Discrete Gate Sizing and Timing-Driven Detailed Placement for the Design of Digital Circuits

Thesis presented in partial fulfillment of the requirements for the degree of Doctor on Microelectronics

Marcelo de Oliveira Johann
Advisor

Ricardo Augusto da Luz Reis
Coadvisor

Porto Alegre, December 2015
Flach, Guilherme Augusto

104 f.: il.

ACKNOWLEDGMENTS

To my family...
In memoriam of João Félix
ABSTRACT

Electronic design automation (EDA) tools play a fundamental role in the increasingly complexity of digital circuit designs. They empower designers to create circuits with several order of magnitude more components than it would be possible by designing circuits by hand as was done in the early days of microelectronics. In this work, two important EDA problems are addressed: gate sizing and timing-driven detailed placement. They are studied and new techniques developed. For gate sizing, a new Lagrangian-relaxation methodology is presented based on local timing information and sensitivity propagation. For timing-driven detailed placement, a set of cell movement methods are created using drive strength-aware optimal formulation to driver/sink load balancing. Our experimental results shows that those techniques are able to improve the current state-of-the-art.

Keywords: Discrete Gate Sizing, Timing-Driven Detailed Placement, Lagrangian Relaxation, EDA, Microelectronic.
Ferramentas de projeto de circuitos integrados (do inglês, electronic design automation, ou simplesmente EDA) têm um papel fundamental na crescente complexidade dos projetos de circuitos digitais. Elas permitem aos projetistas criar circuitos com um número de componentes ordens de grandezas maior do que seria possível se os circuitos fossem projetados à mão como nos dias iniciais da microeletrônica. Neste trabalho, dois importantes problemas em EDA serão abordados: dimensionamento de portas e posicionamento detalhado dirigido ao desempenho. Para dimensionamento de portas, uma nova metodologia de relaxação Lagrangiana é apresentada baseada em informação de temporização locais e propagação de sensividades. Para posicionamento detalhado dirigido ao desempenho, um conjunto de movimentos de células é criado usando uma formação ótima atenta à força de alimentação para o balanceamento de cargas. Nossos resultados experimentais mostram que tais técnicas são capazes de melhorar o atual estado-da-arte.

Palavras-chave: Dimensionamento de Portas Discreto, Posicionamento Detalhado Dirigido à Desempenho, Relaxação Lagrangiana, EDA, Microeletrônica.
LIST OF ABBREVIATIONS AND ACRONYMS

ABU Average Bin Utilization
AWE Asymptotic Waveform Evaluation
CAD Computed-Aided Design
DP Dynamic Programming
EDA Electronic Design Automation
eTNS Total Negative Slack for Early Timing Mode
eWNS Worst Negative Slack for Early Timing Mode
HPWL Half-Perimeter Wirelength
ICCAD International Conference on Computer Aided Design
ISPD International Symposium in Physical Design
KKT Karush-Kuhn-Tucker
LCB Local Clock Buffer
LDP Lagrangian Dual Problem
LR Lagrangian Relaxation
LRS Lagrangian Relaxation Sub-Problem
lTNS Total Negative Slack for Late Timing Mode
lWNS Worst Negative Slack for Late Timing Mode
MOR Model Order Reduction
NP Nondeterministic Polynomial Time
PP Primal Problem
PRIMA Passive Reduced-order Interconnect Macromodeling Algorithm
QoR Quality of Results
QS Quality Score
RC Resistor (R) - Capacitor (C)
RLC Resistor (R) - Inductor (L) - Capacitor (C)
RTL Register Transfer Level
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Simulated Annealing</td>
</tr>
<tr>
<td>SSTA</td>
<td>Statistical Static Timing Analysis</td>
</tr>
<tr>
<td>STA</td>
<td>Static Timing Analysis</td>
</tr>
<tr>
<td>StWL</td>
<td>Steiner Tree Wirelength</td>
</tr>
<tr>
<td>TDDP</td>
<td>Timing-Driven Detailed Placement</td>
</tr>
<tr>
<td>TDP</td>
<td>Timing-Driven Placement</td>
</tr>
<tr>
<td>TNS</td>
<td>Total Negative Slack</td>
</tr>
<tr>
<td>VLSI</td>
<td>Very Large Scale Integration</td>
</tr>
<tr>
<td>WNS</td>
<td>Worst Negative Slack</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\[f \] Femto
\[\mu \] Micron/Mean
\[m \] Milli
\[n \] Nano
\[\Omega \] Ohms
\[p \] Pico
\[\sum \] Summation
\[\sigma \] Standard deviation
\[V_{th} \] Threshold Voltage
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Design Flow of Digital Synchronous Circuits</td>
<td>22</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Iterations over the Design Flow with Increasing Levels of Accuracy</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Static Timing Analysis in the Design Flow</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>A combinational circuit and its timing graph.</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Timing Sense</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>D-type Register (Flip-Flop)</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Timing diagram for a positive edge-triggered register (flip-flop)</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Lookup Table</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Timing characteristics of a timing arc.</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>A Simple RC Network</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Model Order Reduction</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Gate Sizing Problem</td>
<td>35</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Sources of Leakage Current</td>
<td>37</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Basic algorithm to solve the Lagrangian dual problem</td>
<td>46</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>An example circuit</td>
<td>47</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Gate Sizing in the Design Flow</td>
<td>50</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Local timing evaluation after a gate has been sized</td>
<td>52</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>High-level view of our gate selection flow</td>
<td>53</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Lambda-Delay Cost Computation</td>
<td>57</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Delay Sensitivity Computation</td>
<td>58</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Slack Compression</td>
<td>68</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>Sizes and Vth Changes</td>
<td>69</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Runtime Breakdown</td>
<td>69</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Influence of Placement on Wirelength</td>
<td>73</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>Main Steps of a Placement Stage</td>
<td>74</td>
</tr>
<tr>
<td>Figure 7.1</td>
<td>Timing-Driven Detailed Placement in the Design Flow</td>
<td>78</td>
</tr>
<tr>
<td>Figure 7.2</td>
<td>Legalization via Nearest White Space Search</td>
<td>80</td>
</tr>
<tr>
<td>Figure 7.4</td>
<td>Buffer Balancing Technique aims to find a buffer position that minimizes timing violation</td>
<td>81</td>
</tr>
<tr>
<td>Figure 7.6</td>
<td>Buffer Balancing Technique Modeling</td>
<td>81</td>
</tr>
<tr>
<td>Figure 7.7</td>
<td>Cell Balancing Technique Modeling</td>
<td>82</td>
</tr>
<tr>
<td>Figure 7.8</td>
<td>Load Reduction of critical nets. Non-critical sinks (gray cells) are moved closer to their driver cell (D).</td>
<td>84</td>
</tr>
</tbody>
</table>
Figure 7.10: Useful Clock Skew Optimization by Moving Registers Closer to Local Clock Buffers. 85
Figure 7.12: Iterative Spreading 85
Figure 7.13: Register Swap by Optimal Assignment 86
Figure 7.14: Register-to-Register Early Violation Path Fix 87
Figure 7.15: Timing-Driven Detailed Placement Flow 88
Figure 7.16: Estimating the Driver Resistance of a Timing Arc (Cell) 90
Figure 7.17: Reference Slew Computation 91
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Information provided by a STA tool for pins.</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>Sizing Classification</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary of Works on Continuous Gate Sizing</td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary of Works on Discrete Gate Sizing</td>
<td>43</td>
</tr>
<tr>
<td>5.1</td>
<td>Definitions of some terms used in this work</td>
<td>52</td>
</tr>
<tr>
<td>5.2</td>
<td>Leakage power (W) and runtime (min) results on ISPD 2012 benchmarks suite.</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Hu (HU et al., 2012) and Li (LI et al., 2012) runtimes are taken from the corresponding papers.</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Results of this flow when the slack filtering is disabled.</td>
<td>66</td>
</tr>
<tr>
<td>5.4</td>
<td>Results of this flow when lambda-delay sensitivity is disabled.</td>
<td>67</td>
</tr>
<tr>
<td>5.5</td>
<td>Leakage power improvement using lambda-delay sensitivity on final results.</td>
<td>67</td>
</tr>
<tr>
<td>5.6</td>
<td>Leakage power (W), runtime (min) and clock period (ps) on ISPD 2013 benchmarks comparing the contest results and our new results using accurate timing information in TR and PR algorithms.</td>
<td>70</td>
</tr>
<tr>
<td>7.1</td>
<td>Moves Developed in this Thesis</td>
<td>79</td>
</tr>
<tr>
<td>7.2</td>
<td>Configuration of the ICCAD 2015 Contest benchmarks.</td>
<td>89</td>
</tr>
<tr>
<td>7.3</td>
<td>Comparison between the actual delay and the delay estimated via driver resistance.</td>
<td>91</td>
</tr>
<tr>
<td>7.4</td>
<td>Improvement of this flow over the initial placement results for long maximum displacement.</td>
<td>92</td>
</tr>
<tr>
<td>7.5</td>
<td>Improvement of this flow over the initial placement results for short maximum displacement.</td>
<td>92</td>
</tr>
<tr>
<td>7.6</td>
<td>Comparison of this flow and results from the 1st place at ICCAD 2015 contest for long maximum displacement.</td>
<td>93</td>
</tr>
<tr>
<td>7.7</td>
<td>Comparison of this flow and results from the 1st place at ICCAD 2015 contest for short maximum displacement.</td>
<td>93</td>
</tr>
<tr>
<td>7.8</td>
<td>Average improvement on quality score per move type for long maximum displacement.</td>
<td>94</td>
</tr>
<tr>
<td>7.9</td>
<td>Impact on results when pin importance (criticality and centrality) is used in Cell Balancing.</td>
<td>95</td>
</tr>
<tr>
<td>7.10</td>
<td>Impact on results when bad move filtering is disabled.</td>
<td>95</td>
</tr>
</tbody>
</table>
CONTENTS

1 INTRODUCTION ... 21
 1.1 Design Flow of Digital Synchronous Circuits 22
 1.1.1 Logic and Physical Synthesis Merging 23
 1.1.2 Design Flow Iterations ... 23
 1.2 Contributions and Scope of This Thesis 24

2 STATIC TIMING ANALYSIS (STA) 25
 2.1 Timing Graph ... 26
 2.2 Timing Mode ... 26
 2.2.1 Late (Max) .. 26
 2.2.2 Early (Min) .. 27
 2.3 Timing Sense ... 27
 2.4 Timing Information .. 27
 2.5 Timing Propagation ... 28
 2.5.1 False Paths .. 29
 2.6 Timing Tests .. 29
 2.7 Timing Models .. 30
 2.7.1 Cells .. 30
 2.7.2 Interconnections .. 31

3 GATE SIZING ... 35
 3.1 Sizing Problem Classification 35
 3.2 Sizing Formulation .. 36
 3.3 Gate Sizing for Leakage Power Minimization 36
 3.4 Challenges ... 38
 3.5 Related Work ... 38
 3.5.1 Early Work .. 39
 3.5.2 State-of-the-Art .. 41
 3.5.3 Summary .. 42

4 GATE SIZING VIA LAGRANGIAN RELAXATION 45
 4.1 Lagrangian Relaxation .. 45
 4.1.1 Solving the Lagrangian Dual Problem 46
 4.2 Applying Lagrangian Relaxation in the Gate Sizing Problem 47
 4.2.1 Lagrangian Relaxation 48
 4.2.2 Simplification of LRS_{λ} 48
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6.2 Iterative Spreading</td>
<td>85</td>
</tr>
<tr>
<td>7.6.3 Register Swap</td>
<td>85</td>
</tr>
<tr>
<td>7.6.4 Register-to-Register Path Fix</td>
<td>86</td>
</tr>
<tr>
<td>7.7 Flow</td>
<td>87</td>
</tr>
<tr>
<td>7.8 Experimental Setup</td>
<td>88</td>
</tr>
<tr>
<td>7.8.1 Quality Score</td>
<td>89</td>
</tr>
<tr>
<td>7.8.2 Benchmarks</td>
<td>89</td>
</tr>
<tr>
<td>7.8.3 Assumptions and Limitations</td>
<td>89</td>
</tr>
<tr>
<td>7.9 Library Characterization</td>
<td>90</td>
</tr>
<tr>
<td>7.9.1 Move Gains</td>
<td>93</td>
</tr>
<tr>
<td>7.9.2 Impact of Pin Importance (Criticality and Centrality)</td>
<td>94</td>
</tr>
<tr>
<td>7.9.3 Impact of Filtering Out Bad Moves</td>
<td>94</td>
</tr>
<tr>
<td>7.10 Conclusions</td>
<td>95</td>
</tr>
<tr>
<td>8 FINAL REMARKS</td>
<td>97</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>99</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

During the 1950-70’s, humanity has experienced a shift from analog and mechanical components to digital in the mainstream technology. This change marks the beginning of the Digital Revolution, which, as the Agriculture and Industrial counterparts, brought several improvements in the well-being of the mankind.

The digital technology allows much faster, reliable and cheap computation and communication. Digital signals are more tolerant to noise. Data can be sent through long distances and even tolerate errors by sophisticated error-correcting methods. Moreover by using only two discrete values to represent information, the systems are simplified making them easier to design, test and produce compared to an analog circuit with about the same number of components.

Two technological breakthroughs can be pointed out as the main milestones in the Digital Revolution: the invention of transistor and the very-large scale integration (VLSI).

The transistor was invented in 1947 by American physicists John Bardeen, Walter Brattain, and William Shockley. It is a semiconductor device that can be used as a switch enabling fast, non-mechanical computation. It is the basic building-block of modern circuits.

But was not until the late 60’s and early 70’s that the real impact of transistors took place as new technologies enabled several transistors and other components to be built out of the same block. From that point on, the number of components integrated into a same chip has been doubled approximately every two years, following Moore’s observation from 1975 referred to as Moore’s Law (MOORE, 1975).

As the number of components grew, the complexity of designing an integrated circuit also increased. First designs were literally designed by hand, but this soon became a bottleneck and the first software to aided the circuit design were created in mid-1970’s. In early 1980’s, the idea of using programming languages and compiling them to hardware started to consolidate (MEAD; CONWAY, 1979). This notion further pushed the development of computer-aided design (CAD) software for chip design, currently known as Electronic Design Automation (EDA) software. Today all digital circuit designs are done using EDA tools from the translation of high-level hardware description languages to the output file format used to fabricated them.

Several steps are required to design an integrated circuit, each step being composed by one or more EDA tools which are run in a sequential or iterative way. Other tools are also used to measure the circuit performance, power consumption among other characteristics. These steps and measurement tools compose the design flow of digital circuits.

In this work, new observations and techniques for gate sizing and timing-driven detailed placement steps of the design flow are presented. These techniques are implemented as stand-alone EDA tools and the results obtained are reported and analysed.
1.1 Design Flow of Digital Synchronous Circuits

The design flow is a set of steps performed to convert a design specification to a low-level description which is not just ready to be fabricated, but is optimized and meet the requirements from the specification.

A typical design flow for digital synchronous circuits using the standard cell methodology is presented in Figure 1.1. Standard cell methodology, which is the dominant design methodology, translates a design description to a description where pre-characterized components or cells from a library are used. Other methodologies do exist as full-custom and library-free automatic generation, but they are out of scope of this work.

Figure 1.1: Design Flow of Digital Synchronous Circuits

It should be noted that the flow presented in Figure 1.1 is only a reference flow, the actual flow used by designers may vary, although the overall idea is the same.

The design flow is divided into three main phases – (1) high-level synthesis, (2) logic synthesis and (3) physical synthesis – responsible to bring the design state gradually more closely to the optimized and low-level state required for fabrication.

In the high-level synthesis phase, the circuit specification is translated into a register-transfer level (RTL) abstraction. RLT represents the circuit as data and control signals flowing through logical operations between storage elements (referred to as registers). This representation is closely related to the final design implementation in the sense that it uses the two basic components of circuit designs: storage and logic elements.

Logic synthesis takes the RTL representation, optimizes it and create an implementable design representation by mapping the storage and logic elements to a library of standard elements previously built for the target technology. After mapping, more optimizations are performed. Among the techniques used during logic synthesis are logic minimization, sizing, restructuring, retiming, buffering.

Finally, during the physical synthesis a floorplanning for the optimized and mapped circuit is defined. After that, elements are placed and the interconnections between them
are generated.

In general, each phase is broken down into steps, which may be further subdivided. A step is composed by a core method responsible to achieve the specific goal of that step combined with calls to other more general optimization procedures.

Several optimization methods are available and used throughout the flow as structuring, re-time, gate sizing, buffer insertion, placement optimization, routing optimization. These methods can be called several times during the design flow and a typical flow may have several different implementation of each kind of optimization method applying different strategies.

Measurement tools as timing analysis, power analysis, verification among others support the steps and optimization techniques providing up-to-date information about the current state of the design. Many methods use built-in analysis tools, though usually these built-in tools use more simplified models to trade-off accuracy and runtime.

1.1.1 Logic and Physical Synthesis Merging

In early days, logic synthesis and physical synthesis were two completely separated phases. However this wall between them – as some authors referred it to – started to be teared down due to the increase of interconnection importance to define the circuit characteristics in newer technologies.

This merge happened in both ways. Logic synthesis methods start to use more accurate interconnection and physical information and physical synthesis methods start to call optimization methods that were only called during logic synthesis before. So, beside the iterations, the flow itself is now designed in such a way to allow this kind of iteration between logic and physical synthesis.

1.1.2 Design Flow Iterations

The design of an integrated circuit usually takes several iterations over the design flow to be finished. An iteration happens any time the flow is restarted in an early stage to use more precise or detailed data obtained in a later stage. This processes and the increase of modeling accuracy is depicted in Figure 1.2.
1.2 Contributions and Scope of This Thesis

In this work the gate sizing and placement optimization method are studied and new techniques are developed. They are developed intended to be used in early stages of the design flow, although they can be extended to work on more sophisticated models suitable for late stages. Both method have an important impact on the timing closure of the design, playing a direct role to meet the timing requirements.
2 STATIC TIMING ANALYSIS (STA)

Static timing analysis (STA) is a fast method for asserting and verifying the timing of a circuit independently of the stimulus applied to it. The analysis is called static as the timing characteristics of elements are usually computed assuming that other signals are not changing. STA computes the upper and lower bounds of the amount of time signals take to propagate inside the circuit through its several elements and interconnections. These bounds are then used to guarantee that the circuit will work properly in the specified frequency.

STA is generally available as a sign-off tool in the design flow as shown in Figure 2.1, although some methods may implement their own simplified, built-in static timing analysis for performance reasons. It is executed several times during the design flow using different levels of accuracy depending on the physical information available or the accuracy required. It is not uncommon to perform a STA using simplified timing models even if detailed timing information is already available to trade-off accuracy and runtime.

Figure 2.1: Static Timing Analysis in the Design Flow
2.1 Timing Graph

For the purpose of static timing analysis, a digital circuit is composed by combinational and sequential cells whose pins are connected via interconnections allowing signals to propagate.

A static timing analysis is performed on a directed graph where nodes represent the cell pins and edges represent the path connecting such pins. A design and its respective graph model is exemplified in Figure 2.2.

Figure 2.2: A combinational circuit and its timing graph.

Edges are also more commonly referred to as timing arcs and they are classified in two categories depending on the element that the edge describes. If an edge connects two pins of a same cell, it is called a cell timing arc. On the other hand, if an edge connects two pins of different cells it is called a net timing arc.

2.2 Timing Mode

A static timing analysis is performed typically in two modes: late and early. These two modes compute the upper and lower propagation delay bounds representing the worst and best case scenarios respectively. Some other methods as Statistical Static Timing Analysis (SSTA) (GULATI; KHATRI, 2009) may be used to compute the circuit delay using variability ranges, but they are out of the scope of this work.

In general, different characterizations for cells and interconnections are used for each timing mode. For early mode, the interconnections and cells are supposed to work on their best case scenario, i.e, as fast as possible. On the other hand, for late mode, the interconnections and elements are expected to work on their worst case scenario, i.e. as slow as possible.

2.2.1 Late (Max)

The late mode computes the worst case scenario returning the maximum time signals take to propagate through the timing graph.

The late mode is used to verify the maximum frequency the circuit can operate – a central goal in circuit design. That is why it is the most common mode and many times during the flow it is the only mode being asserted.
2.2.2 Early (Min)

The early mode compute the best case scenario returning the minimum time signals take to propagate through the timing graph. This information is useful to eliminate some kind of timing violations caused when a pin changes its state before the storage element has time to store the value.

2.3 Timing Sense

Cell timing arcs have a timing sense, which indicates the direction of an output transition w.r.t. the direction of the input transition assuming that the other inputs are constant. The direction of a transition can be either rising or falling. The timing senses are depicted in Figure 2.3.

![Figure 2.3: Timing Sense](image)

A timing arc is **positive unate** if the direction of the signal is kept when propagating through the arc. Timing arcs of non-inverting buffers, ORs, ANDs are positive unate.

A timing arc is **negative unate** if the direction of the signal is inverted when propagating through the arc. Timing arcs of inverters, NORs, NANDs are negative unate.

The arc is called **non-unate** when it may be inverting or non-inverting depending on the values of other inputs. Timing arcs of XOR, XNOR are non-unate. By definition, the timing arcs from clock to the data output of sequential elements are also marked as non-unate as the signal does not actually propagates through them, but depends on the data stored.

2.4 Timing Information

Typically a STA tool provides several information about pins and timing arcs that designers and tools can made use of to identify violations and room for improvements. For timing arcs, the delay and slew are provided. Table 2.1 summarizes the typical data provided for pins.

By definition, the late and early slack at pin P are defined as in Equation (2.1) and Equation (2.2).
Table 2.1: Information provided by a STA tool for pins.

<table>
<thead>
<tr>
<th>Data</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrival time</td>
<td>(at_P)</td>
<td>The maximum (late mode) or minimum (early mode) time a signal takes to reach the pin (P).</td>
</tr>
<tr>
<td>required time</td>
<td>(rat_P)</td>
<td>The time a signal is required to reach pin (P) to avoid timing violation.</td>
</tr>
<tr>
<td>slack</td>
<td>(slack_P)</td>
<td>Indicates the amount of time the signal reaching pin (P) can be delayed (late mode) or sped up (early mode) without causing violation. Negative values indicate the amount of time required to fix the violation.</td>
</tr>
<tr>
<td>slew</td>
<td>(slew_P)</td>
<td>Indicate the slew at pin (P).</td>
</tr>
</tbody>
</table>

\[
slack_P^{early} = at_P - rat_P \tag{2.1}
\]

\[
slack_P^{late} = rat_P - at_P \tag{2.2}
\]

2.5 Timing Propagation

The models used to define the timing characteristics of elements and hence the timing characteristics of timing arcs may vary, but the overall idea of timing propagation in STA is the same.

Starting from primary inputs, the delay is propagated through timing arcs by summing the arrival time at the input pin of the timing arc with the timing arc delay. When multiple timing arcs converge to a same pin, the maximum delay for late mode or the minimum delay for early mode is propagated. Similarly, the largest slew for late mode or the smallest slew for early mode are propagated to a pin when multiple timing arcs converge. The basic arrival time propagation method for static timing analysis for late mode can be written as in Algorithm 2.1.

Algorithm 2.1: Arrival Time Propagation

1. set arrival time of path startpoints
2. for each pin \(j\) in topological order do
3. \[at_j \leftarrow -\infty\]
4. for each timing arc \(i \rightarrow j\) do
5. \[at_j \leftarrow \max\{at_j, at_i + delay_{i \rightarrow j}\}\]

Then, from endpoints to startpoint, require times are propagated by subtracting the timing arcs delays. Wherever two or more timing arcs converge to a same pin, the maximum required time is propagated for early mode and the minimum required time is propagate for late mode. The basic required time propagation method for static timing analysis for late mode can be written as in Algorithm 2.2.
Algorithm 2.2: Required Time Propagation

1. set required time of path endpoints
2. for each pin \(i \) in reverse topological order do
3. \(a_{t_i} \leftarrow +\infty \)
4. for each timing arc \(i \rightarrow j \) do
5. \(r_{at_i} \leftarrow \min\{ r_{at_j}, r_{at_i} - \text{delay}_{i\rightarrow j} \} \)

2.5.1 False Paths

Some paths represented in the timing graph may never be stimulated in the actual design. This may be caused due to logical contradictions or simply because the design does not use them. Such paths are called false paths. Usually STA tools allow designers to define such paths by disabling some timing arcs so that signal does not propagate through them.

2.6 Timing Tests

Once the arrival times have been propagated through the timing graph, the slack at endpoints are verified. A timing violation occurs whenever the slack at an endpoint is negative. For late mode, a timing violation occurs when the arrival time at an endpoint is larger than the required time at that same endpoint. Analogously, for early mode, a timing test fails when the arrival time is smaller than the required time.

For the discussion in this work, a D-type register (flip-flop) as shown in Figure 2.4 is assumed where \(D \) is the input pin, \(CK \) is the clock pin and \(Q \) is the output pin. Other types of flip-flops can be handled in a similar way.

![Figure 2.4: D-type Register (Flip-Flop)](image)

In order to retain the data correctly, the data signal at \(D \) must be stable before and after the clock signal reaches the storage element via \(CK \) pin as illustrated in Figure 2.5. The time required before is defined as the setup time \((t_{\text{setup}}) \) and the time required after is defined as the hold time \((t_{\text{hold}}) \).

When the clock signal is received, the data stored by the register is not immediately available at its output pin. The time required to the data to be available after the clock signal arrives is defined as \(d_{\text{CK} \rightarrow Q} \) (usually read as “clock to Q”). The \(CK \rightarrow Q \) timing arc is modeled in the same way as the a non-unate combinational timing arc.

For sequential elements, in the late mode, the required time is defined as a specified clock period, \(T \) plus the clock signal latency to reach the sequential cell, \(l_{\text{early}} \), less the setup time as in Equation (2.3).
Figure 2.5: Timing diagram for a positive edge-triggered register (flip-flop).

\[\text{setup} = \text{hold} = T + l_{\text{early}} - t_{\text{setup}} \]
(2.3)

In the early mode, the required time is defined as the clock latency, \(l_{\text{late}} \), plus the hold time as in Equation (2.4).

\[\text{rat}_{D}^{\text{hold}} = \text{rat}_{D}^{\text{early}} = l_{o} + t_{\text{hold}} \]
(2.4)

2.7 Timing Models

STA can be used with several different timing models for cells and interconnections. In this section, some of the most common models are presented.

2.7.1 Cells

Cell delays can be modeled as simple as a constant value, linear equations or non-linear equations usually described by look-up tables. Look-up tables are the standard industry model for synthesis. Basically it is a two-dimensional table containing several samples of a timing characteristic of a cell (i.e. delay, output slew). The data is generated by accurate electrical simulation. The table is addressed by a load (capacitance) and an input slew as shown in Figure 2.6.
The timing characteristic of a timing arc are represented in Figure 2.7. Delay is measured from the time the input signal reaches 50% of the logical-one voltage value to the time the output signal reaches 50%. Slew is typically measured as the amount of time required for a signal to go from 10% to 90% (or 20% to 80%) and vice versa.

![Figure 2.7: Timing characteristics of a timing arc.](image)

Source: from author (2015)

2.7.2 Interconnections

The interconnection simulation for sophisticated models is the most timing consuming part of a STA. Several models may be used depending on the accuracy required or the information available. Sophisticated models can handle several aspects of interconnections including crosstalk, noise and can fairly estimate the values from a full electrical simulation.

2.7.2.1 Lumped

The lumped model is not actually a delay model as it represents the interconnection by a single capacitance. This capacitance is summed to the load a cell is driving. In spite of its simplicity and inaccuracy, it is used as a fast estimate of the delay due to interconnection mainly in early stages of the design flow.

2.7.2.2 Elmore Delay

Electrical simulation is very timing consuming. Generally the timing information is required to be updated several times in the design flow, and therefore, for highly-iterative methods, electrical simulation may be prohibitive.

The Elmore delay model (ELMORE, 1948) can be used as a fast, upper bound approximation of the actual delay of an RC network.

For trees-like networks (acyclic networks), the Elmore delay, \(D(P_j) \), at a pin \(P_j \) can be computed recursively as shown in Equation (2.5) where \(R_{i \rightarrow j} \) is the resistance connecting \(P_i \) to \(P_j \) and \(C_{down} \) is the sum of all capacitances from \(P_i \) down to the tree leaves.

\[
D(P_j) = D(P_i) + R_{i \rightarrow j} C_{down} \tag{2.5}
\]

For mesh-like networks (cyclic networks), it can be computed throughout a nodal analysis replacing capacitances by current sources of same magnitude and removing all voltage sources (MUSTAFA CELIK LARRY PILEGGI, 2002). The node voltage is the Elmore delay of the respective node.
Therefore we can find the Elmore delay for each RC network node, $\vec{\tau}$, by solving the linear system presented in Equation (2.6) where G is the conductance matrix of the RC network and \vec{c} is the capacitance associated with each network node.

$$G\vec{\tau} = \vec{c}$$ \hspace{1cm} (2.6)

Since the Elmore delay is related to the RC value of nodes, we can write the Equation (2.6) in a more straightforward fashion. The inverse of G is the resistance matrix, R, so we can write Equation (2.6) as in Equation (2.7).

$$G\vec{\tau} = \vec{c} \rightarrow \vec{\tau} = G^{-1}\vec{c} \rightarrow \vec{\tau} = R\vec{c}$$ \hspace{1cm} (2.7)

For an RC network with n nodes, the conductance matrix G is an $n \times n$ symmetric matrix, which is built as follow. Let r_{ij} be the resistance connecting node i to node j and r_i the resistance connecting node i to ground (drive resistance) so the conductance matrix, $G = [g_{ij}]$, is defined by Equation (2.8).

$$g_{ij} = \begin{cases} \frac{-1}{r_{ij}} & i \neq j \\ \frac{1}{r_i} + \sum_{k=1,k \neq i}^{n} \frac{1}{r_{ik}} & i = j \end{cases}$$ \hspace{1cm} (2.8)

Now we present a simple example on how to build the Elmore system for the RC network shown in Figure 2.8. The corresponding linear system is shown in Equation (2.9).

$$\begin{bmatrix} \frac{1}{R_0} + \frac{1}{R_{01}} + \frac{1}{R_{02}} \\ -\frac{1}{R_{01}} \\ -\frac{1}{R_{02}} \end{bmatrix} + \begin{bmatrix} \frac{1}{R_{11}} \frac{1}{R_{01}} + \frac{1}{R_{12}} \\ -\frac{1}{R_{11}} \frac{1}{R_{02}} + \frac{1}{R_{12}} + \frac{1}{R_{02}} \end{bmatrix} \begin{bmatrix} \tau_0 \\ \tau_1 \\ \tau_2 \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix}$$ \hspace{1cm} (2.9)

Since matrix G is sparse and positive semi-definite (BHATIA, 2006) we can use the Incomplete Cholesky Conjugate Gradient method (SHEWCHUK, 1994) to solve the linear system in Equation (2.6).
2.7.2.3 Model Order Reduction (MOR)

Model order reduction works by creating a simplified (or reduced) model of the interconnection as exemplified in Figure 2.9. This reduced model is then simulated using electrical simulation.

MOR techniques can be classified into two types: (1) moment matching-based MOR techniques and (2) node elimination-based MOR techniques (KIM; KIM, 2009).

MOR techniques based on moment matching reduce an interconnection into a small model by matching some of the interconnection moments. Some moment matching-based MOR techniques are Asymptotic Waveform Evaluation (AWE) (PILLAGE; HUANG; ROHRER, 1989), Passive Reduced-order Interconnect Macromodeling Algorithm (PRIMA) (ODABASIOGLU; CELIK; PILEGGI, 1998), Pade via Lanczos (FELDMANN; FREUND, 1995). As the important moments are preserved, these techniques usually present a good accuracy. However the macro-model does not represent directly a linear RLC interconnection, which may be an issue for some applications.

Node elimination-based MOR techniques reduce an interconnection directly by removing less important nodes. The reduced model represent a linear RC interconnection. Although they are less accurate when compared with the moment matching techniques, these methods are more efficient. Some examples of node elimination-based MOR techniques are TICER (SHEEHAN, 1999) and R^2-Power (CHE et al., 2009).
GATE SIZING

Gate sizing also referred as gate selection is a process where the sizes of the design components are set as illustrated in Figure 3.1. It is a very effective way to tune the design to meet timing and reduce area and power consumption by selecting proper components sizes as the component sizes define how fast the component will be and how much power/area it will use.

Figure 3.1: Gate Sizing Problem

Roughly speaking, the larger the component size, the faster it is at expense of more power consumption and area occupied. However by just sizing all components to the largest size one does not guarantee the fastest design as a larger component imposes a larger load to its driver, which then become slower. This dependency among component delays makes the gate sizing problem very challenging. A good gate sizing method must understand this delay dependency and trade-off the components speeds with the energy or area consumed by them.

3.1 Sizing Problem Classification

Sizing can be divided into two categories: (1) transistor sizing and (2) gate sizing. Each category can be solved into two different domains: (1) continuous and (2) discrete. These combinations are summarized in Table 3.1.

Usually the continuous sizing is associated to the transistor sizing problem and the discrete sizing is associated to the gate sizing problem, but this is not mandatory. Moreover the continuous modeling is more suitable for the full-custom design methodology whereas
Table 3.1: Sizing Classification

<table>
<thead>
<tr>
<th>Component</th>
<th>Domain</th>
<th>Continuous</th>
<th>Discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the discrete modeling is applied typically to the standard-cell methodology. Continuous modeling also find their role in several discrete algorithms where they are used directly or indirectly to guide the discrete optimization.

Continuous modeling almost always use convex models that can be solved optimally in polynomial time. On the other hand, the discrete modeling is proved to be NP-Hard (Li, 1993) so that no polynomial time algorithm can be devised, unless $P = NP$. This imposes several challenges to the development of efficient discrete sizing algorithms. In the continuous version, the issue is the correlation between the convex models and the actual behaviour of the components. In the discrete version the major concern is keeping the runtime under control.

3.2 Sizing Formulation

Gate sizing is usually formulated in one of three basic ways:

- minimize either area or power subject to performance constraint;
- maximize performance subject to area and/or power constraints;
- maximize performance.

These formulations can be extended to handle other constraints as maximum load, maximum transition time, etc and other objective function as well, but they describe the core idea of the sizing problem. The formulation aiming only performance with no constraints is used to verify the limits of the design performance and be used as a starting point for power and area optimization.

The circuit performance is usually measured by means of a Static Timing Analysis (STA) as explained in Chapter 2. The analysis may use different gate and wire models. Most common gate models for delay are the equivalent driver resistance, RC tree and look-up tables generated from accurate electrical simulation. Interconnections are most commonly modeled via lumped capacitance or RC tree. Tree delays are computed using Elmore delay or reduced-order models.

3.3 Gate Sizing for Leakage Power Minimization

In this work, the gate sizing for leakage power minimization under speed constraints is studied. A new flow for gate sizing and threshold voltage assignment is developed using as basic the Lagrangian Relaxation formulation for gate sizing.

Power consumption has been a major barrier for circuit performance. Although the overall power dissipated by a circuit decreases for a new technology, the power dissipated per unit area usually increases. This power-limited performance scenario combined with the rise of the mobile era and with the need for low-power devices, highlights the importance of power minimization techniques (Butzén; Ribas, 2005).
The power consumed by components can be broken down into two components: dynamic power and static power. Dynamic power is the power consumed by the components when they are changing states. For instance, the output of a logic cell transitioning from zero to one is causing dynamic power consumption. On the other hand, the static power or leakage power is consumed constantly independent of state changes.

Leakage power has become a main concern in deep submicron process technology nodes (65nm and below), where it could account for 30-50% of the total design power consumption (SHIFREN, 2011). Leakage power is mainly caused by unwanted sub-threshold currents in the transistor channel when the transistor is turned off. Figure 3.2 presents the sources of leakage power for a planar technology.

Figure 3.2: Sources of Leakage Current

![Image of leakage current sources]

Source: (BUTZEN; RIBAS, 2005)

Gate sizing is a standard and effective technique for power minimization and hence suitable for addressing the aforementioned problems. For a standard-cell based design flow, the gate sizing task is to select the right versions for the gates available in a library so that the power is minimized while keeping the circuit performance within the specification. However, the gate selection problem was shown to be NP-Hard (LI, 1993), so that no optimal, polynomial time algorithm can be designed unless $P = NP$. This combinatorial optimization problem becomes even more challenging as the designs get more and more complex and the number of sizable components keep growing. Therefore efficient and effective heuristics need to be developed.

3.3.0.1 A Word on FinFet Technology

In recent years, the FinFET technology consolidated and is now in production mode. This technology brings more control over the leakage power and hence a significant reduction in the leakage power consumption by up to 50% is achieved so that dynamic power has become the main concern.

However, this does not mean the leakage power still has no impact on the total power consumption. Improvements on leakage power can still provide a good increase in battery life of mobile devices. Moreover, not all designs have being converted to FinFET as this decision involves other factors, but ultimately the cost factor is the most prominent.

Although the focus of this method is leakage power, it can be extended to handle dynamic power as well if switch activity is available. Therefore, although FinFET technology may shadow the improvements brought by this work, the techniques and the flow
presented in this thesis still can provide power savings or be extended to handle dynamic power and other objectives associated with transistor sizes.

3.4 Challenges

The challenges of the gate sizing for high performance designs can be summarized as follows (OZDAL; BURNS; HU, 2011):

1. **Discrete cell sizes**: Standard-cell based-flow is the dominant methodology to design digital circuits implying that only a limited number of gate types are available. The limited number of gate types rather than easing the problem, makes it combinatorial in nature and hence hard to solve efficiently.

2. **Cell timing models**: Standard-cell delay is typically non-linear and non-convex so that direct and efficient application of mathematical optimization as linear and convex programming is only possible on simplified delay models. Over simplification may lead to far from optimal results.

3. **Complex timing constraints**: In high-performance designs several timing constraints must be handled such as timing overrides, multi-cycle paths, transparent paths, multiple clock events, false paths, etc. If the method does not take into account such constraints, it may become too inaccurate.

4. **Interconnect timing models**: Interconnect delay is a major contributor to the overall design delay. Ignoring it or using simplified interconnect delay models such as lumped capacitance and Elmore delay may lead to incorrect timing information and to over designing as simplified model usually overestimates the actual interconnect delay.

5. **Many near-critical paths**: In high performance design many paths are near-critical decreasing the efficiency of sizing methods that rely only on the optimization of the critical path. In this case, when the critical path is fixed, other paths may start to violate timing. Therefore sizing engines should handle many paths at same time to avoid dead-locks.

6. **Large design sizes**: Designs or even blocks in designs can easily reach the million gates count so that the sizing engines must scale to handle such huge number of components. Methods that rely on frequent timing updates may not be suitable for such designs.

3.5 Related Work

In this chapter, some of the works on transistor and mainly gate sizing are reviewed and summarized. The early works on gate sizing focused on the continuous domain where individual transistors or gates can be set to any size within a lower and an upper limit. Along with simplified models, a convex mathematical formulation can be devised (SCHEFFER; LA VAGNO; MARTIN, 2006), which can then be solved in some extent efficiently in polynomial time (BOYD; VANDENBERGHE, 2004). The continuous formulation was a straightforward fit for the full-custom methodology, which was the main methodology for the early days of circuit design.
Later on, methods for discrete gate sizing started to be developed as the standard-cell methodology consolidated. In the discrete formulation, the gate sizing problem becomes an assignment problem where sizes or, more generally, implementations of the gates are picked up from a library. Differently from the continuous counterpart, the discrete formulation is proved to be a NP-hard problem (LI, 1993).

Many discrete methods are inspired by the continuous formulation or use it directly to guide the optimization process. This is not surprising as the assumptions made in the continuous side can be seen as a relaxation of the discrete formulation.

Several different approaches for gate sizing have been used in the literature:

• simulated annealing;
• linear programming;
• network flow;
• convex optimization (including geometric programming);
• Lagrangian relaxation;
• sensitivity and
• slew budgeting.

Lagrangian relaxation, sensitivity and network flow based approaches seem to be the most suitable ones for current design sizes as they scaled well and can be used for the discrete gate sizing problem.

Simulated annealing was successfully applied in the ISPD 2012 Gate Sizing Contest, but it suffers from scalability issues and do not seem to be an acceptable method for current designs. Although the method won the contest, later works achieved much better results in much less time.

Convex optimization including geometric programming only works on simplified convex or posynomial models which may not capture the non-linear, non-convex nature of the gate delays. On the other hand, they guarantee the optimal solution (under the simplified model) and can be used in the early stages of the design flow or as guide for the discrete gate sizing.

3.5.1 Early Work

One of the first works automating the gate sizing problem was developed by Ruehli et al.¹ from IBM (RUEHLI; WOLFF; GOERTZEL, 1977) aiming power minimization under timing constraint. In that initial work, gate delay is proportional to the inverse of the gate size and the power is directly proportional to the size. Lumped capacitance is used to model the wires. The authors report gains of 3 up to 10 times in power when compared to an unoptimized design that meets timing. The main drawback is that the timing model does not consider that a change in a gate size changes the load capacitance of its driver.

Almost a decade later, the transistor sizing method, TILOS, was published (FISHBURN; DUNLOP, 1985). TILOS can operate in three modes (1) area minimization under

¹Out of curiosity. The last author of the paper, Gerald Goertzel, had worked in the Manhattan Project.
timing constraint, (2) timing minimization under area constraint and (3) area-delay product minimization. Gate delay is modeled using RC networks and the authors show that this model leads to a convex delay model for the entire circuit. Even though the authors cite that the convex model can be solved by general purpose solvers, they indeed developed a sensitivity-based heuristic to trade-off accuracy and runtime. The method works by sizing the transistor with the largest delay to size sensitivity on the most critical path. First, TILOS is used to generate a rough initial solution. Then, in the second phase, the sizing problem is converted to a mathematical optimization problem in a smaller parameter space where a method of feasible directions is applied to find the optimal solution. TILOS was chosen one of the best works of the 20 years of ICCAD conference (KUEHLMAANN, 2003).

In 1987, Aesop (HEDLUND, 1987) tool for transistor sizing using linear model is presented. Berkelaar and Jess (BERKELAAR; JESS, 1990) present a method to power minimization under timing constraint using linear programming. The non-linear gate delay is broken into a piecewise linear function, which is suitable to formulate the problem as a linear program.

The first work to cope directly with discrete gate sizing was developed by Chan (CHAN, 1990) in 1990. Previous works only handled discrete gate sizing by rounding the sizes obtained from continuous formulation. Chan, on the other hand, proposed a traverse algorithm to propagate timing constraints, then backward substitution applying cell sizes available in a library. The proposed algorithm runs in pseudo-polynomial time for tree structures. For non-tree structures, multiple-fanout cells are implicitly cloned to create a tree like structure where the algorithm for trees can be used. The algorithm does not depend on a specific gate delay model. Also the cost for a gate size is generic and can be, for instance, the cell area or cell power. However, as the algorithm needs to propagate a list of possible gate sizes, it becomes impractical for large circuits.

In 1993, the tool ASAP (DUTTA; NAG; ROY, 1994) for transistor sizing using simulated annealing was presented using the Alpha-Power Law MOSFET Model (SAKNRAI; NEWTON, 1990). Also in 1993, different from previous approach, Sapatnekar et. al (SAPATNEKAR et al., 1993) took full advantage of the convex formulation by using convex programming to find an exact solution.

In 1996 (COUDERT, 1996) and 1997 (COUDERT, 1997), Oliver presented a greedy algorithm for discrete gate sizing aiming industrial designs. Different from previous works, Oliver used an accurate gate delay based on look-up tables. The greedy algorithm works by traversing the circuit, selecting new sizes for gates, but without resizing them. Every size change is stored as a move. After all gates have been processed, the moves that minimize power keeping the circuit performance are selected.

A sequential quadratic programming (SQP) approach to concurrent gate and wire sizing was presented by Menezes in 1997 (MENEZES; BALDICK; PILEGGI, 1997). In their work, the authors present an efficient way to compute the sensitivities to feed the SQP.

Chen, et at. (CHEN; CHU; WONG, 1999), published a key work on gate sizing in 1999. They presented a concise formulation for the gate sizing problem avoiding the exponential grow of path delay constraints. With this new formulation, the number of constraints grows linearly with the number of pins. Moreover, the authors shown how the Lagrangian Relaxation formulation could be significantly reduced using Karush-Kuhn-Tucker (KKT) conditions. Then a fast and optimal algorithm was designed to solve the gate and wire sizing simultaneously.
In 2002, Tennakoon et al. (TENNAKOON; SECHEN, 2002) proposed a fast gradient-based pre-processing step for Lagrangian relaxation that provides an effective set of initial Lagrange multipliers, which improved the runtime up to $200 \times$ compared to previous works.

3.5.2 State-of-the-Art

The gate options are a combination of transistor widths and threshold voltages (V_{th}) available in a gate library. Some recent works (LIU; HU, 2010; OZDAL; BURNS; HU, 2011; RAHMAN; TENNAKOON; SECHEN, 2011) apply Lagrangian Relaxation to solve the discrete gate sizing problem using KKT conditions (CHEN; CHU; WONG, 1999) to simplify the Lagrangian Relaxation Sub-problem (LRS). In our approach KKT conditions are also applied and combined with the proposed method.

A Lagrangian Relaxation based formulation for gate sizing and device parameter selection is presented in (OZDAL; BURNS; HU, 2011). The objective is to minimize leakage power on high-performance industrial designs. Lagrangian Relaxation and Dynamic Programming (DP) are used to find the optimized solution. In the LR formulation, timing constraints are introduced in the objective function. An accurate sign-off timer is used to compute the slack values after each LR iteration. The LRS is modeled as a graph and the discrete gate version characteristics are based on timing tables provided by the gate library. A DP algorithm based on critical tree extraction is proposed to solve the LRS optimization problem for discrete gates.

In (RAHMAN; SECHEN, 2012), a threshold voltage (V_{th}) assignment algorithm that employs a cost function which is globally aware of the entire circuit is presented. The objective of the post-synthesis algorithm is to minimize leakage power while solving the delay constraints. Gates are swapped to a higher V_{th} to absorb the available slack in the design without sacrificing delay. The delay constraint is iteratively pushed out by δ time units, each time enabling additional gates to have their threshold voltages increased. The leakage power is iteratively reduced to a minimum value and then starts to increase substantially. Gate upsizing is required to re-establish the original delay target.

In (REIMANN et al., 2013), (HU et al., 2012), (LI et al., 2012) and (LIVRAMENTO et al., 2013) the infrastructure based on the ISPD 2012 Gate Sizing Contest is used. (REIMANN et al., 2013) presents a flow composed by a set of heuristic algorithms to address the discrete gate sizing and Vt assignment problem. The proposed flow combines the Fanout-of-4 rule, the Logical Effort concept and uses Simulated Annealing (SA) as the main engine. The solution achieved the second and first positions in the two rankings of the ISPD Contest in 2012.

A sensitivity-guided meta-heuristic approach to gate sizing that integrates timing and power optimization is presented in (HU et al., 2012). The proposed heuristic has two stages: Global Timing Recovery and Power Reduction with Feasible Timing. Global Timing Recovery seeks violation-free solutions, and then Power Reduction with Feasible Timing iteratively reduces total leakage power of sizing solutions by local search. At each stage of the optimization flow, the space of sensitivity functions is parametrized and transversed to find the best configurations of sensitivity by independent multistarts. After each multistart, all obtained solutions are compared and the best/non-dominated solutions are retained. This is accomplished by adapting the go-with-the-winners (ALDOUS; VAZIRANI, 1994) meta-heuristic. The optimization is purely deterministic in that the multistart procedure begins with the small set of the best-seen solutions. Solutions after each stage are ensured to be feasible, which enables pruning of dominated solutions by...
go-with-the-winners. The results are comparable to other works, but the method is slow compared to (LI et al., 2012).

A framework for gate-version selection in modern high-performance low-power designs with library-based timing model is presented in (LI et al., 2012). The framework can be divided into three stages. First, the best design performance with all possible gate-versions is achieved by a Minimum Clock Period Lagrangian Relaxation method, which extends the traditional LR approach to control the difficulties in the discrete scenario. Upon a timing-valid design, the timing-constrained power optimization problem is solved by min-cost network flow. Finally, a power pruning technique is used to take advantage of the residual slacks due to the conservative network flow construction. The technique produces good power results, but worse than (HU et al., 2012), however in a faster way with a linear empirical runtime.

(LIVRAMENTO et al., 2013) proposes a Lagrangian Relaxation formulation for leakage power minimization that incorporates into the objective function the maximum gate input slew and the maximum gate output capacitance constraints in addition to the usual timing constraints. A fast topological greedy heuristic to solve the Lagrangian Relaxation Subproblem and a complementary procedure to fix the few remaining slew and capacitance violations is proposed. Despite all the improvements achieved by recent research works, there is still significant room for improvements. This can be observed as the best results for some of the benchmarks are found by different algorithms. They also differ a lot in terms of runtime, and it is desirable to identify which operations are consuming computational effort without contributing to the solution.

3.5.3 Summary

In Table 3.2 the main characteristics of continuous sizing methods are shown. In Table 3.3 the main characteristics of discrete sizing methods are shown.

Table 3.2: Summary of Works on Continuous Gate Sizing

<table>
<thead>
<tr>
<th>Work</th>
<th>Year</th>
<th>Sizing Type</th>
<th>Gate Model</th>
<th>Net Model</th>
<th>Optimization Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RUEHLI; WOLFF; GOERTZEL, 1977)</td>
<td>1977</td>
<td>Gate</td>
<td>Inverse of Size</td>
<td>Lumped Capacitance</td>
<td>Newton</td>
</tr>
<tr>
<td>(FISHBURN; DUNLOP, 1985)</td>
<td>1985</td>
<td>Transistor</td>
<td>RC</td>
<td>N/A</td>
<td>Sensitivity</td>
</tr>
<tr>
<td>(BERKELAAR; JESS, 1990)</td>
<td>1990</td>
<td>Gate</td>
<td>Piece-Wise Linear</td>
<td>Linear</td>
<td>Linear Programming</td>
</tr>
<tr>
<td>(SAPATNEKAR et al., 1993)</td>
<td>1993</td>
<td>Transistor</td>
<td>RC (Elmore Delay)</td>
<td>N/A</td>
<td>Convex Programming</td>
</tr>
<tr>
<td>(MENEZES; BALDICK; PILEGGI, 1997)</td>
<td>1997</td>
<td>Gate</td>
<td>Driver Resistance</td>
<td>RC Tree (Elmore)</td>
<td>Sequential Programming</td>
</tr>
<tr>
<td>(CHEN; CHU; WONG, 1999)</td>
<td>1999</td>
<td>Gate</td>
<td>Driver Resistance</td>
<td>RC Tree (Elmore)</td>
<td>Lagrangian Relaxation</td>
</tr>
<tr>
<td>(SRIVASTAVA; SYLVESTER; BLAAUW, 2004)</td>
<td>2000</td>
<td>Transistor</td>
<td>Alpha-Power Law MOSFET Model</td>
<td>N/A</td>
<td>Sensitivity Based</td>
</tr>
<tr>
<td>(TENNAKOON; SECHEN, 2002)</td>
<td>2002</td>
<td>Gate</td>
<td>Driver Resistance</td>
<td>RC Tree (Elmore)</td>
<td>Lagrangian Relaxation</td>
</tr>
<tr>
<td>(BOYD et al., 2005)</td>
<td>2005</td>
<td>Gate Transistor</td>
<td>RC</td>
<td>RC Tree (Elmore)</td>
<td>Geometric Programming</td>
</tr>
<tr>
<td>(POSSER et al., 2012)</td>
<td>2012</td>
<td>Transistor</td>
<td>Driver Resistance</td>
<td>RC Tree (Elmore)</td>
<td>Geometric Programming</td>
</tr>
<tr>
<td>(ALEGRETTI et al., 2013)</td>
<td>2013</td>
<td>Transistor</td>
<td>Driver Resistance</td>
<td>RC Tree (Elmore)</td>
<td>Geometric Programming</td>
</tr>
</tbody>
</table>
Table 3.3: Summary of Works on Discrete Gate Sizing

<table>
<thead>
<tr>
<th>Work</th>
<th>Year</th>
<th>Sizing Type</th>
<th>Gate Model</th>
<th>Net Model</th>
<th>Optimization Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CHAN, 1990)</td>
<td>1990</td>
<td>Gate</td>
<td>[Generic]</td>
<td>N/A</td>
<td>Greedy</td>
</tr>
<tr>
<td>(COUDERT, 1996)</td>
<td>1996</td>
<td>Gate</td>
<td>Lookup Table</td>
<td>N/A</td>
<td>Multiple Moves</td>
</tr>
<tr>
<td>(COUDERT, 1997)</td>
<td>1997</td>
<td>Gate</td>
<td>Lookup Table</td>
<td>N/A</td>
<td>Multiple Moves</td>
</tr>
<tr>
<td>(NGUYEN et al., 2003)</td>
<td>2003</td>
<td>Gate</td>
<td>Lookup Table</td>
<td>N/A</td>
<td>Sensitivity Linear Programming</td>
</tr>
<tr>
<td>(SHAH et al., 2005)</td>
<td>2005</td>
<td>Gate</td>
<td>Equivalent Driver Resistance (Elmore)</td>
<td>N/A</td>
<td>Geometric Programming</td>
</tr>
<tr>
<td>(COUDERT, 1997)</td>
<td>1997</td>
<td>Gate</td>
<td>Lookup Table</td>
<td>N/A</td>
<td>Multiple Moves</td>
</tr>
<tr>
<td>(NGUYEN et al., 2003)</td>
<td>2003</td>
<td>Gate</td>
<td>Lookup Table</td>
<td>N/A</td>
<td>Sensitivity Linear Programming</td>
</tr>
<tr>
<td>(SHAH et al., 2005)</td>
<td>2005</td>
<td>Gate</td>
<td>Equivalent Driver Resistance (Elmore)</td>
<td>N/A</td>
<td>Geometric Programming</td>
</tr>
<tr>
<td>(CHOU; WANG; CHEN, 2005)</td>
<td>2005</td>
<td>Transistor</td>
<td>Posynomial Approximation</td>
<td>N/A</td>
<td>Lagrangian Relaxation</td>
</tr>
<tr>
<td>(CHINNERY; KEUTZER, 2005)</td>
<td>2005</td>
<td>Gate</td>
<td>Lookup Table</td>
<td>Lumped Capacitance</td>
<td>Sensitivity Linear Programming</td>
</tr>
<tr>
<td>(REN; DUTT, 2008)</td>
<td>2008</td>
<td>Gate</td>
<td>Driver Resistance</td>
<td>Lumped Capacitance</td>
<td>Network Flow</td>
</tr>
<tr>
<td>(LIU; HU, 2010)</td>
<td>2009</td>
<td>Gate</td>
<td>Lookup</td>
<td>Elmore</td>
<td>Greedy</td>
</tr>
<tr>
<td>(Huang; Hu, 2011)</td>
<td>2011</td>
<td>Gate</td>
<td>Linear Fit</td>
<td>RC (Elmore Delay)</td>
<td>Lagrangian Relaxation</td>
</tr>
<tr>
<td>(Zhou et al., 2011)</td>
<td>2011</td>
<td>Gate</td>
<td>Logical Effort</td>
<td>Lumped Capacitance</td>
<td>Dynamic Programming</td>
</tr>
<tr>
<td>(KUTTAR, 2012)</td>
<td>2012</td>
<td>Gate</td>
<td>[Generic]</td>
<td>[Generic]</td>
<td>Dynamic Programming La- grangian Relaxation</td>
</tr>
<tr>
<td>(ZHOU et al., 2011)</td>
<td>2011</td>
<td>Gate</td>
<td>RC Tree (Elmore)</td>
<td>N/A</td>
<td>Lagrangian Relaxation</td>
</tr>
<tr>
<td>(Rahman, 2012)</td>
<td>2012</td>
<td>Gate</td>
<td>Lookup</td>
<td>RC Tree</td>
<td>Greedy</td>
</tr>
<tr>
<td>(Zhou et al., 2011)</td>
<td>2011</td>
<td>Gate</td>
<td>Logical Effort</td>
<td>Lumped Capacitance</td>
<td>Lagrangian Relaxation</td>
</tr>
<tr>
<td>(KUTTAR, 2012)</td>
<td>2012</td>
<td>Gate</td>
<td>[Generic]</td>
<td>[Generic]</td>
<td>Dynamic Programming La- grangian Relaxation</td>
</tr>
<tr>
<td>(ZHOU et al., 2011)</td>
<td>2011</td>
<td>Gate</td>
<td>RC Tree (Elmore Delay)</td>
<td>N/A</td>
<td>Lagrangian Relaxation</td>
</tr>
<tr>
<td>(Rahman, 2012)</td>
<td>2012</td>
<td>Gate</td>
<td>Lookup</td>
<td>RC Tree</td>
<td>Greedy</td>
</tr>
<tr>
<td>(Zhou et al., 2011)</td>
<td>2011</td>
<td>Gate</td>
<td>Logical Effort</td>
<td>Lumped Capacitance</td>
<td>Lagrangian Relaxation</td>
</tr>
<tr>
<td>(KUTTAR, 2012)</td>
<td>2012</td>
<td>Gate</td>
<td>[Generic]</td>
<td>[Generic]</td>
<td>Dynamic Programming La- grangian Relaxation</td>
</tr>
<tr>
<td>(ZHOU et al., 2011)</td>
<td>2011</td>
<td>Gate</td>
<td>RC Tree (Elmore Delay)</td>
<td>N/A</td>
<td>Lagrangian Relaxation</td>
</tr>
<tr>
<td>(Rahman, 2012)</td>
<td>2012</td>
<td>Gate</td>
<td>Lookup</td>
<td>RC Tree</td>
<td>Greedy</td>
</tr>
<tr>
<td>(Zhou et al., 2011)</td>
<td>2011</td>
<td>Gate</td>
<td>Logical Effort</td>
<td>Lumped Capacitance</td>
<td>Lagrangian Relaxation</td>
</tr>
<tr>
<td>(KUTTAR, 2012)</td>
<td>2012</td>
<td>Gate</td>
<td>[Generic]</td>
<td>[Generic]</td>
<td>Dynamic Programming La- grangian Relaxation</td>
</tr>
<tr>
<td>(ZHOU et al., 2011)</td>
<td>2011</td>
<td>Gate</td>
<td>RC Tree (Elmore Delay)</td>
<td>N/A</td>
<td>Lagrangian Relaxation</td>
</tr>
<tr>
<td>(Rahman, 2012)</td>
<td>2012</td>
<td>Gate</td>
<td>Lookup</td>
<td>RC Tree</td>
<td>Greedy</td>
</tr>
<tr>
<td>(Zhou et al., 2011)</td>
<td>2011</td>
<td>Gate</td>
<td>Logical Effort</td>
<td>Lumped Capacitance</td>
<td>Lagrangian Relaxation</td>
</tr>
<tr>
<td>(KUTTAR, 2012)</td>
<td>2012</td>
<td>Gate</td>
<td>[Generic]</td>
<td>[Generic]</td>
<td>Dynamic Programming La- grangian Relaxation</td>
</tr>
<tr>
<td>(ZHOU et al., 2011)</td>
<td>2011</td>
<td>Gate</td>
<td>RC Tree (Elmore Delay)</td>
<td>N/A</td>
<td>Lagrangian Relaxation</td>
</tr>
<tr>
<td>(Rahman, 2012)</td>
<td>2012</td>
<td>Gate</td>
<td>Lookup</td>
<td>RC Tree</td>
<td>Greedy</td>
</tr>
</tbody>
</table>
4 GATE SIZING VIA LAGRANGIAN RELAXATION

4.1 Lagrangian Relaxation

Lagrangian Relaxation is a useful mathematical technique to find or to approximate the optimum solution of optimization (minimization or maximization) problems with hard constraints. It has been successfully applied to solve several problems in EDA such as floor-planning, placement, routing and gate sizing among others.

The main idea behind Lagrangian Relaxation is to rewrite the optimization problem in an easier version, removing the hard constraints and adjusting the objective function to take into account the constraint violations.

Given the optimization problem, also called the primal problem, in Equation (4.1),

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g_i(x) \leq 0 \quad i = 1, 2, \ldots, n \\
& \quad h_j(x) = 0 \quad j = 1, 2, \ldots, m
\end{align*}
\]

(4.1)

a simpler or relaxed problem is written moving the hard constraints to the objective as shown in Equation (4.2)

\[
\begin{align*}
\text{minimize} & \quad \mathcal{L}(x, \lambda, \mu) \\
\text{subject to} & \quad \lambda_i \in \mathbb{R}_+ \quad i = 1, 2, \ldots, n \\
& \quad \mu_j \in \mathbb{R} \quad j = 1, 2, \ldots, m
\end{align*}
\]

(4.2)

where

\[
\mathcal{L}(x, \lambda, \mu) = f(x) + \sum \lambda_i g_i(x) + \sum \mu_j h_j(x)
\]

(4.3)

The relaxed constraints are multiplied by the so called Lagrange multipliers, \(\lambda_i \) and \(\mu_j \), which can be seen as a weight indicating how much that specific constraints is being violated. Not all constraints need to be moved to the objective and the choice of which constraints should be relaxed is problem dependent. However the relaxed version should be easier to solve than the original problem.

The key property of the relaxed problem is that its solution is always a lower bound to the solution of the original problem for any set \(\{\lambda_i, \mu_j\} \). That is,

\[
\mathcal{L}(\hat{x}, \lambda, \mu) \leq f(\hat{x})
\]

(4.4)

where \(\hat{x} \) is the optimal solution for the relaxed problem and \(\hat{x} \) is the optimal solution of the original problem.
Considering this propriety, the main idea of Lagrangian relaxation is to find the maximum lower bound, which may ultimately approach the optimal solution of the original problem. This leads to another optimization problem, called the dual problem, which aims to find the largest lower bound as defined by Equation (4.5).

\[
\begin{align*}
\text{maximize} \quad & \min f(x) + \sum \lambda_i g_i(x) + \sum \mu_j h_j(x) \\
\text{subject to} \quad & \lambda_i \geq 0 \quad i = 1, 2, \ldots, n \\
& \mu_j \in \mathbb{R} \quad j = 1, 2, \ldots, m
\end{align*}
\] (4.5)

For convex problems, the maximum lower bound is equal to the optimal solution of the original problem. For non-convex problems, the maximum lower bound is only close to the optimal solution and the difference between the maximum lower bound and the optimal solution is called duality gap.

4.1.1 Solving the Lagrangian Dual Problem

Typically the dual problem is solved iteratively by interleaving Lagrangian multiplier update and solving the relaxed problem. Then the relaxed problem is solved assuming the Lagrangian multipliers are fixed. The Lagrangian multipliers are updated so that the lower bound provided by the relaxed problem is increased w.r.t. the previous iteration. This basic procedure is depicted in Figure 4.1.

![Figure 4.1: Basic algorithm to solve the Lagrangian dual problem.](source: from author (2015))

The subgradient optimization algorithm (BEASLEY, 1993) is presented in Algorithm 4.1 is a common method used to solve the dual problem. Note that it follows the recipe presented in the Figure 4.1.
Algorithm 4.1: Subgradient optimization algorithm.

1. Initialize $\alpha \in (0, 2]$;
2. Initialize $\lambda = 0$;
3. Initialize Z_{UB} with an appropriate upper bound;
4. Initialize Z_{LB} with the solution of LRS/λ ($\lambda = 0$);
5. while $N(v) \leq \epsilon$ do
 6. $\beta = \frac{\alpha(Z_{UB} - Z_{LB})}{N(w)}$;
 7. $\lambda = \lambda + \beta N(v)$;
 8. $Z_{LB} \leftarrow LRS/\lambda$;

4.2 Applying Lagrangian Relaxation in the Gate Sizing Problem

For gate sizing, the design is described using an acyclic directed graph where nodes are the pins in the design and the edges are the timing arcs connecting the pins as exemplified in Figure 4.2. There are two types of timing arcs: (1) cell timing arcs which connect the input pins to output pins of a cell and (2) net timing arcs which connect cells.

![Figure 4.2: An example circuit.](image)

Source: from author (2015)

The gate sizing problem under clock frequency constraint can be formulated straightforwardly as in Equation (4.6) where x is the vector of gate sizes (or types) and $f(x)$ is a generic objective function, usually power, area or performance.

$$\minimize_x f(x)$$
$$\text{subject to } D_i \leq T, \ i \in \text{Paths}$$
$$x_i \in \text{Sizes}_i$$

(4.6)

However, imposing a constraint on the delay of each timing path explicitly is prohibitive as the number of paths grows exponentially with the number of cells in the design. A more concise way to represent timing constraints is by imposing chronological constraints on arrival times. In this case, arrival times are seen as variables by the optimization problem as shown in Equation (4.7).
\[\mathcal{PP} : \]
\[\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad a_i + d_{i \rightarrow j} \leq a_j, \forall i \rightarrow j \in \text{Arcs} \\
& \quad a_i \leq T, \forall i \in \text{Endpoints} \\
& \quad x_i \in \text{Sizes}_i
\end{align*} \tag{4.7} \]

Chronological constraints ensure that the arrival time at a timing arc’s input pin plus the timing arc delay will be less or equal to the arrival time at the timing arc’s output pin. Note that for each timing arc a constraint of such kind must be set. An additional constraint is included for each path’s output node such that the arrival times at them will be less or equal to the clock period.

4.2.1 Lagrangian Relaxation

By relaxing the arrival time constraints, the objective function can be rewritten as in Equation (4.8) where \(\lambda_{i \rightarrow j} \) and \(\lambda_i \) are the Lagrange multipliers.

\[L_{\lambda}(x, a) = f(x) + \sum_{\forall i \rightarrow j} \lambda_{i \rightarrow j} (a_i + d_{i \rightarrow j} - a_j) + \sum_{\forall i \in \text{PO}} \lambda_i (a_i - T) \tag{4.8} \]

So that, the relaxed gate sizing version of \(\mathcal{PP} \) can be defined as in Equation (4.9).

\[\mathcal{LRS}_\lambda : \]
\[\begin{align*}
\text{minimize} & \quad L_{\lambda}(x, a) \\
\text{subject to} & \quad x_i \in \text{Sizes}_i
\end{align*} \tag{4.9} \]

4.2.2 Simplification of \(\mathcal{LRS}_\lambda \)

Chen et al (CHEN; CHU; WONG, 1999) shown that the \(\mathcal{LRS}_\lambda \) can be greatly simplified by using the Karush–Kuhn–Tucker (KKT) conditions for optimality. The KKT conditions implies that \(\partial L / \partial a_k = 0 \) at the optimal solution of \(\mathcal{PP} \). The derivative of \(L \) is given by Equation (4.10).

\[\frac{\partial L}{\partial a_k} = \sum_{\forall k \rightarrow j} \lambda_{k \rightarrow j} a_k - \sum_{\forall i \rightarrow k} \lambda_{i \rightarrow k} a_k \tag{4.10} \]

Therefore the optimal solution has the property as shown in Equation (4.11), which implies that the sum of inwards Lagrange multipliers of a pin must be equal to the sum of outward ones.

\[\sum_{\forall k \rightarrow j} \lambda_{k \rightarrow j} a_k = \sum_{\forall i \rightarrow k} \lambda_{i \rightarrow k} a_k \tag{4.11} \]
5 NEW DISCRETE GATE SIZING AND VTH ASSIGNMENT FLOW USING LAGRANGIAN RELAXATION

Lagrangian formulation has been extensively used in the gate sizing and is the core of many methods present in the literature. Assuming convex delay models and continuous sizing, it can even efficiently provide an optimal solution. However, for the discrete case, many challenges emerge. The most prominent consequence is that the gate sizing problem becomes NP-complete and, unless P = NP, this means that no efficient and optimal algorithm can be designed for the general case.

Therefore, in discrete case, Lagrangian Relaxation is used as a heuristic to find good solutions rather than the optimal one. And, as most heuristics, several tricks and adaptations are required to make it work properly.

5.1 Contributions

In this thesis, the gate sizing method for timing minimization presented by Li Li et al (LI et al., 2012). is adapted and extended to handle leakage power minimization.

The underlying LR framework is similar to that one used by Li Li and also other works in the literature (OZDAL; BURNS; HU, 2011) (LIVRAMENTO et al., 2013), but the overall flow presents some novelties in the way the LR is controlled to improve convergence to a good solution. The controllability is a main issue for any heuristic based on LR, so much that Li Li et al. use LR only to improve timing with no regards to other metrics as they say the constrained LR formulation is hard to control.

Even though other works have applied the Lagrangian Relaxation (LR) to solve the gate sizing problem before, it is still a complex task to use LR efficiently and effectively to solve the discrete gate sizing problem.

The main contributions for the gate sizing field of this thesis can be summarized as follow.

- A local slack-based technique to filter out bad sizing and threshold voltage options, which improves the LR convergence.

- A sensitivity based method to estimate the global changes of the delay given a change on a cell implementation (i.e. size or threshold voltage).

5.2 Scope

The gate sizing techniques and the flow presented in this thesis aim on leakage power minimization under timing constraints. The flow is developed to be executed during the
At these stages precise timing and power information may not be available due to the lack of routing information so that simplified methods are typically used to estimate those metrics. However simplified methods can also be used for sake of runtime and as long as they correlate well to the actual models, this does not invalidate the gains obtained at this stage.

Although the scope was limited to the early stages, a subsequent work by Reimann (REIMANN; SZÉ; REIS, 2015) shown that this flow can be extended to work also in final stages of the design cycle.

This flow can also be used during the exploration phase where the goal is to get a glimpse of a design characteristics as maximum frequency and power consumption.

In the gate sizing flow, only late violations are directly optimized. However, since the objective is power minimization, this forces the non-critical late paths to become slower, which indirectly leads to a reduction in early violations.

5.3 Background

A typical standard cell library contains a few hundreds cells that implement a small set of logical functions. Each different logical function is implemented by several cells, but with different timing, area and power characteristics. These different implementations are used to trade-off the design performance with power consumption and area usage.

Besides different sizes, a cell library also contains different threshold voltage versions for same size cells. Different V_{th}s (threshold voltages) for the same gate may be used as an efficient way to reduce leakage power. The relationship between speed and leakage can be used to produce designs with the desired power/delay trade-off. Gates that are not
on the critical path often do not need the performance of high-leakage implementations, therefore slower and less leaky versions can be used instead (PANGRLE; KAPOOR, Jun. 2005).

To optimize the leakage power in a circuit making use of the different available cell versions, a simultaneous gate sizing and V_{th} assignment method may be used. Assigning properly the gate size and V_{th} for each gate has major influence on power consumption. Besides maintaining timing constraints, the gate sizing tool has also to consider other design constraints, such as maximum gate fan-outs and transition times. The discrete gate sizing problem is a combinatorial optimization problem and is proved to be NP-Hard (LI, 1993). Therefore, approximation and heuristic algorithms are essential to efficiently address it.

In this chapter, an algorithm for discrete gate sizing and V_{th} assignment is presented. The core method is developed upon the Lagrangian Relaxation methodology, however, as non-convex modeling functions are used, only the weak duality holds.

5.4 Performance Optimization

In its simpler version, the LR-based gate sizing formulation can be used to find the fastest implementation of a design. Although the final solution is likely to be prohibitive in terms of power consumption and area, it may be a good starting point for some methods aiming to optimize power.

Li Li et al. presented a greedy method to solve the LRS/λ problem. The basic idea is to traverse the design in topological order and for each cell test all candidates keeping the one that provides the best gain in terms of delay.

When the implementation of a cell (i.e. its size or threshold voltage) is changed, the impact on timing can propagate throughout many cells in the design due to slew dependency. One can rerun the timing analysis for each implementation change, but as several changes are tested for each cell, this soon becomes prohibitive in terms of runtime.

A common strategy to avoid the runtime penalty is to analyze the timing change only locally. Besides of being much faster than a global analysis, the fact that most of the timing perturbation is absorbed in a few logic levels (OZDAL; BURNS; HU, 2011) also makes this strategy very attractive.

To compute the impact of an implementation change, Li Li et al. analyze the delay change on the driver, side and sink timing arcs as shown in Figure 5.2.
Figure 5.2: Local timing evaluation after a gate has been sized.

Source: from author (2015)

5.5 Definitions

For the purpose of this work, a circuit is described by its logical and memory elements called *gates or cells* and the connections between them called *nets*. Only logical elements are considered for sizing. Gates are attached to nets at specific points of the net topology named *driver and sink nodes*. A gate is composed by one or more *timing arcs* which describe the timing characteristics of the gate. Table 5.1 summarizes the definitions and notation used throughout this work.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>clock period</td>
</tr>
<tr>
<td>TNS</td>
<td>total negative slack</td>
</tr>
<tr>
<td>STA</td>
<td>static timing analysis</td>
</tr>
<tr>
<td>$i \rightarrow j$</td>
<td>timing arc from node i to node j</td>
</tr>
<tr>
<td>$d_{i \rightarrow j}$</td>
<td>delay of timing arc $i \rightarrow j$</td>
</tr>
<tr>
<td>a_i</td>
<td>arrival time at node i</td>
</tr>
<tr>
<td>q_i</td>
<td>require time at node i</td>
</tr>
<tr>
<td>$slew_i$</td>
<td>slew at node i</td>
</tr>
<tr>
<td>λ</td>
<td>Lagrange Multiplier</td>
</tr>
<tr>
<td>$\Delta D_{i \rightarrow j}$</td>
<td>delay change given a change in input slew of arc $i \rightarrow j$</td>
</tr>
<tr>
<td>ΔD_n</td>
<td>delay change given a change in slew of net n</td>
</tr>
<tr>
<td>$\delta d_{i \rightarrow j}$</td>
<td>delay sensitivity to input slew of arc $i \rightarrow j$</td>
</tr>
<tr>
<td>$\delta slew_{i \rightarrow j}$</td>
<td>output slew sensitivity to input slew of arc $i \rightarrow j$</td>
</tr>
<tr>
<td>ϕ</td>
<td>cumulative back-propagated arc delay sensitivity</td>
</tr>
</tbody>
</table>

When connections are modeled using a simple lumped capacitance, timing information (arrival, required and slew) at sink nodes is equal to the values at the driver node. In this case, driver and sinks share the same name borrowed from the net which connects them.

Moreover, to keep notation clean, rise and fall transitions are not shown, but they are considered properly in the proposed method.
5.6 Flow Overview

Figure 5.3 depicts a high-level view of the flow developed in this work. It starts by setting all gates to the lowest leakage version. Load and slew violations are then removed without regarding to timing closure. This solution is passed to our Lagrangian Relaxation method to optimize leakage power under performance constraints. Next, any timing violations left are eliminated by a Timing Recovery method. Finally the leakage power is further reduced by a Power Reduction algorithm.

Every method developed in this work has a linear complexity per iteration. The number of iterations for each iterative method is hard to predict, but for most cases only a few (tens to hundreds) are required.

![Figure 5.3: High-level view of our gate selection flow.](source)

In order to improve convergence rate at the Lagrangian Relaxation step, load and slew violations are removed from the initial minimum leakage solution. In this way our LR method may concentrate more on reducing leakage power and meeting timing constraints.

The removal is performed by means of the iterative method presented in (LI et al., 2012) (with $\alpha = 0.7$). The procedure visits all gates, one at a time, from outputs to inputs. For each gate, the gate version with less leakage that respects both slew and load constraints is selected. In our implementation, as the gates are visited, timing is updated only locally as explained in Section 5.9.1.

The $\alpha_L \in (0, 1]$ parameter is used to control the ratio between driver strength and the load capacitance. Smaller is the α_L value, larger should be the driver strength. A smaller value improves convergence as it tends to oversize gates. In this work we set $\alpha_L = 0.7$.

5.7 Lagrangian Relaxation

Lagrangian Relaxation is a useful mathematical technique to find or to approximate the optimum solution of minimization problems with hard constraints.

The original problem, also called Primal Problem (PP), is simplified by removing hard constraints and incorporating them into the objective function. For each incorpo-
rated constraint, a weight – the Lagrange Multiplier (λ) – is assigned. Weights, which must be non-negative, may be interpreted as the penalties for not satisfying the respective constraints. The simplified problem is called a Lagrangian Relaxed Subproblem (LRS) for each fixed set of λs, where the optimal solution for each LRS is a lower bound to the Primal Problem (CHEN; CHU; WONG, 1999).

A corresponding maximization problem, the Lagrangian Dual Problem (LDP), is then formulated where the goal is to maximize the solution of LRS instances by selecting appropriate sets of λs. This is commonly achieved iteratively by fixing λs, solving the LRS for the fixed set of λs (LRS/λ), updating λs, solving LRS/λ again and so on and so forth (OZDAL; BURNS; HU, 2011).

The concern in this work is leakage power minimization under timing constraints. However the ideas presented here can be easily adapted to handle different objective functions.

A concise way to represent timing constraints is by imposing chronological constraints on arrival times. In this case, arrival times are seen as variables by the optimization problem.

Chronological constraints ensure that the arrival time at a timing arc’s input node plus the timing arc delay will be less or equal to the arrival time at the timing arc’s output node. Note that for each timing arc a constraint of such kind must be set. An additional constraint is included for each path’s output node such that the arrival times at them will be less or equal to the clock period.

The gate selection problem for total leakage power minimization can be formulated as shown in Equation (5.1).

Primal Problem (PP):

\[
\begin{align*}
\text{minimize} & \quad \text{leakage} \\
\text{subject to} & \quad a_i + d_{i\rightarrow j} \leq a_j, \text{ for each timing arc } i \rightarrow j \\
& \quad a_k \leq T, \text{ for each path output node } k
\end{align*}
\]

(5.1)

By applying the Lagrangian Relaxation technique we obtain the LRS as in Equation (5.2).

\[
\begin{align*}
\text{LRS:} & \quad \text{minimize} \quad \text{leakage} + \\
& \quad \sum \lambda_{i\rightarrow j}(a_i + d_{i\rightarrow j} - a_j) + \\
& \quad \sum \lambda_k(a_k - T)
\end{align*}
\]

(5.2)

Chen et al. (CHEN; CHU; WONG, 1999) have shown that the problem in Equation (5.2) can be further simplified by applying the KKT conditions to optimality as shown in Equation (5.3).

\[
\begin{align*}
\text{LRS (simplified):} & \quad \text{minimize} \quad \text{leakage} + \sum \lambda_{i\rightarrow j}d_{i\rightarrow j}
\end{align*}
\]

(5.3)

Hereafter the sum $\sum \lambda_{i\rightarrow j}d_{i\rightarrow j}$ is referred to lambda-delay. So, the relaxed version of the sizing problem can be viewed as the selection of gate versions which minimizes leakage plus lambda-delay with no explicit information about arrival times. Finally, LDP is simply the maximization of LRS where λ is also variable as shown in Equation (5.4).
LDP: maximize \(LRS \) \[(5.4) \]

5.8 Solving LDP

Algorithm 5.1 presents an overview of the iterative method used to look for a competitive solution to \(LDP \). The idea of the \(LDP \) solver is straightforward. At each iteration \(\lambda \)s are updated to reflect how much a constraint, now incorporated to the objective function, is being violated. This generates a new instance of \(LRS/\lambda \) which is then solved by the method presented in Section 5.9.

Different from the continuous sizing problem (CHEN; CHU; WONG, 1999), the sub-gradient method can no longer guarantee the optimality of the \(LDP \) maximization. Considering that, other methods for the \(\lambda \) update process are presented in the literature (TENNAKOON; SECHEN, 2002) and in this work. Improving this method leads to direct improvement in convergence and quality of the final solution.

In our current implementation the initial \(\lambda \) value is set to 12. A solution is said to be better than another one if its TNS is less than 10% of \(T \) and it has smaller leakage.

Lagrange Multipliers update is accomplished in two steps: (1) slack scaling and (2) KKT projection. Algorithm 5.2 presents the method used to update them.

5.8.0.1 Slack Scaling

Initially Lagrange Multipliers are scaled according to the slack of the respective timing arcs. The idea is to increase proportionally the importance (\(\lambda \) value) for timing arcs with negative slack and to decrease the importance for those with positive slack. The higher is the \(\lambda \) value the higher is the impact of the respective timing arc delay in the objective function.

5.8.0.2 KKT Projection

KKT projection is performed to ensure that \(\lambda \)s obey the KKT conditions to optimality. These conditions imply that the sum of \(\lambda \)s driving a net must be equal to the sum of \(\lambda \)s being driven by that net (CHEN; CHU; WONG, 1999).

In our flow the projection is performed by traversing the circuit in reverse topological

Algorithm 5.1: LDP Solver

1. store initial solution
2. set an initial value for \(\lambda \)s
3. update timing (STA)
4. update \(\lambda \)s // Alg. 5.2
5. repeat
6. solve \(LRS/\lambda \) // Alg. 5.4
7. update timing (STA)
8. update \(\lambda \)s // Alg. 5.2
9. if new solution is better than stored one then
10. storage solution
11. until convergence;
12. restore best solution found
Algorithm 5.2: Updating Lagrange Multipliers

1. for each timing arc $i \rightarrow j$ do
2. $\lambda_{i \rightarrow j} \leftarrow \lambda_{i \rightarrow j} \times \begin{cases}
\left(1 + \frac{a_j - q_j}{a_j}
ight)^{-1/k} & \text{if } a_j \geq q_j \\
\left(1 + \frac{q_j - a_j}{q_j}
ight)^{-k} & \text{if } a_j < q_j
\end{cases}$
3. KKT projection

order distributing proportionally the sum of λs being driven by a net to the ones driving the net as outlined in Algorithm 5.3.

Algorithm 5.3: Update Lambdas KKT (CHEN; CHU; WONG, 1999)

1. for each net n of the circuit do
2. Compute sum of driver timing arc lambdas of net n
3. Compute sum of sink timing arc lambdas of net n
4. Update driver arcs
5. for each edge (rise and fall) do
6. if sum of driver timing arc lambdas > 0 then
7. for each driver timing arc do
8. $\lambda_{\text{arc}} = \frac{\text{sum}_s\text{sink lambdas} \times \lambda_{\text{arc}}}{\text{sum}\lambda_{\text{drivers}}}$
9. else
10. for each driver timing arc do
11. $\lambda_{\text{arc}} = \frac{\text{sum}\lambda_{\text{sinks}}}{\text{num}_s\text{sinks}}$

5.9 Solving LRS/λ

To find a solution for each LRS/λ instance the greedy method presented in Algorithm 5.4 is employed. It works by traversing all gates in topological order trying to properly select a new version to each of them. The new selected version is the one which locally minimizes leakage power and the lambda-delay.

Since a full STA would be required to compute the actual impact on lambda-delay, it would be infeasible to use updated information every time a gate version is changed to get the real impact of that change. So, the greedy method relies on local timing information and global estimation to approximate the global impact on lambda-delay.

In most cases, the timing impact of a version change is absorbed within few logic levels (OZDAL; BURNS; HU, 2011). And therefore the global impact on circuit timing can be fairly estimated considering only local information. However, to deal with the cases where a local change greatly affects the overall timing – e.g., a change in a critical gate – a global sensitivity-based lambda-delay function is developed.

5.9.1 Local Timing Update

For this work, a local timing update comprises the timing update of a gate, its driver nets and arcs and its sink net in the same way a STA would perform, but without timing
Algorithm 5.4: LRS/λ Solver

1. compute lambda-delay sensitivities // Eq. 5.11
2. for each gate g in topological order do
 3. select a gate version for g // Alg. 5.5

Figure 5.4: Lambda-Delay Cost Computation

Source: from author (2015)

propagation. Notice that this approach does not guarantee that the final timing will match the one provided by the STA even if gates are being visited in a topological order as the STA would do. For instance, a driver gate of the current gate may directly or indirectly drive other driver gates. For example, in Figure 5.4, both gates 5 and 8 are drivers of gate 10, but gate 5 is also a driver of gate 8. But ignoring such dependencies does not generate any convergence problem in the proposed flow.

5.9.2 Lambda-Delay Cost

The objective of the LRS problem is the minimization of the lambda-delay plus leakage power. So when a gate version is changed we are concerned on how the total leakage power and lambda-delay are affected. Since the leakage power is modeled as constant for each cell and a change in a cell does not affect other cell’s leakage power, it is straightforward to compute the change in the total leakage.

The lambda-delay cost of a gate version indicates how much the gate version impacts on lambda-delay. As mentioned early, to be computed exactly, a full STA would be required and this would easily lead to huge runtime, therefore the cost is computed relying most on local impact, although a method to account for global impact is also presented.

The lambda-delay cost for the current version of a gate g (e.g. darker gate in Figure 5.4), $\text{lambdaDelayCost}(g)$, is shown in Equation (5.5).

$$\text{lambdaDelayCost}(g) = \sum_{i\rightarrow j \in \text{driverArcs}(g) \cup \text{gateArcs}(g) \cup \text{sinkArcs}(g)} \lambda_{i\rightarrow j} d_{i\rightarrow j} + \sum_{i\rightarrow j \in \text{sideArcs}(g)} \Delta D^\lambda_{i\rightarrow j} + \sum_{n \in \text{drainNets}(g)} \Delta D^\lambda_n \quad (5.5)$$

where
Figure 5.5: Delay Sensitivity Computation

- **driverArcs**(g) is the set of arcs driving the driver nets of gate g (e.g. arcs \(\{0, 1\} \rightarrow 6, \{2, 3\} \rightarrow 5 \) and \(\{5, 4\} \rightarrow 8 \) in Figure 5.4);

- **sinkArcs**(g) is the set of arcs which are driven by gate g (e.g. arcs \(10 \rightarrow \{12, 13\} \) in Figure 5.4);

- **sideArcs**(g) is the set of arcs which are driven by gate g’s driver nets but which do not belong to g itself (e.g. arcs \(6 \rightarrow 9 \) and \(5 \rightarrow 8 \) in Figure 5.4);

- **gateArcs**(g) is the set of arcs which belong to gate g (e.g. arcs \(\{6, 5, 8\} \rightarrow 10 \) in Figure 5.4);

- **drainNets**(g) is the set of nets driven by sink gates of g (e.g. nets 12 and 13 in Figure 5.4).

5.9.3 Lambda-Delay Sensitivity

In order to improve the accuracy of the cost computation, a method to account for the changes in the fan-out cone of the current cell is designed. The aim of this method is to compute the timing arc sensitivities and combine them as the circuit is traversed from outputs to inputs. This aggregated sensitivity can be used then to fast estimate the changes in the delay of downstream arcs.

The timing arc sensitivity measures how the delay/slew of an arc changes given a change on its context (i.e. input slew, output load). It linearly approximates the delay/slew from the look-up table at around the current context. Sensitivities can be combined and propagated back from path outputs to inputs. This allows, using a single operation, to consider how a local change affects the whole logic cone timing.

The cumulative sensitivity of an arc estimates how the delay of the logical cone starting at such arc changes given a change on its input slew. For sensitivity computation, a lumped capacitance interconnection model is assumed.

5.9.3.1 Example

Figure 5.5 is used to show how sensitivities are propagated back from path outputs to inputs. To simplify notation, in this example, \(\lambda \)s are not shown, but they are easily accounted for just by multiplying each arc delay sensitivity to input slew by its respective Lagrange Multiplier.

The delay change due to an input slew change of timing arc \(2 \rightarrow 3 \), is simply the timing arc sensitivity itself times the input slew change, as in Equation (5.6).

\[
\Delta D_{2 \rightarrow 3} = \Delta \text{slew}_2 \delta d_{2 \rightarrow 3} / \delta \text{slew}_2
\]

(5.6)

Similarly, for timing arc \(1 \rightarrow 2 \), the delay change is the input slew change times timing arc delay sensitivity plus the delay change for timing arc \(2 \rightarrow 3 \) as in Equation (5.7).
\[\Delta D_{1\to 2} = \Delta \text{slew}_1 \frac{\delta d_{1\to 2}}{\Delta \text{slew}_1} + \Delta D_{2\to 3} \]

(5.7)

Combining (5.6) and (5.7), and noting that Equation (5.8) holds

\[\Delta \text{slew}_2 \approx \Delta \text{slew}_1 \frac{\delta \text{slew}_2}{\delta \text{slew}_1} \]

(5.8)

we end up with the Equation (5.9) that depends on only one unknown, \(\Delta \text{slew}_1 \).

\[\Delta D_{1\to 2} = \Delta \text{slew}_1 \left(\frac{\delta d_{1\to 2}}{\delta \text{slew}_1} + \frac{\delta \text{slew}_2 \delta d_{2\to 3}}{\delta \text{slew}_1 \delta \text{slew}_2} \right) \]

(5.9)

Finally, the delay change for timing arc \(0 \to 1 \) is shown in Equation (5.10).

\[\Delta D_{0\to 1} = \Delta \text{slew}_0 \left[\frac{\delta d_{0\to 1}}{\delta \text{slew}_0} + \frac{\delta \text{slew}_1}{\delta \text{slew}_0} \left(\frac{\delta d_{1\to 2}}{\delta \text{slew}_1} \frac{\delta d_{2\to 3}}{\delta \text{slew}_2} \right) \right] \]

(5.10)

Note that such propagation could continue on for as many levels as necessary till reaching the path input. Note also that \(D_{0\to 1} \) provides the whole path delay change due to a change in the slew at net 0.

5.9.3.2 Generalization

In general terms, the back-propagate lambda-delay sensitivity of a timing arc \(i \to j \) is defined by the recurrence Equation (5.11) for every timing arc \(i' \to j' \) driven by arc \(i \to j \). Note that, differently from the aforementioned example, the \(\lambda \) associate to the timing arc is now being shown.

\[\phi_{i\to j} = \lambda_{i\to j} \frac{\delta d_{i\to j}}{\delta \text{slew}_i} + \frac{\delta \text{slew}_j}{\delta \text{slew}_i} \left\{ \begin{array}{ll} \sum_{j'} \phi_{i'\to j'} & \text{dominant arc} \\ 0 & \text{otherwise} \end{array} \right. \]

(5.11)

To handle multiple fanout nets and in order to avoid counting multiple times the delay change, only the arc with the worst slew rate – the dominant one – propagates back the cumulative sensitivity. The remaining arcs see the cumulative sensitivity as zero since they are likely dominated by the one with worst slew and hence, they should not affect the timing of gates ahead.

The delay change of timing arc \(i \to j \) is then defined as in Equation (5.12).

\[\Delta D^\lambda_{i\to j} = \Delta \text{slew}_i \phi_{i\to j} \]

(5.12)

For a net, the delay change is equal to the sum of the delay change of all timing arcs driven by it, as shown in Equation (5.13).

\[\Delta D^\lambda_n = \Delta \text{slew}_n \sum \phi_{i\to j} \]

(5.13)
Algorithm 5.5: Gate Version Selection

Algorithm 5.5 presents the method that selects a new gate version. In this method, all candidate versions are tested.

To improve overall convergence and guide our flow to a good solution, there are two conditions that a gate version should obey to be qualified to replace the current version: (1) not increase load violation and (2) not impact so much the local negative slack as we explain below.

5.9.4.1 Load Violation

Most load violations lead to slew violations which are hard to keep track as they may be generated at many logic levels ahead of the perturbation. They may be also propagated throughout the circuit. Prohibiting the increase of load violations avoids the method from wandering through solutions with lots of slew violations which are difficult to recover back.

Also, load violations may require extrapolation on timing calculations from the delay/slew look-up table. Extrapolations may generate exaggerated delay/slew values that affect the overall convergence of the flow.

In order to replace the current version, the new one must not increase the load violation (line 12). As our flow starts with a solution with no load violations, this implies that no load violations should be ever generated.
Algorithm 5.6: RC Interconnection Model

1. compute effective capacitance for driver node
2. obtain delay and slew from look-up table for driver node using effective capacitance
3. for each node \(n \) (\(\neq \) driver) in topological order do
 4. \(R \leftarrow \) resistance connecting \(n \) to parent node \(C \leftarrow \) downstream capacitance
 5. \(\text{delay}_n \leftarrow \text{delay}_{\text{parent}} + RC \text{slew}_n \leftarrow \sqrt{\text{slew}_{\text{parent}}^2 + 1.93 \times (RC)^2} \)

5.9.4.2 Local Negative Slack

Similarly to slew violations, timing violations generated due to a single perturbation may spread out. This is more apparent when critical paths are passing through the vicinity of the current gate. To keep TNS under control, a gate version must not increase too much the local negative slack (line 12).

As keeping track of slack globally would require to run an incremental STA, our method looks only at the slack perturbation in the vicinity of the current gate. Local negative slack is defined simply as the sum of negative slacks (positive slacks are discarded) of the driver nets and the sink net of the current gate.

To allow some sort of “hill climbing” like in stochastic methods, the local negative slack is allowed to increase a small amount controlled by the parameter \(\gamma \) as defined in Equation (5.14). The idea is to allow larger changes at the first iterations when the timing violations are likely to be high and to avoid them as the method converges to a low timing violation solution.

\[
\gamma = \frac{-(\min(0, \text{worstSlack}))/T + 1)}{}
\]

(5.14)

The local negative slack constraint indirectly controls the balancing between leakage and lambda-delay in the objective function. It avoids choosing a version which reduces locally the objective function but is likely to cause a large impact on timing violation.

5.9.5 Modeling Interconnections

Our interconnection modeling is based on Elmore delay (ELMORE, 1948; GUPTA et al., 1995) and is fast enough to be used several times during the optimization process. The method described in (QIAN; PULLELA; PILLAGE, 2006) is used to compute the effective capacitance in the net driver node and the method presented in (PURI; KUNG; DRUMM, 2002) is used to calculate the delay and slew degradation. These methods were selected as they are reasonably accurate and sufficiently fast to be used several times during the optimization process.

However, as the selected methods provide only a fairly estimation, extra post-processing Timing Recovery and Power Reduction method are added to the flow. Both methods work in the very same way to the ones presented in Section 5.10.1 and Section 5.10.2 respectively, but now using timing information provided by an external (e.g. commercial) tool.

It starts by computing the effective capacitance for the driver node of the net using the method presented in (QIAN; PULLELA; PILLAGE, 2006). The effective capacitance is then used to obtain delay and slew information from the look-up table. Next, delay and slew are propagated in topological order to the sink nodes. Algorithm 5.6 presents the interconnection timing calculation.
In our current implementation, when interconnections are taken into account, lambda-delay sensitivities are dropped. Since there is slew degradation on the interconnections our sensitivity calculation should yet to be adapted to take into account these effects.

5.10 Improving the Lagrangian Relaxation Solution

The solution provided by using sensitivity combined with LR can be improved using two other methods, Timing Recovery and Power Reduction.

5.10.1 Timing Recovery

The Timing Recovery step is executed only if the Total Negative Slack (TNS) is higher than \(\epsilon \) \((\epsilon = 1e-6)\), i.e., the solution has negative slack.

Algorithm 5.7 shows the Timing Recovery algorithm. The nets \(n \) are sorted in decreasing order of the number of critical paths passing through \(n \) (timing endpoints with negative slack). The algorithm tries to upsize the gate driver of \(n \) by changing the current gate-version to the next larger gate size with the same \(V_{th} \).

In this method, \(V_{th} \) decrease is not applied since it would lead to a high leakage power increase. At the same time, iteratively increasing gate sizes is efficient enough to solve small timing violations left by the LR while not increasing leakage power too much.

A gate \(g \) is upsizable if by changing the original gate version to another it does not generate slew and/or load violation. Moreover, TNS generated by this change must be smaller than the TNS using the previous gate size.

5.10.2 Power Reduction

To find a solution with the smallest leakage power, a greedy Power Reduction algorithm is also finally executed, as presented in Algorithm 5.8. For each gate \(g \) it tries to increase the \(V_{th} \) of the gate \(c \) and/or to downsize the gate \(c \).

\(V_{th} \) is increasable if the gate with new \(V_{th} \) does not generate slew and/or load violation and the TNS is smaller than or equal to previous TNS.
Algorithm 5.7: Timing Recovery

1. $g \leftarrow$ most critical gate
2. while g do
 3. $previousTNS \leftarrow TNS$
 4. if g is upsizable then
 5. upsize g
 6. run incremental STA
 7. if $TNS < previousTNS$ and no load/slew violations generated then
 8. $previousTNS \leftarrow TNS$
 9. re-sort gates
 else
 10. undo
 11. $g \leftarrow$ next critical gate

Algorithm 5.8: Power Reduction

1. repeat
2. $changedCounter \leftarrow 0$
3. for each gate g of the circuit in topological order do
 4. if V_{th} of g is increasable then
 5. increase V_{th} of g
 6. update timing (STA)
 7. if $TNS \geq 0$ and no load/slew violations generated then
 8. $changedCounter + +$
 else
 9. undo
 10. for each gate g of the circuit in topological order do
 11. if g is downsizable then
 12. downsize g
 13. update timing (STA)
 14. if $TNS \geq 0$ and no load/slew violations generated then
 15. $changedCounter + +$
 else
 16. undo
 19. until $changedCounter = 0$;
5.11 Experimental Setup

Our flow and techniques are empirically validated using the ISPD 2012 and 2013 gate sizing contest infrastructure.

5.11.1 Assumptions and Limitations

For these contests, an ideal clock distribution is assumed so that no skew is present at registers. This kind of assumption is reasonable during the early stages of the optimization processes where cells were not placed yet and/or a clock net was not routed. A way to account for clock skew is by tightening the target clock period.

For the 2012 contest, wires were modeled by a lumped capacitance. Again this is reasonable and a common practice before placement is performed. The lumped capacitance can be estimated via wire load models, which define a load capacitance depending on the number of pins in a net and if the net cross or not modules. The wire load model is provided by foundries and it is built statistically by measuring the wire length and hence load of positioned designs.

The 2013 contest added the interconnection modeling via RC trees and the final timing evaluation is performed using the commercial tool PrimeTime. PrimeTime uses model order reduction (MOR) to accurately and quickly (compared to Spice simulation) compute interconnection delay.

The main drawback of the contest infrastructure is the provided library, which is oversimplified although it tries to capture a more or less valid scenario. Moreover the delay functions are linear w.r.t. gain (ratio between the load and input capacitance). Logical effort theory success is based on this linear relation, but it typically only holds in approximate terms.

5.12 Results on ISPD 2012 Contest Benchmarks

First the results for the whole gate sizing flow are presented and analyzed. Next the impact of the techniques developed in this thesis w.r.t. quality of results and convergence is reported.

In this subsection, we evaluate our flow using the infrastructure and benchmarks from ISPD 2012 Discrete Gate Sizing Contest. The number of combinational gates in those circuits ranges from 23K to 861K gates as shown in Table 5.2.

Table 5.2 shows the outcome of this flow for the ISPD 2012 benchmark set and infrastructure. As can be seen this flow finds the best results among all published works with a 9.53% and 12.45% reduction on leakage power on average. The results are more prominent for fast benchmarks where the clock period is tight and hence harder to optimize which more clearly indicate the superiority of this flow. For slow benchmarks, as the clock period is not very tight, it easier to find a low power version that meets timing so that the gain of this flow over other published works are less significant.

For the 2012 contest, interconnections are modeled as simple lumped capacitance so the RC interconnection model presented in Section 5.9.5 is not used. As the lambda-delay sensitivities technique is compatible with the lumped capacitance model, it is applied in the experimental results presented in this subsection.

Leakage power results in watts (W) are presented in Table 5.2. The results of these benchmarks are compared with recent works that are also based on the ISPD 2012 Contest, (HU et al., 2012) and (LI et al., 2012). The proposed methods can find the best
Table 5.2: Leakage power (\(W\)) and runtime (\(\text{min}\)) results on ISPD 2012 benchmarks suite. Hu (HU et al., 2012) and Li (LI et al., 2012) runtimes are taken from the corresponding papers.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th># of Comb. Gates</th>
<th>Clock Period (ps)</th>
<th>Leakage Power ((W))</th>
<th>Power Saved (%)</th>
<th>Runtime ((\text{min}))</th>
<th>Speedup ((X))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hu</td>
<td>Li</td>
<td>Ours</td>
<td>Comp. to Hu</td>
</tr>
<tr>
<td>DMA_sslow</td>
<td>23K</td>
<td>900</td>
<td>0.145</td>
<td>0.153</td>
<td>0.132</td>
<td>8.73</td>
</tr>
<tr>
<td>DMA_fast</td>
<td>23K</td>
<td>770</td>
<td>0.299</td>
<td>0.281</td>
<td>0.238</td>
<td>20.29</td>
</tr>
<tr>
<td>pci_bridge32_sslow</td>
<td>30K</td>
<td>720</td>
<td>0.111</td>
<td>0.111</td>
<td>0.096</td>
<td>13.31</td>
</tr>
<tr>
<td>pci_bridge32_fast</td>
<td>30K</td>
<td>660</td>
<td>0.183</td>
<td>0.167</td>
<td>0.136</td>
<td>25.51</td>
</tr>
<tr>
<td>des_perf_sslow</td>
<td>102K</td>
<td>900</td>
<td>0.614</td>
<td>0.671</td>
<td>0.570</td>
<td>7.14</td>
</tr>
<tr>
<td>des_perf_fast</td>
<td>102K</td>
<td>735</td>
<td>1.842</td>
<td>1.93</td>
<td>1.395</td>
<td>24.27</td>
</tr>
<tr>
<td>vga_lcd_sslow</td>
<td>148K</td>
<td>700</td>
<td>0.351</td>
<td>0.375</td>
<td>0.328</td>
<td>6.61</td>
</tr>
<tr>
<td>vga_lcd_fast</td>
<td>148K</td>
<td>610</td>
<td>0.471</td>
<td>0.46</td>
<td>0.413</td>
<td>12.22</td>
</tr>
<tr>
<td>b19_sslow</td>
<td>213K</td>
<td>2500</td>
<td>0.583</td>
<td>0.604</td>
<td>0.564</td>
<td>3.28</td>
</tr>
<tr>
<td>b19_fast</td>
<td>213K</td>
<td>2100</td>
<td>0.771</td>
<td>0.784</td>
<td>0.717</td>
<td>7.06</td>
</tr>
<tr>
<td>leon3mp_sslow</td>
<td>540K</td>
<td>1800</td>
<td>1.341</td>
<td>1.4</td>
<td>1.334</td>
<td>0.53</td>
</tr>
<tr>
<td>leon3mp_fast</td>
<td>540K</td>
<td>1500</td>
<td>1.487</td>
<td>1.64</td>
<td>1.443</td>
<td>2.99</td>
</tr>
<tr>
<td>netcard_sslow</td>
<td>861K</td>
<td>1200</td>
<td>1.77</td>
<td>1.78</td>
<td>1.763</td>
<td>0.41</td>
</tr>
<tr>
<td>netcard_fast</td>
<td>861K</td>
<td>1900</td>
<td>1.861</td>
<td>2.18</td>
<td>1.841</td>
<td>1.07</td>
</tr>
<tr>
<td>Avg.</td>
<td>-</td>
<td>-</td>
<td>0.845</td>
<td>0.895</td>
<td>0.784</td>
<td>9.53</td>
</tr>
<tr>
<td>Sum (h)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(HU et al., 2012) (LI et al., 2012)

solution among all algorithms, i.e., the solution with smallest leakage power compared with the state-of-the-art works. Power saving of up to 27.73% can be obtained. Compared to (HU et al., 2012), our solution saves on average 9.53% in leakage power and compared to (LI et al., 2012), our solution reduces leakage power by 12.45%, on average.

Considering the small circuits (DMA, pci_bridge32, des_perf and vga_lcd), our approach reduces leakage power by 14.76%, on average, compared to (HU et al., 2012) and 15.73% compared to (LI et al., 2012). As (HU et al., 2012) stated, the timing constraints for larger circuits are tighter than for the smaller ones, and thus it is more difficult to reduce leakage power keeping a violation-free circuit in the former case.

Table 5.2 also shows the runtime results. Our solution is 19X faster than (HU et al., 2012) and 1.18X faster than (LI et al., 2012) considering the total runtime for all benchmarks. A fast timer based on Synopsys PrimeTime® was developed and is used in our approach to speed up the timing updates during the gate selection execution. This fast timer combined with local and incremental timing updates helps our method to achieve the presented runtime efficiency.

As we can see, the method described herein presents the best results for power and runtime compared with the state-of-the-art works.

5.12.1 Impact of Slack Filtering

The slack filtering technique proposed in this thesis was developed with the main goal of improving the convergence of the extended Lagrangian Relaxation formulation from Li Li (LI et al., 2012).

Table 5.3 shows the impact on results for the ISPD 2012 benchmark set when the slack filtering technique is disabled. The results are taken after Lagrangian Relaxation and before timing and power recovery. Clearly there is a huge impact on convergence where WNS and TNS are worsen by 2675.47% and 86735.41% respectively when compared to the baseline flow at the same point. For most designs, however, TR is able to eliminate those timing violations, but at cost of runtime spent in hundreds of iterations. A typical timing recovery on the baseline algorithm takes only a few dozen iterations.
Table 5.3: Results of this flow when the slack filtering is disabled.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Leakage</th>
<th>WNS</th>
<th>TNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA_slow</td>
<td>1.42%</td>
<td>6794.90%</td>
<td>248295.59%</td>
</tr>
<tr>
<td>pci_bridge32_slow</td>
<td>4.02%</td>
<td>5853.70%</td>
<td>139380.54%</td>
</tr>
<tr>
<td>des_perf_slow</td>
<td>4.39%</td>
<td>762.84%</td>
<td>2573.43%</td>
</tr>
<tr>
<td>vga_lcd_slow</td>
<td>1.15%</td>
<td>1291.01%</td>
<td>8319.48%</td>
</tr>
<tr>
<td>b19_slow</td>
<td>0.47%</td>
<td>4988.07%</td>
<td>107301.85%</td>
</tr>
<tr>
<td>leon3mp_slow</td>
<td>1.11%</td>
<td>2131.67%</td>
<td>1765.54%</td>
</tr>
<tr>
<td>netcard_slow</td>
<td>1.01%</td>
<td>-768.18%</td>
<td>-100.00%</td>
</tr>
<tr>
<td>DMA_fast</td>
<td>5.37%</td>
<td>4957.89%</td>
<td>34337.63%</td>
</tr>
<tr>
<td>pci_bridge32_fast</td>
<td>3.77%</td>
<td>3434.12%</td>
<td>300253.16%</td>
</tr>
<tr>
<td>des_perf_fast</td>
<td>5.88%</td>
<td>1058.14%</td>
<td>7159.13%</td>
</tr>
<tr>
<td>vga_lcd_fast</td>
<td>1.21%</td>
<td>1267.29%</td>
<td>22980.71%</td>
</tr>
<tr>
<td>b19_fast</td>
<td>0.91%</td>
<td>1466.42%</td>
<td>43869.79%</td>
</tr>
<tr>
<td>leon3mp_fast</td>
<td>2.76%</td>
<td>1309.09%</td>
<td>245862.04%</td>
</tr>
<tr>
<td>netcard_fast</td>
<td>0.61%</td>
<td>2909.68%</td>
<td>52296.92%</td>
</tr>
<tr>
<td>avg</td>
<td>2.43%</td>
<td>2675.47%</td>
<td>86735.41%</td>
</tr>
</tbody>
</table>

5.12.2 Impact of Lambda-Delay Sensitivity

The lambda-delay sensitivity technique proposed in this thesis was introduced to give a more global view of the effects of sizing a gate on the global timing. Since in this flow the timing is updated only locally for sake of runtime. The main goal is to make a better prediction of the actual timing change.

Table 5.4 shows the impact on results for ISPD 2012 benchmarks when the lambda-delay sensitivity is deactivated. The results are taken after Lagrangian Relaxation and before timing and power recovery. One can see that in fact this technique worsen significantly the WNS and TNS by 165.20% and 249.43% respectively on average and only provided a small reduction of 0.81% on average for the leakage.

However, when one compares the final leakage power using lambda-delay sensitivity after timing and power recovery, the gains on leakage power are kept as shown in Table 5.5. For some designs, the leakage improvement can pass 3% and for all but one designs there are gains in leakage power. It is important to note that these small gains are over already very optimized designs. The impact on runtime of lambda-delay sensitivity is negligible.

5.12.3 Slack Histogram and Slack Compression

The proposed flow has the desired property of compression the slacks at around the zero slack as shown Figure 5.6 for design DMA_fast. This property indicates that this flow is not just reaching timing closure, but it is consuming the positive slack on non-critical paths to improve power.

5.12.4 Size and Vth Changes in Each Iteration

Figure 5.8 shows how the sizes and threshold voltages change between iterations of Lagrangian Relaxation method for DMA_fast benchmark. Groups of bars represent size changes and within a group, bars represent threshold voltage changes. Each group has 5
Table 5.4: Results of this flow when lambda-delay sensitivity is disabled.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Leakage</th>
<th>WNS</th>
<th>TNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA_slow</td>
<td>-0.62%</td>
<td>4.26%</td>
<td>-36.19%</td>
</tr>
<tr>
<td>pci_bridge32_slow</td>
<td>-3.14%</td>
<td>-44.33%</td>
<td>-82.13%</td>
</tr>
<tr>
<td>des_perf_slow</td>
<td>-0.79%</td>
<td>305.98%</td>
<td>445.36%</td>
</tr>
<tr>
<td>vga_lcd_slow</td>
<td>-0.47%</td>
<td>376.53%</td>
<td>752.82%</td>
</tr>
<tr>
<td>b19_slow</td>
<td>-0.14%</td>
<td>93.41%</td>
<td>26.82%</td>
</tr>
<tr>
<td>leon3mp_slow</td>
<td>-0.07%</td>
<td>-19.71%</td>
<td>30.78%</td>
</tr>
<tr>
<td>netcard_slow</td>
<td>0.00%</td>
<td>816.67%</td>
<td>1610.53%</td>
</tr>
<tr>
<td>DMA_fast</td>
<td>-1.75%</td>
<td>78.13%</td>
<td>411.26%</td>
</tr>
<tr>
<td>pci_bridge32_fast</td>
<td>-1.71%</td>
<td>13.33%</td>
<td>27.49%</td>
</tr>
<tr>
<td>des_perf_fast</td>
<td>0.10%</td>
<td>22.16%</td>
<td>8.92%</td>
</tr>
<tr>
<td>vga_lcd_fast</td>
<td>-0.99%</td>
<td>70.36%</td>
<td>83.16%</td>
</tr>
<tr>
<td>b19_fast</td>
<td>-0.59%</td>
<td>693.28%</td>
<td>202.36%</td>
</tr>
<tr>
<td>leon3mp_fast</td>
<td>-0.96%</td>
<td>-16.77%</td>
<td>-9.34%</td>
</tr>
<tr>
<td>netcard_fast</td>
<td>-0.19%</td>
<td>-80.50%</td>
<td>20.18%</td>
</tr>
<tr>
<td>avg</td>
<td>-0.81%</td>
<td>165.20%</td>
<td>249.43%</td>
</tr>
</tbody>
</table>

Table 5.5: Leakage power improvement using lambda-delay sensitivity on final results.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Sensitivities</th>
<th>No sensitivities</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA_slow</td>
<td>0.136319</td>
<td>0.140711</td>
<td>3.22%</td>
</tr>
<tr>
<td>pci_bridge32_slow</td>
<td>0.13234</td>
<td>0.132975</td>
<td>0.48%</td>
</tr>
<tr>
<td>des_perf_slow</td>
<td>1.33391</td>
<td>1.33266</td>
<td>-0.09%</td>
</tr>
<tr>
<td>vga_lcd_slow</td>
<td>1.44257</td>
<td>1.45093</td>
<td>0.58%</td>
</tr>
<tr>
<td>b19_slow</td>
<td>1.39488</td>
<td>1.39587</td>
<td>0.07%</td>
</tr>
<tr>
<td>leon3mp_slow</td>
<td>0.238322</td>
<td>0.242331</td>
<td>1.68%</td>
</tr>
<tr>
<td>netcard_slow</td>
<td>0.413457</td>
<td>0.420279</td>
<td>1.65%</td>
</tr>
<tr>
<td>DMA_fast</td>
<td>0.0962305</td>
<td>0.099212</td>
<td>3.10%</td>
</tr>
<tr>
<td>pci_bridge32_fast</td>
<td>0.570168</td>
<td>0.573817</td>
<td>0.64%</td>
</tr>
<tr>
<td>des_perf_fast</td>
<td>0.563872</td>
<td>0.564284</td>
<td>0.07%</td>
</tr>
<tr>
<td>vga_lcd_fast</td>
<td>1.84101</td>
<td>1.84476</td>
<td>0.20%</td>
</tr>
<tr>
<td>b19_fast</td>
<td>1.76276</td>
<td>1.76282</td>
<td>0.00%</td>
</tr>
<tr>
<td>leon3mp_fast</td>
<td>0.327798</td>
<td>0.329421</td>
<td>0.50%</td>
</tr>
<tr>
<td>netcard_fast</td>
<td>0.716531</td>
<td>0.719399</td>
<td>0.40%</td>
</tr>
<tr>
<td>avg</td>
<td></td>
<td></td>
<td>0.89%</td>
</tr>
</tbody>
</table>
bars corresponding to the possible changes in the threshold voltage:

- **-2**: low → high
- **-1**: low → standard or standard → high
- **0**: no change
- **+1**: high → standard or standard → low
- **+2**: high → low

For instance, if a cell has its size decreased by 4 and threshold voltage changed from high to low it is accounted in the bar +2 in the group of bar at -4.

Analyzing the histogram, one can see that the sizes and threshold voltages changes drastically in the first iterations, however after just few iterations, the changes start to be restricted to neighbouring sizes, that is, cells are usually not increased or decrease by more than a factor of 2. Also after initial iterations, the threshold voltages do not change a lot. This indicates that the method can be improved in terms of runtime by testing only a few candidates without significant impact on the quality of results.

5.12.5 Runtime Breakdown

Figure 5.10 shows the runtime breakdown of this flow when averaging all the ISPD 2012 benchmarks. As it can be seen, the Lagrangian Relaxation is the most timing consuming step in this flow.
5.13 Results on ISPD 2013 Contest Benchmarks

Table 5.6 shows the outcome of this flow for the ISPD 2013 benchmark set and infrastructure. Again, this flow provides the best results in terms of leakage power for all benchmarks when compared to the official results from the contest. Beside this work, the best know-results for those benchmarks are generated by the 1st place team, which is a
previous version of the flow presented in this theses. On average this flow can provide on average a leakage power reduction of almost 10%.

For ISPD 2013, the lambda-delay sensitivity technique did not show any significant improvement and the main reason it is because its was not devised to handle RC trees. An extension to this idea is left as a future work.

Table 5.6: Leakage power (W), runtime (min) and clock period (ps) on ISPD 2013 benchmarks comparing the contest results and our new results using accurate timing information in TR and PR algorithms.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th># of Comb. Gates</th>
<th>Clock Period (ps)</th>
<th>Leakage Power (W)</th>
<th>Power Saved (%)</th>
<th>Runtime (min)</th>
<th>Speedup (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>usb_phy_slow</td>
<td>510</td>
<td>450</td>
<td>0.0010745</td>
<td>0.0010740</td>
<td>0.0010685</td>
<td>0.05</td>
</tr>
<tr>
<td>usb_phy_fast</td>
<td>510</td>
<td>300</td>
<td>0.0016080</td>
<td>0.0015540</td>
<td>0.0015335</td>
<td>3.36</td>
</tr>
<tr>
<td>pci_bridge32_slow</td>
<td>28K</td>
<td>1000</td>
<td>0.0578945</td>
<td>0.0569625</td>
<td>0.0560495</td>
<td>1.61</td>
</tr>
<tr>
<td>pci_bridge32_fast</td>
<td>28K</td>
<td>750</td>
<td>0.0665110</td>
<td>0.0854375</td>
<td>0.0850370</td>
<td>11.47</td>
</tr>
<tr>
<td>rfi_slow</td>
<td>31K</td>
<td>1800</td>
<td>0.0903405</td>
<td>0.0866000</td>
<td>0.0865460</td>
<td>4.14</td>
</tr>
<tr>
<td>rfi_fast</td>
<td>31K</td>
<td>1400</td>
<td>0.2262075</td>
<td>0.1943070</td>
<td>0.1939070</td>
<td>14.10</td>
</tr>
<tr>
<td>cordic_slow</td>
<td>42K</td>
<td>3000</td>
<td>0.3237910</td>
<td>0.2795140</td>
<td>0.2656670</td>
<td>16.45</td>
</tr>
<tr>
<td>cordic_fast</td>
<td>42K</td>
<td>2626</td>
<td>1.4305775</td>
<td>1.0009949</td>
<td>0.9801770</td>
<td>30.03</td>
</tr>
<tr>
<td>des_perf_slow</td>
<td>104K</td>
<td>1300</td>
<td>0.3530055</td>
<td>0.3304245</td>
<td>0.3272890</td>
<td>6.40</td>
</tr>
<tr>
<td>des_perf_fast</td>
<td>104K</td>
<td>1140</td>
<td>0.7939960</td>
<td>0.6488325</td>
<td>0.6449955</td>
<td>18.18</td>
</tr>
<tr>
<td>eda_dist_slow</td>
<td>121K</td>
<td>3600</td>
<td>0.4749225</td>
<td>0.4294925</td>
<td>0.4103990</td>
<td>4.90</td>
</tr>
<tr>
<td>eda_dist_fast</td>
<td>121K</td>
<td>3000</td>
<td>0.5902225</td>
<td>0.5397870</td>
<td>0.5334715</td>
<td>9.48</td>
</tr>
<tr>
<td>matrix_mult_slow</td>
<td>153K</td>
<td>2800</td>
<td>0.4697325</td>
<td>0.4442710</td>
<td>0.4429125</td>
<td>5.42</td>
</tr>
<tr>
<td>matrix_mult_fast</td>
<td>153K</td>
<td>2200</td>
<td>2.1300790</td>
<td>1.6109320</td>
<td>1.5415690</td>
<td>24.37</td>
</tr>
<tr>
<td>netcard_slow</td>
<td>884K</td>
<td>2400</td>
<td>5.2456660</td>
<td>5.1552390</td>
<td>5.1548345</td>
<td>1.72</td>
</tr>
<tr>
<td>netcard_fast</td>
<td>884K</td>
<td>2000</td>
<td>5.3178395</td>
<td>5.2001545</td>
<td>5.1858700</td>
<td>2.21</td>
</tr>
<tr>
<td>Avg*</td>
<td>1860</td>
<td></td>
<td></td>
<td>9.62</td>
<td>180.13</td>
<td>171.87</td>
</tr>
<tr>
<td>Avg*</td>
<td>1677</td>
<td></td>
<td></td>
<td>14.15</td>
<td>216.35</td>
<td>209.78</td>
</tr>
</tbody>
</table>

* Our solution with runtime limit compared to ISPD 2013 Contest.

a Considering all benchmarks.

b Considering only the benchmarks with "fast" constraints.

5.14 Conclusions

Gate sizing is a step of the digital circuit flow where the proper sizes for circuit components are defined so that it meets the desired performance and power consumption. In its discrete incarnation, it becomes a NP-complete problem where one select the sizes or threshold voltages from a library.

Lagrangian relaxation has been successfully applied to the gate sizing problem. For continuous sizing and convex delay models, LR can even find the optimal solution. However for the discrete case it can be only used as a heuristic to find good solutions.

Lagrangian Multipliers distributed according to the KKT optimality conditions emerge as an effective way to define which parts of the design need more attention.

This work presents a flow for simultaneous gate size selection and V_{th} assignment based on the Lagrangian relaxation formulation. The well-know LR formulation is used to guide our greedy algorithm to escape from local minima. To avoid large runtime, only local timing is updated to compute the impact of change a cell size or threshold voltage. However a method to propagate delay sensitivities is also proposed, so that the global change can also be estimated.

The flow initially attempts to produce a solution without slew and load violations. Then, the Lagrangian Relaxation guided greedy method using lambda-delay sensitivities is applied to reduce the leakage power and to meet the circuit performance constraints. After that, any remaining timing violations are handled by a path-based Timing Recovery

The flow provides an effective way to design digital circuits with high performance and low power consumption.
method algorithm. Finally a power reduction technique is executed to reduce the circuit power consumption without degrading the circuit timing.

The power savings achieved with the changes in the proposed flow and algorithms is on average 9.62% compared to the best solutions from the ISPD 2013 Discrete Gate Sizing Contest. The proposed approach is also the first to report violation-free solutions for all benchmark circuits provided in the Contest.

The power saved using our algorithms reaches 28% compared to the most recent works. On average, our solution could improve power in 9.53% compared with (HU et al., 2012) and 12.45% compared with (LI et al., 2012). The method is, on average, 19x faster than (HU et al., 2012) and 1.18x faster than (LI et al., 2012).

Though the contest formulation is simplified if one compare it with the requirements at later stages of an industrial design flow, it still reflect the reality during early design flow steps where precise information may not be available.

Moreover, the general idea of the LR formulation and the techniques presented in this thesis to control the problem are still valid if one use a more precise engine to get timing and power information. This extensibility can be seen in the work (REIMANN; SZE; REIS, 2015) where authors extend and improve the flow presented here to handle an industrial environment.

Similar to the work of Mustafa et. at (OZDAL; BURNS; HU, 2011), this work can be extended with a few changes to use a sign-off timer which can then handle more complex timing as crosstalk, false paths, multiple clock domain, etc. Since most sign-off timers do not provide a local timing update, an internal, probably simplified timer would be still required to select the best candidate.

The main drawback of the current flow is its inability to perform incremental optimization. This means that it cannot take an already optimized solution and then further optimize it. Defining “good” initial Lagrange multipliers so that the Lagrangian formulation does not perturb a lot the current solution, but take advantage of it, is still an open question. The authors of (REIMANN; SZE; REIS, 2015) explore this idea, but a more detailed analysis is still required.

If the sizing is ran after placement, the placement needs to be adjusted if a cell is upsized and it does not fit the current space. In this work, such effects were ignored and the integration between the sizing and placement needs to be explored. However, considering the large amount of white space left in the design to allow exactly this kind of changes, performing a legalization step after the sizing may have a non-significant impact on the quality of results. However this need to be further analyzed.

Lambda distribution can be further explored. Although KKT optimality conditions imply a relation between the input and output lambdas of pin, it does not say how this lambda should be updated or distributed. An example can be seen in a buffer chain. Due to KKT conditions, all lambdas must be the same and, as in the case of slack, they are not useful to indicate which cell provides the best delay gain with the least amount of power consumption.
6 PLACEMENT

Placement is the stage where the positions of the design components are defined. It has a major impact on the design performance as it is the main responsible to define the interconnection lengths, which nowadays play a major role in the definition of design performance. Moreover, a bad placement may lead to a design that cannot be routed as the demand of interconnections surpass the available routing spaces. A bad and a good placement for the same small design are depicted in Figure 6.1. Clearly, the bad solution may lead to much more congestion and delay than the good one where connected cells are closer to each other.

Figure 6.1: Influence of Placement on Wirelength

[Diagram showing bad and good placements]

Source: from author (2015)

The placement step can be divided into three main sub-steps: (1) global placement; (2) legalization and (3) detailed placement. These phases and their outputs are represented in Figure 6.3.

Global placement roughly defines the component positions allowing some overlap among them. The main goal is to minimize the wirelength, which indirectly improves timing and congestion. However, as the timing information and congestion becomes available, the global placement uses this information to produce even better results already aiming congestion and timing.

During legalization overlaps are removed and the components are moved to legal positions. A typical goal of legalization is to minimize the total displacement of cells w.r.t. the non-legalized position. Although other metrics can be applied as wirelength minimization, minimizing the displacement is usually a good strategy as the initial placement can be optimized not just for wirelength.

After legalization, detailed placement further improves the placement solution by applying more local optimizations techniques keeping the circuit legalized. Different from a global placement only a few components are usually handled. Also more precise routing
or timing information is used to perform the optimization improving the correlation with the final design solution.

6.1 Timing-Driven Detailed Placement

A timing-driven placement is any placement method that takes into account timing information. During global stages the timing information is usually used to increase the weight of critical nets or to add virtual nets to mimic critical paths (VISWANATHAN et al., 2010). In detailed placement, since fewer cells are handled, one can rely on more sophisticated timing information.

Timing-driven detailed placement (TDDP) seeks to improve timing by moving some cells to new legal positions fine-tuning the design after global placement and legalization. A pure TDDP can improve timing by reducing the wirelength of critical paths and balancing the loads of critical cells based on their drive strength. However the shortening of an interconnection typically comes at the cost of increased wirelength on other interconnections. As many critical paths interact with each other by improving a path one may worsen other paths so a TDDP should meticulously trade-off the wirelengths.
6.2 Related Works

Most of the timing-driven placement techniques are divided into 2 groups: net-based (KONG, 2002; TSAY; KOEHL, 1991; BURSTEIN; YOUSSEF, 1985) and path-based approaches (PAPA et al., 2008; WANG; LILLIS; SANYAL, 2005; WILLIAM SWARTZ, 1995).

The former group prioritizes nets with timing violations by assigning them higher weights during global wirelength-driven placement or by assigning a max wirelength for them. These techniques can deal with a lot of violations at the same time, keeping a global view of the problem. However, while these nets are optimized, other violations may show up and, thereby, new constraints need to be created. At the end, the problem may be over constrained, and the solution may be a local minima. Over constrained solutions also may lead to congestion and can affect routability.

On the other hand, path-based approaches focus on fixing a set of critical or near critical paths. The idea is to straighten the critical paths in order to reduce their length. The procedure can be done by heuristic local search or linear programing techniques.

ITOP (VISWANATHAN et al., 2010) proposes various techniques in order to achieve timing closure. The first one is a netlist transformation in which virtual 2-pin nets are created linking cells in critical paths to raise attraction between them in global placement. Furthermore, an incremental path smoothing algorithm locally moves critical modules trying to achieve local improvements. Unlike most algorithms, after changing the solution, small movements are performed to mitigate congestion and to ensure routability. Finally, the authors combine other techniques, like buffering and sizing (repowering), to further improve the solution quality.

A set of local search algorithms was proposed by (BOCK et al., 2015). Their work rely on two strategies: path straightening and clustering. The goals of clustered movement are to speed up the execution time and to escape from suboptimal solutions. The idea is to minimize the euclidean distance between the most critical upstream and downstream pins of a cluster.

A formulation using Lagrangian Relaxation to mitigate Timing-Driven Placement (TDP) timing violations was proposed by (GUTH et al., 2015). The proposed technique updates dynamically net’s weights according to Lagrange multipliers.
7 DRIVE STRENGTH AWARE CELL DISPLACEMENT FOR TIMING-DRIVEN DETAILED PLACEMENT

A timing-driven detailed placement takes an already legalized placement solution and tries to further improve it by applying small local changes keeping the placement legalized.

7.1 Contributions

In this thesis, several techniques for early and late timing violations are developed and integrated into a flow to improve the overall design timing.

For late violations, the following new techniques are presented:

- drive strength aware single cell placement based on an analytical formulation to find the optimal position to place a cell in order to minimize delay;

Although early violations may be best handled by other techniques as wire snaking, gate sizing or even retiming, some techniques for early violation reduction during detailed placement are developed for completeness:

- register-to-register path fixing by optimal displacement among the input and output registers;

- register swapping by optimal assignment algorithm where registers driven by the same local clock buffer are swapped to take advantage of useful skew.

Moreover a new way to weight the importance of pins and hence cells is devised. This can be used to determine which cells are more important for timing closure. The importance factor is also used to filter out bad perturbations caused by noise due to re-routing or model imprecision.

Although a timing-driven detailed placement flow is presented, the techniques can be independently implemented in any timing-driven detailed placement flow.

7.2 Scope

The techniques developed in this thesis are designed to be executed just after the legalization step, but prior to routing as illustrated by Figure 7.1.

Routing is estimated via minimum Steiner trees, which correlate well with the final routing (CHU; WONG, 2008). The Elmore delay is used to model the interconnection delays.
Since the Elmore model is just an upper bound of the actual delay, an optimization of the Elmore delay may not be seen in the actual delay. However, as the Elmore delay precision increases for small fanout nets and for short wires and those are goals of a design flow, the improvements on Elmore delay are likely to be reflected in the actual delay.

The empirical validation of the flow is also done before routing using the simplified interconnection model based on Elmore delay. However, by the nature of techniques created, they can be seamlessly run on a more sophisticated timing engine making them suitable even for later stages of the design flow.

7.3 Criticality and Centrality

The criticality $\in [0, 1]$ of a pin is the negative slack of the pin divided by the worst negative slack found in the design. The normalized centrality $\in [0, 1]$ of a pin is a rough measure of how many critical endpoints are affected by the pin. It can be seen as the importance of such pin to the Total Negative Slack (TNS). The importance of a pin p is then defined as in Equation (7.1).

$$\frac{2 \times \text{centrality}(p) + \text{criticality}}{3}$$ \hspace{1cm} (7.1)

The centralities are computed by traversing the design in reverse topological order. By definition, the centrality at endpoints is set as the endpoint criticality. The centrality of an output pin is simply the sum of centralities of the pins it drives. The centrality of the output pin is then proportionally distributed among the input pins of the respective cell according to the input pin criticalities. Centrality values can be seen as the endpoint centralities flowing through the circuit, which is a standard technique used by timing driven optimization methods based on Lagrangian Relaxation (AHUJA; MAGNANTI; ORLIN, 1993) to obey the KKT optimally conditions.
7.4 Moves

The techniques developed in this work are called moves as they typically move a single cell at a time aiming timing improvement. The moves presented in this work are summarized in the Table 7.1.

Table 7.1: Moves Developed in this Thesis

<table>
<thead>
<tr>
<th>Move</th>
<th>Goal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skew Optimization</td>
<td>Early</td>
<td>Move register at end of critical timing path closer to the local buffer that drivers it in order to reduce clock latency and hence improve timing violation.</td>
</tr>
<tr>
<td>Iterative Spreading</td>
<td>Early</td>
<td>Iteratively seeks a best position to a cell moving it tentatively to north, south, east and west.</td>
</tr>
<tr>
<td>Register Swap</td>
<td>Early</td>
<td>Swap registers connected to the same lock clock buffer in order to take advantage of useful skew.</td>
</tr>
<tr>
<td>Reg-to-Reg Path Fix</td>
<td>Early</td>
<td>Fix critical paths connecting directly two registers by moving away the input register. It uses an analytical formulation to identify how much the input register must be moved away from the output register.</td>
</tr>
<tr>
<td>Buffer Alignment</td>
<td>Late</td>
<td>Find a best position to place a buffer between its driver and sink. An analytical formulation is provided to find the optimal displacement w.r.t. the driver.</td>
</tr>
<tr>
<td>Cell Alignment</td>
<td>Late</td>
<td>Extend the buffer alignment algorithm to handle general cells with multiple fanouts.</td>
</tr>
<tr>
<td>Load Reduction</td>
<td>Late</td>
<td>Move non-critical sinks closer to the driver in order to reduce the load and hence improve timing.</td>
</tr>
</tbody>
</table>

7.4.1 Legalization

After a move is executed, the cell is likely to overlap other cells and a legalization needs to be performed. To avoid perturbing the already placed cells, the cell is placed in the nearest available white space as depicted by Figure 7.2.

Current designs have a lot of white space left there to improve routablity, making it easier to perform incremental changes such as sizing and detailed placement. The moves presented in this thesis take advantage of this precious resource to reduce the impact on already legalized cells and hence to reduce the noise caused due to rerouting.

Other possible solution would be to allow cells to overlap and then perform a full legalization at the end of the flow, but the legalization may destroy the fine tuned improvements obtained by a single move. Other drawback of a full legalization is that it does not allow filtering out bad moves before committing them.

7.4.2 Filtering out Bad Moves

A cell movement may cause the Steiner trees connected to the cell to change drastically and hence huge timing variation may occur, which misleads some optimization
methods. To avoid timing degradation caused by such changes and also by legalization noise, local timing is evaluated and the move is optionally committed only if the local timing does not degrade.

The degradation is computed as Δcost where the cost is the sum of the weighted arrival times of the neighboring pins of the cell. In this work, the weight is set to centrality + criticality, which gives more importance to TNS-critical pins. This weighting function also helps to avoid focusing too much on Worst Negative Slack (WNS) improvement which may cause large degradation on TNS.

7.5 Late Optimization

In this section we present a set of techniques that targets to decrease wire load capacitance and resistance of the critical nets. We also propose an analytical formulation to explore driver strength in critical nets to reduce late violations. We obtain the optimum local position where the late timing violation is locally minimized.

7.5.1 Buffer Balancing

After buffer insertion, the circuit may contain several buffer chains. However placement is not always aware of the different driver strengths of cells that compose the chain including the initial and final possible non-buffer cells, which may degrade timing. The general idea of buffer balancing is shown in Figure 7.4 where the delay of the path segment is reduced if the buffer is placed closer to its sink.

To find the displacement where the delay is minimum, an analytical formula is devised. This formula takes into account the cell strengths assuming that the interconnection is modeled as an RC tree and its delay is computed via Elmore delay (ELMORE, 1948). We assume the buffer’s driver and its sink are fixed while the buffer can freely move between them. Moreover the driver is also assumed to drive only the buffer. This idea can be applied iteratively so that buffer chains with arbitrary number of buffers can be handled. In our experiments, only a few iterations are necessary to align all the buffers in the design.

Figure 7.6 shows a single buffer chain, whose delay, D can be described as in Equation (7.2) using the Elmore delay model.
Figure 7.4: Buffer Balancing Technique aims to find a buffer position that minimizes timing violation.

Source: from author (2015)

Figure 7.6: Buffer Balancing Technique Modeling

\[D = R_0 \left(C_1 + d_0 C_w \right) + d_0 R_w \left(C1 + \frac{d_0 C_w}{2} \right) + p_0 \]
\[+ R_1 \left(C_2 + d_1 C_w \right) + d_1 R_w \left(C2 + \frac{d_1 C_w}{2} \right) + p_1 \]

(7.2)

where \(R_0 \) is the resistance of the buffer’s driver, \(C_1 \) is the input pin load capacitance of the buffer, \(d_0 \) is the wirelength from driver to buffer, \(R_w \) is the wire resistance per unit-length, \(C_w \) is the wire capacitance per unit-length, \(R_1 \) is the buffer resistance, \(d_1 \) is the wire length from the buffer to its sink, \(C_2 \) is the load capacitance on the input sink pin, \(p_0 \) and \(p_1 \) are parasitic delay of the driver and buffer, respectively.

Considering that \(d = d_0 + a + d_1 \) where \(a \) is the distance of input and output buffer pins, the minimum delay is obtained by setting \(\frac{\partial D}{\partial d_0} = 0 \) as described by Equation (7.3), which for practical purposes is clamped in the range \([0, d] \).

\[d_0 = \frac{C_w (R_1 - R_0) + R_w [C_2 - C_1 + C_w (d - a)]}{2C_w R_w} \]

(7.3)

Equation (7.4) defines the optimal displacement of the buffer w.r.t. its driver. As Manhat-
tan routing is commonly used, this may lead to multiple optimal positions. However by placing the buffer on the straight line connecting the driver and sink may help straightening the path which is a very common way to improve delay. Therefore, the buffer is placed on the straight line by setting its position to

\[P_b = P_d + \frac{d_0}{d} \times (P_s - P_d) \]

(7.4)

where \(P_b \) is the new buffer position, \(P_d \) is the driver position and \(P_s \) is the sink position.

7.5.2 Cell Balancing

In this section, we extend the formulation of buffer balancing to handle more general cases, i.e., non-buffers cells with multiple input pins and driving multiple sinks. To do so, we first compute the cell position for each timing arc individually and then combine the results to obtain the best cell position.

We restrict the region of a cell movement between the point it connects to its driving tree, here called driver point, and the point it connects to the sink tree, sink point, as shown in Figure 7.7.

![Figure 7.7: Cell Balancing Technique Modeling](image)

Source: from author (2015)

Let \(R_{up} \) be the upstream resistance of the driver point (i.e. the sum of the resistance from the driver point up to the root of the tree, which includes the driver resistance). Let \(D_{up} \) be the delay at the driver point when the branch from the driver point to the cell is removed. Let \(C_{down} \) be the downstream capacitance of the sink point excluding any capacitance added by the branch connecting the cell to the sink point (i.e. sum of all capacitances from the sink point down to all leaf points including pin capacitances). Then the delay, \(D \), from the driver cell being considered and the sink point is given by Equation (7.5)

\[D = D_0 + D_1 \]

(7.5)
where

\[D_0 = D_{up} + R_{up} (C_1 + C_w d_0) \]
\[+ d_0 R_w \left(C_1 + \frac{d_0 C_w}{2} \right) + p_0 \] (7.6)

is the delay from the driver cell to the input of current cell and

\[D_1 = R_1 \left[C_{down} + d_1 C_w \right] + d_1 R_w \left[C_{down} + \frac{d_1 C_w}{2} \right] + p_1 \] (7.7)

is the delay from the current cell to the sink point, \(C_1 \) is cell input pin capacitance, \(d_0 \) is the wirelength between the driver point and the cell, \(d_1 \) is wirelength from the cell to the sink point, \(R_1 \) is the cell resistance and \(p_0 \) and \(p_1 \) are the driver and cell parasitic delay, respectively.

To a reason that will be apparent later \(D_0 \) and \(D_1 \) are weighted by \(w_0 \) and \(w_1 \) respectively so that the weighted delay is given by Equation (7.8).

\[D = w_0 D_0 + w_1 D_1 \] (7.8)

Considering that \(d = d_0 + a + d_1 \) where \(a \) is the distance of input and output cell pins, the minimum delay is obtained by setting \(\frac{\partial D}{\partial d_0} = 0 \) as described by Equation (7.9) which for practical purposes is also clamped in the range \([0, d]\).

\[d_0 = \frac{w_1 C_w R_1 - w_0 R_w C_1 + w_1 R_w \left[C_w (d - a) + C_{down} \right]}{R_w C_w \left(w_0 + w_1 \right)} \]
\[- \frac{w_0 R_{up} C_w}{R_w C_w \left(w_0 + w_1 \right)} \] (7.9)

Note that Equation (7.9) reduces to Equation (7.3) for a single buffer chain. The final position is obtained in the same way as in the buffer alignment technique.

Since we may have several target positions, one for each input pin, they are combined by their weighted average. Where the weight of each position is the importance of the input pin.

The reason to weight the partial delays is due to the effect on the delay of side cells. By minimizing the delay of a tuple driver-cell-sink we may degrade the delay of other cells nearby. For instance, if the critical sink of the driver is not the cell we are handling and if the cell moves away from the driver it will probably increase the delay on the critical cell due to the increased load capacitance. Here we use the driver’s output pin importance as \(w_0 \) and the cell’s output pin importance as \(w_1 \). Note that if the driver is more critical than the sink, the cell will likely get close to the driver, reducing its load capacitance and hence improving its delay.

7.5.3 Load Optimization

For critical nets with more than two cells, the sink cells with no late violations (i.e. positive slack) are moved closer to their driver cells in order to improve timing as shown in Figure 7.8. The main idea behind this approach is to reduce the interconnection load capacitance of critical nets and therefore improve the delay of the driver cell. Since the sinks moved are non-critical, the paths passing through them are likely to not generate new violations.

The movements are accepted only if they actually reduce timing violations in critical nets and do not cause timing violation in the sink cells. Otherwise, non-critical sink cells
are kept in their initial position. To accomplish that, after routing trees are re-built, the timing is updated locally.

Figure 7.8: Load Reduction of critical nets. Non-critical sinks (gray cells) are moved closer to their driver cell (D).

7.6 Early Optimization

In this section, techniques for early violation mitigation are presented. Let us consider a timing path between two registers. The register at the beginning of the path is called input register and the register at the end, output register. The early slack in a register-to-register path is defined by Equation (7.10)

\[
\text{slack}_{\text{early}}^D = at_{\text{early}}^D - ra_{\text{early}}^D \\
\text{slack}_{\text{early}}^D = t_{\text{early}}^i + d_{\text{path}}^\text{early} - t_{\text{late}}^o - t_{\text{hold}}
\]

where \(at_{\text{early}}^D\) and \(ra_{\text{early}}^D\) are the early arrival and required time respectively at the data input pin of the input register, \(t_{\text{early}}^i\) and \(t_{\text{late}}^o\) are the early and late clock latency at the clock pin of input and output registers respectively, \(d_{\text{path}}^\text{early}\) is the early delay among the registers and \(t_{\text{hold}}\) is the hold time of the output register.

According to Equation (7.10), the early slack can be improved by (1) increasing the path delay, (2) increasing the clock latency at the input register, (3) decreasing the clock latency on the output register and (4) decreasing hold time. In this work, hold time is considered constant. The difference among the clock latencies is called clock skew.

In this section, techniques for early violation mitigation during the placement are also presented. We present four algorithms targeted to minimize early violations. The proposed algorithms explore wire load capacitance and resistance of the critical nets and useful clock skew to minimize early timing violations.

7.6.1 Skew Optimization

The early slack can be improved by decreasing the clock latency on the output register. One way to achieve that is by moving the register closer to the clock source (e.g. a local clock buffer) as depicted in Figure 7.10.

Although the latency on the moved register is typically reduced, there might be side effects as latency changes on other registers and it can impact on other data path delay.
Also a register can be both the start and end point of different paths. So a reduction on the latency may improve the slack on the incoming path, but may worsen the slack on the outgoing path. However, our experimental results showed that this technique is effective to improve early slack, on average.

7.6.2 Iterative Spreading

The iterative cell spreading tentatively moves all cells with early timing violation to north, south, east and west as shown in Figure 7.12. If a better position is not found, the search area is increased. It is limited by maximum cell displacement. The cost of a position is calculated updating timing locally and checking if the arrival time in the involved pins have increased.

7.6.3 Register Swap

Register swap tries to avoid the side effect on clock latency present in useful clock skew optimization (Section 7.6.1). Assuming that the registers are all the same (e.g. same size, V_{th}), by swapping the registers driven by a same clock source, the clock tree and its timing characteristics will not change. Hence the latency on each tree endpoint can be seen as constant.
The register swap is modeled as an assignment problem similar to (HELD; SCHORR, 2014), which can be optimally solved in polynomial time by the Hungarian algorithm (KUHN, 1955). The current register positions are seen as the slots to where the register should be assigned as illustrated by Figure 7.13. The goal is to minimize the total cost of the assignment.

The cost to assign a register i to a slot k is set as in Equation (7.11) where $\text{criticality}_{D}^{\text{early}}$ and $\text{criticality}_{CK}^{\text{early}}$ are the criticality of the data and clock pins of the register, respectively. The maximum displacement constraint can be modeled by setting an infinity cost whenever an assignment violates the maximum allowed displacement.

$$\text{cost}(i, k) = l_{\text{late}} \cdot \text{criticality}_{D}^{\text{early}} - l_{\text{early}} \cdot \text{criticality}_{CK}^{\text{early}} \quad (7.11)$$

The idea behind this cost function is as follows. When the register acts as the output register (path ends at the data pin), according to Equation (7.10), its clock latency should be decreased to improve slack. In terms of assignment cost, a larger latency should imply a larger cost ($+l_{\text{late}} \cdot \text{criticality}_{D}^{\text{early}}$). Similarly, when the register acts as the input register (path starts at the clock pin), its clock latency should be increased. From an assignment cost point of view, a larger latency should imply a smaller cost ($-l_{\text{early}} \cdot \text{criticality}_{CK}^{\text{early}}$). The latencies are weighted by pin criticalities to optimize latency based on the influence of registers on timing violations.

7.6.4 Register-to-Register Path Fix

A common source of hold violations is a path connecting directly two registers, i.e. no combinational logical cells between them, as show Figure 7.14.Besides skew optimization, early (hold) violations can be fixed by increasing the timing path delay. By setting the early slack to zero in Equation (7.10), the path delay that eliminates the violation is given by Equation (7.12).
Figure 7.14: Register-to-Register Early Violation Path Fix

\[d_{\text{path}}^{\text{early}} = l_{o}^{\text{late}} + t_{\text{hold}} - l_{i}^{\text{early}} \]

(7.12)

In the case of a direct path between registers, the timing path delay is simply composed by the cell delay plus the wire delay and it can be increased by moving the registers apart. Assuming that the cell delay is modeled via its driver resistance and the wire via Elmore delay, Equation (7.12) can be rewritten as in Equation (7.13) where \(x \) is the distance between the input and output registers and \(K = l_{o}^{\text{late}} + t_{\text{hold}} - l_{i}^{\text{early}} \).

\[K = R_{i} (xC_{w} + C_{o}) + xR_{w} \left(\frac{xC_{w}}{2} + C_{o} \right) \]

(7.13)

Assuming that the latencies do not change as the registers are moved apart and that the hold time is also constant (i.e. \(K \) is constant), Equation (7.13) can be solved w.r.t. \(x \) as in Equation (7.14).

\[x = \sqrt{2C_{w}R_{w}K + C_{o}^{2}R_{w}^{2} + C_{w}^{2}R_{i}^{2} - C_{o}R_{w} - C_{w}R_{i}} \]

(7.14)

Once the optimum displacement is calculated, the input register is moved away from the output register following the straight line formed by the two registers.

7.7 Flow

The techniques presented in this thesis are combined in a flow for timing-driven detailed placement as shown in Figure 7.15. The diamond shape indicates that the steps are run until the quality of the result is not improved. The circle shape indicates that the quality of the result can degrade a certain number of times before exiting. The best solution found is restored.

Since the techniques are independent from each other, they can be combined in any order, although a specific combination may lead to better results than others. The particular order used in this work was chosen empirically and intuitively so that techniques can cooperate, instead of compete with each other.

The flow is divided into two main phases: early optimization and late optimization. Usually after each optimization technique the quality of results is asserted; if it degraded the current solution is discarded and the previous one recovered. This way we can filter bad results caused any imprecision in the present techniques. After each step, the routing and timing are updated incrementally.
Figure 7.15: Timing-Driven Detailed Placement Flow

The first method during the early optimization is the iterative local search, which is the only step allowed to degrade the quality of result. The rationale is that the clock skew has a large influence on early violations which may introduce a large noise in the timing change estimate. Experiments show that it is better to allow degradation and keep track of the best solution than to stop immediately when a degradation occurs. If the iterative local search was not able to remove all the early violations, the register swap and optimal shifting are executed.

Late optimization comprises a loop composed of one iteration of the three techniques for late violation presented in this thesis: buffer alignment, cell alignment and load optimization. The load optimization was defined to run last as it may get harder to a cell to be aligned if its non critical sink are placed next to it.

7.8 Experimental Setup

Our flow and techniques are empirically validated using the ICCAD 2015 timing-driven detailed placement contest infrastructure.
7.8.1 Quality Score

Quality score proposed by International Conference on Computer Aided Design (ICCAD) 2014 Contest is used to evaluate our timing-driven detailed placement flow. The quality score of a placement solution is defined by the Equation (7.15)

\[
Q = 100 \times w_{abu} (abu' - abu) \left[\sum_{i \in \{tns, wns\}} w_i Q_i \right]
\]

where

\[
Q_{wns} = \sum_{j \in \{early, late\}} w_j \left(1 - \frac{WNS_j'}{WNS_j} \right)
\]

indicates how much the current WNS has improved from the initial WNS’ and

\[
Q_{tns} = \sum_{k \in \{early, late\}} w_k \left(1 - \frac{TNS_k'}{TNS_k} \right)
\]

indicates how much the current TNS has improved from the initial TNS’. In the infrastructure of the ICCAD 2014 and 2015 contest (KIM; HUJ; VISWANATHAN, 2014; KIM; HU; VISWANATHAN, 2015), the weighting factors are defined as: \(w_{tns} = 2.0\), \(w_{wns} = 1.0\), \(w_{abu} = 1.0\), \(w_{early} = 1.0\), and \(w_{late} = 5.0\). The maximum quality score obtained from slack improvement is 1800 points when all timing violations are eliminated.

7.8.2 Benchmarks

In Table 7.2 the configuration of the circuits from ICCAD 2015 Contest is presented. The set of benchmarks is composed by eight circuits that have from 760K to 1.9M cells. The algorithms were evaluated for two maximum displacement (MaxDis). One of them is very restricted, less than 50 \(\mu m\), and the second one has more room to search for a solution, up to 500 \(\mu m\).

<table>
<thead>
<tr>
<th>Circuits</th>
<th>#Gates</th>
<th>(T_{clk}) (ns)</th>
<th>(T_{clk}) ((\times 10^{-3}))</th>
<th>Early (ps)</th>
<th>Late (ps)</th>
<th>Early ((\times 10^{-3}))</th>
<th>Late</th>
</tr>
</thead>
<tbody>
<tr>
<td>superblue16</td>
<td>768068</td>
<td>5.5</td>
<td>20-400</td>
<td>3.34E-2</td>
<td>9.33E+7</td>
<td>-113.75</td>
<td>4.58E+3</td>
</tr>
<tr>
<td>superblue18</td>
<td>981559</td>
<td>7.0</td>
<td>30-400</td>
<td>4.01E-2</td>
<td>7.15E+7</td>
<td>-19.01</td>
<td>4.55E+3</td>
</tr>
<tr>
<td>superblue4</td>
<td>795645</td>
<td>6.0</td>
<td>50-500</td>
<td>4.40E-2</td>
<td>2.05E+7</td>
<td>-12.55</td>
<td>2.72E+3</td>
</tr>
<tr>
<td>superblue10</td>
<td>1876103</td>
<td>10.0</td>
<td>20-400</td>
<td>4.17E-2</td>
<td>2.05E+7</td>
<td>-12.55</td>
<td>4.55E+3</td>
</tr>
<tr>
<td>superblue7</td>
<td>1916359</td>
<td>5.5</td>
<td>50-400</td>
<td>2.97E-2</td>
<td>1.40E+8</td>
<td>-8.62</td>
<td>4.55E+3</td>
</tr>
<tr>
<td>superblue1</td>
<td>1209716</td>
<td>9.5</td>
<td>50-500</td>
<td>3.34E-2</td>
<td>9.33E+7</td>
<td>-113.75</td>
<td>4.58E+3</td>
</tr>
<tr>
<td>superblue3</td>
<td>1213253</td>
<td>10.0</td>
<td>40-400</td>
<td>2.87E-2</td>
<td>1.14E+8</td>
<td>-12.55</td>
<td>4.55E+3</td>
</tr>
<tr>
<td>superblue5</td>
<td>1086888</td>
<td>9.0</td>
<td>40-400</td>
<td>2.08E-2</td>
<td>1.08E+8</td>
<td>-8.62</td>
<td>4.55E+3</td>
</tr>
</tbody>
</table>

7.8.3 Assumptions and Limitations

The main limitation of this thesis’ approach is the use of Elmore model to estimate the interconnection timing characteristics. Although in absolute terms Elmore delay may not be an accurate estimation of interconnection delay, still optimizing it will faithfully lead to the optimization of the actual interconnection delay.

Also Elmore delay is more accurate for short wires and nets with small number of pins, which is the vast majority of nets in a design as big nets are usually buffered and wirelength minimization is a target during the flow optimization.
On the bright side, Elmore delay is fast to compute when compared to MOR and Spice simulation. So, in spite of its inaccuracy, it allows more optimization transformations to be done in the same amount of time.

The contest setup also imposes a hard constraint on the maximum displacement allowed to a cell. The main reason is to avoid large perturbations on the global solution, which may be optimized for other metrics as congestion and/or goals as power islands. However this also imposes an artificial bound on the achievable improvements, but, on the other hand, allows one to identify which techniques work better for small or large displacements.

7.9 Library Characterization

The drive strength aware techniques proposed in this thesis use the switch gate level to model each arc of cells. This model uses a single resistance, usually called driver resistance, to approximate the arc delay. The smaller this resistance, the larger the arc drive strength (ability to draw current) and hence the faster it is.

Since arcs may have different drive strengths depending on the transition, a separate drive resistance is computed for rise and fall transitions. However, for clarity, this is hidden in the following description.

To obtain the driver resistance, the arc delay is sampled for several loads and approximated by a linear function using least square fit as shown in Figure 7.16.

![Figure 7.16: Estimating the Driver Resistance of a Timing Arc (Cell)](image)

The arc delay is then described by Equation (7.18) where \(p \) is the intrinsic or parasitic delay, \(R_{\text{driver}} \) is the driver resistance and \(C_{\text{load}} \) is the load.

\[
d = p + R_{\text{driver}}C_{\text{load}}
\]

(7.18)

The delay samples are obtained directly from the 2D lookup-table that describe each timing arc in the Liberty file. As this table requires also an input slew besides the output load, a reference slew is computed to characterize the common and expected slew in the design.

The reference slew is obtained from the output slew of the smallest inverter available in the library driving itself until the slew converges at the output as shown in Figure 7.17.
Table 7.3 presents the actual delay from look-up table and the delay computed via the RC modeling for a cell in the library. As it can be seen, for the library used in the contest the model predicts almost precisely the delay from library for the reference slew. This behavior is also seen for other arcs in the library.

Table 7.3: Comparison between the actual delay and the delay estimated via driver resistance.

<table>
<thead>
<tr>
<th>Gain</th>
<th>Look-up Table</th>
<th>Model</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.9493</td>
<td>22.9431</td>
<td>-0.03%</td>
</tr>
<tr>
<td>2</td>
<td>29.1893</td>
<td>29.193</td>
<td>0.01%</td>
</tr>
<tr>
<td>4</td>
<td>41.6933</td>
<td>41.6928</td>
<td>0.00%</td>
</tr>
<tr>
<td>8</td>
<td>66.6893</td>
<td>66.6924</td>
<td>0.00%</td>
</tr>
<tr>
<td>16</td>
<td>116.693</td>
<td>116.692</td>
<td>0.00%</td>
</tr>
<tr>
<td>32</td>
<td>216.689</td>
<td>216.69</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

The linear relation of delay with respect to the gain is a well-known and useful property as presented in the Logical Effort theory. Although the relation usually does not hold as precisely as in the library used for the ICCAD contest, it can still provide a fair estimate of cell delays. For this reason, this flow is expected to work with other libraries as well.

Table 7.4 presents the improvements of this flow w.r.t. the initial placement for the long maximum displacement. As it can be seen this flow can provide on average 10.25% reduction on WNS and 32.8% on TNS for late timing mode with an impact of just 1.74% on wirelength and an increase of 11.66% on density as measured by ABU.

Table 7.5 presents the improvements of this flow w.r.t. the initial placement for the short maximum displacement. As it can be seen this flow can provide on average 4.33% reduction on WNS and 13.23% on TNS for late timing mode with an impact of just 0.23% on wire length and an increase of 4.41% on density as measured by ABU.

Table 7.6 presents the comparison of this flow and the 1st place of ICCAD 2015 Contest for long displacement. As it can be seen this flow provides a clear improvement over the best contest results in terms of quality score of almost 60% on average. Most of quality score gains however comes from improvements on early violations. On late violations, this flows can provide almost 2% improvement on WNS and almost 10% improvement on TNS on average. The gains on WNS are bounded as some cells on the critical paths of benchmarks are fixed reducing the room for improvement and flattening the improvement results. This is more evident on the benchmark superblue7 where all cells in the critical path are fixed.
Table 7.4: Improvement of this flow over the initial placement results for long maximum displacement.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>ABU</th>
<th>StWL</th>
<th>eWNS</th>
<th>eTNS</th>
<th>IWNS</th>
<th>ITNS</th>
<th>QS</th>
</tr>
</thead>
<tbody>
<tr>
<td>superblue16</td>
<td>16.92%</td>
<td>1.50%</td>
<td>-100.00%</td>
<td>-100.00%</td>
<td>-18.61%</td>
<td>-70.33%</td>
<td>1,090.21</td>
</tr>
<tr>
<td>superblue18</td>
<td>2.28%</td>
<td>0.99%</td>
<td>-100.00%</td>
<td>-100.00%</td>
<td>-17.46%</td>
<td>-39.39%</td>
<td>780.46</td>
</tr>
<tr>
<td>superblue4</td>
<td>19.26%</td>
<td>4.78%</td>
<td>-100.00%</td>
<td>-100.00%</td>
<td>-8.60%</td>
<td>-32.10%</td>
<td>658.35</td>
</tr>
<tr>
<td>superblue10</td>
<td>11.32%</td>
<td>2.43%</td>
<td>-100.00%</td>
<td>-100.00%</td>
<td>-5.51%</td>
<td>-15.79%</td>
<td>483.11</td>
</tr>
<tr>
<td>superblue7</td>
<td>1.68%</td>
<td>0.47%</td>
<td>-9.40%</td>
<td>-2.84%</td>
<td>0.00%</td>
<td>-27.40%</td>
<td>288.90</td>
</tr>
<tr>
<td>superblue1</td>
<td>22.33%</td>
<td>2.17%</td>
<td>0.00%</td>
<td>-88.41%</td>
<td>-10.65%</td>
<td>-26.17%</td>
<td>485.83</td>
</tr>
<tr>
<td>superblue3</td>
<td>7.22%</td>
<td>0.52%</td>
<td>-83.77%</td>
<td>-99.13%</td>
<td>-17.09%</td>
<td>-37.16%</td>
<td>737.50</td>
</tr>
<tr>
<td>superblue5</td>
<td>12.28%</td>
<td>1.04%</td>
<td>-100.00%</td>
<td>-100.00%</td>
<td>-4.10%</td>
<td>-14.06%</td>
<td>459.96</td>
</tr>
<tr>
<td>avg</td>
<td>11.66%</td>
<td>1.74%</td>
<td>-74.15%</td>
<td>-86.30%</td>
<td>-10.25%</td>
<td>-32.80%</td>
<td></td>
</tr>
</tbody>
</table>

Table 7.5: Improvement of this flow over the initial placement results for short maximum displacement.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>ABU</th>
<th>StWL</th>
<th>eWNS</th>
<th>eTNS</th>
<th>IWNS</th>
<th>ITNS</th>
<th>QS</th>
</tr>
</thead>
<tbody>
<tr>
<td>superblue16</td>
<td>8.95%</td>
<td>0.27%</td>
<td>-92.13%</td>
<td>-98.91%</td>
<td>-4.94%</td>
<td>-38.29%</td>
<td>695.41</td>
</tr>
<tr>
<td>superblue18</td>
<td>0.61%</td>
<td>0.10%</td>
<td>-17.88%</td>
<td>-67.92%</td>
<td>-8.91%</td>
<td>-8.55%</td>
<td>283.70</td>
</tr>
<tr>
<td>superblue4</td>
<td>3.55%</td>
<td>0.34%</td>
<td>6.24%</td>
<td>-76.50%</td>
<td>-3.80%</td>
<td>-10.69%</td>
<td>272.25</td>
</tr>
<tr>
<td>superblue10</td>
<td>5.53%</td>
<td>0.26%</td>
<td>-26.09%</td>
<td>-57.62%</td>
<td>-1.12%</td>
<td>-3.69%</td>
<td>183.42</td>
</tr>
<tr>
<td>superblue7</td>
<td>1.58%</td>
<td>0.14%</td>
<td>-9.40%</td>
<td>-2.86%</td>
<td>0.00%</td>
<td>-14.21%</td>
<td>157.14</td>
</tr>
<tr>
<td>superblue1</td>
<td>7.27%</td>
<td>0.42%</td>
<td>0.00%</td>
<td>-85.07%</td>
<td>-7.37%</td>
<td>-17.01%</td>
<td>375.64</td>
</tr>
<tr>
<td>superblue3</td>
<td>1.74%</td>
<td>0.09%</td>
<td>-65.39%</td>
<td>-72.03%</td>
<td>-7.18%</td>
<td>-9.89%</td>
<td>344.03</td>
</tr>
<tr>
<td>superblue5</td>
<td>6.04%</td>
<td>0.20%</td>
<td>-2.25%</td>
<td>-50.05%</td>
<td>-1.31%</td>
<td>-3.54%</td>
<td>144.11</td>
</tr>
<tr>
<td>avg</td>
<td>4.41%</td>
<td>0.23%</td>
<td>-25.86%</td>
<td>-63.87%</td>
<td>-4.33%</td>
<td>-13.23%</td>
<td></td>
</tr>
</tbody>
</table>
A drawback of this flow is the increase of density as measured by ABU. The ABU metric has a small impact on quality score, but this increase indicates that some regions of the design are being over filled, which will lead to congestion issues. The main culprit of such increase is the load optimization technique, which moves non-critical sinks closer to its driver. Preliminary analysis show that this can be mitigated by scaling the total displacement of the sinks the the importance of the driver. That is, the more critical the driver, the more the sink is moved. Applying this simple scaling scheme, the impact on ABU is reduced, but with negative impact on WNS e TNS, although the overall quality score is still better than the 1st place.

Table 7.6: Comparison of this flow and results from the 1st place at ICCAD 2015 contest for long maximum displacement.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>ABU</th>
<th>StWL</th>
<th>eWNS</th>
<th>eTNS</th>
<th>IWNS</th>
<th>ITNS</th>
<th>QS</th>
</tr>
</thead>
<tbody>
<tr>
<td>superblue16</td>
<td>-3.28%</td>
<td>1.07%</td>
<td>-100.00%</td>
<td>-100.00%</td>
<td>-3.04%</td>
<td>-13.31%</td>
<td>21.84%</td>
</tr>
<tr>
<td>superblue18</td>
<td>-8.19%</td>
<td>0.78%</td>
<td>-100.00%</td>
<td>-100.00%</td>
<td>-1.56%</td>
<td>-19.16%</td>
<td>27.30%</td>
</tr>
<tr>
<td>superblue4</td>
<td>8.79%</td>
<td>4.59%</td>
<td>-100.00%</td>
<td>-100.00%</td>
<td>-1.32%</td>
<td>-4.21%</td>
<td>29.77%</td>
</tr>
<tr>
<td>superblue10</td>
<td>7.26%</td>
<td>2.32%</td>
<td>-100.00%</td>
<td>-100.00%</td>
<td>-3.09%</td>
<td>-11.42%</td>
<td>166.42%</td>
</tr>
<tr>
<td>superblue7</td>
<td>-3.86%</td>
<td>0.35%</td>
<td>2.58%</td>
<td>-1.47%</td>
<td>0.00%</td>
<td>-10.74%</td>
<td>43.93%</td>
</tr>
<tr>
<td>superblue1</td>
<td>16.75%</td>
<td>1.99%</td>
<td>-43.89%</td>
<td>-54.52%</td>
<td>-2.73%</td>
<td>-3.36%</td>
<td>40.16%</td>
</tr>
<tr>
<td>superblue3</td>
<td>-0.58%</td>
<td>0.32%</td>
<td>-3.19%</td>
<td>-94.06%</td>
<td>-3.36%</td>
<td>-18.59%</td>
<td>33.67%</td>
</tr>
<tr>
<td>superblue5</td>
<td>10.48%</td>
<td>0.83%</td>
<td>-100.00%</td>
<td>-100.00%</td>
<td>1.47%</td>
<td>2.45%</td>
<td>156.21%</td>
</tr>
<tr>
<td>avg</td>
<td>3.42%</td>
<td>1.53%</td>
<td>-68.06%</td>
<td>-81.26%</td>
<td>-1.70%</td>
<td>-9.79%</td>
<td>64.91%</td>
</tr>
</tbody>
</table>

For short maximum displacement, as it can be seen in Table 7.7, this flow still provides the best results on average in terms of quality score, but now the results are less expressive. Since cells are allowed to be moved, the maximum achievable improvements are expected to be smaller.

Table 7.7: Comparison of this flow and results from the 1st place at ICCAD 2015 contest for short maximum displacement.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>ABU</th>
<th>StWL</th>
<th>eWNS</th>
<th>eTNS</th>
<th>IWNS</th>
<th>ITNS</th>
<th>QS</th>
</tr>
</thead>
<tbody>
<tr>
<td>superblue16</td>
<td>-10.33%</td>
<td>0.03%</td>
<td>-89.99%</td>
<td>-95.96%</td>
<td>-0.20%</td>
<td>-6.87%</td>
<td>32.53%</td>
</tr>
<tr>
<td>superblue18</td>
<td>-5.55%</td>
<td>0.02%</td>
<td>310.12%</td>
<td>30.84%</td>
<td>0.58%</td>
<td>0.29%</td>
<td>-22.33%</td>
</tr>
<tr>
<td>superblue4</td>
<td>1.14%</td>
<td>0.32%</td>
<td>119.35%</td>
<td>-29.82%</td>
<td>0.70%</td>
<td>-2.83%</td>
<td>-5.32%</td>
</tr>
<tr>
<td>superblue10</td>
<td>1.32%</td>
<td>0.19%</td>
<td>-26.08%</td>
<td>-27.12%</td>
<td>0.71%</td>
<td>-1.80%</td>
<td>63.97%</td>
</tr>
<tr>
<td>superblue7</td>
<td>-2.94%</td>
<td>0.09%</td>
<td>2.58%</td>
<td>-0.75%</td>
<td>0.00%</td>
<td>-6.48%</td>
<td>59.56%</td>
</tr>
<tr>
<td>superblue1</td>
<td>-0.70%</td>
<td>0.26%</td>
<td>144.18%</td>
<td>14.04%</td>
<td>-1.28%</td>
<td>1.93%</td>
<td>-16.07%</td>
</tr>
<tr>
<td>superblue3</td>
<td>-5.09%</td>
<td>-0.02%</td>
<td>-58.74%</td>
<td>-40.31%</td>
<td>-0.20%</td>
<td>-1.37%</td>
<td>41.47%</td>
</tr>
<tr>
<td>superblue5</td>
<td>2.37%</td>
<td>0.16%</td>
<td>-2.25%</td>
<td>-49.57%</td>
<td>1.16%</td>
<td>-0.90%</td>
<td>254.37%</td>
</tr>
<tr>
<td>avg</td>
<td>-2.47%</td>
<td>0.13%</td>
<td>49.90%</td>
<td>-24.83%</td>
<td>0.18%</td>
<td>-2.26%</td>
<td>51.02%</td>
</tr>
</tbody>
</table>

7.9.1 Move Gains

In this section, the individual gains for each move are presented. These results are generated by applying each move directly on the initial solution. Note, however, that
the combined results for some moves may be dependent on the improvement of other methods.

Table 7.8 shows the average improvement of each move and some variations on all ICCAD 2015 benchmarks considering the long maximum displacement. As it can be seen the most effective method for early mitigation is the Iterative Spreading which reduces on average 30.94% and 56.38% the early WNS and TNS respectively. For late mitigation the Cell Balancing technique is the most effective one. Two versions are shown: Steiner and Driver-Sink. The Steiner version is the one used in the flow, where the reference points are the Steiner point of the driver and sink net. The Driver-Sink version uses the driver and sink pin as the reference points. The Steiner version has better performance on TNS reduction while the Driver-Sink has a better performance on WNS reduction.

Table 7.8: Average improvement on quality score per move type for long maximum displacement.

<table>
<thead>
<tr>
<th>Move</th>
<th>Goal</th>
<th>QS</th>
<th>ABU</th>
<th>StWL</th>
<th>eWNS</th>
<th>eTNS</th>
<th>lWNS</th>
<th>lTNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterative Spreading</td>
<td>Early</td>
<td>143.70</td>
<td>-0.04%</td>
<td>0.01%</td>
<td>-30.94%</td>
<td>-56.38%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Skew Optimization</td>
<td>Early</td>
<td>132.39</td>
<td>-0.11%</td>
<td>0.01%</td>
<td>-29.91%</td>
<td>-51.24%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Register Swap</td>
<td>Early</td>
<td>73.71</td>
<td>0.00%</td>
<td>0.04%</td>
<td>-15.88%</td>
<td>-28.99%</td>
<td>0.00%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Reg-to-Reg Path Fix</td>
<td>Early</td>
<td>99.21</td>
<td>-0.04%</td>
<td>0.02%</td>
<td>-9.82%</td>
<td>-44.69%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Buffer Balancing</td>
<td>Late</td>
<td>88.65</td>
<td>0.00%</td>
<td>0.01%</td>
<td>0.00%</td>
<td>-3.92%</td>
<td>-6.90%</td>
<td></td>
</tr>
<tr>
<td>Cell Balancing (Steiner)</td>
<td>Late</td>
<td>212.27</td>
<td>-0.45%</td>
<td>0.17%</td>
<td>0.00%</td>
<td>-0.01%</td>
<td>-7.31%</td>
<td>-17.57%</td>
</tr>
<tr>
<td>Cell Balancing (Driver-Sink)</td>
<td>Late</td>
<td>205.81</td>
<td>-0.13%</td>
<td>0.19%</td>
<td>0.00%</td>
<td>-0.01%</td>
<td>-7.70%</td>
<td>-16.73%</td>
</tr>
<tr>
<td>Load Reduction (Driver)</td>
<td>Late</td>
<td>115.40</td>
<td>7.65%</td>
<td>1.39%</td>
<td>0.00%</td>
<td>-0.17%</td>
<td>-2.41%</td>
<td>-10.32%</td>
</tr>
<tr>
<td>Load Reduction (Steiner)</td>
<td>Late</td>
<td>49.75</td>
<td>1.04%</td>
<td>0.18%</td>
<td>0.00%</td>
<td>-0.04%</td>
<td>-1.01%</td>
<td>-4.46%</td>
</tr>
</tbody>
</table>

Two versions of Load Reduction are also presented. The Driver version is the one used in the flow where the non-critical sink are moved towards the driver. The Steiner version move non-critical sinks towards the Steiner points where they connect to. As it can be seen the Driver reduction has a much more expressive gain in terms of TNS, but this comes at a cost of a large increase in the placement density. Load Reduction is the main culprit of the large increase of density seen in the final results.

7.9.2 Impact of Pin Importance (Criticality and Centrality)

The importance of pins indicates how much it is important for the timing closure of the design. Two metrics are used to compound the pin importance: criticality and centrality.

Table 7.9 shows the improvements of this metric when used for weighting in the Cell Balancing technique compared to the Cell Balancing without weighting. To generate such result, the Cell Balancing was executed 5\times on the initial placement solution. Note that by weighting the displacements by the pin importance one can improve quality score by 13.72% on average, which comes from a reduction of 1.29% and 3.68% in late WNS and late TNS respectively.

7.9.3 Impact of Filtering Out Bad Moves

After a move is executed it may be filtered out if the impact on local timing indicates that it may lead to a timing degradation. Even though moves are trying to optimize timing, noises caused by rerouting or imprecision in the modeling may lead to worse results. That is why after each move the time is checked locally to filter out potentially bad moves.

Table 7.10 shows the degradation in the quality score and other metrics when the filtering is disabled. As it can be seen, if the filtering is disabled the quality score can be
Table 7.9: Impact on results when pin importance (criticality and centrality) is used in Cell Balancing.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>eWNS</th>
<th>eTNS</th>
<th>IWNS</th>
<th>ITNS</th>
<th>ABU</th>
<th>QS</th>
<th>StWL</th>
</tr>
</thead>
<tbody>
<tr>
<td>superblue16</td>
<td>0.00%</td>
<td>0.00%</td>
<td>-5.71%</td>
<td>-16.28%</td>
<td>-0.95%</td>
<td>22.79%</td>
<td>0.04%</td>
</tr>
<tr>
<td>superblue18</td>
<td>0.00%</td>
<td>0.00%</td>
<td>-0.20%</td>
<td>-0.30%</td>
<td>-0.30%</td>
<td>1.61%</td>
<td>0.01%</td>
</tr>
<tr>
<td>superblue4</td>
<td>0.00%</td>
<td>0.00%</td>
<td>-1.02%</td>
<td>-1.57%</td>
<td>0.56%</td>
<td>6.22%</td>
<td>0.07%</td>
</tr>
<tr>
<td>superblue10</td>
<td>0.00%</td>
<td>0.00%</td>
<td>-0.11%</td>
<td>-0.33%</td>
<td>0.90%</td>
<td>2.60%</td>
<td>0.05%</td>
</tr>
<tr>
<td>superblue7</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>-2.27%</td>
<td>-0.30%</td>
<td>11.32%</td>
<td>0.01%</td>
</tr>
<tr>
<td>superblue1</td>
<td>0.00%</td>
<td>0.00%</td>
<td>-0.36%</td>
<td>-4.96%</td>
<td>-0.15%</td>
<td>15.50%</td>
<td>0.03%</td>
</tr>
<tr>
<td>superblue3</td>
<td>0.00%</td>
<td>0.00%</td>
<td>-2.94%</td>
<td>-3.13%</td>
<td>0.14%</td>
<td>44.44%</td>
<td>0.01%</td>
</tr>
<tr>
<td>superblue5</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.04%</td>
<td>-0.59%</td>
<td>-0.14%</td>
<td>5.24%</td>
<td>0.05%</td>
</tr>
<tr>
<td>avg</td>
<td>0.00%</td>
<td>0.00%</td>
<td>-1.29%</td>
<td>-3.68%</td>
<td>-0.03%</td>
<td>13.72%</td>
<td>0.03%</td>
</tr>
</tbody>
</table>

reduced on average by 13.40%. This empirically shows the efficiency of filtering out bad moves.

Table 7.10: Impact on results when bad move filtering is disabled.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>QS</th>
<th>ABU</th>
<th>StWL</th>
<th>eWNS</th>
<th>eTNS</th>
<th>IWNS</th>
<th>ITNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>superblue16</td>
<td>-21.28%</td>
<td>8.98%</td>
<td>1.60%</td>
<td>-</td>
<td>-</td>
<td>2.15%</td>
<td>74.16%</td>
</tr>
<tr>
<td>superblue18</td>
<td>-9.97%</td>
<td>0.36%</td>
<td>0.88%</td>
<td>-</td>
<td>-</td>
<td>2.29%</td>
<td>11.46%</td>
</tr>
<tr>
<td>superblue4</td>
<td>-17.50%</td>
<td>6.40%</td>
<td>3.75%</td>
<td>-</td>
<td>-</td>
<td>-7.79%</td>
<td>22.00%</td>
</tr>
<tr>
<td>superblue10</td>
<td>-8.43%</td>
<td>1.84%</td>
<td>2.59%</td>
<td>-</td>
<td>-</td>
<td>2.14%</td>
<td>3.62%</td>
</tr>
<tr>
<td>superblue7</td>
<td>-44.05%</td>
<td>1.82%</td>
<td>0.37%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>16.98%</td>
</tr>
<tr>
<td>superblue1</td>
<td>-20.60%</td>
<td>9.72%</td>
<td>1.80%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>5.70%</td>
<td>10.47%</td>
</tr>
<tr>
<td>superblue3</td>
<td>19.53%</td>
<td>5.31%</td>
<td>0.64%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>-10.77%</td>
<td>-14.50%</td>
</tr>
<tr>
<td>superblue5</td>
<td>-4.89%</td>
<td>8.75%</td>
<td>0.85%</td>
<td>-</td>
<td>-</td>
<td>-0.65%</td>
<td>2.89%</td>
</tr>
<tr>
<td>avg</td>
<td>-13.40%</td>
<td>5.40%</td>
<td>1.56%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>-0.87%</td>
<td>15.89%</td>
</tr>
</tbody>
</table>

7.10 Conclusions

Placement is the stage in the design flow where the component positions are defined. Usually it is divided into three major steps: global placement, legalization and detailed placement. Detailed placement takes the current legal placement solution and tries to further improve it by applying local changes. A timing-driven detailed placement performs local changes in order to improve the circuit timing.

In this thesis, several single cell move-based techniques were presented to early and late negative slack mitigation. Although these techniques work on one cell at a time, iteratively they can be applied to achieve a good overall result as the empirical experiments showed.

Results were empirically validated using the ICCAD 2015 timing-driven detailed placement contest setup. Experimental results show that our flow can significantly reduce the timing violation from the wirelength global placement and compared to the 1st place in the ICCAD 2015 contest.

Similar to the ISPD gate sizing contest, the ICCAD contest simplifies the placement
formulation by using Elmore delay for interconnections, ignoring false paths, assuming an ideal clock network.

However such simplifications are used and assumed even in industrial design flows in early stages for two main reasons: runtime and lack of precise information. Moreover the filtering out of bad moves used in the flow presented in this thesis can be performed using a more precise timing engine, making it suitable for late stage in the design flow, although at cost of runtime.

The validity of such simplifications can be seen in the division of placement in global and detailed placement. A global placement usually use a more simplified routing estimation than the detailed placement, but still the final solution of the global placement correlates well with the desired output of a detailed placement.
8 FINAL REMARKS

In this thesis new techniques for gate sizing and timing-driven detailed placement were presented.

The Lagrangian Relaxation formulation is a well-known and very effective way to solve the gate sizing problem and can even produce the optimal solution for the continuous gate sizing problem. However, for the discrete case, Lagrangian Relaxation only can be used as a heuristic to find good solutions and the optimality is not guaranteed anymore.

A great challenge when applying LR to the discrete gate sizing problem is to achieve convergence. It is easy to implement a LR for timing minimization, but when other objectives are taken into account as leakage power, the convergence becomes an issue. To cope with that a slack filtering scheme was developed where candidate cells are pruned if they worsen significantly the slack on vicinity cells. Moreover a lambda-delay sensitivity was presented to estimate the global timing change caused by a change on a cell implementation.

These techniques were combined in a flow which was empirically evaluated using the ISPD 2012 and 2013 gate sizing contest benchmarks. In those set of benchmarks this flow was able to improve significantly the results over other state-of-the-art methods.

New techniques for timing-driven detailed placement were also presented for mitigating early and late timing violations. The main technique uses the drive strength of cells to find the optimal placement of a cell with respect to its driver and sink so that the path segment delay is reduced.

These techniques were combined in a flow which was empirically validated using the ICCAD 2015 timing-driven detailed placement contest. For those set of benchmarks, this flow was able to improve significantly the results over the 1st place in that contest.
REFERENCES

