Abstract

The Izhikevich Simple Model (ISM) for neural activity presents a good compromise between waveform quality and computational cost. FPGAs (Field-Programmable Gate Array) are powerful, flexible, and inexpensive digital hardware that can implement such a model. We present an implementation on FPGA of the ISM whose latency is up to 56 times smaller than the ones in the literature.

Comparison with the Literature

<table>
<thead>
<tr>
<th>✔</th>
<th>Good waveform</th>
<th>✔</th>
<th>Up to 56x lower latency</th>
<th>☇</th>
<th>High clock speed</th>
<th>☒</th>
<th>No pipeline</th>
<th>☒</th>
<th>No logic reuse</th>
</tr>
</thead>
</table>

Conclusions

Our implementation is best suited for hybrid networks systems and presents a fair performance for artificial-only networks. The low latency of the circuit will allow us to reuse the same neuron multiple times.

References

Universidade Federal do Rio Grande do Sul
Instituto de Informática
Av. Bento Gonçalves, 9500 - Campus do Vale. Bloco IV
CP 15064, 91501-970- Porto Alegre-Brazil
Contact: [vbandeira, reis]@inf.ufrgs.br

Vitor Bandeira, Advisors: Guilherme Bontorin e Ricardo Reis

Modified Equations of ISM \[1,2,3\]

\[\begin{align*}
\frac{dv}{dt} &= \frac{1}{32} \left(v^2 + 4v + 109.375 - u^* + I^* \right) \\
\frac{du^*}{dt} &= a^*(b^*v - u^*) \\
\end{align*} \]

\[\begin{array}{c}
v \geq 30mV \\
\Rightarrow \begin{cases}
v \leftarrow c \\
u^* \leftarrow u^* + d
\end{cases}
\end{array} \]

Implemented Neuron

Used FPGA: Altera’s DE4

Results

This data was obtained from the FPGA running our implementation through the SignalTap II tool in Quartus II® Software.