
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

MARCELO ANTONIO MAROTTA

A Management by Delegation Smart Object
Aware System for the Internet of Things

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Profa. Dra. Liane Margarida Rockenbach
Tarouco
Advisor

Porto Alegre, June 2013

CIP – CATALOGING-IN-PUBLICATION

Marotta, Marcelo Antonio

A Management by Delegation Smart Object Aware System for
the Internet of Things / Marcelo Antonio Marotta. – Porto Alegre:
PPGC da UFRGS, 2013.

73 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2013. Advisor: Liane Margarida Rockenbach Tarouco.

1. Internet of things. 2. Network management. 3. Smart ob-
jects. 4. Management by delegation. 5. OSGi. 6. Script MIB.
I. Tarouco, Liane Margarida Rockenbach. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Pró-Reitor de Coordenação Acadêmica: Prof. Sérgio Roberto Kieling Franco
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Prof. Luigi Carro
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“No fact is too pure
to be definitive”

— GONÇALO M. TAVARES

ACKNOWLEDGMENTS

I would like to express my gratitude to my mother Maria Aparecida Sousa Gay Marotta
and also my sister Samantha Marotta. They always provided me all the financial and emo-
tional support that I needed during my whole life. They are my life examples, my idols,
and also my goals. In addition, I would like to thank my stepfather, brother in law, nephew,
and niece, Antonio Donizete Silva Santos, Nesken Diniz, Yago Marotta Diniz, and Maria
Paula Marotta Diniz, respectivelly, by all the love that was given to me.

I am grateful to my girlfriend, Renata Sayuri Muranaka, who spent the last five years
by my side. She always listened carefully to my problems and showed her intention to
help. Also, she laughed and cried with me, however, always offered me her smile, even
when wrapped in tears. My companion, my friend, my love, and my happiness.

I would like to express my gratitude to those that I cannot say it in personally, my
father Antonio Ernesto Marotta and my grandmother Maria da Penha Sousa Gay. Both
of them are not among of us anymore, however, they are still alive inside of me, in my
dreams and thoughts.

I am grateful to my family, which always took care of me with love, providing me
happiness. In particular, I would like to thank my grandfather, Sebastião Milton Gay, by
his affection and patience with me.

I would like to express my gratitude to my advisor, Liane Margarida Rockenbach
Tarouco, by always encouraging me and guide me to be a better researcher. In addition,
I would like to thank my professor, Lisandro Zambenedetti Granville, for his good ad-
vices and time, always trying to polish my inner researcher. Also, I am thankful to my
professors that participates on my masters, professors Ingrid Eleonora Schreiber Jansch
Pôrto, Luciano Paschoal Gaspary, Marcelo Pimenta, Marinho Pilla Barcellos, and Juergen
Rochol.

I am grateful to all of my friends, mainly, Anderson Rocha Tavares, Camila Wrasse,
Carlos Raniery P. dos Santos, Cristiano B. Both, Grasiela Alves de Castro, José Felipe
Carbone, Isabel Flor, José Jair C. Santanna, Juliano A. Wickboldt, Leonardo Faganello,
Lucas Bondan, Luiz Otávio V. B. Oliveira, Renan Amaral, Sérgio Montazolli Silva, and
Wanderson J. Paim. All of them were always supporting me by giving their best effort to
help me or by just being there and making me happy.

I would like to thank also the rest of my friends, colleagues, professors, and staff of
the Informatics Institute from UFRGS, by their good work and assistance. Mainly, Luís
Otavio and Carlos Alberto (Cabeto), by their support during the accomplishment of this
work.

Finally, I would like to express my gratitude to those people that influenced me directly
or indirectly during the masters and also my life. Thank you all.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 7

LIST OF FIGURES . 9

LIST OF TABLES . 10

RESUMO . 11

ABSTRACT . 12

1 INTRODUCTION . 13

2 BACKGROUND & RELATED WORK 16
2.1 Management by Delegation . 16
2.2 Script MIB . 19
2.3 Open Services Gateway initiative . 22
2.4 Web Services . 24
2.5 Smart Objects Awareness Mechanisms 25
2.6 Middleware . 25

3 MBDSAS ARCHITECTURE . 27
3.1 MbDSAS use case . 30
3.2 MbDSAS operations . 32

4 PROTOTYPE . 36
4.1 Management Application . 36
4.2 MbDSAS-WS . 36
4.2.1 BeginMbD service . 37
4.2.2 EndMbD service . 38
4.2.3 ScriptPull service . 38
4.2.4 ScriptRun service . 39
4.2.5 GetResults service . 40
4.2.6 ScriptPullAndRun service . 40
4.2.7 ScriptReplace service . 41
4.2.8 GetMDL service . 42
4.2.9 UpdateMDL service . 43
4.2.10 Script Delegation . 44
4.3 MD List Builder . 45

5 CASE STUDY, RESULTS, AND ANALYSIS 46
5.1 Scenario . 46
5.2 Metrics and Experiments . 48
5.2.1 Test environment . 50
5.2.2 MbDSAS response time analysis . 51
5.2.3 MbDSAS network traffic . 52
5.2.4 MbDSAS management delay . 53
5.2.5 MbDSAS CPU utilization . 53
5.2.6 MbDSAS memory utilization . 54

6 CONCLUSIONS & FUTURE WORK 56

REFERENCES . 59

APPENDIX A . 63

LIST OF ABBREVIATIONS AND ACRONYMS

API Application and Programming Interface

CLI Command Line Interface

GaaS Gateway as a Service

HTTP Hyper Text Transfer Protocol

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

JASMIN Java Script-MIB Implementation

JSON JavaScript Object Notation

JVM Java Virtual Machine

LLDP Link Layer Discovery Protocol

MbD Management by Delegation

MbDSAS Management by Delegation Smart Object Aware System

MbDSAS-WS Management by Delegation Smart Object Aware System - Web Service

MD Managed Device

MIB Management Information Base

MLM Mid-Level Manager

NAT Network Address Translation

OSGi Open Service Gateway initiative

P2P Peer-to-Peer

REST Representational State Transfer

RFC Request for Comments

ROA Resource Oriented Architecture

SNMP Simple Network Management Protocol

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SObj Smart Objects

TCP Transmission Control Protocol

TLM Top-Level Manager

UFRGS Federal University of Rio Grande do Sul

UPnP Universal Plug and Play Protocol

W3C World Wide Web Consortium

WS Web Service

WSDL Web Service Description Language

XML eXtensible Markup Language

LIST OF FIGURES

Figure 2.1: Distribution level classification . 18
Figure 2.2: Script MIB relational diagram . 20
Figure 2.3: OSGi layered architecture . 22

Figure 3.1: MbDSAS conceptual architecture 27
Figure 3.2: MbD entities in a communication graph 30
Figure 3.3: MbDSAS sequence diagram . 33

Figure 5.1: MbDSAS generic scenario . 46
Figure 5.2: Cumulative airport traffic model . 47
Figure 5.3: Response time of MbDSAS using scriptPullAndRun 51
Figure 5.4: Network traffic of MbDSAS with zero waiting time 52
Figure 5.5: Management delay of MbDSAS (OSGi-ROA) 53
Figure 5.6: CPU utilization of MbDSAS (OSGi-ROA) 54
Figure 5.7: Memory utilization of MbDSAS (OSGi-ROA) 55

LIST OF TABLES

Table 4.1: MbDSAS-WS services . 37

Table 5.1: Hardware and software specifications 50

RESUMO

Through the Internet of Things - A Management by Delegation Smart Object
Aware System

Os objetos inteligentes (SObjs) são numerosos e irão comunicar-se diretamente atra-
vés da Internet das Coisas (IoT). Esse grande número de SObjs, pode levar a IoT a en-
frentar severas condições de rede, em termos de congestionamento na rede e atrasos na
comunicação fim-a-fim. Assim, o gerenciamento de SObjs torna-se fundamental para
evitar futuros problemas da IoT. Em tal gerenciamento, switches, network-boxes e rote-
adores, também chamados de gateways, são configurados para gerenciar SObjs através
de reconfigurações e atualizações de software seguidas por reinicializações nos gateways.
Entretanto, a dinamicidade da IoT, causa a necessidade de se reconfigurar os gateways
frequentemente, i.e., a configuração vigente dos gateways torna-se rapidamente desatua-
lizadas por lidar a todo momento com a entrada e saída de novos SObjs da rede. Assim,
propõe-se uma abordagem chamada Management by Delegation Smart Object Aware Sys-
tem (MbDSAS), para reconfigurar gateways e gerenciar SObjs, sem a necessidade de uma
atualização de software ou aplicação de patches, lidando com a dinamicidade da rede IoT.
MbDSAS foi prototipado e uma avaliação foi realizada, através de um cenário, onde o
fluxo de dispositivos existentes se assemelha com o de um aeroporto. Em adição, MbD-
SAS foi testado experimentalmente, em termos de desempenho, para avaliar sua qualifi-
cação como uma solução de gerenciamento para cenários da IoT e determinar a melhor
combinação de tecnologias para implementar essa solução. Os resultados encontrados
mostram que MbDSAS desempenha melhor quando desenvolvida com uma arquitetura
de acesso baseada em recursos e através do uso de um módulo Open Service Gateway ini-
tiative (OSGi). MbDSAS quando comparada a um sistema de gerenciamento tradicional,
se mostra superior em termos de consumo de memória e processamento, se classificando
como uma importante solução para o gerenciamento de SObjs da IoT.

Palavras-chave: Internet das coisas, gerenciamento de redes, objetos inteligentes, geren-
ciamento por delegação, script MIB, OSGi.

ABSTRACT

The smart objects (SObjs) are numerous and will communicate directly through the
Internet of Things (IoT). Such huge number of SObjs may lead the IoT to face severe net-
work conditions, in terms of network congestion and large delays. Thus, the management
of SObjs is fundamental to avoid future IoT network problems. In such a management,
network boxes, also called gateways, have been configured to manage SObjs with soft-
ware updates or reconfiguration followed by a warm start. However, gateways configu-
ration become soon outdated because SObjs join and leave the network quite frequently.
Therefore, we propose an approach called MbDSAS to reconfigure gateways without the
need of a software updating or patching to manage and detect SObjs and deal with the
dynamicity of the IoT network. An evaluation of MbDSAS was performed through an
airport modeled scenario. In addition, MbDSAS was experimentally tested to be qual-
ified as a management solution to IoT scenarios and to determine the best performance
combination of technologies to implement MbDSAS. The results shown that MbDSAS
has its performance improved when developed with an architecture based on resources
and through the use of a module textit Open Service Gateway Initiative (OSGi). Mb-
DSAS when compared to a traditional management system shows superior in terms of
memory consumption and processing, being classified as an important solution for the
managing of SObjs from the IoT.

Keywords: Internet of things, network management, smart objects, management by del-
egation, OSGi, Script MIB.

13

1 INTRODUCTION

Traffic lights, surveillance cameras, home appliances, and mobile phones are objects
of everyday that, when equipped with network interfaces, have been classified as Smart
Objects (SObjs) (Dunkels e Vasseur, 2008). The Internet has been gradually incorporat-
ing these SObjs into its environment, leading to the so called Internet of Things (IoT).
Because the extremely large number of everyday objects, the future IoT is naturally ex-
pected to be composed of billions of SObjs. Predictions (Sundmaeker et al., 2010) foresee
that the IoT will accommodate 50 to 100 billion of SObjs in 2020. As a consequence, the
huge number of SObjs can potentially lead the IoT to severe network conditions in terms
of congestion and large delays because of the network traffic generated by SObjs.

The management of SObjs is fundamental to avoid severe network conditions of the
future of the IoT. In such a management, traditional devices as computer servers, set-top
boxes, and routers can potentially incorporate the role of management stations (or sim-
ply managers) that access information from SObjs to both monitor and configure them.
Managers and SObjs exchange information according to two models: direct and indirect
communications. In direct communication (Guinard et al., 2010), occasional intermedi-
ate devices between managers and SObjs (e.g., gateways, firewalls, NAT boxes) do not
change the communication semantics and perception. In the indirect communication,
however, intermediate devices expose to managers a different, possibly enhanced view
of SObjs (Gama et al., 2012). For example, gateways can cache SObjs management in-
formation to improve the perceived availability of SObjs from the manager point-of-view
(Viswanathan et al., 2012).

Usually, SObjs have insufficient hardware resources to implement more sophisticated
management features found in traditional devices. That includes, for example, supporting
robust security mechanisms or even timely replying to bursts of manager requests. In
fact, the usual lack of resources in SObjs leads solution designers to prefer the indirect
communication model because it offers the opportunity to handle the SObjs constraints at
intermediate devices (Bottazzi et al., 2006)(Vermesan et al., 2008)(Mukhtar et al., 2008).
Routers, switches, access points, and other network boxes can perform proper intermedi-
ation between managers and SObjs (Rellermeyer et al., 2008)(Gama et al., 2012), and, in
this case, are referred to as management gateways in this dissertation.

Currently, management gateways already available tend to be shipped with a manage-
ment code that is not expected to be replaced, unless as a result of a software update or
patch. In the IoT, however, management gateways need to cope with the typical dynam-
icity of the network, where new SObjs join and leave the IoT quite frequently. It means
that management gateways must be often reconfigured to be able to intermediate a vary-
ing number and types of SObjs without passing through the typical process of a software

14

update usually followed by a warm start. However, currently management gateways tend
not to offer dynamic reconfiguration features to avoid warm starts, remaining constrained
to the traditional network of computers.

Gateways management codes are limited to manage a finite number of SObjs. These
codes must be precisely designed to avoid unnecessary software processing. In the IoT,
SObjs may join and leave the network in an unspecific time, leading management gate-
ways to process unnecessary computer routines. In addition, new SObjs that join the
network may be left without management because they are not covered by the current
management code. Therefore, gateways must offer SObjs awareness solutions to deter-
mine which are the SObjs in range to adjust the management code more precisely. In
summary, today’s management gateways tend neither to offer dynamic reconfiguration
features nor SObjs awareness solutions, which represents a critical problem when inter-
mediating the management of SObjs in the IoT. Therefore, we designed an architecture
that present both features, SObjs awareness and dynamic reconfiguration.

In this dissertation we described an approach called Management by Delegation SObj
Aware System (MbDSAS). In such an approach, gateways detect SObjs dynamic behav-
ior by taking advantage of discovery protocols, such as Link Layer Discovery Protocol
(LLDP) (Congdon, 2002) or Universal Plug and Play (UPnP) (Reynolds, 2006). In ad-
dition, MbDSAS allows the creation of lists based on the detected behavior of SObjs to
be later obtained by managers through Web Services (WS). Afterwards, managers can
use Management by Delegation (MbD) (Fioreze et al., 2005; Granville et al., 2009; Gold-
szmidt et al., 2010) concepts to delegate the management of SObjs tasks to gateways.
Such delegation is carried out by the use of WS in combination with the IETF Script
MIB (Levi e Schoenwaelder, 2001) and Open Service Gateway initiative (OSGi) (OSGi
Alliance, 2012), which enables gateways reconfiguration without the need of patches or
updates followed by a warm start.

A prototype of MbDSAS was designed to explore and evaluate the combination of
different technologies. For example, MbDSAS prototype was deployed with different
WS architectures, i.e., Service Oriented Architecture (SOA) (Box et al., 2000) and Re-
source Oriented Architecture (ROA) (Fielding, 2000). Both of these architectures were
explored to seek best performance with WS that, when consumed by managers, provide
the same functionalities of the Script MIB and OSGi. To qualify MbDSAS as a IoT man-
agement solution, its prototype was deployed in a typical IoT scenario, more precisely,
into an airport station (Sundmaeker et al., 2010) modeled through poisson distributions to
the assessment of MbDSAS. Finally, results were experimentally collected in terms of re-
sponse time, network traffic, management delay, CPU, and memory utilization to address
the following research questions.

• How to adapt gateways to offer dynamic reconfiguration and Smart Objects aware-
ness features to cope with the IoT dinamicity?

• How much cost in terms of hardware resources for a gateway to provide dynamic
reconfiguration and Smart Objects awareness features?

• Which are the benefits and trade-offs acquired from a new solution for IoT man-
agement based on reconfiguration and Smart Objects awareness features?

The remainder of this dissertation is organized as follows. In Chapter 2, we present a
background and the state-of-the-art on management solutions in the IoT. In Chapter 3, we

15

describe our solution to configure gateways to manage SObjs. A proof of concept of our
solution is presented in Chapter 4. In Chapter 5, a case study and a scenario are defined to
evaluate our solution. In addition, the achieved results are discussed. Finally, in Chapter
6, we conclude this dissertation presenting final remarks and future work.

16

2 BACKGROUND & RELATED WORK

Through this chapter we discuss fundamental work related to our solution. We present
the underlying concepts of our work reviewing the distributed management approach
called Management by Delegation. Afterwards, the IETF’s Script MIB is described to
enable the understandability of how an architecture should apply MbD to reconfigure
gateways. In addition, OSGi is described as a mechanism to reconfigure gateways as well
as Script MIB. Finally, we discuss how Web Services and SObjs awareness mechanisms
have to be used in combination to manage the IoT, reviewing current projects that use
such a combination.

2.1 Management by Delegation

Traditional centralized management approaches are usually insufficient to manage
large networks (Goldszmidt et al., 2010). In such a management, a single station man-
age all variety of network nodes presented in one network domain. However, with the
increasing size of modern networks, a single manager becomes easily overloaded with
management information (Goldszmidt et al., 2010). Thus, the centralized management is
expected to be replaced by distributed management approaches to avoid such overload.

Distributed network management systems are typically composed by managers, agents,
and dual-role entities. Managers are characterized by entities, which perform manage-
ment functions that includes monitoring an network domain or creating summarized re-
ports about domains characteristics. An agent, in its turn, is typically a network node that
performs mundane actions, such as gathering, caching or providing access to data. Fi-
nally, dual-role entities are network nodes that assume both roles as managers and agents,
making the definition of management tasks and agent tasks to blur (Schonwalder et al.,
2000).

The distribution of network management can be accomplished with the Management
by Delegation (MbD) model (Goldszmidt et al., 2010). This model is based on delega-
tion, i.e., the process of transferring power, authority, accountability and responsibility for
a specific task among network entities (Martin-Flatin et al., 1999). Such entities are hi-
erarchically organized in a top-down model: (i) Top-Level Managers (TLMs) are stations
responsible for the management of an entire network domain; (ii) Mid-Level Managers
(MLMs) are network nodes capable of executing delegated management tasks; and (iii)
Managed Devices (MDs) are the final target of the management tasks (Granville et al.,
2009). Scripts contain the code describing the management tasks, which are sent from
TLMs to MLMs. The execution of these scripts allows MLMs to manage closer MDs.
The communication between TLMs and MLMs is independent of the delegated manage-
ment scripts, whereas the communication between MLMs and MDs may depend on the

17

management interfaces exposed by MDs and the routine implemented in the management
script.

Martin-Flatin et al., (Martin-Flatin et al., 1999) defines a distribution level that clas-
sifies MbD systems accordingly with their management organization, ranging from cen-
tralized, via distributed, and cooperative management. On one hand, centralized manage-
ment and via distributed systems presents an hierarchical management organization, in
which MLMs are typically constrained to mundane functions. On other hand, in the via-
distributes and cooperative management, MLMs assume both roles as TLM and MLM,
i.e., a dual-role entity. These MLMs communicate other MLMs, delegating management
tasks and sharing information. With the increasing number of MLMs, a management sys-
tem become more elastic, i.e., a system with entities that perform or share management
tasks with others dynamically, creating an enhanced local autonomy (Goldszmidt et al.,
2010).

In Schonwalder et al., (Schonwalder et al., 2000), an MbD system is classified as cen-
tralized, weakly distributed, strongly distributed, and cooperative management accord-
ingly with the number of TLM and MLMs in a system. In addition, in each classification,
MLMs can play both roles, as agent or dual-role entity. The total number of TLMs and
MLMs in an MbD system may be equated by µ , whereas η represents the total number
of elements in an MbD system. Therefore, accordingly with Schonwalder et al., (Schon-
walder et al., 2000):

µ = 1 centralized management;
1 < µ � η weakly distributed management;
1 � µ < η strongly distributed management;
µ ≈ η cooperative management;

Management distributed classifications defined above may be better understood by
Figure 2.1. In this figure, centralized, weakly, strongly distributed, and cooperative man-
agement are presented. White circles represent TLMs, gray ellipses are MLMs, and black
ellipses are MDs. In addition, each black line represents a possible communication in-
teraction among entities. A centralized management is depicted in Figure 2.1.a, where a
single TLM is handling all the management of an entire network domain (µ = 1). For
each MD, a TLM uses computer routines based on direct network interactions to perform
monitoring, controlling, and management. However, when the number of MDs raises, the
number of management tasks also raises, leading TLM to become overloaded. Thus, dis-
tributing the management task among intermediary entities may avoid problems related
to overload.

A weakly distributed management presents few MLMs and TLMs (1 < µ � η), as
can be seen in Figure 2.1.b. In such a management, TLMs usually use MLMs to just per-
form mundane functions, the level of distribution remains low (Schonwalder et al., 2000).
It means that TLMs still being overloaded by the overall management task because MLMs
has a minimalistic participation in the management task, requiring TLMs to manage it.

In the strongly distributed management and cooperative management, the number of
TLMs and MLMs grows as depicted in Figures 2.1.c and d. The overall task management
is distributed among almost all network entities. The strongly distributed management
presents some TLMs, whereas, the cooperative management is nearly composed solely
by dual-role entities MLMs and some few MDs. Such a high-level of distribution enables
MbD based systems to achieve the most important characteristics for this dissertation:
scalability and flexibility (Schonwalder et al., 2000).

18

a) Centralized-management b) Weakly distributed management

c)Strongly distributed management d) Cooperative management

Figure 2.1: Distribution level classification

• Scalability: Accordingly to Schonwalder et al., (Schonwalder et al., 2000), there
are three reasons for MbD systems reach scalability. First, a TLM management
task will be distributed through different network entities, minimizing its workload.
Second, the network overhead will be minimized because MLMs will exchange
management tasks with others that are closer to MDs, avoiding distant communica-
tions. In addition, scripts sources will be communicated between MLMs rather than
raw data. Afterwards, MLMs can summarize collected data to minimize the com-
munication traffic with distant entities. Finally, MLMs need less storage resource
by maintaining only active scripts stored instead of raw data.

• Flexibility: As soon as MbD systems configurations become outdated, managers
may create new scripts to reconfigure MbD systems on the fly. Afterwards, these
MbD systems can spread the new script among its internal nodes and neighbors
MbD systems dynamically. Therefore, management and agent tasks can be freely
reassigned dinamically without the need of a software update usually followed by
a warm start.

The distribution level of an MbD system must be adapted accordingly with the given
management task (Schonwalder et al., 2000). A detailed discussion of management task
characteristics that can exercise some influence in the distribution level choice is discussed
in Meyer et al., (Meyer et al., 1995).

There are other distributed network management approaches, for example, Santos et
al., (dos Santos et al., 2008) developed a P2P distributed network management approach,
which rely on overlay peers communication to distribute their informations among other
peers to monitor, control, and manage a network domain. However, caching information
among peers presents a problem when P2P distributed network management is applied to
scenarios with security concerns, such as military, healthcare, and banking. In these sce-
narios, source and destiny are the only peers allowed to understand each other’s messages

19

and cache than. Therefore, an attack to an intermediary peer that had cached these mes-
sages become a risk to the security communication. Through MbD, the communication
is reconfigured at anytime by a TLM to allow messages exchanging only among defined
network nodes without sharing of messages.

In an MbD based system, increasing the level of distribution enable huge network
scenarios to be managed with a lower network traffic because of scalability and elasticity
properties that an MbD system may achieve (Schonwalder et al., 2000)(Goldszmidt et al.,
2010). In the IoT, we argue that MbD may be used in large scenarios to delegate manage-
ment tasks to IoT gateways operating as MLMs. These gateways are then reconfigured
to manage closer SObjs through TLM scripts delegation that enables the management of
SObjs with different characteristics. For example, SObjs may be created to measure tem-
peratures periodically or to record videos to be sent constantly over the network. These
two different SObjs may be managed by the same gateway using different scripts. How-
ever, because MbD is an abstract model, it has to be carefully adapted to be properly
applied in IoT management. In this case, we review two important technologies that can
be used to realize MbD in Section 2.2 and 2.3.

2.2 Script MIB

The Script MIB is an MbD based architecture introduced by the IETF’s Distributed
Management (DISMAN) group (Levi e Schoenwaelder, 2001). The Script MIB was de-
signed as a Management Information Base (MIB) to be used with a Simple Network Man-
agement Protocol (SNMP) agent. Managers from the network can communicate SNMP
agents to retrieve informations from management objects defined in these MIBs. These
objects may be used to monitor or control different features from the Script MIB, for ex-
ample, ending a script execution or informing a URL to retrieve one script from an exter-
nal repository. In addition, the Script MIB defines neither a specific language for coding
of management scripts nor their objectives, for example, a management script may be de-
signed to create firewall rules or to collect informations from an MD, both are launched,
executed and managed but not defined by Script MIB. In summary, Script MIB provides
a way to remotely manage scripts installation, launch, execution, and termination.

An overview about Script MIB structure, characteristics, and features is provided bel-
low. This overview will cover only specific details about Script MIB that are important for
this dissertation. Therefore, the documentation of Schownwalder et al., (Levi e Schoen-
waelder, 2001) can be consulted for any further details about Script MIB.

SNMP management objects of Script MIB were all accommodated into the SNMP
group smObjects, as can be seen in Figure 2.2. In such a group, there are two sub-groups,
smScriptObjects and smRunObjects. In addition, there are table objects that will carefully
describe different features of Script MIB. Each of these sub-groups and table objects are
better explained bellow.

• smLangTable: The Script MIB defines an object table, henceforth referred to as ta-
ble, called smLangTable that accommodates objects to describe MLM’s supported
environment programming languages to execute scripts, for example, JAVA, C,
CPP, or Python. In such a table, a programming environment is described ac-
cordingly to a unique index, name, distributor or vendor, current revision, and a
description.

• smExtsnTable: When a language entry is added to smLangTable, usually one or

20

Figure 2.2: Script MIB relational diagram

more extensions are associated whit these languages, such as .jar, .exe, .cpp, or .py.
Each extension is presented as an entry of table smExtsnTable. A common entry of
smExtsnTable will be composed by a unique index, name, current version, revision,
and a description.

• smScriptObjects: The smScriptObjects sub-group accommodates all objects needed
to install, store, and describe a management script.

– smScriptTable: In the smScriptObjects sub-group there is the table smScript-

21

Table, which lists scripts installed on MLMs. These scripts are installed by
the creation of an entry on the smScriptTable with at least informations about
the script owner, name, group, programming language, and a URL to retrieve
the script. Each entry contains a column that indicates the status of the script,
which, when it is changed, informs the MLM that the script is ready to be
pulled from an external repository. In addition, the pulled script can be used
volatile, stored directly over the memory RAM, or locally, stored on hard disk.

– smCodeTable: The second table of the smScriptObjects named smCodeTable
stores information about the location and identification of local scripts. In ad-
dition, the smCodeTable can be used by TLMs to push scripts through SNMP
messages, however, the feature of pushing scripts is optionally adopted by a
Script MIB implementation (Schonwalder et al., 2000).

• smRunObjects: Each entry in the smScriptTable represents an installed script on an
MLM that can be launched and executed, these both activities can be monitored and
controlled by a TLM accordingly with smRunObjects sub-group objects.

– smLaunchTable: The smRunObjects presents the table smLaunchTable, which
lists scripts ready to be launched. Each script launch has one entry in sm-
LaunchTable and presents at least informations about who owns this launch-
ing, a launch name identification, a script name to be launched, and the script
owner. Through these informations, a TLM will change the value of sm-
LaunchStart column informing an MLM to launch the script. Different scripts
launch can be started sequentially or in parallel by the same TLM or from
other managers from the network. The capabilities and system permissions of
scripts are the same of their owner and group.

– smRunTable: A script launched from the table smLaunchTable starts to be ex-
ecuted passing to the state of running, being added as an entry in smRunTable.
During the script execution, TLMs can monitor scripts being executed acquir-
ing objects from smRunTable through SNMP messages. In addition, script
executions can be controlled changing the values of the smRunTable column
objects, terminating, pausing, or continuing a script execution. Finally, TLMs
can use smRunTable objects to obtain the results of a script execution.

One of the main concerns about the Script MIB is the complexity and network over-
head related to the great number of SNMP messages needed to just install and execute a
management script (Granville et al., 2009). Fioreze et al., (Fioreze et al., 2005) present a
WS based alternative to the Script MIB. In such an alternative, an improved performance
in comparison to the Script MIB was achieved by reducing the number of messages ex-
changed in the network to just one WS message. Therefore, Fioreze et al., proved that a
WS approach can perform MbD functionalities better than a traditional Script MIB im-
plementation in place.

Script MIB is one technology that implements MbD concepts in traditional networks,
where TLMs are interested in reconfigure MLMs to manage the network substrate and
known MDs. In the IoT networks, MLMs have to manage an unknown number of SObjs
that stay active over the network for uncertain time. However, the Script MIB does not
present awareness solutions to both acquire knowledge about a new SObjs nor to detect
a SObj joining or leaving from the network. In addition, one of the main problems of

22

the Script MIB is that by design it lacks of mechanisms to check script dependencies,
correlation, and services availability.

2.3 Open Services Gateway initiative

Another technology that may be used to realize MbD is the OSGi framework (OSGi
Alliance, 2012) (Rellermeyer et al., 2008). Through OSGi, Gama et al., (Gama et al.,
2012) use gateways that are reconfigured to manage SObjs. Such reconfiguration is car-
ried out by external managers, which delegates management tasks through scripts to OSGi
enabled gateways. These scripts are programs called bundles. Such bundles are installed
and managed by a single instance of the OSGi as a part of it. Different from the Script
MIB, OSGi presents a mechanism to check bundle dependencies and enables link be-
tween bundles. Both differences are checked and created during the bundle installation.
Another difference between Script MIB and OSGi is that the OSGi threats bundles as net-
work services exposing an enhanced view of them, for example, providing Web Services
Description Language (WSDL) or eXtensible Markup Language (XML) documents to
describe bundles.

The OSGi framework provides all the subsides needed to handle bundles in terms of
software. In addition, this framework provides also a uniform interface that enables the
access to the hardware substrate. The OSGi architecture may be better explained by the
layered architecture presented in Figure 2.3.

Hardware/Operational System

Execution Environment

Modules

Life cycle

Service

S
e
c
u
r
i
t
y

Bundles

Figure 2.3: OSGi layered architecture

In Figure 2.3, the basic infrastructure necessarily to execute the OSGi Framework is
presented by underlie layers composed by Hardware, Operational System and Execution
Environment layers. Over this infrastructure, bundles are designed taking advantage of
OSGi layers, such as Security, Modules, Life Cycle, Service Registry, and Services better
described as follows.

• Security layer: The Security layer is an optional layer that underlies all the OSGi
framework, it was designed based on the Java 2 security specification. This layer
can provide different security features, for example, code authentication by signer

23

or location. However, the security layer itself does not define an API to control
applications. Thus the management of the security layer is left to the life cycle
layer.

• Modules layer: The modules layer defines a generic and standardized module pack-
age to store and publish scripts, called bundle. Bundles must contain all the re-
sources that a script may need to execute, such as help files, icons, text files, and
other specific resources that a script may need and is not provided by default. In
addition, a bundle must present a manifest document that describes the bundle and
its dependencies to be checked by OSGi. Once a bundle is started, its functionalities
are exposed to other bundles as a service.

• Life Cycle layer: The Life Cycle layer is based on the Modules and Security layers.
This layer provides an API that covers the installation, starting, stopping, updating,
uninstallation, and monitoring of bundles in a fine-grained secure environment (se-
curity is optional) (OSGi Alliance, 2012). In addition, the Life Cycle layer must
provide an API that enables the remote management of the OSGi framework.

• Service layer: The Service layer defines a publish, find and bind model that is highly
integrated with the Life Cycle layer. This layer enables bundles to publish, find, and
bind each other’s services without having a priori knowledge of those bundles. In
addition, this layer enables a bundle to restrict its service access and also track
services across the framework.

Different from Script MIB, OSGi was not developed to implement MbD concepts by
design (OSGi Alliance, 2012). However, the MbD principles can be observed through
similarities presented between Script MIB and OSGi. For example, Script MIB enables
network managers to delegate scripts remotely through SNMP. OSGi, in its turn, may be
remotely accessed by network managers through web applications or remote terminal so-
lutions to install new scripts. Both solutions enable the reconfiguration of network nodes
without the need of a warm start or system reboots. In addition, Script MIB enables se-
curity by adjusting scripts permissions accordingly with user and group authentication,
whereas OSGi rely on code authentication through signature and certificate based mech-
anisms that allow the same association among user and group permissions to a script.

Rellermeyer et al., (Rellermeyer et al., 2008) improves OSGi to be programming lan-
guage independent, providing different forms to embed the OSGi into SObj. Such im-
provement allows SObjs to pull scripts from configured remote repositories or URLs del-
egated by managers over different technologies, such as IEEE 802.15.1 or IEEE 802.15.4.
However, even the improved OSGi does not present a decoupled way to install new scripts
by default. Thus, OSGi remains coupled to specific applications to install new scripts,
such as CLI, Eclipse IDE, or Netbeans IDE.

In the IoT, gateways with OSGi tend to not offer a SObjs awareness mechanisms by
default, therefore, it cannot be used solely to detect, manage, and monitor SObjs automat-
ically, without external intervention of human managers. In addition, as the OSGi was
not design to be an MbD solution, it does not present all interfaces necessarily to support
MbD concepts presented in Section 2.1. Therefore, WS solutions may be explored to
address the lack of awareness mechanisms and MbD interfaces of OSGi.

24

2.4 Web Services

Granville et al., (Granville et al., 2009) present a WS alternative to the Script MIB.
Such alternative was designed to offer original Script MIB services as WS operations
accessed through the Simple Object Access Protocol (SOAP) (Box et al., 2000). The
important consequence of that work is the observation that a WS solution can provide
interfaces necessarily to implement MbD concepts. In addition, MbD services can con-
sume less network resources if MbD is realized through carefully defined WS operations,
instead of having a traditional Script MIB implementation in place (Fioreze et al., 2005).
Therefore, we argue that WS can be combined with OSGi as well as the Script MIB
to provide MbD functionalities leading to an improved experience to install scripts and
manage them.

WS applications may present different architectures, e.g., Service Oriented Architec-
ture (SOA) (Box et al., 2000) and Resource Oriented Architecture (ROA) (Fielding e
Taylor, 2002). SOA is coupled to the client/server model that uses Uniform Resource
Identifier (URI) to access different services, i.e. endpoint. In general, this approach is
implemented through the W3C standards, also called WS-*. Each WS based on SOA
requires a Web Services Description Language (WSDL) document to provide communi-
cation interfaces, i.e., description of services, message formats, and data to be commu-
nicated. In addition, a SOA WS requires the use of SOAP (Box et al., 2000) to perform
communication among services and clients. SOAP messages are described in XML and
must be serialized before transmitted over the network.

ROA (Fielding e Taylor, 2002) is a loosely coupled approach to client/server model
that uses URI to directly access resources of a WS, also known as RESTful services. In
general, this approach follows the architectural style called Representational State Trans-
fer (REST). This style defines HTTP as the only application protocol and standardizes
access interface for its methods (i.e., GET, PUT, POST, and DELETE). Each message of
REST is loosely coupled and represents a state of the accessed resource, i.e., the current
collection of meaningful information, such as network parameters and hardware config-
urations. REST states can be described by XML as SOA or also by JavaScript Object
Notation (JSON), a lightweight description language.

Pautasso et al., (Pautasso et al., 2008) show that ROA presents almost the same fea-
tures of SOA, however, it is lighter in terms of network overhead. In Granville et al.,
(Granville et al., 2009), SOA was presented as the only WS architecture to provide an
alternative to Script MIB. Therefore, the use of ROA as a WS architecture to provide such
alternative remains an open research question.

In summary, as Granville et al., present a WS application to map Script MIB functions,
we argue that the same can be done with the OSGi. In this case, a WS approach is designed
to provide MbD functionalities using both, Script MIB or OSGi. However, just provide
interfaces to support MbD concepts is not enough to manage IoT because MbD solutions
solely cannot define which are the scripts to be delegated nor when they must be started or
stopped to avoid unnecessary processing by gateways, i.e., MbD is not enough to detect
which are the SObjs nor which are on-line or off-line to be managed. Therefore, SObjs
awareness mechanisms should be took in concern to enable MbD systems to manage IoT
networks.

25

2.5 Smart Objects Awareness Mechanisms

SObjs awareness describes the capability of gateways to sense SObjs in its covered
area. It means that gateways have features to discover new SObjs, detect when they are
joining or leaving the network. In addition, gateways regards on awareness mechanisms
to acquire important information about SObjs, for example, IP, system name, and machine
address. These features are usually presented as standard network protocols, which are
examples LLDP (Congdon, 2002) and UPnP (Reynolds, 2006).

LLDP is a protocol designed to run over all IEEE 802 networked devices. This pro-
tocol is media independent enabling the contact of LLDP agents with adjacent devices
to learn higher layer management reachability and connection endpoint informations. In
addition, LLDP runs over the data-link layer exclusively (OSI model), allowing devices
with different high level protocol stacks to learn about each other. The main disadvantage
of such protocol is that LLDP does not cover SObjs service discovery.

UPnP, in its turn, defines an architecture, formerly known as the Device Control Pro-
tocol (DCP) Framework, usually presented as a set of protocols standardized by UPnP
forum1, such as IP, TCP, UDP, HTTP, SOAP, and XML. This architecture tries to provide
seamlessly connectivity to ad-hoc SObjs being media independent. It means that UPnP
can be deployed over any operational system and computational language. Gama et al.,
(Gama et al., 2012) states that UPnP is the , the facto, protocol for plug-and-play SObjs.
In addition, UPnP can be used to add discovery, description, control, eventing, and pre-
sentation capabilities to devices. However, UPnP uses high level layers (OSI model) to be
deployed, these layers cannot be fully supported by some constrained SObjs (e.g., RFID
tags).

SObjs awareness mechanism can be used to detect devices that, when combined with
MbD solutions, Script MIB and OSGi, enables gateways to detect new SObjs and to
receive scripts to manage them. However, awareness mechanisms and MbD solutions are
not combined by default to manage IoT. It means that even when a gateway has installed
an MbD solution and an awareness mechanism, by default, they are not related and have to
be combined by some other solution. Therefore, solutions that provide such combination
of features should be explored to achieve a better management of the IoT.

2.6 Middleware

Most of current solutions to manage the IoT are designed as a middleware (Teixeira
et al., 2011), i.e., an intermediary software layer that offers an enhanced view of the lower
layers usually composed by operational systems applications, hardware drivers, or net-
work services. This enhanced view is usually provided by WS to improve interoperability
among other available middlewares and network clients. In addition, middlewares adopts
SOA in order to support the IoT network topology that is both unknown and dynamic
(Teixeira et al., 2011). These middlewares usually are developed over OSGi and may use
UPnP technologies to provide a discovery mechanism to handle IoT dynamicity.

Middlewares designed to manage the IoT are based in different strategies, which main
examples are devices as services and data/information extraction. On the first strategy,
middlewares create a WS for each SObj discovered. This WS will have its consumption
translated to SObjs calls. Such calls can be responded directly by SObjs or indirectly
by gateways that has SObjs cached information to provide. There are current projects

1UPnP Forum - www.upnp.org

26

that use the stategy of devices as a service, such as LinkSmart formerly known as to HY-
DRA2 (Eisenhauer et al., 2009)(Eisenhauer et al., 2010), SENSEI (Presser et al., 2009),
SOCRADES (Cannata et al., 2008), and COBIS (Decker et al., 2007).

The information extraction strategy is based on data analysis and ontology detection.
This strategy tend to provide an macro overview of the IoT, where middlewares are more
interested in process the information provided by SObjs rather than how to obtain it. It
means that these middlewares are bound to semantic web, extracting meaningful informa-
tion through ontology approaches, and use database models to provide a better summary
of informations in an easier way. Some projects use this middleware strategy, such as
Smart-M3 (Honkola et al., 2010), SATware (Massaguer et al., 2009), and Global Sensor
Networks GSN (Aberer et al., 2007).

The main disadvantages of current middlewares is that they tend to apply one strategy
rather than other, furthermore, middlewares are actually creating an heterogeneity among
themselves. It means that there is no agreement among middlewares about the strategy
adopted, letting managers to decide which is the best strategy to their network domains.
MbD based solutions can be used to simplify the use of both strategies because one strat-
egy can be easily replaced by delegating a script that supports one strategy rather than
other.

Current systems based on middlewares tend not to support one role entity solely any-
more e.g., LinkSmart, SENSEI, and Smart-M3. It means that there is no clear division
between TLM and MLM roles and there are only dual-role entities. In a macro overview
of the IoT, to manage it plentifully, a fully distributed system composed solely by dual-
role entities fits better than a less distributed solution because minimize network traffic
and achieve high level of scalability. However, in a micro universe of the IoT, a fully dis-
tributed systems may actually lead some scenarios to face new problems. For example,
an hospital network that handles private patient informations installs a fully distributed
management system, where every node gather information and share among each other.
Afterwards, one of these nodes may share private informations by receiving external share
requests from other systems that has the same distributed solution, presenting an informa-
tion leakage. Such a leakage may be avoided with a small distribution level, where MLMs
share information only with their specified TLMs. In addition, as stated before at Section
2.1, a distributed level should be correctly adapted accordingly with a network domain
management task (Schonwalder et al., 2000). Therefore, an architecture that supports dif-
ferent levels of distribution, such as an MbD based architecture, should be more suitable
to the IoT rather than a full distributed solution, as the current middlewares present.

Observing the need of an solution based on MbD concepts, WS, and SObjs awareness
mechanisms, in this dissertation, we described a solution called Management by Delega-
tion Smart Object Aware System (MbDSAS) (Marotta et al., 2013). MbDSAS was design
based on MbD concepts, using either the Script MIB and OSGi, in combination with a
WS architecture, SOA and ROA, and an awareness mechanisms, UPnP and LLDP, to
manage IoT SObjs. Therefore, MbDSAS was carefully described in the next sections.

2HYDRA homepage - http://www.hydramiddleware.eu/news.php

27

3 MBDSAS ARCHITECTURE

In this chapter, we introduce MbDSAS conceptual architecture and its internal details.
From top to bottom, TLM, MLM, and MD are depicted in Figure 3.1. In addition, a Script
repository that hosts management scripts can be seen in the right side of Figure 3.1. White
boxes present different applications on both TLM and MLM. Finally, dashed gray boxes
present technologies that can be used by our architecture, but not developed by us.

MLM

MD

MbD
solution

MD list
builder

TLM

Runtime
environment

MbDSAS-WS

Script
repository

Management Application

MbDSAS

Figure 3.1: MbDSAS conceptual architecture

Original MbD entities can be properly mapped to IoT objects, i.e., TLMs are mapped
to management stations, MLMs are mapped to gateways, and MDs are mapped to SObjs.
In addition, accordingly with the distribution level adopted by an MbDSAS system, TLM
and MLM may be deployed at the same network node, which will be classified as a dual-
role entity. TLMs run a Management Application to perform specific management tasks,
better explained as follows:

• Checking MLMs about discovered MDs: The Management Application may send
messages to communicate a MLM to verify new available SObjs in the range of this
MLM. When these SObjs are detected, the Management Application may delegate
to MLM a specific routine to manage these SObjs. Another important feature is the
detection of SObjs joining and leaving from the network. The detection is carried

28

out by collecting information from MLMs about their detected SObjs through a
list created by the MD list builder module, called Managed Device List (MDL).
Afterwards, a comparison among recent collected MDLs with previous versions
enables TLM to identify joining ans leaving of SObjs from the network.

• Sending management scripts to MLMs: The Management Application may send
management scripts to MLMs to manage MDs. It means, that a station delegates
the management task to a network entity closer to a SObj. Management scripts can
also be more than just network management routines, they can be used as network
services being exposed through WS interfaces to be accessed by users that are in-
terested in their consume as it is outlined in Gama et al., (Gama et al., 2012) by the
use of OSGi.

• Requesting or receiving notifications about new management scripts available from
other TLMs and Script Repositories: The Management Application may request
or be notified about new management scripts available from other TLMs or Script
Repositories. When a new notification is detected, the Management Application
will add this notification to TLM’s database organizing accordingly with specific
SObjs characteristics and the management script URL. Afterwards, the Manage-
ment Application may send updated scripts to MLMs.

• Notifying sub-domains about the creation or update of management scripts: The
Management application may send notification to sub-domain TLMs about arrived
notifications. These sub-domain TLMs are settled during the creation of a TLM,
later added by manual setup, or added automatically by other TLMs notification.

The communication among TLMs and MLMs is performed through the network,
which may vary in context between a Local Area Network (LAN) or the Internet. Such
variability requires that MbDSAS presents a specific protocol and a defined access inter-
face to perform the communication among TLMs and MLMs over both contexts, whereas
the network overhead remains low. Therefore, taking advantage of Granville et al., re-
search (Granville et al., 2009), MbDSAS was designed based on WS to address both
requirements stated above through the MbDSAS-WS module.

MbDSAS-WS may offer interfaces based on WS architectures, such as SOA and ROA.
These interfaces are accessed by TLMs to consume services offered by MbDSAS-WS.
Such services execute management tasks through information exchange with other inter-
nal components of MLMs (e.g., MD list builder and MbD solution). In addition, these
services may perform other tasks, such as the creation of management sessions or the
management of the life cycle of a script.

A subset of MbDSAS-WS services is dedicated to manage an component, which is
called MD list builder. Such component was created to add SObjs awareness to MLM.
It means that MD list builder monitors network interfaces tracking SObjs that surrounds
MLMs by extracting relevant information of received messages (e.g., IP, MAC address, or
used transport layer protocol). In addition, the MD list builder can execute this monitoring
taking advantages of discovery protocols, such as LLDP or UPnP. This monitoring allows
the creation of MDLs. These MDLs are organized in rows based on MD entries presenting
their extracted information as columns. Every information about an MD may require the
creation or edition of a specific management script. Therefore, TLMs may obtain MDLs
to delegate specific management tasks to MLM, avoiding a possible overload on MLM
by sending only a set of management scripts to manage SObjs in the range.

29

MLMs need to install the appropriate management scripts to handle discovered SObjs,
that might leave the network at anytime. By the leaving of SObjs, the set of scripts loaded
at a given MLM may become soon outdated. To avoid waste of resources in MLMs, a
TLM may send an abort command to stop an outdated script from being executed. How-
ever, the awareness of an MD behavior depends exclusively on MLMs and this awareness
is not covered by current MbD concepts. Therefore, MD list builder is designed to provide
a cached information about the last contact with an MD. TLM can use cached information
and a threshold to determine when a management script become outdated and should be
terminated or perpetuated.

MbD concepts are designed through services by MbDSAS-WS. For example, an
MbDSAS-WS service may be used to receive a management script being delegated by
a TLM. These services perform sets of commands to MbD solutions (e.g., OSGi or Script
MIB). Such solutions have among their functions: pull scripts from external repositories
and manage life cycles of scripts.

MbD solutions use runtime environments to execute management scripts and manage
their life cycle. Each MbD solution may support one or more runtime environments, such
as JAVA, C, and TCL. In such an environment, functions of running scripts are constantly
executed to manage MDs. All scripts executions are accomplished without reboots or
operational system installations of updates and patches on MLMs. Also, during scripts
executions, informations can be returned to TLMs or cached in MLMs.

Finally, the Script Repository may receive and store new management scripts. These
scripts may be developed by managers that are interested in the management of new
SObjs. The development of these scripts must be performed considering the supported
runtime engines of each MbD infrastructure of an MLM. When such scripts are published
on Script Repositories, a notification informing the publishing is sent to every known
TLM from the Repository.

The Script Repository is defined through the network domain needs. It means that
each specific network domain may change definitions of the Script Repositories, how
they will behave, and how they will gather and spread new scripts. For example, a local
computer may become the Script Repository of a private network domain such as an hos-
pital network, an police station network, or a small enterprise network. This repository
will be locally established to simplify the administration of privacy and the security main-
tenance by being locally controlled through publishing only private and carefully defined
scripts without external influences.

The needs of huge network domains such as global enterprise or federative networks
may change the Script Repositories definitions to cloud computers and clusters. Such
needs are related to a large number of TLMs requesting scripts updates that shall be han-
dled without failing. Therefore, cloud computer and clusters may address these requests
rather than a single computer that may not provide computational resources enough to
support all these requests. In addition, these cloud computers and clusters may take ad-
vantage of recommender systems to establish which are the best scripts to be provided,
i.e., users given opinion about a useful script are used to determine the most popular
scripts that are preferred to be delegated rather than unpopular ones. Afterwards, domain
name servers (DNS) may be used to simplify the reachability of these Script Repositories.

MbDSAS architecture was designed to be human independent and autonomic. It
means that MbDSAS can be deployed in systems intended to manage SObjs and that
can also manage themselves. Such systems become autonomic by sensing their network
neighbors, acquiring new updated scripts notifications automatically from repositories,

30

spreading these updates among known TLMs, and feeding themselves and MLMs with
management scripts. These scripts can be designed to manage SObjs, but also, gateways,
computers, and whatever device connected to the network that is able to be communi-
cated. A better understandability of MbDSAS features and capabilities can be achieved
by analyzing each possible communication among MbDSAS entities as outlined in the
next section.

3.1 MbDSAS use case

network domain

MLM

(a) (b)

(c) (e)

(f)

(d)

(g)

(h)

sub-
domain

TLM

MLM

MD

MD

MD

MD

TLM

Script
Repository

(i)
(j)

(k)

Figure 3.2: MbD entities in a communication graph

A communication graph may be used to cover possible interactions among MbDSAS
entities, as depicted in Figure 3.2. Each interaction of different entities is a communica-
tion being presented by a dashed line highlighted with a letter from (a) to (k) in Figure
3.2. These communications may be involved with management task controlling, execu-
tion, monitoring, or delegation. In addition, each interaction may differ accordingly with
the distribution level of MbDSAS. One important observation is that each communication
is described accordingly to MbDSAS concepts, which does not interfere in other possible
interactions, being better explained bellow:

(a) Communication between TLM and Script Repository: This communication enables
TLM to request or be notified about updates stored in Script Repositories. These
repositories will behave accordingly with the network domain needs, as explained
before. Therefore, notifications or requests about script updates and creation are
handled by implementation.

(b) Communication among TLMs: This communication may be presented as a notifi-
cation exchanged among TLMs and sub-domain TLMs, reporting the creation or
updating of a management script. Such a communication become usual when the
distribution level of a system raises.

31

(c) Communication between TLM and MLM: A TLM will communicate an MLM to
delegate, monitor, or control a management task, pushing or acquiring informations
from MLM. In addition, TLMs may request MLMs to obtain or update MDLs. For
example, a TLM will obtain an MDL from an MLM to be checked. Afterwards,
TLM will send management scripts to manage all MDs found into that MDL. When
a TLM have no script to manage an MD, thus, the MLM receives no management
script. In addition, a TLM can verify if an MD left the network, afterwards, this
TLM will cease the management of that MD by sending a message to the MLM to
stop its management script execution.

(d) Communication among two or more TLMs and an MLM: This communication will
happens when different TLMs will contact the same MLM to delegate, monitor,
or control management tasks as usual. However, diverse TLMs imply in different
permissions and capabilities to control or monitor management tasks. Therefore,
MLMs will receive management scripts from different TLMs and will execute them
accordingly with each other capabilities and permissions. In addition, the system
distribution level raises as well as the frequency of this communication.

(e) Communication between TLM and MD: This kind of communication happens only
when a TLM is also an MLM. In another words, a network node will behave as
a TLM whenever notified about a new updated management script and also will
behave as MLM when a management script was delegated to be executed. This
communication number raises as well as the system distribution level.

(f) Communication between MLM and Script Repository: The Script Repository may
be communicated at anytime by an MLM when it is seeking for a script source. This
script source will be usually downloaded from a Script Repository accordingly with
an architecture previously established such as ROA by downloading directly from
a URL as a resource or SOA by consuming a service that will provide the script
source. This particular communication is not affected by the distribution level of a
system, therefore, it will just raise with the number of new MLMs.

(g) Communication between MLM and MLM: An MLM will always manage an MD,
even if an MD is an MLM. For example, an MLM receives from a TLM, a manage-
ment script to manage or exchange information with other MLM and no matter if
the managed MLM is from different network domain, it will be managed by the first
MLM as a usual MD. In addition, interactions among MLMs will raise accordingly
with the system distribution level.

(h) Communication between MD and Script Repository: This communication is not
supported by MbDSAS by default. It means that any communication among MD
and a Script Repository may happen by different circumstances that do not involve
MbDSAS architecture directly. For example, an MD can contact a Script Repos-
itory because a management script configured it to do so, however, this kind of
configuration may not necessarily happens, therefore, it is not directly supported by
common functionalities of an MbDSAS architecture.

(i) Communication between MLM and MD: An MLM will communicate an MD when-
ever a management script executes such communication. This communication is
not affected by the distribution level of the system. In addition, communication

32

among MLMs and MDs may be related to the discovery mechanism adopted or
protocol (e.g., UPnP or LLDP), being supported by MbDSAS. However, this com-
munication is not supported by MbD concepts by default.

(j) Communication among two or more MLMs and an MD: An MD may be managed
by different MLMs, even if they are from different network domains without Mb-
DSAS concepts violation. This communication is not affected by the distribution
level of a system.

(k) Communication between two or more MDs: The communication among MDs may
be used by management scripts to communicate with other MDs belonging to multi-
hop sensor networks or grids. However, this communication depends on the man-
agement script implementation. Therefore, MbDSAS concepts do not cover this
communication explicitly.

Combining communications enable MbDSAS to manage many different SObjs and re-
configure network nodes. Therefore, analyzing the described communications enable to
define how MbDSAS should behave theoretically as described in the next section.

3.2 MbDSAS operations

MbDSAS’s operation was plotted as a sequence diagram presented in Figure 3.3. In
this diagram, an MD becomes online by joining a local network (1 in Figure 3.3). When
this MD joins the network, it sends an acknowledgment multicast message (2 in Figure
3.3) that contains informations about itself accordingly with the discovery mechanism
adopted. For example, the discovery protocol LLDP will offer MD informations which
includes an IP address, operational system version, and a system name. In addition,
MLMs can reply this message offering the same informations about themselves to the
contacted MD. These messages exchanges can also be sent by an MLM through periodic
acknowledgment multicast messages that are collected by an MD.

In Figure 3.3, an MLM detected an MD collecting meaningful informations about
MDs. These informations must be stored to be collected latter by interested TLMs, there-
fore, an MDL is created and fulfilled with MD informations by the MD list builder module
(3 in Figure 3.3). In addition, MDL entries are added with a timestamp that allows the
detection of MDs departure from the network.

TLMs Management Application may contact an MLM to acquire their MDL (4 in
Figure 3.3) through MbDSAS-WS. This contact is carried out by WS technologies, such
as SOA and ROA. It means that an MLM may be contacted at any time disregarding
the previous contacts and also can be contacted in parallel, i.e., asynchronously. There-
fore, MbDSAS-WS has to constrain its service to be executed and finished in a single
contact. Such constrain imply that MbDSAS-WS secure mechanisms has to authenticate
TLMs at each communication established providing at least a valid ID, a system group,
and a valid password. However, TLM may apply polling mechanism that will establish
many communications in varied times that may imply in network overhead, when authen-
ticating each possible communication. Thus, different authentication mechanism may be
explored to minimize such an overhead, for example, the creation of session keys or thrust
mechanisms based on computer addresses.

33

Figure 3.3: MbDSAS sequence diagram

34

A TLM authenticated can obtain an MLM MDL to be processed (5 in Figure 3.3). This
process enables TLM to know which MDs are next to an MLM. It means that an TLM
may choose which is the management task to delegate to an MLM. Such task can be very
specific to a single MD or for many generic MDs accordingly with available manage-
ment scripts, managers configurations, and needs. Defined the script, a communication is
established with MLM to delegate it (6 in Figure 3.3).

During the script delegation, TLM provides to MLM informations about the manage-
ment script delegated, at least a URL to download the script and ownership informations,
such as owner and group names. The MLM will contact a Script Repository specified by
the URL informed to pull the delegated script (6.1 in Figure 3.3). Afterwards, the down-
loaded script will receive a scriptID that will be sent back to TLM as a reply indicating
the success of the script delegation.

Each script delegated to an MLM has a unique identification (scriptID) that enables
TLMs to manage the script life cycle. A TLM can obtain one identification during the
script delegation as explained before or by requesting the script identifications installed
on an MLM. Afterwards, a TLM can use these identifications to run a script at the MLM
(7 in Figure 3.3). It means that the script is launched in an MLM using script arguments
provided by the TLM and a block parameter. Such a block parameter enables TLM to
wait the script execution ending and to receive a result reply. Otherwise, the MLM launch
the script in background letting TLMs to manage it latter through a launch identification
runID. This identification is returned to TLM as a success message of the script launch or
being requested by TLMs (7.1 in Figure 3.3).

During a script running, different computer routines are executed enabling MLM to
manage surrounding MDs (8 in Figure 3.3). The objective of an MD management can
be so specific such as an information request about a luminosity sensor in an MD or
generic such as a keep alive message. This objective will be carried out by designed
scripts and TLM needs. It means that a TLM has to define which are the scripts to be
delegated to manage MLM’s surrounding MDs. Such definition may be involved with
other parameters, such as script availability, description, or objective.

An MD can leave the network at anytime (9 in Figure 3.3). When an MD leaves
the network, MLM discovery mechanism detects this leaving usually through a discovery
process (10 in Figure 3.3). For example, there is a discovery process that uses keep alive
messages to detect an MD status. This process is usually based on a number of retries
and a timeout. It means that MLM sends a message to an MD and waits for a reply till it
reaches a timeout. Afterwards, the process is repeated till it reaches a number of retries.
Finally by not receiving any reply from the MD, the MLM discovery mechanism states
that the MD left the network.

As soon as the MLM discovery mechanism detects the departure of an MD, the MD
list builder will compare the current timestamps with the last contact stored from its MDL.
This comparison is particularly important for the IoT, because many SObjs use sleeping
strategies to green its battery life by becoming unable to reply discovery messages. There-
fore a different mechanism to detect this departure associated with the MD list builder
took place to set a larger timeout to analyze a SObj departure. However, if the SObj does
not reply messages, surpassing even the timeout from the MD list builder, thus, the MD
will be removed from the MDL characterizing its departure (11 in Figure 3.3).

A TLM will repeat its management routine by acquiring MDLs from MLMs (12 in
Figure 3.3). However, a TLM will notice that the MLM detected an MD departure by
processing the received MDL (13 in Figure 3.3). Therefore, a message is sent to MLM

35

to cease the script execution that manages the departed MD. Finally, MLM replies with a
message composed by the stop message generated from the ceasing of the script execu-
tion.

The sequence diagram presented in Figure 3.3 presents a usual routine of MbDSAS.
However, no technology was defined and presented, making the sequence diagram to
expose a theoretical use of MbDSAS. Therefore, we designed a prototype based on Mb-
DSAS as a proof of concepts and also to test MbDSAS in a real scenario, being better
described in the next chapters.

36

4 PROTOTYPE

The MbDSAS architecture of Chapter 3 was prototyped and described bellow. We
mainly focused on the design of three components: Management Application, MbDSAS-
WS, and MD list builder.

4.1 Management Application

The MbDSAS prototype was designed to have a TLM installed with a Management
Application. This Management Application was developed in JAVA, aiming to provide
a human-friendly interface to managers in order to send management scripts remotely to
MLMs manually. In addition, in such an interface, human managers can manually set new
Script Repositories by adding a URL to the repository list contained in the Management
Application. This list was designed as a JSON document, which have entries that define
a specific supported MD with a script URL for downloading.

The Management Application is one important module to a MbDSAS system reach
autonomy. In such an autonomy, Management Application sends and notifies MLMs and
sub-domain TLMs automatically about new and updated management scripts. In addi-
tion, autonomy includes self management, therefore, the Management Application must
include the local host as an MD when communicating a script Repository to obtain new
scripts to manage itself. However, TLMs require that the Management Applications com-
municate MbDSAS-WS placed on MLMs to delegate scripts and retrieve MDLs. There-
fore, all necessary communication is based on the specification of MbDSAS-WS better
described in the next section.

4.2 MbDSAS-WS

MbDSAS-WS component was developed in PHP to expose services based on WS ar-
chitectures, i.e., SOA (Box et al., 2000) and ROA (Fielding e Taylor, 2002). MbDSAS-WS
services were developed taking advantage of Granville et al., research (Granville et al.,
2009). However, different from that research, we explored ROA architecture and OSGi
as a reconfiguring mechanism in MbDSAS, offering the same management services pro-
vided by Script MIB. In addition, we added different services in MbDSAS-WS that are di-
vided in two groups: (i) MbD services, which implement the concepts of MbD (Granville
et al., 2009), and (ii) MDL services to acquire and edit MDLs from MLMs. MbDSAS-WS
services are summarized in Table 4.1.

According to Table 4.1, services will represent a different operation specified by the
MbDSAS architecture. In this table, column Service will present all covered services of

37

MbD services
Service Parameter Return

beginMbD username, password,solution sessionID
endMbD sessionID
scriptPull sessionID,url,store, lang scriptID
scriptRun sessionID,scriptIndex,args,block runID
getResults sessionID,runID runResult

scriptPullAndRun sessionID,url,args, lang,store,block runResult
scriptRemove sessionID,scriptID

MDL services
Service Parameter Return
getMDL sessionID MDL

updateMDL sessionID,MDEntry, params MDL

Table 4.1: MbDSAS-WS services

MbDSAS-WS. In addition, each information needed to be provided to consume a service
is presented at column Parameter. Afterwards, all the expected results from a success-
ful consume of a service from the first column are depicted at column Return. Finally,
all covered services, parameters and results from Table 4.1 are better described in the
following subsections.

4.2.1 BeginMbD service

A Management Application will be interested in the access of different services from
MbDSAS-WS placed at an MLM. However, this access will require that the TLM vali-
dates itself through the BeginMbD service. It means that BeginMbD enables TLMs to use
other services from MbDSAS-WS, creating a delegation session by validating parameters,
which includes at least a username and a password. Created the delegation session, a
TLM become authorized to use other services by receiving a valid sessionID. Without a
valid sessionID a TLM cannot use any of the other available services at an MbDSAS-WS
placed on an MLM.

1 {
2 "passwd":"secret",
3 "owner":"mbdsas-manager",
4 "community":"adm",
5 "solution" : "OSGi"
6 }

1 {
2 "status":"accepted",
3 "sessionID":"2f80de1c3e812477196c0859f531c4f295ecb8a5"
4 }

Listing 4.1: BeginMbD JSON message exchange

A usual BeginMbD consumption is performed through messages exchanges among
TLMs and MLMs as exemplified in the JSON code presented in Listing 4.1. The first
message is a common consumption of BeginMbD by a TLM that is composed of different
parameters, such as a user name (owner), a password (passwd), a group name (group), and

38

the MbD solution to be used (solution). Afterwards, an MLM will validate each parameter
and, in case of acceptance, the MLM will reply the first message with a operation status
as accepted (status) and a valid unique session identification (sessionID). Otherwise, a
simple message will be replied indicating the failure attempt with a description containing
an error message. Finally, a TLM authenticated during BeginMbD consumption will be
henceforth referred to as validated TLM.

4.2.2 EndMbD service

A validated TLM may use different services at an MLM such as described in next
subsections. However, a TLM may want to end a started session to start a new one with
another user, capabilities, MbD Solution, or permissions. Therefore, a EndMbD service is
designed to perform a session close in an MLM. This service is usually performed through
a message exchange between a TLM and an MLM. A typical example of messages related
to the EndMbD service can be seen at Listing 4.2.

1 {
2 "sessionID":"2f80de1c3e812477196c0859f531c4f295ecb8a5"
3 }

1 {
2 "status":"destroyed",
3 "sessionID":"2f80de1c3e812477196c0859f531c4f295ecb8a5"
4 }

Listing 4.2: EndMbD JSON message exchange

In Listing 4.2, a TLM sends a message to a URL that points to the EndMbD service
on an MLM. This message contains solely a valid session identification (sessionID) to be
destroyed. Afterwards, the contacted MLM process this message and destroys the session
defined by the given session identification. Finally, when the session is successfully de-
stroyed, the contacted MLM reply with a message containing the status of the operation
(status) and the session identification (sessionID) of the destroyed session. Otherwise, a
message containing a status of "none" is replied indicating that the session identification
provided is wrong. In addition, a status containing "error" may be returned when related
to a TLM that is waiting for a service to be executed, therefore, the session is locked and
cannot be destroyed.

4.2.3 ScriptPull service

A TLM is interested in sending and installing scripts on MLMs. Therefore, a vali-
dated TLM can consume ScriptPull services on MLMs to make then pull a script from
an external repository. This pulling of scripts is performed directly by the chosen MbD
Solution defined during the consumption of BeginMbD service. Therefore, MbDSAS-
WS calls the chosen MbD Solution informing different parameters to perform the script
pulling. These parameters are provided by TLM consumption of ScriptPull service and
can be better observed in the JSON message contained in Listing 4.3.

Through two simple messages between a TLM and an MLM as showed in Listing
4.3, different management tasks can be delegated using pulling of scripts from external
repositories. The MLM will receive the first message of Listing 4.3 with a valid session
identification (sessionID) and a URL to some script stored in an external repository (url).
In addition, the message contains information about how the script will be stored in an

39

MLM (store), for example, the script can be stored volatile in the MLM memory RAM
or non-volatile in the MLM hard disk. The message also have a parameter defining the
specific script language (lang), such as JAVA or C. In return, MLM sends a valid script
identification to trigger the execution of the script (scriptID) and a status description of
the pulled script. Finally, any possible errors occurred during the script pulling are replied
through an error field (errors).

1 {
2 "sessionID":"2f80de1c3e812477196c0859f531c4f295ecb8a5",
3 "url":"http://Script_Repository_IP/bundles/wait.jar"
4 "store":"1",
5 "language":"1",
6 }

1 {
2 "status":"ready",
3 "scriptID":"adm.mbdsas-manager.wait.jar",
4 "errors":"none"
5 }

Listing 4.3: ScriptPull JSON message exchange

A TLM can also delete a script by consuming the service ScriptPull, in the case of
ROA, through HTTP DELETE method. This consumption will require that TLM informs
a valid session identification (sessionID) and a script identification (scriptID) to be re-
moved. The MLM will reply this consumption with a message composed by a removed
script identification (scriptID) and a error status about the operation execution. In addi-
tion, ScriptPull service will stop every execution instance of the removed script, making
a list containing each terminated execution launch identification.

4.2.4 ScriptRun service

1 {
2 "sessionID":"2f80de1c3e812477196c0859f531c4f295ecb8a5",
3 "scriptID":"adm.mbdsas-manager.wait.jar",
4 "args":"sleep=5",
5 "block":"0"
6 }

1 {
2 "scriptRunID":"adm.mbdsas-manager.wait.jar.01",
3 "status":"running",
4 "result":"",
5 "errors":"none"
6 }

Listing 4.4: ScriptRun JSON message exchange

MLM can hold different scripts that are supposed to be executed. However, the exe-
cution of a script must be launched by a TLM. Therefore, TLMs can use the ScriptRun
service to launch scripts executions. In addition, different TLMs can be interested in the
launching of the same script, thus, two different executions of the same script can be per-
formed. Although, each execution will have the same capabilities and permissions of the
TLM that launched it. Such launching is performed with different parameters provided

40

by a TLM, as outlined in Listing 4.4.
A validated TLM has to inform a script identification (scriptID) to the ScriptRun ser-

vice to launch and run a script, informing some arguments to its execution (args). For
example, a script that executes polling to some device should receive a valid timeout as
one argument to be executed. In addition, the parameter block makes MLM to change its
behavior. When the block parameter is equal to 0, MLM sends to TLM a message with
a valid script execution identification (runID) to be managed and the current script status
of execution. Otherwise, in the case of block equals to 1, MLM holds the communication
with the TLM and then waits the script execution to finish to retrieve a result (result) and,
after, sends it back to TLM. Finally, errors that occurred during the script execution are
also replied (errors).

The ScriptRun service can also be used to edit or terminate a script execution. It means
that a TLM can send a message informing a parameters to edit a script execution, for ex-
ample, informing a script running identification with additional informations to pause a
script execution or change its identification number. In addition, a script running can be
terminated by a TLM by sending a message to ScriptRun service, in the case of ROA,
through HTTP DELETE, informing a session and a script execution identification (ses-
sionID and runID).

4.2.5 GetResults service

During a script execution, partial results can be generated and collected by a TLM
through the GetResults service. This service will be used to obtain results from scripts
executions that were launched in background (ScriptRun with block parameter equals to
zero). In addition, when one script execution identification points to a terminated script
execution, the TLM retrives the last result generated during this script execution. There-
fore, TLM must exchange messages with MLM as outlined below in Listing 4.5.

1 {
2 "sessionID":"2f80de1c3e812477196c0859f531c4f295ecb8a5",
3 "scriptRunID":"adm.mbdsas-manager.wait.jar.01",
4 }

1 {
2 "scriptRunID":"adm.mbdsas-manager.wait.jar.01",
3 "status":"running",
4 "result":"sleeping"
5 }

Listing 4.5: GetResults JSON message exchange

The GetResult service must receive from a validated TLM a session identification
(sessionID). In addition, TLM must inform a script launch identification to MLM, which
performs a check on the script being executed in an MbD Solution to gather partial results.
When these partial results are gathered by MbDSAS-WS, they are send back to the TLM
with a script launch identification (scriptRunID), a current status of the script execution
(status), and partial results (result), as shown by the second message in Listing 4.5.

4.2.6 ScriptPullAndRun service

The consume of scriptPull, scriptRun, and getResults can be summarized by the con-
sume of ScriptPullAndRun. This service was particular important to Granville et al.,

41

research (Granville et al., 2009) because improved the delegation process of TLMs to
MLMs to a single message over the network, minimizing drastically the network traffic
consume. Therefore, MbDSAS-WS was also designed to support such a service through
two simple message exchanges between TLM and MLM, such as outlined in Listing 4.6.

1 {
2 "sessionID":"2f80de1c3e812477196c0859f531c4f295ecb8a5",
3 "url":"http://Script_Repository_IP/bundles/wait.jar",
4 "store":"1",
5 "language":"1",
6 "args":"sleep=5",
7 "block":"1"
8 }

1 {
2 "scriptID":"adm.mbdsas-manager.wait.jar",
3 "scriptRunID":"adm.mbdsas-manager.wait.jar.02",
4 "result":"Done",
5 "errors":"none"
6 }

Listing 4.6: ScriptPullAndRun JSON message exchange

The ScriptPullAndRun service will receive informations from the TLM that summa-
rizes the parameters of ScriptPull and ScriptRun services. These parameters are a session
identification from a validated TLM (sessionID), a URL to download the delegated script
from a Script Repository, a information defining if a script will be volatile or non-volatile
stored (store), and the programming language of the script (language). In addition, argu-
ments must be provided to ScriptPullAndRun service to launch the delegated script (args)
and if the TLM will wait for results from the script execution (block).

An MLM can reply a TLM consumption of ScriptPullAndRun with results that sum-
marizes the results from ScriptPull and ScriptRUN services. These results are outlined in
Listing 4.6 by the second message, being presented by a script identification created dur-
ing the script pulling and installation (scriptID), a launch identification created during the
start of the script execution (scriptRunID), and a information about the results generated
during the execution (result). In addition, an error information are returned as well, to
inform about any possible error during the service ScriptPullAndRun execution.

4.2.7 ScriptReplace service

Scripts can become soon outdated with the IoT dynamicity. Therefore, these outdated
scripts shall be removed and replaced with new updated scripts to manage new SObjs.
TLM may use the ScriptReplace service to replace these outdated scripts with new ones
through only one message exchange with MLMs as outlined bellow.

42

1 {
2 "sessionID":"2f80de1c3e812477196c0859f531c4f295ecb8a5",
3 "scriptID":"adm.mbdsas-manager.wait.jar",
4 "url":"http://Script_Repository_IP/bundles/new_wait.jar",
5 "store":"1",
6 "language":"1",
7 "args":"sleep=5",
8 "block":"0",
9 "start":"1"

10 }

1 {
2 "scriptID":"adm.mbdsas-manager.new_wait.jar",
3 "scriptRunID":"adm.mbdsas-manager.new_wait.01.jar",
4 "scriptsRunTerminated":"adm.mbdsas-manager.wait.jar.01, adm2.

mbdsas-manager.wait.jar.02",
5 "result":"replaced, running",
6 "errors":"none"
7 }

Listing 4.7: ScriptReplace JSON message exchange

The first message contained in Listing 4.7 is composed almost by the same parameters
as the ScriptPullAndRun service except by the addition of a script identification (scriptID)
and a start flag (start). The ScriptReplace service uses the scriptID provided to replace the
script pointed by this identification for a new script pulled from the URL provided (url).
In addition, the start flag defines if the new script pulled will be also launched. All the
other parameters will be used to execute the same functionalities of ScriptPullAndRun.

An MLM may also reply the ScriptReplace consumption with a message composed by
a script identification of the new installed script installed(scriptID) and a execution iden-
tification (scriptRunID) in the case of the start flag from the first message be equals to
one. In addition, ScriptReplace will stop every execution instance of the removed script,
making a list containing each terminated execution launch identification (scriptsRunTer-
minated). A result field (result) will inform any gathered partial results from the script
execution and the replacement status of the outdated script. Finally, an error field will
indicate any occurred error during all the scriptReplace consumption.

4.2.8 GetMDL service

MDL services are presented in Table 4.1 as well. These services are exposed to sim-
plify the retrieving of MDLs from the MD list builder component. Such retrieval is ac-
complished through messages exchanges between TLM and MLM as outlined in Listing
4.8.

43

1 {
2 "sessionID":"2f80de1c3e812477196c0859f531c4f295ecb8a5"
3 }

1 {
2 "49300.2.1":{
3 "lldpRemChassisIdSubtype":"4",
4 "lldpRemChassisId":null,
5 "lldpRemPortIdSubtype":"3",
6 "lldpRemPortId":null,
7 "lldpRemPortDesc":"vnet0",
8 "lldpRemSysName":"SObj01.vnet1",
9 "lldpRemSysDesc":"Arch Linux Linux 3.8.10-1-ARCH x86_64

",
10 "lldpRemSysCapSupported":"8",
11 "lldpRemSysCapEnabled":"8",
12 "lldpRemManAddrEntry":"200.123.568.98"
13 }
14 ...
15 "49300.2.5":{
16 ...
17 }
18 }

Listing 4.8: GetMDL JSON message exchange

The TLM starts a session accessing the beginMbD service at an MLM and then re-
ceiving a valid sessionID. Afterwards, this TLM may retrieve an MDL from the MLM
through the GetMDL service informing a valid sessionID as outlined in the first part of
Listing 4.8. In addition, TLMs may inform a valid set of SObjs identifications number,
retrieving information only about the chosen SObjs from this list rather than a complete
MDL.

An MLM may reply the consume of GetMDL with a message containing an MDL as
outlined in the second part of Listing 4.8. This MDL is composed by different entries
with a unique identification (MDEntry presented as a number 49300.2.1) that represents
the MLM detected SObjs. For each SObj entry, there are fields that where selected ac-
cordingly to the LLDP MIB defined in Congdon et al., (Congdon, 2002). These fields
enable TLM to obtain important informations about a SObj and how to contact it. For
example, an IP address (lldpRemManAddrEntry), a system name (lldpRemSysName), and
the network interface that was communicated (lldpRemPortDesc).

4.2.9 UpdateMDL service

The MD List Builder may present an MDL with an entry that have errors or must be
edited. Such an MDL may be edited by consuming the UpdateMDL service. This service
is consumed by TLMs exchanging messages with MLMs as outlined in Listing 4.9.

44

1 {
2 "sessionID":"2f80de1c3e812477196c0859f531c4f295ecb8a5",
3 "49300.2.1":{
4 "lldpRemPortDesc":"eth0",
5 "lldpRemManAddrEntry":"192.168.1.12"
6 }
7 }

1 {
2 "49300.2.1":{
3 "lldpRemChassisIdSubtype":"4",
4 "lldpRemChassisId":null,
5 "lldpRemPortIdSubtype":"3",
6 "lldpRemPortId":null,
7 "lldpRemPortDesc":"eth0",
8 "lldpRemSysName":"SObj01.vnet1",
9 "lldpRemSysDesc":"Arch Linux Linux 3.8.10-1-ARCH x86_64

",
10 "lldpRemSysCapSupported":"8",
11 "lldpRemSysCapEnabled":"8",
12 "lldpRemManAddrEntry":"192.168.1.12"
13 },
14 "errors":"none"
15 }

Listing 4.9: UpdateMDL JSON message exchange

A TLM can consume the updateMDL by specifying a valid sessionID, one MD iden-
tification (MDEntry), and the parameters to be changed (params). A new MDL is gen-
erated and returned to TLM containing just the MDL entry that was edited and an error
field containing possible error messages (errors).

4.2.10 Script Delegation

An example of a script delegation algorithm may be summarized in two simple re-
quests, as outlined in Algorithm 1.

1: sessionID← HT T P_Put(owner, passwd,mbdsol,startSessionURL)
2: scriptResult ← HT T P_Put(sessionID,name,scrURL,arguments, lang,block,

scriptPullRunURL)

Algorithm 1: Script delegation and execution based on ROA approach

Using the ROA architecture, the Algorithm 1 executes a simple script delegation from
the TLM to MLM with HTTP calls. These calls consume resources exposed by two dif-
ferent URLs contained in startSessionURL and scriptPullRunURL variables. The first
variable is addressing the service beginMbD exposed by MbDSAS-WS on an MLM, e.g.,
"https://MLM_IP/control/MbD/beginMbD". The calls are based on the PUT method from
HTTP because this service creates a session. During the creation of a session, an identifi-
cation is returned and stored in sessionID. In the second command, the scriptPullRunURL
variable contains the address of the resource exposed by MbDSAS-WS named scriptPul-
lAndRun. Through the second service, a script will be sent specifying relevant information
to its installation and launch, such as a URL of the management script stored on a repos-
itory to be pulled (scrURL), the script name (name), arguments to be used during the
launch of the script (args), a parameter to wait the end of a script execution (block), a

45

specification of how the script will be stored (store) and the language of the script (lang).

4.3 MD List Builder

A component designed to support discovery mechanisms and to create standard MDLs
was called MD List Builder. This component was prototyped in JAVA in combination with
LLDP to monitor network interfaces and to create MDLs. Moreover, the MD list builder
exchanges MDLs by CLI commands with MbDSAS-WS, which, in turn, provides MDLs
to TLMs through the network following a set of steps outlined in the previous section.

The MD list builder was designed to support different filters. These filters are de-
scribed in XML and act as drivers that enables the MD list builder to support other dis-
covery protocols, such as UPnP and LLDP. In addition, MD list Builder provides tools
to monitor different network interfaces. It means that MD List Builder can be used to
monitor each network communication performed by a local network interface to discover
new SObjs. Therefore, this module enhances the capabilities of an MLM by enabling the
support of different protocols and technologies to find available SObjs.

Filters from the MD list builder can be delegated to MLMs to be installed through
MbD solutions. For example, a TLM can delegate to an MLM a program code (e.g., a
bundle or a script) containing filters and other needed files to be installed at the MD list
builder component. This installation will be managed by a defined MbD Solution (e.g.,
OSGi or Script MIB).

The development of a MbDSAS prototype allows to verify how this architecture may
be applied to IoT scenarios. In addition, we are interested in analyze MbDSAS perfor-
mance against a system where all the management scripts are already installed to manage
SObjs, henceforth referred as to traditional management. Therefore, we developed a JAVA
prototype of the traditional management and analyzed a case study where both prototypes
may be deployed for further assessment.

46

5 CASE STUDY, RESULTS, AND ANALYSIS

Through this chapter, we describe a generic scenario where MbDSAS may be de-
ployed. Afterwards, we apply the generic scenario to an airport station. In addition,
metrics are defined for the assessment of the performance of MbDSAS trying to solve
different research questions. For the purpose of addressing these questions, experiments
were carried out in a carefully described test environment. Finally, results obtained are
shown and analyzed presenting our considerations.

5.1 Scenario

MbDSAS must be evaluated to be classified as a management solution to IoT sce-
narios. For the properly evaluation of MbDSAS, we have to define a generic scenario to
understand how MbDSAS must be applied in real IoT scenarios, e.g., an airport station,
a train station, or a city neighborhood (Sundmaeker et al., 2010). Therefore, a scenario
based on management stations that are interested in the management of SObjs would be
the most generic scenario where MbDSAS would be applied. However, to manage these
SObjs, management stations must rely on gateways. The components and features of such
scenario can be seen in Figure 5.1 and are described as follows.

Sensor 1

Sensor 2

Sensor 3

ROA
HTTP

SOA
SOAP

Network

DeviceGatewayComputer

TLM MLM MD

Figure 5.1: MbDSAS generic scenario

Management station: This element is usually a computer that is also classified as
a TLM, which is installed with a Management Application. This Management Applica-
tion may be developed to inject workload, monitor experiments, collect results, delegate
management, or manage different MLMs through messages based on different access ap-
proaches, such as SOA and ROA.

Gateway: The gateway is a network node classified as an MLM that is connected
with a network, which usually is a LAN. Through this network, the MLM receives scripts
from TLMs or provide MDLs. These scripts are received by an MbDSAS-WS installed

47

on an MLM that exposes services to be consumed based on SOA and ROA. An MLM can
also presents one of the covered MbD Solutions from this dissertation (the Script MIB
or OSGi) to manage scripts. These scripts may manage SObjs through communications
realized with different technologies, e.g., IEEE 802.15.4, ZigBee, and Bluetooth. Finally,
MLMs are installed with an MDListBuilder that may monitor network interfaces or use
discovery mechanisms, e.g., LLDP or UPnP, to create MDLs.

Device: The device is characterized as a real example of a SObjs and may be classified
as an MD. One of the main features of these devices is that they have constrained resources
in relation to a traditional computer, such as few memory availability, low processing
power, and battery supply power. In addition, these devices may have a set of sensors,
e.g., movement, humidity, and luminosity, integrated into them. Devices can also expose
informations regarding their operational characteristics, e.g., memory, clock, power level,
and I/O status. Such informations may be accessed through many different approaches,
for example SOA, ROA, or others.

Analyzing the generic scenario of MbDSAS allows to find a traditional IoT scenario
where it fits. For example, an airport station could be interested in provide flight schedules
to SObjs that can handle their service, therefore, a management station uses gateways to
provide these schedules to SObjs. However, SObjs may use different technologies (e.g.,
IEEE 802.15.4, ZigBee, or Bluetooth) to communicate or have particular configuration
needs, such as support for communication over layer 2 only or other. In addition, SObjs
in an airport are always arriving and departing in anytime. Therefore, through MbDSAS
the airport station may be mapped to TLM (management station), MLM (gateway), and
MDs (SObjs) as a reconfigurable management system to manage SObjs of many kinds
and to be aware of their arrivals and departures.

M inutes

Pe
op

le
 w

ith
 S

m
ar

t O
bj

ec
ts

0
50

10
0

15
0

20
0

0 20 40 60 80 100 120 140 160 180 200 220 240

0

18

47
57

78

92

109
120

137

157
166

186

200

182

166

153
143

124

109
103

90

55

39

27

0

Figure 5.2: Cumulative airport traffic model

We deployed MbDSAS prototype from Chapter 4 to be evaluated in an airport station

48

scenario. We do not have permission to use a real airport station to evaluate MbDSAS,
however, we may model its people arrivals and departures on a computer system (Park e
Ahn, 2003)(Solak et al., 2009).

A computer system may replicate a people traffic airport through a poisson distribution
with λ = 0.6, as it is depicted in Figure 5.2 (Solak et al., 2009). In the horizontal axis,
four hours are shown in minutes with highlights about each ten minutes. Also, in the
vertical axis, columns represent cumulative arrivals and departures of two hundred people
with SObj. In the airport traffic replication, people that arrive are summed and when they
depart they are subtracted. The flow of arrivals and departures have different values as
may be seen in Figure 5.2.

MbDSAS may be evaluated by experiments using the airport modeled scenario with
a TLM and an MLM that has to discover all new MDs in its range and manage them. In
addition, MbDSAS has to install and remove management scripts on an MLM to handle
the arrival and departure of MDs. During the experiments, the performance of MbDSAS
must be measured, therefore, we defined five questions to guide MbDSAS performance
assessment and five metrics to solve this questions, which are defined bellow.

• How much time is expended by MbDSAS to perform a management delegation?

• How much network traffic is generated for MbDSAS to perform a management
delegation?

• Which is the best combination of technologies to implement MbDSAS?

• How does MbDSAS behave within a dynamic IoT scenario, where SObjs join and
leave very frequently?

• How many computational resources of a gateway are needed to execute MbDSAS
in terms of memory and CPU utilization?

5.2 Metrics and Experiments

To answer each of the defined questions above, we used metrics to measure MbDSAS
performance during experiments. These experiments take in concern the generic scenario
as well as the airport modeled scenario. Through five metrics, we evaluate the best perfor-
mance technologies available to implement MbDSAS. In addition, MbDSAS is evaluated
as a management solution to IoT scenarios. These metrics definitions, methodology, unit,
goals, and workload used during experiment are described below.

1. Response time of MbDSAS: The response time is the time spent from a complete
management script life cycle. Such time impacts the user experience with the sys-
tem, i.e., the larger time, the longer waiting for an answer from the script execu-
tion. Therefore, the response time is used as a metric to measure the efficiency of
the access approaches (SOA and ROA) based on each MbD solution (Script MIB
or OSGi), answering the first and third question defined above. In addition, the
standard to execute management delegations, i.e., SNMP, may be compared with
MbDSAS-WS, therefore, a script delegation based on SNMP messages was real-
ized with the Script MIB to be used as a baseline to measure MbDSAS efficiency.
However, the same could not be replicated to the OSGi, because no standard was
defined so far to provide SNMP access to such solution. In this case, we performed

49

experiments based on the response time (in seconds) to determine MbDSAS effi-
ciency. TLM uses a workload based on scriptPullAndRun tasks to send scripts to
an MLM. These scripts perform just a waiting time varying from zero, five, ten, and
fifteen seconds. This way, both access approaches can be compared when different
performance scripts are executed.

2. Network traffic of MbDSAS: The network traffic is the amount of bytes transferred
over the network during a TLM and MLM communication. Such communication
impacts the network with overhead, i.e., the larger amount of bytes transferred, the
greater overhead caused on the network. Therefore, the network traffic was adopted
in this dissertation as a metric to measure the efficiency of the access approaches
(SOA and ROA) based on each MbD solution (the Script MIB and OSGi), answer-
ing the second and third questions defined above. In addition, a SNMP script dele-
gation was also measured in terms of network traffic to be used as a baseline. In this
case, we performed experiments based on the network traffic (in KB) to determine
MbDSAS efficiency. These experiments were conducted with script delegations,
in which, these scripts has no waiting time for the sake of comparison among the
access approaches, i.e., SNMP, SOA, and ROA. It means that a different waiting
time for the scripts would make SNMP to consume a larger amount of network
traffic, being unfair to be compared with the other approaches, mainly, because of
the polling strategy to manage the script life cycle (Granville et al., 2009).

3. Management delay: The management delay is the amount of time spent since an
MD comes to the range of an MLM and starts to be managed. This delay impacts
in the quality of management (QoM), i.e., the performance of a management sys-
tem to achieve its main objective, in this case, the management of all SObjs in an
airport scenario. Therefore, the management delay was adopted in this dissertation
as a metric to measure the efficiency of MbDSAS against a traditional management
prototype. In this case, we performed measurements during the experiments based
on the management delay (in seconds) to determine such efficiency, answering the
fourth question defined above. This experiments were conducted with a workload
based on the modeled airport scenario with a TLM consuming scriptPullAndRun,
scriptRemove, and getMDL services. This TLM become updated about discovered
MDs from an MLM to send or remove management scripts and to start or stop a
management script execution as well.

4. CPU utilization: The CPU utilization is the amount of CPU processing capacity
used by an MLM during the execution of MbDSAS. This CPU utilization impacts
the performance of an MLM, i.e., the larger amount of CPU used the lesser amount
of remaining processing power an MLM will have, decreasing the number of pro-
cess that an MLM can support. Therefore, the CPU utilization was adopted in this
dissertation as a metric to measure the efficiency of MbDSAS against the traditional
management. In this case, we performed measurements during the experiments
based on the CPU utilization (in percent) to determine such efficiency, answering
partially the fifth question defined above. These experiments were conducted with
the same workload as the management delay experiments.

5. Memory utilization: The memory utilization is the amount of memory spent by
an MLM during the execution of MbDSAS. This memory utilization impacts the
performance of an MLM, i.e., the larger amount of memory consumed the lesser

50

amount of remaining memory an MLM will have. Therefore, the memory utiliza-
tion was adopted in this dissertation as a metric to measure the efficiency of Mb-
DSAS against the traditional management prototype. In this case, we performed
measurements during the experiments based on the memory utilization (in percent)
to determine such efficiency, completing the answer of the fifth question defined
above. The experiments evolving the memory utilization were conducted with the
same workload as the management delay experiment.

Each of the metrics stated above were used to guide which information should be
collected during the experiments executions. These experiments were based on a test
environment better explained in the next section.

5.2.1 Test environment

The test environment was composed of three main entities: (i) a personal computer
that was mapped to a TLM, which runs the Management Application software, developed
in Java to delegate scripts and collect MDLs from MLMs; (ii) two gateways mapped as
MLMs, each one installed with one MbD Solution, i.e., Script MIB and OSGi, that were
instantiated as virtual machines with an MbDSAS-WS as well as an MD List Builder
module installed; and (iii) two hundred MDs instantiated in virtual machines to replicate
the behavior of the airport scenario described in previous section. The option of using
virtual machines was because of the huge number of devices involved and to simplify the
migration of an MLM through other network domains. In addition, each virtual machine
environment used Kernel-based Virtual Machines (KVM), libvirt, and Virt-Manager ap-
plication inspired in the research of Wickboldt et al., (Wickboldt et al., 2012).

In Table 5.1, all the hardware and software specifications of involved entities are sum-
marized.

Specification TLM MLM - Script MIB MLM - OSGi MD
Processor Power (MHz) 2000 × 4 500 500 100

RAM Memory (MB) 8000 128 128 8
Hard Disk (MB) 650000 1000 1000 8

Network interface Ethernet Ethernet Ethernet Ethernet
Operational System Arch 3.0.40 Debian 3.0 Arch 3.0.40 OpenWRT

Script MIB - JASMIN 0.96 - -
OSGi - - Apache Felix 4.0 -

Web Server - Apache 2.2.22-4 Apache 2.2.22-4 -
SNMP - net-snmp 4.2 net-snmp 4.2 -
JDK 7.1 1.1 / 1.2 / 6.0 7.1 -
PHP - 5.0 5.0 -
Sqlite - 2.4.7 2.4.7 -
TCL - 8.2 - -

LLDPD - 0.5.7 0.5.7 0.5.7

Table 5.1: Hardware and software specifications

The specified hardwares and softwares depicted above were used during experiments
based on the defined metrics of the Section 5.2. In addition, all of these metrics were
measured 30 times and summarized in averages. For each average, the confidence interval
of 95% is showed for each sample plotted graphically in next subsections.

51

5.2.2 MbDSAS response time analysis
R

es
po

ns
e

T
im

e
(s

)

0.
0

0.
2

0.
4

0.
6

0.
8

0 5 10 15

0.
61

6

0.
09

6

0.
11

9

0.
11

0.
54

0.
03

2

0.
04

0.
03

2

0.
56

5

0.
05

3

0.
05

8

0.
06

0.
11

2

0.
10

6

0.
10

9

0.
10

9

0.
13

5

0.
13

5

0.
13

6

0.
12

5

Waiting Time (s)

S crip t M IB − S N M P
S crip t M IB − RO A
S crip t M IB − S O A
O S G i − RO A
O S G i − S O A

Figure 5.3: Response time of MbDSAS using scriptPullAndRun

In Figure 5.3, a management script delegation was performed through the scriptPul-
lAndRun service to determine the response time of MbDSAS for each access architecture
(ROA and SOA) combined with an MbD solution (Script MIB and OSGi). In addition,
the same management delegation based on SNMP is performed and measured to be used
as a comparison baseline. Such measurements are presented in seconds by the vertical
axis being represented by columns. At the top of each column the confidence interval
is shown. In the horizontal axis, each measurement is related to a combination between
access architecture and an MbD solution that was performed in different waiting times,
i.e., 0, 5, 10, and 15 seconds.

As can be seen in Figure 5.3, without waiting time, i.e., equal to 0, Script MIB results
has a different behavior from others, it occurs because management delegation process
requires a polling process based on SNMP messages to be performed (Granville et al.,
2009). This polling process insert an overhead to retrieve information from scripts execu-
tion that perform in few seconds. However, this overhead is not replicated through scripts
that require more time to be executed, i.e., for waiting times 5, 10, and 15.

Comparing MbD solution to be used with MbDSAS, Script MIB presents the best
response time being at least 30% faster than the OSGi at the best case (waiting time 5).
However, Script MIB has an unstable behavior with different performance scripts, being
at least 4 times slower than OSGi in the worst case (waiting time 0). Therefore, because
OSGi is less unstable, we prefer it over Script MIB as the MbD solution to be used in
MbDSAS.

Additionally, in Figure 5.3, the average response time of ROA approach is at least
10% faster than the average response time of the SOA approach, and 14% faster than the
SNMP baseline. Through this results, ROA access architecture may be defined as the best

52

access architecture to implement MbDSAS, answering the first question stated in Section
5.1.

5.2.3 MbDSAS network traffic
0

2
4

6
8

10

8.
29

5

0.
82

5 1.
75

7

0.
88

1.
67

9

N
et

w
or

k
tra

ffi
c

(K
B)

S crip t M IB − S N M P
S crip t M IB − RO A
S crip t M IB − S O A
O S G i − RO A
O S G i − S O A

Figure 5.4: Network traffic of MbDSAS with zero waiting time

Similar to the response time, in Figure 5.4, a script delegation using the scriptPul-
lAndRun task was evaluated to determine the network traffic of MbDSAS for ROA and
SOA combined with Script MIB or OSGi. Such measurements are presented in averages
in KB by the vertical axis being represented by columns. At the top of each column the
confidence interval is shown. Differently from the response time, these measurements
were performed only for scripts with no processing time, i.e., scripts that have waiting
time equals to zero. A different measurement would be unfair to compare with the SNMP
approach, which presents a polling strategy to communicate with Script MIB.

In Figure 5.4, ROA access architecture presents almost 2 times less network traffic
than SOA and 10 times less than SNMP. This difference of network traffic is particular
related to the lightness of JSON based messages from ROA against the excessive verbosity
of XML messages from SOA and the polling strategy adopted with SNMP. However,
network traffic results present a confidence interval that intercept each other. Therefore,
ROA network traffic for Script MIB and OSGi is quite similar and cannot be used to
determine the best MbD solution to implement MbDSAS.

In summary, answering the first, second, and third research question of Section 5.1,
MbDSAS performed better with the ROA access architecture in response time (0.032 sec-
onds) and network traffic (0.825 KB). In addition, by analyzing results from this access
architecture, we defined that the OSGi is preferred as the most stable solution against
the Script MIB that is unstable. Therefore, we used MbDSAS based on the combination
of OSGi and ROA approach in the next experiments to evaluate the management perfor-
mance of MbDSAS against a traditional management prototype.

53

5.2.4 MbDSAS management delay
S

ec
on

ds
 (

s)

0
20

40
60

80
10

0

 1

20

M bD S A S Trad itiona l m anagem ent

86 .38

14.5

Figure 5.5: Management delay of MbDSAS (OSGi-ROA)

MbDSAS and the traditional management are compared in Figure 5.5. MbDSAS re-
configure dynamically the management scripts while the traditional management has all
management scripts previously installed. The airport modeled scenario, described in Sec-
tion 5.1 was used during four hours of experiment for each replication. The measurements
are presented in averages of seconds by the vertical axis being represented by columns.
At the top of each column the confidence interval is shown. In the horizontal axis, the
management approach adopted labels each column.

As can be seen in Figure 5.5, MbDSAS presents a difference in management delay
against the traditional management approach of at least 50 seconds. This difference was
expected because MbDSAS has to install a management script on the fly to start the man-
agement of a SObjs, discovering SObjs, and reconfiguring the MLM two hundred times
at least during the experiments to manage every SObjs of the airport modeled scenario.
However, in an IoT scenario, is preferable that a management solution have flexibility
to interact dinamically with new SObjs than a traditional management system that does
not support it. Therefore, a trade-off may be observed, where 50 seconds of management
delay may be assumed as a price to pay to add reconfiguration and discovery features to a
management system. Answering partially the fourth question defined in Section 5.1.

5.2.5 MbDSAS CPU utilization

In parallel with the management delay measurement, MbDSAS and the traditional
management was used to manage the airport modeled scenario, as depicted in Figure
5.6. During this experiment we measured their CPU utilization. Such measurement is
presented in averages in percents by the vertical axis being represented by lines. In the

54

0
20

40
60

80
10

0

T im e (m)

C
pu

 U
til

iz
at

io
n

(%
)

MbDSAS
Traditional management

0 20 40 60 80 100 160 180 200 220 240120 140

Figure 5.6: CPU utilization of MbDSAS (OSGi-ROA)

horizontal axis, the current experiment time is expressed by minutes and highlighted about
each ten minutes with its current confidence interval.

Surprisingly, the CPU utilization behavior of MbDSAS and the traditional manage-
ment are quite similar, despite of MbDSAS scripts installations, SObjs discoveries, and
two hundred MLM reconfigurations. Both of then have their higher CPU utilization near
two hours (120 minutes) of experiment and their lower use at the beginning and ending
of the experiment (0 and 240 minutes). This behavior is explained by the airport modeled
scenario, where two hundred devices join the network, during the first 120 minutes, and
then start to leave the network in the next 120 minutes.

Almost all the confidence intervals of MbDSAS and the traditional management inter-
cept each other, therefore, they are quite similar and cannot be compared in terms of CPU
utilization. However, this is good for MbDSAS because indicates that even with new fea-
tures, i.e., reconfigurability and SObjs awareness, the MLM is not particularly influenced
in CPU utilization more or less then the expected of a traditional management solution,
answering partially the fourth and fifth question of Section 5.1.

5.2.6 MbDSAS memory utilization

Similar to the CPU utilization, MbDSAS and the traditional management was used
to manage the airport modeled scenario and during this experiment we measured their
memory utilization as can be seen in Figure 5.7. Such measurement is presented in aver-
ages in percents by the vertical axis being represented by lines. In the horizontal axis, the
current spent time is expressed by minutes and highlighted about each ten minutes. The
confidence interval is shown accordingly with this highlights.

As can be seen in Figure 5.7, MbDSAS and the traditional management behave similar
at the beginning of the experiment using the available memory and reaching the maximum
available near two hours of experiment. However, different from the CPU utilization, the

55

0
20

40
60

80
10

0

T im e (m)

M
em

or
y

U
til

iz
at

io
n

(%
)

MbDSAS
Traditional Management

0 20 40 60 80 100 120 140 160 180 200 220 240

Figure 5.7: Memory utilization of MbDSAS (OSGi-ROA)

memory used by MbDSAS drops drastically near the end of the experiment. This drop of
memory utilization is related to the departure of SObjs that, when detected by the TLM,
have their management script placed on the MLM stopped and after removed. Therefore,
the memory of the MLM is freed and the resource is better used by MbDSAS.

Almost all the confidence interval of MbDSAS and the traditional management mea-
surement intercept each other near the beginning indicating that they are similar. How-
ever, with the changing of behavior of MbDSAS results near the ending, the confidence
interval of the measures stop to intercept each other and allow to determine that Mb-
DSAS uses better the memory than a traditional management. These results enable to
answer the fifth question created at Section 5.1, MbDSAS uses better the computational
resources available in an MLM than a traditional management.

In summary, MbDSAS offers a trade-off when managing an IoT scenario, where 50
seconds of management delay most be payed to add reconfiguration and SObj awareness
to an MLM. However, MbDSAS offer less memory utilization without consuming more
CPU resources. Such a trade-off is the answer for the fourth question of Section 5.1.

56

6 CONCLUSIONS & FUTURE WORK

In this dissertation, we presented Management by Delegation (MbD) concepts in the
IoT with the goal of managing SObjs. We used these concepts to propose MbDSAS, an
architecture for gateway reconfiguration through an MbD Solution, i.e., the Script MIB
or OSGi. Such reconfiguration is carried out by designed scripts that, when executed,
perform the management of SObjs. These scripts are sent by management stations to
gateways close to SObjs. Such gateways are reconfigured to manage SObjs, performing
part of the management of an entire network in a distributed way.

MbDSAS also includes an MD list builder component that is in charge of adding
SObjs awareness to gateways. Such awareness is provided by SObjs entries in an MDL
created by the MD list builder. This MDL, which is not found in traditional MbD solu-
tions, is the key to manage dynamic IoT scenarios. As such, we combine the MD list
builder with an MbD solution to expose services to external managers. The consumption
of these services enable managers to be aware of what kinds of smart objects are available
in gateways and which scripts may be delegated to manage them. As a result, MbDSAS
can be used to manage dynamic IoT scenarios.

A prototype was designed as a proof of concepts to evaluate MbDSAS performance.
This prototype enabled the conducing of an experimental evaluation to observe which is
the most appropriate access architecture, ROA or SOA, and with which MbD solution,
Script MIB or OSGi. The first experiment evaluated was the response time measurement
where a simple script delegation is performed by MbDSAS. This experiment involved a
station installed with a management application that communicates MbDSAS-WS placed
at a gateway to delegate scripts. Results showed that MbDSAS implemented through
the ROA access architecture performs better in terms of response time. In addition, both
MbD solutions, Script MIB and OSGi, were evaluated and compared between each other.
When both solutions were faced, the Script MIB showed a better response time rather than
the OSGi. However, the Script MIB performance vary accordingly to the script execution
time, performing poorly when the script execution is nearby zero.

The second experiment using the MbDSAS prototype was the network traffic mea-
surement. During this experiment, MbDSAS was evaluated accordingly with different
access methods, ROA and SOA, in combine with MbD solutions, Script MIB and OSGi.
Results showed that ROA enabled MbDSAS to perform better in terms of network traffic
rather than SOA. This difference of network traffic is particular related to the lightness of
JSON based messages from ROA against the excessive verbosity of XML messages from
SOA. However, ROA network traffic for Script MIB and OSGi is quite similar and cannot
be used to determine the best MbD solution to be used by MbDSAS.

Through the first experiment, we observed that the combination of ROA and OSGi
results in less variation in response time during a script delegation. In addition, the second

57

experiment enabled to determine that ROA is definitely the best access architecture to
use in MbDSAS. However, the second experiment analysis yielded no significant results
regarding the performance of Script MIB and OSGi. Therefore, the combination of ROA
and OSGi is preferred as the best set of technologies to implement MbDSAS accordingly
with the first experiment.

The performance of MbDSAS as an IoT management approach was also experimented
through a modeled airport scenario. In such a scenario, two hundred SObjs join the net-
work accordingly to a poisson distribution that controls the number of SObjs that joins the
network per minute in the first two hours. Afterwards, the same two hundred SObjs start
to leave the network randomly by also following a poisson distribution in another two
hours. In addition, both poisson distributions present different values from each other,
trying to achieve a true airport station flow of SObjs. This airport scenario was used as
a base to the execution of all further experiments involving the assessment of MbDSAS
performance.

The assessment of the performance of MbDSAS lead us to design an opposite man-
agement system to be compared with MbDSAS. This opposite management system was
called traditional management system, i.e., a gateway that has all necessarily software
to manage every SObjs present at an airport scenario. This traditional management en-
abled the better understandability of the gathered results because it provided a baseline to
compare MbDSAS.

In contrast to the traditional management system in the airport scenario, MbDSAS
starts to manage SObjs from a clean state. It means that MbDSAS has no former con-
figured management code to manage any SObj that surrounds it. However, when a SObj
joins the network MbDSAS manage to discover their presence, creating MDLs. After-
wards, a manager retrieves these MDLs and delegates management scripts to a MbDSAS-
WS placed on a gateway that starts to manage discovered SObjs from the airport scenario.
Finally, when SObjs start to leave the network, MbDSAS detects their leaving and re-
moves SObjs entries from its MDLs. As soon as one TLM detects the leaving of SObjs
by retrieving a updated MDL, it sends a removal order to MbDSAS to cease the manage-
ment of these departed SObjs. Both the traditional management system and MbDSAS
were compared with results gathered from the airport scenario experiments.

During the experiments, we compared the management delay, CPU, and memory uti-
lization of MbDSAS against a traditional management system. Results shown that Mb-
DSAS has a larger management delay compared to the traditional management. This
delay can be assumed as a tradeoff to add dynamic and awareness mechanisms to a net-
work management approach. Therefore, this delay can be assumed as a price to pay for
managing a dynamic scenario of the IoT.

Afterwards, we collected results in terms of CPU utilization of both approaches, Mb-
DSAS and the traditional management, during the airport scenario experiment. Results
shown that both approaches have similar behavior. These results present their calculated
error always intercepting each other. Therefore, both managements approaches can be
considered similar in terms of CPU utilization.

The lasts results were measurements of memory RAM utilization during the execution
of the airport scenario experiment. These results shown that MbDSAS continuously freed
memory resource for other processes to execute, proving its superiority in terms of saving
resource compared to a traditional management. In summary, MbDSAS added reconfig-
uration features to a gateway without great overheads to manage SObjs, showing to be
qualified as a potential approach for the management of IoT scenarios. In addition, Mb-

58

DSAS behave better in an dynamic scenario than a traditional management system. This
dissertation’s major contribution is a dynamic solution called MbDSAS to adapt gateways
from the IoT to manage surrounding SObjs. One of its greatest features is the capability
to dynamic receive management routines when a SObj joins the network and cease its
management when this SObj leaves the network. In addition, results shown that MbD-
SAS is more interesting as a management solution than a traditional one, mainly in terms
of memory and processing power consumption. Finally, MbDSAS fits as one important
solution for the management of the IoT, being based on an MbD distributed architecture
that can adapt to many different scenarios from the IoT.

As a future work, we will investigate the use of MbDSAS in Mashups systems (dos
Santos et al., 2010). The Mashups systems enable non-profit human managers to build
their own management systems with a building block interface. We believe that in Ma-
shups, the delegation of scripts and the access of MDLs can assist managers to develop
complex network management system to dynamic IoT scenarios. Therefore, MbDSAS
services and entities, TLM, MLM, and MD, can be mapped to building blocks that will
be combined accordingly to network domain needs. These needs will be different accord-
ingly to IoT scenarios, such as plantations, airports, trains, and bus stations. For example,
SObjs from a plantation will be mapped to Mashups blocks accordingly with retrieved
MDLs. These blocks can be combined with external WS blocks, e.g., Google Maps,
Weather, and Bing Maps. Afterwards, managers may define how a grid of SObjs from
the plantation can be better managed by delegating specific management scripts, accord-
ingly with specific characteristics from the area, like elevation and weather informations
gathered from the external WS.

In the near future, MbDSAS can also be used to implement Gateways as a Service
(GaaS). The main idea of GaaS is to enable users to choose their gateways network ser-
vices that will be provided at the local network. For example, these gateways will be
owned by a person registered at an external repository. This repository will offer a user
friendly interface where people will authenticate and registry their own gateways. Thus,
an authenticated person become enabled to choose potential services to be installed at
their home gateways. Afterwards, the external repositories notifies gateways about se-
lected scripts to be delegated. These scripts contains the selected service that will be
pushed, installed, and managed by MbDSAS. Finally, local connected users can make
use of their new installed services without hard configurations nor installations carried
out through verbose command line commands.

MbDSAS can also be applied to healthcare scenarios, such as home patients telemon-
itoring and hospitals networks (Jara et al., 2010). In these particular scenarios, SObjs
collect private informations about patients(Viswanathan et al., 2012). These SObjs have
to be carefully managed to avoid any privacy or security flaws (Tarouco et al., 2012).
Therefore, MbDSAS may be investigated as a management system approach to manage
healthcare scenarios. In this investigation, tests may show which are the security and
privacy aspects that MbDSAS succeed or fail to address in these healthcare scenarios.

59

REFERENCES

ABERER, K., HAUSWIRTH, M., E SALEHI, A. 2007. Infrastructure for data process-
ing in large-scale interconnected sensor networks. In Mobile Data Management, 2007
International Conference on. 198–205.

BOTTAZZI, D., CORRADI, A., E MONTANARI, R. 2006. Context-aware middleware
solutions for anytime and anywhere emergency assistance to elderly people. Communi-
cations Magazine, IEEE 44, 4 (april), 82 – 90.

BOX, D., EHNEBUSKE, D., KAKIVAYA, G., LAYMAN, A., MENDELSOHN, N.,
NIELSEN, H., THATTE, S., E WINER, D. 2000. Simple object access protocol (SOAP)
1.1.

CANNATA, A., GEROSA, M., E TAISCH, M. 2008. Socrades: A framework for devel-
oping intelligent systems in manufacturing. In Industrial Engineering and Engineering
Management, 2008. IEEM 2008. IEEE International Conference on. 1904–1908.

CONGDON, P. 2002. Link layer discovery protocol and MIB. V1. 0 May 20. 2002,
1–20. [ONLINE] http://www.ieee802.org/1/files/public/docs2002/
lldp-protocol-02.pdf. Last access in june, 2013.

DECKER, C., RIEDEL, T., BEIGL, M., DE SOUZA, L., SPIESS, P., MULLER, J., E

HALLER, S. 2007. Collaborative business items. In Intelligent Environments, 2007. IE
07. 3rd IET International Conference on. 40–47.

DOS SANTOS, C. R. P., BEZERRA, R., CERON, J., GRANVILLE, L. Z., E TAROUCO,
L. M. R. 2010. On using mashups for composing network management applications.
Communications Magazine, IEEE 48, 12 (december), 112 –122.

DOS SANTOS, C. R. P., SANTA, L. F. D., MARQUEZAN, C. C., CECHIN, S. L., SAL-
VADOR, E. M., GRANVILLE, L. Z., ALMEIDA, M. J. B., E TAROUCO, L. M. R. 2008.
On the design and performance evaluation of notification support for p2p-based network
management. In Proceedings of the 2008 ACM symposium on Applied computing. SAC
’08. ACM, New York, NY, USA, 2057–2062.

DUNKELS, A. E VASSEUR, J. 2008. IP for smart objects. IPSO alliance white paper.
[ONLINE] http://www.ipso-alliance.org/. Last access in june, 2013.

EISENHAUER, M., ROSENGREN, P., E ANTOLIN, P. 2009. A development platform for
integrating wireless devices and sensors into ambient intelligence systems. In Sensor,
Mesh and Ad Hoc Communications and Networks Workshops, 2009. SECON Workshops
’09. 6th Annual IEEE Communications Society Conference on. 1–3.

60

EISENHAUER, M., ROSENGREN, P., E ANTOLIN, P. 2010. Hydra: A development plat-
form for integrating wireless devices and sensors into ambient intelligence systems. In
The Internet of Things, D. Giusto, A. Iera, G. Morabito, e L. Atzori, Eds. Springer New
York, 367–373.

FIELDING, R. 2000. Architectural styles and the design of network-based software ar-
chitectures. Ph.D. thesis, University of California.

FIELDING, R. E TAYLOR, R. 2002. Principled design of the modern web architecture.
ACM Transactions on Internet Technology (TOIT) 2, 2, 115–150.

FIOREZE, T., GRANVILLE, L., ALMEIDA, M., E TAROUCO, L. 2005. Comparing web
services with snmp in a management by delegation environment. In International Sym-
posium on Integrated Network Management, 2005. IM 2005. 2005 9th IFIP/IEEE. 601 –
614.

GAMA, K., TOUSEAU, L., E DONSEZ, D. 2012. Combining heterogeneous service tech-
nologies for building an internet of things middleware. Elsevier, Computer Communica-
tions 35, 4, 405 – 417.

GOLDSZMIDT, G., YEMINI, Y., E YEMINI, S. 2010. Network management by delega-
tion: the mad approach. In CASCON First Decade High Impact Papers. CASCON ’10.
ACM, New York, NY, USA, 78–92.

GRANVILLE, L. Z., NEISSE, R., VIANNA, R. L., E FIOREZE, T. 2009. Handbook of
Research on Telecommunications Planning and Management for Business. IGI Global.

GUINARD, D., TRIFA, V., E WILDE, E. 2010. A resource oriented architecture for the
web of things. In Internet of Things (IOT), 2010. IEEE, 1–8.

HONKOLA, J., LAINE, H., BROWN, R., E TYRKKO, O. 2010. Smart-m3 information
sharing platform. In Computers and Communications (ISCC), 2010 IEEE Symposium on.
1041–1046.

JARA, A., ZAMORA, M., E SKARMETA, A. 2010. An architecture based on internet of
things to support mobility and security in medical environments. In Consumer Commu-
nications and Networking Conference (CCNC), 2010 7th IEEE. IEEE, 1–5.

LEVI, D. E SCHOENWAELDER, J. 2001. Definitions of managed objects for the delega-
tion of management scripts - rfc3165. RFCs and Standards, IETF.

MAROTTA, M. A., CARBONE, J. F., SANTANNA, J. J. C., E TAROUCO, L. M. R.
2013. Through the Internet of Things - a Management by Delegation Smart Object Aware
System (MbDSAS). In Computer Software and Applications Conference (COMPSAC),
2013 IEEE 37th Annual.

MARTIN-FLATIN, J.-P., ZNATY, S., E HUBAUX, J.-P. 1999. A survey of distributed
enterprise network and systems management paradigms. Journal of Network and Systems
Management 7, 1, 9–26.

MASSAGUER, D., HORE, B., DIALLO, M. H., MEHROTRA, S., E VENKATASUBRA-
MANIAN, N. 2009. Middleware for pervasive spaces: balancing privacy and utility. In
Proceedings of the 10th ACM/IFIP/USENIX International Conference on Middleware.
Middleware ’09. Springer-Verlag New York, Inc., New York, NY, USA, 13:1–13:20.

61

MEYER, K., ERLINGER, M., BETSER, J., SUNSHINE, C., GOLDSZMIDT, G., E YEM-
INI, Y. 1995. Decentralizing control and intelligence in network management. In Pro-
ceedings of the fourth international symposium on Integrated network management IV.
Citeseer, 4–16.

MUKHTAR, H., KANG-MYO, K., CHAUDHRY, S., AKBAR, A., KI-HYUNG, K., E YOO,
S.-W. 2008. LNMP- Management architecture for IPv6 based low-power wireless Per-
sonal Area Networks (6LoWPAN). In Network Operations and Management Symposium,
2008. NOMS 2008. IEEE. 417 –424.

OSGI ALLIANCE. 2012. OSGi - The Dynamic Module System for Java. [ONLINE]
http://www.osgi.org/Main/HomePage. Last access at august, 2012.

PARK, Y. E AHN, S. B. 2003. Optimal assignment for check-in counters based on pas-
senger arrival behaviour at an airport. Transportation Planning and Technology 26, 5,
397–416.

PAUTASSO, C., ZIMMERMANN, O., E LEYMANN, F. 2008. Restful web services vs.
"big"’ web services: making the right architectural decision. In Proceeding of the 17th
international conference on World Wide Web. WWW ’08. ACM, New York, NY, USA,
805–814.

PRESSER, M., BARNAGHI, P., EURICH, M., E VILLALONGA, C. 2009. The sensei
project: integrating the physical world with the digital world of the network of the future.
Communications Magazine, IEEE 47, 4, 1–4.

RELLERMEYER, J., DULLER, M., GILMER, K., MARAGKOS, D., PAPAGEORGIOU, D.,
E ALONSO, G. 2008. The software fabric for the internet of things. In Proceedings of the
1st international conference on The internet of things. Springer-Verlag, 87–104.

REYNOLDS, F. 2006. The ubiquitous web, UPnP and smart homes. UPnP forum
white paper. [ONLINE] http://www.w3.org/2006/02/reynolds-paper.
pdf. Last access in june, 2013.

SCHONWALDER, J., QUITTEK, J., E KAPPLER, C. 2000. Building distributed man-
agement applications with the ietf script mib. Selected Areas in Communications, IEEE
Journal on 18, 5 (may), 702–714.

SOLAK, S., CLARKE, J.-P. B., E JOHNSON, E. L. 2009. Airport terminal capacity
planning. Transportation Research Part B: Methodological 43, 6, 659–676.

SUNDMAEKER, H., GUILLEMIN, P., FRIESS, P., E WOELFFLÉ, S. 2010. Vision and
challenges for realising the internet of things. Cluster of European Research Projects on
the Internet of Things, European Commision.

TAROUCO, L. M. R., BERTHOLDO, L., GRANVILLE, L. Z., ARBIZA, L., CARBONE,
F., MAROTTA, M. A., E SANTANA, J. J. 2012. Internet of things in healthcare : Interop-
erability and security issues. International Workshop on Mobile Consumer Health Care
Networks, Systems and Services, IEEE 1, 1–6.

TEIXEIRA, T., HACHEM, S., ISSARNY, V., E GEORGANTAS, N. 2011. Service oriented
middleware for the internet of things: A perspective. Towards a Service-Based Internet,
Springer, 220–229.

62

VERMESAN, O., FRIESS, P., GUILLEMIN, P., GUSMEROLI, S., SUNDMAEKER, H.,
BASSI, A., JUBERT, I., MAZURA, M., HARRISON, M., EISENHAUER10, M., ET AL.
2008. Internet of things strategic research roadmap. Aerospace Technologies and Appli-
cations for Dual Use, 9.

VISWANATHAN, H., CHEN, B., E POMPILI, D. 2012. Research challenges in computa-
tion, communication, and context awareness for ubiquitous healthcare. Communications
Magazine, IEEE 50, 5 (may), 92 –99.

WICKBOLDT, J. A., GRANVILLE, L. Z., SCHNEIDER, F., DUDKOWSKI, D., E BRUN-
NER, M. 2012. A new approach to the design of flexible cloud management platforms. In
8th International Conference on Network and Service Management (CNSM). Las Vegas,
USA, 155–158.

63

APPENDIX A

This appendix presents one article "Through the Internet of Things - A Management
by Delegation Smart Object Aware System". This article is a paper result of the second
year of the Masters and presents the use of Management by Delegation concepts, WS,
and discovery mechanisms in IoT network management. This paper also presents an
architecture for the theme, called MbDSAS, shown in details in this dissertation, which
enables management systems to reconfigure themselves to better support the dynamicity
of IoT. Finally, the article presented a performance evaluation between MbDSAS and a
traditional management system.

• Title: Through the Internet of Things - A Management by Delegation Smart Object
Aware System

• Name: IEEE Computer Software and Applications Conference (COMPSAC 2013)

• URL: http://compsac.cs.iastate.edu/

• Date: July 22-26, 2013

• Local: Kyoto Terrsa, Japan

Through the Internet of Things - a Management by
Delegation Smart Object Aware System (MbDSAS)

Marcelo Antonio Marotta, Felipe José Carbone, José Jair Cardoso de Santanna,
Liane Margarida Rochenbach Tarouco

Institute of Informatics – Federal University of Rio Grande do Sul (UFRGS)
Postal Code 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

e-mail:{mamarotta, fjcarbon, jjcsantanna, liane}@inf.ufrgs.br

Abstract—The management of smart objects (SObjs) is an
important task because they are huge in number and appli-
cations. Such huge number of SObjs may lead the Internet
of Things (IoT) to face severe network conditions, in terms of
network congestion and large delays. Thus, the management of
SObjs is fundamental to avoid future IoT network problems.
In such a management, network boxes, also called gateways,
have been configured to manage SObjs with software updates
or reconfiguration followed by a warm start. However, gateways
configuration become soon outdated because SObjs join and leave
the network quite frequently. Therefore, we propose an approach
called MbDSAS to reconfigure gateways without the need of a
software updating or patching to manage and detect SObjs and
deal with the dynamicity of the IoT network. An evaluation of
MbDSAS was performed through an airport modeled scenario.
In addition, MbDSAS was experimentally tested to be qualified
as a management solution to IoT scenarios and to determine
the best performance combination of technologies to implement
MbDSAS.

Index Terms—Internet of Things, network management, Man-
agement by Delegation, smart objects, network architecture

I. INTRODUCTION

Traffic lights, surveillance cameras, home appliances, and
mobile phones are objects of everyday that, when equipped
with network interfaces, have been classified as Smart Objects
(SObjs) [1]. The Internet has been gradually incorporated these
SObjs into its environment, leading to the so called Internet of
Things (IoT). Because the extremely large number of everyday
objects, the future IoT is naturally expected to be composed
of billions of SObjs. [2] Predictions foresee that the IoT
will accommodate 50 to 100 billion of SObjs in 2020. As a
consequence, the huge number of SObjs can potentially lead
the IoT to severe network conditions in terms of congestion
and large delays because of the network traffic generated by
SObjs.

The management of SObjs is fundamental to avoid severe
network conditions of the future of the IoT. In such a manage-
ment, traditional devices as computer servers, set-top boxes,
and routers can potentially incorporate to role of management
stations (or simply managers) that access information from
SObjs to both monitor and configure them. Managers and
SObjs exchange information according to two models: direct
and indirect communications. In direct communication [3],
occasional intermediate devices between managers and SObjs
(e.g., gateways, firewalls, NAT boxes) do not change the

communication semantics and perception. In the indirect com-
munication, however, intermediate devices expose to managers
a different, possibly enhanced view of SObjs [4]. For exam-
ple, gateways can cache SObjs management information to
improve the perceived availability of SObjs from the manager
point-of-view [5].

Usually, SObjs have insufficient hardware resources to
implement more sophisticated management features found in
traditional devices. That includes, for example, supporting
robust security mechanisms or even timely replying to bursts
of manager requests. In fact, the usual lack of resources in
SObjs leads solution designers to prefer the indirect commu-
nication model because it offers the opportunity to handle the
SObjs constraints at intermediate devices. Routers, switches,
access points, and other network boxes can perform proper
intermediation between managers and SObjs [6][4], and, in
this case, are referred to as management gateways in this paper.

Currently, management gateways already available tend to
be shipped with a management code that is not expected to
be replaced, unless as a result of a software update or patch.
In the IoT, however, management gateways need to cope with
the typical dynamicity of the network, where new SObjs join
and leave the IoT quite frequently. It means that management
gateways must be able to intermediate a varying number and
types of SObjs without passing through the typical process of
a software update or reconfiguration (usually followed by a
warm start). In summary, today’s management gateways tend
not to offer dynamic reconfiguration features, which represents
a critical problem when intermediating the management of
SObjs in the IoT. Therefore, to address this critical problem,
we propose an architecture with SObjs dynamic behavior
awareness feature in combination with reconfiguration mech-
anisms.

In this paper we propose an approach called Management
by Delegation SObj Aware System (MbDSAS). In such an
approach, gateways detect SObjs dynamic behavior by taking
advantage of discovery protocols, for example, Link Layer
Discovery Protocol (LLDP) or Universal Plug and Play proto-
col (UPnP). In addition, MbDSAS allows the creation of lists
based on the detected behavior of SObjs to later be obtained
by managers through Web Services (WS). Afterwards, man-
agers can use Management by Delegation (MbD) concepts to
delegate the management of SObjs tasks to gateways. Such

delegation is carried out by the use of WS services in combi-
nation with the IETF Script MIB [7] or Open Service Gateway
initiative (OSGi) [8], which enables gateways reconfiguration
without the need of patches or updates followed by a warm
start. A prototype of MbDSAS was created and deployed in
a modeled airport scenario for the assessment of MbDSAS
performance. Finally, results were experimentally collected in
terms of response time, network traffic, management delay,
CPU and memory usage.

The remainder of this paper is organized as follows. In
Section II, we present a background study and the state-of-the-
art on management solutions for the IoT context. In Section
III, we describe our solution to configure gateways to manage
SObjs. A proof of concept of our solution is presented in
Section IV. In Section V, a case study and a scenario are
defined to evaluate our solution, whereas in Section VI the
achieved results are discussed. Finally, in Section VII, we
conclude this paper presenting final remarks and future work.

II. BACKGROUND & RELATED WORK

Through this section we discuss fundamental work related
to our solution. We present the underlying concepts of our
proposal and review the IETF’s Script MIB. In addition, we
explain how OSGi can be used as a mechanism to reconfigure
gateways. Finally, we discuss how Web Services may be used
in IoT.

Traditional centralized management approaches are usually
insufficient to manage large networks [9]. This management
approaches use a single management station to control var-
ious types of nodes of a network domain, however, with
the increasing size of modern networks, the management
become complex and station becomes overloaded with data.
Thus, centralized approaches had to be replaced by distributed
management solutions to avoid such overload.

The distribution of network management can be accom-
plished with the Management by Delegation (MbD) model
[9]. This model is based on a hierarchy of three entities: (i)
Top-Level Managers (TLMs) that are stations responsible for
the management tasks, such as manage each network node of a
domain or providing summarized reports about a domain; (ii)
Mid-Level Managers (MLMs) that are network nodes capable
of executing mundane actions, such as execute a delegated
management tasks and gather local network information; and
(iii) Managed Devices (MDs) that are the final target of the
management tasks. Scripts contain the code describing the
management tasks, which are sent by TLMs to MLMs. The
execution of these scripts allows MLMs to manage closer
MDs. The communication between TLMs and MLMs is
independent of the delegated management scripts, whereas
the communication between MLMs and MDs depends on the
management interfaces exposed by MDs.

In distributed MbD systems, the overall management task
is distributed among almost all network entities. Such a dis-
tribution enables MbD systems to achieve the most important
characteristics for this work: scalability and flexibility [10].

• Scalability: Accordingly to Schonwalder et al. [10], there
are three reasons for MbD systems reach scalability. First,
a TLM management task will be distributed through
different network entities, minimizing its workload. Sec-
ond, the network overhead will be minimized because
MLMs will exchange management tasks with others that
are closer to MDs, avoiding distant communications. In
addition, scripts sources will be communicated between
MLMs rather than raw data. Afterwards, MLMs can
summarize collected data to minimize the communication
traffic with distant entities. Finally, MLMs need less
storage resource by maintaining only active scripts stored
instead of raw data.

• Flexibility: As soon as MbD systems configurations
become outdated, managers may create new scripts to
reconfigure MbD systems on the fly [11]. Afterwards,
these MbD systems can spread the new script among its
internal nodes and MbD systems neighbors. Therefore,
management tasks can be freely reassigned dinamically
without the need of a software update usually followed
by a warm start.

In the IoT context, we argue that MbD may be used in
large scenarios to delegate management tasks to IoT gateways
operating as MLMs. These gateways are then reconfigured to
manage closer SObjs. However, because MbD is an abstract
model, it has to be carefully adapted to be properly applied in
IoT management. Thus, we review two important technologies
that can be used to realize MbD.

The first technology is the Script MIB [7], introduced by the
IETF’s Distributed Management (DISMAN) group. The Script
MIB is a Simple Network Management Protocol (SNMP)
Management Information Base (MIB) supported by MLMs.
The Script MIB defines neither a specific language for coding
of management scripts nor their objectives, for example, a
management script may be designed to create firewall rules or
to collect informations from an MD, both are managed but not
defined by Script MIB. Therefore, Script MIB provides a way
to remotely manage scripts life-cycles, i.e., scripts installation,
launch, execution, and termination.

Granville et al. [12] present a WS based alternative to the
Script MIB. Such alternative was designed to offer original
Script MIB services as WS operations accessed through the
Simple Object Access Protocol (SOAP) [13]. The WS-based
solution presents an improved performance in comparison to
the Script MIB because it reduces the number of messages
exchanged in the network. The important consequence of that
work is the observation that MbD services can consume less
network resources if MbD is realized through carefully defined
WS operations, instead of having a traditional Script MIB
implementation in place.

WS applications may present different architectures, e.g.,
Service Oriented Architecture (SOA) [13] and Resource
Oriented Architecture (ROA) [14]. SOA is coupled to the
client/server model that uses Uniform Resource Identifier
(URI) to access different services, i.e. endpoint. In general,
this approach is implemented through the W3C standards,

also called WS-*. Each WS based on SOA requires a Web
Services Description Language (WSDL) document to provide
communications interfaces, i.e., description of services, mes-
sage formats, and data to be communicated. In addition, a SOA
WS requires the use of SOAP [13] to perform communication
among services and clients. SOAP messages are described in
eXtensible Markup Language (XML) and must be serialized
before transmitted over the network.

ROA [14] is a loosely coupled approach to client/server
model that uses URI to directly access resources of a WS, also
known as RESTful services. In general, this approach follows
the architectural style called Representational State Transfer
(REST). This style defines HTTP as the only application
protocol and standardizes access interface for its methods (i.e.,
GET, PUT, POST, and DELETE). Each message of REST is
loosely coupled and represents a state of the accessed resource,
i.e., the current collection of meaningful information, such as
network parameters and hardware configurations. REST states
can be described by XML as SOA or also by JavaScript Object
Notation (JSON), a lightweight description language.

The research of Pautasso et al. [15] shows that ROA
presents almost the same features of SOA, but is lighter in
terms of network overhead. However, Granville et al. [12]
presented only SOA as their main WS architecture to provide
an alternative to Script MIB. Therefore, the use of ROA as a
WS architecture to provide such alternative remains a research
question.

Another technology that may be used to realize MbD is
the OSGi framework [8] [6]. Through OSGi, Gama et al. [4]
use gateways that are reconfigured to manage SObjs. Such
reconfiguration is carried out by external managers, which
delegates management tasks through scripts to OSGi enabled
gateways. These scripts are programs called bundles. Such
bundles are installed and managed by a single instance of
the OSGi as a part of it. However, OSGi does not present
SObjs awareness mechanisms, therefore, it cannot be used
solely to detect, manage, and monitor SObjs automatically,
without external intervention of human managers.

In summary, Script MIB and OSGi may be used to delegate
management tasks to gateways located closer to SObjs in the
IoT. This delegation enables the management of SObjs with
different characteristics. For example, SObjs may be created
to measure temperatures periodically or to record videos to be
sent constantly over the network. These two different SObjs
may be managed by the same gateway. Thus, the Script MIB
and OSGi may be used to reconfigure the gateway to manage
both types of SObjs. Unfortunately, both the Script MIB and
OSGi do not offer a SObjs awareness feature to address the
dynamicity of IoT scenarios, where SObjs join and leave
the network frequently. This awareness is important to avoid
gateways to contact departed nodes and to inform management
stations about SObjs in range. It means that the Script MIB and
OSGi remain constrained to the traditional network context.
Therefore, we proposed a WS new approach, based on MbD
concepts, using either the Script MIB or OSGi in combination
with WS architectures, SOA and ROA, for IoT management.

III. MBDSAS ARCHITECTURE

In this section we introduce MbDSAS conceptual architec-
ture and its internal details. From top to bottom, TLM, MLM,
and MD are depicted in Figure 1. In addition, a Script repos-
itory that hosts management scripts can be seen in the right
side of Figure 1. White boxes present different applications
on both TLM and MLM. Finally, dashed gray boxes present
technologies that can be used by our architecture, but not
developed by us.

MLM

MD

MbD
solution

MD list
builder

TLM

Runtime
environment

MbDSAS-WS

Script
repository

Management Application

MbDSAS

Figure 1. MbDSAS architecture to manage SObjs

Original MbD entities can be properly mapped to IoT ob-
jects, i.e., TLMs are mapped to management stations, MLMs
are mapped to gateways, and MDs are mapped to SObjs. TLMs
are deployed as a Management Application to perform specific
management tasks, better explained as follows:

• Checking MLMs about discovered MDs: The Manage-
ment Application may send messages to communicate a
MLM to verify possible new SObjs in the range of this
MLM. When these SObjs are detected, the Management
Application may delegate to MLM a specific routine to
manage these SObjs. Another important feature is the
possibility to detect departures and arrivals of SObjs.

• Sending management scripts to MLMs: The Management
Application may send management scripts to MLMs to
manage MDs delegating the management task to network
entities closer to MD. This management scripts can also
be more than just network management scripts, they can
be used as network services exposing WS interfaces to be
accessed by network users that are interested in their use
as it is depicted in Gama et al. [4] by the use of OSGi

• Receiving notifications about new management scripts
available from other TLMs: The Management Application
may be notified about new management scripts available
from another TLMs or by the Script Repository. When
a new notification arrives, the Management Application
will add this notification to TLM’s database organizing
accordingly with specific SObjs characteristics and the
management script URL. Thus, the Management Appli-
cation may send updated scripts to MLMs.

• Notifying sub-domains about the creation or update of
management scripts: The Management application may

send notification to sub-domain TLMs about arrived
notifications.

The communication among TLMs and MLMs is performed
through the network, which may vary in context between a
Local Area Network (LAN) or the Internet. Such variability
requires that MbDSAS presents a specific protocol and a de-
fined access interface to perform the communication between
TLMs and MLMs over both network contexts, whereas the
network overhead remains low. Therefore, taking advantage
of Granville et al. research [12], MbDSAS will be developed
with WS to address both requirements stated above.

MbDSAS through MbDSAS-WS may offer interfaces based
on WS architectures, such as SOA and ROA. These inter-
faces are accessed by TLMs to consume services offered
by MbDSAS-WS. Such services execute management tasks
through information exchange with other internal applications
of MLMs (e.g., MD list builder and MbD solution). In ad-
dition, these services may perform other tasks, such as the
creation of management sessions or management of the life-
cycle of a script.

A subset of MbDSAS-WS services is dedicated to manage
an application, which is called MD list builder. Such appli-
cation was created to add SObjs awareness to MLMs. MD
list builder monitors network interfaces available on MLM
to extract relevant information about received messages from
available network nodes (e.g., IP, MAC address, or used
transport layer protocol). In addition, the MD list builder can
execute this monitoring taking advantages of discovery proto-
cols, such as the Link Layer Discovery Protocol (LLDP) or
the Universal Plug and Play Protocol (UPnP). This monitoring
allows the creation of MD Discovery Lists (MDLs). These
MDLs are organized in rows based on MD entries presenting
their extracted information as columns. Every information
about an MD may require the creation or edition of a specific
management script. Therefore, TLMs may obtain MDLs to
delegate specific management tasks to MLM, avoiding a pos-
sible overload on MLM by sending only a set of management
scripts to manage SObjs in the range.

MLMs need to install the appropriate management scripts
to handle discovered SObjs, that might leave the network at
anytime. By the leaving of SObjs, the set of scripts loaded
at a given MLM may become soon outdated. To avoid waste
of resources in MLMs, a TLM may send an abort command
to stop an outdated script from being executed. However, the
awareness of an MD behavior depends exclusively on MLMs
and this awareness is not covered by current MbD concepts.
Therefore, MD list builder is designed to provide a cached
information about the last contact with an MD. TLMs can
use cached information and a threshold to determine when a
management script become outdated and should be terminated
or perpetuated.

MbD concepts are designed through services by MbDSAS-
WS. For example, a MbDSAS-WS service may be used to
receive a management script being delegated by a TLM.
These services perform sets of commands to MbD solutions
(e.g., OSGi or Script MIB). Such solutions have among their

functions: pull scripts from external repositories and manage
a life-cycle of a scripts.

MbD solutions use runtime environments to execute man-
agement scripts and manage their life-cycle. Each MbD so-
lution may support one or more runtime environments, such
as JAVA, C, and TCL. In such an environment, functions
of running scripts are constantly executed to manage MDs.
All scripts executions are accomplished without reboots or
operational system installations of updates and patches on
MLMs. Also, during scripts executions, informations can be
returned to TLMs or cached in MLMs.

Finally, the Script Repository may be settled as a web server
being deployed over a local computer, a cluster of computers,
or a cloud system. The deployment of this server shall vary
accordingly with the network domain characteristics, such as
size or security needs. For example, a huge domain should
use a cluster or a cloud system to enable the Script Repository
to support a huge number of scripts requests and downloads
from TLMs. In addition, MbDSAS may take advantage of
Domain Name Systems to improve the reachability of a
Script Repository. However, in contrast to the former case,
an hospital network has high security needs, thus, a local
deployed Script Repository may provide a better control over
which scripts will be published and will be offered to which
network node of the hospital.

A Script Repository hosts management scripts. These scripts
may be developed and published by managers that are in-
terested in the management of new SObjs. The development
of these scripts must be performed considering the supported
runtime engines of each MbD infrastructure of an MLM.
When such scripts are published on Script Repositories, a
notification informing the publishing is sent to every known
TLM from the Repository or requested by TLMs.

IV. PROTOTYPE

The MbDSAS architecture of Section III was prototyped
and described bellow. We mainly focused on the design of
three components: Management Application, MbDSAS-WS,
and MD list builder.

The Management Application installed on a TLM was
developed in JAVA. This application aims to provide a human-
friendly interface to managers in order to send management
scripts remotely to MLMs. In addition, the Management
Application is a service that automatically sends and notifies
about updates and creation of management scripts to MLMs
and sub-domain TLMs. This sending requires that the Man-
agement Application communicates MbDSAS-WS placed on
MLMs; therefore, all necessary communication is based on
the specification of MbDSAS.

MbDSAS-WS component was developed in PHP to expose
services based on WS architectures, i.e., SOA [13] and ROA
[14]. These services were developed taking advantage of
Granville et al. research [12]. However, different from that
research, we explored ROA and OSGi as a reconfiguring
mechanism in MbDSAS, offering the same management ser-
vices provided by Script MIB. In addition, we added different

services in MbDSAS-WS that are divided in two groups: (i)
MbD services, which implement the concepts of MbD [12],
and (ii) MDL services to acquire and edit MDLs from MLMs.
MbDSAS-WS services are summarized in Table I.

MbD services
Service Parameter Return

beginMbD username, password, solution sessionID
endMbD sessionID
scriptPull sessionID, url, store, lang scriptID
scriptRun sessionID, scriptIndex, args, block runID
getResults sessionID, runID runResult

scriptPullAndRun sessionID, url, args, lang, store, block runResult
scriptRemove sessionID, scriptID

MDL services
Service Parameter Return
getMDL sessionID MDL

updateMDL sessionID,MDEntry, params MDL

Table I
WS APPLICATION SERVICES

According to Table I, when a TLM uses the service begin-
MbD, the MbDSAS-WS creates a delegation session, validating
the parameters username, password, and a reconfiguration
solution to be used (solution). With the created session, such
TLM is authorized to use other services, for example, TLM
may end a session through messages accessing the service
endMbD and informing a valid session identification (ses-
sionID). Furthermore, a TLM may send a script using the
scriptPull service to make an MLM to pull a script from an
external repository. This service receives from the TLM a valid
sessionID, a URL to some script stored on the script repository
(url), information about how the script will be stored on an
MLM (store), and the specific script language (lang), such
as JAVA or C. In return, scriptPull sends a valid launch
identification to trigger the execution of the script (scriptID).

A TLM can use a valid launch identification (scriptID)
with the scriptRun service to launch and run a script, in-
forming some arguments to its execution (args). In return,
scriptRun sends a valid script execution identification (runID).
Afterwards, TLM may use the returned runID to retrieve
results from the script execution with the getResults service, or
suspend this execution informing a parameter (block=1) with
the scriptRun service. Moreover, a TLM can use the service
scriptPullAndRun to summarize the scriptPull, scriptRun, and
getResults management services, just informing the same
services parameters. Finally, the manager can delete a script by
accessing the service scriptRemove, informing a valid session
identification (sessionID) and a script identification (scriptID).

MDL services are presented in Table I as well. These
services are exposed to simplify the retrieving of MDLs from
the MD list builder component. Such component was devel-
oped in JAVA in combination with the Link Layer Discovery
Protocol (LLDP) to monitor network interfaces and to create
MDLs. Moreover, the MD list builder component exchanges
MDLs by CLI commands with MbDSAS-WS, which, in turn,
provides MDLs following a set of steps. First, through ROA or
SOA based messages, the TLM starts a session accessing the
beginMbD service, informing a valid username and password,
and then receiving a valid sessionID. Afterwards, this TLM
may retrieve an MDL through the getMDL service informing

a valid sessionID. When some entry on an MDL must be
edited, a TLM can use the updateMDL to do so, specifying
a valid sessionID, one MD identification (MDEntry), and the
parameters to be changed (params). A new MDL is generated
and returned to TLM.

The development of a MbDSAS prototype allows to verify
how this architecture may be applied in IoT scenarios. In
addition, we are interested in analyze MbDSAS performance
against a system where all the management scripts are already
installed to manage SObjs, henceforth referred to as traditional
management. Therefore, we developed a JAVA prototype of
the traditional management and analyzed a case study where
both prototypes may be deployed for further assessment.

V. CASE STUDY

Through this section, we describe a generic scenario where
MbDSAS may be deployed. Afterwards, we apply this sce-
nario in a airport modeled scenario. Finally, metrics are defined
for the assessment of the performance of MbDSAS trying to
solve different research questions.

A. Scenario

MbDSAS must be evaluated to be classified as a manage-
ment solution to IoT scenarios. To evaluate MbDSAS we have
to define a generic scenario to understand how MbDSAS must
be applied in real IoT scenarios, e.g., an airport station, a train
station, or a city neighborhood [1]. Therefore, a scenario based
on management stations that are interested in the management
of SObjs would be the most generic scenario where MbDSAS
would be applied. However, to manage these SObjs, manage-
ment stations must rely on gateways. The components and
features of such scenario can be seen in Figure 2 and are
described as follows.

Sensor 1

Sensor 2

Sensor 3

ROA
HTTP

SOA
SOAP

Network

DeviceGatewayComputer

TLM MLM MD
Figure 2. MbDSAS generic scenario

Management station: This element is usually a computer
that is also classified as a TLM, which is installed with a
Management Application. This Management Application may
be developed to inject workload, monitor experiments, collect
results, delegate management, or manage different MLMs
through messages based on different access approaches, such
as SOA and ROA.

Gateway: The gateway is a network node classified as an
MLM that is connected with a network, which usually is a
LAN. Through this network, the MLM receives scripts from
TLMs or provide MDLs. These scripts are received by a
MbDSAS-WS installed on a MLM that exposes services to
be consumed based on SOA and ROA. An MLM can also
presents one of the covered MbD Solutions from this work
(the Script MIB or OSGi) to manage scripts. These scripts

manage SObjs through communications realized with different
technologies, e.g., IEEE 802.15.4, ZigBee, and Bluetooth.
Finally, MLMs are installed with an MDListBuilder that may
monitor network interfaces or use discovery mechanisms, e.g.,
LLDP or UPnP, to create MDLs.

Device: The device is characterized as a real example
of a SObjs and may be classified as an MD. One of the
main features of these devices is that they have constrained
resources in relation a traditional computers, such as few
memory available, low processing power, and battery based
power. In addition, these devices may have a set of sensors,
e.g., movement, humidity, and luminosity, integrated into
them. Devices can also expose informations regarding their
operational characteristics, e.g., memory, clock, power level,
and I/O status. Such informations may be accessed through
many different approaches, for example SOA, ROA, or others.

Analyzing the generic scenario of MbDSAS allows to find
a traditional IoT scenario where it fits. For example, an airport
station could be interested in provide flight schedules to SObjs
that can handle their service, therefore, a management station
uses gateways to provide these schedules to SObjs. However,
SObjs may use different technologies (e.g., IEEE 802.15.4,
ZigBee, or Bluetooth) to communicate or have particular
configuration needs, such as support for communication over
layer 2 only or other. In addition, SObjs in an airport are
always arriving and departing in anytime. Therefore, through
MbDSAS the airport station may be mapped to TLM (man-
agement station), MLM (gateway), and MDs (SObjs) as a
reconfigurable management system to manage SObjs of many
kinds and be aware of their arrivals and departures. We
deployed MbDSAS prototype from Section IV to be evaluated
in an airport station scenario. We do not have permission to
use a real airport station to evaluate MbDSAS, however, we
may model its people arrivals and departures on a computer
system [16][17].

M inutes

Pe
op

le
 w

ith
 S

m
ar

t O
bj

ec
ts

0
50

10
0

15
0

20
0

0 20 40 60 80 100 120 140 160 180 200 220 240

0

18

47
57

78

92

109
120

137

157
166

186

200

182

166

153
143

124

109
103

90

55

39

27

0

Figure 3. Cumulative airport traffic model

A computer system may replicate a people traffic airport
through a poisson distribution with λ = 0.6, as it is depicted
in Figure 3 [17]. In the horizontal axis, four hours are shown
in minutes with highlights about each ten minutes. Also, in
the vertical axis, columns represent cumulative arrivals and
departures of two hundred persons with SObj. In the people
traffic replication, people that arrive are summed and when

they depart they are subtracted. The flow of arrivals and
departures have different values as may be seen in Figure 3.

MbDSAS may be evaluated by experiments using the airport
modeled scenario with a TLM and an MLM that has to
discover all new MDs in its range and manage them. In
addition, MbDSAS has to install and remove management
scripts on an MLM to handle the arrival and departure of MDs.
During the experiments, the performance of MbDSAS must
be measured, therefore, we defined five questions to guide
MbDSAS performance assessment and five metrics to solve
this questions, which are defined bellow.

• How much time is expended by MbDSAS to perform a
management delegation?

• How much network traffic is generated for MbDSAS to
perform a management delegation?

• Which is the best combination of technologies to imple-
ment MbDSAS?

• How does MbDSAS behave within a dynamic IoT sce-
nario, where SObjs join and leave very frequently?

• How many computational resources of a gateway are
needed to execute MbDSAS in terms of memory and
CPU utilization?

B. Metrics and Experiments

To answer each of the defined questions above, we used
metrics to measure MbDSAS performance during experiments.
These experiments take in concern the airport modeled sce-
nario. Through five metrics, we evaluate the best performance
technologies available to implement MbDSAS. In addition,
MbDSAS is evaluated as a management solution to IoT
scenarios. These metrics definitions, methodology, unit, goals,
and workload used during experiment are described below.

1) Response time of MbDSAS: The response time is the
time spent from a complete management script life-
cycle. Such time impacts the user experience with the
system, i.e., the larger time, the longer waiting for an an-
swer from the script execution. Therefore, the response
time is used as a metric to measure the efficiency of the
access approaches (SOA and ROA) based on each MbD
solution (the Script MIB or OSGi), answering the first
and third question defined above. In addition, the stan-
dard access approach to execute management delegation,
i.e., SNMP, may be compared with MbDSAS-WS as
another access approach, therefore, a script delegation
based on SNMP messages was realized with the Script
MIB to be used as a baseline to measure MbDSAS
efficiency. However, the same could not be realized to
the OSGi, because no standard was defined so far to
provide SNMP access to such solution. In this case, we
performed experiments based on the response time (in
seconds) to determine MbDSAS efficiency. TLM uses
a workload based on scriptPullAndRun tasks to send
scripts to an MLM. These scripts perform just a time
waiting varying from zero, five, ten, and fifteen seconds.
This way, both access approaches can be compared when
different performance scripts are executed.

2) Network traffic of MbDSAS: The network traffic is the
amount of bytes transferred over the network during
a TLM and MLM communication. Such communi-
cation impacts the network with overhead, i.e., the
larger amount of bytes transferred, the greater overhead
caused on the network. Therefore, the network traffic
was adopted in this work as a metric to measure the
efficiency of the access approaches (SOA and ROA)
based on each MbD solution (the Script MIB and
OSGi), answering the second and third questions defined
above. In addition, a SNMP script delegation was also
measured in terms of network traffic to be used as a
baseline. In this case, we performed experiments based
on the network traffic (in KB) to determine MbDSAS
efficiency. These experiments were conducted with the
same workload of the time response metric.

3) Management delay: The management delay is the
amount of time spent since an MD comes to the range of
an MLM and starts to be managed. This delay impacts
the quality management (QoM), i.e., the performance
of a management system to achieve its main objective,
in this case, the management of all SObjs in an airport
scenario. Therefore, the management delay was adopted
in this work as a metric to measure the efficiency of
MbDSAS against a traditional management prototype. In
this case, we performed measurements during the exper-
iments based on the management delay (in seconds) to
determine such efficiency, answering the fourth question
defined above. This experiments were conducted with a
workload based on the modeled airport scenario with a
TLM consuming scriptPullAndRun, scriptRemove, and
getMDL services. This TLM become updated about
discovered MDs from an MLM to send or remove
management scripts and to start or stop a management
script execution as well.

4) CPU utilization: The CPU utilization is the amount
of CPU processing capacity used by an MLM dur-
ing the execution of MbDSAS. This CPU utilization
impacts the performance of an MLM, i.e., the larger
amount of CPU used the lesser amount of remaining
processing power an MLM will have, decreasing the
number of process an MLM can support. Therefore,
the CPU utilization was adopted in this work as a
metric to measure the efficiency of MbDSAS against the
traditional management. In this case, we performed we
performed measurements during the experiments based
on the CPU utilization (in percent) to determine such
efficiency, answering partially the fifth question defined
above. These experiments were conducted with the same
workload as the management delay experiments.

5) Memory utilization: The memory utilization is the
amount of memory spent by an MLM during the ex-
ecution of MbDSAS. This memory utilization impacts
the performance of an MLM, i.e., the larger amount
of memory consumed the lesser amount of remaining
memory an MLM will have. Therefore, the memory

utilization was adopted in this work as a metric to
measure the efficiency of MbDSAS against the tra-
ditional management prototype. In this case, we per-
formed measurements during the experiments based on
the memory utilization (in percent) to determine such
efficiency, completing the answer of the fifth question
defined above. The experiments evolving the memory
utilization were conducted with the same workload as
the management delay experiments.

In the next section, experimental results collected consider-
ing the proposed scenario and the presented methodology are
shown and discussed.

VI. RESULTS AND ANALYSIS

The experiments were based on a test environment defined
bellow. Afterwards, we shown results obtained during the
execution of these experiments. Finally, we analyzed each
obtained result and presented our considerations.

A. Test environment

The test environment was composed of three main entities:
(i) a personal computer as TLM, that running the Management
Application software, developed in Java to delegate scripts and
collect MDLs of MLMs; (ii) two reconfigurable management
solutions as MLMs, i.e., Script MIB and OSGi, that were
instantiated in virtual machines with an MbDSAS-WS and
an MD List Builder component; and (iii) two hundred MDs
instantiated in virtual machines to replicate the behavior of
the airport scenario described in previous section. The option
of using virtual machines was because of the huge number
of devices involved and to simplify the migration of an
MLM through other network domains. In addition, each virtual
machine environment used Kernel-based Virtual Machines
(KVM), libvirt, and Virt-Manager application inspired in the
research of Wickboldt et al. [18].

In Table II, all the hardware and software specifications of
involved entities are summarized.

Specification TLM MLM - Script MIB MLM - OSGi MD
Processor Power (MHz) 2000 × 4 500 500 100

RAM Memory (MB) 8000 128 128 8
Hard Disk (MB) 650000 1000 1000 8

Network interface Ethernet Ethernet Ethernet Ethernet
Operational System Arch 3.0.40 Debian 3.0 Arch 3.0.40 OpenWRT

Script MIB - JASMIN 0.96 - -
OSGi - - Apache Felix 4.0 -

Web Server - Apache 2.2.22-4 Apache 2.2.22-4 -
SNMP - net-snmp 4.2 net-snmp 4.2 -
JDK 7.1 1.1 / 1.2 / 6.0 7.1 -
PHP - 5.0 5.0 -
Sqlite - 2.4.7 2.4.7 -
TCL - 8.2 - -

LLDPD - 0.5.7 0.5.7 0.5.7

Table II
HARDWARE AND SOFTWARE SPECIFICATIONS

The specified hardwares and softwares depicted above were
used during experiments based on the defined metrics of the
Subsection V-B. In addition, all of these metrics were collected
30 times and summarized in averages. For each average, the
confidence interval of 95% is showed for each sample plotted
graphically in next subsections.

B. MbDSAS response time analysis

R
es

po
ns

e
T

im
e

(s
)

0.
0

0.
2

0.
4

0.
6

0.
8

0 5 10 15

0.
61

6

0.
09

6

0.
11

9

0.
11

0.
54

0.
03

2

0.
04

0.
03

2

0.
56

5

0.
05

3

0.
05

8

0.
06

0.
11

2

0.
10

6

0.
10

9

0.
10

9

0.
13

5

0.
13

5

0.
13

6

0.
12

5

Waiting Time (s)

S crip t M IB − S N M P
S crip t M IB − RO A
S crip t M IB − S O A
O S G i − RO A
O S G i − S O A

Figure 4. Response time of MbDSAS using scriptPullAndRun

In Figure 4, management delegation solutions was measured
through the textitscriptPullAndRun task performance to de-
termine the response time of the MbDSAS for each access
architecture (ROA and SOA) combined with a MbD solution
(Script MIB and OSGi). In addition, the same management
delegation based on SNMP is performed and measured to
be used as a comparison baseline. Such measurements are
presented in seconds by the vertical axis being represented by
columns. At the top of each column the confidence interval is
shown. In the horizontal axis, each measurement is related to a
combination between access architecture and a MbD solution,
that was performed in different waiting times, i.e., 0, 5, 10,
and 15 seconds.

As can be seen in Figure 4, without waiting time, i.e., equal
to 0, Script MIB results has a different behavior from others,
it occurs because management delegation process requires a
polling process based on SNMP messages to be performed
[12]. This polling process insert an overhead to retrieve in-
formation from scripts execution that perform in few seconds.
However, this overhead is not replicated through scripts that
require more time to be executed, i.e., for waiting times 5, 10,
and 15.

Comparing MbD solution to be used with MbDSAS, Script
MIB presents the best response time being at least 30% faster
than the OSGi at the best case (waiting time 5). However,
Script MIB has an unstable behavior with different perfor-
mance scripts, being at least 4 times slower than OSGi in the
worst case (waiting time 0). Therefore, because OSGi is less
unstable, we prefer it over SNMP as the MbD solution to be
used in MbDSAS.

Additionally, in Figure 4, the average response time of ROA
approach is at least 10% faster than the average response time
of the SOA approach, and 14% faster than the SNMP baseline.
Through this results ROA access architecture is possible to
evaluate which is the best

C. MbDSAS network traffic

Similar to the response time, in Figure 5, a script dele-
gation using the scriptPullAndRun task was evaluated to
determine the network traffic of MbDSAS for ROA and SOA
combined with Script MIB or OSGi. Such measurements

0
2

4
6

8
10

8.
29

5

0.
82

5 1.
75

7

0.
88

1.
67

9

N
et

w
or

k
tra

ffi
c

(K
B)

S crip t M IB − S N M P
S crip t M IB − RO A
S crip t M IB − S O A
O S G i − RO A
O S G i − S O A

Figure 5. Network traffic of MbDSAS with zero waiting time

are presented in averages in KB by the vertical axis being
represented by columns. At the top of each column the
confidence interval is shown. Differently from the response
time, these measurements were performed only for scripts with
no processing time, i.e., scripts that have waiting time equals
to zero. A different measurement would be unfair to compare
with the SNMP approach, which presents a polling strategy to
communicate with Script MIB.

In Figure 5, ROA access architecture presents almost 2
times less network traffic than SOA and 10 times less than
SNMP. This difference of network traffic is particular related
to the lightness of JSON based messages from ROA against
the excessive verbosity of XML messages from SOA and the
polling strategy adopted with SNMP. However, network traffic
results present a confidence interval that intercept each other.
Therefore, ROA network traffic for Script MIB and OSGi is
quite similar and cannot be used to determine the best MbD
solution to be used by MbDSAS.

In summary, answering the first, second and third research
question of Section V, MbDSAS performed better with the
ROA access architecture in response time (0.032 seconds) and
network traffic (0.825 KB). Analyzing this architecture results,
OSGi is preferred as the most stable solution against the Script
MIB that has the best performance in MbDSAS. Therefore, we
used MbDSAS based on the combination of OSGi and ROA
approach in the next experiments to evaluate the management
performance of MbDSAS against the traditional management.

D. MbDSAS management delay

S
ec

on
ds

 (
s)

0
20

40
60

80
10

0

M bD S A S Trad itiona l m anagem ent

86 .38

14.5

Figure 6. Management delay of MbDSAS (OSGi-ROA)

MbDSAS and the traditional management are compared in
Figure 6. MbDSAS reconfigure dynamically the management
scripts while traditional management has all management
scripts previously installed. The airport modeled scenario,
described in Section V, was used during four hours of experi-
ment. The measurements are presented in averages in seconds
by the vertical axis being represented by columns. At the top of
each column the confidence interval is shown. In the horizontal
axis, the management approach adopted labels each column.

As can be seen in Figure 6, MbDSAS presents a difference
in management delay against the traditional management ap-
proach of at least 50 seconds. This difference was expected
because MbDSAS has to install a management script on the
fly to start the management of a SObjs, discovering SObjs and
reconfiguring the MLM two hundred times during the experi-
ments to manage every SObjs of the airport modeled scenario.
However, in a real scenario, is preferable that management
solutions have flexibility to interact dinamically with new
SObjs than traditional management systems that not support
it. Therefore, a trade-off may be observed, where 50 seconds
of management delay may be assumed as a price to pay to
add reconfiguration and discovery features to a management
system.

E. MbDSAS CPU utilization

0
20

40
60

80
10

0

T im e (m)

C
pu

 U
til

iz
at

io
n

(%
)

MbDSAS
Traditional management

0 20 40 60 80 100 160 180 200 220 240120 140

Figure 7. CPU utilization of MbDSAS (OSGi-ROA)

In parallel with the management delay measurement, MbD-
SAS and the traditional management was used to manage the
airport modeled scenario, as depicted in Figure 7. During this
experiment we measured their CPU utilization. Such measure-
ment is presented in averages in percents by the vertical axis
being represented by lines. In the horizontal axis, the current
experiment time is expressed by minutes and highlighted about
each ten minutes with its current confidence interval.

Surprisingly, the CPU utilization behavior of MbDSAS and
the traditional management are similar, despite of MbDSAS
install scripts, discover SObjs and reconfiguring the MLM two
hundred times. Both of then have their higher CPU utilization
near two hours and their lower use at the beginning and
ending of the experiment (0 and 240 minutes). This behavior
is explained by the airport modeled scenario, where at the
beginning SObjs are arriving and becoming managed, near
two hours the maximum number of SObjs being managed is

achieved, and till the end every SObjs are departing and their
management is deleted or wait in background.

Almost all the confidence intervals of MbDSAS and the tra-
ditional management intercept each other, therefore, they are
similar and cannot be compared in terms of CPU utilization.
However, this is good for MbDSAS because indicates that
even with new features, management delegation and SObjs
awareness, the MLM is not particularly influenced in CPU
utilization more or less then the expected of a traditional
management solution, answering partially the fifth question
of Section V.

F. MbDSAS memory utilization

0
20

40
60

80
10

0

T im e (m)

M
em

or
y

U
til

iz
at

io
n

(%
)

MbDSAS
Traditional Management

0 20 40 60 80 100 120 140 160 180 200 220 240

Figure 8. Memory utilization of MbDSAS (OSGi-ROA)

Similar to the CPU utilization MbDSAS and the traditional
management was used to manage the airport modeled sce-
nario and during this experiment we measured their memory
utilization as can be seen in Figure 8. Such measurement is
presented in averages in percents by the vertical axis being
represented by lines. In the horizontal axis, the current spent
time is expressed by minutes and highlighted about each ten
minutes. The confidence interval is shown accordingly with
this highlights.

As can be seen in Figure 8, MbDSAS and the traditional
management behave similar at the beginning of the experi-
ment using the available memory and reaching the maximum
available near tow hours of experiment. However, different
from the CPU utilization, the memory used by MbDSAS
drops drastically near the end of the experiment. This drop of
memory utilization is related to the departure of SObjs that,
when detected by the TLM, the management script responsible
by the management of this departed SObjs is stopped and after
removed. Therefore, the memory of the MLM is freed and the
resource is better used by MbDSAS.

Almost all the confidence interval of MbDSAS and the
traditional management measurement intercept each other near
the beginning indicating that they are similar. However, with
the changing of behavior of MbDSAS near the ending, the
confidence interval of the measures stop to intercept each other
and allow to determine that MbDSAS uses better the memory
than a traditional management. Answering the forth question
created at Section V, MbDSAS uses better the resources of a
MLM than a traditional management.

VII. CONCLUSION & FUTURE WORK

In this paper, we presented Management by Delegation
(MbD) concepts in the IoT with the goal of managing SObjs.
We used these concepts to propose MbDSAS, an architecture
for gateway reconfiguration through an MbD Solution, i.e., the
Script MIB or OSGi. Such reconfiguration is carried out by
developed scripts that, when executed, perform the manage-
ment of SObjs. These scripts are sent by management stations
to gateways close to SObjs. Such gateways are reconfigured
to manage SObjs, performing part of the management of an
entire network in a distributed way.

MbDSAS also includes a MD list builder component that
is in charge of adding SObjs awareness to gateways. Such
awareness is provided by SObjs entries in a MDL created
by the MD list builder. This MDL, which is not found in
traditional MbD solutions, is key to manage dynamic IoT
scenarios. As such, we combine the MD list builder with a
MbD solution to expose services to external managers. That
allows managers to be aware of what kinds of objects are
available in gateways and which scripts may be delegated to
manage them. As a result, MbDSAS can be used to manage
dynamic IoT scenarios.

We conducted an experimental evaluation to observe most
appropriate access methods and MbD solutions to be used
with MbDSAS. Results showed that MbDSAS implemented
through the ROA access architecture performs better in terms
of response time and network traffic. We also observed that the
combination of ROA and OSGi results in less variation of the
response time when services are accessed. The combination of
ROA and the Script MIB, however, presented better response
times in MbDSAS.

The performance of MbDSAS as an IoT management
approach was also experimented through a modeled airport
scenario. In such a scenario, we compared the management
delay, CPU utilization, and memory utilization of MbDSAS
against a traditional management system, i.e., a management
station that has all necessarily software to manage every SObjs
present at an airport scenario. Results shown that MbDSAS
has a small management delay compared to the traditional
management. Afterwards, we showed that the CPU utilization
of both approaches are very similar. However, during its
execution, MbDSAS continuously freed memory resource for
other processes to execute, proving its superiority in saving
resource compared to a traditional management. In summary,
MbDSAS added reconfiguration features to a management
station without great overheads to manage SObjs, showing to
be qualified to manage real IoT scenarios. In addition, MbD-
SAS behave better in an dynamic scenario than a traditional
management system.

As a future work, we will investigate the use of MbDSAS
in Mashups systems [19]. We believe that in Mashups, the
delegation of scripts and the access of MDLs can assist
managers to develop complex network management system
to dynamic scenarios of IoT.

REFERENCES

[1] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé, “Vision and
challenges for realising the internet of things,” Cluster of European
Research Projects on the Internet of Things, European Commision, 2010.

[2] O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker,
A. Bassi, I. Jubert, M. Mazura, M. Harrison, M. Eisenhauer10 et al.,
“Internet of things strategic research roadmap,” Aerospace Technologies
and Applications for Dual Use, p. 9, 2008.

[3] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture
for the web of things,” in Internet of Things (IOT), 2010. IEEE, 2010,
pp. 1–8.

[4] K. Gama, L. Touseau, and D. Donsez, “Combining heterogeneous
service technologies for building an internet of things middleware,”
Computer Communications, vol. 35, no. 4, pp. 405 – 417, 2012.

[5] H. Viswanathan, B. Chen, and D. Pompili, “Research challenges in
computation, communication, and context awareness for ubiquitous
healthcare,” Communications Magazine, IEEE, vol. 50, no. 5, pp. 92
–99, may 2012.

[6] J. Rellermeyer, M. Duller, K. Gilmer, D. Maragkos, D. Papageorgiou,
and G. Alonso, “The software fabric for the internet of things,” in
Proceedings of the 1st international conference on The internet of things.
Springer-Verlag, 2008, pp. 87–104.

[7] D. Levi and J. Schoenwaelder, “Definitions of managed objects for
the delegation of management scripts - rfc3165,” RFCs and Standards,
IETF, 2001.

[8] OSGi Alliance, “Osgi - the dynamic module system for java,” http://
www.osgi.org/Main/HomePage, 2012, [ONLINE. Last access at august,
22].

[9] G. Goldszmidt, Y. Yemini, and S. Yemini, “Network management by
delegation: the mad approach,” in CASCON First Decade High Impact
Papers, ser. CASCON ’10. New York, NY, USA: ACM, 2010, pp.
78–92.

[10] J. Schonwalder, J. Quittek, and C. Kappler, “Building distributed
management applications with the ietf script mib,” Selected Areas in
Communications, IEEE Journal on, vol. 18, no. 5, pp. 702–714, may
2000.

[11] J.-P. Martin-Flatin, S. Znaty, and J.-P. Hubaux, “A survey of distributed
enterprise network and systems management paradigms,” Journal of
Network and Systems Management, vol. 7, no. 1, pp. 9–26, 1999.

[12] L. Z. Granville, R. Neisse, R. L. Vianna, and T. Fioreze, Handbook
of Research on Telecommunications Planning and Management for
Business, I. Lee, Ed. IGI Global, Mar. 2009.

[13] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,
H. Nielsen, S. Thatte, and D. Winer, “Simple object access protocol
(SOAP) 1.1,” 2000.

[14] R. Fielding and R. Taylor, “Principled design of the modern web
architecture,” ACM Transactions on Internet Technology (TOIT), vol. 2,
no. 2, pp. 115–150, 2002.

[15] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services
vs. ”big”’ web services: making the right architectural decision,” in
Proceeding of the 17th international conference on World Wide Web,
ser. WWW ’08. New York, NY, USA: ACM, 2008, pp. 805–814.

[16] Y. Park and S. B. Ahn, “Optimal assignment for check-in counters based
on passenger arrival behaviour at an airport,” Transportation Planning
and Technology, vol. 26, no. 5, pp. 397–416, 2003.

[17] S. Solak, J.-P. B. Clarke, and E. L. Johnson, “Airport terminal capacity
planning,” Transportation Research Part B: Methodological, vol. 43,
no. 6, pp. 659–676, 2009.

[18] J. A. Wickboldt, L. Z. Granville, F. Schneider, D. Dudkowski, and
M. Brunner, “A new approach to the design of flexible cloud man-
agement platforms,” in 8th International Conference on Network and
Service Management (CNSM), Las Vegas, USA, October 2012, pp. 155–
158.

[19] C. R. P. dos Santos, R. Bezerra, J. Ceron, L. Z. Granville, and L. M. R.
Tarouco, “On using mashups for composing network management
applications,” Communications Magazine, IEEE, vol. 48, no. 12, pp.
112 –122, december 2010.

