Nonlinear dynamics of relativistic charged particle beams
R. P. Nunes and F. B. Rizzato

Citation: Appl. Phys. Lett. 98, 051501 (2011); doi: 10.1063/1.3549690
View online: http://dx.doi.org/10.1063/1.3549690
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v98/i5
Published by the American Institute of Physics.

Related Articles
Meissner effect funneling
Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train
Appl. Phys. Lett. 98, 261501 (2011)
Characterization and focusing of light ion beams generated by ultra-intensely irradiated thin foils at the kilojoule scale
Phys. Plasmas 18, 056713 (2011)
Novel Hamiltonian method for collective dynamics analysis of an intense charged particle beam propagating through a periodic focusing quadrupole lattice
Phys. Plasmas 18, 056712 (2011)
Generalized Courant–Snyder theory and Kapchinskij–Vladimirskij distribution for high-intensity beams in a coupled transverse focusing lattice
Phys. Plasmas 18, 056708 (2011)

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT
Nonlinear dynamics of relativistic charged particle beams

R. P. Nunes1,a and F. B. Rizzato2
1Instituto de Física e Matemática, Universidade Federal de Pelotas, P.O. Box 354, Pelotas, Rio Grande do Sul 96010-900, Brazil
2Instituto de Física, Universidade Federal do Rio Grande do Sul, P.O. Box 15051, Porto Alegre, Rio Grande do Sul 91501-970, Brazil

(Received 9 June 2010; accepted 5 January 2011; published online 31 January 2011)

The idea behind this work is to analyze the transversal dynamics of a relativistic charged particle beam. The beam is azimuthally symmetric, focused by a constant magnetic field and supposed to be initially cold. While mismatched, nonrelativistic, and homogeneous beams oscillate with an invariant cold density profile, it is shown that relativistic homogeneous beams progressively heat and lose an important amount of constituents during its magnetic confinement. This heating process starts with phase-space wave-breaking, a mechanism observed before in initially inhomogeneous beams. The results have been obtained with full self-consistent \textit{N}-particle beam numerical simulations. © 2011 American Institute of Physics. [doi:10.1063/1.3549690]

Beams composed of charged particles usually evolve to equilibrium as they eject a representative amount of its constituents in the focusing channel. The ejected particles form a rarified population around a denser one in the beam phase-space. While the first population is recognized as the beam halo, the second one is denoted as the beam core.1–4 A halo has many undesired implications on the accelerator structure, reducing beam lifetime and increasing maintenance costs.5 Also, there are many applications in which beam halo has to be, if not suppressed, at least minimized.6

The way beam particles self-consistently interact and generate a halo depends on the beam initial distribution.7 For initially cold, quasihomogeneous, and mismatched beams, it has been found that, while the initial spurious inhomogeneity is the forerunner mechanism that allows particles to be progressively excited, in fact the envelope mismatch is the mechanism effectively responsible for halo formation.8 On the other hand, for initially cold nonhomogeneous but envelope matched beams, it has been found that the forerunner mechanism by which particles are ejected from the core is through phase-space wave-breaking.9 Once out of the beam core, the ejected particles are permanently excited by a process called charge redistribution.8 If in this last situation the mismatch is also present, then envelope oscillation acts as another source of energy to excite beam particles.10 The only difference is that now the coupling is resonant.8

In the cases mentioned above, nothing has been commented about the relativity of the beam dynamics. In fact, a paraxial approximation has been considered, which implies that, although the beam could be relativistic in the longitudinal direction, its transversal dynamics was purely classic and nonrelativistic. However, notwithstanding the many situations in which this is an adequate approximation, in many others one can assure that this is not or have to be reformulated to include the desired relativistic effects. The mass correction introduced by the relativistic effects can be more or less impacting on the dynamics of beam particles and must be understood. For this purpose, hereafter, an analytical description for the relativistic dynamics of beam particles will be presented.

Suppose an initially homogeneous beam of charged particles evolving inside a linear channel. A conducting pipe with a circular transversal section encapsulates the channel. Solenoids provide the constant magnetic field that permeates the channel. The beam has a constant velocity \(z \) along the pipe symmetry axis, which can also be recognized as axis \(z \). For this system, from Newton’s second law, the dynamics of beam particles could be described by the following equation11

\[
\frac{d}{dt} \mathbf{P} = \mathbf{F}_{\text{lorentz}} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}),
\]

in which \(\mathbf{P} = m\gamma \mathbf{v} \) is the relativistic linear momentum, \(\mathbf{v} \) is the velocity of the particle, \(\gamma \) is the Lorentz factor, \(q \) is the charge and \(m \) is the rest mass of the particle, and \(\mathbf{E} \) and \(\mathbf{B} \) are, respectively, the electric and magnetic flux density fields inside the accelerator structure.

Since the beam here is azimuthally symmetric, Eq. (1) could be expressed with cylindrical coordinates. Consider \((r,\theta,e)\) as the unit-vector base in cylindrical coordinates. In this case, \(\mathbf{v} = \dot{r}\mathbf{e}_r + r\dot{\theta}\mathbf{e}_\theta + \dot{e}_z \), and the fields \(\mathbf{E} = E_r \mathbf{e}_r + E_\theta \mathbf{e}_\theta + E_z \mathbf{e}_z \), and \(\mathbf{B} = B_r \mathbf{e}_r + B_\theta \mathbf{e}_\theta + B_z \mathbf{e}_z \). Then, in this coordinate system, Eq. (1) has the following form:

\[
\frac{1}{r} \frac{d}{dt} \left(\gamma m r^2 \dot{\theta} \right) = -qr B_\theta,
\]

\[
\frac{d}{dt} \left(\gamma m \dot{e}_z \right) = q r B_\theta,
\]

in which, due to the symmetry of the problem, it has that \(E_\theta = E_z = B_z = 0 \), and \(B_\theta = B_\theta \). \(B_\theta \) is the density of magnetic flux applied by the solenoids. \(E_r \) and \(B_\phi \) are the fields generated self-consistently by the particle distribution assigned to the beam. The notation \(\dot{x} \) means \(dx/dt \) with \(x = (r,\theta,z) \). In the limit \(\gamma \rightarrow 1 \), the system of ordinary differential equation
Solving the ODE for the e_y component, one obtains

$$\gamma m \dot{\theta} = -\frac{q B_0}{2} \text{ const.}$$ \hspace{1cm} (3)$$

Note that $\gamma m \dot{\theta}$ is now a conserved quantity. The Larmor frequency θ of particles in the external density of magnetic field is a function of the absolute value of velocity v. With the aid of Eq. (3) and supposing a changing of variables of t to z, one can rewrite the ODE for the e_z component of Eq. (1) as follows:

$$\frac{d^2 r}{d z^2} + \frac{\dot{\theta}^2}{m^2} r = \frac{q}{\gamma m c^2} \left[E_r - \dot{z} B_0 - \dot{z} B_0 \left(\frac{dr}{dz} \right)^2 \right],$$ \hspace{1cm} (4)$$

in which also has been used the ODE for the e_z component of Eq. (1).

To turn Eq. (4) completely solvable, it is necessary to determine both E_r and B_0. Considering that initially all charged particles have negligible velocity, and with n_b being the initial beam density, from the Ampere–Maxwell law, $\nabla \times \mathbf{B} = \mu_0 J + (1/c^2) \partial \mathbf{E} / \partial t$, bearing in mind the symmetry of the problem and the stationary characteristic of the fields, the previous equation reduces to

$$B_0 = \frac{\mu_0 q z^2}{2 \pi r} Q(r),$$ \hspace{1cm} (5)$$

in which μ_0 is the vacuum magnetic permeability. $Q(r) = \int_0^r J(r') r' dr' d\theta$ is the charge trapped by a Gauss surface at r. For the E_r field, solving the Gauss law $\nabla \cdot \mathbf{E} = \rho / e_0$, one obtains

$$E_r = \frac{q}{2 \pi r e_0} Q(r),$$ \hspace{1cm} (6)$$

in which ρ is the beam density of charge and e_0 is the electric permittivity of the vacuum.

Observe that in fact $B_0 B_0(Q)$ and $E_r E_r(Q)$, being possible to express B_0 as a function of E_r. Proceeding in this way,

$$B_0 = \frac{z}{c^2} E_r.$$ \hspace{1cm} (7)$$

Proposing the following change of variables

$$\bar{z} = \gamma z, \quad \bar{r} = \beta r,$$

and inserting the expression found in Eq. (7) into Eq. (4) with the help provided by Eq. (3), in view of that $\gamma = \gamma(z)$ by definition, after some extensive algebra, it is possible to achieve the equation

$$\frac{d^2 r}{d \bar{r}^2} + \frac{1 - \left(\frac{dr}{d \bar{r}} \right)^2}{1 + \kappa_0 \beta^2} \bar{r} = K \left(1 - \left(\frac{dr}{d \bar{r}} \right)^2 \right)^{3/2} \left(1 + \kappa_0 \beta^2 \right)^{1/2} \frac{Q(\bar{r})}{\bar{r}},$$ \hspace{1cm} (9)$$

in which

$$\kappa_0 = \frac{q^2 B_0^2}{4 \pi m^2 c^2}$$ \hspace{1cm} (10)$$

is the coefficient of magnetic focusing established by the solenoids, and

is conventionally denominated the perveance of the beam, with $\gamma_z = 1 / \sqrt{1 - \beta^2}$ and $\beta_z = \dot{z} / c$. Once $\dot{z} = \text{const}$, from the point of view of equations of motion, the axial length and time have the same meaning. Note that Eq. (9) is a completely nonlinear equation for the transversal dynamics of beam particles. The second order derivative depends not only on nonlinear functions of \bar{r} but also on $d\bar{r}/d \bar{r}$. The term left to the right of Eq. (9) can be identified as the source for the particle transversal dynamics since the fields autoconsistently generated by the evolution of density n_b excite each beam constituent.

To explore this information introduced by relativity, a full self-consistent N-particle beam numerical simulation is performed, with each particle being governed by Eq. (9). As the initial condition, the beam particle density is considered completely homogenous $n_b(\bar{r}, \bar{z}=0) = N_b / \pi r_0^2$, in which r_0 is the beam border, the envelope. For each particle i at the radial coordinate $\bar{r} = \bar{r}_i$, $Q(\bar{r}_i)$ is self-consistently computed. Indeed, $Q(\bar{r}_i)$ represents the collective influences of all beam particles on the one at \bar{r}_i. The total number of beam particles adopted was $N_b = 10 000$.

Figure 1 shows the results obtained with the numerical simulations for two macroscopic beam quantities of interest: beam envelope in Fig. 1(a) and beam emittance, defined as $\varepsilon = \sqrt{\langle \rho^2 \rangle - \langle \rho \rangle^2}$, with $\rho = d\bar{r}/d \bar{z}$, in Fig. 1(b). The angular brackets $\langle \rangle$ represent phase-space averaging. The beam has been supposed to be initially mismatched by 50%, $r_0 = r_b(\bar{z} = 0) = 1.5$, since $\epsilon_0 = 1$. As expected, beam envelope for the nonrelativistic case oscillates over long axial lengths of the focusing channel with invariant amplitude. On the other
waves inside the beam density. These phase-space waves are self-consistently amplified until a breaking is observed. Some particles are violently ejected from the beam core. Figures 2(c) and 2(d), respectively, show the axial length right before and right after the first breaking. Figure 2(e) shows the beam phase-space picture after the second breaking. Many other wave-breakings occur until the beam reaches its equilibrium, which is presented in Fig. 2(f).

This is interesting since wave-breaking has been observed before in just initially inhomogeneous beams. However, it is shown that also even initially homogeneous beams can undergo wave-breaking if the relativistic effects are not neglected. And this is of great importance for engineering purposes once particles expelled with the wave-breaking will be the ones that will form the beam halo.

In fact, as a general finding, wave-breaking is associated with the nonlinear behavior of the dynamical equation that describes the motion of each beam particle. The nonlinearity can be introduced by inhomogeneity or by including the relativistic effects to the description of the beam dynamics. Recent results have shown that for some particular kind of initial beam density, the inhomogeneity can compensate the relativistic effects and the wave-breaking phenomenon can be suppressed. But this is out of the scope of the present work and will be a subject of future works.

The authors acknowledge the aid of the National Centre of Supercomputação of the Brazil’s South Region (CESUP), located at the Federal University of Rio Grande do Sul (UFRGS). This work has received financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), from the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), both from Brazil, and from U.S.-AFOSR under Grant No. FA9550-09-1-0283.

![Figure 2](image-url)