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Resin Transfer Molding (RTM) is largely used for the manufacturing of high-quality composite components 
and the key stage during processing is the resin infiltration. The complete understanding of this phenomenon is of 
utmost importance for efficient mold construction and the fast production of high quality components. This paper 
investigates the resin flow phenomenon within the mold. A computational application was developed to track the 
resin flow-front position, which uses a finite volume method to determine the pressure field and a FAN (Flow 
Analysis Network) technique to track the flow front. The mass conservation problem observed with traditional 
FE-CV (Finite Element-Control Volume) methods is also investigated and the use of a finite volume method 
to minimize this inconsistency is proposed. Three proposed case studies are used to validate the methodology 
by direct comparison with analytical and a commercial software solutions. The results show that the proposed 
methodology is highly efficient to determine the resin flow front, showing an improvement regarding mass 
conservation across volumes.
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1. Introduction

The use of composites materials has increased worldwide since the 
50s, being mostly considered an alternative to traditional metals. Many 
processes have been developed for the manufacturing of composite 
materials. Among these techniques, RTM (Resin Transfer Molding) 
is regarded as fast, flexible and capable of producing parts with good 
surface finishing on both sides. In the RTM process, a dry fibrous 
preform is placed in the mold cavity, being subsequently impregnated 
with a liquid resin. The resin enters the mold through a number of 
injection ports (holes) and slowly flows within the mold cavity.

The numerical problem comprises the determination of the resin 
advancement inside the mold cavity. Knowledge of the shape and 
position of the resin/air interface as a function of the injection time 
is usually the main goal of the simulation. With this information, the 
mold designer is able to determine the optimum position of inlet and 
outlet gates. An adequate mold design should minimize injection time, 
avoid resin wasting through unnecessary output holes and allow the 
production of a homogeneous (density, resin content, void fraction, 
among others) final part. These characteristics could also be achieved 
following a trial-and-error experimental procedure, but this is highly 
expensive and time consuming.

The fibrous reinforcement media is mathematically formulated as 
a porous media and Darcy’s Law is used to correlate pressure field and 
velocity inside the computational domain. Published works show that 
the available mathematical models considerably differ in complexity. 
In these models, the medium is normally considered homogeneous 

regarding porosity, but they may be isotropic1, i.e. with constant 
permeability in all directions, or non-isotropic2,3, when permeability 
is set as a tensor. In some experimental works, porosity of the fibrous 
media is also considered to vary (e.g. as a function of the medium) in 
the empirical mathematical formulation4. In addition, the model can 
be isothermal or include the temperature field determination inside 
the mold. For non-isothermal models, resin viscosity is formulated 
as a function of the temperature and time, and this also allows the 
investigation of the resin curing process5.

For isothermal problems, which is the focus of the present work, 
the resin advance transport phenomenon in RTM problems is usually 
solved in two steps: i) determination of the pressure field inside the 
computational domain filled with resin, and ii) determination of the 
resin flow-front line (interface between resin and air). For the first, as 
shown later, it is necessary to solve a second order Laplace equation 
for the pressure. This is normally an easy task, although difficulties 
related to discretization of complex geometries may arise. In the 
great majority of the reported works, the referred Laplace equation 
is solved using a finite element method, which is the obvious choice 
for complex geometry discretized domains. The difficulty associated 
with the use of the Finite Element method regards the evaluation of 
the mass flow-rate along the grid, which is commonly carried out by 
creating control volumes around the grid nodes and using the element 
local system of coordinates to calculate the resin fluxes along the 
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In VOF method the volume fraction f of each fluid volume is 
determined by solving a transport equation for f, but this solution tends 
to smear in the volumes close to the moving surface22. The gradient 
of f should be singular at the interface of two inviscid fluids, however 
it becomes finite in the numerical solution, causing this abnormality. 
This problem has been originally addressed using the donor-acceptor 
scheme18. This scheme identifies one cell as the donor of a particular 
amount of fluid from one phase and another (neighbor) cell as the 
acceptor of that amount of fluid, this in turn prevents numerical 
diffusion at the interface23. Several others algorithms, many of them 
highly complex, have been proposed to avoid numerical diffusion 
and oscillations19,24,25.

In the present work a new flow front monitoring technique is 
proposed. This approach differs from the VOF methods in which 
geometry reconstruction is part of the mass balances through the 
front line (resin/air) control volumes, and also differs from the FE-CV 
methods where the flow front is determined as the interface between 
empty elements and those with resin. The proposed technique uses a 
flow tracking algorithm to precisely determine the resin/air interface 
inside the grid elements. The aim of this algorithm is not to ensure 
mass conservation, what is intrinsic of the finite volume formulation, 
but to determine, even for a coarse grid, a realistic flow front position, 
allowing the geometrical reconstruction of the flow front geometry.

2. Numerical Solution

The computational domain shown in Figure 1 represents an 
actual lab-scale mold geometry. In this example, the injection hole 
is located at the center of the mold and the radial flow of the resin 
is investigated. This is a simple problem with an available algebraic 
solution until the flow reaches the mold walls.

Darcy’s Law is used for the modeling of the resin flow 
advancement inside the mold. The media is said to be homogeneous, 
thus constant porosity is applied for the entire computational domain. 
The process is also considered isothermal.

The mathematical formulation of the phenomenon described above 
can be expressed by the Darcy’s equation (Equation 1) which correlates 
the pressure gradient and the velocity within a porous media.

KV P
→

= ∇
µ

	 (1)

where V
→

 is the resin velocity vector [m/s], P is the pressure [Pa], K  
is the permeability tensor [m2] and µ is the viscosity [Pa.s].

faces of these control volumes. This particular method is called the 
FE-CV (Finite Element-Control Volume) method6,7.

The finite difference method is rarely used to determine the 
pressure field in RTM problems. For simple geometries, the finite 
difference method is much easier to formulate and program than the 
finite element method. On the other hand, if a complex geometry must 
be discretized, the computational implementation using the former 
method may become as complex as that using the latter.

Finite volume methods can also be used to determine the 
pressure field inside the computational domain3. They have long 
been associated with incompressible flows and simple geometry 
discretization perhaps due to the fact that earlier works focused on 
the treatment of the non-linear terms of the momentum equations, 
paying less attention to geometry discretization8. Indeed, the first 
formulations9 were difficult to implement for complex geometries, 
but the “new generation” of methods are fully capable of being used 
with unstructured grids for both 2D10,11 and 3D geometries12.

In this work, a finite volume method is used to determine the 
pressure field inside an RTM mold. The advantage of using this 
method in comparison with FE-CV methods is that the latter presents 
difficulties related to mass conservation of the resin flow along the grid 
elements. According to Joshi et al.13, mass conservation is sometimes 
violated when the Galerking formulation is used with isoparametric 
finite elements to calculate the pressure field. The authors observed, 
for rectilinear (1D) flows, that the mass conservation was never 
violated, whereas for 2D flows, the error could reach 10%. Others 
authors have also reported on the mass conservation problem 
associated with the FE-CV methods14,15,17.

On the other hand, conservation of all properties (e.g. mass, 
momentum, energy) is already incorporated into the basic formulation 
of the finite volume methods8,9,16, allowing easy calculation of the 
mass flow rate through the faces of all grid volumes. In the particular 
case of resin flow in a porous media where Darcy’s equation is used 
to calculate flow velocity, the pressure equation to be solved is 
actually the continuity equation for an incompressible fluid in which 
velocity is written as a function of the pressure and the physical 
properties of the resin and the media. Since a finite volume method 
has been used to solve this equation, mass conservation across the 
grid is automatically enforced for the volumes fully filled with resin. 
Furthermore, a procedure, described in section 2.3, is proposed to 
approximate mass balances for the flow front volumes.

The position of the resin front line is determined by monitoring 
volume faces that connect empty volumes (resin volume fraction 
equal to zero) to volumes that are partially (or fully) filled with resin17. 
The front line volumes are usually only partially filled and the resin 
position is actually somewhere inside that control volume, instead of the 
control volume boundaries predicted by the mentioned algorithm17. All 
published works in the literature focusing on the FE-CV method applied 
to RTM problems use a similar front line determination algorithm. On 
the contrary, geometry reconstruction algorithms are usually employed 
with the VOF (Volume of Fluid) method18.

VOF is a general method largely used to model multiphase flows 
with two or more inviscid fluids which has been sometimes applied 
to track the resin flow front position in RTM problems19,20,21. This 
technique requires larger computational effort because a system of 
differential equations needs to be solved. The solution model includes 
momentum, continuity and volume fraction differential equations 
which are simultaneously solved in time and space. One of the 
advantages of this method relies on the fact that it can be applied to 
volumes with or without the solid phase (reinforced media), allowing, 
for example, to model the inlet channels of the RTM-Light process, a 
variant of the RTM process in which part of the flow occurs through 
peripheral open channels. Figure 1. Computational domain for a simple radial problem.
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does not include a transient term, the transient solution is obtained 
by successively solving Equation 3 until mold filling is complete.

In this work, the main goal of the simulation is to determine 
the resin flow-front position as a function of the injection time. 
The used methodology is very similar to that of well-known finite 
element/control volume (FE-CV) methods, except that the finite 
element method is substituted here for a Control Volume Finite 
Element method (CVFE). The finite volume method already has in its 
basic formulation the definition of elements and control volumes, each 
of them composed of four nodes (points), and the control volumes 
are created around the nodes with the contribution of four different 
elements. The mass (i.e. resin) crossing each volume is accounted for 
by integrating the continuity equation through the volume boundaries 
(surfaces). The discretized domain and the approach followed to 
create the volumes are shown in Figure 2. The gray area in this figure 
represents the region already impregnated with the resin.

Monitoring of the advancement of the resin flow-front was 
obtained using a Flow Analysis Network (FAN) technique17. Starting 
from a condition in which the inlet locations and injection pressure 
are known, and assuming the pressure for all volumes outside the gray 
area in Figure 2 equal to zero, solution of Equation 3 will determine 
the pressure field all over the computational domain. The velocity 
field is obtained by substituting the pressure field in Equation 1. 
The flow rates crossing the boundaries of the control volumes can 
be calculated by multiplying the normal velocity by their respective 
areas. After that, the smallest time step needed to fill at least one 
volume, ( )mint∆ , is calculated by

( ) ( )
( )min

f
i i

min
t

t
t

 ∀ − ∀
∆ =  ∀ 

	 (4)

where i∀  is the total volume of the finite volume i, ( ) ( )f
i ii t = f t∀ ∀  

denotes the total volume of fluid that has entered volume i at time t 
and 

()

⋅
∀

t

 is the volumetric flow-rate into volume i.

The ( )mint∆  is then used to determine the filling volume fraction 
and then a filling factor, f, for the control volume i defined as

( ) ( ) ( )min
f
i

i
i

t t t
f t t

∀ − ∆ ∀
+ ∆ =

∀



	 (5)

Typical polymeric resins used in the RTM process show a 
non-Newtonian behavior. However, for the purpose of the present 
work (investigation of the progress of the resin front line), a Newtonian 
approach is completely suitable. Indeed, this consideration is largely 
used in numerical investigations of the RTM process3,7,26, being 
generally acceptable due to the relatively low velocity of the fluid, 
the wide channels in which the fluid flows and the low range of 
shear variation during flow. Thus, assuming the resin as a Newtonian 
incompressible fluid, the mass conservation equation assumes the form

0V =
→

∇ ⋅ 	 (2)

Combining Equations 1 and 2, the equation for the pressure can 
be written as

0K P
 
 ∇ ⋅ ∇ =
 µ 

	 (3)

In Equation 3, media permeability and resin viscosity are kept 
inside the derivative, which is the most generalist case. In the present 
solution, resin viscosity is considered constant whereas permeability 
is considered either isotropic (K is constant) or orthotropic (K

xx
 ≠ K

yy
 

and K
xy

 = K
yx

 = 0). Equation 3 is numerically solved using the method 
described in section 2.4

The boundary conditions to be used with Equation 3, also shown 
in Figure 1, are given by:

•	 P = P
0
 at the injection point;

•	 / 0P n =∂ ∂  at the mold walls (n is the direction normal to the 
wall); and

•	 P = P
f
 at the resin front line, where P

f
 is the front line preset 

pressure.
A finite volume method10,12,27 was used for the solution of 

Equation 3 inside the gray region of Figure 1, and determine the 
pressure field gradient throughout the resin impregnated area. The 
pressure field is then used (in Equation 1) to determine the velocity 
field and, consequently, the volumetric flow-rate through the control 
volume surfaces.

2.1. Transient solution

The numerical solution of Equation 3 is quite simple, but it must 
be continuously solved during the simulation. Since Equation  3 

Figure 2. Discretized domain.
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This simple strategy may be easily implemented, being less 
time-consuming than more refined geometry reconstruction methods.

2.3. Mass conservation across the grid volumes

Mass conservation across grid volumes is probably the most 
important and difficult parameter to be controlled during simulation. 
In general, Equation 3 can be easily solved with any finite element 
or finite volume method and good results may be obtained even for 
coarse grids. The problem with mass conservation lies on the difficulty 
of determining the flow through the volume surfaces. Assuming that 
Equation 1 provides a good approximation for the velocity field, the 
flow through the volume boundaries could, in theory, be calculated 
with sufficient accuracy.

The most common approach is to create control volumes centered 
at the grid nodes. In this work, the control volumes were built with 
the contribution of four different elements in such a way that their 
boundaries are in the middle of these elements. Thus, a local system 
of coordinates (s and t in Figure 4) is used to calculate the pressure 
derivatives needed to solve Equation 1.

Inside the fully filled volumes (f = 1), mass conservation is 
obtained with the finite volume formulation. In this method, the 
mass flow is integrated over the whole volume and mass conservation 
is enforced for all grid volumes. The term inside the brackets in 
Equation 3, if multiplied by the density, becomes

2
1K kgP

s m
 ρ ∇ →  µ  

	 (8)

If this property balance (inlet equal to outlet for a steady flow) 
is guaranteed, the resulting pressure field will approximate mass 
conservation through the control volumes. As described in section 2.4, 
Equation 3 is integrated over the control volume and the resulting 
volume integral is converted into a surface integral that will be 
evaluated over the control volume faces.

For the volumes in the front line (0 < f < 1), it is necessary to 
determine in which faces the resin is entering or leaving this control 
volume. For the flow characteristics shown in Figure 5, it is not possible 

In Figure 2, all volumes with filling factor f = 1 are painted in 
gray. It may be noted that the volume boundaries are not plotted 
and that the grid lines represent the element boundaries (not the 
volumes). The description of nodes and volumes is shown in the 
zoomed in region of Figure 2. In this figure, the black nodes indicate 
the volumes near the resin front line, whereas the white nodes indicate 
the volumes in the fully resin infiltrated region, which are not in 
contact with the resin front line. The volumes with hatched nodes 
have a filing factor defined as 0 < f < 1, and therefore are said to be 
in the non-infiltrated region. The front line position is tracked after 
each time-step integration, being defined at a position between the 
last volume inside the resin-infiltrated region (black nodes) and the 
volumes in the non-infiltrated region (hatched nodes).

For all non-infiltrated volumes, the transport equation (Equation 3) 
is substituted by

0fP = P = 	 (6)

and the pressure field is determined only for the infiltrated region.
Moreover, solution of the flow front advance algorithm can be 

summarized as:
1)	 specify P = P

0
 to all inlet locations;

2)	 specify P = P
f
 to all empty volumes;

3)	 solve Equation 3 to obtain the pressure field;
4)	 calculate the velocity field with Equation 1;
5)	 determine i∀ , ( )f

i t∀ , 

()t

∀  and mint∆  for all flow front 
volumes;

6)	 calculate f for all flow front volumes;
7)	 if the mold is not completely filled, return to step 2.

2.2. Front line geometry reconstruction

Determination of the front line position is sketched in Figure 3. A 
simple, but precise algorithm was written to interpolate the position 
of the resin front line inside the partially filled volumes.

For the radial flow problem shown in Figure 1, the exact (algebraic) 
coordinates of the flow front (x

alg
, y

alg
) were plotted inside the grid 

domain sketched in Figure 3. In this figure, the hatched volume has 
f = 1, while the volume with dashed boundaries has 0 < f < 1. Based on 
these coordinates at different volumes and times, Equation 7, proposed 
in this study, can be used to calculate the numerical coordinates (x

f,
 y

f
) 

inside each partially filled volume of the flow front.

( )0.5
| |f
ux = x + f d
u

− 	 (7a)

( )0.5
| |f
vy = y + f d
v

− 	 (7b)

As shown in Equation 7, the coordinates of the front line position 
(x

f
, y

f
) are obtained as a function of the volume center coordinates 

(x,  y), the velocities at this point, the filling factor f and a scale 
parameter =2 2d A , where A is the area of the 2D volume and d is 
the diagonal of a square volume.

Using Equation 7 for volume j in Figure 3, which is partially 
filled, i.e. with 0 < f < 1, the resin front line position (x

f
, y

f
) will pass 

through a point between the center of volumes i and j. Moreover, if 
0.5 < f < 1, which means that more than half of the volume j is filled 
with resin, Equation 7 will calculate (x

f
, y

f
) in a position further from 

the center of volume j. The other three possibilities are:
•	 If f = 0, (x

f,
 y

f
) will be a point halfway between volumes i and j;

•	 If f = 1, (x
f
, y

f
) will be close to the center of element j;

•	 If f = 0.5, (x
f
, y

f
) will be the exact coordinates of the center of 

volume j (x, y). Figure 3. Front line determination.
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verify for all volumes in the grid, but the errors involved in the mass 
flow calculations are expected to be very small. As shown later, the 
results of this work validate this approximation. The procedure followed 
for the calculation of mass fluxes through the control volumes is also 
simple and may be easily implemented.

2.4. Numerical solution of the pressure equation

In the present formulation, a finite volume method that includes 
finite elements in its formulation was used to solve the pressure 
equation10-12,27. The computational domain was discretized with 
four-node rectangular elements. For each node, a control volume is 
created with the contribution of four different elements, as shown 
in Figure 4. A local coordinate system (s,t) is created inside each 
element and all variables and derivatives inside the element can be 
expressed using this system.

The most fundamental concept of any finite volume method lies 
on the integration of all differential equations over the discretized 
control volumes. Thus, for each control volume of the grid, Equation 3 
becomes

.
0

V C

K P
 
 ∇ ⋅ ∇ =
 µ 

∫
	 (9)

The divergence theorem states that the above volume integral can 
be replaced by a surface integral such as

0
S

K P d A
 
 ∇ ⋅ =
 µ 

∫


	 (10)

to know in advance the exact position of the flow front inside the volume 
i, therefore the vectors drawn in Figure 5 show resin entering by the 
West face and leaving through the North face of the volume. Faces 
South and East are said to be in a domain region without resin. Note 
that velocity is only defined in the region partially or fully filled with 
resin. The calculated pressure gradients in faces South and East of this 
volume are not null, and Equation 1 will determine a non-zero velocity 
vector for these faces. To avoid the calculation of mass flux through 
these faces, a criteria must be established to determine which fluxes 
will be considered in the mass balance of volume i. A reasonable and 
precise criteria is to consider that flow flux may only occur through the 
faces that belong to at least one volume with f = 1. This criteria will not 

Figure 5. Mass flow through the control volumes.

Figure 4. Control volume formation.
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( )2 2 2
0

0 0

1ln
2 2

rt = r r r
KP r

  µ − −  
   

	 (16)

where P
0
 is the pressure at the injection point [Pa], t is the time [s], 

r the position (radius) of resin front line [m] and r
0
 the radius of the 

injection port [m].
The analytical and numerical solutions are compared in Figure 6. 

Both solutions are nearly identical in the first few seconds of the 
simulation (Figure 6a), later distancing from each other due to errors 
in the mass flow calculation along the control volumes surfaces. Since 
the numerical solution consists of a time integration procedure (not 
iterative), all errors propagate until the end of the simulation. As 
expected, this effect can be minimized by using more refined grids.

To quantify the deviation between solutions, a second figure 
is presented (Figure 6b), showing the relative error between 
the numerical (x

num
) and algebraic (x

alg
) solutions, as defined in 

Equation  17. This error is quite significant for the coarser grid, 
becoming considerably smaller for the more refined grids.

Integration of Equation 10 over the control volume shown in 
Figure 4 results in

8

1
0

i
iS S

i=

K KP dA = P dA =
   
   ∇ ⋅ ∇ ⋅
   µ µ   

∑∫ ∫
 

	 (11)

where the index i represents each one of the eight faces of the control 
volume shown in Figure 4.

Each integral in the right side of Equation 11 can be expressed 
using a generic matrix notation as

1 /
0

/i
i xx xyS

yx yy

K P dA = K K P x y
=

P y xK K

 
 ∇ ⋅ ∂ ∂ ⋅ ∆     
 µ µ        ∂ ∂ −∆     

∫


	 (12)

Finally, for each volume face

1 –

1 0

i
i xx xyS

yx yy

K P P xP dA = K + K
x y

P PK + K y =
x y

   ∂ ∂ ∆ ∇ ⋅   µ µ ∂ ∂  
 ∂ ∂− ∆ µ ∂ ∂ 

∫


	 (13)

Shape functions are defined inside each element based on the local 
coordinate system. The pressure at any position (s, t) inside the element 
can be approximated as a function of the nodal calculated variables10 as

( ) [ ]1 1 2 2 3 3 4 4
1
4s,tP = P N + P N + P N + P N 	 (14)

where N
1
 = 0.25(1 + s)(1 + t), N

2
 = 0.25(1 - s)(1 + t), N

3
 = 0.25(1 - s)

(1 - t) and N
4
 = 0.25(1 + s)(1 - t).

The pressure derivatives are also defined as a function of the 
local coordinates by

( ) ( )

∂∂
∑

∂ ∂

4

1

i
i

i= s,ts,t

NP = P
x x

	 (15)

More detailed information about the shape function can be found 
in the literature for finite elements28,29 or finite volumes10,27.

The combination of Equations 13, 14 and 15 results in a linear 
system of equations. The resulting coefficient matrix is sparse, but the 
solution has proven to be stable and fast. An ILU (Incomplete LU) 
decomposition method30 was used to solve this linear system.

3. Results
The numerical methodology described above was validated by 

solving three case studies. The first one is the radial injection problem, 
with an algebraic solution. The second and the third cases do not have 
an algebraic solution, therefore the results are compared with those 
of a commercial general purpose CFD (computational fluid dynamic) 
package – FLUENT, in order to evaluate the ability of the present 
methodology in solving more complex problems.

The general parameters used in all simulations are presented in 
Table 1. The injected fluid (resin) is considered Newtonian, with 
constant viscosity (µ ) and density (ρ). Two different conditions are 
set for the porous media: isotropic (K

xx
 = K

yy
), cases 1 and 2, and 

orthotropic (K
xx

 ≠ K
yy

), case 3.

3.1. Radial infiltration (Case 1)

Figure 1 shows a sketch of the radial infiltration problem. The 
injection point is located close to the geometrical center of the mold. 
For this simple case, the numerical results can be compared with the 
analytical solution31 (until the resin reaches the mold walls), which 
is given by

Figure 6. Radial flow solution: a) front line position; and b) relative error 
between analytical and numerical solutions.
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According to Figure 7, volume 1611 will not show any flow entering 
or leaving its boundaries at that time step and, as a consequence, 
will remain empty on the following time step. This is exactly what 
happened with volume 1592 one time step earlier to that.

The above paragraph describes the approximations in the mass 
flow calculation of the proposed method. As shown in Figure 6, coarse 
grids yield larger errors that diminish following grid refinement. 
However, good results may be obtained even with a coarse grid. 
The proposed methodology has already been compared with the 
VOF method32 and the results (Figure 8) showed that the number 
of volumes required by the former method to achieve the desired 
accuracy is considerably smaller. Note that in Figure 8, the coarser 
grid has 5328 volumes which nearly represent the more refined grid 
in Figure 6, preventing visualization of the relative error between the 
numerical and algebraic solutions.

3.2. Two-dimensional mold infiltration in an 
isotropic media (Case 2)

The computational domain shown in Figure 9 represents another 
actual lab-scale mold geometry. In this solution, the injection hole is 
near the left wall and there are no pre-set output ports. The simulation 
is interrupted when all grid volumes are fully filled. From the circular 
injection port, a radial flow pattern can be observed in the very 
beginning of the simulation. When the resin reaches the top and 
bottom walls, the front line becomes progressively closer to a straight 
line, normal to these walls, and a rectilinear (1-D) advancement 
of the flow front is then observed. After that, the x-coordinate of 
the front line position (x

f
) can be determined as a function of the 

injection time (t).

( ) 100 num alg

num

x x
Error % =

x

−
	 (17)

To analyze the resin front line position and also the errors in the 
mass flow calculations, a zoomed region, close to the resin front line, 
is presented in Figure 7. The gray area again represents the domain 
region fully filled with resin, i.e. for f = 1 (actually, f > 0.999). Next 
to that region, there is a borderline zone where all volumes show 
0 < f < 1. Some of these volumes are highlighted (with dashed lines) 
and the respective f values are shown close to each respective upper 
right corner. The calculated front line position (Equation 7) inside 
each volume is indicated in Figure 7 with the “+” symbol. The position 
of the numerical front line (r), plotted in Figure 6a can be visualized 
in Figure 7, which also shows the algebraic position of the resin front 
line for comparison.

Analysis of the control volume called 1610 (f = 0.076), shows that 
resin is considered to be entering this volume by 4 out of 8 boundary 
faces. It is also assumed that no resin is leaving this volume through 
its faces. The volume 1610 is almost empty, and therefore the mass 
flow that could eventually leave volume 1610 and enter volume 1611 
or 1629 may be disregarded in the mass flow balance of volume 1610. 

Figure 7. Determination of the resin front line position.

Table 1. General simulation conditions.

Property/Variable Value

r
0

0.004 m

P
0

1 bar

K
xx

3 × 10 -10 m2

K
yy

3 × 10 -11 m2

K
xy

 = K
yx

0 m2

µ 0.07 Pa s

ε 0.75

ρ 920 kg.m3

Figure 8. Radial flow solution for the CVFES and FLUENT applications32.
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Initially, the grid shown in Figure 10b was chosen for the 
simulations. Grid refinement in the regions with larger gradients in 
the variables fields (pressure, in this case) is a common practice when 
solving CFD problems. This technique helps reducing the number of 
grid elements and, consequently, simulation time.

The solutions obtained with the grid presented in Figure 10b 
showed a particular behavior. Both solutions were very similar for 
the first 15 seconds of the simulation. However, the flow advancement 
calculated with FLUENT (VOF) seems to slow down at the boundary 
of the region of more refined grid (at x

f
 = 0.1 m), whereas the CVFES 

solution does not display this behavior in any of the tested grids.
Figure 11b displays the results for a refined grid with 

8534 elements. In this figure, it is possible to observe that while the 
CVFES solution remains locally unchanged (the flow front advance is 
linear with time), the VOF solution obtained with FLUENT changes 
abruptly at x

f
 = 0.1 m and then returns to its previous behavior, with 

a trend similar to that of the CVFES solution. This was noticed even 
though a grid refinement test had been previously performed and 
the solution was found to be grid-independent for meshes with more 
than 5916 volumes.

The regular mesh shown in Figure 10a was used to evaluate the 
grid refinement effect on the solution and the results are plotted in 
Figure 11a. Analysis of this figure leads to the conclusion that the 
CVFES solution seems unaffected by grid size change, whereas the 
solution obtained with the VOF method, from FLUENT, showed to 

Even for this simple geometry, the region close to the injection 
port does not have an analytical solution. Results obtained with the 
developed code, which will hereafter be called CVFES (Control 
Volume Finite Element Solver), were compared with the solution 
obtained with the FLUENT software23. In this software, the VOF 
method26,33, combined with the porous media formulation, is used to 
track the advancement of the resin inside the mold cavity. Identical 
grids were used in both codes. In addition, it is important to bear in 
mind that the use of the FLUENT software for RTM problems has 
already been validated32.

The position of the resin front along the horizontal symmetry 
line shown in Figure 9 as a function of time is used to compare the 
results obtained with the two codes. Two different grids were used in 
the simulations: i) all elements with the same size (Figure 10a), and 
ii) a more refined grid in the region close to the injection port, x < 0.1 
m (Figure 10b). In this region, the elements are three times smaller 
than in the 0.10 m < x < 0.32 m region. Grid refinement was carried 
out for both meshes. Simulations were performed using the mesh 
of Figure 10a with 5340 and 21984 elements. For the configuration 
shown in Figure 10b, grids with 2498, 4026, 5916 and 8534 elements 
were evaluated.

Figure 11. Front line position along the symmetry line shown in Figure 9 
(isotropic): a) regular grid; and b) refined grid.

Figure 10. Grid used with the 2D mold injection problem: a) Regular grid; 
and b) Refined grid near the injection port.

Figure 9. Computational domain for a 2D mold injection.
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front line position (x
f
) is plotted along the horizontal symmetry line 

(Figure 12 at y = 0.075 m) for the grids with 5340 and 21984 volumes.
The permeability in the y direction was preset ten times lower 

than in the x direction, i.e. resin will flow faster in the x direction 
than in the y direction. In addition, the overall resistance to resin flow 
is greater than in the isotropic case and, because of that, the resin 
takes longer to reach the right wall of the mold. Even though the 
geometry in Cases 2 and 3 are identical, the orthotropic solution is 
more complex than the isotropic one. The results in Figure 13 show 
a reasonable quantitative agreement between the two numerical 

solutions ( 1FLUENT CVFES
f fx x < cm− ).

The resin front line position at different times for the isotropic 
and orthotropic problems are illustrated in Figure 13. For the isotropic 
problem, the resin quickly reaches the top and bottom mold wall and 
its front line becomes a straight line normal to these walls, whereas 
this does not occur for the orthotropic problem, yielding an elliptic 
shape flow pattern.

4. Conclusions

This work presents an alternative methodology for the tracking of 
the resin flow-front within a mold cavity applied to the resin transfer 
molding of composite materials. The proposed methodology uses 
a control volume finite element method to determine the pressure 
gradient inside the porous (fibrous) media and the flow analysis 
network (FAN) technique to determine the filling of the volumes next 
to the resin front line. This methodology focuses on how to evaluate 
the resin mass flow through the faces of the volumes and how to 
reconstruct the flow front geometry.

The results showed that using a finite volume method to evaluate 
the pressure gradients inside the mold ensures mass conservation 
through the internal (fully filled) volumes. Thus, the mass balance 
inconsistency is nearly restricted to the flow front volumes. For the 
volumes in the front line (0 < f < 1), an algorithm was proposed to 
determine in which faces the resin would enter or leave the control 
volume, improving the evaluation of the mass flow through its faces 
and also reducing the mass imbalance of the flow front volumes.

A detailed description of the method is reported along with three 
validation problems, the first had an analytical solution and the others 
were solved with the aid of the FLUENT software for comparison. All 
of them showed a very good qualitative and quantitative agreement. 
In all, the proposed methodology combines simple formulation and 
easy computational implementation, and the obtained results showed 
a good estimate of the mass flow across the faces of the volumes, 
ensuring mass conservation even for coarse grids and for abrupt 
variations in the size of the grid elements.

Acknowledgments
The authors are thankful to CAPES, CNPq and FAPERGS for 

the financial support.

References
1.	 Souza JA, Rocha LAO and Amico SC. Numerical Simulation of the Resin 

Transport Through Fiber Reinforcement Medium. In: Proceedings of the 
19th International Congress of Mechanical Engineering; 2007; Brasília, 
Brazil. Rio de Janeiro: ABCM, 2007.

2.	 Souza JA, Nava MJA, Rocha LAO and Amico SC. Two-Dimensional 
Control Volume Modeling of the Resin Infiltration of a Porous Medium 
with a Heterogeneous Permeability Tensor. Materials Research. 2008; 
11(3):261-268. http://dx.doi.org/10.1590/S1516-14392008000300006

3.	 Jinlian H, Yi L and Xueming S. Study of Void Formation in Multi-layer 
Woven Fabric. Composites: Part A. 2004; 35:595-603. http://dx.doi.
org/10.1016/j.compositesa.2003.11.007

be dependent. Since a smooth element size change is generally used, 
a pronounced effect is not usually observed.

A deeper investigation of this phenomenon is out of the scope 
of this work. Nevertheless, this observation helps highlighting the 
benefits of the solution obtained with the present formulation, i.e. 
in the CVFES solution, resin mass conservation through the faces 
of the volumes is expected even within regions with large variations 
in grid volume size. In addition, Figure 11a shows almost identical 
results for both methods and, therefore, the solution obtained with 
the CVFES is also considered validated for this problem.

3.3. Two-dimensional mold infiltration in an orthotropic 
media (Case 3)

This test problem uses the same geometry presented in Figure 9 
and is nearly the same problem except that the permeability in the x 
direction (K

xx
) now differs from the permeability in the y direction 

(K
yy

) (see Table 1). This kind of behavior is found when in-plane 
unbalanced layers are used2,34 or when different reinforcements are 
stacked together along the thickness, making up a so-called laminate 
(in this case K

zz
 is also important).

In this study, a single reinforcement layer is considered to have 
distinct permeabilities in each coordinate axis. This problem was 
used to evaluate the computational implementation of a non-isotropic 
permeability tensor and the results were again compared with the 
solution obtained with FLUENT for the grid shown in Figure 10a. The 

Figure 12. Comparison between the orthotropic and isotropic solutions.

Figure 13. Front line position along the symmetry line shown in Figure 9 
(orthotropic).

2011; 14(3) 353

http://dx.doi.org/10.1590/S1516-14392008000300006
http://dx.doi.org/10.1016/j.compositesa.2003.11.007
http://dx.doi.org/10.1016/j.compositesa.2003.11.007


Souza et al.

20.	 Yang J, Jia Y, Ding Y, He H, Shi T and An L. Edge effect in RTM 
Processes Under Constant Pressure Injection Conditions. Journal of 
Applied Polymer Science. 2010; 118(2):1014-1019.

21.	 Li J, Zhang C, Liang R, Wang B and Walsh S. Modeling and analysis 
of thickness gradient and variations in vacuum-assisted resin transfer 
molding process. Polymer Composites. 2008; 29(5):473-482. http://
dx.doi.org/10.1002/pc.20439

22.	 Kim M and Lee W. A new VOF-based numerical scheme for the simulation 
of fluid flow with free surface. Part I: New free surface-tracking algorithm 
and its verification. International Journal for Numerical Methods in 
Fluids. 2003; 42(7):765-790. http://dx.doi.org/10.1002/fld.553

23.	 Ansys. AnsysFluent 6.3. Available from: <http://www.fluent.com/
software/fluent/index.htm>. Acess in: 23/02/2010.

24.	 Park J, Kim S, Kim M and Lee W. Finite element analysis of flow and heat 
transfer with moving free surface using fixed grid system. International 
Journal of Computational Fluid Dynamics. 2005; 19(3):263-276. http://
dx.doi.org/10.1080/10618560410001730296

25.	 Zhao H, Ohnaka I and Zhu J. Modeling of mold filling of Al 
gravity casting and validation with X-ray in-situ observation. 
Applied Mathematical Modelling. 2008; 32(2):185-194. http://dx.doi.
org/10.1016/j.apm.2006.11.009

26.	 Yang J, Jia YX, Sun S, Ma DJ, Shi TF and An LJ. Enhancements of the 
simulation method on the edge effect in resin transfer molding processes. 
Materials Science and Engineering: A. 2008; 478(1-2):384-389. http://
dx.doi.org/10.1016/j.msea.2007.07.044

27.	 Souza JA. Implementação de um método de volumes finitos com sistema 
de coordenadas locais para a solução acoplada das equações de Navier-
Stokes. [Tese]. Florianópolis: Universidade Federal de Santa Catarina; 
2000.

28.	 Reddy JN and Gartling DK. The Finite Element Method in Heat Transfer 
and Fluid Dynamics. Boca Raton: CRC Press; 1994.

29.	 Zienkiewicz OC and Taylor RL. The Finite Element Method. London: 
McGraw-Hill; 1989.

30.	 Netlib Repository at UTK and ORNL. Available from: <http://www.
netlib.org/y12m/index.html>. Acess in: 01/2011.

31.	 Rudd CD. Liquid Moulding Technologies: Resin Transfer Moulding, 
Structural Reaction Injection Moulding and Related Processing 
Techniques. Woodhead Publishing. 2005.

32.	 Silva FMV, Souza JA, Rocha LAO and Amico SC. Comparison of Two 
Numerical Methodologies for the Modeling of the RTM Process. In: 
Proceedings of the 12th Brazilian Congress of Thermal Sciences and 
Engineering - ENCIT; 2008; Belo Horizonte, Brazil. Rio de Janeiro: 
ABCM; 2008.

33.	 Kuan Y-D and El-Gizawy AS. Numerical characterization of mold injection 
in resin transfer molding process. Advances in  Polymer Technology. 
2 0 0 0 ;  1 9 ( 3 ) : 1 7 3 - 1 7 9 .  h t t p : / / d x . d o i . o rg / 1 0 . 1 0 0 2 / 1 0 9 8 -
2329(200023)19:3%3C173::AID-ADV2%3E3.0.CO;2-C

34.	 Shin KS, Song YS and Youn JR. Radial flow advancement in multi-layered 
preform for resin transfer molding. Korea-Australia Rheology Journal. 
2006; 18(4):217-224.

4.	 Endruweit A and Ermanni P. The in-plane permeability of sheared 
textiles. Experimental observations and a predictive conversion model. 
Composites: Part A. 2004; 35:439-451. http://dx.doi.org/10.1016/j.
compositesa.2003.11.002

5.	 Trochu F, Ruiz E, Achim V and Soukane S. Advanced numerical 
simulation of liquid composite molding for process analysis and 
optimization. Composites: Part A. 2006; 37:890-902. http://dx.doi.
org/10.1016/j.compositesa.2005.06.003

6.	 Simacek P and Advani SG. A numerical model to predict fiber tow 
saturation during liquid composite molding. Composites Science and 
Technology. 2003; 63:1725-1736. http://dx.doi.org/10.1016/S0266-
3538(03)00155-6

7.	 Shojaei A. Numerical study of filling process through multilayer 
preforms in resin injection/compression molding. Composites Science 
and Technology. 2006; 66:1546-1557. http://dx.doi.org/10.1016/j.
compscitech.2005.11.035

8.	 Maliska CR. Transferência de Calor e Mecânica dos Fluidos 
Computacional. Rio de Janeiro: LTC - Livros técnicos e científicos S. 
A; 2004.

9.	 Patankar SV. Numerical Heat Transfer and Fluid Flow. McGraw-Hill 
Book Company, 1980.

10.	 Schneider GE and Raw MJ. Control volume finite element procedure for 
heat transfer and fluid flow using collocated variables: 1. Computational 
procedure. Numerical Heat Transfer. 1987; 11(4):363-390. http://dx.doi.
org/10.1080/10407788708913560

11.	 Souza JA and Maliska CR. Analysis of a Volume Based Finite Element 
Methodology in View of the Interpolation Function Employed and 
Coupling Characteristics. In: Proceedings of the 8th Brazilian Congress of 
Thermal Sciences and Engineering - ENCIT; 2000; Porto Alegre, Brazil. 
Porto Alegre: ABCM; 2000. p. 1-11.

12.	 Ansys. Solver Theory Guide. ANSYS Inc.; 2009. chap. 9.

13.	 Joshi SC, Lam YC and Liu X. Mass conservation in numerical 
simulation of resin flow. Composites Part A: Applied Science and 
Manufacturing. 2000; 31(10):1061-1068. http://dx.doi.org/10.1016/
S1359-835X(00)00067-1

14.	 Bruschke MV and Advani SG. A numerical approach to model non-
isothermal viscous flow through fibrous media with free surfaces. 
International Journal for Numerical Methods in Fluids. 1994; 19(7):575-
603. http://dx.doi.org/10.1002/fld.1650190704

15.	 Joshi SC. Reducing Loss of Resin Flowing in Porous Fibrous Media 
in Simulation of Composites Fabrication. Polymer Composites. 2010; 
31(2):226-235.

16.	 Versteeg H and Malalasekra M. An Introduction to Computational Fluid 
Dynamics: The Finite Volume Method. Prentice Hall; 2007.

17.	 Phelan Junior, FR. Simulation of the injection process in resin transfer 
molding Polymer Composites. 1997; 18(4):460-476. http://dx.doi.
org/10.1002/pc.10298

18.	 Hirt CW and Nichols BD. Volume of fluid (VOF) method for the dynamics 
of free boundaries. Journal of Computational Physics. 1981; 39(1):201-
225. http://dx.doi.org/10.1016/0021-9991(81)90145-5

19.	 Luoma JA and Voller VR. An explicit scheme for tracking the filling front 
during polymer mold filling. Applied Mathematical Modelling. 2000; 
24(8-9):575-590. http://dx.doi.org/10.1016/S0307-904X(00)00004-4

354 Materials Research

http://dx.doi.org/10.1002/pc.20439
http://dx.doi.org/10.1002/pc.20439
http://dx.doi.org/10.1002/fld.553
http://dx.doi.org/10.1080/10618560410001730296
http://dx.doi.org/10.1080/10618560410001730296
http://dx.doi.org/10.1016/j.apm.2006.11.009
http://dx.doi.org/10.1016/j.apm.2006.11.009
http://dx.doi.org/10.1016/j.msea.2007.07.044
http://dx.doi.org/10.1016/j.msea.2007.07.044
http://dx.doi.org/10.1002/1098-2329(200023)19:3<173::AID-ADV2>3.0.CO;2-C
http://dx.doi.org/10.1002/1098-2329(200023)19:3<173::AID-ADV2>3.0.CO;2-C
http://dx.doi.org/10.1016/j.compositesa.2003.11.002
http://dx.doi.org/10.1016/j.compositesa.2003.11.002
http://dx.doi.org/10.1016/j.compositesa.2005.06.003
http://dx.doi.org/10.1016/j.compositesa.2005.06.003
http://dx.doi.org/10.1016/S0266-3538(03)00155-6
http://dx.doi.org/10.1016/S0266-3538(03)00155-6
http://dx.doi.org/10.1016/j.compscitech.2005.11.035
http://dx.doi.org/10.1016/j.compscitech.2005.11.035
http://dx.doi.org/10.1080/10407788708913560
http://dx.doi.org/10.1080/10407788708913560
http://dx.doi.org/10.1016/S1359-835X(00)00067-1
http://dx.doi.org/10.1016/S1359-835X(00)00067-1
http://dx.doi.org/10.1002/fld.1650190704
http://dx.doi.org/10.1002/pc.10298
http://dx.doi.org/10.1002/pc.10298
http://dx.doi.org/10.1016/0021-9991(81)90145-5
http://dx.doi.org/10.1016/S0307-904X(00)00004-4

