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ABSTRACT

Computer networks have evolved to accommodate a wide variety of services, such as
streaming of high quality videos and delay-sensitive content delivery. These services have
increased the demand for features not originally considered in the Internet. Aiming to
address novel network demands quickly, some researchers proposed Programmable Net-
works, in which network devices behavior can be changed using applications. Notwith-
standing, such behavior might not be a consensus between computer network stakehold-
ers. The emergence of Virtualized Networks overcame this issue by allowing the co-
existence of multiple virtual networks on the same physical infrastructure. Finally, the
convergence of programmability and virtualization techniques are explored within a third
concept, the Programmable Virtual Networks (PVN). Faced with this new reality, network
administrators are no longer just looking at network devices. They are looking at a system
made of virtual devices and applications that define each virtual network behavior. This
requires not just new tools and management approaches, over and above that, requires
new thinking.

PVN deployments are found mostly in shared experimental facilities (also known as
testbeds) and Cloud Computing environments. Testbeds are very innovation friendly, but
with strong limitations in regards to taking experimental solutions to production. On the
other hand, Cloud computing is a great production environment, but presents flexibility
and innovation restrictions once network solutions adopted are usually proprietary. There-
fore, in this dissertation it is introduced Network Programming as a Service (NPaaS), a
new business model that aims to facilitate the conduct of innovative solutions for produc-
tion environments. Different from traditional network business models, where end-users
are just consumers of network services already available, in NPaaS, end-users are also
able to develop and deploy novel network solutions. To support NPaaS, Programmable
Virtual Network management platform is proposed. Such platform, named ProViNet,
provides all architectural and technical features necessary to enable NPaaS deployment
and management.

A qualitative evaluation of the NPaaS business model was performed, and the result
was contrasted with some of the current models, thus, emphasizing the singularity of
NPaaS. In the meanwhile, an experimental evaluation was conducted to demonstrate the
feasibility of ProViNet platform. Results have shown that NPaaS represent a promising
alternative for virtual network environments with public access such as public clouds.
Moreover, a quantitative evaluation of the platform prototype demonstrated the technical
feasibility and proved that network applications developed using BPMN are able to run
with acceptable performance rates.

Keywords: Network Virtualization, Network Programmability, Software Defined Net-
working, Cloud Computing.



RESUMO

Programabilidade de Redes como Serviço: um modelo de negócios propício à
inovação

As redes de computadores têm evoluído para acomodar uma grande variedade de ser-
viços, tais como streaming de vídeos de alta qualidade e entrega de conteúdo sensível a
atrasos. Estes serviços têm aumentado a demanda por recursos não originalmente consi-
derados na Internet. Com a promessa de atender novas demandas de rede rapidamente,
pesquisadores propuseram Redes Programáveis, nas quais o comportamento dos disposi-
tivos de rede pode ser alterado utilizando aplicativos. Entretanto, tal comportamento pode
não ser um consenso entre usuários da rede. O surgimento de Redes Virtualizadas superou
tal questão, ao permitir a coexistência de múltiplas redes virtuais sobre a mesma infraes-
trutura física. A fim de se obter redes virtuais isoladas com comportamento programável,
foram propostas as Redes Virtuais Programáveis (RVP). Diante dessa nova realidade, os
administradores de rede não estão mais olhando unicamente para dispositivos de rede.
Eles estão olhando para um sistema composto de dispositivos e aplicativos de rede que
definem o comportamento individual de cada rede virtual. Isso requer não apenas no-
vas ferramentas e abordagens de gerenciamento, além disso, exige a revisão de conceitos
tradicionais sobre redes.

Implementações de RVP são encontradas principalmente em testbeds e ambientes de
Computação em Nuvem. Testbeds são muito propícios à inovação, mas possuem fortes
limitações no que diz respeito a migração de soluções experimentais para produção. Por
outro lado, computação em nuvem é um ótimo ambiente de produção, mas possui restri-
ções de flexibilidade e inovação, uma vez que as soluções de rede adotadas geralmente
são proprietárias. Portanto, nesta dissertação introduz-se um novo modelo de negócio
que permite a criação de soluções inovadoras em ambientes de produção, a Programa-
bilidade de Redes como um Serviço (NPaaS). Diferente do modelo de negócio de redes
tradicionais, onde os usuários finais são apenas consumidores dos serviços de rede já dis-
poníveis, em NPaaS os usuários finais também são capazes de desenvolver e implantar
novas soluções de rede. Para apoiar NPaaS, propõe-se uma plataforma de gerenciamento
de rede virtual programável, chamada ProViNet. Essa plataforma fornece a arquitetura de
software e estratégias necessárias para permitir a implantação e gestão NPaaS.

Uma avaliação qualitativa do modelo de negócio NPaaS foi realizada, o resultado foi
contrastado com alguns dos modelos de negócio praticados atualmente. Assim, enfati-
zando a singularidade do NPaaS. Enquanto isso, uma avaliação experimental foi reali-
zada para demonstrar a viabilidade da plataforma ProViNet. Os resultados mostraram
que NPaaS representa uma alternativa promissora para ambientes de rede virtual com
acesso público, como as nuvens públicas. Além disso, uma avaliação quantitativa do pro-
tótipo da plataforma demonstrou a viabilidade técnica e provou que aplicativos de rede
desenvolvidos usando BPMN são capazes de executar com desempenho aceitáveis.

Palavras-chave: Network Programmability, Network Virtualization, Cloud Computing.
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1 INTRODUCTION

Computer networks have evolved to accommodate a wide variety of services, such
as streaming of high quality videos and delay-sensitive content delivery. These services
have increased the demand for features not originally considered in the Internet, such
as the assurance of very high bandwidth, location-awareness, and exponential growth of
addressing demand. In order to address these emerging demands, the network community
developed solutions such as IPv6 and IPSec. However, such solutions were proposed for
over 10 years and still have been struggling to be barely adopted. The long delay from
proposition to deployment of new features is related to the fact that the core of Internet is,
when compared with servers, desktops, and mobile devices, an unfriendly environment
for innovation. In the case of the Internet, this fact is often refereed to as the Internet
ossification (HAUSHEER et al., 2011).

Among the factors that contribute to the Internet’s hostile environment for innovation
is the necessity of deep and global modifications in order to adopt new solutions. In the
Internet, every device is somehow dependent on the other, so in order to keep interoper-
ability among them, a novel communication protocol must be known by several devices.
The high costs it may generate, including equipment replacement, ends up discouraging
novel solutions adoption. Besides that, in an effort to keep legacy support, institutions like
ISO, IEEE, ITU, and IETF have the role of discussing and standardizing new network
protocols and communication approaches. The problem is that standardization process
may take too long, becoming also an obstacle for the adoption of novel solutions. An-
other crucial factor is the dependency on the profit-oriented interest of network equipment
manufacturers. They tend to develop solutions with higher potential of profit instead of
most innovative. As a consequence, special needs are not met. On top of that, network
companies usually develop proprietary software and hardware, giving no alternatives for
customizations by end-users.

With the promise to reverse this state of ossification, some research works emerged
in the late 90’s introducing the concept of Programmable Network (CAMPBELL et al.,
1999). This concept regards the fast, flexible, and dynamic deployment of novel in-
network services in response to emerging demands (GALIS et al., 2004). Active Net-
works (PSOUNIS, 1999) and Open Signaling (CAMPBELL et al., 1999) are examples
of programmable network technologies from the 90’s. The lack of widespread adop-
tion of such technologies by the industry was mainly because of security and isolation
issues; network devices could be easily compromised with malicious code. Over time,
network companies launched software modules that enabled certain level of customiza-
tion in their devices. Cisco, for example, launched the Application-Oriented Networking
(AON) (CISCO, 2013), while Juniper unveiled Junos Software Development Kit (SDK)
(SUGIYAMA, 2012). In general, this kind of solution enable the development of appli-
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cations that extend or add functionality to devices. However, there is no cross-vendor
interoperability, i.e., applications developed for one manufacturer’s equipment are not
compatible with another’s.

Building programmable networks is about being able to address emerging demands
quickly by aggregating novel services into the network. Considering that computer net-
works are usually a shared resource, such demands might not be a consensus within stake-
holders, i.e. those interested in the network services, including end-users, network man-
agers and administrators. In order to address such conflicting goals, the research commu-
nity started investing on the concept of Network Virtualization (CHOWDHURY; BOU-
TABA, 2010). A virtual network environment allows the coexistence of multiples Vir-
tual Networks (VN) on the same physical infrastructure (also called physical substrate).
Thereby, each virtual network could be designed to address distinct stakeholder’s de-
mands. Nevertheless, to enable such virtual networks to behave accordingly, the network
devices must be programmable. When a network brings together the features of Virtu-
alization and Programmability it shall be called Programmable Virtual Networks (PVN)
(CHOWDHURY; BOUTABA, 2009).

Managing traditional computer networks presents several challenges, but managing
virtualized and programmable networks might turn such task even more complex. A PVN
is composed by arbitrary virtual network topologies independent from physical topology;
moreover, each virtual network is able to run different and independent protocols and
services. Given this new type of environment, network administrators are no longer just
looking at network devices. They are looking at a system made of virtual devices and
applications that define each virtual network behavior. This requires not just new man-
agement approaches and tools, but over and above that, requires new thinking. Designing
solutions that enable the different network stakeholders to communicate, program, and
manage PVN harmoniously represent an open research problem. Mainly because it re-
quires rethinking the role of each stakeholder over the network, defining novel business
models and architectures. In addition, novel abstraction models are required to enable
stakeholders with different technical knowledge to program, monitor, and administrate
programmable virtual networks.

The existing use cases of PVN follow different business models and implement vary-
ing approaches for interfacing PVN to its users. Some shared experimental facilities
(testbeds), such as OFELIA, FIBRE and GENI, employ PVN to provide a set of isolated
network resources with customizable protocols and services for experimental purposes.
In the testbed business model, each member contributes with a set of resources (such as
switches, routers, and servers), composing a federation system. Such model does not al-
low the employment of resources in production mode and pose strict rules for researchers
access. Another typical PVN use case is found in Cloud Computing environments. Due to
the fast growth of services provided by Cloud players, their data-center’s network must be
flexible and scalable. In doing so, PVN is seen as an alternative to enable Cloud network
administrators to address such demands. Two different business models can be deduced
from these use cases. The first one, testbeds, are very innovation friendly, but with strong
limitations in regard to taking experimental solutions to production. On the other hand,
Cloud computing is a real production environment, but has flexibility and innovation re-
strictions once the network solutions adopted by them are usually proprietary.

In face of the presented above, this dissertation introduces Network Programming
as a Service (NPaaS), a novel business model that aims at allowing the conduction of
innovative solutions over production environments. Different from traditional networks,
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where end-users are just consumers of the network services already available, in NPaaS,
end-users are also able to develop and deploy novel network solutions. By doing this,
it is expected an increase in the amount of innovative solutions, once there would be a
larger amount of capable innovators. As a side effect of such new point of view given to
end-users, there is an increase in management complexity. So, in order to support NPaaS,
it is proposed a Programmable Virtual Network management platform, called ProViNet.
Such a platform provides all architectural and technical requirements necessary to enable
NPaaS deployment and management. Along with the proposed business model and the
platform, this dissertation contributes with:

1. A novel network abstraction model based in Business Process Management No-
tation (BPMN). Which allows users with different levels of technical expertise to
develop network applications. Such an approach encourages the development and
sharing of novel network solutions even by users non-familiar with network techni-
cal details;

2. An architecture, developed to ProViNet platform, that leverages the benefits of re-
cent programmable network technologies and provides for flexibility, scalability,
and availability;

3. Additional grammar elements to complement the Virtual Infrastructure Description
Language (VXDL) (KOSLOVSKI; PRIMET; CHARãO, 2008), enabling a proper
representation of SDN control plane architectural elements in textual format.

A qualitative evaluation of the NPaaS business model was performed, and the result
was contrasted with some of the current played models. Thus, emphasizing the singular-
ity of NPaaS. Meanwhile, an experimental evaluation was conducted to demonstrate the
feasibility of ProViNet platform and to support the performance analysis presented later.
Results have shown that NPaaS represents a promising alternative for virtual network en-
vironments with public access such as public clouds. Moreover, the platform prototype
demonstrated the technical feasibility and proved that network applications, developed as
BPMN workflows, are able to run with acceptable performance rates. In addition, the plat-
form reduces the complexity of functions such as developing, deploying, and managing
network applications in PVN.

The remaining chapters of this dissertation are organized as follows. In Chapter 2,
some background concepts considered fundamental for the understanding and motivation
of the solution proposed are presented. In the same Chapter, the main works that discuss
about Programmability in the context of Virtual Networks are outlined. Afterwards, in
Chapter 3, NPaaS business model is discussed and the ProViNet platform is detailed. In
order to demonstrate the feasibility of ProViNet, a prototype is introduced in Chapter 4.
Then, a quantitative evaluation of such prototype and a qualitative evaluation of NPaaS
are presented in Section 5. Finally, in Chapter 6 we close this dissertation with concluding
remarks and future work.
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2 BACKGROUND AND RELATED WORK

There is a growing consensus that computer networks must be open, extensible and
programmable in order to follow the fast evolving and diversified demand (HAUSHEER
et al., 2011). This topic has been well discussed in the literature, starting back in the
90’s, when emerged the first proposals of Programmable Networks (PN) (CAMPBELL
et al., 1999) (LIN et al., 2011). Since then, the popularity of such topic within the re-
search community has been cyclic. In this chapter, a historical overview of this research
area is presented, highlighting the major contributions and drawbacks of the approaches
proposed over the time. It is also discussed how Network Virtualization (NV) (CHOWD-
HURY; BOUTABA, 2009) (CHOWDHURY; BOUTABA, 2010) has evolved in the same
period and what is its role beyond programmability field.

From the joint application of PN and NV emerges Programmable Virtual Networks
(PVN) (CHOWDHURY; BOUTABA, 2009). In PVN, virtual network functions, such
as traffic isolation and resource sharing, are added with programmability. In this way it
is possible to configure different network services and protocols to virtual networks dy-
namically, more precisely, creating and deploying novel in-network softwares. Different
from network programming strategies from the 90’s, such as Smart Packets and ANTS, in
PVN, novel protocols can be deployed separately on distinct virtual networks, causing no
impact on the whole network, but only on a set of isolated resources. As a consequence,
emerging demands could be addressed quickly by novel network softwares.

In light of the vast existing theoretical foundations around the concepts of NV, PN,
and PVN, in this Chapter it is discussed some of the mains works aiming to support
discussions presented in later chapters. Therefore, in Section 2.1 Programmable Networks
concept and a historical overview of the related works are given. Then, in Section 2.2 the
concept of Network Virtualization is presented. Finally, in Section 2.3 it is dicussed about
PVN, a concept that encompasses many of the recent proposals.

2.1 Programmable Networks

In general, administrators of network service providers cannot access the switch/router
control environments (e.g., IOS), algorithms (e.g., routing protocols), and states (e.g.,
routing tables, flows states). Such access limitation causes dependence on network equip-
ment vendors, which decide whether to implement novel network solutions or not. As a
consequence, creating new network service has become a hard task due to the closed na-
ture of network nodes. To overcome this limitation, the network research community has
proposed the concept of Programmable Networks (PN) (ROSS, 1989). The guiding con-
cept of Programmable Networks defines that networks must enable the rapid deployment
of novel network solutions and customization of the existing in response to emerging de-
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mands, independent of network equipment vendors. One of the major challenges faced by
PN proposals is finding a suitable trade off among network security, performance, flex-
ibility, and manageability. With this in mind, computer networks must be carefully en-
gineered turning networking infrastructures open, extensible and programmable (CAMP-
BELL et al., 1999).

Various research initiatives, such as Next Generation Internet (NGI), DARPA Ac-
tive Networks, CANARIE, and Internet2, emerged in the 90’s with the goal of providing
network resources and conceptual basis for supporting network research, which ended
up fostering proposals of programmable network models and architectures. Along with
such initiatives some specialized conferences arose with aiming to promote network pro-
grammability proposals. Open signaling for ATM, Internet and Mobile Networks (OPEN-
SIG) (CAMPBELL et al., 1999) and Conference on Open Architectures and Network
Programs (OPENARCH) (IEEE Second Conference on Open Architectures and Network
Programming Proceedings, 1999) are examples of these conferences, in which many im-
portant proposals were published, such as IEEE P1520 (BISWAS et al., 1998), Smart-
Packets (SCHWARTZ et al., 1999), and Netscript (FLORISSI, 1998).

There is no consensus when categorizing programmable network proposals. Papers
describing five (LIN et al., 2011), three (GALIS et al., 2004), and two (CAMPBELL et al.,
1999) broad areas are found in the literature. Following the categorization of Galis, which
proved to be more recurrent in the works analyzed, three major areas are discussed below.

Open Signaling is a technique that models the hardware (switches/routers) commu-
nication by defining open programmable interfaces. Opening the control of networks
through a set of well-defined network programming interfaces and distributed program-
ming environments (e.g., CORBA, DCOM, Java) enables the development of novel ser-
vices and network architectures. By doing this, physical network nodes can be abstracted
as a set of objects in a distributed system. Then, network operators can manipulate the
state of such objects through programming interfaces creating novel services that en-
sure network requirements, such as quality of service and security. In the late 90s, there
were several proposals considering Open Signaling, such as Xbind (LAZAR; LIM; MAR-
CONCINI, 1996), Tempest (MERWE et al., 1998), and Mobiware (ANGIN et al., 1998).

Programmable Active Networks (PSOUNIS, 1999), also referred to just as Active
Networks, regard the use of special devices capable to execute custom applications that
modifies packets flowing through them, including packet payload. The core idea is allow-
ing users (end-user, operators, and service providers) to develop applications and inject
the code into network nodes to perform computation upon the packets along the way. In
order to enable an application code to run in many devices, a common interface called
NodeOS was defined. In a hybrid network, traditional nodes, i.e. not active, are still able
to forward and route active packets, though cannot perform any special computation in
them. Active Networks were not widely adopted for several reasons, most notably be-
cause of security (preventing malicious use of the network), isolation (protecting one ap-
plication’s behavior from another), and performance (programmable elements slow-down
the forwarding path).

Node Operating Systems represent the opposite idea of having a global network op-
erating system. In this case, instead of considering nodes as objects within a global view,
each node represents a complete system. Each one has defined its own data space and
variables. This represents an advantage in terms of deeper programmability, once it does
not depend on abstractions or standard interfaces. This concept was more successful than
the previous described, once it is possible to find recent proposals considering such ap-
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proach (CHERTOV; HAVEY; ALMEROTH, 2010). Due to such success, this discussion
goes further with some examples of implementations.

As a result of a MIT research in the 90’s, Click Modular Router (MORRIS et al.,
1999) was proposed. Similarly, Promile (RIO et al., 2001) was proposed by University
College London. Both introduce a more intrusive and clean slate approach for program-
ming network nodes. Such approach defines a set of software packets, called modules,
which implement different functions and can be arranged in order to compose network
services. Click proposals usually employ regular PCs to run Click modules, but present
low performance if compared to production network devices. The last version of this
technology was published in September 2011. Since its original publication, many works
employed Click to develop their solutions (BAVIER et al., 2006) (ELMELEEGY; COX;
NG, 2007) (CHERTOV; HAVEY; ALMEROTH, 2010).

Proposals from industry such as AON, 1000V and OnePK from CISCO and JunOS
SDK (SUGIYAMA, 2012) from Juniper provide APIs to enable users to build patches
that run on their proprietary node OS. Recently such approaches are being used as an an-
swer from the industry to the emergent open solutions for programmable network deploy-
ment. However, considering the current heterogeneous network environment, in terms of
equipment vendor, a solution developed to a specific vendor equipment will hardly scale,
because it cannot interact with devices from other vendors.

Figure 2.1: Four steps of flow handling in OpenFlow technology (YEGANEH;
TOOTOONCHIAN; GANJALI, 2013).
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After a period of numerous publications around 90’s, PN research area became less
popular; maybe the research community was disappointed by the lack of adoption by the
industry. Network administrators did not feel confident with the idea of having applica-
tion codes executing in their production networks, which could be easily compromised
with malicious code. In March 2008, Stanford, in conjunction with Princeton, Berkeley,
MIT, and others universities, proposed OpenFlow (OF) (MCKEOWN et al., 2008). OF
is composed of three components, (i) OF Switches, produced by many vendors (such as
HP, IBM, and Datacom), which are found in two versions: hybrid, with traditional net-
work services/protocols, and pure OF with exclusive OF support; (ii) OF Controller, an
external device (typically a regular x86 PC) responsible for running the network control
logic and instructing OF Switch, and finally (iii), OF Protocol, which enables the commu-
nication between Controller(s) and Switch(es). OF is flow-based and, as shown in Figure
2.1, every flow arriving in the Switch is matched against a flow table, when it miss (1),
the packet data is sent, through an OF protocol request, to Controller (2), which in turn
evaluates packet data and sends back a rule to match such kind of packets (3), lastly this
rule is added to the flow table (4).

Before OpenFlow launch, a quite similar concept was proposed by IETF, called ForCES
(KHOSRAVI; ANDERSON, 2003), which has the last version published in RFC 5810
(DORIA; HADI SALIM, 2010). The clear distinction between OpenFlow and ForCES
can be found online in IETF drafts1. Briefly, OpenFlow defines the physical separation of
the control and forwarding elements. Distinctly, ForCES abstracts forwarding devices as
Network Elements and defines an internal separation of control and forwarding elements.

Shortly after OpenFlow publication, during a keynote presentation at INFOCOM con-
ference, in April 2009, Nick McKeown announced Software-Defined Networking (SDN)
(MCKEOWN, 2009) (LANTZ; HELLER; MCKEOWN, 2010). In order to guide SDN
evolvement and standardize critical SDN architectural elements, such as OpenFlow, was
created Open Networking Foundation (ONF). ONF is a non-profit industry consortium
composed of many companies. The complete list of ONF members is presented in the
Table 2.1. As defined by ONF, SDN is an emerging network architecture where network
control is directly programmable and decoupled from forwarding. In the SDN architec-
ture, the control and data planes are decoupled, network intelligence and state are logically
centralized, and the underlying network infrastructure is abstracted from the applications.
As a result, enterprises and carriers gain unprecedented programmability, automation, and
network control, enabling them to build highly scalable, flexible networks that readily
adapt to changing business needs.

There are distinct and clear definitions of OF and SDN, but confusions and misuses are
found frequently in academia and industry publications. In order to make such distinction
clear, the SDN architecture shown in the Figure 2.2 identifies a communication interface
between the Control and Infrastructure Layers. OpenFlow is an alternative and currently
the most adopted protocol to enable such communication. There are several advantages of
using OpenFlow because it is open and has broad community support, but there are private
alternatives employed in SDN solutions from the industry. The emergence of private SDN
solutions reflects a current trend. The high expectation around SDN is inducing industries
to employ SDN as a buzzword to attract customers and drive business growth. In a broader
perspective, it shows that Programmable Network community is changing the focus from
the basic mechanisms that dynamically install and move service code within the network,
to more commercial and broad solution.

1http://tools.ietf.org/html/draft-wang-forces-compare-openflow-forces-01
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6WIND A10 Networks
Active Broadband Networks ADVA Optical Networking
Alcatel-Lucent / Nuage Networks Aricent Group
Arista Big Switch Networks
Broadcom Brocade
Centec Networks Ceragon
China Mobile (US Research Center) Ciena
Cisco Citrix
CohesiveFT Colt
Cyan Dell/Force10
Deutsche Telekom Ericsson
ETRI Extreme Networks
F5 / LineRate Systems Facebook
France Telecom Orange Freescale
Fujitsu Gigamon
Goldman Sachs Google
Hitachi HP
Huawei IBM
Infinera Infoblox / FlowForwarding
Intel Intune Networks
IP Infusion Ixia
Juniper Networks KDDI
Korea Telecom Lancope
Level 3 Communications LSI
Luxoft Marvell
MediaTek Mellanox
Metaswitch Networks Microsoft
Midokura NCL Communications K.K.
NEC Netgear
Netronome NetScout Systems
Nokia Siemens Networks NoviFlow
NTT Communications Oracle
Overture Networks PICA8
Plexxi Inc. Qosmos
Rackspace Radware
Riverbed Technology Samsung
SK Telecom Spirent
Sunbay Swisscom
Tail-f Systems Tallac
Tekelec Telecom Italia
Telefónica Tellabs
Tencent Texas Instruments
Thales Tilera
Transmode Turk Telekom / Argela
TW Telecom Vello Systems
Verisign Verizon
VMware/Nicira Xpliant
Yahoo ZTE Corporation

Table 2.1: Open Networking Foundation Members in May 2013
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Figure 2.2: Software-Defined Networking architecture (ONF White Paper).

2.2 Network Virtualization

The literature point out Network Virtualization (NV) (CHOWDHURY; BOUTABA,
2008) as a solution for the Internet ossification problem. Purists see on NV a doorway
for evaluating novel architectures while pluralists consider NV part of next generation
architecture itself. The main characteristic of such networks is the sharing of a substrate
by co-existing networks. Not too late, substrate is defined as a set of physical resources
in the network infrastructure, such as PCs, switches, and routers. Chowdhury and Bou-
taba (CHOWDHURY; BOUTABA, 2009) proposed Network Virtualization Environment
(NVE), in which the current ISPs is split into two independent entities: Infrastructure
Providers (InPs) and Service Providers (SPs). The former is responsible for keeping
physical infrastructure, while the last uses InPs resources to create virtual networks and
provide network services for end-user.

NVE is properly depicted in Figure 2.3. There are, at the bottom, two InPs with dif-
ferent physical topologies and end hosts. Above them are two Service Providers, each
one in control of a single Virtual Network. As can be noticed, these virtual networks have
distinct topologies both in relation to each other and in relation to the physical infrastruc-
ture in the InPs. The white circles at the bottom represent physical nodes and the gray
circles represent virtual nodes. Connecting the virtual nodes there are virtual links, and
connecting physical nodes, physical links. Worth mentioning that even the links between
the virtual nodes are distinct from the physical links.

Along with NVE, Chowdhury and Boutaba also pointed eight design goals that lead a
successful Network Virtualization project. Coexistence is the first design and refers to the
necessity to support many Virtual Networks (VN) over the same substrate. Furthermore,
there should be Flexibility enough to accommodate arbitrary VN topologies, forwarding
routines and management protocols. Probably numerous VN will be distributed in layers
from end-to-end in the physical infrastructure, and keeping accountability of each layer
requires Manageability. Considering that the total network resource demand becomes the
sum of each VN layer demand, and that there is an expected increase in resource demand
for next years, Scalability must be a permanent concern for InPs. Due to the conflicting
goals among NVE stakeholders, keeping Isolation among VNs reveals crucial. Besides
isolation among VN, it is important to ensure Stability and Convergence of underlying
physical infrastructure in order to mitigate potential incidents.

Programmability is also pointed as a fundamental design goal to enable flexibility and



24

Figure 2.3: Network Virtualization Environment proposed by Boutaba (CHOWDHURY;
BOUTABA, 2009).

manageability in NVE. Employing programming techniques, VN Service Providers will
be able to provide different network services to attend end user specific demands. More-
over, novel architectures can be developed and deployed fostering innovation. Chowdhury
and Boutaba also draw attention to the necessity to address Heterogeneity of underlying
technologies and protocols, end-user access devices and InPs. At last, NVE should con-
sider Legacy Support, a recurring challenge in the deployment of disruptive technologies.

Grant Traffic Differentiation (TD) is a primary function of NV and is straightly aligned
with many of the design goals aforementioned, such as isolation, coexistence, flexibility,
and heterogeneity. There are several TD approaches, including the addition of tags into
packets header as distinguishing parameter (e.g. VLAN), enabling customized actions in
intermediate nodes. It is also usual to encapsulate packets with additional header layers,
allowing packets to be routed from end-to-end based in such outer layer (e.g. IP tun-
nels and MPLS). OpenFlow (see Figure 2.1) is also a TD enabler, but instead of adding
tags, OF considers the flow characteristics itself, i.e. the existing information in TCP/IP
headers, such as IP or MAC destination/source address.

Although network virtualization techniques exists since the 90’s, such as VLANs, it
has received special attention recently driven by the success of Cloud Computing. In
this environment, a virtual network interconnects a set of virtual machines. Such virtual
network can be technically deployed distinctly (such as VLAN, VPN, and application
level overlay (CHOWDHURY; BOUTABA, 2009)). Whatever the approach taken is, the
result is that users will have an isolated virtual network interconnecting their own virtual
machines. It is convenient and usual in the academia, referring to the set of network,
computing, and storage resources belonging to a user as Slice.
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2.3 Programmable Virtual Networks

Programmable Virtual Networks (CHOWDHURY; BOUTABA, 2009) concept de-
fines programmability as a special requirement of network virtualization, which enables
properly configuration of services within virtual networks. As presented in the last two
sections, there are several approaches to build virtual networks. One of them is by us-
ing OpenFlow. OF enables virtual networks creation by slicing network traffic accord-
ing to specific flow characteristics. But, in addition to virtualization, OF also enables
programmability, once it is part of a programmable network architecture called SDN.
Such fact allows defining SDN as a PVN particular implementation. Worth noting that
other technologies could be joined to implement PVN as well. For instance, a set of pro-
grammable software routers organized in a virtualized infrastructure, with network traffic
sliced by VLAN tags, could also be considered a PVN.

Many environments could take advantage of PVN deployment. Data Centers, for ex-
ample, would be able to attend different client demands by programming and providing
different network solutions to them. Cloud Computing providers would be able to provide
a larger set of virtual network services for customers. Meridian (BANIKAZEMI et al.,
2013) is an effort toward this goal. It leverages SDN architecture to support Cloud Com-
puting virtual network provisioning and propose abstractions. A real use case of PVN
was developed by Google, which employed SDN in two worldwide backbones (FOUN-
DATION, 2013). Likewise, network facilities, also known as testbeds, has carried PVN
projects in their environments. By doing this, researchers can require virtual networks
and computer resources in order to experiment novel solutions.

Service	
  Provider	
  

End	
  User	
  

Infrastructure	
  Provider	
  

Broker	
  

Figure 2.4: Network Virtualization Business Model (CHOWDHURY; BOUTABA, 2008).

Each one of the environments mentioned above was designed to address specific re-
quirements. For instance, Google found out that SDN was the solution for its WAN
network requirements. Although SDN enables network programmability, the access and
programmability of Google’s network are restricted to small group of employees. On the
other hand, virtual network of testbed environments prove being more open for external
deployment of novel services, which is performed by authorized researchers. Considering
Public Cloud providers (e.g. Amazon AWS, Azure, and G Cloud), the access to the virtual
network occurs, in general, through a few predefined services, such as creating subnet-
works, multi-tenancy, DMZ, and configuring DNS servers. These services are developed,
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configured, and deployed previously by Private Clouds providers, while consumers of
such services are able just to configure some parameters of them. Even in Private Clouds
that adopt programmable virtual networks, the services running in the virtual network are
defined by network administrators and operators.

In summary, the access policies, roles and responsibilities are distinct over the several
PVN deployments. These characteristics in conjunction with some others define a busi-
ness model, which describe how the organization will create, delivery, and capture value
(social, economical, cultural, or other kind of value). There are in the literature some busi-
ness models related to PVN. For instance, Mosharaf et.al. (CHOWDHURY; BOUTABA,
2008) proposed in 2008 the Network Virtualization Business Model, which is depicted
in the Figure 2.4. In such model, Service Providers lease resources from Infrastructure
Providers and create services over that to negotiate with end-user. In turn, the Broker
negotiate resources and services among Infrastructure Providers, Service Providers, and
end-user. Finally, end-user are consumers of the services developed by Service Providers.

In another business model, proposed by Achemlal (ACHEMLAL, 2010), the Service
Provider role is split in Virtual Network Provider (VNP) and Virtual Network Operator
(VNO), as shown in the Figure 2.5. Whilst the former is responsible for constructing vir-
tual networks with virtual resources from InPs or from another VNP, the VNO assume the
responsibility for operating, controlling, and managing virtual networks. The existence of
a VNP above the InP shows necessary to provide abstractions that let VNOs to consume
resources from several InPs transparently, not worrying about resource convergence. The
end user is not mentioned in the model, but as described in the article, its role is similar
to the existing Internet users, with the addition of being able to attach their local network
to the virtual network that provides the services according to their needs.

Figure 2.5: Network Virtualization Business Model proposed by 4WARD project.
(ACHEMLAL, 2010).

From the end-user perspective, none of the presented models provides for the possibil-
ity to allow end-user themselves to develop, deploy, and manage novel network services
in PVN environments. In testbeds, the use of resources is restricted for experimentation
purposes and has exclusive access by researchers. Public Cloud environments usually
offers network services ready to use, not customizable and neither programmable. The
models found in the literature, proposed by Achemlal et.al. and Mosharaf et.al. follows
the same trend when describe end-user just as service consumers. It is advocated in this
dissertation that in order to really boost innovation in programmable virtual networks,
there should be considered the participation of end-user also as a network service de-
veloper. Unlike current models, which neglect their potential and interest in developing
innovative network services.
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3 CONCEPTUAL SOLUTION

In previous chapters a historical overview of programmable network research has been
presented. In addition, it was showed how this concept in conjunction with network
virtualization culminated in Programmable Virtual Networking (PVN). Then, analyzing
distinct PVN deployments, it was discussed about the role of end-users in current busi-
ness models. In this opportunity was outlined the shortcomings of such business models,
mainly in regards to the restrictive nature in the process of creation and deployment of
novel network solutions. Such shortcomings have encouraged the proposals henceforth
presented. At first, a novel business model is introduced. Then, in the following section,
an open, scalable, and innovation friendly platform targeted at implementing such novel
model is detailed.

3.1 Network Programming as a Service

Analyzing the network virtualization business model proposed by Boutaba, presented
in section 2.2, it can be noticed a three-tier architecture. With Infrastructure Providers
(InP) in the base, Service Providers (SP) in the middle, and End-Users on top. In order
to improve end-users participation in the creation of network solutions, it is necessary to
change their interaction with service providers. Toward this goal, it is proposed an in-
tegration of SDN architecture with the network virtualization business model defined by
Boutaba. In such integration, shown in Figure 3.1, infrastructure providers take respon-
sibility for the network infrastructure layer, also called forwarding plane or data plane.
Service Providers in turn assume the other two layers of SDN, Control and Application.

At the Control Layer, Network Services are implementations of network functions
with varying abstraction levels. Complex services, such as Firewall, Load Balancers, and
QoS, as well as simple procedures for changing packet header parameters or dropping
packets that match a specific pattern. Such services are available for end-users through
special APIs that allows them to develop network applications, which are stored and exe-
cuted in the Application Layer. Business Applications shown in Figure 3.1 are implemen-
tations of basic and recurrent services that can be available for applications of end-users.
More details and examples of these applications and services will be given later.

In order to allow communication between SPs and InPs, two protocols are required,
one for remote programming of network devices, and another for infrastructure manage-
ment. The first allows customizing the behavior of each node in the network and hence
can be used by network services to persist algorithm decisions. The latter allows manag-
ing virtual network infrastructures, which includes the creation, deletion and modification
of links, nodes, and settings. It is also necessary a protocol to allow network applications
to interact with network services. Whereas end-user applications depend upon such pro-
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tocol, it should preferably be standardized, at least within the same service provider.
From the end-user point of view, the service provided by the service provider allows

them to program networks. Due to this, the solution proposed here is called Network Pro-
gramming as a Service (NPaaS). According to the network virtualization business model
discussed, Service Providers are the responsible for developing and providing NPaaS di-
rectly or by means of Brokers to end-users, applying or not charges for that. In any
case, services of network programming should be enough for end-users to develop net-
work solutions in response to their own demands, and also enable innovation. Thus, in
the remainder of this section is presented a set of requirements considered essential to a
successful implementation of the NPaaS.
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Figure 3.1: Network Programming as a Service Architecture

Network slicing: The communication protocol used between InPs and SPs should
enable resources management of network, computing and storage. A subset of these re-
sources is called ”slices“, a term generally used in the context of testbeds. Given a ”slice“
request, SPs are not responsible for the provisioning and configuration of resources. Nev-
ertheless providers must translate requests from end-users according to protocols speci-
fication defined by each InP, which can differ from one to another. Web services can be
used to promote this communication, due to its flexibility in respect to the connection of
heterogeneous systems.

Abstraction models: The main goal of NPaaS is to encourage end-users to develop
and deploy novel solutions in virtual networks. In doing so, one of the main challenges
is finding a proper trade-off between programming granularity and simplicity. Network
solutions that perform operations in low-level network parameters require more complex
programming models, with less abstraction. On the other hand, simpler network solutions
can be easily programmed with higher abstraction levels, i.e. less granular. Balancing
such variables is important because complex models are not suitable for some end-users,
especially those with less experience in computer networks. The opposite also applies;
experienced users may require models with higher programming power. To illustrate, it
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may be more complex to write an application using a procedural programming language
than drawing a workflow.

Flexibility: Service providers are able to lease resources from many infrastructure
providers. However, the communication protocol employed for resource requisitions and
management may differ among providers. Due to this fact, service providers must em-
ploy a flexible approach in the communication with infrastructure providers. Supporting
varying control plane technologies is also important, once each one provides a different
set of network programming services.

Scalability: The amount of end-users may become large in some deployment environ-
ments. Therefore, the capabilities of service providers must be scalable in order to meet
high demands. Service providers must maintain and manage control plane resources,
which are used for storage and execution of network applications. It is worth noting that
scalability described here is not related to the infrastructure of virtual network, which is
related to the resources available in the infrastructure providers. It is related to the as-
sets demanded by programming tools and techniques, which are related to expandible
table rules, storage of network code, and scalable control plane. Another important re-
quirement is to keep running state of network applications, regardless of infrastructure
expansion or shrinkage.

Code Management: The life cycle of a network application in the context of Pro-
grammable Virtual Networking has four phases. (i) Development; (ii) Transference; (iii)
Storage, and (vi) Execution/Management. In the initial phase, end-users should be able
to develop the software – using abstraction models – as discussed in the second item.
Once the application has been developed, its source code1 must be in the right place for
execution within the infrastructure of service provider. According to the approach either
distributed or centralized, the source code must be transferred to one or several points.
After that, service provider must store such code, ensuring availability and integrity. Fi-
nally, end-users must be able to manage such storage, as well as the execution of its source
code.

Opt In/Out: There are two distinct computer networks involved in PVN scenarios.
The virtual network itself, built by infrastructure providers, and the access network, used
to connect end-users to the virtual networks. End-user interests in generating/receiving
traffic data to/from virtual networks may vary. They can choose to offer novel virtual net-
work services for consumers in the Internet, or deploy services in virtual network without
any external connection. Anyway, Service Providers should support and be ready for
creating such kind of connection, between internal and external networks points.

The set of requirements presented above guides the provision of NPaaS by Service
Providers within the context of Boutaba’s business model. However, different from the
end-user role definition found in Boutaba’s work, in NPaaS they are able to develop,
deploy and manage their own network services in PVN. NPaaS promotes innovation in
PVN by enlarging the set of people able to develop and deploy novel network service. As
a side-effect, NPaaS introduces greater management complexity, once service providers
must attend different and incremental network requirements.

In response to the increase in management complexity introduced by NPaaS busi-
ness model, in the following section it is introduced a PVN management platform called
ProViNet. It is targeted to sustain open PVN environments that implement NPaaS and
follows the requirements discussed above. ProViNet allows service providers to consume

1The final product generated by the development process is called generically source code, which in-
cludes any variation.
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Figure 3.2: ProViNet Conceptual Architecture.

resources from different infrastructure providers and introduces a novel network program-
ming strategy, more comprehensive and user friendly. To begin with, a general description
of ProViNet architecture is given. Then, ProViNet modules are detailed in the remaining
sections according to a bottom-up approach, in regards to network abstraction level, i.e.,
from infrastructure issues until network programming strategies.

3.2 ProViNet: Programmable Virtual Network Management Plat-
form

The architecture shown in Figure 3.2 illustrates the conceptual components of ProViNet
platform. More precisely, it presents two major components ProViNet Core and Scalable
Control Plane (SCP). There are three modules inside the ProViNet Core, which concen-
trate all business logic, access policy and configurations of the platform. SCP, in turn,
provides the technology and resources necessary to host a scalable, robust, and high
available virtualized environment, in which controllers can be quickly created, deleted,
and migrated in response to the varying demand of end-users. From the top, end-users
interact with ProViNet through End User Interfaces module. At the bottom, enabled by
PVN Control module, ProViNet communicates with one or more Virtual Infrastructure
Provider (VIP) in order to manage programmable virtual network infrastructures.

ProViNet was designed to enable NPaaS deployments, providing the necessary soft-
ware functions to manage virtual network infrastructure, network applications develop-
ment, and execution. In the following subsections, each ProViNet module is detailed,
showing how it contributes to addressing such functions. On this occasion, technologies
and implementation details are not important, but the approaches and strategies employed
by each module to meet the requirements described in the previous section, such as flexi-
bility, scalability, and code management. Technical details are covered in the next chapter,
when a prototype of ProViNet is presented.
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3.2.1 Managing Virtual Infrastructures

End-users interested in having a virtual network with custom services, developed by
themselves, must have in mind that the first step is to build such network. PVN Control is
the ProViNet module responsible for enabling the management of virtual network infras-
tructures, including the creation of virtual networks and configuration of control plane.
Virtual links, hosts, and switches are technically provided by VIPs, but management of
these components is performed by end-users, through the features available at the PVN
Control module. From a virtual network topology previously described by end-users, this
module send requests of creation and deletion of nodes, links, and hosts to VIPs. There
are no restrictions in regards to topology structure, but different VIPs may define dis-
tinct policies. In a hypothetical example, a virtual network organized as a bus topology,
with two hosts could be described in a special file and sent to ProViNet, which in turn,
elaborate the necessary requests to the VIPs that will in fact build such network.

Virtual networks requested by ProViNet are kept in VIPs infrastructure, what makes
them responsible for granting isolation between distinct virtual networks, availability of
resources, and manageability. As mentioned, VIPs also provide virtual hosts. So, end-
users must have access to such hosts in order to deploy services, softwares and configure it
according to their necessities. ProViNet is compatible with multiple VIPs, allowing end-
users to choose the VIP that provides better services, resources, and guarantees, such as
reconfiguration of network links, resources expansion, and host migration. Furthermore,
VIPs may vary in regards to the approach used to access the virtual network from outside
their infrastructures, as discussed in Opt In/Out requirement in the last section. End-user
may not be interested in having an isolated virtual network. External connectivity may
enable their virtual network to communicate with the Internet or even private networks
located abroad. This is also another important factor to be analyzed when choosing VIPs.

After virtual network provisioning, it is necessary to build a control plane and config-
ure it to communicate with the virtual network. In response to end-users demands, PVN
Control send requests to the Scalable Control Plane, ordering the creation of controllers.
Then, information about the controllers created, such as IP address and location, are sent
to VIPs, which must configure virtual network switches to report to the controllers cre-
ated at the SCP. This approach provides scalability, once it is possible to create controllers
according to SCP resource availability, which is supposed to be elastic. On top of that,
controllers at the SCP are organized in clusters, one for each virtual network. So then,
it is possible to set different control plane availability levels for distinct virtual networks.
The High Availability (HA) strategy proposed here defines that each cluster must have at
least one controller with the role master, which means, in production and active. In case
of failure, another controller, with slave role must assume master’s tasks.

3.2.2 Network Applications Management

In traditional network devices, applications that provide forwarding, routing or other
functions are integrated in the devices, such as OSPF, IS-IS, and BGP protocols. As a
distributed system, each device exchanges information in a switch-to-switch approach
until the convergence or synchronization. In programmable networks that follow SDN
architecture, network features are developed and deployed outside of network devices. In
ProViNet, Network Application Management is the module responsible for storing, orga-
nizing, and running network applications. So, all innovation in terms of novel network
features, developed by end-users, are deployed in this module.
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Application and control planes, defined by SDN, are represented respectively by Net-
work Applications Management and Scalable Control Plane modules. These planes run
separately from each other. In doing so, control plane features are provided as Web Ser-
vices through standard interfaces to external network applications. For example, if a net-
work application needs to set a forwarding rule in a specific switch, it sends a remote call
to the control plane, which in turn, interprets and executes the necessary communication
with the virtual switches, finaly returning a response to the application. This approach
differs from the one played in most SDN deployments, in which network applications
are tightly coupled in control plane implementations (such as NOX (GUDE et al., 2008),
Trema2, and Beacon3). Avoiding such strong integration is important to prevent tech-
nology dependence, and foster the easy replacement of control plane technologies and
network applications migration.

In regards to the standard interfaces mentioned, there is a common sense that es-
tablishes the use of “Southbound” and “Northbound” terms to describe API responsibil-
ity within the SDN architecture. In general, those APIs that enable interaction between
control plane and forwarding plane are called “Southbound API” (SBAPI), and between
control plane and network applications are called “Northbound API” (NBAPI). Although
there is no consolidated standard on either API technologies, in practice most SDN de-
ployments use OpenFlow as SBAPI, and Representational State Transfer (REST) based
protocols as NBAPI. In the proposed architecture, NBAPI is employed in requests be-
tween network applications, at the Network Application Management, and master con-
trollers (CTL) at the Scalable Control Plane. SBAPI in turn enables the communication
between controllers and virtual switches in the virtual infrastructure provided by VIPs.

Remarkably, the connectivity between SCP – control plane – and virtual networks in
VIPs infrastructure – forwarding plane – is critical (LEVIN et al., 2012). Virtual network
behavior is defined by the control plane. So, failures in receiving or sending network
control information may lead to inconsistencies in routing protocols and services. Several
strategies can be used to overcome this situation. One of them is to previously configure
virtual switches with a standard behavior, which is performed in case of control plane
unavailability. Examples of standard behavior are to drop every arriving packet and to
send back a special response to the packet origin. Certainly variations of these strategies
are also possible. Failures could also be avoided if there is good network connectivity
between such planes. With this in mind, using network links exclusive to transport control
traffic is also valid.

3.2.3 Network Applications Development

Network services must be aligned with business demands, either from industry, academy
or other organizational type. Attending such demands involve tuning and deploying net-
work device and services. Historically, network services were bought altogether with
devices, as a full package. In order to have a new feature in the network device, com-
panies should either update software or upgrade hardware components of such device,
which is usually compatible just with the same vendor product line. Such reality shows
that for decades consumers of network services and devices were subject to vendors inter-
ests. As a consequence, specific demands are not met, or require great efforts to develop
ad-hoc solutions, usually with low performance.

With programmable network devices, it is expected a rise in the amount of network

2http://trema.github.io/trema/
3http://openflow.stanford.edu/display/Beacon/
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software solutions, enabled by the use of open and programmable devices. However, the
development of such network softwares, performed in traditional networks by network
device vendors, is now responsibility of someone else. ProViNet and NPaaS represent a
line of thinking in which end-users must take part of such responsibility. But, considering
their heterogeneous level of knowledge, in regards to network concepts and technical
foundations, it may be initially hard to translate their business necessities into network
softwares. It is strictly necessary provide a better and faster integration of end-users
business demands and network applications.

Considering that applications can be seen as a sequence of processes, and that, sim-
ilarly, a workflow defines a sequence of processes, it is proposed here the use of Busi-
ness Process Modeling Notation (BPMN) as a language to develop network applications.
In this way, end-users are able to develop network applications (workflows) by simply
arranging graphical elements defined by BPMN. In other scenarios BPMN is used by
executives, directors, and strategists to specify business process using Business Process
Diagrams, which are based in flowcharting techniques. At a first glance, BPMN looks too
abstract to represent network application routines, such as analyzing packet header values,
or setting QoS parameters. However, the separation of network features in different ab-
straction levels, defined by SDN concept, have allowed the use of high level languages to
manage and control network behavior. Using a bottom-up approach, the following topics
give an overview of ProViNet strategy to enable the employment of workflows as network
applications to control network devices behavior.

Forwarding Plane – In programmable devices defined by SDN, the action to be taken
upon each packet or flow is defined as forwarding rules, which are manageable by exter-
nal devices, called controllers, located in the control plane and deployed in the SCP of
ProViNet. This way, through SBAPI, forwarding device behavior can be defined accord-
ing to higher-level decisions taken at the control plane.

Control Plane – From one side, applications running in controllers at the SCP use
SBAPI to communicate with forwarding devices at VIPs infrastructure, receiving reports
about network traffic and sending forwarding rules in response. From the other side, the
control plane provides the necessary abstractions to allow applications to use higher-level
calls to program and configure the network. Due to this “translating” service performed by
the control plane, it is common to call such plane as Network Operating System (NOS)4.
Similarly, Operating Systems translate high level calls from applications to system calls.
So, for instance, if an application intends to enable a point-to-point communication, in-
stead of elaborating and setting forwarding rules individually to each network device
along the way, it sends to the control plane just a simple request with two parameters,
the initial and final point IP addresses. The control plane, in turn, elaborates and sends
the necessary forwarding rules to devices. Similarly, the control plane could provide ab-
stractions to other services such as Firewall, Load Balance, QoS, or simple change of
packet parameter header.

Application Plane – At this level, end-users must be capable of developing network
applications using a simple and easy understanding language. To accomplish this goal,
End-User Interfaces module works in conjunction with Network Application Management
to provide the necessary tools and graphical elements to support network programming.
As explained in the last topic, NOS makes available a set of services for use in exter-

4In the past, the term network operating system referred to operating systems that incorporated network-
ing (e.g., Novell NetWare), but this usage is now obsolete. Such term was resurrected to denote systems
that provide an execution environment for programmatic control over the full network.
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nal applications. This way, such services must be firstly described and then imported in
ProViNet as graphical elements, becoming available into the network application inter-
face. In most NOS implementations, these services are implemented as Web Services,
so it is possible to use Web Services description files (such as WSDL and WADL) for
the purpose here described. After the inclusion of service descriptions in ProViNet, the
End-User Interfaces module builds a graphical programming environment, associating an
object to each service, in addition to the regular elements defined in BPMN.

The graphical elements defined in Business Process Diagrams are sorted in Events,
Gateways, Activities, Connecting objects, Swimlanes, and Artefacts. Events are used to
represent situations that happens during the process, and usually have a cause (trigger) and
an impact (result). In turn, Gateways are employed with the aim of either split or merge
process flows, optionally based in conditions. When necessary, Activities are meant to rep-
resent works or tasks that must be performed during processes. In an effort to have these
elements coherently connected in a logical sequence (essential to support the workflow
execution), BPMN defines some Connecting objects, such as the ones used for represent-
ing normal, conditional and sequence flows, message flows, and associations. Swimlanes
are used to represent the assignment of different responsibilities within or among orga-
nizations, or systems. At last, Artefacts serve to aggregate additional information about
processes.

As discussed in Abstraction models requirement, in Section 3.1, NPaaS solutions must
provide to end-users a programmatic approach to develop network applications in differ-
ent granularities. Thus, end-users with varying experiences in computer networks and
programming languages are able to develop novel network applications. The approach
of using BPMN as a programming language to develop network applications is straightly
aligned with this requirement. Workflow processes within ProViNet platform are repre-
sented by graphical elements that, in turn represent control plane services. In doing so,
the granularity of network applications developed as workflows depends on control plane
services available. For example, high-level network services, such as Firewalls, could be
available as well as low level services, such as setting forwarding rule to a specific kind
of network traffic. This flexibility results in a large range of services and possibilities of
process combinations when creating workflows.

In addition to network services available in the control plane, it is possible to use
other resources of Web Services. In the workflow depicted in Figure 3.3, there is a simple
example of network application, in this case an intrusion detector that sends an email to
network administrators in case of intrusions. Note at the top a very small set of services
available. Conversely, in real deployments this amount may increase significantly, with
the addition of control plane services and other Web Services.

3.2.4 Network Applications Execution

There are currently available several tools for workflows edition and orchestration.
They are known as Enterprise Service Bus (ESB). Some of them are open source, such
as Intalio, but the majority, such as Oracle ESB and IMB Websphere ESB are propri-
etary. Notwithstanding, none of them consider the peculiarities involved in executing
workflows as network applications. For this reason, it is introduced within ProViNet a
special workflows editor and orchestrator. As depicted in Figure 3.4, several services are
listed in ProViNet GUI interface. Not only those available in the NOS but also the ser-
vices provided by network Service Providers and by external Web Service providers, such
as Google and Yahoo!. Interacting with such interface, end-users are able to manipulate
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Figure 3.3: Workflow implementation of a simple intrusion detector application.

such services and BPMN graphical elements to draw workflows. In order to execute the
sequence of services and logical operations described in workflows, Network Application
Management module adds such services into a Services Execution Queue.

Services in the Services Execution Queue are forwarded to controllers by NBAPI Dis-
patcher, a component of Network Application Management module. One by one, services
are firstly edited to have as destination address, a master controller inside the Control
Cluster related to the virtual network that such network application is being developed for.
As a result of the infrastructure provisioning process, the network address of such con-
trollers (composed by IP and Web Service URL reference) are available in the ProViNet
internal database. Controllers, in turn, process the requests of each service either by using
SBAPI to communicate with the nodes that form the virtual network, or by consulting in-
ternal system parameters and statistics. Controllers have a global view of virtual network
topology under its control. Because of this, some information requires just an internal
look up, such as running state of links and nodes, as well as statistics about data traffic.

Some services require input parameters, such as point-to-point connectivity, which
requires at least the specification of initial and final points. Such parameters can be either
provided through GUI interface, or forwarded from the response of a previously executed
process. Partial results can be displayed in ProViNet Web GUI after individual process
execution, or after executing all processes in the Queue. An initial aproach of workflows
validation were developed. Currently, it just check the multiple or absence of starting and
end points.

Some BPMN logical elements require special computation, such as Timers, Condi-
tionals, and Sub-process. They may define a nonlinear execution, what makes impossible
using just an execution queue to control the sequence of processes. For such special cases,
distinct algorithms are employed. Simple Conditionals, for instance, makes necessary to
split the original queue into two other queues, one to track the processes after a true con-
dition, and another after a false condition. Workflow execution algorithms are well dis-
cussed in the literature and several variations have already been proposed (SCHUSTER,
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Figure 3.4: Network Application Execution approach.

2005). A discussion about these algorithms is not in the scope of this dissertation, once
that irrespective to the one employed, final results are the same, differing in performance
only.

Each workflow represents a network application, or part of one. Such representation
can be exported to other file formats and used by other end-user as modules into their
applications. Furthermore, workflows files can be negotiated as softwares, inducing the
emergence of a new market. In which end-users and network companies are able to com-
pete for better and innovative network solutions. With some adaptations, workflows de-
veloped within ProViNet platform can became compatible with already existing workflow
Enterprise Service Bus. Such compatiblity would enable a faster adoption of NPaaS.
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4 PROTOTYPING PROVINET PLATFORM

In the last chapter was presented NPaaS concept as well as ProViNet platform. Aim-
ing to demonstrate the feasibility of the conceptual architecture detailed in Section 3.2, in
this chapter a prototype of ProViNet is detailed. In contrast with the discussion presented
before, details about implementation are given here. The prototype implementation de-
scribed in this chapter regards ProViNet Core only. The remaining components depicted
in the architecture of Figure 3.2, such as Scalable Control Plane and Virtual Infrastructure
Provider are external components and just interact with the prototype. ProViNet system
is Web based and is accessible through browsers in devices such as PC, Tablet, and Smart
Phones. All modules of ProViNet were implemented using the framework Django 1.4.3,
the programming language Python 2.7.3, and PostgreSQL 9.1.6 database management
system.

Prototype components presented hereinafter follow the same order that an end-user
would follow to use ProViNet features. The most initial step is to register and login
into the platform authentication module. But, this step is very simple and self-evident.
Then, the first step described is in regards to programmable virtual infrastructure provi-
sioning process, which includes defining control plane configuration and virtual network
requisition. After that Network Application management issues, such as developing and
executing are detailed.

4.1 Programmable Virtual Infrastructure Provisioning

Infrastructure management is a critical feature in any network management software.
Although ProViNet management platform does not interact directly with physical network
infrastructures, it provides to end-users the necessary features to manage virtual networks
through APIs. Such APIs allows ProViNet to communicate with external entities that
indeed provide virtual infrastructures. Programmable Virtual Networks are composed by
two layers of infrastructure: virtual networks and its control plane. As will be clarified
in next subsections, it is proposed here to keep both layers in virtual environments. The
first, named Scalable Control Plane is detailed firstly in the next subsection. Then, in
the subsequent subsection, the second layer is presented, which is controlled by Virtual
Infrastructure Providers (VIP) and managed by ProViNet.

4.1.1 Scalable Control Plane

In ProViNet, the control plane is implemented in a virtualization environment called
Scalable Control Plane (SCP), as shown in Figure 4.1. Such environment provides fea-
tures similar to the ones found in Cloud Computing environment. Such as virtual machine
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creation, deletion, and migration. The SCP was deployed with XenServer (SYSTEMS,
2010), and the communication with this server were enabled by XenAPI, both provided by
CITRIX. Using this API, PVN Control module is able to perform Remote Procedure Calls
(RPC) to XenServer. This technology allows the configuration of a set of XenServers to
work as a ”pool“ of resources. This way, a scalable environment is achieved, once the
amount of servers is expandable. Within such scalable ”pool“, virtual machines are able
to move among servers aiming to save energy, reduce delays, or even balance servers
demand, moving VM to less busy servers.

Virtual machines created in the SCP runs an OpenFlow compatible controller tech-
nology, which, in current ProViNet implementation, is the FloodLight1. Another control
plane software cold be used, such as Trema and Open DayLight. FloodLight was chosen
because it support Representational State Transfer (REST) and provides plenty of ser-
vices, such as Firewall, Point-to-Point connection factory, flow rule configuration, and
provisioning of network state information. Besides that, it is possible to develop addi-
tional services and deploy it in FloodLight controllers.
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Figure 4.1: Scalable Programmable Virtual Network Infrastructure

Interacting with the ProViNet management interface, shown in Figure 4.2, end-users
are able to add or delete controllers in the control plane. Each controller creation or
deletion command is followed by a request from PVN Control to the SCP. For the sake of
agility, a VM is previously configured with FloodLight and deployed in XenServer. This
way, when end-users request a controller by clicking in the button Add Controller, PVN
Control triggers a request2 to XenServer Pool requesting to clone such VM. There is also
in this VM a script responsible for starting FloodLight services shortly after booting the
OS. Then, with the VM already running, PVN Control triggers another call to check VM
information, such as IP address, and running-state, which are persisted in a previously

1http://www.projectfloodlight.org/floodlight/
2session.xenapi.VM.clone(vm_base_name, vm_cloned_name)
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Figure 4.2: ProViNet Management Interface sreenshot.

configured database of ProViNet. In order to keep updated the Status column of ProViNet
management interface, running-state is checked every minute.

Controllers requested by end-users take part of high available control plane, the Con-
trol Cluster. Considering that OpenFlow is the technology adopted in forwarding plane
devices, it becomes able to communicate with multiple controllers, which in turn assume
one of the following roles: master, slave, or equal. These roles permeate two kind of poli-
cies. (i) One defines that switches must report events to the master properly configured
and active, which in turn reply with the appropriate flow rules. In case of failures in the
master controller, another controller previously configured as slave may assume master’s
role. While in slave state, controllers are able to read reports from switches, but unable
to reply. (ii) Conversely, if all controllers assume equal role, all of them are able to read
devices’ report and write flow rules in response. In this case, a stateful synchronization
between controllers is required to ensure coherence of decisions.

If ProViNet is configured with the policy (i), the first controller requested assume
master role, and the following, slave role. This way, if master controller fail, its status
will change from ”running“ to ”turned off“, and a randomly chosen slave controller will
take responsibility of master role. However, if policy (ii) is set, every controller will be
created with the role equal. In this case, requests from applications to the control plane
will follow a Round Robin algorithm to choose the targeted controller. Each Control
Cluster can be associated with at most one virtual network slice. The creation of such
slice is discussed in the next subsection.
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4.1.2 Virtual Infrastructure Provider

A complete PVN environment is composed by a virtual programmable infrastructure,
network control software, and network applications. In this section it is discussed about
the former, which is comparable to SDN forwarding plane. PVN Control module is the
ProViNet component that provides the necessary features to manage such virtual pro-
grammable infrastructure. As depicted in Figure 4.1, PVN Control communicates with
Virtual Infrastructure Providers (VIP) through HTTP calls following REST architectural
style.

ProViNet prototype was initially configured to work with a platform called Aurora
(WICKBOLDT et al., 2012), which is actually the only VIP, based in private Cloud, that
supports custom programmable virtual network topology requests, and is compatible with
ProViNet. In addition to virtual hosts, this platform creates virtual network topologies
using virtual instances of switches, actually OpenvSwitch. In addition to that, Aurora
is able to configure such virtual instances to receive control information from external
controllers. In Programming Network as a Service business model, VIP role could be
assumed by existing infrastructure providers.

In order to enable resource allocation from multiple providers, the communication
between ProViNet and VIPs is implemented as plug-ins, one for each provider. But, as
an effort to keep interoperability and compatibility with ProViNet services, VIPs must
comply with some requirements, such as: (i) support a communication protocol that grant
authenticity, integrity, and reliability; (ii) be able to technically manage programmable
switches, thus enabling the building of Programmable Virtual Network (PVN) topologies,
finally, (iii) VIPs must be able to attend requests of arbitrary network topology, regardless
of the physical one.

Currently, ProViNet and Aurora exchange topology information, such as links, hosts,
and virtual switches, by means of an XML file. These three elements are specified along
with specific parameters, such as link bandwidth and latency, host capacity in regards to
memory, storage, and operating system, and virtual switch ports. There are several de-
scription models available to build such file, such as Rspec (GENI), NDL-OWL (RENCI),
NMC (OGF) and Virtual Resources and Interconnection Networks Description Language
(VXDL) (KOSLOVSKI; PRIMET; CHARãO, 2008). VXDL is employed in ProViNet
because such language is able to represent in simple and clean XML all details of a vir-
tual infrastructure, including virtual machines, switches, and links. In order to better
understand VXDL, the following sample is highlighted, which describes a simple topol-
ogy with two machines, two switches, and three links. One link from each machine to
different switches and one link connecting the two switches.

<virtualInfrastructure id="SimpleTopo" owner="admin">
<vNode id="Node1">

<cpu>...</cpu>
<memory>...</memory>
<storage>...</storage>
<image>...</image>
<interface>...</interface>

</vNode>
<vNode id="Node2">...</vNode>
<vRouter id="Switch1">

<controlPlane layer="" routingProtocol="" type="">
</controlPlane>

</vRouter>
<vRouter id="Switch2">...</vRouter>
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<vLink id="Link1">
<bandwidth>...</bandwidth>
<latency>...</latency>
<source>

<vNode>Node1</vNode>
<interface>net0</interface>

</source>
<destination>

<vRouter>Switch1</vRouter>
</destination>

</vLink>
<vLink id="Link2">...</vLink>
<vLink id="Link3">...</vLink>

</virtualInfrastructure>

VXDL specification does not define tags to represent controllers associated to the vir-
tual switches described (which are programmable according to SDN architecture, i.e.,
with external control plane). Defining controllers is critical to enable high-availability
approaches described in Subsection 4.1.1. In order to overcome such VXDL limitation, it
is proposed some additional XML tags. controllerList represents a list of controllers
and is identified by id attribute. Within this list, multiple controller tags can be nested,
and each one has the attribute type="", which is used to inform whether the controller
in the list is master, slave, or equal. In addition, configuration parameters such as port,
protocol, and IP address required by forwarding devices are represented by tags hierarchi-
cally positioned bellow controller. Taking the same network topology example given
before in VXDL, the representation of two controllers would be added as follows:

...
<vRouter id="Switch1">

<controlPlane layer="ETHERNET"
routingProtocol="OpenFlow" type="dynamic">
controllerList1</controlPlane>

</vRouter>
<vRouter id="Switch2">

<controlPlane layer="ETHERNET"
routingProtocol="OpenFlow" type="dynamic">
controllerList1</controlPlane>

</vRouter>
<controllerList id="controllerList1">

<controller type="master">
<connection_type>tcp</connection_type>
<ipAddress>xxx.xxx.xxx.xxx</ipAddress>
<port>6633</port>

</controller>
<controller type="slave">
...
</controller>

</controllerList>
...

In the current version of ProViNet such VXDL file must be elaborated manually by
end-user, though, without information about control plane. With such file ready, they
upload it through a form in ProViNet interface. Then, PVN Control use the controller
information previously obtained after control plane provisioning, described in Subsection
4.1.1, to create control plane related tags and add it to the VXDL file. Only after that the
file is sent to VIP in an HTTP request.
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After properly instantiation and configuration of the virtual infrastructure, the VIP
sends back to ProViNet an HTTP answer with request results. In case of failure, the cause
is specified. In case of success, PVN Control redirects the end-user navigation to the
Aurora management interface shown in the screenshot depicted in Figure 4.3. In which
end-users can visualize information and control the virtual resources. Hosts, for example,
are listed below VMs label, altogether with control commands to change host running
state, migrate hosts to different locations as well as access host console.

Figure 4.3: Aurora: Resource access information screenshot.

Virtual Routers and Virtual Links are also shown to end-users. From this interface
they can delete virtual links and routers. Conversely, any addition of resources or topology
change requires a new VXDL elaboration and submission to ProViNet. In further versions
of ProViNet and Aurora, such changes will be available in a graphical mode. In addition
to the deleting option, in current versions end-user have a general overview of virtual
infrastructure topology, as shown in Figure 4.4. Moving the objects, end-user can organize
the topology in order to have a better understanding.

4.2 Network Application Management

In Section 3.2.3 of the last chapter, it was discussed about reaching a broad range
of end-users, with heterogeneous experience in computer network and software develop-
ment. To this end, it was proposed the use of BPMN to develop workflows as network
applications. The ProViNet prototype part that implements such functionality is presented
in this section. Prototype details are split into two subsections. In the first one, an inter-
face, based in flowcharting techniques, created to allow end-users to develop workflows
graphically is presented. Then, in the following subsection, details about how ProViNet
enable the management of workflow execution and present outputs are given.
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Figure 4.4: Aurora Virtual Network topology screenshot.

4.2.1 Developing

Before describing the network application development, it is important to clarity the
procedure of bootstrap and configuration required by ProViNet. According to the work-
flow development approach discussed in Section 3.2.3, a set of BPMN graphical objects
are presented in the interface, such as Events, Gateways, Activities, Connecting objects,
Swimlanes, and Artefacts. In face of such graphical objects, end-users are able to create
workflows that represent complete network applications. However, in ProViNet platform,
Activities represent external Web Services, either those provided by control plane technol-
ogy or other providers. So, in order to show to end-users a list of services, it is necessary
to register them into ProViNet.

To configure services in ProViNet, the Web Services description file is necessary.
Such file is either a Web Services Description Language (WSDL), for SOAP servers or
Web Application Description Language (WADL) for REST servers. Service providers
usually keep such file publicly available. ProViNet platform support multiple service
description files, either from control plane technologies or public Web Service providers.
As an example, it is possible to register FloodLight, Yahoo!, and Google mail service.
Then, based in the services registered, ProViNet mount the graphical interface shown in
Figure 4.5. Interacting with such an interface, end-users can drag and drop the graphical
representation of services and BPMN components from the list in the left side to the
center, composing workflows. The development of such interface was possible with the
use of WireIt javascript library.

To better understand ProViNet network application, it is presented also in Figure 4.5
a simple network application. In such application the first object is the starting point, de-
fined by BPMN, then three control plane services appears. The first check Firewall status,
the second change it to ”Enable“, and the last check it again. The output of each service
is shown at the right side in the ”Output Terminal“ box. Certainly more complex services
could be developed, using different services and achieving deeper network details, such
as packet header analysis. But the example presented is enough to visualize a network
application developed in ProViNet graphical network application developer.
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Figure 4.5: ProViNet Graphical Development Interface.

4.2.2 Executing

Regular programming languages are usually interpreted or compiled and executed.
During network application development in ProViNet, WireIt library keep network appli-
cation graphical representation also in XML or JSON format. Enabling end-users to save
and load applications. Although neither XML nor JSON are programming languages,
ProViNet interpret it as such, because it represent workflows, which are developed us-
ing BPMN visual programming language. Ideally, ProViNet should have a converter of
WireIt output formats to Business Process Execution Language (BPEL), which can be
executed directly.

Once BPEL converter is not yet created, ProViNet has its own XML/JSON inter-
preter. Discussed in Section 3.2.4 and illustrated in Figure 3.4, it is composed by execu-
tion queues and an HTTP dispatcher. Parsing the xml/json file, ProViNet follows the path
defined in the network application, adding the Activities and Gateways in arrays. Each
service is represented by an ID that was given in the moment of registration in ProViNet.
So there is in the database associations of IDs and service references. After parsing the
whole file, an executor function is started, which consumes the array elements in the same
order that it was added. The service associated to each ID is retrieved from database and
forwarded to a HTTP request dispatcher. If it is a control plane service, HTTP dispatcher
will also retrieve the targeted controller address. Then the request is send to the desti-
nation address that is composed by the controller address concatenated with the service
reference. Otherwise, the full service reference is used as destination.

For each service dispatched, a reply is expected. It could be just an acknowledge or an
result of the request service. If it is a result, ProViNet adds such response in another array,
keeping track of the requester service ID to which the reply was given. Finally, all results
are presented in the output area located at the right side of ProViNet network application
graphical developer. In the example shown in Figure 4.6, an application check Firewall
status, then set a new Firewall rule, and finally check status again. In this example all
services are targeted to the control plane, which in this experiment was the FloodLight
controller.

As defined in FloodLight Firewall REST API3, ALLOW and DENY examples of

3http://www.openflowhub.org/display/floodlightcontroller/Firewall+REST+API
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Figure 4.6: Network Application that changes Firewall status.

”Firewall Set“ requests are given respectively below:

var ALLOW = ’{"src-ip": "10.0.0.3/32", "dst-ip": "10.0.0.7/32"}’;
curl -X POST -d $ALLOW http://localhost:8080/wm/firewall/rules/json

var DENY = ’{"src-ip": "10.0.0.4/32", "action":"DENY" }’;
curl -X POST -d $DENY http://localhost:8080/wm/firewall/rules/json

In the first example, all traffic that the IP source address match ”10.0.0.3/32“ and
destination IP address match ”10.0.0.7/32“ is allowed. In the second, all traffic with
destination IP address matching ”10.0.0.4/32“ is blocked.

The approach of network programming described in this section has the main objective
to be simple, so end-users can easily create novel network applications. As mentioned
in the beginning of this Section, our challenge is to provide a simple approach without
loosing granularity or level of programmability. Drawing workflows is a simple task and
may not represent much complexity to end-users. Regarding the granularity, it is directly
related to the services available by controller technologies. For instance, with the current
technology deployed, which is Floodlight, available services allow the development of
applications to control network from OSI Physical Layer (L1) to Transport Layer (L4). In
order to give a better overview of ProViNet prototype it is available at YouTube a demo
video4.

4http://www.youtube.com/watch?v=IAoTHAQmFnQ
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5 EXPERIMENTAL EVALUATION

In Chapter 3 it was presented NPaaS business model and ProViNet platform. At that
moment it was mentioned that ProViNet is a platform designed and developed to support
NPaaS business model. In this chapter, qualitative and quantitative evaluations are pre-
sented in regards to ProViNet. Firstly, after the definition of some criteria the platform is
qualitatively evaluated and compared with some of the network programming solutions
described in Section 2. Then, the platform is evaluated based in performance analysis of
ProViNet prototype, which was employed in an use case of physical infrastructure migra-
tion to Cloud Computing, a recurring situation in recent times. The qualitative comparison
demonstrates the uniqueness of ProViNet, while the performance analysis illustrates that
such platform and the prototype developed shows acceptable performance results.

5.1 Qualitative Comparison

Considering end-users point of view, some features considered essential to make net-
work programming simpler, manageable, accountable, and user friendly are character-
ized. After that, in Table 5.1 remarks about the network programming solutions presented
in Chapter 2 are given in contrast to NPaaS business model. Worth mentioning that NPaaS
is not evaluated, once that business models are in general too abstract. However, once
ProViNet implements all NPaaS requirements, validating such platform it is expected that
the business model is also valid.

End-user Access Policy: Regarding end-user access limitations, network program-
ming solutions are classified into: Inaccessible, for the cases when end-users are not con-
sidered in the procedures of network application creation, deployment, and management.
Restricted means that end-users are able to create and deploy their own network solu-
tions, though they must request special permissions in advance. In testbed environments,
for example, users are usually authorized to use their resources after justification analy-
sis, and during predefined periods. And, finally, network programming solutions could
define end-user policy as Accessible, i.e., they are able to freely require virtual resources,
develop, and deploy custom network solutions.

Resource Organization Method: Different infrastructures could be used to instanti-
ate virtual networks and virtual machines. Generalizing, such resources could come from
Data Centers, Universities, or Research Laboratories. Testbeds, for instance, follows a
Federation model, in which Research Laboratories and Universities can register in the
federation as long as they contribute with resources to the global network deployment.
Proposals are then generalized into two categories, Federation or Data Center organiza-
tion method.

Network Topology: Some network programming solutions enable end-users to re-
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quest virtual network and virtual machines disposed in custom topology, totally indepen-
dent from the physical substrate present in Infrastructure Providers. In other solutions,
end-users are able to request virtual network topologies limited to the physical distribu-
tion of nodes and links. Finally, it may be of interest that network topologies do not differ
from a predefined set of topologies, such as Star or Bus. Concerning this topic solutions
are classified into Physically Dependent, Physically Independent, or Virtually Limited.

Resource Description: Network programming solutions may vary in regards to the
approach used to describe virtual infrastructure. It could be employed Virtual Infras-
tructure Description Languages (VIDL) to represent the network topology and be sent to
virtual infrastructure providers. Alternatively, solutions could use a graphical interface to
enable end users virtual network requests. The proposals are classified whether VIDL or
Graphical.

Resource Request Method: Graphically drawing Slices has the drawback of one-by-
one definition, what means that end-users must choose individual topology components
and configurations one at a time. Such approach may be a problem in larger slices. Con-
versely, if the user can just send the whole slice definition at once, using a VIDL file,
it may be faster. Certainly, there are a previous moment when end-user prepare the file,
but such process could be easily automated. So the proposals may vary in One-by-one
Requests, At Once Request Submission and Both support.

Granularity or Programming Level: The operational scope of network applications
may be different among each solution. Usually higher programmability levels comes with
higher complexity. Depending on the programmer experience and knowledge, higher lev-
els of granularity would allow broader programming scopes. From the standpoint of end-
users, the programming procedure must be simple but with enough granularity to build
groundbreaking network applications. Solutions are able to provide granularity levels
from Physical Layer (L1) to Application Layer (L7) of OSI reference model.

Control Plane Management: In the SDN architecture the control plane runs out of
network devices, more precisely in an external machine (called controller). This con-
troller could be placed in a physical or virtual environment, since it has network access to
the forwarding network device under its control. Furthermore, most forwarding devices
support High Availability (HA) feature, accepting the configuration of more than one
controller. Many network programming solutions assigns to users the responsibility to
manage the control plane. However, if such control is assumed by the network program-
ming solution, users can concentrate on network applications development. Considering
the exposed, solutions are classified by its level of management. If the solution supports
HA, creation of controller instances on demand and automatized forwarding plane config-
uration it is classified as High Level. If it support just two of the mentioned management
features, it has Middle Level and if just one is supported it is considered Low Level.

Target Public: In general the proposals were developed to attend specific users re-
quirements. The testbeds, for example, intend to provide experimental resources to Re-
searchers. Conversely, Cloud providers tend to develop proposals of network programma-
bility having Cloud Operators as the main customer. And finally business models such as
NPaaS focus in end-users.

The proposals presented in the Table 5.1, OFELIA Control Framework, CITRIX DVS
and ProtoGENI were omited from Section 2 because it helps understand our solution,
while the papers described there helps understand the problem. In addition to them,
ProViNet is compared to a generic solution that is implemented with the integration of
OpenStack and Quantum technologies. OpenStack is a platform for managing Cloud en-
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Feature ProViNet OFELIA
Control
Frame-
work

ProtoGENI CITRIX
DVS

OpenStack
& Quan-
tum

End-user
Access
Policy

Accessible Restricted Restricted Restricted Accessible

Resource
Organi-
zation
Method

Data Center Federations Federations Data Center Data Center

Network
Topology

Physically
Indepen-
dent

Physically
Dependent

Physically
Indepen-
dent

Virtually
Limited

Virtually
Limited

Resource
Description

VIDL
Compatible
(VXDL)

VIDL Not
Compatible

VIDL
Compatible
(RSPEC)

VIDL Not
Compatible

VIDL Not
Compatible

Resource
Request
Method

At Once
Request
Submission

One-by-one
Requests

Both One-by-one
Requests

One-by-one
Requests

Granularity
or Pro-
gramming
Level

L1 to L4 L1 to L7 L1 to L7 L2 to L4 L1 to L7

Control
Plane Man-
agement

High Level Middle
Level

Low Level High Level Low Level

Target Pub-
lic

End-users Researchers Researchers Cloud Op-
erators

Cloud Op-
erators

Table 5.1: Comparison of Related Proposals

vironments, and Quantum is a module that enable the installation of third party plug-ins to
control OpenStack virtual network specifically. These proposals represent the state-of-art
in the matter of programing virtual networks solutions.

Analyzing the comparison presented, it can notice that only ProViNet and OpenStack
plus Quantum has no restrictions to end-user access. It can also be noticed that ProViNet
and CITRIX DVS are the only ones to provide the three functionalities described earlier
and so remarked as High Level on Control Plane Management. Considering the features
altogether and the alignment to the proposal of enabling end-users to develop network
applications, ProViNet reveals to be a promising alternative.

5.2 Case Study and Performance Analysis

In order to evaluate the prototype described in Chapter 4, a case study was elaborated.
In such case study a typical situation will be analyzed, in which, due to economic fac-
tors, a network administrator was requested to migrate a physical network infrastructure
to the Cloud. Considering migrate all the functionalities together, i.e. Firewalls, Load
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Internet

Mail Load Balancer

Router - (NAT)
143.54.76.18

Firewall
192.168.100.10

Web Load Balancer

Web Server 1
192.168.100.14

Web Server 3
192.168.100.16

Web Server 2
192.168.100.15

Mail Server 1
192.168.100.24

Mail Server 3
192.168.100.26

Mail Server 2
192.168.100.25

Figure 5.1: Use case scenario of physical network migration

Balancers, NAT and so on. The physical infrastructure mentioned is depicted in Figure
5.1. It is composed by two load balancer appliances, one Firewall, one border switch
with NAT, three Web servers, three Mail servers and ten links. Using such case study it
was evaluated the two main procedures performed by ProViNet: PVN Provisioning and
Network Programming.

The measurements of both evaluations was taken over a physical scenario with a phys-
ical machine Intel Xeon E3-1220 3.1GHz CPU, 4GB RAM, configured with XenServer
6.1, representing the Scalable Control Pool. As already mentioned, in the current ProViNet
deployment, the OpenFlow controller technology used is Floodlight v0.90. Such technol-
ogy was deployed in a Virtual Machine Ubuntu 12.04 with 1 vCPU and 384MB RAM
pre-configured in the XenServer. To run ProViNet Core it was used a laptop Intel Core i7
2.8GHz and 4GB RAM.

The process of PVN Provisioning starts by translating the physical topology shown in
Figure 5.1 into a virtual topology description file using the VXDL grammar. The resulting
file is similar to the example already given in the Subsection 4.1.2. The appliances will
become common forwarding devices in the virtual topology, once in a programmable
virtual network the applications are located outside the switches. The following steps are
represented in the sequence diagram of the Figure 5.2.

Considering the sequence diagram mentioned, lets represent the time taken to upload
the VXDL as Tupload, and for creating the controller instances as Tctl−request. Meanwhile,
the time for adding the controller information in the VXDL file is represented as Tedit−vxdl,
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Figure 5.2: Sequence Diagram of resources provisioning.

Tupload Tctl−request Tedit−vxdl TV IP Ttotal

0.0293s 49.6581s 0.0388s 43.0345s 92,7608s

Table 5.2: Programmable Virtual Network Provisioning

and finally the time taken by the VIP to create and configure the virtual resources as TV IP .
In doing so, the total time for the whole process of virtual infrastructure provisioning,
including control plane configuration, is referred to as Ttotal and is the sum of the others,
so Ttotal = Tupload + Tctl−request + Tedit−vxdl + TV IP . All the values presented in the
Table 5.2 regards the average time of 30 executions, in seconds, taken to conclude each
procedure. It was considered that the end-user required two controllers to compose the
control plane.

It is noteworthy that the time taken by the VIP to provide the virtual infrastructure is
not under the control of ProViNet, but it is still considered to give an idea about the overall
performance. The time taken by VIP includes the tasks of instantiating virtual machines,
creating vSwitches, creating the links and connecting the virtual resources. Considering
that the infrastructure required, has six virtual machines, four vSwitches and ten links, the
time of 43.03 seconds is a good remark.

Request Average Time
Add Flow 0.1480s
List Flow 0.0619s

Delete Flow 0.1246s

Table 5.3: NBAPI Dispatcher performance

The most significant time presented in the Table is the Tctl−request, which is directly
dependent on the hypervisor performance to clone and start two virtual machines. From
the 49.65 seconds average, 23.05 seconds were taken just for cloning and 26.42 seconds
for starting. ProViNet needs to wait the virtual machine booting, once just after that a
valid IP is given to the machine and can be added in the VXDL file.

The next step in the migration use case is to develop the network applications that will
control the virtual switches. Accessing ProViNet Web GUI, end-users are able to develop
the workflows representing each network feature, such as Firewall, Load Balancer and
NAT. Each feature is composed by a set of services that when executing will trigger such
service toward the control plane. The component under study in this evaluation is the
NBAPI Dispatcher. To measure the performance of this component it was run three types
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of services. One for adding a flow in a switch, another to read the flow, and the last
to delete the flow. After 30 executions, the average times between sending the request
(HTTP GET or POST) and receiving the answer are presented in the Table 5.3.
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6 CONCLUSION

In this dissertation, the main impediments and barriers that made computer networks
innovation process seem frozen for decades have been discussed. Some occasional at-
tempts to change network closed nature emerged along the 90’s have been also presented,
such as Active Networks and OpenSig. Recent proposals introduced the employment of
Network Virtualization approach together with Programmable Network principles. As a
result emerged the Programmable Virtual Network (PVN) concept, which enables dis-
tinct virtual networks to provide different services by means of network programming
approaches.

Among PVN proposals, Software-Defined Networking (SDN) plays the lead role and
has inspired several proposals and research projects along the last years. SDN has quickly
gained momentum and its advantages and constraints have been exhaustively explored by
recent researches and network industry. Despite several aspects covered in past research,
managing programmable virtual network environments is still a great challenge. Issues
regarding management of network applications deployment, virtual network provision-
ing, and access policies still require solutions. Network programming solutions without
management becomes useless and discourage its adoption in real deployments.

In this Master’s dissertation it was introduced a new business model named NPaaS,
which is characterized by an unprecedented perspective given to end-users. Such model
was designed having in mind that Service Providers must share their responsibility of cre-
ating network solutions with end-users. This way, a larger amount of people would be
involved and the amount of innovation tends to grow. However, managing virtualized and
programmable networks considering end-users as network application developers might
become even more complex. In order to support NPaaS and provide the necessary man-
agement features it was proposed ProViNet management platform.

NPaaS business model was qualitatively compared against other models in order to
highlight its importance and uniqueness. In summary, NPaaS reveal to be an innova-
tion friendly solution due to its open nature and strong focus in end-users. In turn, the
ProViNet platform was evaluated in a use case of infrastructure migration, from physical
to virtual, action that reflects a tendency in recent times. Although not exhaustive, perfor-
mance results have shown that the platform is feasible and flexible enough to work with
different Infrastructure Providers and control plane technologies.

6.1 Main Contributions and Results Obtained

The main contributions of this research are the proposed Network Programming as a
Service business model and the programmable virtual network management platform. As
discussed before, NPaaS model was designed to turn network environments more open,
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programmable, and accessible for end-users. In doing so, specific requirements not met
by current network services could be designed, developed and deployed by end-users
themselves. Such freedom induce the emergence of a new market, in which network
solutions can be shared or commercialized among users. Infrastructure Providers defined
in NPaaS does suffer great impact, once there are currently available from traditional
network industry several models of programmable network hardwares.

ProViNet contributes with a feasible architecture engineered to support NPaaS re-
quirements. In doing so, all components of the platform are strategically scalable in order
to attend the large amount of end-users foreseen by NPaaS. Scalable Control Plane for ex-
ample is able to grow as much as necessary. In addition to that, the platform contributes
with an approach to grant isolation among controllers of different slices, grouping them in
clusters. Moreover, in order to enable interoperability with a wide range of Infrastructure
Providers, the platform is configurable with plug-ins.

Furthermore, there are some other important contributions that are worth mentioning.
The employment of BPMN to enable the development of network applications by end-
users with varying experiences in programming languages and networking is one of them.
Without a doubt, such approach is a great contribution not just in NPaaS context, but also
in industry, where network administrators could integrate business processes with network
programming services, giving them unprecedented controlling power. Beyond that, it is
also a contribution the set of new tags proposed to enable the description of control plane
details in the virtual infrastructures description language VXDL.

The scenario described during ProViNet evaluation, presented in Section 5.2, has the
objective of representing a real demand. Currently, Cloud Computing consumers have
not much flexibility in regards to virtual network customization. Through the use of the
platform it was shown that such consumers are able to migrate the whole topology while
keeping its organization identical, including links, hosts, nodes, and network services.
Although the response time were not initially a concern, results have shown that the time
spent by the processes required to perform infrastructure migration and to execute network
applications within this scenario are acceptable.

6.2 Final Remarks and Future Work

In Section 3.1 it was described a Network Programming as a Service architecture ob-
tained from the integration of SDN and a network virtualization business model. In this
integration, SDN Infrastructure Layer becomes part of Infrastructure Provider, and Con-
trol and Application Layers goes within Service Provider boundaries. Another possible
organization would be to transfer Control Layer to Infrastructure Providers. In future
work the consequences of this change will be analyzed. But prematurely, it is possible to
infer that new high availability strategies could be provided by InPs, once they would have
total control over both infrastructure and control layers. It may be an advantage because
the most critical part of SDN architecture is the connection between such layer. Keeping
just one responsible to it may induce less failures and more effective recovering process.

Developing network applications using BPMN met NPaaS target public requirements.
However, many users would prefer developing network applications using regular pro-
gramming languages, such as Java, C, or C++, due to its incontestable programming flex-
ibility. A strategy to enable the use of such languages and still keep all the platform advan-
tages was proposed in a previous deliverable of this research, found in the Appendix B. In
such strategy, instead of accessing the current graphical development interface, end-users
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had access to virtual machine consoles. This way, control plane services are provided as
software APIs and can be employed in network applications. Future investigations could
explore variations of these strategies, for instance, providing an integration of them. Then
experienced developers would use regular programming language strategy and network
administrators, managers, and business executives BPMN strategy.

In relation to the current version of ProViNet platform, there are some technical details
that could be improved. Such as the creation of an interface in which end-users would be
able to graphically define virtual network topologies, leaving the error prone strategy of
manually editing an XML file.
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ProViNet - An Open Platform for Programmable
Virtual Network Management

Abstract—The disheartening and thorny path followed while
deploying new solutions in the core of current computer net-
works, culminates in a low rate of innovation. Several researches
proposed applying Software Defined Networks (SDN) and the
Network Virtualization (NV) concepts to reverse this rate. How-
ever, many gaps and open challenges were observed in the
application of these concepts together. In this paper, we propose
the ProViNet platform, which merge the SDN and NV concepts
to provide a fast and safe deployment of innovations in the
existing network infrastructure. ProViNet advance the state-of-
art introducing the concept of network programming as a service
composition, in which applications are built simply by queuing
control plane services. Such approach encourages End Users
to develop and share novel network solutions, inducing higher
rates of innovation. To prove concept and technical feasibility, we
evaluate ProViNet with a prototype that allowed demonstrating
virtual network infrastructure provisioning and programming.

I. INTRODUCTION

Today, the core of computer networks is, when compared
with servers, desktops, and mobile devices, an unfriendly
environment for innovation. In the case of the Internet, this fact
is often refereed to as the Internet ossification [1]. Solutions
like IPv6 and IPSec, for example, proposed for over 10 years,
have been struggling to be barely adopted. Among the factors
that contribute to such hostile environment for innovation are:
(i) the necessity of deep and global modifications in order
to adopt new solutions, (ii) the slow standardization process
required to grant interoperability with legacy protocols, (iii)
the dependency on the profit-oriented interest of network
equipment vendors, and (iv) the tendency of network core
devices on using proprietary software and hardware, ruling
out any possibility of customization from End Users.

With the promise to reverse this state of ossification,
the research community is investing hard on the concepts
of Network Virtualization [2] and Programmable Networks
[3]. Both concepts are merged together to provide sets of
virtual networks with different behaviors, forming the so-
called Programmable Virtual Networks (PVN) [4]. One of
the approaches adopted to deploy PVN follows the format of
Software Defined Networking (SDN) [5], which defines the
decoupling of control and data planes. Some implementations
of the control plane employ the Service Oriented Architecture
(SOA) to provide high level services through a standardized
interface. Thus, network applications can be programmed in
different languages, becoming less dependent on the technol-
ogy used in the control plane.

On the one hand, the decoupling of network applications,
control plane, and data plane in SDN architectures, has shown
to be flexible and scalable [6]. On the other, it induces a

great management complexity. Management models used in
common networks are not suitable for programmable virtual
networks since they do not deal with the dynamic deployment
of new network services. Moreover, once virtual networks tend
to be more open and innovation friendly, in a near future
End Users may be able to implement and deploy their self-
developed network applications in order to attend to their spe-
cific demands. Nevertheless, harmonizing applications, users
and virtual networks, while maintaining the reliability and
scalability of services deployed is an open issue.

PVN management proposals vary according to the de-
ployment environment and the requirements of users. Shared
experimental facilities (testbeds) usually employ proposals
focused on slice provisioning, such as ProtoGENI [7] and
OFELIA Control Framework [8]. However, the management
of network programmability upon the slices is not provided or
is limited. Similarly, market oriented solutions typically found
in Cloud Computing environments, such as XenServer Dis-
tributed vSwitch Controller (CITRIX) and OnePK (CISCO),
are intended to provide network programmability control for
Cloud providers, not for End Users. Instead, we believe that
in order to achieve higher rates of innovation attending to new
virtual network specific demands, it is important to include the
End User in the process of creation and deployment of novel
network applications, turning this process more democratic.

This paper tackles the research problem of how to manage
PVN infrastructure, leveraging its capabilities to provide pro-
grammability to End Users and fostering innovation in this
context. With this in mind, we propose the Programmable
Virtual Network (ProViNet) management platform. ProViNet
introduces the concept of network programming as a service
composition, in which applications are built simply by queuing
control plane services. Such approach encourages End Users
to develop and share novel network solutions, inducing higher
rates of innovation. We have implemented a prototype to
demonstrate the feasibility of the concepts proposed within
ProViNet platform. Also, a case study is presented in this
paper to illustrate the applicability and benefits that can be
achieved by employing our proposed approach.

The rest of the paper is organized as follows. In Section
II, we outline the main papers that discuss about the manage-
ment of PVN. In Section III we present ProViNet platform,
discussing the conceptual architecture and concepts used. The
ProViNet prototype is detailed in Section the IV and evaluated
in Section V. Finally Section VI concludes the paper with final
remarks and perspectives for future work.
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II. RELATED WORK AND BACKGROUND

The concepts of Network Virtualization [4] [2] and Network
Programmability [9] [10] have been well discussed in the
literature. From the joint application of these concepts emerge
Programmable Virtual Networks (PVN). PVNs are most com-
monly applied in two environments: (i) testing platforms,
also known as testbeds, and (ii) private clouds. The studies
presented in this section are organized according to these two
environments, aiming to emphasize their level of abstraction
of virtual infrastructure, the approach used to provide PVN
support, and the usage license.

Among the proposals under testbed environments, we high-
light the OFELIA Control Framework (OCF) [8], which is
specifically focused on providing network programmability
based on OpenFlow technology [11]. This framework is a
derivation of the Expedient platform proposed by Stanford
University and assists researchers in creating slices using re-
sources from numerous federations. Additionally it also offers
researchers the ability to associate these slices to previously
configured OpenFlow controllers. Despite this functionality
being available through the Graphical User Interface (GUI),
the OCF does not provide management capabilities for the
deployment of network applications, considered a major con-
cern in network virtualization [2].

Another proposal, still in the context of testbeds, was
created in GENI project [12] and is called ProtoGENI [7].
This proposal also implements a Web interface to provide
researchers with the ability to create slices with resources
from different federations. When interacting with the GUI
of ProtoGENI, researchers can instantiate virtual nodes and
connect them dynamically. Like most proposals developed in
the context of testbeds, the focus is on providing the slice,
not on its programmability. In general these solutions are free
to use for academic purposes, however there tend to be much
bureaucracy and strict rules for the use and access to resources
provided.

Solutions in the context of Cloud computing differ from
testbeds, mainly due to their commercial focus. Cloud envi-
ronments generally require large amounts of network resources
in order to provide services with high availability rates and
quality of service. Therefore, the creation of customized
network services aiming to meet special demands currently
draws the attention of Cloud providers. To comply with these
demands, solutions have emerged to increase the customization
of services provided through network virtualization in dat-
acenters. Some of commercial solutions already exist, such
as Nexus 1000v and CISCO OnePK and the Distributed
Virtual Switch Controller (DVSC) from CITRIX. Some other
solutions are open source, such as Open vSwitch, Ryu, and
restproxy plugins for the OpenStack platform [13].

In both Cloud and testbed environments, there is an in-
creasing number of proposals employing concepts of SDN
architecture to provide programmability solutions in virtual
networks. Rubio et al. [14], for example, proposed an orches-
tration plane, which is complementary to the originally defined

control and data planes in SDN architecture. The purpose
of this new plane is to dynamically control the behavior
of virtual networks in response to constant variations, thus
generating an autonomic management system. Although this
system has advantages such as quick response to failures, it
requires standardized and well tested solutions. As a result,
the end user is still discouraged from creating and deploying
their own applications in programmable virtual networks. This
fact contributes to the low rate of innovation in networks,
since it poses restrictions and keeps the task of developing
and deploying network-oriented solutions only possible to a
small number of people.

In summary, although there are recent proposals involving
programmable virtual networks, none of the aforementioned
studies promotes the management of programmability in a
PVN infrastructure, considering the ease of access by multiple
end users. Moreover, most of the proposals analyzed are
limited to provisioning of virtual resources (controlling and
configuration of virtual machines and virtual networks), not
providing functionality for managing network applications
that can be installed on these programmable virtual networks
dynamically.

A. Background

In a virtualized environment, a variety of virtual machines
are interconnected by a virtual network. This virtual network
can be provided in different ways (such as VLAN, VPN,
and application level overlay [4]) depending on the under-
lying technologies supported by the management platform.
Whatever the approach taken is, the result is that users will
have their isolated virtual networks interconnecting their own
virtual machines, though they all share the same physical
infrastructure. It is convenient and usual referring to the set
of network, computing, and storage resources belonging to a
user as Slice.

Nowadays, Cloud providers do not allow End-Users to
define a custom virtual network topology for Slices. At most,
they are able to allocate virtual machines in different broadcast
domains, forming the so called tenants. By contrast, such
limitation does not occur in testbeds, where the user is able
to define exactly the topology of the Slice. Our solution
integrates the flexibility of testbeds to the Cloud organization
model. Such approach makes possible the complete migration
of a physical computing set up, including the hosts and
the network topology. Considering that ProViNet works over
programmable networks, the network services in the physical
network could be easily migrated as a network application,
such as NATs, firewalls and load balancers.

We argue that higher innovation rates comes with higher
accessibility and availability of programmable resources. In
doing so, the more available and accessible are the resources,
the more users will be able to develop, deploy and share novel
network solutions. Our target public has no special permissions
or privileges other than the inherent to its own interests.
We call them End Users. A network manager, a software
developer, or network engineering could deploy ProViNet
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to manage virtual network solutions of slices in a virtual
infrastructure. Its important to note that ProViNet End Users
may not be the same that will consume the network solution
developed, called Service Consumer in this paper.

III. CONCEPTUAL SOLUTION

As shown in Figure 1, unlike other solutions found in
common PVN scenarios, such as testbeds and some Clouds
deployments, the main focus of ProViNet is the End User.
Nothing prevents other types of users from adopting ProViNet,
but there are already a numerous solutions focused on attend-
ing their specific demands. Differently, ProViNet has as main
requirement the easy of use, once the objective is to encourage
a large number of users to create their own network solution.
Our challenge is to find a good trade off among simplicity
and granularity, or programmability level, so the End User
can easily create and deploy powerful network solutions.

Control Plane 

PVN Data Plane 

Service Consumers 

Users 

ProViNet	
  
focus	
  

End-Users 

Experimenters 

Network  
Administrators 

Figure 1. ProViNet provides End Users access to the Control Plane

The four layers depicted in Figure 1 represent the Software
Defined Networking architecture, which defines that control
and data planes are decoupled. Such separation represents a
great opportunity to enable End Users to control the behavior
of the network, because the control plane becomes closer to
the network edge. Exploring this characteristic ProViNet is
able to manage network applications of End User and their
relationship with PVN slices. It is worth noticing that the
End User is the one who will create the applications, but the
consumer of the application functionality may be someone
else. In this paper they are referred as Service Consumers.
Occasionally they both can be the same person, but in case
they are not, it can represent the starting of a novel network
application market.

A. Conceptual Architecture

The architecture shown in Figure 2 illustrates the conceptual
components of ProViNet platform as well as their high level
relationships. In fact, it presents four components: ProViNet
Core, Virtual Infrastructure Provider (VIP), Scalable Control
Pool, and finally Slices of Programmable Virtual Network. All
components are decoupled and the communication between
them is provided by well known protocols.

In the context of SDN, the terms Southbound API (SBAPI)
and Northbound API (NBAPI), presented in the architecture,
have been recently used for referring to the communication
protocols that enable respectively: the interaction between
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Figure 2. Conceptual Architecture

control-plane and data-plane and between control-plane and
network applications. Although there is no consolidated stan-
dard on either API technologies, in practice most SDN de-
ployments use OpenFlow as SBAPI and Representational State
Transfer (REST) based protocols as NBAPI.

In the proposed architecture, the NBAPI is employed in
the requests from network applications and the master Con-
trollers (CTL). The former is managed by Network Application
Management module, while the second is part of the Control
Clusters. A Control Cluster is created in the Scalable Control
Pool for each End User and provides high availability to the
control plane. In turn, the CTL attends the End User service
requests by exchanging SBAPI calls with the Slice.

ProViNet Core was developed as a Web application. There-
fore, the End User interacts with the platform through a Web
interface that graphically exposes the functionalities provided
by ProViNet modules. As illustrated in Figure 2, there are three
modules. The End User Authentication module handles access
and authentication required to use the platform. Once the user
is authenticated, this module controls the authenticity of inter-
modules communication. In the next section we present the
VIP and its relationship with ProViNet Core. Then, except
for the End User Authentication module, which behavior is
quite straightforward, all others are detailed in the following
subsections.

B. Virtual Infrastructure Provider

ProViNet Core is not responsible for Slice provisioning,
which includes the tasks of allocating virtual machines and
configuring virtual networks according to physical infras-
tructure capacity. As illustrated in Figure 2 such tasks are
delegated to a Virtual Infrastructure Provider (VIP). The VIP
we use in the current development of ProViNet runs over a
platform proposed and implemented in a previous work of
ours, which is actually the only private Cloud platform capable
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of supporting the custom programmable virtual network topol-
ogy required by ProViNet. This platform is able to configure
a network topology of virtual switches and configure them to
receive control information from external controllers.

ProViNet Core communicates with the VIP through Web
Service calls, on which authentication data and an XML file
with a virtual infrastructure description are transmitted. There
are several models for elaborating this infrastructure descrip-
tion file, such as Rspec (GENI), NDL-OWL (RENCI), NMC
(OGF) and Virtual Resources and Interconnection Networks
Description Language (VXDL) [15]. We chose to use the last
one (VXDL) in ProViNet because such language is able to
represent in simple and clean XML all the details of a virtual
infrastructure, including virtual machines, switches, and links
between them forming the topology. In VXDL it is still not
possible to determine the controllers that must be associated
with the virtual switches present in the virtual topology. In
order to better understand this language, we highlight the
following sample of VXDL representing a simple topology of
two machines, two switches, and three links. One link from
each machine to different switches and one link connecting
the two switches:
<virtualInfrastructure id="SimpleTopo" owner="admin">

<vNode id="Node1">
<cpu>...</cpu>
<memory>...</memory>
<storage>...</storage>
<image>...</image>
<interface>...</interface>

</vNode>
<vNode id="Node2">...</vNode>
<vRouter id="Switch1">

<controlPlane layer="" routingProtocol="" type="">
</controlPlane>

</vRouter>
<vRouter id="Switch2">...</vRouter>
<vLink id="Link1">

<bandwidth>...</bandwidth>
<latency>...</latency>
<source>

<vNode>Node1</vNode>
<interface>net0</interface>

</source>
<destination>

<vRouter>Switch1</vRouter>
</destination>

</vLink>
<vLink id="Link2">...</vLink>
<vLink id="Link3">...</vLink>

</virtualInfrastructure>

We extended the default VXDL specification with a new
tag controllerList once most SDN switches accept the config-
uration of one master and many slave controllers. Moreover,
note that we included an attribute type="" in the controller

tag, which is used to inform whether the controller in the
list is master or slave. In addition, each controller also uses a
specific port, protocol, and IP address to communicate with the
switches, thus tags for this elements were also added. Taking
the same sample of VXDL used before, the configuration of
the two controllers would fit like:
...
<vRouter id="Switch1">

<controlPlane layer="ETHERNET"
routingProtocol="OpenFlow" type="dynamic">
controllerList1</controlPlane>

</vRouter>
<vRouter id="Switch2">

<controlPlane layer="ETHERNET"
routingProtocol="OpenFlow" type="dynamic">
controllerList1</controlPlane>

</vRouter>
<controllerList id="controllerList1">

<controller type="master">
<connection_type>tcp</connection_type>
<ipAddress>xxx.xxx.xxx.xxx</ipAddress>
<port>6633</port>

</controller>
<controller type="slave">...</controller>

</controllerList>
...

C. Programmable Virtual Network Control

According to the sequence diagram shown in Figure 3,
after the End User have prepared the VXDL file, he/she is
able to upload it using a Web form in the ProViNet GUI.
Along with the VXDL specification, the End User is able to
set a redundancy level. This level represents the number of
controllers that will form a hight available control plane for the
Slice described in the VXDL file, called Control Cluster. Note
that the VXDL uploaded by the user contains only information
about the Slice (i.e. nodes, switches, links, and so on) all the
controller information is added automatically by ProViNet.

The controllers are created by remote calls sent to the Scal-
able Control Pool, which is in fact a set virtualization servers
(hypervisors). There is in this Pool, a virtual machine config-
ured in advance with the software of a controller technology.
So, by sending a cloning call to the Pool, it creates a copy
of such virtual machine. Regarding the controller technology,
there are no great restrictions, other than supporting Web
services, once the configuration calls to the controller will be
sent remotely. In the current ProViNet implementation, we
deployed FloodLight controller because it support REST calls
and has a plenty of services available.

Still following the diagram, when the PVN Control module
receives the controller(s) information, it begins the process
of editing the VXDL file, adding the entries to represent
the controller(s) created, such as IP address, connection type,
port, and whether the controller is master or slave. After
that, the file is sent to the VIP via Web service request,
automatically generated by the platform. The provisioning of
the virtual infrastructure is under responsibility of the VIP,
which will also configure the vSwitches to forward control
plane information back to controllers at ProViNet’s Scalable
Control Pool.

When the response is received from the VIP, informing
that the virtual infrastructure is properly provisioned, ProViNet
stores it in an internal database and show in the GUI interface
the informations related to accessing resources in the Slice. In
order to diminish complexity, such information is graphically
represented and allow the End User to interact via browser
with the virtual machine instances of the Slice.
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D. Network Applications Management

Once the PVN is established, i.e., the user has a Slice and a
control plane properly configured, the next step is to develop
and run network applications. Starting by the development,
the approach we propose is similar to services composition
concept. As depicted in Figure 4, all the services available
by the controller technology are listed in the ProViNet GUI
interface. Interacting with such interface, the End User is able
to order services into a Services Execution Queue.

The services in the queue are consumed by the NBAPI
Dispatcher, an element of Network Application Managment
module. The Dispatcher role is to send HTTP requests to
the master controller of the users’s Control Cluster. The
address of such controller (URL) is available in ProViNet
internal database after the execution of the process previously
described and illustrated in Figure 3. In its turn, the controller
attend each service request exchanging SBAPI calls with the
vSwitches in the Slice, or consulting its internal system.
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Figure 4. Queuing approach for a user-friendly Network Programming

Some services require input parameters, which can be
defined using the input fields in the interface or redirected
from the outputs of a previous service in the queue. After each

service execution, the results can be displayed in the ProViNet
Web GUI. To do this, the user must set ProViNet Web GUI as
the output destination.

Each Services Execution Queue may implement a network
application, or specific for the slice topology described in the
VXDL file, or generic to run over any topology. In order to
better understand how a ProViNet network application looks
like, we present below a very simple Firewall implementation.
Worth mentioning that all the programming procedure is done
through the Web GUI. The example is present using XML
format because it may represent Web GUI states.

The objective of the Firewall example is to make specific
switch to drop all the packets having the port 22 as destination.
To that end, the services getTopology and setFlow must me
queued. The first will retrieve the switches ids, then the first
switch is chosen as input parameter to the setFlow service.

<service id="getTopology">
<input></input>
<output><switch>...</switch>...</output>
<description></description>

</service>
<service id="setFlow">

<input>
<switchList></switchList>|<switch></switch>
<match></match>
<actions></actions>
<priority></priority>
</input>
<output><string></string></output>
<description></description>

</service>

<executionqueue id="BorderFirewall">
getTopology, setFlow

</executionqueue>
<inputparameters id="BorderFirewall">

<none />,
<get_prev_output>

<switch id="1"></switch>
</get_prev_output>
<match>tp_dst=22<match>
<actions>output=<actions>
<priority>64900</priority>

</inputparameters>
<serviceoutputs>

<switch id="1"></switch>... ,
<gui><string>Flow set successfully!</string></gui>

</serviceoutputs>
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The first two root tags shows the services specification,
where may be described inputs, outputs and a briefly descrip-
tion of the services. The third represents the Services Execu-
tion Queue, which uses comma to separates the services ids
in the execution sequence. Then comes the input parameters
queue, where is set no parameter for the first service, and four
for the second, as specified in the services specifications. And
finally the service outputs queue, showing the output of the
getTopology service and the output of the setFlow service.

The approach of network programming described in this
section has the main objective to be simple, so End Users
can easily create novel network applications. As mentioned
in the beginning of this Section, our challenge is to provide
a simple approach without loosing granularity or level of
programmability. Queuing services is a simple task and may
not represent much complexity to the End User. Regarding
the granularity, it is directly related to the services available
by the controller technology. For instance, with the current
technology deployed, which is Floodlight, the available ser-
vices allow the development of applications to control network
from Physical Layer (L1) to Transport Layer (L4).

IV. PROTOTYPING PROVINET PLATFORM

Aiming to demonstrate the feasibility of the conceptual
architecture detailed in Figure 2 Section III, we developed a
prototype. Our prototype implements the three components of
ProViNet Core, the End User Authentication, PVN Control and
Network Application Management. These components were
implemented using the framework Django 1.4.3, Python 2.7.3
and PostgreSQL 9.1.6 database.

The End User Authentication handles the login and regis-
tration features of ProViNet. The PVN Control component has
all the routines and APIs necessary to communicate with the
Virtual Infrastructure Provider and with the Scalable Control
Pool (SCP). The SCP was deployed with XenServer [16], then
the communication with this server were implemented with the
XenAPI, provided by CITRIX. Using this API, remote systems
is able to control a Pool of XenServers.

For instance, when the user request the virtual infrastructure
and sets the redundancy, the redundancy is used to iterate calls
of clone function (session.xenapi.VM.clone(vm base name,
vm cloned name)). When XenServer receives the clone re-
quest, which has the name of a base virtual machine as param-
eter, it creates a copy of the virtual machine with matching the
name given. In our implementation, the virtual machine used
as base for the copy were already prepared with an installation
of FloodLight, which was configured to start automatically
after the OS boot. When the VM at the XenServer is running,
PVN Control does another call of reading IP address. Which
will return the IP address of the VM just cloned. The IP
address is used to edit the VXDL file, which is accomplished
using the Python library xml.etree.ElementTree.

The second communication of the PVN Control component
is performed with the Virtual Infrastructure Provider. After
the user has uploaded the VXDL, the VM cloning procedure
were done, as well as editing, PVN Control reads the edited

VXDL and store in a url encoded string. Then a HTTP POST
request is sent to the VIP, with the encoded VXDL string
and some authentication data. After the properly instantiation
and configuration of the virtual infrastructure, the VIP sends
back a HTTP answer, with the result of the request, whether
success of failure. In case of failure, the cause of the failure
is specified.

Finally, the Network Application Management (NAM) com-
ponent was basically implemented with python routines,
which, in its turn integrates with the templates of Django
framework. The Django view that handles the GUI input
events, interacts with the NAM python class, that has per-
missions to manage network application queues. Such queues
are simple python arrays of service objects, which represents
generically any service, such as its inputs, outputs and URI.

We choose the FloodLight as the controller implementation,
because it provides an API allowing restfull consumption of
services available to the controller via HTTP calls. Other
implementations could be used, since it support remote calls
of network applications.

In order to give a better overview of our prototype we
recorded some use cases. The videos are available at the
address <to appear>. Our prototype source code and doc-
umentation are found also in the same web site.

V. EXPERIMENTAL VERIFICATION OF PROVINET

Firstly in this section, we present a qualitative comparison
with the proposals presented earlier in the Section II. Then,
in order to illustrate an applicability of our solution, we
describe an use case, which underlies the performance analy-
sis presented later. The qualitative comparison demonstrates
the uniqueness of ProViNet, and the performance analysis
illustrates that the prototype developed to prove the concept
performs its tasks with acceptable amounts of time.

A. Qualitative Comparison

Considering the End-User point of view, we characterized
some features that we consider essential to make network
programming simpler and manageable. In what follows we
describe such features and then, in the Table V-A we present
the remarks of each solution. The analysis of the proposals
considered the on-line available material, such as tutorials,
videos and softwares.

End-User Access Policy: Regarding End-User access limi-
tations, network environments are classified in: Unaccessible,
such as the network core. Restricted Access, as the testbeds,
where users need to request permissions that are usually given
after a good justification letter. And, finally, the access can be
with No Restrictions, i.e., the user is able to freely require
virtual resources, similar to the approach performed in Cloud
Computing deployments. Note that paying or not for the
resources is not considered a restriction.

Resource Organization Method: Different infrastructures
could be used to instantiate virtual networks and virtual ma-
chines. Generalizing, such resources could be from Data Cen-
ters, Universities or Research Laboratories. The testbeds, for
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instance, adopts a pluggable architecture, in which Research
Laboratories and Universities can follow a technical pattern to
share its physical resources within a global deployment. Then
we generalize the proposals classifying them in Federation or
Data Center organization method.

Network Topology: Some proposals allow users to require
virtual network and virtual machines disposed in a custom
topology, totally independent of the physical substrate. Others
proposals provides virtual network topologies limited to the
physical nodes and links. At last, there are proposals that
despite being independent of physical topology, it is still
limited to one kind of topology. Concerning this feature the
proposals can be Physically Dependent, Physically Indepen-
dent or Virtually Limited

Resource Description: There are some standard Virtual
Infrastructure Description Languages (VIDL) that may be
used to exchange virtual infrastructure informations among
different proposals. The use of VIDL may turn the solution
compatible to different deployment environments. Moreover,
during the definition of the network topology, the End User
may take advantage of third party applications that offers a
graphical front end to facilitate the building of VIDL files. The
proposals are classified whether VIDL Compatible or VIDL
Not Compatible.

Resource Request Method: An End User interested in
having a virtual infrastructure may found easier to graphi-
cally draw the Slice before committing its request. However,
graphically drawing Slices has the drawback of one-by-one
definition, what may be a problem in larger slices. If the
user can just send the whole slice definition at once, using
a VIDL file, it may be faster. Of course there may be a
previous moment when the user prepare the file, but it could be
easily automatized. So the proposals may vary in One-by-one
Requests, At Once Request Submission and Both support.

Granularity or Programmability Level: The operational
scope of network applications may be different among each
solution. Usually higher programmability levels comes with
higher complexity. Depending on the programmer experience
and knowledge, higher levels of granularity would allow
broader programming scopes. From the standpoint of End
Users, the programming procedure must be simple but with
enough granularity to build groundbreaking network applica-
tions. The proposals can allow from L1 to L7 programming.

Control Plane Management: In the SDN architecture the
control plane runs out of the switch box, in an external
machine (called controller). This controller could be placed
in a physical or virtual machine, since it has network access
to the programmable switches under its control. Furthermore,
mot switches support High Availability (HA) by accepting the
configuration of more than one controller. Then in case of
ones failure the other can assume the control master role.
Most of the proposals leaves the control plane management
to the users. However, if such control is done in the platform,
the user can concentrate on developing the network applica-
tions. Considering the exposed, we classified the proposals
by its levels of management. If the proposal support HA,

automatized creation of controller instances and automatized
configuration of the switches we say it has High Level of
control plane management. If it support just two of the
mentioned management features, it has Middle Level and if
just on is supported it has Low Level.

Target Public: In general the proposals was developed to
attend specific users requirements. The testbeds, for exam-
ple, intend to provide experimental resources to Researchers.
Conversely, Cloud providers tend to develop proposals of
network programmability having Cloud Operators as the main
costumer. And finally solution like ProViNet focus in the End
Users.

Among the proposals presented in the Table V-A, OFE-
LIA Control Framework, CITRIX DVS and ProtoGENI were
presented in the section II. In addition to them, we compare
ProViNet to a generically solution that may employ OpenStack
and Quantum technologies. The former is a platform for
managing Cloud environments, and Quantum is one module
that enable the installation of third party plug-ins to control
the virtual network specifically. These proposals represent the
state-of-art in the matter of programing virtual networks.

Analyzing the comparison presented, we can notice that
only ProViNet and OpenStack plus Quantum has no re-
strictions to End Users access. It can also be noticed that
ProViNet and CITRIX DVS are the unique to provide the
three functionalities described earlier and so remarked as High
Level on Control Plane Management. Considering the features
altogether ProViNet is the most complete.

B. Case Study and Performance Analysis

Internet

Mail Load Balancer

Router - (NAT)
143.54.76.18

Firewall
192.168.100.10

Web Load Balancer

Web Server 1
192.168.100.14

Web Server 3
192.168.100.16

Web Server 2
192.168.100.15

Mail Server 1
192.168.100.24

Mail Server 3
192.168.100.26

Mail Server 2
192.168.100.25

Figure 5. Use case scenario of physical network migration

In order to evaluate the prototype described in the section
IV, we elaborate a case study. In this case study we will
analyze a typical situation, in which, due to economic factors,
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Feature ProViNet OFELIA Control
Framework

ProtoGENI CITRIX DVS OpenStack+Quantum

End-User Access Pol-
icy

No Restrictions Restricted Access Restricted Access Restricted Access No Restriction

Resource Organization
Method

Data Center Federations Federations Data Center Data Center

Network Topology Physically
Independent

Physically Dependent Physically
Independent

Virtually Limited Virtually Limited

Resource Description VIDL Compatible
(VXDL)

VIDL Not Compatible VIDL Compatible
(RSPEC)

VIDL Not Compatible VIDL Not Compatible

Resource Request
Method

At Once Request Sub-
mission

One-by-one Requests Both One-by-one Requests One-by-one Requests

Granularity or
Programmability
Level

L1 to L4 L1 to L7 L1 to L7 L2 to L4 L1 to L7

Control Plane Man-
agement

High Level Middle Level Low Level High Level Low Level

Target Public End Users Researchers Researchers Cloud Operators Cloud Operators

Table I
COMPARISON OF RELATED PROPOSALS

the network administrator was requested to migrate a physical
network set up to the Cloud. Considering migrate all the
functionalities together, i.e. Firewalls, Load Balancers, NAT
and so on. The physical infrastructure mentioned is depicted in
the Figure 5. It is composed by two load balancer appliances,
one Firewall appliance, one border switch with NAT, three
Web servers, three Mail servers and ten links. Using such
case study we evaluated the two main procedures performed
by ProViNet: PVN Provisioning and Network Programming.

The measurements of both evaluations was taken over a
physical scenario with a physical machine Intel Xeon E3-1220
3.1GHz CPU, 4GB RAM, configured with XenServer 6.1,
representing the Scalable Control Pool. As already mentioned,
in the current ProViNet deployment, the OpenFlow controller
technology used is Floodlight v0.90. Such technology was
deployed in a Virtual Machine Ubuntu 12.04 with 1 vCPU
and 384MB RAM pre-configured in the XenServer. To run
the ProViNet Core we used a laptop Intel Core i7 2.8GHz
and 4GB RAM.

The process of PVN Provisioning starts by translating the
physical topology just described in the Figure 5 in a virtual
topology following the VXDL grammar. It will be similar
to the example already given in the Subsection III-B. The
appliances will become common switches in the virtual topol-
ogy, once in a programmable virtual network the applications
are located outside the switches. The following steps are
represented in the sequence diagram presented in the Figure
3.

Considering the sequence diagram mentioned, lets represent
the time taken for upload the VXDL as Tupload, and for
creating the controller instances as Tctl−request. Meanwhile,
the time for adding the controller information in the VXDL
file is represented as Tedit−vxdl, and finally the time taken by
the VIP to instantiate the virtual resources as TV IP . In doing
so, the total time for the whole process of provisioning the
virtual infrastructure, including the configuration of the control
plane, is referred to as Ttotal and is the sum of the others, so

Ttotal = Tupload + Tctl−request + Tedit−vxdl + TV IP . All the
values presented in the Table V-B regards the average time of
30 executions, in seconds, taken to conclude each procedure.
We considered that the End User required a redundancy of
two controllers.

It is noteworthy that the time taken by the PIV to provide
the virtual infrastructure is not under the control of ProViNet,
but we still consider it to give an idea about the overall
performance or our solution. The time taken by VIP includes
the tasks of instantiating virtual machines, creating vSwitches,
creating the links and connecting the virtual resources. Consid-
ering that the infrastructure required, has six virtual machines,
four vSwitches and ten links, the time of 43.034518532
seconds is a good remark.

The most significant time presented in the table is the
Tctl−request, which is directly dependent of the hypervisor
performance to clone and start two virtual machines. From the
49.658138036 seconds average, 23.055444002 seconds were
taken just for cloning and 26.425736904 seconds for starting.
ProViNet needs to wait the virtual machine booting, once just
after that a valid IP is given to the machine and can be added
in the VXDL file.

The next step in the migration use case is to develop the
network applications that will control the switches. Accessing
ProViNet Web GUI the user will create the execution queue
with the necessary services, which will follow the same logic
of the example given in the Section III-D. Once the queues
of Firewall, Load Balancer and NAT is ready he triggers the
NBAPI Dispatcher, the component under study. To measure
the performance of this component we ran three types of
services. One for adding a flow in a switch, another to read
the flow, and the last to delete the flow. After 30 executions,
the average times between sending the request (HTTP GET
or POST) and receiving the answer are presented in the Table
V-B.
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Tupload Tctl−request Tedit−vxdl TV IP Ttotal

0.029394308 49.658138036 0.038839101 43.034518532 92,760889977

Table II
PROGRAMMABLE VIRTUAL NETWORK PROVISIONING

Request Average Time
Add Flow 0.14807082812
List Flow 0.0619584878286

Delete Flow 0.124699409803

Table III
NBAPI DISPATCHER PERFORMANCE

VI. CONCLUSIONS AND FUTURE WORK

With the evolution of virtual networks, a diversity of
computing environments has emerged. The network solutions
developed in the past, and implemented in accordance with the
wishes of the manufacturers of networking equipment, may
no longer be sufficient. To overcome such limitation novel
solution may be proposed. However the process of developing
and deploying novel solutions in virtual network environments
is still immature.

In order to speed up the process of proposing and deploy-
ing novel solutions in virtual network, the Software Defined
Networking is a good ally. SDN propose the separation of
the control and data planes, causing an approximating of the
control point to the network edge. In this place it can be better
managed to run novel network applications. However, manage-
ment models used in common networks are not suitable for
programmable virtual networks since they do not deal with
the dynamic deployment of new network services.

This paper tackles the research problem of how to man-
age PVN infrastructure, leveraging its capabilities to provide
programmability to end-users and fostering innovation in this
context. As shown in this work, we propose an architecture
with the necessary components for managing virtual network
infrastructures, network applications and controlling End User
access. We also propose in this work, a user friendly approach
for programing virtual networks, which employs concepts of
Web service composition.

In order to demonstrate the feasibility of the concepts
proposed within ProViNet platform. We have implemented a
prototype and presented a case study to illustrate the appli-
cability and benefits that can be achieved by employing our
proposed approach. We also presented an qualitative compar-
ison of ProViNet with other four proposals, highlighting the
uniqueness of our solution and letting clear our contributions.

As future work we intend to improve the network program-
ing approach with techniques of services composition. This
would allow different kinds of services aggregation, not just
the sequential organization provided by the queue approach.
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Abstract. With the evolvement of virtualization and network programming te-
chniques, high-level programs can be used to define the behavior of network
traffic while keeping isolation. However, to ensure a harmonious relationship
between users, network programs and virtual networks, considerable manage-
ment efforts are needed. In this paper we propose the ProViNet platform, a solu-
tion for managing the deployment of network programs in programmable virtual
networks. ProViNet contributes with an architecture that allows sharing of the
control plane of these networks in a scalable way. During the development of
this work we identified the need for a standard representation of programmable
virtual infrastructures, so it is also proposed a programmable virtual networks
description language. In order to verify the feasibility of the proposed platform,
we implemented a prototype, which is analyzed and evaluated in this work.

Resumo. Ao passo que evoluem as técnicas de virtualização e programação
de redes, programas de alto nı́vel podem ser utilizados para definir o compor-
tamento de tráfegos de rede isoladamente. Entretanto, garantir um relaciona-
mento harmônico entre usuários, programas de rede e redes virtuais exige gran-
des esforços de gerenciamento. Neste trabalho propomos a plataforma ProVi-
Net, uma solução para o gerenciamento da implantação de programas de rede
em redes virtuais programáveis. ProViNet contribui com uma arquitetura que
permite o compartilhamento do plano de controle dessas redes de forma es-
calável. Durante o desenvolvimento do trabalho foi identificada a necessidade
de uma representação padrão da infraestrutura virtual programável, para tanto
propõe-se também, uma linguagem de definição de redes virtuais programáveis.
A fim de verificar a viabilidade da plataforma proposta, foi implementado um
protótipo, o qual é analisado e avaliado neste trabalho.

1. Introdução
Historicamente, o núcleo das redes de computadores, quando comparado com os servido-
res, desktops e dispositivos móveis da borda das redes, é um ambiente hostil à inovação.
No contexto especı́fico da Internet, esse fato é geralmente referenciado como ossificação
[Hausheer et al. 2011]. Para exemplificar, soluções propostas a mais de dez anos, como
IPv6 e IPSec, ainda não estão amplamente em uso. São apontadas como possı́veis cau-
sas: i) A necessidade de modificações globais, ocasionalmente exigindo a substituição de
equipamentos; ii) A lentidão no processo de padronização que trata da interoperabilidade
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com serviços legados; iii) e a abordagem adotada pelas fabricantes de equipamentos, de
implementar e implantar soluções baseadas em seu retorno financeiro.

Na intersecção entre o conceito de Virtualização de Redes
[Chowdhury e Boutaba 2010] e o de Programabilidade de Redes [Kanaumi et al. 2010],
emergem as Redes Virtuais Programáveis (RVP), as quais promissoramente prometem
reverter o cenário de lentidão testemunhado nas redes de computadores. Uma das
abordagens adotadas pelas RVP segue o formato das Redes Definidas por Software
(SDN - Software-Defined Networks) [Lantz et al. 2010], que define o desacoplamento
dos planos de controle e de dados. Algumas implementações do plano de controle se
baseiam na Arquitetura Orientada a Serviços (SOA - Service Oriented Architecture) para
prover a comunicação com aplicativos de rede. Dessa forma, utilizando uma interface
padronizada de definição de serviços, os aplicativos de rede podem ser programados em
linguagens distintas, se tornam menos dependentes da tecnologia utilizada no plano de
controle.

Por um lado a arquitetura SDN, com o desacoplamento entre aplicativos de rede,
plano de controle e infraestrutura programável, se mostra flexı́vel e escalável. Por ou-
tro lado, induz uma grande complexidade no gerenciamento. Modelos de gerenciamento
utilizados nas redes comuns não são adequados às redes programáveis, uma vez que não
tratam da implantação dinâmica de novos serviços. Além disso, dependendo das polı́ticas
de acesso às infraestruturas programáveis, um grande número de usuários poderão propor
e implantar seus próprios aplicativos de rede. Nesse cenário, harmonizar os aplicativos,
usuários e redes virtuais, mantendo a confiabilidade e escalabilidade dos serviços implan-
tados é um problema em aberto.

As propostas para o gerenciamento de RVP variam de acordo com o ambiente de
implantação e com os requisitos dos usuários. Nos ambientes de testbeds, as propostas fo-
cam em prover aos experimentadores e cientistas soluções de controle de Slices, enquanto
o gerenciamento da programabilidade que os usuários possuem sobre os Slices ainda é
incipiente. São exemplos desse tipo de proposta o ProtoGENI [pro 2012] e o OFÉLIA
Control Framework [Kopsel 2011]. Nos ambientes de Cloud, mais direcionados ao mer-
cado, implementam-se soluções para gerenciar os serviços que os provedores de Cloud
oferecerão aos seus clientes. Ou seja, o foco maior está em prover controle aos gerentes
e administradores da Cloud, deixando o usuário final sem chance de propor novos aplica-
tivos de rede. As propostas da CITRIX, XenServer Distributed vSwitch Controller e da
CISCO, OnePK, são exemplos.

O problema de pesquisa deste trabalho está em como prover acesso de múltiplos
usuários finais a uma infraestrutura de RVP, agregando facilidades no gerenciamento e
implantação de aplicativos de forma a encorajar o desenvolvimento de novas soluções
de rede. Propõe-se para isso a plataforma de gerenciamento ProViNet (Programmable
Virtual Network Managemet Platform). ProViNet contribui para o estado-da-arte em qua-
tro pontos: (i) na elaboração de uma arquitetura para gerenciamento de RVP que provê
escalabilidade e alta disponibilidade de serviços; (ii) em uma abordagem para implantação
dinâmica de novos serviços no plano de controle; (iii) na proposta de uma linguagem de
descrição de rede virtual programável, chamada Programmable Virtual Network Descrip-
tion Language (PVNDL), adaptada da VXDL [Koslovski et al. 2008]; (iv) e por fim, no
desenvolvimento, como parte da plataforma, de um sistema com interface de acesso Web
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que facilita a compreensão e interação dos usuários finais com ambientes de RVP.

O restante do artigo está organizado conforme segue. Na Seção 2, são descritos
os principais trabalhos que envolvem o gerenciamento de RVP. Na Seção 3 é apresentada
a plataforma ProViNet, discutindo a arquitetura conceitual e conceitos empregados. Em
seguida, na Seção 4 é detalhado o protótipo utilizado como base para a avaliação e análise
apresentada na Seção 5. Por fim a Seção 6 conclui o artigo com as considerações finais e
perspectivas para trabalhos futuros.

2. Trabalhos Relacionados e Contextualização
Os conceitos de Virtualização de Redes [Chowdhury e Boutaba 2009]
[Chowdhury e Boutaba 2010] e a Programabilidade de Redes [Campbell et al. 1999]
[Lin et al. 2011] são bem discutidos na literatura. A junção desses conceitos formam as
Redes Virtuais Programáveis (RVP), as quais são mais comumente aplicadas em dois
ambientes, nos projetos de plataformas de testes, também conhecidos como testbeds e em
Nuvens privadas (Private Clouds). Os trabalhos relacionados apresentados neste capı́tulo
são organizados conforme esses dois ambientes, buscando evidenciar em cada um deles o
nı́vel de abstração da infraestrutura virtual, a abordagem utilizada e a natureza da licença.

Dentre as propostas no contexto dos testbeds, as quais focam em auxiliar os pes-
quisadores em seus experimentos, destaca-se o framework de controle OFELIA (OCF)
[Kopsel 2011], o qual é uma derivação da plataforma Expedient proposta pela Universi-
dade de Stanford. Esse framework auxilia os pesquisadores na criação de Slices utilizando
recursos de várias federações. Além disso lhes oferece também a capacidade de associar
esses Slices a controladores previamente configurados. Apesar dessa funcionalidade de
associação através da interface gráfica, o OCF não provê o gerenciamento da implantação
de aplicativos de rede, considerada uma das maiores preocupações da virtualização de
redes [Chowdhury e Boutaba 2010].

Outra proposta, ainda no contexto dos testbeds, foi criada no projeto GENI
[GENI 2011] e é chamada ProtoGENI [pro 2012]. Tal proposta também implementa uma
interface de acesso via Web que assiste aos pesquisadores na criação de Slices com re-
cursos oriundos de diversas federações. Ao interagir com a interface do ProtoGENI,
pesquisadores podem instanciar nós virtuais e conecta-los dinamicamente. Assim como a
maioria das propostas desenvolvidas nesse mesmo contexto, o foco está no provimento do
Slice e não na programabilidade do mesmo. Em geral essas soluções são livres de licença,
entretanto existe um conjunto burocrático de regras para utilização e acesso aos recursos
geridos pelas ferramentas citadas.

As soluções no contexto de Cloud Computing se diferem das propostas de test-
beds, principalmente pelo foco comercial. Os ambientes de Cloud em geral demandam
uma grade quantidade de recursos de rede, pois comercializam serviços com alta taxa
de disponibilidade e qualidade de serviço. Portanto, a criação de serviços de rede cus-
tomizados para atender a demandas especiais é visto como um grande atrativo para os
provedores de Cloud. Para atender esses provedores, surgiram soluções que aumentam o
poder de customização dos serviços providos nas redes virtuais de seus datacenters. Al-
gumas dessas soluções são comercializadas, tais como Nexus 1000v e OnePK da CISCO
e DVSC (Distributed Virtual Switch Controller) da CITRIX. Outras são de código aberto,
como os plugins open-vSwitch, Ryu Plugin e o restproxy, para a plataforma OpenStack
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[OpenStack 2011].

Tanto em Cloud quanto em testbeds, é crescente o número de propostas que em-
pregam os conceitos da arquitetura SDN em suas soluções de programabilidade em re-
des virtuais. Rubio et al. [Rubio-Loyola et al. 2011], por exemplo, propôs um plano de
orquestração, o qual é complementar aos planos originalmente definidos na arquitetura
SDN (controle e dados). O propósito desse novo plano é controlar dinamicamente o com-
portamento das redes virtuais em resposta às constantes variações, gerando assim um sis-
tema de gerenciamento autonômico. Embora esse sistema tenha vantagens, como resposta
rápida às falhas geradas por variações no comportamento da rede, requer soluções padro-
nizadas e bem testadas. Em consequência, o usuário final continua distante da criação
e implantação de aplicativos na rede virtual programável. Tal fato, contribui para baixa
taxa de inovação nas redes, pois mantem a natureza restritiva e a pequena quantidade de
pessoas aptas a desenvolver e implantar novas soluções.

Em resumo, apesar de existirem propostas recentes envolvendo redes virtuais pro-
gramáveis, nenhuma das pesquisadas promove o gerenciamento da programabilidade em
uma infraestrutura de RVP, considerando o acesso de múltiplos usuários finais. Além
disso, maior parte das propostas analisadas se limitam ao provisionamento da rede virtual
(controle de máquinas virtuais e configuração da rede virtual), não oferecendo funciona-
lidades para o gerenciamento dos aplicativos de rede que podem ser instalados dinamica-
mente nas redes virtuais programáveis.

3. ProViNet
Uma das abordagens para as Redes Virtuais Programáveis é a utilização da arquitetura de
Redes Definidas por Software. Tal arquitetura define que os planos de controle e de dados
sejam desacoplados. Sendo assim, eles necessitam de um protocolo para comunicação.
Recentemente tem se empregado o termo Southbound API (SBAPI) para se referir aos
protocolos que provejam essa comunicação entre o plano de controle e de dados. Con-
forme ilustrado na Figura 1 a SBAPI (2) é utilizada para comunicação entre o Pool de
Controle e os Slices, que serão descritos mais diante.

Ao passo que surgiram diversas soluções para a camada de controle, e cada
implementação adota um padrão de linguagem, os aplicativos de rede criados seguiam
tal heterogeneidade, ficando assim dependentes das tecnologias dos controladores e iso-
ladas entre si. Atualmente a tendência é que as diferentes implementações do plano de
controle ofereçam uma interface padrão de comunicação com aplicativos de rede exter-
nos. É comum se referir a esse tipo de interface como Northbound API (NBAPI) (1). Em
geral elas independem de linguagem, baseando-se na arquitetura Representational State
Transfer (REST), por exemplo. Desse modo, novos aplicativos que venham a interagir
com a camada de controle necessitam apenas das especificações de serviços providas por
cada implementação de controlador.

Conforme ilustrado na Figura 1, a plataforma ProViNet auxilia os usuários finais
no gerenciamento e implantação de aplicativos de rede em Slices de Redes Virtuais Pro-
gramáveis. Para isso, se apoia no conceito de separação de planos, sejam eles: o plano
de dados, representado pelos elementos que formam a rede virtual nos Slices e utilizam
a SBAPI para se comunicarem com o plano de controle; o plano de controle, formado
pelos controladores, que são agrupados no Pool de Controle para prover alta disponibili-
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Figura 1. Módulos e relacionamentos

dade, conforme será apresentado na Subseção 3.1; e pelo plano de aplicativos, presente
no Pool de Execução, o qual organiza, armazena e executa os aplicativos de rede que se
aproveitam do conceito de NBAPI para comunicação com o plano de controle.

A plataforma ProViNet se aplica a qualquer ambiente que utilize infraestrutura
compatı́vel com o conceito de RVP. Em geral a aplicação se dá em dois nı́veis, um no
nı́vel de rede virtual, no qual o plano de dados seriam representado pelos vSwitches, e
outro no nı́vel fı́sico, utilizando os switches fı́sicos compatı́veis como plano de dados. Ou
até mesmo em um modelo hı́brido, com controle em ambos os nı́veis.

3.1. Arquitetura Conceitual
A arquitetura apresentada na Figura 2 ilustra os componentes da plataforma ProViNet
assim como suas relações em alto nı́vel. O usuário interage com a plataforma através
de uma interface Web que expõe graficamente as funcionalidades providas por seus
módulos. Conforme ilustrado, essas funcionalidades se subdividem em quatro interações.
Na interação (a), o módulo Controle de Usuários atende a requisições de autenticação e
cadastro. O processo de gerenciamento de implantação e execução de aplicativos, exe-
cutado na interação (b), é tratado pelo módulo Controle de Aplicativos. As solicitações
de infraestrutura virtual são enviadas na interação (c) e tratadas pelo módulo de Controle
de Slices e Referências. Por fim, as configurações inerentes aos três módulos citados são
apresentadas em uma interface de administração (d) para o Administrador do ambiente
de implantação do ProViNet.

ProViNet fornece escalabilidade utilizando uma arquitetura baseada no con-
ceito chamado de Resource Pool. Cada Pool representa um conjunto de servidores de
virtualização (hypervisors) interligados e controlados por uma plataforma de gerencia-
mento única. O Pool de Controle é utilizado para execução de máquinas virtuais com
sistemas idênticos, que executam uma implementação de controlador pré-definida e com-
patı́vel com o conceito de NBAPI. Os aplicativos escritos pelos usuários são executados
em máquinas virtuais individuais alocadas no Pool de Execução. A comunicação entre os
controladores do Pool de Controle e as VMs do Pool de Execução é provida pela NBAPI.
Já a comunicação entre os controladores e os elementos do plano de dados nos Slices
é provida pela SBAPI. As requisições realizadas pelos módulos do ProViNet aos Pools
utilizam as interfaces de comunicação providas pela plataforma de virtualização adotada.
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Finalmente, a requisição ao Provedor de Infraestrutura Virtual ocorre por meio de uma
requisição HTTP, enviando um documento de descrição de infraestrutura virtual, a ser
comentado mais adiante.
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Figura 2. Arquitetura conceitual

Analisando novamente a Figura 2, percebe-se a esquerda o Usuário Final e a di-
reita a Rede Virtual Programável. Entre esses elementos está a plataforma ProViNet,
provendo a ligação entre eles. Nessa posição, o ProViNet oferece o gerenciamento da
implantação de aplicativos, o controle de acesso para ambientes com múltiplos usuários
e os requisitos não funcionais de disponibilidade, confiabilidade e escalabilidade. Com
exceção do módulo de Controle de Usuários e de Administração, devido a simplicidade,
os outros são detalhados nas subseções seguintes.

3.2. Controle de Slices e Referências

Um ambiente virtualizado envolve uma diversidade de máquinas virtuais as quais se inte-
ligam por meio de uma rede virtual. Tal rede virtual pode ser provida de diversas formas
dependendo das tecnologias suportadas pela plataforma de gerenciamento do ambiente
virtual (são exemplos de plataformas o Eucalyptus, OpenNebula e OpenStack). Seja qual
for a abordagem de provimento, o resultado é que o usuário terá uma rede virtual que
interliga exclusivamente suas máquinas virtuais em um domı́nio único de broadcast. As
redes virtuais, assim como as máquinas virtuais dos usuários compartilham os recursos
fı́sicos do provedor (ou datacenter). Desse modo, é conveniente e usual se referir ao con-
junto de recursos de rede, computacionais e de armazenamento pertencentes a um usuário
de Slice.

Não é função da plataforma ProViNet prover a formação do Slice, ou seja, ini-
ciar as máquinas virtuais e configurar a rede virtual que interliga as mesmas. Portanto,
o módulo Controle de Slices e Referências tem o papel de receber e encaminhar um do-
cumento de descrição de infraestrutura virtual especificando a topologia e os recursos a
serem alocados pelo Provedor de Infraestrutura Virtual (PIV). Existem diversas propos-
tas para esse tipo de documento, tais como Rspec (GENI), NDL-OWL(RENCI), NMC
(OGF) e Virtual Resources and Interconnection Networks Description Language (VXDL)
do projeto INRIA [Koslovski et al. 2008]. Neste trabalho é proposta a linguagem Pro-
grammable Virtual Network Description Language (PVNDL), uma adaptação da VXDL
que contempla infraestruturas de rede virtual programável que possua plano de controle
desacoplado do plano de dados.
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Originalmente a linguagem VXDL define que os recursos possuem um nome e
podem ter uma lista de funções, parâmetros, softwares e uma localização conforme se
nota no trecho destacado de sua definição e apresentado abaixo:

<resource> ::= "resource" "(" <name> ")" "{"
["function" <elementary-functions>]
["parameters" <resource-parameters>]
["software" <software-list>]
["anchor" <location>] "}"

O atributo function pode assumir diversos valores, tais como endpoints, aquisition
e router. Propõe-se a adição de um novo atributo inerente ao valor router, o qual nomeia-
se <controller-list>. Na definição original, apenas o atributo <ports> era definido. Con-
forme apresentado abaixo, na linguagem PVNDL o novo atributo <controller-list> é
adicionado como possı́vel atributo de router, representando uma lista de controladores.
Foi adotado uma lista pois alguns roteadores ou switches compatı́veis com SDN aceitam
redundância de controladores 1. Cada elemento <controller> deve receber atributos de-
finindo o tipo de conexão (ftp, ptcp e ssl são exemplos), o endereço IP e a porta em que o
controlador remoto está configurado.

<elementary-functions> ::= <function> ("," <function> )*
<function> ::= "endpoint" | "aquisition" | "storage"

| "computing" | "visualization" | "network_sensor"
| "router" "(" "ports" <ports> [<controller-list>] ")"

<ports> ::= <number>
<controller-list> ::= <controller> ("," <controller> )*
<controller> ::= "(" <connection-type> <ip-address> <port> ")"

O usuário inicialmente deve elaborar este arquivo sem as informações sobre o
controlador, pois estas serão adicionadas automaticamente pelo ProViNet durante o pro-
cesso de requisição de infraestrutura virtual. Isso se justifica pelo fato do usuário não
ter informações sobre os endereços de IP dos controladores, até mesmo porque eles são
dinâmicos, conforme será apresentado adiante.
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Figura 3. Diagrama de sequência da abordagem de criação de Slices

1O switch virtual openvSwitch por exemplo aceita a configuração de um master e diversos slaves
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De acordo com o digrama da Figura 3, quando o usuário já elaborou o docu-
mento PVNDL, ele o envia ao módulo Controle de Slices e Referências via formulário
de upload. No mesmo formulário, o usuário pode definir um nı́vel de redundância de
controladores no Pool de Controle que pretende ser associado ao Slice requerido. Para
agilizar esse processo de requisição, mantêm-se no Pool de Controle uma instância de
VM configurada com uma implementação de controlador compatı́vel. Tal instância está
fora de execução e serve apenas como base para clonagens (um serviço de cópia rápida
provido pela plataforma de virtualização).

Quando o módulo em questão recebe de volta do Pool as informações da(s) instan-
cia(s) clonadas, inicia-se o processo de adição no PVNDL das entradas necessárias, com
os endereços IPs das máquinas, tipo de conexão e porta. Nesse momento o documento é
então enviado ao PIV por uma requisição Web, gerada automaticamente pela plataforma.
Vale ressaltar que para este trabalho, utilizamos o sistema HyFs [Wickboldt et al. 2012]
como representante do PIV. Ao receber a resposta sobre o status da requisição e com
informações sobre o acesso aos recursos do Slice, a plataforma registra no Servidor DNS
os IPs dos controladores (os mesmos adicionados no documento PVNDL). Esse registro é
a adição do nome do usuário como subdomı́nio do domı́nio www.provinet.local. Ou seja,
cada usuário tem um subdomı́nio no qual são associados os IPs dos controladores criados.
Caso o usuário tenha definido grau e redundância maior que um, o Servidor DNS aplicará
o algoritmo Round Robin entre as referências. Abaixo segue um exemplo de configuração
de uma domı́nio em que o ”user1”possui dois controladores e o ”user2”tem um.

...
NS servidor.provinet.local.

servidor A xxx.xxx.xxx.xxx
user1 A <IP-controlador-1>
user1 A <IP-controlador-2>
user2 A <IP-controlador-3>
...

Por fim, o módulo fornece ao usuário, a informação sobre a URL a ser utilizada
em seus aplicativos para fazer chamadas aos serviços (Ex.: http://user1.provinet.local).
São fornecidos, também, os dados de acesso aos recursos virtuais recebidos do PIV.
Dessa forma, o aplicativo do usuário poderá enviar requisições aos serviços provi-
dos pelos controladores instanciados no Pool de Controle. Como ilustrado na Fi-
gura 4, o aplicativo do user1 rodando no Pool de Execução poderia fazer a chamada
http://user1.provinet.local/getTopology para consultar a topologia da rede virtual dispo-
nibilizada em seu Slice. Os elementos da rede do Slice, já foram configurados com os
endereços IP dos controladores pelo PIV. Se o usuário tem mais de um controlador, as
requisições dos aplicativos serão direcionadas para os controladores conforme o algo-
ritmo Round Robin, implementado pelo Servidor DNS. Assim existirá um balanceamento
de carga entre os controladores. Além disso, em caso de falha de um controlador, terá ou-
tro para atender as requisições.

3.3. Controle de Aplicativos

Uma vez que a estrutura de programabilidade já está estabelecida, ou seja, o usuário
possui um Slice e um plano de controle devidamente configurado, resta ao usuário de-
senvolver e executar os aplicativos de rede. Para que o desenvolvimento seja possı́vel,
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Figura 4. Abordagem de referências para provimento de escalabilidade e confia-
bilidade

o usuário precisa saber quais são os serviços a sua disposição. Por isso está acessı́vel
através da interface Web do ProViNet uma documentação completa sobre tais serviços,
os quais dependem da implementação utilizada no Pool de Controle.

De acordo com o diagrama apesentado na Figura 5, no primeiro passo o usuário
acessa a plataforma e requere a VM que rodará seus aplicativos. Nesta requisição são
apresentados perfis de VM, variando o Sistema Operacional e quantidade de recursos,
tais como memória, processamento e armazenamento. Após a escolha de um perfil, a
plataforma, por meio de uma interface de comunicação com o Pool de Execução requere
uma VM com tais caracterı́sticas. Para evitar qualquer tipo de bloqueio por firewall, ao
receber os dados da VM criada, o módulo Controle de Aplicativos configura um acesso
VNC via Browser. Ou seja, o usuário é capaz de visualizar e interagir com a VM criada
por meio de um terminal apresentado em seu Browser.
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Figura 5. Abordagem de referências para provimento de escalabilidade e dispo-
nibilidade

Para controlar o aplicativo de rede, o usuário deve interagir com a VM do Pool de
Execução através da interface gráfica do ProViNet. Assim ele é capaz configurar tal VM
com todos os requisitos necessários para execução de seu aplicativo, tais como bibliote-
cas e pacotes. Os aplicativos podem ser escritos em qualquer linguagem, basta que seja
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capaz de enviar e receber chamadas HTTP segundo a arquitetura REST. Um exemplo de
chamada é demonstrado na Figura 6. Quando o aplicativo do usuário faz uma chamada
de serviço, a URL de destino é traduzida pelo Servidor DNS pra um IP válido, o qual per-
tence a lista de IPs de controladores cadastrados no subdomı́nio daquele usuário. Então a
chamada do aplicativo é de fato enviada ao IP retornado do Servidor DNS. O controlador
que recebe a requisição está no Pool de Controle, e de lá faz as chamadas via SBAPI de
acordo com o serviço requerido. Ao receber as respostas dos dispositivos de rede presen-
tes no Slice, elabora uma resposta em formato JSON e retorna ao aplicativo do usuário
que fez a requisição.
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Figura 6. Diagrama de sequência ilustrando requisição de serviços

Existe um conjunto de serviços implementados pelo controlador que roda no plano
de controle. Todavia, diante da necessidade de um novo serviço, o qual não está disponi-
bilizado no conjunto padrão de serviços do controlador, o mesmo pode ser desenvolvido
e instalado. Em geral os controladores seguem uma arquitetura que permite o acopla-
mento de módulos com a implementação de novos serviços. Baseado nas informações de
quais controladores pertencem a quais usuário, a plataforma ProViNet auxilia o usuário
na instalação dos módulos.
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Figura 7. Diagrama de sequência ilustrando a implantação de um novo módulo

Para implementar o módulo a ser instalado, o usuário deve seguir os tutori-
ais2 disponibilizados pelo órgão desenvolvedor do controlador adotado no plano de
controle. Conforme ilustrado na Figura 7, o processo de instalação de um novo

2Tomando como exemplo o controlador Floodlight, estão disponı́veis no endereço
http://www.openflowhub.org/display/floodlightcontroller/How+to+Write+a+Module, um conjunto de
instruções para o desenvolvimento de novos módulos.
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módulo se inicia pelo envio do módulo compactado para a plataforma. O módulo
responsável então o encaminha a todos os controladores do usuário que estão asso-
ciados a um determinado Slice. Em cada controlador, um deamon configurado para
fazer a implantação de módulos executa uma rotina de instalação. Uma vez que os
módulos estão instalados, os aplicativos dos usuários podem enviar requisições a ele (Ex.:
http://user1.provinet.local/modules/newModule/service).

4. Protótipo
Com o objetivo de demonstrar a viabilidade da arquitetura conceitual detalhada na Fi-
gura 2 do Capı́tulo 3, foi desenvolvido um protótipo. Sua implementação baseia-se no
desenvolvimento dos cinco principais módulos, a Interface Web, o Controle de Usuários,
o Controle de Aplicativos, o Controle de Slices e Referências e a Administração do Pro-
ViNet. Tais módulos foram implementados utilizando o framework Django 1.4.3, a lin-
guagem Python 2.7.3 e o sistema gerenciador de banco de dados PostgreSQL 9.1.6. A
fim de fornecer maior compatibilidade do sistema, foi utilizado o servidor Web Apache
2.2.23.

O módulo Controle de Usuários fornece na interface do ProViNet, formulários
de registro e login. O Controle de Aplicativos apresenta na interface uma área especial
para apresentação dos serviços disponibilizados no plano de controle e uma área para
requisição, controle e interação com as VMs no Pool de Execução. É disponibilizado
pelo módulo de Controle de Slices e Referências um formulário para upload do docu-
mento PVNDL e definição do nı́vel de redundância. Finalmente, a área de Administração
apresenta um conjunto de funcionalidades de configuração, que incluem o endereço de
IP e dados de acesso do hypervisor master dos Pools, do Servidor DNS, do Provedor
de Infraestrutura Virtual e ainda a definição dos perfis de máquinas virtuais que serão
disponibilizadas aos usuários.

Os Pools de Execução e de Controle são, na prática, servidores com alguma pla-
taforma de virtualização instalada. No protótipo desenvolvido foi utilizado o hypervisor
XenServer da CITRIX. Sendo assim, a comunicação entre os módulos da plataforma
ProViNet e os Pools se dá pela utilização do XenServer SDK. Com o SDK é possı́vel
controlar e monitorar o hypervisor através de chamadas XML-RPC. O último módulo
da plataforma é o Servidor DNS, o qual foi instalado em uma máquina com os sistemas
Bind9 e Apache2. Para o controle dinâmico de configuração do DNS, um serviço web foi
implementado para que, a partir de chamadas HTTP a uma URL especı́fica, seja feita a
adição e remoção de entradas no arquivo de configuração do bind9.

A implementação de controlador utilizada foi o Floodlight, por prover uma API
RESTfull que possibilita o consumo dos serviços disponibilizados no controlador por
meio de chamadas HTTP. Outras implementações poderiam ser utilizadas, desde que
seja possı́vel a instalação de módulos para provimento de serviços customizados e a
disponibilização de serviços utilizando a arquitetura REST.

5. Caso de Estudo e Análise de Resultados
Para avaliar a solução apresentada, foi elaborado um caso de estudo que aborda cada
um dos diagramas de sequência apresentados no Capı́tulo 3. O cenário de execução é
composto por servidores Intel Xeon CPU E3-1220 3.1GHz, 4GB RAM, com XenServer
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Clonar e iniciar
duas instâncias

Adicionar referência
ao PVNDL

Criação da rede
virtual pelo PIV

Configuração de
subdomı́nio

TOTAL

12,824s 0,003s 57,81s 0,04s 75,677s

Tabela 1. Tempos para requisição de Slice e configuração de referências

6.1 representando o Pool Controle e de Execução. O controlador OpenFlow utilizado foi
o Floodlight v0.90, e é iniciado, por script durante a inicialização da VM (Ubuntu 12.04
com 1 vCPU e 384MB RAM) no hypervisor. Para executar o framework Django com o
ProViNet foi utilizado um laptop Intel Core i7 2.8GHz e 4GB RAM. Por fim, o Servidor
DNS foi instalado e configurado em um terceiro PC (Intel Core 2 Duo 2.33GHz e 4GB
RAM) na mesma rede local que os outros PCs.

O caso de estudo se inicia com o registro do usuário, porém tal processo não é
avaliado devido a sua simplicidade. Portanto, é apresentada na Tabela 5 a avaliação da
sequência ilustrada na Figura 3. Considera-se nessa avaliação que os usuário escolheu
nı́vel de redundância 2, ou seja seu Slice terá dois controladores associados. Considera-
se também que a infraestrutura descrita no PVNDL foi uma topologia em arvore com 7
switches e 4 hosts.

Vale ressaltar que o tempo que o PIV leva para prover a infraestrutura deve va-
riar de acordo com a abordagem de mapeamento do PVNDL para a infraestrutura fı́sica.
O tempo apresentado nesse quesito considerou o sistema HyFs [Wickboldt et al. 2012]
como provedora da infraestrutura, portanto esse mapeamento é feito pela criação de um
overlay, em que switches e hosts sao máquinas virtuais com software switches e instâncias
Ubuntu respectivamente. Os tempos parciais e totais ilustrados representam a média de
tempo gasta na execução das ações a que se referem.

O próximo passo é a requisição da VM de execução, ou seja a VM em que o
usuário vai instalar o aplicativo de rede e que tem acesso via NVC no Browser. Para sim-
plificar o caso de estudo, se o usuário requisitar uma VM com as mesmas configurações
daquela que roda o controlador, o tempo gasto será de 6,890 segundos. Até mesmo porque
a abordagem de cópia com o conceito de clone também é utilizada nesse caso.
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Figura 8. Performance do plano de controle com balanceamento de carga

Para medir desempenho das requisições do aplicativo do usuário, foram realiza-
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dos experimentos com varições no nı́vel de redundância anteriormente citado (2). Dessa
forma, é possı́vel acompanhar a variação no desempenho das chamadas, pois ao utilizar
uma maior quantidade de controladores, o balanceamento de carga realizado pelo Ser-
vidor DNS torna o processo mais rápido. Tal fato pode ser acompanhado no gráfico da
Figura 8, que mostra o tempo gasto para concluir X requisições, sendo X, valores entre
10 e 100 com intervalos de 10 unidades. A requisição executada para obtenção dos va-
lores apresentados foi http://www.provinet.local/wm/core/controller/switches/json, a qual
retorna a lista de switches presentes no Slice.

Analisando os valores apresentados no gráfico 8, percebe-se que o balanceamento
de carga provido pela abordagem proposta e gerenciado pelo ProViNet é efetivo e implica
em uma redução do tempo gasto para execução das requisições. Entretanto o ganho se
torna menos significativo para um número de controladores maior que 3. Ou seja, utili-
zando apenas 1 controlador, foram gastos 7,915 segundos para concluir 100 requisições,
ao passo que com 2 controladores esse valor caiu para 4,452. O ganho ao aumentar o
número de controladores de 4 para 5, não é tão expressivo quanto de 1 para 2, saindo de
3,098 para 2,989 segundos nesse caso.

Para avaliar a funcionalidade do ProViNet de instalar módulos sob demanda,
desinstalou-se do Floodlight um módulo que originalmente já vem instalado, o módulo
de firewall. Compactou-se tal módulo em um arquivo e, através da interface do ProVi-
Net, foi feita a requisição de instalação. Uma vez que o módulo Controle de Aplicativos
possui cadastrado o endereço IP de todos os controladores e seus respectivos usuários,
após receber o arquivo por upload, um script de envio é disparado. O papel desse script é
acessar via ssh a VM de cada controlador, fazer a cópia do novo módulo para uma pasta
especı́fica na VM e ativar um segundo script na VM que faz a instalação do mesmo. Esse
segundo script segue as informações disponibilizadas no site do Floodlight para instalação
de módulos. O tempo médio gasto nesse processo foi de 23,435 segundos.

6. Conclusões e Trabalhos Futuros
A diversidade de ambientes computacionais requerem distintos serviços de comunicação
em redes. As soluções desenvolvidas no passado, e implementadas de acordo com as von-
tades das fabricantes de equipamentos de redes, podem não ser mais suficientes. Entre-
tanto, com o surgimento de propostas abertas de virtualização e programabilidade, como
as Redes Definidas por Software, a criação de novas soluções se torna, de certa forma,
mais democrática. Ou seja, depende menos dos anseios financeiros das grandes fabrican-
tes.

Todavia, os desafios agregados ao gerenciamento de ambientes de Rede Virtual
Programável (RVP) ainda representam um grande desafio. Neste trabalho propomos a
plataforma ProViNet para o gerenciamento da implantação de aplicativos de rede em am-
biente de RVP. A plataforma ProViNet contribui com uma arquitetura escalável, utili-
zando o conceito de Resource Pool, com uma abordagem para a instalação dinâmica de
novos módulos no plano de controle, com a elaboração de uma linguagem de definição
de infraestrutura virtual de rede virtual programável, chamada VXDL2, e por fim, com o
desenvolvimento de um sistema com interface de acesso Web, facilitando a compreensão
e interação com usuários finais.

Como trabalhos futuros pretende-se investigar mais precisamente, como os am-
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bientes de Cloud poderiam prover pratilheiras de serviços de rede dinâmicas. As quais
seriam ocupadas por soluções dos próprios usuários.
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