EFEITOS FÍSICOS NA TÉCNICA DE ELETROFORESE CAPILAR*

Júlio Ricardo Schoffen

Dissertação elaborada sob a orientação do Prof. Hans Peter Grieneisen (IF) e do Prof. Tarso B. L. Kist (IB), em preenchimento parcial dos requisitos para a obtenção do título de Mestre em Física.

* Trabalho parcialmente financiado pelo CNPq.
Eu dedico esta dissertação a meus pais, Jurandira e Roque.
AGRADECIMENTOS

A Deus, sempre em primeiro lugar.

À minha família, pela compreensão, pelo auxílio e pelo incentivo.

Ao Prof. Hans Peter e ao Prof. Tarso, pela orientação e pela compreensão.

Ao Sandro, pelo grande auxílio e pelas excelentes discussões.

Ao Prof. Leonardo e ao Cássio, pelo auxílio com a parte de programação.

A todos os colegas do Laboratório de Laser e Óptica.
“In the future biophysics and interfaces into the life sciences will become particularly important. There will be a high demand for mathematically literate physicists of all kinds, and especially for those who understand biochemistry and microbiology.”

Robert G. W. Brown
SUMÁRIO

RESUMO ... vi

ABSTRACT ... vii

INTRODUÇÃO .. 1

1 ASPECTOS FÍSICOS DA ELETROFORESE CAPILAR 5
 1.1 Fluxo Eletroosmótico ... 5
 1.2 Mobilidade Eletroforética ... 10
 1.3 Equação da Continuidade ... 11

2 ANÁLISE TEÓRICA: USO DE PROPAGADORES 17

3 COMPRESSÃO TÉRMICA DE BANDAS 23
 3.1 Modelos .. 24
 3.2 Alterações Através da Viscosidade e do pH 33

4 COMPRESSÃO ÓPTICA DE BANDAS 38
 4.1 Experimentos ... 40
 4.2 Modelo ... 43

CONCLUSÃO .. 48

REFERÊNCIAS ... 51

APÊNDICE ... 55
RESUMO

A eletroforese capilar é uma técnica largamente empregada em Química Analítica e em Bioquímica. Ela tem provado ser rápida e versátil; suas principais vantagens, em relação a outras técnicas analíticas, são a grande resolução e o pequeno volume de amostra necessário. Nosso principal objetivo, neste trabalho, é incluir efeitos físicos que nos permitam influenciar a migração em eletroforese capilar de maneira que atinjamos compressão da banda da amostra injetada. Em particular, consideraremos as mudanças globais nas mobilidades e na forma da banda causadas ou por efeitos de temperatura, ou por efeitos fotoquímicos específicos induzidos por luz laser. Após uma breve revisão sobre a técnica convencional, apresentaremos um estudo dos seus aspectos físicos e desenvolveremos sua formulação matemática usando propagadores. Prediremos compressão térmica, ou seja, estreitamento da banda do analito após sua passagem por uma região com um gradiente de temperatura, e apresentaremos soluções numéricas. Discutiremos, também, a compressão óptica de bandas e apresentaremos resultados experimentais obtidos, pela primeira vez, por nosso grupo, os quais corroboram a teoria. Por fim, listaremos algumas perspectivas de continuidade do trabalho.

Palavras-chave: eletroforese capilar; efeitos físicos; compressão de bandas.
Capillary electrophoresis is a widely employed technique in Analytical Chemistry and Biochemistry. It has proved to be fast and versatile; its main advantages, with respect to other analytical techniques, are the high resolution and small volume of sample required. Our main goal in this work is including physical effects which allow us to influence migration in capillary electrophoresis in such a way that we achieve band compression of the injected sample. In particular, we shall consider the overall changes on mobilities and on band shape caused either by temperature effects or by specific photochemical effects induced by laser light. After a brief review of the conventional technique, we shall present a study of its physical aspects and develop its mathematical formulation using propagators. We shall predict thermal compression, i.e., sharpening of the analyte band after its passage through a region with a temperature gradient, and present numerical solutions. We shall also discuss the optical compression of bands and present experimental results obtained, for the first time, by our group, which corroborate the theory. Concluding, we shall present some perspectives for the continuation of this work.

Keywords: capillary electrophoresis; physical effects; band compression.
INTRODUÇÃO

O texto da epígrafe, extraído de um recente artigo [1] do *International Editorial Director* do *Institute of Physics* (IOP), Bristol, Reino Unido, fala sobre os novos rumos da Física. Incluímos tal texto por entender que este trabalho se enquadra muito bem na perspectiva apresentada.

A eletroforese capilar é uma técnica largamente empregada em Química Analítica e em Bioquímica [2–4]. Ela tem provado ser rápida e versátil, combinando simplicidade com alta resolução. Em seus vários modos de operação, pode ser utilizada para analisar uma grande variedade de espécies carregadas e neutras, cujas dimensões variam entre as de pequenos analitos, tais como íons metálicos e álcoois de baixo peso molecular, e as de grandes moléculas, oligossacarídeos, proteínas e ácidos nucleicos. Suas principais vantagens, em relação a outras técnicas analíticas, como a cromatografia, são a grande resolução e o pequeno volume de amostra necessário (de picolitros a nanolitros). Entre seus modos de operação mais comuns estão [3, 5] a eletroforese capilar de zona (CZE), a cromatografia eletrocinética micelar (MEKC) ou cromatografia capilar eletrocinética
micelar (MECC), a eletroforese capilar em gel (CGE), a focalização isoelétrica capilar (CIEF) e a isotacoforese capilar (CITP). Cabe salientar que, ao contrário do que ocorre com outras técnicas de separação, mudar de um modo de eletroforese capilar para outro é frequentemente simples e só envolve uma mudança de solução-tampão. A revista *Analytical Chemistry* tem publicado, bianualmente, artigos de revisão sobre a técnica (ver, p. ex., [6–9]).

As equações do fluxo eletroosmótico em tubos de material dielétrico foram estabelecidas no início do século XX, principalmente por Smoluchowski [3, 10]. Os estudos sobre eletroforese de proteínas iniciaram-se alguns anos mais tarde, liderados por Tiselius [5]. Hjertén, no final dos anos sessenta, foi o primeiro a perceber a melhora da separação com a redução do diâmetro do tubo [5]. Entretanto, coube a Jorgenson e Lukacs dar um grande impulso à área, cerca de vinte anos atrás, com dois artigos [11, 12] que se tornaram clássicos. Estes pesquisadores conseguiram resolver os problemas de injeção e detecção em tubos de diâmetros ainda menores que os dos tubos empregados por Hjertén. Tais artigos chamaram a atenção de cientistas de várias áreas — químicos, biólogos e físicos — e foram o início de uma época de rápido crescimento do número de publicações e revisões sobre eletroforese capilar. A introdução de instrumentação comercial, a partir do final de 1988, também aumentou a velocidade de desenvolvimento e aplicação dessa técnica. Para ilustrar, apresentaremos dados recentes: segundo Krylov e Dovichi [9], somente nos anos de 1998 e 1999 foram publicados mais de 2500 artigos e mais de 200 artigos de revisão sobre a técnica.

Do que relatamos no parágrafo anterior, pode parecer que a área já se encontra saturada, sem perspectivas de participação para os físicos. No entanto,
os diversos tipos de eletroforese, entre eles a capilar, interessam-nos cada vez mais: basta ver que foi recentemente publicado, numa revista de Física de grande impacto, um artigo de J.-L. Viovy [13]. D. Long, que trabalhou com Viovy, foi um dos responsáveis pelo entendimento da eletroforese em nível molecular [14–17]. Além disso, há muitos anos G. W. Slater, um físico teórico, trabalha com modelos de eletroforese de DNA em gel, sendo que, atualmente, também está estudando a eletroforese em capilares e em microcanais.

Percebemos, então, que realmente há perspectivas de trabalho para os físicos: o entendimento dos mecanismos microscópicos ainda carece de resultados experimentais, e o consequente desenvolvimento de variantes da técnica e de novos dispositivos é também um campo a explorar. Nosso laboratório foi pioneiro na contribuição de físicos à eletroforese capilar no Brasil, através do trabalho de T. B. L. Kist [18, 19], durante o seu mestrado, em 1992 e 1993.

O interesse na compreensão dos fenômenos básicos associados à eletromigração deve aumentar com o crescimento do uso de um tipo de eletroforese que possui estreita ligação com a capilar: a eletroforese em microcanais, nos chamados µTAS (microscale total analysis systems) ou lab-on-a-chip devices [20, 21]. Nesses casos, é preciso entender o comportamento das bandas (ou zonas) em situações menos convencionais, em que o campo elétrico não é uniforme [22], por exemplo. Finalmente, os físicos podem contribuir para o desenvolvimento de sistemas de detecção, com seus conhecimentos de Óptica Não Linear (começa-se a usar detecção por fluorescência de dois ou mais fótons em eletroforese capilar [23]).

Do que foi dito antes, percebemos que estamos na fronteira entre três ciências: Física, Química e Biologia. Este é um trabalho de Ciência da Separação.
Iniciaremos com um capítulo sobre a teoria básica da eletroforese capilar, enfatizando os aspectos físicos. No Capítulo 2, daremos um tratamento matemático elegante, com propagadores, ao problema. No Capítulo 3, apresentaremos modelos de perfil de velocidade e resultados numéricos originais. Além disso, discutiremos a viabilidade da compressão com o uso de gradientes térmicos. Por fim, no Capítulo 4, estudaremos a compressão óptica, mostrando os resultados de alguns experimentos.

Um último detalhe: empregaremos, neste trabalho, a palavra “eletroforegrama”, consagrada no meio, para designar os gráficos de concentração versus tempo obtidos. Desconhecemos a sua origem e reconhecemos que, talvez, fosse melhor utilizar “eletroforegrama” ou “eletroforograma”.
1 ASPECTOS FÍSICOS DA ELETROFORESE CAPILAR

1.1 Fluxo Eletroosmótico

Conforme mencionamos na Introdução, o fluxo eletroosmótico já é conhecido há um bom tempo; a sua compreensão é importante sob vários aspectos. Nesta seção, seguiremos a abordagem de Rice e Whitehead [10], os quais afirmam que seu trabalho tem caráter mais geral que o de Smoluchowski. Iniciaremos utilizando o modelo de Gouy e Chapman para uma interface líquido-dielétrico. Esse modelo é muito similar ao modelo de Debye e Hückel para a atmosfera iônica, com o íon central único substituído por um dielétrico plano e infinito [25]. Assim, a única coordenada relevante de um ponto é a distância \(x \) entre ele e a interface. Supomos que o eletrólito é simétrico, do tipo \(M^+ZX^- \) (p. ex., para \(Z = 1, \text{Na}^+\text{Cl}^- \); para \(Z = 2, \text{Mg}^{2+}\text{SO}_4^{2-} \)). Dessa forma, utilizando a distribuição estatística de Boltzmann, temos, para o número de íons positivos por unidade de volume,

\[
n_+ = n_0 \exp\left(\frac{-Ze\Phi}{k_BT}\right)
\]

\[\text{(1.1)}\]

\[\text{[1] Alguns autores preferem denominá-lo \textit{fluxo eletroendoosmótico} [3, 24].}\]
e, para o número de íons negativos por unidade de volume,

\[n_− = n_0 \exp\left(\frac{ZeΦ}{k_BT}\right), \quad (1.2) \]

onde \(n_0 \) é o valor de \(n_+ \) ou de \(n_- \) em pontos muito distantes da interface (nos quais \(n_+ = n_- \)), \(e \) = 1,60 \times 10^{-19} \) C é o módulo da carga do elétron, \(Φ \) é o potencial elétrico, \(k_B = 1,38 \times 10^{-23} \) J/K é a constante de Boltzmann e \(T \) é a temperatura. Obtemos a densidade de carga elétrica livre através de

\[ρ = Zen_+ − Zen_− = −2Zen_0 \text{senh} \left(\frac{ZeΦ}{k_BT}\right). \quad (1.3) \]

Conhecendo a densidade de carga, podemos determinar o potencial através da equação de Poisson [26]:

\[\nabla^2 Φ = -\frac{ρ}{ε}, \quad (1.4) \]

onde \(ε \) é a permissividade elétrica do meio em que se encontram as cargas livres (aqui, o meio é a água). No caso unidimensional, isso se simplifica:

\[\frac{d^2 Φ}{dx^2} = -\frac{ρ}{ε}. \quad (1.5) \]

Substituindo \(ρ \) pelo lado direito da Equação (1.3), chegamos à chamada equação de Poisson e Boltzmann, amplamente discutida na literatura de Físico-Química (ver, p. ex., [27]):

\[\frac{d^2 Φ}{dx^2} = \frac{2Zen_0}{ε} \text{senh} \left(\frac{ZeΦ}{k_BT}\right). \quad (1.6) \]

A solução da Equação (1.6) é [27]

\[Φ(x) = \frac{2k_BT}{Ze} \ln \left[\frac{1 + γ \exp(−κx)}{1 − γ \exp(−κx)}\right], \quad (1.7) \]

onde

\[γ = \tanh \frac{ZeΦ_0}{4k_BT}. \quad (1.8) \]
e

\[\kappa = \sqrt{\frac{2Z^2e^2n_0}{\epsilon k_B T}}. \]

(1.9)

O inverso da constante \(\kappa \) é denominado espessura da dupla camada elétrica ou comprimento de Debye.\(^2\)

Agora, passemos a um caso de simetria cilíndrica: um capilar de sílica, de raio interno \(a \). Esse material possui, em sua superfície, grupos silanol (ver Figura 1.1), cada qual pode perder um próton. Portanto, em contato com uma solução aquosa, a parede interna do capilar torna-se negativamente carregada, donde concluímos que o potencial elétrico próximo à parede é menor que zero.

Da Equação (1.3), temos

\[\rho(r) = -2Ze_n\frac{\Phi(r)}{k_B T}, \]

(1.10)

onde \(r \) é a coordenada radial.\(^3\)

Figura 1.1: Grupo silanol. Em contato com uma solução aquosa, cada grupo silanol da parede do capilar pode perder um próton, tornando-se negativamente carregado.

Antes de prosseguir, supomos que, no centro do capilar, o potencial é praticamente nulo. Além disso, usaremos a aproximação de potenciais pequenos,

\(^2\) O modelo de dupla camada não é tão estranho à Física: além de ser utilizado pela Física-Química de eletrólitos, de interfaces e de membranas celulares, ele é empregado pela Física de Plasmas [28].

\(^3\) Note que \(r = a \) corresponde a \(x = 0 \).
ou seja,

\[
\frac{Ze \Phi(r)}{k_B T} < 1, \quad (1.11)
\]

recaíndo na equação do modelo de Debye e Hückel. Para \(Z = 1 \) e temperatura ambiente, por exemplo, a condição anterior significa que \(\Phi(r) \) tem de ser menor que 25 mV.

Utilizando a expressão do laplaciano em coordenadas cilíndricas, temos

\[
\frac{1}{r} \frac{d}{dr} \left(r \frac{d \Phi}{dr} \right) = \kappa^2 \Phi. \quad (1.12)
\]

A solução da Equação (1.12) é expressa em termos de \(I_0 \), a chamada função de Bessel modificada de primeira espécie e de ordem zero:

\[
\Phi(r) = \Phi_0 \frac{I_0(\kappa r)}{I_0(\kappa a)}, \quad (1.13)
\]

onde \(\Phi_0 \) é o potencial na parede interna do capilar.

Na presença de um campo elétrico externo \(\mathbf{E} = E_z \mathbf{e}_z \) e de um gradiente de pressão \(\nabla p = \left(\frac{dp}{dz} \right) \mathbf{e}_z \) no capilar, a equação de Navier e Stokes, que descreve o comportamento de um fluido viscoso, torna-se [10]

\[
\frac{d^2 v_z}{dr^2} + \frac{1}{r} \frac{dv_z}{dr} = -\frac{P_z}{\eta} - \frac{E_z}{\eta} \rho(r), \quad (1.14)
\]

onde \(v_z \) é a componente \(z \) da velocidade de um elemento de fluido que se encontra a uma distância \(r \) do centro do capilar, \(P_z = -\frac{dp}{dz} \) e \(\eta \) é a viscosidade da solução. Supondo que \(v_z(r) \) é finita para todo \(r \), que

\[
v_z(r = a) = 0 \quad (1.15)
\]

e que

\[
\frac{dv_z}{dr} (r = 0) = 0, \quad (1.16)
\]
podemos resolver a Equação (1.14), obtendo

\[v_z(r) = \frac{P_z}{4\eta} (a^2 - r^2) - \frac{e\Phi_0 E_z}{\eta} \left[1 - \frac{I_0(\kappa r)}{I_0(\kappa a)} \right]. \] (1.17)

O primeiro termo está associado ao fluxo de Poiseuille, e o segundo está associado ao efeito electrocinético. Na Figura 1.2, mostramos gráficos para três casos: \(P_z \) negativo, \(P_z \) nulo e \(P_z \) positivo. Em cada um deles, exibimos curvas para diversos valores de \(\kappa a \). Para \(P_z = 0 \) e \(\kappa a \gg 1 \), temos\(^4\) um perfil de velocidade constante em praticamente toda a secção reta do capilar:

\[v_z = \mu_{eo} E_z, \] (1.18)

sendo que definimos a *mobilidade eletroosmótica* da solução através de

\[\mu_{eo} = -\frac{e\Phi_0}{\eta}. \] (1.19)

O sinal negativo não significa que a velocidade tenha sentido oposto ao do campo elétrico: como dissemos anteriormente, o potencial da parede de sílica é menor que zero.

Antes de passar para a próxima seção, faremos uma ressalva: a suposição expressa pela Equação (1.15), na prática, é apenas aproximadamente válida, pois existe uma fina camada de íons imóveis junto à parede do capilar. Sendo \(\delta \) a espessura dessa camada, temos

\[v_z(a - \delta) = 0. \] (1.20)

Definindo o potencial em \(r = a - \delta \) através de

\[\zeta = \Phi(a - \delta), \] (1.21)

\(^4\) Em experimentos, \(\kappa a \) é da ordem de \(10^3 \).
1 ASPECTOS FÍSICOS DA ELETROFORESE CAPILAR

Figura 1.2: Gráficos da velocidade como função da coordenada radial para três tipos de gradiente de pressão.

Podemos reescrever algumas das equações anteriores, tendo como resultado, para a mobilidade eletroosmótica,

\[
\mu_{eo} = -\frac{\varepsilon \zeta}{\eta}.
\]

(1.22)

Esta equação é conhecida como equação de Smoluchowski.

1.2 Mobilidade Eletroforética

Seguiremos, nesta seção, a abordagem de Grossman [29]. Suponhamos que, no interior de um capilar, dispersos em uma solução-tampão, existam íons de uma amostra a ser analisada. A força exercida sobre um desses íons, de carga elétrica \(q \), que se move ao longo do eixo \(z \), é \(F_z = qE_z - \xi v_z \), onde \(\xi \) é o coeficiente de arrasto e \(v_z \) é a velocidade do íon em relação à solução-tampão. Da segunda lei de Newton,

\[
m\dot{v}_z = F_z,
\]

(1.23)
onde \(m \) é a massa do íon.

No regime estacionário, a velocidade é constante no tempo, sendo denominada *velocidade limite* ou *velocidade de deriva* [25]. Assim,

\[
v_z = \frac{qE_z}{\xi}.
\]

(1.24)

Em eletroforese capilar, o íon entra no regime estacionário muito rapidamente. Então, definamos a *mobilidade eletroforética* do íon através da equação \([3, 25, 29]\)

\[
\mu_{ef} = \frac{q}{6\pi \eta R},
\]

(1.25)

pois \(\xi = 6\pi \eta R \) é o coeficiente de arrasto de uma esfera de raio \(R \). É importante destacar que \(q \) é a soma algébrica da carga do íon e da carga da dupla camada elétrica que se forma ao seu redor e que \(R \) é a soma do raio do íon e da espessura da dupla camada elétrica (*raio hidrodinâmico*). Note que, para íons de forma mais complexa, não podemos fazer a aproximação esférica. Além disso, devemos considerar a deformação do íon durante a migração [14–17].

1.3 Equação da Continuidade

Nesta seção, derivaremos as equações básicas para descrever a evolução temporal das bandas em um capilar. Em nosso modelo, desprezaremos os efeitos da curvatura do capilar, bem como os efeitos das suas extremidades, sobre a migração das moléculas. Desta forma, será conveniente usar coordenadas cilíndricas: \(r, \phi, \) e \(z \).

Inicialmente, ressaltamos que, apesar de a amostra estar muito diluída, a densidade de moléculas ainda é tão grande que podemos tratar a concentração molar como uma função contínua. Suponhamos que a amostra contenha moléculas
de apenas um tipo. Como a velocidade, para \(P_z = 0 \) e \(\kappa a \gg 1 \) (ver Seção 1.1), a concentração, agora, independe das coordenadas \(r \) e \(\phi \). Ela se relaciona com o número de móis, que é uma constante, através de

\[
N = \pi a^2 \int_{-\infty}^{\infty} dz \, C(z, t),
\]

onde \(a \) é o raio interno do capilar.

Definamos \(J \) como a densidade de corrente (ou fluxo) de moléculas, isto é, o número de móis de moléculas que atravessam uma superfície por unidade de área e por unidade de tempo. Se a migração das moléculas, em um meio isotrópico e homogêneo como o que estamos considerando, fosse devida apenas à difusão, a *primeira lei de Fick* relacionaria \(J \) com a concentração molar da seguinte forma [25]:

\[
J = -D \nabla C,
\]

onde \(D \) é uma constante, denominada *coeficiente de difusão*.

Podemos substituir a expressão anterior na *equação da continuidade*,

\[
\partial_t C + \nabla \cdot J = 0,
\]

obtendo

\[
\partial_t C - D \partial_z^2 C = 0
\]

ou

\[
\partial_t C = D \partial_z^2 C.
\]

Esta é a *equação da difusão*, em seu formato mais simples; ela também é conhecida como *segunda lei de Fick* [25].

5 Fick chegou a esse resultado através de uma analogia com a suposição feita por Fourier na teoria da condução do calor [30].

6 Esta equação é uma consequência da conservação do número de móis.
Em eletroforese capilar, o fluxo de moléculas não se deve somente à difusão: precisamos, também, levar em conta o fluxo devida às velocidades eletroosmótica (v_{eo}) e eletroforética (v_{ef}). Por isso, a Equação (1.27) tem de ser modificada. Ignoremos, por um momento, a difusão; a densidade de corrente é

$$ J = C \mathbf{v}, \quad (1.31) $$

onde $\mathbf{v} = v_{eo} + v_{ef}$ é a velocidade aparente das moléculas da amostra, ou seja, a velocidade das mesmas em relação ao capilar. Este J é chamado de fluxo convectivo. Voltemos, agora, a considerar a difusão; a densidade de corrente resultante é a soma dos termos correspondentes a cada um dos processos:

$$ J = -D \nabla C + C \mathbf{v}. \quad (1.32) $$

Novamente, utilizaremos a equação da continuidade para chegar a uma equação diferencial envolvendo apenas a função C. Todavia, é conveniente calcular em separado a divergência do fluxo. Empregando fórmulas do cálculo vetorial, temos

$$ \nabla \cdot J = -D \nabla^2 C + (\nabla C) \cdot \mathbf{v} + C \nabla \cdot \mathbf{v}. \quad (1.33) $$

Lembrando que $\mathbf{v} = v_z \mathbf{e}_z$ e que tanto C quanto v_z independem das coordenadas r e ϕ, tal equação reduz-se a

$$ \nabla \cdot J = -D \frac{\partial^2 C}{\partial z^2} + (\frac{\partial C}{\partial z}) v_z + C \frac{\partial v_z}{\partial z}. \quad (1.34) $$

Finalmente, a Equação (1.28) torna-se

$$ \frac{\partial}{\partial t} C - D \frac{\partial^2 C}{\partial z^2} + v_z \frac{\partial C}{\partial z} + (\frac{\partial v_z}{\partial z}) C = 0. \quad (1.35) $$

Esta equação, denominada equação da difusão generalizada, é a equivalente à segunda lei de Fick.
Precisamos, agora, fazer outra generalização: incluir a possibilidade de a amostra conter mais de um analito. Na grande maioria dos experimentos de eletroforese capilar, essa é a situação que encontramos. Sendo a amostra bem diluída, a interferência de um componente na migração de outro é desprezível, isto é, a velocidade de cada componente é praticamente a mesma que ele teria se estivesse sozinho. Exigindo, ainda, que o número de móis de cada componente seja constante, obtemos \(n \) cópias da Equação (1.35), onde \(n \) é o número de analitos presentes na amostra. Para ilustrar, digamos que nossa amostra possua dois componentes. Então, isolando a taxa de variação temporal de \(C \) na Equação (1.35) e usando o que acabamos de afirmar, obtemos

\[
\begin{align*}
\partial_t C_1 &= D_1 \partial_z^2 C_1 - v_{1z} \partial_z C_1 - (\partial_z v_{1z}) C_1 \\
\partial_t C_2 &= D_2 \partial_z^2 C_2 - v_{2z} \partial_z C_2 - (\partial_z v_{2z}) C_2.
\end{align*}
\]

(1.36)

(1.37)

Como última generalização, incluamos a possibilidade de ocorrer transformações entre componentes da amostra. Assim sendo, não podemos mais exigir que o número de móis de cada componente permaneça inalterado. Exijamos, apenas, que o número total de móis \((N) \) seja constante. Esse é um sistema de reação e difusão [31].

Voltando ao exemplo de dois componentes, digamos que a transformação do componente 1 no componente 2 seja caracterizada por uma taxa temporal \(f(C_1, C_2) \). Isso significa que, se deixássemos de lado os processos de difusão e de convecção, teríamos

\[
\begin{align*}
\partial_t C_1 &= -f(C_1, C_2) \\
\partial_t C_2 &= f(C_1, C_2).
\end{align*}
\]

(1.38)

(1.39)
Somando essas taxas temporais às taxas devida à difusão e à convecção (Equações (1.36) e (1.37)), chegamos a

\[
\begin{align*}
\frac{\partial C_1}{\partial t} &= D_1 \frac{\partial^2 C_1}{\partial z^2} - v_{1z} \frac{\partial C_1}{\partial z} - (\partial_z v_{1z}) C_1 - f(C_1, C_2) \quad (1.40) \\
\frac{\partial C_2}{\partial t} &= D_2 \frac{\partial^2 C_2}{\partial z^2} - v_{2z} \frac{\partial C_2}{\partial z} - (\partial_z v_{2z}) C_2 + f(C_1, C_2). \quad (1.41)
\end{align*}
\]

Podemos, a princípio, encontrar as concentrações como funções da posição e do tempo através da resolução (analítica ou numérica) dessas equações.

Um problema que enfrentamos, na prática, é a falta de informação sobre a taxa \(f(C_1, C_2) \). Isso nos leva a adotar uma abordagem que, para o entendimento qualitativo do sistema, é mais conveniente. Suponhamos que os coeficientes de difusão sejam aproximadamente iguais, isto é, \(D_2 \approx D_1 \). Então, definindo \(C = C_1 + C_2 \), \(D = D_1 \) e somando ambos os lados das Equações (1.40) e (1.41), conseguimos eliminar os termos contendo \(f(C_1, C_2) \):

\[
\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial z^2} - \frac{\partial}{\partial z} (v_{1z} C_1 + v_{2z} C_2). \quad (1.42)
\]

Cada velocidade aparente é a soma de uma velocidade eletroforética (\(\mu_{ef,1} E_z \) ou \(\mu_{ef,2} E_z \)) e da velocidade eletroosmótica (\(v_{eo,z} \)). Por isso,

\[
v_{1z} C_1 + v_{2z} C_2 = \mu_{ef,1} E_z C_1 + \mu_{ef,2} E_z C_2 + v_{eo,z} C. \quad (1.43)
\]

Definindo uma \textit{mobilidade eletroforética efetiva} (\(\mu_{efet} \)), de forma que

\[
\mu_{efet} E_z C = \mu_{ef,1} E_z C_1 + \mu_{ef,2} E_z C_2, \quad (1.44)
\]

e definindo \(v_z \) através da equação

\[
v_z = \mu_{efet} E_z + v_{eo,z}, \quad (1.45)
\]
temos
\[\partial_t C = D \partial_z^2 C - \partial_z (v_z C). \] (1.46)

Note que a Equação (1.46) se encontra no formato da Equação (1.35). Isso significa que a migração da amostra considerada, que possui dois componentes, é equivalente à migração de uma amostra que possua apenas um componente, com mobilidade eletrosmótica igual, mas com mobilidade eletroforética
\[\mu_{ef} = \frac{\mu_{ef,1} C_1 + \mu_{ef,2} C_2}{C}. \] (1.47)

É importante ressaltar que, em geral, a mobilidade efetiva depende das variáveis \(z \) e \(t \).

A partir deste ponto, substituiremos a variável \(z \) por \(x \), para entrar em conformidade com a maior parte da literatura especializada, evitando, assim, ambigüidades: o \(z \) minúsculo, muitas vezes, representa números de valência de íons.
2 ANÁLISE TEÓRICA: USO DE PROPAGADORES

A equação da difusão generalizada (Equação (1.35)) é do tipo

\[\partial_t C(x, t) = \mathcal{L}(x, t) C(x, t), \] \hspace{1cm} (2.1)

onde o operador diferencial \(\mathcal{L}(x, t) \) é um polinômio em \(\partial_x \), com coeficientes que variam com a posição e com o tempo. Para equações como essa, podemos definir um *operador de evolução temporal* [32] tal, que

\[C(x, t) = \mathcal{U}(t, t_0) C(x, t_0). \] \hspace{1cm} (2.2)

\(\mathcal{U}(t, t_0) \) é um operador integral que satisfaz

\[\mathcal{U}(t, t_0) C(x, t_0) = \int_{-\infty}^{\infty} dx_0 G(x, t; x_0, t_0) C(x_0, t_0). \] \hspace{1cm} (2.3)

Ele é extremamente semelhante ao operador de evolução temporal utilizado na Mecânica Quântica [33]. O núcleo, \(G \), desse operador é denominado *propagador*; trata-se da função de Green retardada (ou causal) para a Equação (2.1).

Uma propriedade importante de \(G \) é a sua normalização. A prova é simples:
o pressuposto é que a integral de C sobre todo o espaço seja constante em t:

$$\int_{-\infty}^{\infty} dx \, C(x, t) = \int_{-\infty}^{\infty} dx_0 \, C(x_0, t_0).$$ \hspace{1cm} (2.4)

Por outro lado, temos

$$\int_{-\infty}^{\infty} dx \, C(x, t) = \int_{-\infty}^{\infty} dx_0 \, \left[\int_{-\infty}^{\infty} dx \, G(x, t; x_0, t_0) \right] C(x_0, t_0) = \int_{-\infty}^{\infty} dx_0 \left[\int_{-\infty}^{\infty} dx \, G(x, t; x_0, t_0) \right] C(x_0, t_0).$$ \hspace{1cm} (2.5)

Finalmente, as Equações (2.4) e (2.5) implicam que

$$\int_{-\infty}^{\infty} dx \, G(x, t; x_0, t_0) = 1.$$ \hspace{1cm} (2.6)

Voltando ao nosso caso, o operador diferencial associado à Equação (1.35) pode ser colocado na seguinte forma:

$$\mathcal{L}(x, t) = -\partial_x [A(x, t) - \partial_x D(x, t)],$$ \hspace{1cm} (2.7)

com $A(x, t) = v_x(x, t)$ e $D(x, t) = D$ (constante). Por isso, a Equação (1.35) é uma equação de Fokker e Planck unidimensional [32,34] com coeficiente de difusão constante, e $G(x, t; x_0, t_0)$ corresponde à probabilidade condicional de transição, usualmente denotada por $P(x, t; x_0, t_0)$. Nesse caso, a Equação (2.6) garante-nos que a probabilidade é normalizada; isso será importante no desenvolvimento do método numérico do Capítulo 3.

Para $t > t_0$, temos, de acordo com [32,34]

$$G(x, t; x_0, t_0) = \delta(x - x_0) + \sum_{n=1}^{\infty} \int_{t_0}^{t} dt_n \int_{t_0}^{t_n} dt_{n-1} \cdots \times \int_{t_0}^{t_2} dt_1 \mathcal{L}(x, t_n) \mathcal{L}(x, t_{n-1}) \cdots \mathcal{L}(x, t_1) \delta(x - x_0),$$ \hspace{1cm} (2.8)

\footnote{No caso geral, isso acontece quando dizemos que a função C é normalizada; em nossa situação particular, isso acontece quando o número de mês é constante (ver Equação (1.26)).}
conhecida como \textit{série de Dyson}.\footnote{Note que a função delta de Dirac aparece aqui, pois fizemos a expansão do núcleo do operador \(\mathcal{U}(t, t_0)\), enquanto que, no formalismo da Mecânica Quântica, geralmente fazemos a expansão do próprio operador.} No caso em que \(A\) e \(D\) são funções apenas de \(x\), tal expressão converte-se em uma série de potências de \(\mathcal{L}(x)\), e podemos mostrar que

\[
G(x, t; x_0, t_0) = \theta(t - t_0) \exp\left(\mathcal{L}(x) (t - t_0)\right) \delta(x - x_0), \tag{2.9}
\]

onde incluímos a função de Heaviside \(\theta(t - t_0)\), a fim de permitir que \(t\) seja arbitrário.

Efetuemos, agora, o cálculo de \(G(x, t; x_0, t_0)\) para a situação mais comum em eletroforese capilar: a situação em que a velocidade é constante. Como já supusemos que \(D\) seja constante, vemos que o operador independe de \(x\) e de \(t\); o mesmo será denominado apenas \(\mathcal{L}\). Iniciemos tomando a representação da função delta na base das autofunções de \(\mathcal{L}\):

\[
\delta(x - x_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, e^{-ik(x-x_0)}. \tag{2.10}
\]

Substituindo na Equação (2.9), temos

\[
G(x, t; x_0, t_0) = \frac{1}{2\pi} \theta(t - t_0) \int_{-\infty}^{\infty} dk \, \exp\left(\mathcal{L} (t - t_0)\right) e^{-ik(x-x_0)}. \tag{2.11}
\]

Mas

\[
\mathcal{L} \, e^{-ik(x-x_0)} = -\partial_x \left[v_x - D \, \partial_x \right] e^{-ik(x-x_0)}
\]

\[
= (iv_xk - Dk^2) e^{-ik(x-x_0)}, \tag{2.12}
\]

onde

\[
\exp\left(\mathcal{L} (t - t_0)\right) e^{-ik(x-x_0)} = e^{(iv_xk-Dk^2)(t-t_0)} e^{-ik(x-x_0)}
\]

\[
= e^{-Dk^2(t-t_0)-ik[x-x_0-v_x(t-t_0)]}. \tag{2.13}
\]
Assim,

\[G(x, t; x_0, t_0) = \frac{1}{2\pi} \theta(t - t_0) \int_{-\infty}^{\infty} dk e^{-Dk^2(t-t_0) - ik[x-x_0-v_x(t-t_0)]}, \quad (2.14) \]

o que resulta em [35]

\[G(x, t; x_0, t_0) = \frac{\theta(t - t_0)}{\sqrt{4\pi D(t-t_0)}} \exp\left(-\frac{[x-x_0-v_x(t-t_0)]^2}{4D(t-t_0)}\right). \quad (2.15) \]

De posse da expressão de \(G(x, t; x_0, t_0) \), podemos encontrar \(C(x, t) \) através das Equações (2.2) e (2.3). No instante inicial,

\[C(x_0, t_0) = \begin{cases} C_0, & \text{caso } 0 \leq x_0 \leq w; \\ 0, & \text{caso contrário}. \end{cases} \quad (2.16) \]

Substituindo,

\[C(x, t) = \int_{-\infty}^{\infty} dx_0 G(x, t; x_0, t_0) C(x_0, t_0) \]

\[= \int_{0}^{w} dx_0 \frac{C_0}{\sqrt{4\pi D(t-t_0)}} \exp\left(-\frac{[x-x_0-v_x(t-t_0)]^2}{4D(t-t_0)}\right) \]

\[= \frac{C_0}{2} \left[\text{erf}\left(\frac{x - v_x(t-t_0)}{\sqrt{4D(t-t_0)}}\right) - \text{erf}\left(\frac{x - w - v_x(t-t_0)}{\sqrt{4D(t-t_0)}}\right) \right]. \quad (2.17) \]

Para o que segue, é instrutivo identificar a posição do centro da banda:

\[x_c(t-t_0) = \frac{w}{2} + v_x(t-t_0). \quad (2.18) \]

Então, podemos reescrever a Equação (2.17):

\[C(x, t) = \frac{C_0}{2} \left[\text{erf}\left(\frac{x + \frac{w}{2} - x_c(t-t_0)}{\sqrt{4D(t-t_0)}}\right) - \text{erf}\left(\frac{x - \frac{w}{2} - x_c(t-t_0)}{\sqrt{4D(t-t_0)}}\right) \right]. \quad (2.19) \]

Quando

\[\frac{x - x_c(t-t_0)}{\sqrt{4D(t-t_0)}} \ll 1 \quad (2.20) \]
e
\[\frac{w/2}{\sqrt{4D(t-t_0)}} \ll 1, \]
(2.21)
podemos usar a aproximação [35]

\[
C(x, t) \approx \frac{C_0}{2} \left\{ \frac{2}{\sqrt{\pi}} \exp \left(- \left[\frac{x + \frac{w}{2} - x_c(t-t_0)}{\sqrt{4D(t-t_0)}} \right]^2 \right) \right\} \left(\frac{x + \frac{w}{2} - x_c(t-t_0)}{\sqrt{4D(t-t_0)}} \right)
- \frac{2}{\sqrt{\pi}} \exp \left(- \left[\frac{x - \frac{w}{2} - x_c(t-t_0)}{\sqrt{4D(t-t_0)}} \right]^2 \right) \left(\frac{x - \frac{w}{2} - x_c(t-t_0)}{\sqrt{4D(t-t_0)}} \right)
\approx \frac{wC_0}{\sqrt{4\pi D(t-t_0)}} \exp \left(- \frac{|x-x_c(t-t_0)|^2}{4D(t-t_0)} \right). \]
(2.22)
Esta é uma distribuição gaussiana, com desvio padrão \(\sigma = \sqrt{4D(t-t_0)}. \)

Agora, podemos interpretar as condições (2.20) e (2.21). Fixemos, primeiro, a variável \(x \). Assim, a condição (2.20) significa que a aproximação será válida somente quando o desvio padrão devido à difusão for muito maior que \(x - x_c(t-t_0) \). Por sua vez, a condição (2.21) diz-nos que a aproximação será válida apenas quando \(\sigma \) for muito maior que a meia largura inicial da banda.

Então, fixemos a variável \(t \). Desta forma, a condição (2.20) significa que a aproximação só será válida para pontos cuja distância ao centro da banda seja muito inferior a \(\sigma \). A condição (2.21), finalmente, significa que a aproximação será válida apenas quando a meia largura inicial for muito menor que o desvio padrão; de fato, para uma distribuição inicial muito estreita [36], temos

\[
C(x, t) = \int_{-\infty}^{\infty} dx_0 G(x, t; x_0, t_0) \left[wC_0 \delta \left(x_0 - \frac{w}{2} \right) \right]
\]
2 ANÁLISE TEÓRICA: USO DE PROPAGADORES

\[\begin{align*}
&= \int_{-\infty}^{\infty} dx_0 \frac{1}{\sqrt{4\pi D (t-t_0)}} \\
&\quad \times \exp \left(-\frac{[x - x_0 - v_x (t-t_0)]^2}{4D (t-t_0)} \right) [wC_0 \delta \left(x_0 - \frac{w}{2} \right)] \\
&= \frac{wC_0}{\sqrt{4\pi D (t-t_0)}} \exp \left(-\frac{[x - \frac{w}{2} - v_x (t-t_0)]^2}{4D (t-t_0)} \right) \\
&= \frac{wC_0}{\sqrt{4\pi D (t-t_0)}} \exp \left(-\frac{[x - x_c(t-t_0)]^2}{4D (t-t_0)} \right), \quad (2.23)
\end{align*}\]

que é justamente o perfil gaussiano da expressão (2.22).
3 COMPRESSION TÉRMICA DE BANDAS

Um dos parâmetros importantes, em eletróforese capilar, é a temperatura à qual é feita a separação. As maneiras pelas quais ela afeta uma corrida são várias. A mobilidade eletrósômética, conforme a Equação (1.22), é inversamente proporcional à viscosidade da solução-tampão; a mobilidade eletrôforética também o é, segundo a Equação (1.25). Portanto, alterações de viscosidade devidas a mudanças de temperatura refletir-se-ão nas mobilidades. Além disso, μ_{eo} e μ_{efet} dependem, de modos diferentes, do pH da solução. Se o pH também for afetado pela temperatura, possivelmente perceberemos os efeitos no eletrófrograma. Baseados nessas considerações, estudaremos como produzir diminuição da largura de uma banda através de gradientes espaciais de temperatura.

Na Seção 3.1, apresentaremos alguns modelos de perfil espacial de velocidade e mostraremos que, com eles, será possível obter compressão de bandas. Esse resultado original será o mais importante deste capítulo. Além de servir para aumentar a resolução, isso poderá ser utilizado em um novo método de preconcentração de amostra, similar aos descritos em [37]. Na Seção 3.2, discutiremos
como produzir tais perfis de velocidade em laboratório.

3.1 Modelos

Esta seção possui caráter teórico. Não nos preocuparemos, por enquanto, com os detalhes da produção dos perfis espaciais de velocidade; tomaremos a sua existência como pressuposto.

Iniciaremos com um modelo simples: um capilar em que existem duas regiões, 1 e 2, nas quais as velocidades aparentes são, respectivamente, \(v_{1x} \) e \(v_{2x} \), sendo que \(0 < v_{2x} < v_{1x} \) (note que, agora, os significados dos índices 1 e 2 são diferentes daqueles da Seção 1.3). Diremos que esse é um perfil de *degrau de velocidade*. Além disso, desprezaremos os efeitos da difusão.

Consideremos a situação em que uma banda de largura \(l_1 \), na região 1, chega à interface com a região 2 (ver Figura 3.1). O intervalo de tempo desde a chegada do início da banda à interface até a chegada do final da banda será denominado \(\Delta t \). Podemos ver que

\[
\Delta t = \frac{l_1}{v_{1x}}. \tag{3.1}
\]

A largura da banda \(l_2 \) na segunda região é igual à distância percorrida pelo seu início enquanto o seu fim não chega à interface, ou seja,

\[
l_2 = v_{2x} \Delta t. \tag{3.2}
\]

Das Equações (3.1) e (3.2), temos, para a razão entre as larguras,

\[
\frac{l_2}{l_1} = \frac{v_{2x}}{v_{1x}}. \tag{3.3}
\]

Isso nos dá uma primeira estimativa sobre a eficácia da compressão.
Figura 3.1: Comportamento da banda na região próxima a um degrau de velocidade, representado por uma linha tracejada. Em (a), toda a banda está na região de velocidade \(v_{1x} \). Em (b), parte da banda já está na região de velocidade \(v_{2x} < v_{1x} \). Em (c), toda a banda já passou para a região de velocidade \(v_{2x} \). Note que a concentração aumenta: isso foi indicado por um cinza mais escuro.
Precisamos, agora, levar em conta a difusão. A fim de adaptar o formalismo do Capítulo 2 ao caso atual, seguiremos a abordagem de [32]. Dado um operador diferencial como o da Equação (2.7), mas com A e D independentes do tempo, podemos usar a Equação (2.9) para expandir G em torno de t_0:

$$G(x, t_0 + \tau; x_0, t_0)$$

$$= \delta(x - x_0) + \tau \mathcal{L}(x) \delta(x - x_0) + O(\tau^2)$$

$$= \delta(x - x_0) + \tau \left\{ -\partial_x [A(x) - \partial_x D(x)] \delta(x - x_0) \right\} + O(\tau^2)$$

$$= \delta(x - x_0) + \tau \mathcal{L}(x_0) \delta(x - x_0) + O(\tau^2) , \quad (3.4)$$

onde τ é um pequeno intervalo. No caso em que \mathcal{L} depende do tempo, a expansão anterior não é válida, mas, ainda assim, podemos usar a aproximação

$$G(x, t_0 + \tau; x_0, t_0)$$

$$\approx \delta(x - x_0) + \tau \mathcal{L}(x, t_0) \delta(x - x_0)$$

$$= \delta(x - x_0) + \tau \left\{ -\partial_x [A(x, t_0) - \partial_x D(x, t_0)] \delta(x - x_0) \right\}$$

$$= \delta(x - x_0) + \tau \mathcal{L}(x_0, t_0) \delta(x - x_0) . \quad (3.5)$$

Isso sugere que adotemos, para o chamado propagador para tempo pequeno, a seguinte definição:

$$G_{\tau}(x, t_0 + \tau; x_0, t_0) = \exp \left(\mathcal{L}(x_0, t_0) \tau \right) \delta(x - x_0) . \quad (3.6)$$

Assim, para intervalos τ pequenos,

$$C(x, t_0 + \tau) \approx \int_{-\infty}^{\infty} dx_0 G_{\tau}(x, t_0 + \tau; x_0, t_0) C(x_0, t_0) . \quad (3.7)$$

Com o propósito de manter o número de mois constante, mesmo na solução aproximada, exigiremos a normalização (Equação (2.6)) também para G_{τ} . Além disso, utilizaremos $t_0 = 0$ daqui por diante.
Podemos generalizar a Equação (3.7) para tempos arbitrários, fazendo \(t = (n + 1)\tau \):

\[
C\left(x, (n + 1)\tau\right) \approx \int_{-\infty}^{\infty} dx_0 \, G_\tau\left(x, (n + 1)\tau; x_0, n\tau\right) C(x_0, n\tau).
\] (3.8)

Isso nos permite obter a concentração através de um procedimento iterativo; restamos calcular a integral da Equação (3.8). Para tanto, discretizemos também o espaço, formando uma rede de pontos \(\{x_i\} \), espaçados por \(\Delta x \) (constante). Então, é conveniente definir uma matriz de transição \(Q^n \) tal, que

\[
C^{n+1} = Q^n C^n
\] (3.9)

ou, em termos dos elementos das matrizes,\(^1\)

\[
C^{n+1}_i = \sum_j Q^n_{ij} C^n_j,
\] (3.10)

onde, por definição,

\[
C^{n+1}_i = C\left(x_i, (n + 1)\tau\right),
\] (3.11)

\[
C^n_j = C(x_j, n\tau)
\] (3.12)

e

\[
Q^n_{ij} = \frac{1}{N_r(j)} \, G_\tau\left(x_i, (n + 1)\tau; x_j, n\tau\right) \Delta x.
\] (3.13)

A função \(N_r(j) \) serve para garantir a normalização numérica de \(G_\tau \):

\[
\frac{1}{N_r(j)} \sum_i G_\tau\left(x_i, (n + 1)\tau; x_j, n\tau\right) \Delta x = \sum_i Q^n_{ij} = 1,
\] (3.14)

\(^1\) Esta abordagem guarda uma grande semelhança com a da chamada *transilient matrix*, originada no estudo de fluidos geofísicos e recentemente empregada num contexto de Astrofísica [38].
correspondente à Equação (2.6). Isso corrige erros de truncagem, mantendo o número de meses constante.

Com o intuito de prosseguir calculando a concentração no caso do perfil de degrau de velocidade, desenvolvemos um programa de computador, em linguagem FORTRAN 90 [39], o qual se encontra no Apêndice. Através desse programa, fizemos o cálculo analiticamente para \(t = 164 \) s e \(t_0 = 0 \), usando a Equação (2.17), com \(w = 1 \) cm e com velocidade constante \(v_{1x} = 0.25 \) cm/s no trecho percorrido. Então, utilizamos a solução analítica como condição inicial e efetuamos o cálculo numericamente, pelo procedimento iterativo descrito, até \(t = 190 \) s. Os demais parâmetros que usamos foram: posição do degrau \(x = 45 \) cm; \(\tau = 0.1 \) s; \(\Delta x = 0.01 \) cm; \(D = 1 \times 10^{-4} \) cm\(^2\)/s. Apresentamos os resultados nas Figuras 3.2, 3.3 e 3.4, para as quais os valores de \(v_{2x} \) que empregamos foram de, respectivamente, 0.20 cm/s, 0.15 cm/s e 0.10 cm/s. Observe o estreitamento do pico após a passagem pelo degrau. Quanto mais brusca a alteração de velocidade, tanto mais pronunciado o efeito.

De acordo com a Equação (2.16), a área inicial do pico\(^2\) é \(wC_0 \). Passando de concentração para concentração relativa \((C/C_0) \), temos \(C = 1 \) unidade arbitrária (u. a.). Então, usando \(w = 1 \) cm, temos uma área de 1 u. a. Fizemos um ajuste de uma distribuição gaussiana a cada pico das figuras citadas, com a finalidade de comparar suas larguras a meia altura (full width at half maximum ou FWHM) e suas áreas. Obtuvemos, para \(t = 164 \) s, uma FWHM de 0.897 cm e uma área de 1.033 u. a. (a pequena diferença entre a área obtida pelo ajuste

\(^2\) A área está intimamente relacionada com o número de meses de moléculas (ver Equação (1.26)).
Figura 3.2: Instantâneos de um pico de concentração na vizinhança de um degrau de velocidade. A linha tracejada assinala a posição do degrau. A velocidade aparente passa de 0,25 cm/s para 0,20 cm/s. Repare no estreitamento do pico devido ao degrau.

e a área inicial surge porque o pico não é exatamente gaussiano). Os outros dados estão na Tabela 3.1. Podemos verificar que, mesmo depois de passar para o cálculo numérico, temos áreas próximas de 1 u. a. Além disso, percebemos que as razões entre as larguras dos picos concordam aproximadamente com os valores obtidos pela Equação (3.3).

A fim de testar um modelo mais realista, construímos um perfil linear de velocidade aparente e escrevemos outro programa em FORTRAN 90, o qual também colocamos no Apêndice. No caso deste modelo, fizemos todo o cálculo numericamente. Escolhemos o perfil

\[v_x(x) = (0,2531 \text{ cm/s}) - (0,0031 \text{ s}^{-1}) x, \]
\[(3.15) \]
Figura 3.3: Análoga à Figura 3.2, mas com alteração de 0,25 cm/s para 0,15 cm/s.

Figura 3.4: Análoga à Figura 3.2, mas com alteração de 0,25 cm/s para 0,10 cm/s.
Tabela 3.1: Dados dos picos de concentração em \(t = 190 \) s (depois de passar pelo degrau de velocidade). A área e a largura a meia altura (FWHM) do pico em \(t = 164 \) s são de, respectivamente, 1,033 u. a. e 0,897 cm (repare que as áreas se mantêm praticamente iguais à área inicial). Na quarta coluna, apresentamos a razão entre a FWHM em \(t = 190 \) s e a FWHM em \(t = 164 \) s. Para comparação, incluímos, na quinta coluna, os valores obtidos através da Equação (3.3).

<table>
<thead>
<tr>
<th>Figura</th>
<th>área (u. a.)</th>
<th>FWHM (cm)</th>
<th>razão (v_{2x}/v_{1x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>1,029</td>
<td>0,729</td>
<td>0,813</td>
</tr>
<tr>
<td>3.3</td>
<td>1,026</td>
<td>0,554</td>
<td>0,618</td>
</tr>
<tr>
<td>3.4</td>
<td>1,025</td>
<td>0,372</td>
<td>0,415</td>
</tr>
</tbody>
</table>

de maneira que tivéssemos \(v_x(1 \text{ cm}) = 0,25 \text{ cm/s} \) e \(v_x(50 \text{ cm}) = 0,10 \text{ cm/s} \). As outras condições foram as mesmas do programa anterior. Apresentamos o resultado na Figura 3.5. Para comparação, incluímos, na mesma figura, o gráfico da solução analítica para uma corrida com velocidade constante \(v_x = 0,25 \text{ cm/s} \) e o gráfico da solução analítica para uma corrida com velocidade constante \(v_x = 0,10 \text{ cm/s} \). Repare que, utilizando o perfil linear, obtivemos um pico bem mais estreito do que obteríamos em corridas convencionais. Tal compressão está fortemente relacionada com a devida ao degrau de velocidade, pois podemos tratar do perfil linear como uma sucessão de um número muito grande de degraus.

Ajustamos uma gaussiana a cada pico da Figura 3.5 e passamos os dados para a Tabela 3.2. Note que todas as áreas ficaram próximas a 1 u. a. Como a distância percorrida pelas bandas foi a mesma, os tempos de migração foram diferentes. Nós os colocamos na mesma tabela.
Figura 3.5: Gráficos para uma corrida com perfil linear de velocidade aparente e para duas corridas com velocidades constantes (ver Tabela 3.2). Note que, com o perfil linear, obtemos um pico bem mais estreito. Os tempos de migração diferem entre si.

<table>
<thead>
<tr>
<th>v_x</th>
<th>área (u. a.)</th>
<th>FWHM (cm)</th>
<th>tempo de migração (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equação (3.15)</td>
<td>1,015</td>
<td>0,482</td>
<td>5,10</td>
</tr>
<tr>
<td>0,25 cm/s</td>
<td>1,029</td>
<td>0,912</td>
<td>3,30</td>
</tr>
<tr>
<td>0,10 cm/s</td>
<td>1,012</td>
<td>1,048</td>
<td>8,24</td>
</tr>
</tbody>
</table>

Tabela 3.2: Dados da Figura 3.5. Repare que as áreas se mantêm praticamente iguais à área inicial.
3.2 Alterações Através da Viscosidade e do pH

Tanto a mobilidade eletroosmótica, quanto a mobilidade eletroforética, são inversamente proporcionais à viscosidade da solução-tampão. Se empregarmos uma solução bem diluída, sua viscosidade praticamente coincidirá com a da água pura. Como η da água diminui à medida que a temperatura aumenta, as mobilidades cresceriam juntamente com T, se dependessem apenas de η, é claro. A título de ilustração, construímos um gráfico de viscosidade da água versus temperatura (Figura 3.6), utilizando dados de [40].

\[\eta (\times 10^{-4} \text{ N s/m}^2) \]

\[T (\degree \text{C}) \]

Figura 3.6: Gráfico da viscosidade da água como função da temperatura entre 0 e 100$^\circ$C.

Da viscosidade de uma solução-tampão mais concentrada, não podemos esperar comportamento tão parecido com o da viscosidade da água. Mas o importante é que, seja qual for a concentração, temos a possibilidade de produzir os
perfis de velocidade aparente da seção anterior mantendo certas regiões do capilar a temperaturas diferentes entre si. Note que a velocidade eletroosmótica tem de ser constante ao longo de todo o capilar, pois a solução-tampão é incompressível. O efeito aparece somente no termo de velocidade eletroforética.

A mobilidade eletroforética efetiva (Equação (1.47)) de um analito depende do seu grau de dissociação. Este, por sua vez, relaciona-se com o pK_a do analito e com o pH da solução-tampão. Assim sendo, para produzir os perfis, podemos alterar o pH da solução, além de modificar sua viscosidade. Porém, com soluções-tampão comuns, como a de fosfato, usar variação de temperatura para mudar o pH é inviável; é preciso que a solução tenha $d(\text{pH})/dT$ grande. Um dos exemplos mais conhecidos disso é o da solução-tampão de tris(hidroximetil)aminometano, conhecido comercialmente como Tris.

Num contexto diferente — o da focalização isoelétrica —, trabalhos explorando a grande variação do pH da solução de Tris com a temperatura já foram feitos por Lundahl e Hjertén [41] e por Lochmüller e Ronsick [42]. O próprio Hjertén já escreveu sobre a eletroforese capilar de zona em soluções com gradiente de pH [24]; no entanto, ele produziu o gradiente injetando em sequência, no capilar, soluções-tampão com pHs distintos. Aparentemente, o primeiro trabalho a usar programação de temperatura e solução de Tris em eletroforese capilar de zona foi de Whang e Yeung [43]. Segundo eles, a variação do pH com T é linear: dadas duas temperaturas T_1, à qual o pH da solução é pH_1, e T_2, o pH a esta temperatura é obtido através de

$$\text{pH}_2 = \text{pH}_1 - (0,0248^\circ\text{C}^{-1}) (T_2 - T_1).$$

(3.16)
Nas Figuras 3.7 e 3.8, reproduzidas desse trabalho, aparecem eletroferogramas de amostras com cinco corantes fluorescentes: riboflavina (pico 1), cumarina 343 (pico 2), FITC (pico 4), fluoresceína (pico 5) e 2’,7’-DCF (pico 6). Segundo os autores, o pico 3 foi devido a impurezas contidas no FITC. Note que eles obtiveram a melhor separação dos analitos quando empregaram o gradiente espacial de temperatura (Figura 3.8(D)).

Whang e Yeung preocuparam-se em estudar a relação entre mobilidade efetiva, pH e pK_a e em demonstrar a melhora da resolução, mas não avaliaram teórica e experimentalmente a mudança na largura das bandas. O bom resultado da Figura 3.8(D), possivelmente, é devido ao estreitamento das mesmas. Isso nos faz crer na viabilidade de experimentos de compressão térmica.
Figura 3.7: Influência da programação de temperatura na separação de corantes fluorescentes em uma solução-tampão de Tris 0,01 M com pH inicial de 7,3: (A) 20°C, isotérmica; (B) 70°C, isotérmica (continua na Figura 3.8). Identificação dos picos: (1) riboflavina; (2) cumarina 343; (3) impurezas; (4) FITC; (5) fluoresceína; (6) 2′,7′-DCF. Adaptado de [43].
Figura 3.8: Continuação da Figura 3.7: (C) 70ºC por 2 min, então baixava para 20ºC; (D) gradiente de temperatura de 53 até 20ºC ao longo do capilar. Adaptado de [43].
4 COMPRESSÃO ÓPTICA DE BANDAS

A compressão óptica de bandas em eletroforese capilar foi proposta por Kist em dois trabalhos teóricos [44, 45]. Ela consiste em utilizar radiação laser, propagando-se no interior do capilar, para alterar a mobilidade eletroforética de parte das moléculas de um analito e, assim, provocar a aproximação entre as extremidades da banda correspondente. É indiferente se essa alteração ocorra por mudanças na carga elétrica, na conformação da molécula ou em ambas.

Consideremos o caso da Figura 4.1, em que a solução-tampão é transparente. A radiação laser incide sobre a banda pela extremidade dianteira, e vai sendo absorvida à medida que atravessa a mesma. Isso dá origem a um gradiente de intensidade, sendo que esta resultará menor na extremidade traseira. Assim, o número de moléculas no estado excitado será maior na dianteira: indicamos esse fato, na figura, por um tom de cinza mais claro. Supondo que a velocidade aparente das moléculas excitadas seja menor, a tendência será a extremidade traseira aproximar-se da dianteira.

Apresentaremos, na Seção 4.1, um experimento de compressão óptica que
Figura 4.1: Três instantâneos de uma corrida de eletroforese com moléculas migrando da esquerda para a direita. As setas indicam o sentido de propagação da radiação laser no interior do capilar. A parte destacada representa a banda. O número de moléculas no estado excitado aumenta no sentido do esmaecimento do tom de cinza. Em (a), temos a largura inicial l_1. Em (b), vemos a banda em um instante posterior. Supondo que as moléculas no estado excitado tenham uma velocidade aparente menor, a região traseira da banda migrará mais rapidamente que a dianteira, donde concluímos que $l_2 < l_1$. Em (c), vemos a banda em outro instante; como o processo descrito acima é contínuo, temos $l_3 < l_2$.
realizamos em nosso grupo. Ele foi a primeira demonstração experimental do efeito. Posteriormente, na Seção 4.2, abordaremos a teoria, como proposta por Kist, e apresentaremos uma mudança de variáveis, recentemente descoberta, que simplificará o sistema de equações diferenciais não lineares do problema.

4.1 Experimentos

A demonstração experimental da compressão óptica exigiu cuidados especiais na escolha da solução-tampão, da amostra e do laser de excitação. Com uma solução de fosfato em água pura, por exemplo, não poderíamos guiar luz pelo interior do capilar, pois o índice de refração da água gira em torno de 1,333, enquanto que o da sílica fundida, material de que é feita a parede do capilar, é igual a 1,458 em 588 nm. Então, no trabalho que nosso grupo realizou [46], empregamos uma mistura de DMSO, água e fosfato com pH = 8 como solução-tampão da eletroforese capilar. Tal mistura possui índice de refração maior que o da sílica, de forma que o capilar de 50 µm de diâmetro interno pode funcionar como uma fibra óptica, no regime multimodo, guiando a luz laser incidente em uma de suas extremidades. Isso resultou num perfil de intensidade aproximadamente constante sobre a secção reta da coluna de líquido.

Como amostra, utilizamos uma solução de 2-naftol, composto que sofre transferência protônica intermolecular no estado excitado [47], conforme ilustrado na Figura 4.2. O mecanismo da mudança da mobilidade eletroforética efetiva do 2-naftol é o seguinte: no estado fundamental, ele possui um pKₐ de 9,46, o qual é maior que o pH da solução-tampão. Isso significa que o grau de dissociação das moléculas nesse estado (ver Figura 4.2) é muito pequeno. Porém, no estado
excitado, o pK\textsubscript{a} desse composto reduz-se para 2,8, ou seja, ocorre um deslocamento radical do equilíbrio químico no sentido dos produtos. Já que o íon do 2-naftol possui mobilidade eletroforética diferente de zero, ao contrário da espécie neutra, um aumento na concentração do íon implica um aumento em |\(\mu_{\text{efet}}\)| (ver Equação (1.47)). Por fim, a intensidade é mais alta na região dianteira da banda; o mesmo, então, vale para o módulo da mobilidade efetiva, pois mais moléculas dessa região passam para o estado excitado.

![Figura 4.2: Reação de transferência protônica intermolecular entre o 2-naftol e a água.](image)

Para excitar as moléculas de 2-naftol, utilizamos um laser He-Cd operando no comprimento de onda de 325 nm, no qual a absorção é muito forte. O 2-naftol foi detectado por sua fluorescência nativa. O sistema de detecção do aparelho de eletroforese capilar, através de fluorescência induzida por laser, também desenvolvido pelo nosso grupo, foi baseado em um laser pulsado de N\textsubscript{2} [18, 19], emitindo em 337 nm. Maiores detalhes sobre o equipamento e sobre os reagentes podem ser encontrados no artigo que nosso grupo escreveu [46].

A velocidade eletroosmótica, em capilares de sílica, tem o mesmo sentido que o campo elétrico (ver Seção 1.1). Mas a velocidade eletroforética do íon do 2-naftol, cuja carga é negativa, tem sentido oposto. Assim, a velocidade aparente
do íon é menor que a da espécie neutra. Com o laser He-Cd ligado, temos mais moléculas no estado excitado e, consequentemente, mais íons; isso torna \(\mu_{\text{efet}} \) da banda mais negativa. De fato, na primeira parte do experimento, observamos que a velocidade aparente do analito foi menor, quando iluminado pela luz guiada através do capilar, pois o tempo de migração cresceu (Figura 4.3).

Figura 4.3: Dois eletroferogramas mostrando a mudança de velocidade aparente do 2-naftol devida à excitação pela radiação laser. No experimento (a), o laser estava desligado durante todo o tempo e, no experimento (b), estava ligado durante todo o tempo. Adaptado de [46].

Na segunda parte do experimento, procuramos caracterizar a compressão de banda durante a corrida de eletroforese (Figura 4.4). Apresentamos, na Figura 4.4(a), o perfil espacial de concentração do 2-naftol em uma corrida comum, ou seja, sem luz guiada pelo capilar. Sua forma é claramente gaussiana. Já na Figura 4.4(b), exibimos o perfil que obtivemos em uma corrida com luz guiada pelo capilar na configuração da Figura 4.1. Note que a largura do pico é muito menor, embora a área seja aproximadamente a mesma. Por fim, na Figura 4.4(c),
mostramos o que ocorreu com o perfil em uma corrida na qual invertemos o sentido de E (para facilitar a comparação, incluímos um perfil gaussiano, indicado por uma linha pontilhada). Reexamine a Figura 4.1, mas colocando os itens na ordem inversa, para entender melhor esse alargamento da banda. Repare, ainda, que a área é aproximadamente igual à do perfil da Figura 4.4(a).

4.2 Modelo

Nesta seção, seguiremos a abordagem de [44]. Suponhamos que a solução-tampão seja transparente ao laser. Na amostra, há moléculas em dois estados (fundamental e excitado), sendo que as moléculas de cada estado migram com velocidades v_{1x} e v_{2x} constantes, mas diferentes entre si. Portanto, precisamos usar as Equações (1.40) e (1.41). Em nosso caso, $f(C_1, C_2)$ corresponde a termos de absorção e decaimento. Suponhamos que o coeficiente de absorção das moléculas no estado fundamental (estado 1) seja κ e que a taxa de decaimento das moléculas excitadas (estado 2) seja Γ. Assim, as equações do nosso modelo são

$$\partial_t C_1 = D_1 \partial_x^2 C_1 - v_{1x} \partial_x C_1 + \Gamma C_2 - \kappa I C_1$$ \hspace{1cm} (4.1)$$

$$\partial_t C_2 = D_2 \partial_x^2 C_2 - v_{2x} \partial_x C_2 - \Gamma C_2 + \kappa I C_1.$$ \hspace{1cm} (4.2)

Além disso, da lei de Beer, temos a equação para a variação espacial da intensidade da luz:

$$\partial_x I = s\kappa I C_1.$$ \hspace{1cm} (4.3)

A constante s está relacionada com o sentido da propagação. Caso a luz laser esteja se propagando no sentido do crescimento de x, $s = -1$. Caso esteja se propagando no sentido da diminuição de x, $s = 1$. Digamos que a intensidade da
Figura 4.4: Perfil espacial de concentração de (a) uma banda de eletroforese capilar com laser desligado; (b) uma banda com compressão óptica; (c) uma banda com alargamento, produzido pela inversão do sentido do campo elétrico. Incluímos um perfil gaussiano (linha pontilhada) para comparação. A variável x denota posição ao longo do capilar, e x_0 representa a posição do máximo. Adaptado de [46].
A solução numérica dessas três equações diferenciais [44] revela-nos que, para certos valores dos parâmetros, existe compressão da banda e, inclusive, formação de uma onda solitária de concentração. Esta, que se propaga sem alteração na forma, aparece devido ao termo não linear \(\kappa I C \).

Segundo [45], podemos encontrar a intensidade integrando a Equação (4.3):

\[
I(x, t) = I_0 \exp \left(s \kappa \int_{s\infty}^{x} dx' C_1(x', t) \right). \tag{4.4}
\]

Isso nos sugere uma mudança de variável para \(C_1 \), a qual adotaremos também para \(C_2 \):

\[
\tilde{C}_1(x, t) = \int_{s\infty}^{x} dx' C_1(x', t) \tag{4.5}
\]

\[
\tilde{C}_2(x, t) = \int_{s\infty}^{x} dx' C_2(x', t). \tag{4.6}
\]

A inversão dessa transformação é trivial:

\[
C_1(x, t) = \partial_x \tilde{C}_1(x, t) \tag{4.7}
\]

\[
C_2(x, t) = \partial_x \tilde{C}_2(x, t). \tag{4.8}
\]

Para transformar a Equação (4.1), começemos listando as condições de contorno assintóticas para o problema:

\[
C_1(s\infty, t) = 0 \tag{4.9}
\]

\[
\partial_x C_1(s\infty, t) = 0 \tag{4.10}
\]

\footnote{Note que, agora, estamos utilizando os símbolos \(\kappa \) e \(I_0 \) de maneira totalmente diferente da utilizada no Capítulo 1.}
Então, integremos ambos os lados da Equação (4.1) em relação à variável auxiliar x':

$$
\int_{s\infty}^{x} dx' \partial_t C_1 = D_1 \int_{s\infty}^{x} dx' \partial_x^2 C_1 - v_{1x} \int_{s\infty}^{x} dx' \partial_x C_1 + \Gamma \int_{s\infty}^{x} dx' C_2 - s \int_{s\infty}^{x} dx' \partial_x I.
$$

(4.14)

Empregando, agora, as condições de contorno, obtemos

$$
\partial_t \tilde{C}_1 = D_1 \partial_x^2 \tilde{C}_1 - v_{1x} \partial_x \tilde{C}_1 + \Gamma \tilde{C}_2 - s (I - I_0). \quad (4.15)
$$

Da mesma forma, podemos transformar a Equação (4.2), obtendo

$$
\partial_t \tilde{C}_2 = D_2 \partial_x^2 \tilde{C}_2 - v_{2x} \partial_x \tilde{C}_2 - \Gamma \tilde{C}_2 + s (I - I_0). \quad (4.16)
$$

Ainda nos falta escrever a intensidade em função da variável \tilde{C}_1: das Equações (4.4) e (4.5), temos

$$
I(x, t) = I_0 \exp\left(s \kappa \tilde{C}_1(x, t)\right).
$$

(4.17)

Finalmente, as Equações (4.1) e (4.2) tornam-se

$$
\partial_t \tilde{C}_1 = D_1 \partial_x^2 \tilde{C}_1 - v_{1x} \partial_x \tilde{C}_1 + \Gamma \tilde{C}_2 - s I_0 \left[\exp\left(s \kappa \tilde{C}_1\right) - 1\right]
$$

(4.18)

e

$$
\partial_t \tilde{C}_2 = D_2 \partial_x^2 \tilde{C}_2 - v_{2x} \partial_x \tilde{C}_2 - \Gamma \tilde{C}_2 + s I_0 \left[\exp\left(s \kappa \tilde{C}_1\right) - 1\right].
$$

(4.19)
Note que os termos lineares permanecem idênticos aos das Equações (4.1) e (4.2), mas que os termos não lineares passam a ser um tanto mais simples. Além disso, repare que a Equação (4.3) se torna desnecessária.

Por fim, cabe ressaltar que descobrimos a mudança de variáveis expressa nas Equações (4.5) e (4.6) muito recentemente; ela não consta em [44, 45].
CONCLUSÃO

Fizemos um estudo dos efeitos físicos na migração de analitos na técnica de eletroforese capilar, dando ênfase aos processos envolvendo temperatura e radiação laser incidente. Procuramos métodos de produzir um estreitamento de banda que se opusesse ao alargamento por difusão.

No Capítulo 1, abordamos alguns aspectos físicos da eletroforese capilar, revendo os processos básicos e derivando as equações fundamentais. No Capítulo 2, de caráter mais matemático, desenvolvemos um procedimento para determinar a evolução temporal da distribuição de concentração a partir da distribuição inicial, utilizando os chamados propagadores.

Propusemos teoricamente, no Capítulo 3, a compressão térmica. Inicialmente, procuramos dar uma explicação qualitativa do mecanismo. Depois, continuando na linha do procedimento do Capítulo 2, desenvolvemos um método numérico de cálculo. Então, utilizando modelos simples de perfil de velocidade, obtivemos resultados que mostram a ocorrência de estreitamento na banda. Por fim, discutimos maneiras de criar os perfis de velocidade através da programação
de temperatura, isto é, através da utilização de gradientes de temperatura ao longo do capilar para manipular as mobilidades eletroosmótica e eletroforética.

No Capítulo 4, estudamos os efeitos da incidência de radiação laser guiada através do capilar sobre a migração do analito. Novamente, buscamos dar uma explicação qualitativa no início. Em seguida, apresentamos e discutimos os resultados do experimento que foi a primeira demonstração de compressão óptica. No final, fizemos um pequeno desenvolvimento teórico, o qual consistiu em uma mudança de variáveis que simplificou as equações diferenciais não lineares do problema.

As perspectivas de continuidade deste trabalho são várias. Em primeiro lugar, temos a possibilidade de preparar um artigo com os resultados do Capítulo 3 para submeter ao editor de uma revista internacional. A nossa abordagem, além de ser inédita na Ciência da Separação, pode vir a ser importante para solucionar numericamente problemas de eletroforese sob condições fisicamente mais complexas, como nos microcanais. Em segundo lugar, podemos realizar experimentos de compressão térmica, procurando situações favoráveis para demonstrar o efeito de estreitamento das bandas. Ainda no campo experimental, podemos tentar produzir compressão óptica em amostras de outras substâncias, além do 2-naftol, que sofram transferência protônica intermolecular no estado excitado, como aquelas citadas em [46].

A busca de soluções analíticas para as Equações (4.18) e (4.19) é mais uma perspectiva; isso seria interessante não só do ponto de vista da eletroforese capilar, mas também do ponto de vista da Física Teórica. Finalmente, outra perspectiva é a adaptação do formalismo e das técnicas experimentais dos Capítulos 3 e 4 para
desenvolver um método de preconcentração de amostra em microcanais usando compressão térmica ou óptica. Essa aplicação possui alto interesse na área da Biotecnologia.
REFERÊNCIAS

AQUI, apresentaremos os programas utilizados para gerar os dados do Capítulo 3.

Perfil de Degrau de Velocidade

Utilizamos o programa abaixo para o cálculo do pico de concentração antes (solução analítica da Equação (2.17)) e depois (solução numérica) da passagem por uma posição onde a velocidade é descontínua. Os parâmetros são os correspondentes à Figura 3.2. As Figuras 3.3 e 3.4 são elaboradas alterando-se o parâmetro \(v_{x\text{baixa}} \) para, respectivamente, 1.5d-1 e 1.d-1.

```fortran
! Programa p/ demonstracao da compressao.
integer, parameter :: M=6500, nmax=1899
double precision, parameter :: C0=1.d0, w=1.d0, tau=1.d-1
double precision, parameter :: D=1.d-4
double precision, parameter :: xdmn=-1.d0, deltaxd=1.d-2
double precision, parameter :: vxbaixa=2.d-1, vxalta=2.5d-1
double precision, parameter :: xant=4.1d1, xgrad=4.5d1
double precision :: pi, invraiz, vx, exparg, Gtau
double precision :: t, tant, erfarg, erfargcw, erf1, erf2
double precision, dimension(M) :: xd, C, Nr, Ctemp
double precision, dimension(M,50) :: Qtemp
integer, dimension(M) :: Qjmin, Qjmax
pi=2.d0*asin(1.d0)
invraiz=1.d0/sqrt(4.d0*pi*D*tau)
vx=vxalta
tant=xant/vx
nant=int(tant/tau)
```
open(5, file='compr_tr_trc2.dat')
t=dble(nant)*tau
do i=1,M
 xd(i)=xdmin+dble(i-1)*deltaxd
 erfarg=(xd(i)-vx*t)/(2.d0*sqrt(D*t))
 erfargcw=(xd(i)-w-vx*t)/(2.d0*sqrt(D*t))
 erf1=erf(erfarg)
 erf2=erf(erfargcw)
 C(i)=(C0/2.d0)*(erf1-erf2)
write(5, '(f10.2,3x,f21.15)') xd(i), C(i)
end do
close(5)
do n=nant,nmax
 Qtemp=0.d0
 do i=1,M
 kflag=0
 k=0
 jmin=1
 do j=1,M
 if (xd(j).lt.xgrad) then
 vx=vxalta
 else
 vx=vxbaixa
 end if
 exparg=-(xd(i)-xd(j)-vx*tau)**2.d0/(4.d0*D*tau)
 Gtau=invraiz*exp(exparg)
 if (Gtau.lt.1.d-12.and.kflag.eq.0) then
 jmin=j+1
 cycle
 else if (Gtau.lt.1.d-12.and.kflag.eq.1) then
 exit
 else
 kflag=1
 k=j-jmin+1
 Qtemp(i,k)=Gtau*deltaxd
 jmax=j
 end if
 end do
 Qjmin(i)=jmin
 Qjmax(i)=jmax
 end do
 Nr=0.d0
 do j=1,M
 do i=1,M
 jmin=Qjmin(i)
 jmax=Qjmax(i)
 if (j.ge.jmin.and.j.le.jmax) then
 k=j-jmin+1
 Nr(j)=Nr(j)+Qtemp(i,k)
 end if
 end do
 end do
 Nr(j)=Nr(j)/Nr(jmin:jmax)
 Qtemp(i,1:k)=Qtemp(i,1:k)/Nr(jmin:jmax)
 Ctemp(i)=dot_product (Qtemp(i,1:k), C(jmin:jmax))
end do
C=Ctemp
Perfil Linear de Velocidade

Utilizamos o programa a seguir para gerar o gráfico da Figura 3.5 referente à corrida com perfil linear de velocidade.

! Programa p/ demonstracao da compressao
! c/ perfil linear de vx.
integer, parameter :: M=6200, nmax=3059
double precision, parameter :: C0=1.d0, w=1.d0, tau=1.d-1
double precision, parameter :: D=1.d-4
double precision, parameter :: xdet=-1.d0, deltadx=1.d-2
double precision, parameter :: xdet=5.d1, vxalta=2.5d-1
double precision :: pi, invraiz, exparg, Gtau
double precision :: xtemp, t, tant, erfarg, erfargcw
double precision, dimension(M) :: xd, vx, C, Nr, Ctemp
double precision, dimension(M,50) :: qtemp
integer, dimension(M) :: qjmin, qjmax
pi=2.d0*asin(1.d0)
invraiz=1.d0/sqrt(4.d0*pi*D*tau)
xtemp=(xdet-xdet)/deltadx
t=0,nmax
i=1,M
xd(i)=xdet+dble(i-1)*deltadx
vx(i)=2.531d-1-3.1d-3*xd(i)
if (xd(i).ge.0.d0.and.xd(i).le.w) C(i)=C0
end do
n=0,nmax
qtemp=0.d0
i=1,M
kflag=0
k=0
jmin=1
j=1,M
exparg=-v(i)-v(j)+v(j)*tau)**2.0/(4.0*D*tau)
Gtau=invraiz*exp(exparg)
if (Gtau.lt.1.d-12.and.kflag.eq.0) then
 kmin=k+1
 cycle
else if (Gtau.lt.1.d-12.and.kflag.eq.1) then
 exit
else
 kflag=1
 k=j-jmin+1
end do
end if
end do
Qjmin(i)=jmin
Qjmax(i)=jmax
end do
Nr=0.d0
do j=1,M
 do i=1,M
 jmin=Qjmin(i)
 jmax=Qjmax(i)
 if (j.ge.jmin.and.j.le.jmax) then
 k=j-jmin+1
 Nr(j)=Nr(j)+Qtemp(i,k)
 end if
 end do
end do
do i=1,M
 jmin=Qjmin(i)
 jmax=Qjmax(i)
 k=jmax-jmin+1
 Qtemp(i,1:k)=Qtemp(i,1:k)/Nr(jmin:jmax)
 Ctemp(i)=dot_product (Qtemp(i,1:k),C(jmin:jmax))
end do
C=Ctemp
end do
open(6,file='compr_tr_trc11.dat')
do i=1,M
 write(6,'(f10.2,3x,f21.15)') xd(i), C(i)
end do
close(6)
stop
end