Occurrence of *Campylobacter jejuni* and *C. coli* on broiler carcasses after chilling in southern Brazil

Gustavo Perdoncini2, Yuli M. Sierra-Arguello2, Leonardo M. Lima2, Michele M. Trindade2, Marcos José Pereira Gomes2, Luciana R. dos Santos3, Verônica Schmidt4 and Vladimir Pinheiro do Nascimento2

Campylobacter jejuni and *C. coli* have been associated with gastrointestinal disorders in human beings, due mainly to the consumption of chicken meat. Despite control measures for reducing contamination by these bacteria, the detection of *Campylobacter* in carcasses after chilling remains high. A total of 105 carcasses were assessed by the horizontal detection method in five federally inspected slaughterhouses in southern Brazil in 2012 and in the first three months of 2013. *Campylobacter* was isolated in 37.1% of the carcasses, of which 97.5% contained *C. jejuni* and 2.5% were infected by *C. coli*. The rate of positive carcasses across the slaughterhouses ranged from 0 to 71.4%. Determining the occurrence of *Campylobacter* among flocks is crucial for estimating the microbial load at specific points along the slaughtering process and for minimizing the risk of contamination of end products by *Campylobacter*.

INDEX TERMS: Campylobacteriosis, cross-contamination, broilers, zoonosis.

INTRODUCTION

Thermotolerant *Campylobacter* spp. are the causative agents of campylobacteriosis (Rosenquist et al. 2003, Butzler 2004), a zoonotic disease (WHO 2000) transmitted to human beings mainly by the consumption of contaminated poultry products (Dickins et al. 2002). In the European Union (EFSA 2012) and in the United States (CDC 2013) *Campylobacter jejuni* and *Campylobacter coli* are often associated with gastroenteritis, and *C. jejuni* is also implicated in Guillain-Barré syndrome (Vucic et al. 2009). The rise...
in the incidence of campylobacteriosis in several countries, especially after 1990, has caused a lot of concern due to the growing morbidity and mortality rates among children and immunocompromised individuals (WHO 2000). This has encouraged research studies in an attempt to minimize the number of positive flocks and to have a better understanding of the intrinsic characteristics of these bacteria.

Seeking to reduce the impact of this pathogen on public health, research studies have investigated the factors that contribute to contamination and persistence of *Campylobacter* spp. on poultry farms. The direct contact of birds with feces, untreated water, rodents, wild birds, or vectors such as *Alphitobius diaperinus* (darkling beetles) infected with this bacterium may contaminate the flocks to be slaughtered (Eberle et al. 2013).

At meat-packing plants, contaminated feces and feathers help disseminate *Campylobacter* in the slaughtering process. Defeathering is critical for contamination as the concentration of *Campylobacter* increases at this stage, as well as in evisceration (Herman et al. 2003, Rosenquist et al. 2006, Figueroa et al. 2009), and measures such as rinsing and chilling of carcasses are alternatives for reducing the incidence of *Campylobacter* (Reich et al. 2008, Figueroa et al. 2009).

However, contamination may occur at any time during the slaughtering process, for instance, in scalding, defeathering, and chilling (Rosenquist et al. 2006, Allen et al. 2007, Figueroa et al. 2009). A study that investigated previous colonization of carcasses by *Campylobacter* spp. detected contamination with *C. jejuni* and *C. coli*, in broiler carcasses in two out of five previously negative flocks (Allen et al. 2007).

Given the importance of this bacterium to public health and to poultry production, this paper assesses the occurrence of *C. jejuni* and *C. coli* in broiler carcasses after chilling at meat-packing plants in southern Brazil.

MATERIALS AND METHODS

A cross-sectional observational study was conducted and convenience samples were used (Thrusfield 2004). In total, 105 broiler carcasses were collected after chilling from five federally inspected slaughterhouses in southern Brazil in 2012 and in the first three months of 2013. The samples were stored in isothermal ice boxes and taken to the laboratory for identification of *C. jejuni* and *C. coli* by the horizontal method (ISO 10272-1:2006). The chilled carcasses were rinsed in sterile polyethylene bags containing 400 mL with buffered peptone water (Oxoid®) and aliquots of 1 mL were obtained and homogenized in 9 mL of Bolton broth - Oxoid® (1:9), which were then incubated in a microaerophic environment (5% O₂, 10% CO₂ and 85% N₂) at 41.5±0.5°C for 48 hours. Thereafter, 100 μL of the broth suspension was filtered in acetylene using a membrane measuring 0.65 μm x 47 mm (Skirrow 1977, Bolton 1982) plated onto mCCD agar (CM739, Oxoid®) for 30 minutes, followed by incubation under the conditions described earlier. *Campylobacter*-compatible colonies were grown on 7% sheep blood agar.

For positive control of isolation and PCR assays were used two references strains, *C. jejuni* subsp. *jejuni* ATCC 29428 and *C. coli* ATCC 43478. The negative control for PCR assay was used *Arcobacter sp.* strain. The DNA of the colonies was obtained by thermal extraction and used for multiplex PCR as proposed by Denis et al. (1999) with some changes, which allows distinguishing *C. jejuni* from *C. coli*. Three primer pairs were used for each reaction, based on the sequence of primers for the common 16s rRNA region between the species: MD16S1, (16s rRNA) F - ATCTAATGGCTTAAACCATTAAAC e R² - GGACGGTAAACTGTAGTTAT with 857 pb. The identification of *C. jejuni* and *C. coli* was based on the genes mapA F - CTA TTTATTATTTGATGCTGTG and R² - GTCTATTATTTGATGCTGTG with 589 pb and ceuE F - AATTGGAAAACTGCTCAACTATG and R² - TGTTTTATTTGATGCTGTG with 462 pb, respectively.

The amplification conditions were as follows: denaturation (10 minutes at 95°C), 35 cycles of denaturation (30 seconds at 95°C), annealing (1 minute and 30 seconds at 59°C), extension (1 min at 72°C), followed by final extension (10 minutes at 72°C). All reactions were performed in a thermocycler (Biocycler – Peltier Thermal Cycler MJ96+MJ96G) and visualized by 1.5% agarose gel electrophoresis stained with ethidium bromide and by ultraviolet transillumination imaging.

RESULTS AND DISCUSSION

Campylobacter was detected in 37.1% of the 105 analyzed carcasses, showing prevalence of *C. jejuni* (97.5%) followed by *C. coli* (2.5%). Both species were detected in two samples (5.1%).

These rates are lower than those reported for European Union countries in 2008 (EFSA 2010), where 75.3% of chilled carcasses were positive for *Campylobacter* spp., with a range from 4.9% (Estonia) to 100% (Luxembourg) and detection of *C. jejuni* in 60.8% of the flocks, followed by *C. coli* and *C. lari* with 41.5%. Carcasses before final rinsing may have a high incidence (up to 100%) of *Campylobacter*, but contamination at this stage is significantly reduced by rinsings and later refrigeration (Son et al. 2007).

In this study the rates of *Campylobacter*-positive samples varied from 0 to 71.4% in chilled carcasses at the five meat-packing plants. In fact, the bacterium was not isolated from only one of the plants (Table 1). These differences can be attributed to the procedures carried out at meat-packing plants, their characteristics, quality management, and minimum operating health standards throughout the slaughtering process, indicating that any problems with these items will be closely related to the final contamination of carcasses (Habib et al. 2012). Another important factor concerns positive flocks, which influence the contamination of equipment and, consequently, the microbiological quality of the end product (Smith et al. 2007, Malher et al. 2011). Consonant with these findings, Kuana et al. (2008) assessed 22 broiler flocks and observed that only

<table>
<thead>
<tr>
<th>Meat-packing plant</th>
<th>Positive (%)</th>
<th>Negative (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5*</td>
<td>27,78</td>
<td>13</td>
</tr>
<tr>
<td>B</td>
<td>12**</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>57,14</td>
<td>9</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>71,42</td>
<td>14</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>

*One positive sample only for *Campylobacter coli*; **Two positive samples for both species. The other isolates were identified as *C. jejuni*. “

Table 1. Occurrence of *Campylobacter jejuni* and *C. coli* at meat-packing plants and in carcasses after chilling
four of them were not positive for *Campylobacter* spp. before slaughter but that changed during the processing stage with the isolation of the bacterium in chilled carcasses.

The increase in carcass contamination is often related to fowl size and to equipment setup. It should be noted, though, that even when the equipment is properly regulated, there may be intestinal rupture in broilers and contamination of the slaughter line. Two different approaches can be used for reducing and/or eliminating the bacterium: adoption of specific control measures for the reduction of *Campylobacter*-positive farms at the primary level, and actions for minimizing the contamination of ready-to-sell carcasses at the industry level (Hald et al. 2000).

Rinsing and refrigeration of carcasses are alternatives for controlling contamination during the slaughtering process, while the immersion of carcasses in water at 75°C for 30 seconds (Corry et al. 2007) or the use of vapor at 90°C for 12 seconds (Whyte et al. 2003) after chilling yielded *Campylobacter* reduction rates of 1.6 log10 cfu/cm2 and 1.3 log10 cfu/g, respectively. The use of organic acids in the chilling process has been assessed and has reduced contamination, but these products have an impact on the sensory features of carcasses (Nagel et al. 2013).

Investment in logistics and verification of flocks for the presence of *Campylobacter* before slaughter help reduce cross-contamination (Nauta & Havelaar 2008) and would be an alternative for avoiding putting negative and positive flocks together. Nevertheless, this strategy is not successful when traditional detection methods are used, as such methods require at least 48 hours for confirmation of positive results. Once negative flocks are identified in the field, it is necessary to ensure that broilers will not be contaminated during transportation from the farms to the slaughterhouse (Hansson et al. 2005). However, a study conducted in the Netherlands by Nauta et al. (2009) assessed 62 broiler flocks and did not find significant support for the implementation of control strategies targeted at the identification of positive flocks in the field and at slaughtering time. The correlation between the contamination of flocks and of breast cuts by *Campylobacter* suggests these assessed criteria are not good indicative signs of human exposure to *Campylobacter*.

Only the identification of the bacterium in the field would not be an indication of possible human campylobacteriosis, due to the influence of slaughtering technology, which makes the detection of *Campylobacter* in carcasses an essential tool for evaluating the risk of contamination. The adoption of measures that can reduce the number of positive carcasses goes beyond slaughtering logistics (Evers 2004), as other measures such as improvements in scaling, in the configuration of defeathering equipment and techniques, in evisceration, and additional rinsings of carcasses are also important.

The inclusion of qualitative microbiological analysis of carcasses is paramount in checking for the presence of pathogens after the processing stage. This allows estimating the microbial load at specific points along the process, thereby minimizing the incidence of *Campylobacter* in carcasses after chilling and improving the microbiological quality of chicken meat.

Acknowledgments. To CNPq (Brazilian National Council for Scientific and Technological Development) and CAPES (Coordination for the Improvement of Higher Education Personnel) for the financial support and fellowships. We are also thankful to professor Marcos José Pereira Gomes, head of the Laboratory of Veterinary Bacteriology of Universidade Federal do Rio Grande do Sul, and to the CDFA (Diagnostic and Research Center for Avian Pathology) for their technical and structural support.

REFERENCES

