system was
presented. Also, an internal relational database to store the monitored data was projected
and implemented.

The final objective of this work was met. Once the basic aspects were studied and
designed, build a functional prototype was the next step. The implementation is then
discussed and detailed. As WattDB database system still not fully operational, only a
basic testing process was guided. The monitoring system, however, proved to be reliable,
attending the requirements that were proposed.

6.1 Future Work

Decision-making components benefit directly from monitoring. The monitoring sys-
tem is a tool inside the cluster, built to serve these components. It is meaningless to
have a monitoring system running without using its collected and consolidated data. As
mentioned before, the long term of this work is to provide information for the cluster dy-
namics operate during the execution path of database operations. Node fluctuations can
be controlled by a Rule Engine (RE). The rule engine evaluates event-condition-action
rules (ECA rules) as part of the execution code path. An ECA rule takes an action when
a particular condition is met, triggered by some event.

The Rule Engine supports a number of different events to be used in the event clause,
monitored during the query execution — like commit, compile, rollback, blocked, block
released, just to name a few; timers can be set also to trigger the events. The RE then
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evaluates conditions defined over counters, using logical operators (and, or, greater than,
less than, not equal to, equal to, if then etc.) and mathematical operators (addition, sub-
traction, multiplication and division) to evaluate query executions. Actions can vary from
basic usage reports to complex node activation and deactivation in respect to current query
workload and forecasted workloads shifts. Rules should be able to be combined with other
rules, building complex behavior changes in the cluster with many simple rules. An inter-
face should be provided to facilitate the creating and maintaining of the ECA rules. Some
examples are:

Event: Query.Commit
Condition: Query.Duration > 100s
Action: Query.Report(query)

Event: Timer.Ring
Condition: Cluster.AvarageCpuLoad > 70% AND

Query.IncomingQueries > 5 AND
Cluster.HasAvailableNodes = TRUE

Action: Cluster.TurnOnNode(nodeNumber7, nodeNumber8)

Table 6.1: Example of ECA Rules.
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APPENDIX A CONFIDENCE INTERVALS FOR COM-
PARED PAIRED OBSERVATIONS

Here are presented the tables of the statistical analysis.

Sample mean -26
Variance 20
Standard Deviation 4,472136
Confidence interval for mean -26 ± t(0,816496581)
90% confidence interval -26 ± 1,3872 = (-27,39;-24,61)

Table A.1: Test 1 — 10000 Select Transactions with 1 client

Sample mean -5,03333
Variance 3,757471
Standard Deviation 1,93842
Confidence interval for mean -5,03333 ± t(0,353905)
90% confidence interval -5,03333 ± 0,6012 = (-5,6346; -4,432)

Table A.2: Test 2 — 10000 Select Transactions with 2 clients

Sample mean 0,4
Variance 6,248276
Standard Deviation 2,499655
Confidence interval for mean 0,4 ± t(0,456373)
90% confidence interval 0,4 ± 0,7753 = (-0,37538; 1,17537)

Table A.3: Test 3 — 10000 Select Transactions with 4 clients
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Sample mean -1,333333
Variance 25,40229885
Standard Deviation 5,04006933
Confidence interval for mean -1,3333 ± t(0,920186554)
90% confidence interval -1,3333 ± 1,5633 = (-2,89673; 0,23)

Table A.4: Test 4 — 10000 Join Transactions with 1 client

Sample mean -4,5
Variance 1,637931034
Standard Deviation 1,279816797
Confidence interval for mean -4,5 ± t(0,23366151)
90% confidence interval -4,5 ± 0,3969 = (-48969; -4,103)

Table A.5: Test 5 — 10000 Join Transactions with 2 clients

Sample mean -3,858333
Variance 5,982083333
Standard Deviation 2,445829784
Confidence interval for mean -3,858333 ± t(0,4465)
90% confidence interval -3,8583 ± 0,7586 = (-4,617; -3,099)

Table A.6: Test 6 — 10000 Join Transactions with 4 clients

Sample mean 4,3
Variance 1,803448276
Standard Deviation 1,342925268
Confidence interval for mean 4,3 ± t(0,245183487)
90% confidence interval 4,3 ± 0,4166 = (3,8834;4,7166)

Table A.7: Test 7 — 5000 Insert Transactions with 1 client

Sample mean 0,733333
Variance 59,92643678
Standard Deviation 7,741216751
Confidence interval for mean 0,7333 ± t(1,413346346)
90% confidence interval 0,7333 ± 2,4013 = (-1,668; 3,1346)

Table A.8: Test 8 — 5000 Insert Transactions with 2 clients

Sample mean -0,1
Variance 88,16206897
Standard Deviation 9,389465851
Confidence interval for mean 0,1 ± t(1,7142)
90% confidence interval -0,1 ± 2,9126 = (-3,013; 2,8126)

Table A.9: Test 9 — 5000 Insert Transactions with 4 clients
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Sample mean -14,4667
Variance 116,8782
Standard Deviation 10,81102
Confidence interval for mean -14,4667 ± t(1,9738)
90% confidence interval -14,4667 ± 3,3535 = (-17,82; -11,11)

Table A.10: Test 10 — 10000 Mixed Transactions with 1 client

Sample mean 2,03333
Variance 78,5160
Standard Deviation 8,8609
Confidence interval for mean 2,0333 ± t(1,6177)
90% confidence interval 2,0333 ± 2,7486 = (-0,715; 4,7819)

Table A.11: Test 11 — 10000 Mixed Transactions with 2 clients

Sample mean -6,5220
Variance 75,00082
Standard Deviation 8,6603
Confidence interval for mean -6,5220 ± t(1,5811)
90% confidence interval -6,5220 ± 2,6884 = (-9,208; -3,836)

Table A.12: Test 12 — 10000 Mixed Transactions with 4 clients
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APPENDIX B HISTORICAL DATABASE STRUCTURE

The historical database tables and its respective columns, with name, type and extre
information.

Column name Column type Column properties
ID INTEGER PRIMARY KEY
NODE_ID INTEGER UNIQUE; NOT NULL

Table B.1: Node Table

Column name Column type Column properties
ID INTEGER PRIMARY KEY
SECOND INTEGER NOT NULL
MINUTE INTEGER NOT NULL
HOUR INTEGER NOT NULL
M_DAY INTEGER NOT NULL
MONTH INTEGER NOT NULL
YEAR INTEGER NOT NULL
W_DAY INTEGER NOT NULL
Y_DAY INTEGER NOT NULL
IS_DST INTEGER NOT NULL
SPAN INTEGER NOT NULL

Table B.2: Time Table
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Column name Column type Column properties
ID INTEGER PRIMARY KEY;
NODE_ID INTEGER PRIMARY KEY; NOT NULL; REFER-

ENCES Node(NODE_ID)
TIME_ID INTEGER PRIMARY KEY; NOT NULL; REFER-

ENCES Time(ID)
INTERFACE TEXT
R_BYTES INTEGER
R_PACKETS INTEGER
R_ERRORS INTEGER
R_DROP INTEGER
R_FIFO INTEGER
R_FRAME INTEGER
R_COMPRESSED INTEGER
R_MULTICAST INTEGER
T_BYTES INTEGER
T_PACKETS INTEGER
T_ERRORS INTEGER
T_DROP INTEGER
T_FIFO INTEGER
T_COLLS INTEGER
T_CARRIER INTEGER
T_COMPRESSED INTEGER

Table B.3: NetworkUsage Table

Column name Column type Column properties
ID INTEGER PRIMARY KEY;
NODE_ID INTEGER PRIMARY KEY; NOT NULL; REFER-

ENCES Node(NODE_ID)
TIME_ID INTEGER PRIMARY KEY; NOT NULL; REFER-

ENCES Time(ID)
SIZE INTEGER
RESIDENT INTEGER
SHARE INTEGER
TEXT INTEGER
DATA INTEGER
VIRTUALSIZE INTEGER
RSS INTEGER
RSSLIM TEXT
MEM_TOTAL INTEGER
MEM_USED INTEGER
MEM_FREE INTEGER
MEM_BUFFERS INTEGER
MEM_CACHED INTEGER

Table B.4: MemoryUsage Table
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Column name Column type Column properties
ID INTEGER PRIMARY KEY
NODE_ID INTEGER PRIMARY KEY; NOT

NULL; REFERENCES
Node(NODE_ID)

TIME_ID INTEGER PRIMARY KEY; NOT NULL;
REFERENCES Time(ID)

PARTITION_NAME TEXT
PARTITION_BLOCKS INTEGER
READS_COMPLETED INTEGER
READS_MERGED INTEGER
WRITES_MERGED INTEGER
SECTORS_READ INTEGER
MILLISECONDS_READING INTEGER
WRITES_COMPLETED INTEGER
SECTORS_WRITTEN INTEGER
MILLISECONDS_WRITING INTEGER
IO_IN_PROGRESS INTEGER
MILLISECONDS_SPENT_IN_IO INTEGER
WEIGHTED_MILLISECONDS
DOING_IO

INTEGER

Table B.5: DiskUsage Table

Column name Column type Column properties
ID INTEGER PRIMARY KEY;
NODE_ID INTEGER PRIMARY KEY; NOT NULL; REFER-

ENCES Node(NODE_ID)
TIME_ID INTEGER PRIMARY KEY; NOT NULL; REFER-

ENCES Time(ID)
CORE_ID INTEGER
USER INTEGER
NICE INTEGER
SYSMODE INTEGER
IDLE INTEGER
IOWAIT INTEGER
IRQ INTEGER
SOFTIRQ INTEGER
STEAL INTEGER
GUEST INTEGER

Table B.6: CpuUsage Table
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APPENDIX C CODE SNIPPETS

Here are some code snippets from the monitoring framework. They are organized by
the method name, followed by the file where it is implemented.

C.1 ParseData

/∗
∗ Opens a s t r ea m f o r t h e f i l e , and r e t u r n t h e s t r ea m .
∗ /

s t d : : i f s t r e a m& P r o c I n f o P a r s e r : : p a r s e D a t a ( c o n s t s t d : : s t r i n g& _ p a t h ) {
s t d : : i f s t r e a m ∗ p F i l e S t r e a m = 0 ;
f o r ( i n t i = 0 ; i < 5 ; i ++) {

p F i l e S t r e a m = new s t d : : i f s t r e a m ( _ p a t h . c _ s t r ( ) ) ;
i f ( ! p F i l e S t r e a m −>good ( ) ) {

s t d : : c e r r << " Could n o t open " << _ p a t h
<< " . T e n t a t i v e " << i << " of 5 " << s t d : : e n d l ;
s l e e p ( 5 0 0 ) ;

}
}
re turn ∗ p F i l e S t r e a m ;

}

C.2 Split

/∗
∗ S p l i t a s t r i n g based i n t h e d e l i m i t e r r e c e i v e d and r e t u r n a v e c t o r
∗ w i t h each sub−s t r i n g .
∗ /

s t d : : v e c t o r < s t d : : s t r i n g > P r o c I n f o P a r s e r : : s p l i t ( c o n s t s t d : : s t r i n g& s ,
char del im , s t d : : v e c t o r < s t d : : s t r i n g >& elems ) {

s t d : : s t r i n g s t r e a m s s ( s ) ;
s t d : : s t r i n g i t em ;
whi le ( s t d : : g e t l i n e ( ss , i tem , de l im ) ) {

i f ( i t em != " " && ! i t em . empty ( ) ) {
/ / Remove ’ : ’
s i z e _ t foundColon = i t em . f i n d ( " : " ) ;
whi le ( foundColon != s t d : : s t r i n g : : npos ) {

i t em . r e p l a c e ( foundColon , 1 , " " ) ;
foundColon = i t em . f i n d ( " : " ) ;

}
/ / Remove ’ ’
s i z e _ t foundSpace = i t em . f i n d ( " " ) ;
whi le ( foundSpace != s t d : : s t r i n g : : npos ) {

i t em . r e p l a c e ( foundSpace , 1 , " " ) ;
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foundSpace = i t em . f i n d ( " " ) ;
}
e lems . push_back ( i t em ) ;

}
}
re turn e lems ;

}

C.3 FillNetworkObject

usage : : NetworkUsage Node In foGa the r : : f i l l N e t w o r k O b j e c t ( c o n s t s t d : : v e c t o r <
s t d : : s t r i n g > _ v a l u e s , u sage : : NetworkUsage& _networkObj ) {
i n t base = 0 ;
i n t o f f s e t = 1 7 ;
usage : : N e t I n t e r f a c e ∗ tempObj = 0 ;
f o r ( i n t base = 0 ; base < _ v a l u e s . s i z e ( ) ; ba se += o f f s e t ) {

tempObj = new usage : : N e t I n t e r f a c e ( _ v a l u e s . a t ( ba se ) ,
b o o s t : : l e x i c a l _ c a s t < long >( _ v a l u e s . a t ( ba se + 1 ) ) ,
b o o s t : : l e x i c a l _ c a s t < i n t >( _ v a l u e s . a t ( ba se + 2 ) ) ,
b o o s t : : l e x i c a l _ c a s t < i n t >( _ v a l u e s . a t ( ba se + 3 ) ) ,
b o o s t : : l e x i c a l _ c a s t < i n t >( _ v a l u e s . a t ( ba se + 4 ) ) ,
b o o s t : : l e x i c a l _ c a s t < i n t >( _ v a l u e s . a t ( ba se + 5 ) ) ,
b o o s t : : l e x i c a l _ c a s t < i n t >( _ v a l u e s . a t ( ba se + 6 ) ) ,
b o o s t : : l e x i c a l _ c a s t < i n t >( _ v a l u e s . a t ( ba se + 7 ) ) ,
b o o s t : : l e x i c a l _ c a s t < i n t >( _ v a l u e s . a t ( ba se + 8 ) ) ,
b o o s t : : l e x i c a l _ c a s t < long >( _ v a l u e s . a t ( ba se + 9 ) ) ,
b o o s t : : l e x i c a l _ c a s t < i n t >( _ v a l u e s . a t ( ba se + 1 0 ) ) ,
b o o s t : : l e x i c a l _ c a s t < i n t >( _ v a l u e s . a t ( ba se + 1 1 ) ) ,
b o o s t : : l e x i c a l _ c a s t < i n t >( _ v a l u e s . a t ( ba se + 1 2 ) ) ,
b o o s t : : l e x i c a l _ c a s t < i n t >( _ v a l u e s . a t ( ba se + 1 3 ) ) ,
b o o s t : : l e x i c a l _ c a s t < i n t >( _ v a l u e s . a t ( ba se + 1 4 ) ) ,
b o o s t : : l e x i c a l _ c a s t < i n t >( _ v a l u e s . a t ( ba se + 1 5 ) ) ,
b o o s t : : l e x i c a l _ c a s t < i n t >( _ v a l u e s . a t ( ba se + 1 6 ) ) ) ;

_ne tworkObj . S e t I n t e r f a c e s (∗ tempObj ) ;
}
re turn _networkObj ;

}
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