Mostrar registro simples

dc.contributor.authorMoura, Karina de Oliveira Alves dept_BR
dc.contributor.authorBalbinot, Alexandrept_BR
dc.date.accessioned2018-06-02T03:15:28Zpt_BR
dc.date.issued2018pt_BR
dc.identifier.issn1424-8220pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/179077pt_BR
dc.description.abstractA few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior.en
dc.format.mimetypeapplication/pdf
dc.language.isoengpt_BR
dc.relation.ispartofSensors [recurso eletrônico]. [Basel, Switzerland]. vol. 18, no. 5 (May 2018), article 1388, 20 p.pt_BR
dc.rightsOpen Accessen
dc.subjectBioengenhariapt_BR
dc.subjectBiomedical signal modellingen
dc.subjectVirtual sensoren
dc.subjectProcessamento de sinaispt_BR
dc.subjectCross-correlationen
dc.subjectSelf-recoveryen
dc.subjectFault-tolerant sensoren
dc.subjectSignal disturbanceen
dc.titleVirtual sensor of surface electromyography in a new extensive fault-tolerant classification systempt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001068454pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples