Universidade Federal do Rio Grande do Sul
Instituto de Química
Laboratório de Catálise Molecular

Cláudia Cristiana Cassol

Líquidos Iônicos em Processos de Extração Seletiva de Compostos Aromáticos, Nitrogenados e Sulfurados em Frações do Petróleo

Dissertação de Mestrado

Prof. Dr. Jairton Dupont
Orientador:

Agradecimentos

Agradeço em especial ao meu orientador Prof. Dr. Jairton Dupont.
Ao Prof. Dr. Gunter Ebeling pela grande ajuda e paciência.
Ao Alexandre Umpiere pela ajuda em vários momentos durante este trabalho.
Ao Bauer Ferrera pelas conversas de valor científico e amizade.
À Sandra S. X. Chiaro pelas colaborações durante este trabalho.
Aos colegas e amigos do laboratório K-102.
As professoras Ione Baibich e Sibele Perger.
Ao prof. Dr. José Gregório pela amizade.
Ao prof. Dr. Sergio R. Teixeira (Durão) pelo carinho.
Aos funcionários do instituto de química.
À minha prima Ivone que é minha grande amiga.
Aos meus sobrinhos Micheli, Gabriela, Leonardo e Luiza que amo tanto.
À minha irmã Liliana pela convivência, paciência e amizade.
Aos meus dois outros irmãos Sandra e Leandro que mesmo longe muito me ajudaram.
Aos meus pais, Doni e Dália, com todo amor que sinto por eles.
Lista de Trabalhos Publicados durante este trabalho

Índice

Agradecimentos .. i
Lista de Trabalhos Publicados durante este trabalho .. ii
Índice .. iii
Lista de Abreviaturas e Acrônimos ... v
Lista de Tabela .. vi
Lista de Figuras .. vii
Resumo... xi
1. Introdução.. 1
2. Objetivos e Estratégia .. 13
3. Resultados e Discussões.. 14
 3.1. Síntese dos Líquidos Iônicos .. 14
 3.2. Testes de Extração .. 19
 3.3. Equilíbrio Ternário para Mistura de BMI.N(Tf)$_2$, n-Octano e Benzeno 32
 3.4. Reutilização dos Líquidos Iônicos .. 33
 3.5. Acompanhamento do Deslocamento Químico de Misturas de Líquidos Iônicos com Benzeno, Piridina ou DBT. ... 34
4. Conclusões .. 43
5. Parte Experimental .. 45
 5.1. Reagentes e Solventes .. 45
 5.2. Técnicas de Análise .. 45
 5.3. Síntese dos Líquidos Iônicos .. 46
 5.3.1 1-$_n$-Butil-imidazol84,85 .. 46
 5.3.2 1-$_n$-Dodecil-imidazol84,85 ... 46
 5.3.3 Metano-sulfonato de _n_-Butila ... 46
 5.3.4 Metano-sulfonato de 1-$_n$-Butil-3-metil-imidazólio .. 47
 5.3.5 Etano-sulfonato de 1-$_n$-Butil-3-metil-imidazólio .. 47
 5.3.6 sec-Butano-sulfonato de 1-$_n$-Butil-3-metil-imidazólio 48
5.3.7 n-Butano-sulfonato de 1-n-Butil-3-metil-imidazólio ... 48
5.3.8 Metano-sulfonato de 1,2-Di-metil-3-n-butil-imidazólio ... 49
5.3.9 Metano-sulfonato de 1,3-Di-metil-imidazólio .. 49
5.3.10 n-Butano-sulfonato de 1,3-Di-metil-imidazólio .. 50
5.3.11 Metano-sulfonato de 1,3-Dibutil-imidazólio ... 50
5.3.12 Etano-sulfonato de 1,3-Di-n-butil-imidazólio ... 51
5.3.13 Etano-sulfonato de 1-(2-Metoxietil)-3-metil-imidazólio 51
5.3.14 Tetrafluoroborato de 1-n-Butil-3-metil-imidazólio 47 ... 52
5.3.15 Hexafluorofosfato de 1-n-Butil-3-metil-imidazólio 47 ... 52
5.3.16 Bis(trifluorometano-sulfonil)imidato de 1-n-Butil-3-metil-imidazólio 33 52
5.3.17 Tris(pentafluoroetil)trifluorofosfato de 1-n-Butil-3-metil-imidazólio 53
5.3.18 Di(metano-sulfonato) de Etileno ... 53
5.3.19 Di(metano-sulfonato) de 1,2-bis(3-metil-imidazólio-1-il)etano 53
5.3.20 Di(metano-sulfonato) de 1,2-bis(3-n-butil-imidazólio-1-il)etano 54
5.3.21 Di[bis(trifluorometano-sulfonil)imidato] de 1,2-bis(3-n-butil-imidazólio-1-il)etano 54
5.3.22 Di(metano-sulfonato) de 1,2-bis(3-n-dodecil-imidazólio-1-il)etano 55
5.3.23 Di[bis(trifluorometano-sulfonil)imidato] de 1,2-bis(3-n-dodecil-imidazólio-1-il)etano 55
5.4. Testes de Extração .. 56
5.5. Diagrama Ternário .. 57
5.6. Cálculos Teóricos ... 59
6. Espectros de 1H RMN e 13C RMN .. 61
7. Referências ... 72
Lista de Abreviaturas e Acrônicos

AMI = 1-metil-3-fenilpropil-imidazólio
BBI = 1,3-dibutilimidazólio
BII(CH2)2IB = 1,2-bis(3-n-butil-imidazólio-1-il)etano
BMMI = 1-n-butil-2-di-metil-imidazólio
BMI = 1-n-butil-3-metil-imidazólio
BT = benzotiofeno
CG = cromatografia gasosa
CMI = 1-metil-3-(2-naftiletil)-imidazólio
DBT = dibenzotiofeno
DII(CH2)2IDd = 1,2-bis(3-n-dodecil-imidazólio-1-il)etano
4,6-DMDBT: 4,6-dimetildibenzotiofeno
DSC = Differential Scanning Calorimetry (Calorimetria Diferencial de Varredura)
EMI = 1-n-etil-3-metil-imidazólio
EPy = etil-piridínio
ESI-MS = espectrometria de massas por ionização por eletrospray
FAP = tris(perfluoroetil)trifluorofosfato
HDT = hidrotratamento
HDS = hidrodessulfurização
HCs = hidrocarbonetos

^Hex = n-hexil
Lls = líquidos iônicos
MDBT = metildibenzoíofeno
MI(CH2)2IM = 1,2-bis(3-metil-imidazólio-1-il)etano
MMI = 1,3-di-metil-imidazólio
N(Tf)2− = bis(trifluorometano-sulfonil)imidato

^Oct = n-octil
Pf = ponto de fusão
Lista de Tabela

Tabela 1. Especificações da gasolina futura para alguns países desenvolvidos

Tabela 2. Dados da literatura para LIs aplicados à separação de compostos sulfurados, nitrogenados e HCs aromáticos de HCs alifáticos.

Tabela 3. Algumas propriedades físico-químicas a 25 ºC dos LIs do cátion 1-alquil-3-metil-imidazólio, conforme a estrutura representada abaixo.

Tabela 4. Os novos LIs com seus rendimentos e os pontos de fusão determinados por DSC, de acordo com a estrutura representada abaixo.

Tabela 5. Percentual de extração comparativa de benzeno ou DBT (1 % em massa de DBT em n-octano ou 10 % em massa de benzeno em n-octano) em LIs com variação do ânion para o cátion BMI.

Tabela 6. Dados experimentais de solubilidade, a 25 ºC, do benzeno em massa nos diferentes líquidos iônicos.

Tabela 7. Percentual de extração de benzeno do combustível modelo (10 % em massa de benzeno em n-octano na relação molar de benzeno/LI de 1:1(mol:mol) com diferentes LIs a 25 ºC. Tempo de contato sob agitação de cada experimento 20 minutos).

Tabela 8. Valores de deslocamentos químicos para os hidrogênios do cátion BMI para o líquido iônico BMI.BF$_4$ em diferentes solventes deuterados a 298 K.

Tabela 10. Variação do deslocamento químico na concentração de 0,15 benz:LI nas associações com benzeno ou DBT.

Tabela 11. Dados experimentais utilizados para a construção do diagrama de fases da mistura ternária BMI.N(Tf)$_2$ + benzeno + n-octano a temperatura de 25 ºC.
Lista de Figuras

Figura 1. Extração líquido-líquido. ... 2
Figura 2. Unidade de HDT em integração com uma unidade extrativa de dessulfurização de óleo diesel por LI. Agente extrator BMI.OcSO₄, razão mássica LI/óleo diesel de 1,5......... 4
Figura 3. Alguns cátions e ânions constituíntes dos líquidos iônicos. .. 4
Figura 4. Reação de oxidação de DBT que utiliza H₂O₂/AcOH como agente oxidante em um sistema “óleo” (fase orgânica) e líquido iônico (fase iônica). Figura adaptada da referência 17... 5
Figura 5. Exemplo de líquidos iônicos do cátion 1,3-dialquil-imidazólio de primeira, segunda e terceira geração... 9
Figura 6. Rotas para obtenção dos líquidos iônicos derivados do cátion 1,3-dialquil-imidazólio. R = grupamento alquila; Y = Al, In, Cu, Ga, por exemplo; M = metal do grupo I, como Li, Na, K; A = ânions em geral, tais como Cl⁻, NO₃⁻, BF₄⁻, PF₆⁻, CF₃COO⁻, SbF₆⁻, N(Tf)₂⁻, por exemplo... 10
Figura 7. Modelo de estruturas poliméricas supramoleculares que mostra as ligações de hidrogênio entre cátion 1,3-dialquil-imidazólio (C) e os ânions (A). Nestas estruturas, cada cátion é circundado por três ânions e por outro lado cada ânion é circundado por três cátions. ... 11
Figura 8. Estrutura cristalina tridimensional de líquidos monocatiônico e dicatiônicos derivados do cátion 1,3-dialquil-imidazólio que mostra a estrutura de canais formada. 12
Figura 9. Rota para obtenção dos LIs derivados do cátion 1,2,3-trialquil-imidazólio. TA = temperatura ambiente; R₁, R₂ e R₃ = grupamentos alquila; R₄ = Me ou H; M = metal do grupo I, como Li, Na e K, por exemplo, e X = ânions em geral, tais como BF₄⁻, PF₆⁻, N(Tf)₂⁻, CF₃SO₃⁻ e PF₃(CF₂CF₃)₃⁻ por exemplo... 14
Figura 10. Rota para obtenção de LIs dicatiônicos derivados do cátion 1,3-dialquil-imidazólio. R₁ e R₂ = grupamentos alquila. ... 15
Figura 11. Espectros de ¹H RMN (500 MHz, 25 ºC) de BMI.BF₄ em CD₂Cl₂ (acima) e expansão entre 2,4 e 4,5 ppm (abaixo) que mostra os sinais dos satélites do ¹³C do grupamento N-metil, do CH₃SO₃⁻ e resíduos de água. (Intensidade relativa: satélite ¹³C = 9,25, CH₃SO₃⁻ = 23,4 e água = 1,53). ... 17
Figura 12. Espectros de 1H RMN (500 MHz, 25 ºC) de BMI.PF$_6$ em CD$_2$Cl$_2$ (acima) e expansão entre 2,3 e 4,5 ppm (abaixo) que mostra os sinais dos satélites do 13C do grupamento N-metil e resíduos de água. (Intensidade relativa: satélite 13C = 5,73 e água = 1,54). ... 18

Figura 13. Conteúdo de benzeno na fase orgânica versus tempo de contato sob agitação, combustível modelo, 10 % de aromático em n-octano na relação molar de benzeno/LI de 1:1(mol:mol). ... 20

Figura 14. Variação dos ânions dos LI para o cátion BMI na extração de benzeno de mistura 10 % em massa de benzeno em n-octano. Tempo de contato sob agitação 20 minutos. 21

Figura 15. Relação no equilíbrio da massa de benzeno/massa de BMI.N(Tf)$_2$ (fase extrato) versus massa de benzeno/massa de combustível (desconsidera-se a quantidade de n-octano extraída) (fase rafinado). ... 22

Figura 16. Capacidade de extração de compostos aromáticos derivados do benzeno do combustível modelo_10 % de aromático em n-octano na relação molar de benzeno/LI de 1:1(mol:mol) com o LI BMI.N(Tf)$_2$. Em que: (b) benzeno, (t) tolueno, (e) etilbenzeno, (pp) n-propilbenzeno, (i) iso-butilbenzeno, (o) o-xileno, (m) m-xileno e (p) p-xileno. Tempo de contato sob agitação de cada experimento 20 minutos. ... 22

Figura 17. Percentual de extração para os diferentes compostos de enxofre do combustível modelo (1 % de sulfurados em n-octano na relação molar de sulfurado/LI de 0,1:1(mol:mol)) e utiliza-se o LI BMI.N(Tf)$_2$. Em que (dm) 2,5-dimetiltiofeno, (t) tiofeno, (BT) benzotiofeno e (DBT) dibenzotiofeno. Tempo de contato sob agitação de cada experimento 20 minutos.. 24

Figura 18. Percentual de extração para os diferentes compostos nitrogenados do combustível modelo (1 % de nitrogenados em n-octano na relação molar de nitrogenado/LI de 0,1:1(mol:mol)) e utiliza-se o LI BMI.N(Tf)$_2$. Em que (b) 7,8-benzoquinolina, (Py) piridina, (m) 8-metilquinolina e (q) quinolina. Tempo de contato sob agitação de cada experimento 20 minutos.. .. 25

Figura 19. Capacidade de extração de benzeno, compostos sulfurados e nitrogenados no combustível modelo (frações mássicas de 10 %, 1 % e 1 % em massa, respectivamente em n-octano) com o LI BMI.N(Tf)$_2$. Em que: (b) benzeno, (DBT) DBT e (py) piridina. Tempo de contato sob agitação de cada experimento 20 minutos. % de aromático em n-octano na relação molar de benzeno/LI de 1:1(mol:mol) com o LI .. 27

Figura 20. Variação da cadeia lateral para os derivados do cátion imidazólio para a extração de um combustível modelo_10 % em massa de benzeno em n-octano, na relação molar de benzeno/LI de 1:1(mol:mol). Em que (b) benzeno, (o) n-octano, (EM) 1-etil-3-metil, (PM) 1-
propil-3-metil, (HM) 1-hexil-3-metil e (DM) 1-decil-3-metil. Tempo de contato sob agitação de cada experimento 20 minutos.

Figura 22. Diagrama de fases BMI.N(Tf)$_2$/benzeno/n-octano a 25 ºC no triângulo da direita. O gráfico principal é mostrado a direita e evidencia a linha de composição do extrato a qual divide o gráfico em duas regiões de uma (abaixo da linha) e duas fases (acima da linha). A linha de composição do rafinado esta localizada sobre a diagonal do triângulo, uma vez que a quantidade de líquido iônico pode ser negligenciada. O gráfico da esquerda relaciona as composições de benzeno no extrato e no rafinado.

Figura 23. Espectro de 1H RMN (300 MHz, 25 ºC) com capilar de D$_2$O como referência e expansão entre 6,8 e 8,6 ppm e os sinais dos hidrogênios do anel imidazólio e do benzeno em diferentes concentrações de benzeno em BMI.N(Tf)$_2$. Átomos de hidrogênio do anel imidazólio H2, H4 e H5.

Figura 24. Anisotropia diamagnética no benzeno causada pela presença de elétrons-π no anel.

Figura 25. Espectro de 1H RMN (300 MHz, 25 ºC) com capilar de D$_2$O e expansão entre 6,8 e 9,0 ppm e os sinais dos hidrogênios do anel imidazólio e piridina em diferentes concentrações de piridina em BMI.N(Tf)$_2$. Átomos de hidrogênio do anel imidazólio H2, H4 e H5.

Figura 26. Espectro de 1H RMN (300 MHz, 25 ºC) com capilar de D$_2$O e expansão entre 6,8 e 9,0 ppm e os sinais dos hidrogênios do anel imidazólio e DBT em diferentes concentrações de DBT em LI. Átomos de hidrogênio do anel imidazólio H2, H4 e H5.

Figura 27. Em destaque os hidrogênios do cátion imidazólio e as possíveis interações com as moléculas de benzeno, piridina e DBT.

Figura 28. Acompanhamento do deslocamento dos H2 (■), H4 (●) e H5 (▲) do cátion BMI nas diferentes concentrações de Benzeno/BMI.N(Tf)$_2$.

Figura 29. Acompanhamento do deslocamento do H2 (■), H4 (●) e H5 (▲) do cátion BMI nas diferentes concentrações de piridina/BMI.N(Tf)$_2$.

Figura 30. Acompanhamento do deslocamento dos H2 (■), H4 (●) e H5 (▲) do cátion BMI nas diferentes concentrações de DBT/BMI.N(Tf)$_2$.
Figura 31. Representação do sistema de extração com líquido iônico, fase extraído (fase inferior) combustível modelo, fase rafinado (fase superior) .. 56
Figura 32. Exemplo fictício de diagrama de fases de um sistema ternário com a fase rafinado isenta do terceiro componente ... 58
Figura 33. Espectro de \(^1\)H RMN (300MHz, 25 ºC) de BMI.MeSO\(_3\) em CDCl\(_3\). 61
Figura 34. Espectro de \(^13\)C RMN, APT (300 MHz, 25 ºC) de BMI.MeSO\(_3\) em CDCl\(_3\). 61
Figura 35. Espectro de \(^1\)H RMN (300 MHz, 25 ºC) de BMI.EtSO\(_3\) em CDCl\(_3\). 62
Figura 36. Espectro de \(^13\)C RMN, APT (300 MHz, 25 ºC) de BMI.EtSO\(_3\) em CDCl\(_3\). 62
Figura 37. Espectro de \(^1\)H RMN (300 MHz, 25 ºC) de BMI.\(^n\)BuSO\(_3\) em CDCl\(_3\). 63
Figura 38. Espectro de \(^13\)C RMN, APT (300 MHz, 25 ºC) de BMI.\(^n\)BuSO\(_3\) em CDCl\(_3\). 63
Figura 39. Espectro de \(^1\)H RMN (300 MHz, 25 ºC) de BMI.\(^n\)BuSO\(_3\) em CDCl\(_3\). 64
Figura 40. Espectro de \(^13\)C RMN, APT (300 MHz, 25 ºC) de BMI.\(^n\)BuSO\(_3\) em CDCl\(_3\). 64
Figura 41. Espectro de \(^1\)H RMN (300 MHz, 25 ºC) de BMMI.MeSO\(_3\) em CDCl\(_3\). 65
Figura 42. Espectro de \(^13\)C RMN (300 MHz, 25 ºC) de BMMI.MeSO\(_3\) em CDCl\(_3\). 65
Figura 43. Espectro de \(^1\)H RMN (300 MHz, 25 ºC) de MMI.MeSO\(_3\) em CDCl\(_3\). 66
Figura 44. Espectro de \(^13\)C RMN, APT (300 MHz, 25 ºC) de MMI.MeSO\(_3\) em CDCl\(_3\). 66
Figura 45. Espectro de \(^1\)H RMN (300 MHz, 25 ºC) de MMI.\(^n\)BuSO\(_3\) em CDCl\(_3\). 67
Figura 46. Espectro de \(^13\)C RMN, APT (300 MHz, 25 ºC) de MMI.\(^n\)BuSO\(_3\) em CDCl\(_3\). 67
Figura 47. Espectro de \(^1\)H RMN (300 MHz, 25 ºC) de BBI.MeSO\(_3\) em CDCl\(_3\) 68
Figura 48. Espectro de \(^13\)C RMN, APT (300 MHz, 25 ºC) de BBI.MeSO\(_3\) em CDCl\(_3\). 68
Figura 49. Espectro de \(^1\)H RMN (300 MHz, 25 ºC) de BBI.EtSO\(_3\) em CDCl\(_3\). 69
Figura 50. Espectro de \(^13\)C RMN, APT (300 MHz, 25 ºC) de BBI.EtSO\(_3\) em CDCl\(_3\). 69
Figura 51. Espectro de \(^1\)H RMN (300 MHz, 25 ºC) de Ddi(CH\(_2\))\(_2\)Ddi.MeSO\(_3\) em CDCl\(_3\). 70
Figura 52. Espectro de \(^13\)C RMN, APT (300 MHz, 25 ºC) de Ddi(CH\(_2\))\(_2\)Ddi.MeSO\(_3\) em CDCl\(_3\). ... 70
Figura 53. Espectro de \(^1\)H RMN (300 MHz, 25 ºC) de Bi(CH\(_2\))\(_2\)Bi.MeSO\(_3\) em CDCl\(_3\). ... 71
Resumo

A reação de N-alquil-imidazol com ésteres de ácidos alcanosulfônicos a temperatura ambiente resulta em 1,3-dialquil-imidazólio alcano-sulfonatos como sólidos cristalinos em alto rendimento. Os ânions alcano-sulfonatos podem ser facilmente substituídos por uma série de outros ânions [BF₄⁻, PF₆⁻, PF₅(CF₃CF₂)₃⁻, e N(CF₃SO₂)₂⁻]. A pureza (>99,4%) desses LIs pode ser determinada por espectro de ¹H RMN e utilizou a intensidade dos satélites do ¹³C do grupo N-metil do cátion imidazólio como padrão interno.

O equilíbrio ternário líquido-líquido para os sistemas formados por n-octano e hidrocarbonetos (HCs) aromáticos (alquil-benzenos) e compostos heteroaromáticos (nitrogenados e sulfurados) e LIs derivados do cátion 1,3-dialquil-imidazólio associado com vários ânions foi determinado. A seletividade na extração de compostos aromáticos é influenciada pelo volume do ânion, força da ligação de hidrogênio entre o ânion e o cátion imidazólio e o comprimento da cadeia lateral alquilica do cátion 1-metil-imidazólio.

A interação de alquil-benzenos e heterociclos de enxofre com o LI ocorre preferencialmente através de interações tipo CH—π e a quantidade desses aromáticos na fase iônica diminuem com o aumento do impedimento estéreo imposto pelos substituintes do núcleo aromático. No caso dos heterociclos nitrogenados a interação ocorre preferencialmente através N(heteroaromático)—H(imidazólio). Experimentos de extração sugerem que benzeno, piridina e DBT não competem para o mesmo sítio de ligação no LI.
Abstract

The reaction of \(N \)-alkyl-imidazole with alkyl alkanesulfonate esters at room temperature affords 1,3-dialkyl-imidazolium alkanesulfonates as crystalline solids in high yields. The alkanesulfonate anions can be easily substituted by a series of other anions \([\text{BF}_4^-, \text{PF}_6^-, \text{PF}_3(\text{CF}_2\text{CF}_3)_3^-, \text{N}((\text{CF}_3\text{SO}_2)_2^-]\). The purity (>99.4%) of these ionic liquids can be determined by \(^1\text{H}\) NMR spectra using the intensity of the \(^{13}\text{C}\) satellites of the imidazolium \(N \)-methyl group as internal standard.

The liquid-liquid equilibrium for the ternary system formed by \(n \)-octane and aromatic (alkylbenzenes) and heteroaromatic compounds (nitrogen and sulfur containing heterocycles) and 1-alkyl-3-methyl-imidazolium ionic liquids (ILs) associated with various anions has been investigated. The selectivity on the extraction of a specific aromatic compound is influenced by anion volume, hydrogen bond strength between the anion and the imidazolium cation and the length of the 1-methylimidazolium alkyl side chain.

The interaction of alkylbenzenes and sulfur heterocycles with the IL is preferentially through \(\text{CH—π} \) hydrogen bonds and the quantity of these aromatics in the IL phase decreases with the increase of the steric hindrance imposed by the substituents on the aromatic nucleus. In the case of nitrogen heterocycles the interaction occurs preferentially through \(\text{N(heteroaromatic)—H(imidazolium)} \) hydrogen bonds and the extraction process is largely controlled by the nitrogen heterocycle pKa. Extraction experiments suggest that benzene, pyridine and dibenzothiophene do not compete for the same hydrogen bond sites of the IL.
1. Introdução

Nos dias de hoje, a crescente preocupação com a adequação às normas ambientais atinge os combustíveis na busca urgente em zelar pelas questões da qualidade do ar.1,2

Atualmente a legislação dos países industrializados exige a sistemática redução do conteúdo de enxofre e nitrogênio desses combustíveis3 como mostrado na Tabela 1 que representa o conteúdo de enxofre, olefina, benzeno e aromáticos tolerado em anos recentes para alguns países/região desenvolvidos da Califórnia, União Européia, Canadá, Japão e Austrália.

Do mesmo modo a gasolina automotiva brasileira projeta uma redução significativa do teor de enxofre, 400 ppm em 2007 para 50 ppm em 2009. Além de restrições com relação ao teor de olefinas e de aromáticos, para diminuir a quantidade de poluentes emitidos.

Busca-se assim desenvolver novos métodos que atendam aos novos limites estabelecidos pelo controle ambiental, associado a processos que reduzam ou eliminem o uso ou geração de substâncias nocivas à saúde humana e ao ambiente. Tecnologia limpa, “green chemistry” ou a tradução literal, “química verde” descrevem o termo mais utilizado atualmente para maximizar a eficiência e minimizar custos na maioria dos processos.

Tabela 1. Especificações da gasolina futura para alguns países desenvolvidos.

<table>
<thead>
<tr>
<th>País\Região</th>
<th>Valor máximo (ano de vigência)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enxofre (ppm)</td>
</tr>
</tbody>
</table>

Vários métodos de purificação de frações do petróleo são conhecidos e estudados,4-8 como, por exemplo, membranas para separação de aromáticos, biodessulfurização, dessulfurização por adsorção. Processos que muitas vezes
apresentam baixa estabilidade, perda de material e dificuldade de interação com o sítio ativo devido a fatores estéreos o que dificulta a atuação dos sistemas enzimáticos microbianos.

Processos comerciais de extração líquido-líquido como processo Volex que utiliza solventes baseados em glicol, o processo Arsolvan, idem que utiliza N-metil-pirrolidona e o processo Shell, que utiliza sulfolano, são usados para separar aromáticos como benzeno, tolueno e xilenos (BTX) de nafta, uma vez que para aplicações petroquímicas, é necessária a produção de benzeno e tolueno em alto grau de pureza, assim como misturas de xilenos, conhecido comercialmente como xilol, um líquido incolor, com odor adoçado, e seu maior constituinte o isômero metaxileno (60%), os quais, além de prejudiciais ao meio ambiente apresentam outras desvantagens, como a exigência de um processo de recuperação e reposição dos mesmos.

Por definição, a extração líquido-líquido é um processo de separação que se utiliza da propriedade de miscibilidade de líquidos, é a operação de transferência de massa na qual uma solução líquida (a alimentação), entra em contacto com um líquido imiscível ou pouco miscível (o solvente), o qual possui afinidade preferencial (ou seletividade) para um ou mais componentes da alimentação. Duas correntes resultam desse contacto, o extrato que é a solução rica em solvente a qual contém o soluto que se deseja extrair, e o rafinado que é a solução de alimentação residual a qual contém uma menor quantidade de soluto. Por exemplo, em uma situação onde temos dois líquidos, A e B, miscíveis entre si, e queremos separar A de B, podemos usar um terceiro líquido, C, que seja mais miscível com A do que com B (Figura 1).

![Figura 1. Extração líquido-líquido.](image)

A queima do enxofre presente nos combustíveis produz emissões de SOx e inibe o desempenho dos equipamentos veiculares. Industrialmente, baixos níveis de enxofre
são obtidos através do hidrotratamento, mas reações paralelas indesejáveis devido às condições severas (altas temperaturas e pressões) podem ocorrer, tais como a saturação de olefinas, o que pode resultar na redução do número de octanos na gasolina.\footnote{2,9}

Processos de extração seletiva de compostos aromáticos, sulfurados e nitrogenados de frações do petróleo são um assunto de crescente interesse industrial e desenvolvimento de conhecimento científico e com grandes atrativos para uso tecnológico, na qual vários processos industriais são hoje conhecidos e aplicados.

Além de fatores ambientais, outros aspectos são importantes e ganham atenção no decorrer do processo. Do ponto de vista tecnológico, o uso de métodos de hidrotratamento catalítico para remoção de HCs aromáticos, compostos de enxofre e nitrogênio, os quais utilizam altas pressões e temperaturas, encontram limitações uma vez que, por exemplo, no processo de hidrodessulfurização, os compostos mais pesados de enxofre, tais como dibenzotiofeno, são mais difíceis de remover e requerem maior custo de produção.

O método industrial utilizado para a remoção de compostos sulfurados é por hidrotratamento (HDT), no processo de hidrodessulfurização (HDS), o qual requer alto consumo de energia.\footnote{10} Um processo alternativo mais “limpo”, como a extração líquido-líquido que utiliza líquidos iônicos como solvente, pode ser acoplado as unidades já existentes de hidrotratamento a fim de minimizar esses efeitos e aumentar a eficiência do processo para uma profunda dessulfurização dos combustíveis fósseis, como mostrado na Figura 2.\footnote{3}

Líquidos iônicos (LIs) são sais líquidos a temperatura ambiente de baixo ponto de fusão abaixo de 100 °C ou muitas vezes também designados como sais fundidos que apresentam uma ampla faixa na qual são líquidos (superior a 250 °C)\footnote{11} e podem ser descritos como compostos que apresentam estrutura cristalina iônico-covalente.\footnote{12}

O grande número de LIs que pode-se encontrar hoje na literatura e suas diferentes aplicações\footnote{13,14} são devido à grande variedade de cátions, na maioria das vezes, combinação de cátions orgânicos como tetraalquil-amônio ou fosfônio ou, mais frequentemente cátions heteroaromáticos, tais como 1,3-dialquil-imidazólio ou 1,2,3-trialquil-imidazólio e N-alquil-piridínio, enquanto que a espécie aniónica é composta por ânions orgânicos e inorgânicos, tais como Cl−, NO\textsubscript{3}−, BF\textsubscript{4}−, PF\textsubscript{6}−, CF\textsubscript{3}COO−, SbF\textsubscript{6}−, N(Tf)\textsubscript{2}−, etc (Figura 3). Esses sistemas apresentam interações iônicas fracas e, por conseqüência, uma baixa energia de retículo cristalino e uma baixa temperatura de fusão.
Figura 2. Unidade de HDT em integração com uma unidade extrativa de dessulfurização de óleo diesel por LI. Agente extrator BMI.OcSO₄, razão mássica LI/óleo diesel de 1,5.

Líquidos iônicos (LIs) demonstraram ser solventes alternativos para processos de extração,¹⁵,¹⁶ conhecidos como solventes “verdes”¹ podem substituir com vantagens os solventes orgânicos tradicionais empregados, dado as características apresentadas por eles como pressão de vapor muito pequena e a facilidade de serem recicláveis.

Do ponto de vista químico, na extração líquido-líquido é importante o conhecimento da composição, das propriedades e das interações mútuas entre os diferentes componentes. Líquidos iônicos são materiais promissores para esta aplicação,¹⁷ pois através do estudo de sua estrutura¹⁸ e conhecimento de suas propriedades¹⁹,²⁰ pode se desenvolver materiais que sejam ajustáveis às condições de trabalho e às necessidades requeridas.

Existem ainda outros processos em estudo para a remoção de compostos que contém átomos de enxofre, como DBT, entre eles aquele que combina duas etapas: a oxidação química e a extração líquido-líquido. Esse processo aplica solventes orgânicos e água oxigenada em meio ácido para oxidar os derivados de enxofre presentes no óleo.²¹ O mesmo processo pode ser feito com a utilização de um líquido iônico compatível com o agente oxidante como solvente extrator. Os compostos são extraídos do óleo pelo líquido iônico e então oxidados para a forma de sulfonas, e cujo esquema
Cátions:

\[
\begin{align*}
\text{N-Alquil-piridínio} & \quad \text{1,2,3-Trialquil-imidazólio} & \quad \text{1,2-bis(3-alquil-imidazólio-1-il)alquil} \\
\text{Tetraalquil-amônio} & \quad \text{N,N-Dialquil-piridínio} & \quad \text{Tetraalquil-fosfônio}
\end{align*}
\]

em geral \(R = \text{Me, Et, } \alpha P r, \alpha B u, \alpha O c t, \alpha D e c, \alpha D o d e c, \text{MeOE} t, B z, \text{etc.} \)

Ânions:

\[
\begin{align*}
\text{tetrafluoroborato} & \quad \text{Hexafluorofosfato} & \quad \text{Tris(perfluoroetil)trifluorofosfato} \\
\text{Bis(trifluorometano-sulfonil)imidato}
\end{align*}
\]

Figura 3. Alguns cátions e ânions constituintes dos líquidos iônicos.

representativo pode ser visto na Figura 4. Esta combinação de processos possibilitou um aumento no rendimento de dessulfurização quando comparados apenas a simples extração.\(^{22}\)

Figura 4. Reação de oxidação de DBT que utiliza \(\text{H}_2\text{O}_2/\text{AcOH} \) como agente oxidante em um sistema “óleo” (fase orgânica) e líquido iônico (fase iônica). Figura adaptada da referência 17.
Líquidos íônicos também são citados em aplicações na remoção seletiva de HCs aromáticos, compostos sulfurados e nitrogenados de combustíveis modelos à temperatura de 25 ºC, e levado em consideração a variação da natureza do ânion e o tamanho do cátion. Os líquidos íônicos que contêm ânions clorados apesar de apresentarem valores de extração mais elevados têm a desvantagem de serem sensíveis ao ar e à umidade. Esta sensibilidade faz com que eles sejam substituídos por outros, às vezes, com uma menor capacidade de extração, mas em compensação mais estáveis e mais fáceis de recuperar.

Na Tabela 2 podem ser encontrados alguns LIs apresentados na literatura para remoção de compostos de diferente natureza, como HCs aromáticos, compostos sulfurados e compostos nitrogenados.

Os líquidos íônicos apresentam a vantagem de serem mais seletivos para os compostos mais difíceis de remover pelo método tradicional de hidrotratamento, como, por exemplo, os derivados de dibenzotiofeno, com BT, DBT, MDBT e 4,6-DMDBT presentes no óleo diesel. Além de removerem compostos nitrogenados, os quais podem inclusive inibir o processo de HDS.

Líquidos íônicos sintetizados a partir de materiais relativamente baratos têm despertado atenção para a extração de compostos sulfurados não só de óleo diesel como também de gasolina, o que pode reduzir a perda do número de octanagem ocasionada pelo processo de hidrotratamento devido às condição mais bruscas utilizadas nesse processo. Entre esses líquidos íônicos podemos destacar BMI.OctSO₄ e EMI.EtSO₄ livres de halogênios que podem substituir os derivados de BMI.Cl/AlCl₃, os quais são limitados para utilização em larga escala devido sua limitada estabilidade à hidrólise e custo elevado do material de partida, e outros líquidos compostos pela associação com o ânion PF₆⁻ que também apresentam certas limitações pois podem hidrolisar a altas temperaturas na presença de H₂O.²³,²⁴

O estudo da estrutura e utilização de líquidos íônicos baseados em cloreto de cobre (CuCl) na dessulfurização da gasolina tem sido realizado e nenhuma polimerização das olefinas tem sido observada. Os líquidos íônicos derivados do CuCl utilizados, os quais são estáveis ao ar e à umidade, foram utilizados como extratores na dessulfurização da gasolina. A eficiência do conteúdo de enxofre absorvido foi atribuído à complexação-π do Cu(I) com as moléculas de tioreno.² A utilização dos LIs apresenta vantagem quando comparada a um processo convencional de depósito de Cu(I) em...
suportes sólidos, uma vez que é obtido diretamente Cu(I) sem a necessidade de pré-redução de Cu(II) a temperaturas em torno dos 450 ºC.

Tabela 2. Dados da literatura para LIs aplicados à separação de compostos sulfurados, nitrogenados e HCs aromáticos de HCs alifáticos.

\[
\text{E. LI} \quad \text{S} \quad \text{N} \quad \text{HC} \text{arom.} \quad \text{Ref.}
\]

<table>
<thead>
<tr>
<th>E.</th>
<th>LI</th>
<th>S</th>
<th>N</th>
<th>HCarom.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"Bu</td>
<td>Me</td>
<td>Cl^-</td>
<td>DBT</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>"Oc</td>
<td>Cl^-</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Et</td>
<td>Me</td>
<td>I_3^-</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>Et</td>
<td>Me</td>
<td>I_3^-</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>"Bu</td>
<td>Me</td>
<td>CuCl_3^-</td>
<td>Tiofeno</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>"Bu</td>
<td>Me</td>
<td>PF_6^-</td>
<td>DBT, a</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>"Hex</td>
<td>Me</td>
<td>PF_6^-</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>"Bu</td>
<td>Me</td>
<td>MeSO_4^-</td>
<td>DBT</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>"Bu</td>
<td>Me</td>
<td>"OctSO_4^-</td>
<td>Tiofeno, C_(12)H_25SH^c BT, DBT, 4,6-MDBT</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>Et</td>
<td>Me</td>
<td>"OctSO_4^-</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>Et</td>
<td>Me</td>
<td>BF_4^-</td>
<td>DBT, C_(4)H_(10)S, Tiofeno, 2-Metil-tiofeno</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>"Bu</td>
<td>Me</td>
<td>BF_4^-</td>
<td>DBT, a</td>
<td>Piridina, piperidina, 2- picolina, 2-Metil-piperidina</td>
</tr>
<tr>
<td>13</td>
<td>"Hex</td>
<td>Me</td>
<td>BF_4^-</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>14</td>
<td>Me</td>
<td>"Oct</td>
<td>BF_4^-</td>
<td>DBT</td>
<td>–</td>
</tr>
</tbody>
</table>

S = Compostos que contêm átomos de exofre, N = compostos que contêm átomos de nitrogênio e HCarom. = hidrocarbonetos aromáticos, ^a com oxidação, ^b (CH_3)_2CHCH_2SH, ^c Dodecanotiol.
Líquidos iônicos representam hoje uma grande inovação de como a química será conduzida e representam uma grande mudança no futuro da química industrial, devido as suas propriedades e à grande variedade desses materiais. Os sais derivados do cátion 1,3-dialquil-imidazólio, associado com vários ânions, representam a classe mais investigada de LIs. A simples escolha por diferentes substituintes alquila e/ou ânions possibilita uma grande variação das propriedades desses materiais, como a hidrofobicidade, viscosidade, densidades, ponto de fusão, estabilidade química e térmica.

Dentre as muitas vantagens apresentadas por esses materiais esta a grande variação nas propriedades físico-químicas pode ser facilmente modelada pela simples variação da natureza e tamanho de ambos os cátions e/ou ânions, porém muitas vezes é difícil relacionar estas propriedades, como observado na Tabela 3, porque um simples aumento da cadeia lateral do cátion 1,3-dialquil-imidazólio de metil para etil ocorre uma variação de 22 °C para –3 °C no ponto de fusão, porém a variação de etil para n-butil causa uma diminuição de apenas um grau no respectivo ponto de fusão e isso tudo quando da consideração de apenas a variação de um dos substituintes do anel imidazólio para a mesma família de ânion N(Tf)$_2^-$.

Estes materiais apresentam viscosidade alta (30-200cP) quando comparada a solventes convencionais, como etilenoglicol (16cP), além disso, impurezas podem significamente afetar os valores de viscosidade.

A estrutura do cátion, assim como a variação da cadeia lateral, influencia nos valores de viscosidade, uma vez que cadeia lateral pequena ou ramificada pode baixar a viscosidade o aumento da cadeia lateral causa um aumento nas interações de van der Waals. A natureza do ânion também deve ser levada em consideração: por exemplo, sais derivados do ânion BF$_4^-$ são menos viscosos que aqueles do PF$_6^-$, uma vez que as ligações de hidrogênio proporcionam uma menor difusão de íons, e resulta assim numa maior viscosidade.
Tabela 3. Algumas propriedades físico-químicas a 25 ºC dos LIs do cátion 1-alquil-3-metil-imidazólio, conforme a estrutura representada abaixo.

![Imagem da estrutura de cátions](attachment:structure.png)

<table>
<thead>
<tr>
<th>E.</th>
<th>R</th>
<th>X</th>
<th>Pf (ºC)</th>
<th>σ (10⁻³ S cm⁻¹)</th>
<th>ν (cP)</th>
<th>d (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nBu</td>
<td>BF₄⁻</td>
<td>-85ᵃ</td>
<td>3,5</td>
<td>154ᵉ</td>
<td>1,21</td>
</tr>
<tr>
<td>2</td>
<td>nBu</td>
<td>PF₆⁻</td>
<td>10</td>
<td>1,6</td>
<td>371ᵉ</td>
<td>1,36</td>
</tr>
<tr>
<td>3</td>
<td>nBu</td>
<td>CF₃SO₃⁻</td>
<td>17</td>
<td>3,7ᶜ</td>
<td>90</td>
<td>1,29</td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>N(Tf)₂⁻</td>
<td>22</td>
<td>8,4ᶜ</td>
<td>44</td>
<td>1,56</td>
</tr>
<tr>
<td>5</td>
<td>Et</td>
<td>N(Tf)₂⁻</td>
<td>-3</td>
<td>8,8ᶜ</td>
<td>34</td>
<td>1,52ᶠ</td>
</tr>
<tr>
<td>6</td>
<td>nBu</td>
<td>N(Tf)₂⁻</td>
<td>-4</td>
<td>3,9ᶜ</td>
<td>52</td>
<td>1,43ᶠ</td>
</tr>
<tr>
<td>7</td>
<td>MeOEt</td>
<td>N(Tf)₂⁻</td>
<td>xᵇ</td>
<td>4,2ᶜ</td>
<td>54</td>
<td>1,50ᶠ</td>
</tr>
</tbody>
</table>

ᵃTransição vitrea,ᵇnão pode ser cristalizado (torna-se vitreo entre −30 ºC e −50 ºC),ᶜcondutividade a 20 ºC,ᵈviscosidade para cP = 0,01 g.cm⁻¹.s⁻¹,ᵉviscosidade a 20 ºC,ᶠdensidade a 22 ºC.

A recente história de desenvolvimento dos líquidos iônicos segue uma cronologia, Figura 5; primeiramente a partir da década de oitenta podemos destacar os líquidos de primeira geração, os cloroaluminatos.³⁴ Já na década de noventa foram desenvolvidos os LI de segunda geração estáveis ao ar e umidade³⁵ e posteriormente já nos anos 2000, foram sintetizados os primeiros LIs de aplicação específica e assim chamados de terceira geração.³⁶,³⁷

![Diagrama de líquidos iônicos](attachment:diagram.png)

Figura 5. Exemplo de líquidos iônicos do cátion 1,3-dialquil-imidazólio de primeira, segunda e terceira geração.
Diversas metodologias de síntese, baseadas em procedimentos sintéticos clássicos, são hoje conhecidas e discutidas na literatura que possibilitam a aplicação a diferentes catións, como 1,4-dialquil-piridínio, N,N-dialquil-pirrolidínio, 1-alquil-piridínio e amônio quaternário e utilização de solventes orgânicos e temperaturas elevadas. Os líquidos iônicos que contêm o catión do tipo 1,3-dialquil-imidazólio são hoje os mais estudados e podem ser preparados através de diferentes metodologias. Uma dessas metodologias está baseada em um processo sintético que utiliza agentes alquilantes que permitem a quaternização do anel imidazólio seguido pela associação com haletos metálicos ou metatese do ânion, que disponibiliza uma grande variedade de LIs baseados no catión do tipo 1,3-dialquil-imidazólio.

Em geral esta metodologia pode ser separada em duas etapas. Na primeira etapa, um haletono de 1,3-dialquil-imidazólio é obtido através da reação de um 1-alquil-imidazol que é quaternizado na reação com um agente alquilante (por exemplo: alcano-halogenados) e possibilita a introdução de grupamentos alquila iguais ou diferentes.

Na segunda etapa, por exemplo, a partir de haletos de 1,3-dialquil-imidazólio, obtém-se os líquidos iônicos através da reação de troca iônica do ânion haletono por outros ânions ($BF_4^−$, $PF_6^−$, $N(Tf)_2^−$ entre outros) onde o haletono de 1,3-dialquil-imidazólio reage com um sal metálico (grupo 1, Li, Na e K) do ânion desejado ou pode-se ainda utilizar o ácido adequado com posterior neutralização (Figura 6). O líquido iônico pode ser obtido pela mistura de haletono de 1,3-dialquil-imidazólio com cloreto de alumínio anidro, em diversas proporções ou ainda mistura com outros cloretos metálicos como gálio, cobre, índio, etc.

![Figura 6. Rotas para obtenção dos líquidos iônicos derivados do catión 1,3-dialquil-imidazólio. R = grupamento alquila; Y = Al, In, Cu, Ga, por exemplo; M = metal do grupo I, como Li, Na, K; A = ânions em geral, tais como $Cl^−$, $NO_3^−$, $BF_4^−$, $PF_6^−$, $CF_3COO^−$, $SbF_6^−$, $N(Tf)_2^−$, por exemplo.](image)
Líquidos iônicos isentos de haletos podem ser obtidos pelo uso de sulfato de dimetila como agente alquilante bastante reativo, mas muito tóxico e o ânion metilsulfato pode hidrolisar-se facilmente. Os homólogos superiores como sulfato de dietil ou sulfato de metiloctil são mais utilizados e, na sequência, os ânions (CH₃OSO₃⁻, C₂H₅OSO₃⁻ ou C₈H₁₅OSO₃⁻) são trocados por outros, pode-se assim obter diversas combinações de substituintes no anel imidazólio e diferentes ânions de partida.

Além de métodos de síntese através de alquilação, é proposta uma outra metodologia que emprega cinco componentes (glioxal, formaldeído, duas aminas diferentes, ou dois equivalentes de uma mesma amina e um ácido) os quais são condensados a sais de 1,3-dialquil-imidazólio.

Algumas patentes também apresentam a síntese de LIs livres de haletos,⁴⁷ como no caso em que os sais de 1,3-dialquil-imidazólio são preparados por alquilação de 1-alquil-imidazóis com trifluoroacetato de etila ou com metano-sulfonato de n-butila, seguido de reação de metátese dos ânions com ácidos, como, por exemplo, HBF₄ e HPF₆.

Foi introduzido recentemente⁴⁸ o conceito de que líquidos iônicos derivados do cátion 1,3-dialquil-imidazólio são mais convenientemente descritos como estruturas poliméricas supramoleculares do tipo \[[\{(DAI)(X)\}_3^{\pm}\{DAI\}(X)_{3}^{\pm}\}_n\] onde DAI representa o cátion 1,3-dialquil-imidazólio e X o ânion. Nestas estruturas, cada cátion é circundado por três ânions e por outro lado cada ânion é circundado por três cátions (Figura 7).

Figura 7. Modelo de estruturas poliméricas supramoleculares que mostra as ligações de hidrogênio entre cátion 1,3-dialquil-imidazólio (C) e os ânions (A). Nestas estruturas, cada cátion é circundado por três ânions e por outro lado cada ânion é circundado por três cátions.
A organização espacial desses LIs se dá através de ligações de hidrogênio, as quais formam uma rede tridimensional de cátions e ânions que resultam na formação de “canais”, onde podem ser acomodados compostos “visitantes”, conforme podemos observar na Figura 8. Esse padrão estrutural é observado geralmente em sólidos e mantido em grande extensão no estado líquido e mesmo em fase gasosa.

Figura 8. Estrutura cristalina tridimensional de líquidos monocatiónico e dicatiónicos derivados do cátion 1,3-dialquil-imidazólio que mostra a estrutura de canais formada.

Estudos anteriores sugerem que a introdução de moléculas ou macromoléculas estranhas pode provocar perturbações nas interações supramoleculares entre os íons constituintes do líquido iônico e ainda gerar regiões nano-estruturadas em que espécies de inclusão podem ser formadas.

Através de estudos estruturais, pode-se observar a separação destas regiões polares e apolares dentro dos LIs derivados do cátion imidazólio. Estas são dependentes do tamanho da cadeia alquílica lateral do cátion e podem mudar a forma com que a solvatação ocorre dentro dos LIs. Esse fato pode ser usado para explicar e entender melhor as solubilidades de determinadas moléculas nos LIs. Pode-se ainda, através de simulação computacional de dinâmica molecular, desenvolver modelos de interações soluto-solvente ou solvente-solvente.
2. Objetivos e Estratégia

O objetivo deste trabalho foi o desenvolvimento de um processo de extração seletiva de HCs aromáticos, compostos sulfurados e compostos nitrogenados de uma mistura que simula frações de petróleo (HCs alifáticos, neste trabalho utilizado \(n \)-octano) e utiliza diferentes LIs.

A estratégia empregada foi a aplicação de um novo método simples e prático de preparação e determinação de pureza recentemente desenvolvido, a rota dos metano-sulfonatos de alquila, para a obtenção de novos LIs e investigar as propriedades destes na extração de HCs aromáticos, tais como benzeno e derivados alquilcíclicos, compostos heteroaromáticos sulfurados e compostos heteroaromáticos nitrogenados. Fatores estéreos e eletrônicos tanto relativos aos LIs quanto aos analítos serão levados em consideração.
3. Resultados e Discussões

3.1. Síntese dos Líquidos Iônicos

Neste trabalho, os líquidos iônicos foram sintetizados através da \(N \)-alquilação de substratos imidazólicos com ésteres de ácidos alcanosulfônicos. Esses ácidos são facilmente obtidos pelo simples tratamento de álcoois com cloretos de alcano-sulfonila na presença de uma base.

Os ânions alcano-sulfonatos podem ser facilmente substituídos por uma série de outros ânions, tais como \(\text{PF}_3(\text{CF}_2\text{CF}_3)_3^- \), \(\text{BF}_4^- \), \(\text{PF}_6^- \), \(\text{CF}_3\text{CO}_2^- \) e \(\text{N(Tf)}_2^- \) pela simples reação de metátese com sais alcalinos ou ácidos dos respectivos ânions a temperatura ambiente. (Figura 9)

\[
\text{R}^2\text{OH} + \text{R}^1\text{SO}_2\text{Cl} \xrightarrow{\text{NEt}_3 / \text{CH}_2\text{Cl}_2, 0 \degree \text{C}} \text{R}^1\text{SO}_3\text{R}^2
\]

Figura 9. Rota para obtenção dos LIs derivados do cátion 1,2,3-trialquil-imidazólio. TA = temperatura ambiente; \(R_1 \), \(R_2 \) e \(R_3 \) = grupamentos alquila; \(R_4 \) = Me ou H; M = metal do grupo I, como Li, Na e K, por exemplo, e \(X \) = ânions em geral, tais como \(\text{BF}_4^- \), \(\text{PF}_6^- \), \(\text{N(Tf)}_2^- \), \(\text{CF}_3\text{SO}_2^- \) e \(\text{PF}_3(\text{CF}_2\text{CF}_3)_3^- \) por exemplo.

Esse método de síntese permite a variação da cadeia lateral das posições 1 e 3 ligadas diretamente aos átomos de nitrogênio. Além de ésteres de ácidos alcano-sulfônico primário e secundário, também se pode proceder a \(N \)-alquilação com ésteres de ácidos alcano-sulfônicos funcionalizados, como observado na Tabela 4.

Além de LIs monocatiônicos, foram sintetizados também LIs dicatiônicos derivados do cátion imidazólio com diferentes substituintes alquila, entre eles 1,2-bis(3-metil-imidazólio-1-il)etano, 1,2-bis(3-n-butil-imidazólio-1-il)etano, 1,2-bis(3-n-dodecil-imidazólio-1-il)etano. Uma pequena variação nas condições reacionais de temperatura
Tabela 4. Os novos LIs com seus rendimentos e os pontos de fusão determinados por DSC, de acordo com a estrutura representada abaixo.

\[
\begin{array}{cccccc}
E & R^1 & R^2 & R^3 & R^4 & \text{Rend. (％)} & \text{Pf (°C)} \\
1 & \text{Me} & \text{Me} & "\text{Bu} & \text{H} & 96 & 77,1 \\
2 & "\text{sec Bu} & \text{Me} & "\text{Bu} & \text{H} & 80 & 76,1 \\
3 & "\text{Bu} & \text{Me} & "\text{Bu} & \text{H} & 83 & 63,0 \\
4 & \text{Me} & \text{Me} & \text{Me} & \text{H} & 85 & 93,2 \\
5 & \text{Me} & \text{Me} & "\text{Bu} & \text{Me} & 94 & 109,0 \\
6 & \text{Et} & \text{Me} & "\text{Bu} & \text{H} & 78 & 57,0 \\
7 & "\text{Bu} & \text{Me} & \text{Me} & \text{H} & 75 & 52,0 \\
8 & \text{Me} & "\text{Bu} & "\text{Bu} & \text{H} & 82 & -56,0 \\
9 & \text{Et} & "\text{Bu} & "\text{Bu} & \text{H} & 76 & -68,0 \\
10 & \text{Et} & (\text{CH}_2)_2\text{OMe} & \text{Me} & \text{H} & 91 & -86,1^a \\
\end{array}
\]

\(^a\text{Temperatura de transição vitrea.}\)

(60 °C) foi efetuada na segunda etapa para diminuir o tempo reacional e a formação de subprodutos.

![Equação 1]

\[
\text{HO-}OH + 2\text{R}^2\text{SO}_2\text{Cl} \xrightarrow{\text{NEt}_3 / \text{CH}_2\text{Cl}_2} \text{R}^2\text{SO}_3\text{O}_3\text{SR}^2
\]

\[
\text{R}^1\text{N} = \text{N} + \text{R}^2\text{SO}_3\text{O}_3\text{SR}^2 \xrightarrow{60\text{°C}} \text{R}^1\text{N} = \text{N} - \text{R}^1 + 2\text{R}^2\text{SO}_3^-
\]

Figura 10. Rota para obtenção de LIs dicatiônicos derivados do cátion 1,3-dialquil-imidazólio. \(R_1\) e \(R_2\) = grupamentos alquila.

Grande parte dos LIs sintetizados hoje na literatura utiliza haletos de alquila como agentes alquilantes e a posterior troca desses íons por metátese. Apesar de esse processo ser simples e eficiente, ele apresenta algumas desvantagens, como a determinação da pureza final desses materiais, ou seja, a determinação do conteúdo de haletos presente nesses LIs.
A identificação e quantificação de haletos residuais nos LIs, juntamente com o conteúdo de água, são essenciais em muitas aplicações, uma vez que as propriedades físico-químicas dos LIs podem mudar significativamente e depende da quantidade desses contaminantes presentes59 ou mesmo esses contaminantes podem reagir e formar subprodutos diminuindo o rendimento da reação.60,61

A quantificação destas impurezas, no caso de cloreto pode ser realizada pelo teste de AgNO\textsubscript{3} (limite de 1,4 mg/L), cromatografia de íons (abaixo de 8 ppm)62 ou por voltametria cíclica (ppb).63,64 Entretanto, esses métodos apresentam limitações, tais como o nível de detecção e/ou a dificuldade de realização. O teor de água pode ser determinado por titulação de Karl-Fischer ou por voltametria cíclica.59

Neste trabalho, a pureza dos LIs foi determinada por Espectrometria de Ressonância Magnética Nuclear de Hidrogênio (1H RMN) e usa como padrão interno a intensidade dos satélites do 13C do grupamento N-metil do anel imidazólio. A abundância natural dos satélites do 13C é de 1,11 \%, no entanto, a intensidade de cada pico do satélite corresponde a 0,56 \% no caso do singlete do N-metil. Esse método65 foi então utilizado por ser mais simples e fácil que outros empregados e já descritos e pode ser usado em qualquer laboratório que possua um aparelho de Espectrometria de RMN.

Por exemplo, nos líquidos derivados do cátion 1-\textit{n}-butil-3-metil-imidazólio obtidos através da reação de metátese dos metano-sulfonatos com sais de hexafluorofosfato de sódio e tetrafluoroborato de sódio, a pureza do BMI.PF\textsubscript{6} foi determinada como superior a 99,4 \% uma vez que nenhum sinal relativo ao ânion CH\textsubscript{3}SO\textsubscript{3}− do LI precursor BMI.CH\textsubscript{3}SO\textsubscript{3} foi observado. É visualizado apenas o pico da água residual em 2,97 ppm no espectro de 1H RMN (Figura 11).

Por outro lado, no espectro de 1H RMN do LI BMI.BF\textsubscript{4} (Figura 12) foi detectado o pico do ânion CH\textsubscript{3}SO\textsubscript{3}− em 2,58 ppm devido ao sal de origem (BMI.CH\textsubscript{3}SO\textsubscript{3}). A intensidade desse pico foi de 23,4 comparada à intensidade do pico do satélite do 13C do grupamento N-metil que foi de 9,25 assim a pureza desse sal foi estimada como maior que 98,5 \%.

O método de síntese aqui descrito permite a preparação de uma variedade de LIs derivados do 1,3-dialquil-imidazólio e 1,2,3-trialquil-imidazólio, livres de haleto, associados com vários ânions PF\textsubscript{6}−, BF\textsubscript{4}−, PF\textsubscript{3}(CF\textsubscript{2}CF\textsubscript{3})\textsubscript{3}−, CF\textsubscript{3}SO\textsubscript{3}− e N(CF\textsubscript{3}SO\textsubscript{2})\textsubscript{2}− e utiliza-se da técnica de Espectrometria de RMN não só para caracterização desses materiais, mas também para determinação da pureza dos mesmos.
Figura 11. Espectros de 1H RMN (500 MHz, 25 ºC) de BMLBF₄ em CD₂Cl₂ (acima) e expansão entre 2,4 e 4,5 ppm (abaixo) que mostra os sinais dos satélites do 13C do grupamento N-metil, do CH₃SO₃⁻ e resíduos de água. (Intensidade relativa: satélite 13C = 9,25, CH₃SO₃⁻ = 23,4 e água = 1,53).
Figura 12. Espectros de 1H RMN (500 MHz, 25 ºC) de BMI.PF$_6$ em CD$_2$Cl$_2$ (acima) e expansão entre 2,3 e 4,5 ppm (abaixo) que mostra os sinais dos satélites do 13C do grupamento N-metil e resíduos de água. (Intensidade relativa: satélite 13C = 5,73 e água = 1,54).
3.2. Testes de Extração

A habilidade de um soluto formar ligações de hidrogênio ou outra possível interação com solventes é uma importante característica em seu comportamento para a aplicação em processos de extração seletiva.

Sabe-se que HCs aromáticos apresentam uma maior solubilidade em LIs, esses dados foram usados para a separação de HCs aromáticos de uma mistura de HCs aromáticos e alifáticos. A capacidade de absorção do líquido iônico para esses compostos é sensível à estrutura do cátion e ânion.

Foi realizada a medida do tempo de contato sob agitação necessário para que para alcançar o equilíbrio de absorção. O combustível modelo, 10 % de benzeno em n-octano na relação molar de benzeno/LI de 1:1(mol:mol), foi tratado com dois diferentes líquidos iônicos, alíquotas foram retiradas de 5, 10, 15, 20, 30 e 60 minutos, e foi verificada que o tempo de 20 minutos de agitação foi suficiente para atingir o equilíbrio, na temperatura de 25 ºC.

Os sistemas preliminarmente investigados foram combinações de líquidos iônicos derivados do cátion 1-n-butil-3-metil-imidazólio com a variação dos ânions: \(\text{CF}_3\text{SO}_3^- \), \(\text{BF}_4^- \), \(\text{PF}_6^- \), \(\text{N(Tf)}_2^- \), e \(\text{PF}_3(\text{CF}_2\text{CF}_3)_3^- \) para a mistura de benzeno/n-octano na fração mássica de 10 % em massa de benzeno em n-octano e relação molar de 1:1 de LI:benzeno. A Figura 14 mostra os resultados.

Observou-se uma tendência crescente de extração do benzeno na série de líquidos iônicos dependente da natureza dos ânions \(\text{BF}_4^- < \text{CF}_3\text{SO}_3^- < \text{PF}_6^- < \text{N(Tf)}_2^- < \text{PF}_3(\text{CF}_2\text{CF}_3)_3^- \). No caso dos ânions fluorados, \(\text{BF}_4^- \), \(\text{PF}_6^- \), \(\text{N(Tf)}_2^- \) e \(\text{PF}_3(\text{CF}_2\text{CF}_3)_3^- \), esta tendência pode estar relacionada, com os volumes de van der Waals desses ânions, os quais aumentam na sequência 39 Å³, 52 Å³, 342 Å³ e 484 Å³ para \(\text{BF}_4^- \), \(\text{PF}_6^- \), \(\text{N(Tf)}_2^- \) e \(\text{PF}_3(\text{CF}_2\text{CF}_3)_3^- \), respectivamente, isto pode resultar no aumento do volume dos canais formados pela estrutura dos LIs e responsáveis pela recepção dos analitos.

Os sistemas preliminarmente investigados foram combinações de líquidos iônicos derivados do cátion 1-n-butil-3-metil-imidazólio com a variação dos ânions: \(\text{CF}_3\text{SO}_3^- \), \(\text{BF}_4^- \), \(\text{PF}_6^- \), \(\text{N(Tf)}_2^- \) e \(\text{PF}_3(\text{CF}_2\text{CF}_3)_3^- \) para a mistura de benzeno/n-octano na fração mássica de 10 % em massa de benzeno em n-octano e relação molar de 1:1 de LI:benzeno. A Figura 14 mostra os resultados.
Observou-se uma tendência crescente de extração do benzeno na série de líquidos iônicos dependente da natureza dos ânions $\text{BF}_4^-, \text{CF}_3\text{SO}_3^-, \text{PF}_6^-, \text{N}(\text{Tf})_2^-$ e $\text{PF}_3(\text{CF}_2\text{CF}_3)_2^-$. No caso dos ânions fluorados, BF_4^-, PF_6^-, $\text{N}(\text{Tf})_2^-$ e $\text{PF}_3(\text{CF}_2\text{CF}_3)_3^-$, esta tendência pode estar relacionada com os volumes de van der Waals desses ânions, os quais aumentam na sequência $39 \, \text{Å}^3$, $52 \, \text{Å}^3$, $342 \, \text{Å}^3$ e $484 \, \text{Å}^3$ para BF_4^-, PF_6^-, $\text{N}(\text{Tf})_2^-$ e $\text{PF}_3(\text{CF}_2\text{CF}_3)_3^-$, respectivamente, isto pode resultar no aumento do volume dos canais formados pela estrutura dos LIs e responsáveis pela recepção dos analitos.

No entanto, a quantidade de benzeno extraída também pode estar relacionada com a força da ligação de hidrogênio do anel imidazólio (respetivo cátion) com os ânions, que segue a seguinte ordem $\text{BF}_4^->\text{CF}_3\text{SO}_3^->\text{PF}_6^->\text{N}(\text{Tf})_2^->\text{PF}_3(\text{CF}_2\text{CF}_3)_3^-$, como determinado por experimentos competitivos de ESI-MS.51,68,69

A partir desse resultado pode-se supor que a formação de compostos tipo inclusão do benzeno com o LI pode estar relacionada com a disponibilidade dos hidrogênios do grupamento imidazólio interagir com o benzeno via ligação de hidrogênio do tipo $\text{CH}--\pi$. Esse resultado evidenciado pelo estudo de Espectrometria de ^1H RMN que será apresentado no item 5.5 deste trabalho, ou seja, a facilidade que o benzeno tem de perturbar o cluster formado entre o cátion e o ânion.
O líquido iônico BMI.FAP, apesar de mostrar a melhor capacidade extrativa de benzeno em n-octano em relação aos demais LIs estudados, tem custo excessivamente elevado, o que nos levou a abandonar as investigações subseqüentes com esse líquido iônico.

Selecionado o líquido iônico BMI.N(Tf)$_2$ para os demais estudos de extração, foi realizado um pré-estudo e levado em consideração a variação das relações molares de benzeno/BMI.N(Tf)$_2$, mantém-se sempre a fração mássica de 10 % de benzeno em n-octano (fase rafinado) porém com diferentes quantidades de LI (fase extrato), e a variação das proporções molares de 1:1, 1:3, 1:6, 1:15, 1:25 e 1:50 de benzeno/BMI.N(Tf)$_2$, conforme pode-se observar na Figura 15.

Apresentamos na Figura 16, os resultados de uma série de experimentos de extração seletiva de benzeno mono e di-substituídos dissolvidos em n-octano pelo líquido iônico BMILN(Tf)$_2$. Notou-se que o aumento do tamanho da cadeia lateral alquila, bem como o número de cadeias, reduz a capacidade de absorção pelos LIs, possivelmente devido ao crescente fator estérico. Foram calculados os valores teóricos de raio e volume de van der Waals para esses HCs aromáticos, em que constata-se uma concordância entre os valores teóricos de volumes com os valores experimentais para a
Figura 15. Relação no equilíbrio da massa de benzeno/massa de BMI\(N(Tf)\) (fase extrato) versus massa de benzeno/massa de combustível (desconsidera-se a quantidade de \(n\)-octano extraída) (fase rafinado).

Capacidade de extração destes compostos como benzeno 95,15 Å\(^3\), tolueno 169,91 Å\(^3\) etil-benzeno 338,68 Å\(^3\), \(iso\)-butil-benzeno 457,18 Å\(^3\) e propil-benzeno 527,67 Å\(^3\). Ocorre uma inversão para os dois últimos derivados de benzeno \(iso\)-butil-benzeno e propil-benzeno.

Figura 16. Capacidade de extração de compostos aromáticos derivados do benzeno do combustível modelo_10 % de aromático em \(n\)-octano na relação molar de benzeno/LI de 1:1(mol:mol) com o LI BMI\(N(Tf)\). Em que: (b) benzeno, (t) tolueno, (e) etilbenzeno, (pp) \(n\)-propilbenzeno, (i) \(iso\)-butilbenzeno, (o) \(o\)-xileno, (m) \(m\)-xileno e (p) \(p\)-xileno. Tempo de contato sob agitação de cada experimento 20 minutos.
O petróleo apresenta uma composição complexa, em que podemos encontrar além de compostos que contém apenas átomos de carbono e hidrogênio, compostos que contêm também átomos de enxofre nas diferentes frações em que esse se apresenta (gasolina, óleo diesel, etc). Esses compostos são altamente indesejáveis, pois resultam em corrosão de equipamentos em geral e poluição ambiental. Em geral diferentes compostos organo-sulfurados estão presentes, tais como tióis, tioésteres e ainda compostos aromáticos sulfurados tais como tiofeno, benzotiofeno, dibenzotiofeno seus derivados alquilados entre outros.

Neste trabalho foram selecionados alguns desses compostos aromáticos sulfurados para o estudo da capacidade de extração pelo LI, e leva-se em consideração que espécies heteroaromáticas sulfuradas tais como tiofeno, benzotiofeno, dibenzotiofeno e seus derivados alquilados são mais dificilmente removidos pelo método industrial de hidrodessulfurização (HDS).

A Figura 17 mostra as propriedades de extração do líquido iônico BMI.N(Tf)$_2$, para diferentes compostos modelo de enxofre, como 2,5-dimetiltiofeno, tiofeno, BT e DBT. A absorção preferencial de DBT, BT e tiofeno é um provável resultado da interação do anel aromático com o cátion do líquido iônico, a absorção é favorecida por moléculas com uma alta densidade de elétrons-π do anel aromático. A capacidade de extração é influenciada pelo grau de alquilação dos compostos aromáticos sulfurados como já reportados na literatura3 para compostos derivados do DBT.

No caso particular apresentado neste trabalho, a quantidade do composto sulfurado extraída decresce com o grau de alquilação, ou seja, a presença de grupamentos metil no composto 2,5-dimetiltiofeno reduz essa capacidade de absorção quando comparada aos valores para tiofeno. Isso pode ser devido ao fator estéreo das metilas o qual pode dificultar a interação destas moléculas com os sítios de interação dentro do LI e diminuir a percentagem de extração.

Além de compostos sulfurados, no petróleo também são encontrados uma variedade de compostos nitrogenados, entre eles aminas alifáticas, nitrilas, piridina, quinolina, acridina e inúmeros outros. Esses compostos nitrogenados presentes no combustível, além de serem prejudiciais ao meio ambiente e causarem danos materiais, podem afetar outros processos de remoção de contaminantes do petróleo, como os sulfurados, mesmo que em baixas concentrações, uma vez que envenenam os catalisadores empregados nesses processos. É importante reduzir a quantidade de
compostos nitrogenados básicos, uma vez que a presença desses compostos presentes no comustível inibe a reação de dessulfurização no processo de HDS.

Foram selecionados alguns compostos aromáticos orgânicos que contêm átomos de nitrogênio disponíveis para determinar a aplicabilidade de líquidos iônicos para a remoção desses de frações do petróleo.

Figura 17. Percentual de extração para os diferentes compostos de enxofre do combustível modelo (1 % de sulfurados em n-octano na relação molar de sulfurado/LI de 0,1:1(mol:mol)) e utiliza-se o LI BMI.N(Tf)_2. Em que (dm) 2,5-dimetiltiofeno, (t) tiofeno, (BT) benzotiofeno e (DBT) dibenzotiofeno. Tempo de contato sob agitação de cada experimento 20 minutos.

Uma vez que compostos como aminas alifáticas e nitrilas são desnitrogenadas muito mais rapidamente que heterocíclicos nos processos de hidrodesnitrogenação, foram escolhidos compostos modelos heteroaromáticos nitrogenados básicos, tal como a piridina, quinolina, 8-metilquinolina, e 7,8-benzoquinolina para a realização deste estudo. A piridina apresenta miscibilidade total na temperatura de 25 °C quando BMI.N(Tf)_2 é empregado, isto demonstra a favorável absorção de compostos aromáticos de nitrogênio pelo líquido iônico e podemos considerar que compostos aromáticos de nitrogênios são altamente solúveis no líquido iônico.

Segundo dados da literatura, é sabido que LIs são particularmente mais seletivos para compostos aromáticos nitrogenados em comparação a compostos alifáticos nitrogenados; um exemplo é a comparação entre alquilamina e uma amina aromática em que em um sistema constituído de n-dodecano como “combustível
modelo”, o conteúdo removido de piridina é cinco vezes maior que o conteúdo de piperidina, baseado em 2 g do composto nitrogenado em 1 g de LI.

Nos resultados apresentados na Figura 18 fica claro as propriedades extrativas do líquido iônico BMI.N(Tf)$_2$, para diferentes compostos modelo de nitrogênio, como piridina, quinolina, 8-metilquinolina e 7,8-benzoquinolina.

A absorção desses compostos nitrogenados pode estar relacionada à interação do átomo de nitrogênio destas moléculas com os hidrogênios do anel imidazólico, a absorção é favorecida com o aumento da basicidade destas moléculas, como piridina, quinolina e 8-metilquinolina, porém no caso da 7,8-benzoquinolina o fator estéreo deve ser levado em consideração, uma vez que o anel ligado nas posições 7 e 8 “encobrem” o átomo de nitrogênio e pode dificultar a aproximação aos sitos de interação com o LI. A interação do LI com os compostos nitrogenados empregados é através da ligação de hidrogênio entre CH(imidazólico)—N(heterociclo nitrogenado), como será evidenciado pelos estudos de Espectrometria de 1H RMN que serão apresentados no item 5.5 deste trabalho.

![Figura 18. Percentual de extração para os diferentes compostos nitrogenados do combustível modelo (1 % de nitrogenados em n-octano na relação molar de nitrogenado/LI de 0,1:1(mol:mol)) e utiliza-se o LI BMI.N(Tf)$_2$. Em que (b) 7,8-benzoquinolina, (Py) piridina, (m) 8-metilquinolina e (q) quinolina. Tempo de contato sob agitação de cada experimento 20 minutos.](image)

Os dados da Tabela 5 indicam que a natura da diâmetro afeta a capacidade de extração de compostos orgânicos pelos líquidos iônicos. Aqui são apresentados os dados comparativos para dois LIs derivados do mesmo cátion (BMI) com variação dos ânions
PF$_6^-$ e N(Tf)$_2^-$). Quando comparamos a percentagem extraída pelos dois LIs, tanto para benzeno quanto para DBT, os valores são maiores no geral para o LI derivado do ânion N(Tf)$_2^-$. O líquido iônico BMILPF$_6$ apresenta valores opostos em percentagem de extração de benzeno e DBT quando comparado com BMIL.N(Tf)$_2$.

Tabela 5. Percentual de extração comparativa de benzeno ou DBT (1% em massa de DBT em n-octano ou 10% em massa de benzeno em n-octano) em LIs com variação do ânion para o cátion BMI.a

<table>
<thead>
<tr>
<th>LI</th>
<th>Composto</th>
<th>Extração (massa %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMILPF$_6$</td>
<td>DBT</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Benzeno</td>
<td>17</td>
</tr>
<tr>
<td>BMIL.N(Tf)$_2$</td>
<td>DBT</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Benzeno</td>
<td>22</td>
</tr>
</tbody>
</table>

aBMI = cátion 1-n-butil-3-metil-imidazólio, bDBT = dibenzotiofeno

Quando falamos em petróleo estamos nos referindo a uma mistura muito mais complexa do que imaginamos. Porém esse pode ser dividido em diferentes frações, como gasolina, óleo diesel, querosene, enfim, em que estão presentes hidrocarbonetos alifáticos, olefinicos, saturados, aromáticos (benzeno, tolueno, naftaleno) em diferentes proporções e ainda substâncias cuja fórmula química contém átomos de enxofre, nitrogênio, oxigênio, metais, etc, em alguns casos em baixas concentrações.

Os LIs têm a capacidade de capturar estes compostos quando analisados separadamente, sejam eles HCs aromáticos, compostos sulfurados ou nitrogenados, de frações de hidrocarbonetos alifáticos mais pesados nos quais os LIs são pouco solúveis. Estudos anteriores mostram que a seletividade de LIs para esses compostos separadamente é efetiva, porém agora levaremos em consideração o efeito que cada um possa ter sobre os demais, na mistura benzeno, piridina e DBT.

Por esse motivo foram realizados os experimentos como mostrado na Figura 19 que leva em consideração as propriedades de extração do LI selecionado BMIL.N(Tf)$_2$ perante o HC aromático modelo como benzeno, composto modelo nitrogenado como piridina, e composto modelo sulfurado, como dibenzotiofeno (DBT). Este estudo foi realizado e considerado também a variação dos fatores eletrônicos.

As diferenças observadas na capacidade de captura desses compostos podem ser devidas à maior densidade eletrônica e polarizabilidade das moléculas que contêm
átomos maiores como enxofre e nitrogênio, diferentemente das moléculas que contêm apenas átomos de carbono e hidrogênio, em que fica claro que a absorção de piridina é favorecida. Pode-se observar ainda que os valores obtidos para benzeno, DBT e piridina em sistemas isolados foram mantidos quando os três encontram-se no mesmo sistema.

Assim como nos sistemas isolados, quando considerado o sistema competitivo, a tendência de percentagem de extração se mantém, e não foi detectada uma absorção competitiva entre os HCs aromáticos, compostos sulfurados e nitrogenados, concluindo se assim que uma extração não afeta a outra e que provavelmente porque os sítios de interação de HCs aromáticos, compostos sulfurados e nitrogenados com o LI são de natureza diferente.

Não foi detectada uma absorção competitiva entre HCs aromáticos (benzeno), compostos sulfurado (DBT) e nitrogenado (piridina) e ainda a absorção preferencial de piridina está de acordo com os dados de miscibilidade, uma vez que piridina é totalmente miscível com LI a 25 ºC; neste estudo procurou-se mostrar que na extração competitiva na simulação de um combustível real, a extração de um composto não afeta a outra, e evidencia que a saturação para DBT no LI não foi alcançada devido a baixa concentração desse no combustível modelo.

Figura 19. Capacidade de extração de benzeno, compostos sulfurados e nitrogenados no combustível modelo (frações mássicas de 10 %, 1 % e 1 % em massa, respectivamente em n-octano) com o LI BMI.N(Tf)₂. Em que: (b) benzeno, (DBT) DBT e (py) piridina. Tempo de contato sob agitação de cada experimento 20 minutos. % de aromático em n-octano na relação molar de benzeno/LI de 1:1(mol:mol) com o LI.
Através de uma mistura bifásica é possível determinar a solubilidade de benzeno em diferentes líquidos iônicos.

Na Tabela 6 pode-se observar os valores de solubilidade para o benzeno em diferentes líquidos iônicos derivados do cátion imidazólio combinado com o ânion N(Tf₂). A variação dos grupamentos alquila ligados diretamente aos átomos de nitrogênio, proporcionam diferentes valores de solubilidade. Conforme se aumenta o tamanho do substituinte alquila ocorre um aumento nos valores de solubilidade do benzeno.

Tabela 6. Dados experimentais de solubilidade, a 25 ºC, do benzeno em massa nos diferentes líquidos iônicos.

<table>
<thead>
<tr>
<th>LI</th>
<th>Fração de benzeno no extrato (massa %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI.N(Tf)₂</td>
<td>46</td>
</tr>
<tr>
<td>BBI.N(Tf)₂</td>
<td>54</td>
</tr>
<tr>
<td>DMI.N(Tf)₂</td>
<td>75</td>
</tr>
</tbody>
</table>

Quando consideramos que HCs aromáticos são mais solúveis (miscíveis) em LIs que HCs alifáticos, devemos considerar que esta capacidade varia conforme o LI em questão, seja com a variação do cátion e/ou ânion, assim como foram observados diferentes valores de solubilidade do benzeno em LI com a variação dos mesmos.

Devido ao elevado valor e grande variação dos valores de solubilidade, foi observado também que o n-octano tem diferentes valores de miscibilidade, porém bem menores que HCs aromáticos quando variamos a cadeia lateral do cátion imidazólio dos LIs que contém diferentes tamanhos de grupamentos alquila em uma das posições laterais ligadas diretamente ao átomo de nitrogênio e a metila é mantida na outra posição.

Na Figura 20 são apresentados os resultados dos testes de extração, em que foi possível observar que um aumento no número de carbonos da cadeia lateral (C₂-C₁₂) contribuiu para o aumento da eficiência de extração de HCs aromáticos; porém, esse aumento da cadeia lateral também remove mais n-octano, diminuindo assim a seletividade do processo. Esse resultado sugere que o tamanho dos substituintes do cátion imidazólio ligada diretamente ao átomo de nitrogênio afeta a capacidade de absorção, e evidencia que a extração é dependente de fatores estéreos dentro do LI,
como já evidenciado em outros trabalhos. Uma vez que o aumento do substituinte alquila pode aumentar o tamanho dos canais formados na estrutura supramolecular dos LIs e aumenta a possibilidade de maior absorção de analito.

Além do cátion imidazólio, foram realizados testes para o cátion piridínio com variação da cadeia alquílica. Quando comparamos os diferentes cátions, piridínicos e imidazólicos, pode-se sugerir que, para LIs derivados do cátion imidazólio, o tamanho da cadeia lateral do respectivo LI afeta a capacidade de extração dos mesmos, enquanto que, nos LIs derivados do cátion piridínio, esse efeito não foi observado (Figura 21).

A Tabela 7 mostra experimentos adicionais de tentativas de extração seletiva de benzeno de misturas de benzeno/\textit{n}-octano. Efetuou-se a concomitante variação da natureza do cátion imidazólio e do ânion, em função da disponibilidade de tais LIs.

Na Entrada 2 da Tabela 7, verificou-se que o aumento da segunda cadeia ligada ao cátion imidazólio de metila para \textit{n}-butila, e resultou um LI simétrico, não acarreta uma grande variação na capacidade de extração quando comparado ao melhor LI até o momento, o BMI.N(Tf)\textsubscript{2} na Entrada 1.
Na Entrada 4 da Tabela 7 um líquido derivado do BMI com ânions dimetilfosfato, já citado na literatura70 e com propriedades de extrair DBT, foi testado para a extração de benzeno; porém, esse não apresentou propriedades extrativas dentro das condições empregadas neste trabalho. Neste mesmo artigo é interessante que ressaltar que a gasolina foi analisada após extração por cromatografia líquida UV-Visível e nenhum pico derivado do LI foi encontrado.

Além da estrutura/tamanho do cátion, a variação no tamanho/estrutura do ânion também provocou alteração na capacidade de extração de moléculas de benzeno do \textit{n}-octano. O ânion \textit{N}(\textit{Tf})\textsc{$_2$}−, associado a diversos cátions, demonstrou o melhor desempenho para extração até o momento. A Entrada 5 da Tabela 7 mostra uma tentativa de extração com um sal derivado do ânion maior \textit{CF}_3(\textit{CF}_2)_6\textsc{CO}_2−, com cadeia perfluorada, mas esse não apresentou propriedade extrativa.

Os LIs da Entrada 6, 7 e 8 da Tabela 7 foram testados um vez que LIs que apresentam um sistema aromático adicional disponível para a interação \textpi-\textpi poderiam favorecer a extração do benzeno.

Os LIs derivados do cátion 1-metil-3-fenilpropil-imidazólio (AMI), nas Entrada 6 e 7, foram testados em associação com dois diferentes ânions: \textit{CH}_3\textsc{SO}_3− e \textit{N}(\textit{Tf})\textsc{$_2$}−. No entanto, sais de imidazólio em que a cadeia lateral do cátion imidazólio contém um anel...
Tabela 7. Percentual de extração de benzeno do combustível modelo (10% em massa de benzeno em n-octano na relação molar de benzeno/LI de 1:1(mol:mol) com diferentes LIs a 25 ºC. Tempo de contato sob agitação de cada experimento 20 minutos).

<table>
<thead>
<tr>
<th>E.</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>X</th>
<th>Estado físico 25 ºC</th>
<th>Benzeno (massa %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"Bu</td>
<td>H</td>
<td>Me</td>
<td>N(Tf)₂⁻</td>
<td>Líquido</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>"Bu</td>
<td>H</td>
<td>"Bu</td>
<td>N(Tf)₂⁻</td>
<td>Líquido</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>"Bu</td>
<td>Me</td>
<td>Me</td>
<td>PF₆⁻</td>
<td>Líquido</td>
<td>Incha</td>
</tr>
<tr>
<td>4</td>
<td>"Bu</td>
<td>H</td>
<td>Me</td>
<td>PO₂(OMe)₂⁻</td>
<td>Líquido</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>"Bu</td>
<td>H</td>
<td>Me</td>
<td>CF₃(CF₂)₆CO₂⁻</td>
<td>Líquido</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1-Me-3-fenilpropil</td>
<td>H</td>
<td>Me</td>
<td>CH₃SO₃⁻</td>
<td>Líquido</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>1-Me-3-fenilpropil</td>
<td>H</td>
<td>Me</td>
<td>N(Tf)₂⁻</td>
<td>Sólido</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>1-Me-3-(2-naftil)</td>
<td>H</td>
<td>Me</td>
<td>PF₆⁻</td>
<td>Sólido</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E.</th>
<th>R⁴</th>
<th>R⁵</th>
<th>X</th>
<th>Estado físico a 25 ºC</th>
<th>Benzeno (massa %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Me</td>
<td>Me</td>
<td>2 CH₃SO₃⁻</td>
<td>Sólido</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Me</td>
<td>Me</td>
<td>2 N(Tf)₂⁻</td>
<td>Sólido</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>"Bu</td>
<td>"Bu</td>
<td>2 CH₃SO₃⁻</td>
<td>Sólido</td>
<td>Incha</td>
</tr>
<tr>
<td>12</td>
<td>"Bu</td>
<td>"Bu</td>
<td>2 N(Tf)₂⁻</td>
<td>Sólido</td>
<td>Incha</td>
</tr>
<tr>
<td>13</td>
<td>"Dd</td>
<td>"Dd</td>
<td>2 CH₃SO₃⁻</td>
<td>Sólido</td>
<td>Incha</td>
</tr>
<tr>
<td>14</td>
<td>"Dd</td>
<td>"Dd</td>
<td>2 N(Tf)₂⁻</td>
<td>Sólido</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E.</th>
<th>R⁶</th>
<th>X</th>
<th>Estado físico a 25 ºC</th>
<th>Benzeno (massa %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Et</td>
<td>Br⁻</td>
<td>Sólido</td>
<td>0</td>
</tr>
</tbody>
</table>
Da mesma forma, o líquido iônico CMI.PF$_6$ [com CMI = 1-metil-3-(2-naftiletil)-imidazólio] foi utilizado e levado em consideração a alta densidade eletrônica devida ao substituinte 2-naftiletil. Novamente, esse substituinte presente na cadeia lateral do cátion não acrescentou ao LI em questão característica de extrator quando combinado com o ânion PF$_6^-$ (Entrada 8 da Tabela 7).

Nas Entradas 9-14 da Tabela 7 foram testados os sais dicatiônicos, todos sólidos à temperatura de 25 ºC. Notou-se um comportamento diferenciado de alguns desses sais: os sais das Entradas 11-13 “incham” e capturam tanto n-octano quanto benzeno, sem seletividade. Resultado semelhante foi observado com o sal da Entrada 3, mono catiônico derivado do cátion 1-n-butil-3metil-imidazólio associado ao ânion PF$_6^-$.

3.3. Equilíbrio Ternário para Mistura de BMI.N(Tf)$_2$, n-Octano e Benzeno

O diagrama ternário é uma ferramenta importante para o desenvolvimento do processo de separação e extração, quando consideramos a separação de HCs aromáticos de HCs alifáticos. Através das curvas de solubilidade e determinação das linhas de tendência é possível determinar a solubilidade das fases.71

O diagrama da Figura 22 foi construído com a ajuda de um método gravimétrico, em que o conteúdo de aromático no rafinado (fase orgânica) foi determinado por CG e o conteúdo de aromático no extrato (fase iônica) foi calculado via balanço de massa, pela pesagem da mesma.

A miscibilidade na temperatura de 25 ºC de benzeno em BMI.N(Tf)$_2$ é de 46,0 % em massa e a miscibilidade de n-octano em BMI.N(Tf)$_2$ é de 3,3 % em massa, pode-se observar que a miscibilidade de HCs aromáticos em LIs comparados a HCs alifáticos é bem mais alta.

Experimentos preliminares revelaram que em sistemas bifásicos, o líquido iônico é retido na fase mais pesada, enquanto que o benzeno e o n-octano se distribuem nas duas fases. Ou seja, em um sistema bifásico do sistema benzeno/ n-octano /BMI.N(Tf)$_2$, a fase orgânica é isenta do líquido iônico.
Figura 22. Diagrama de fases BMI\{Tf\}2/benzeno/\(n\)-octano a 25 °C no triângulo da direita. O gráfico principal é mostrado à direita e evidencia a linha de composição do extrato a qual divide o gráfico em duas regiões de uma (abaixo da linha) e duas fases (acima da linha). A linha de composição do rafinado está localizada sobre a diagonal do triângulo, uma vez que a quantidade de líquido iônico pode ser negligenciada. O gráfico da esquerda relaciona as composições de benzeno no extrato e no rafinado.

Para diferentes razões massa/massa de combustível modelo/LI, em que, combustível modelo entende-se (benzeno+\(n\)-octano), valores máximos de extração podem ser alcançados se o número de extrações for suficientemente alto.

3.4. Reutilização dos Líquidos Iônicos

Os LIs derivados do cátion 1,3-dialquil-imidazólio são estáveis ao ar e umidade e não são corrosivos. Portanto, esses LIs podem ser usados em múltiplos ciclos para a remoção de HCs aromáticos e compostos sulfurados e/ou nitrogenados de combustíveis e após uso podem ser regenerados.

Todos os LIs utilizados para as extrações foram recuperados através de agitação e aquecimento a 60 ºC sob pressão reduzida e filtrados com selite e sílica para remoção da cor. A pureza dos mesmos foi determinada por Espectrometria de \(^1\)H RMN e constatou-se ausência de alteração da estrutura e de impurezas.

Após, os LIs foram reutilizados sem perda de capacidade de extração. Este procedimento de regeneração (aquecimento a 60 ºC sob pressão reduzida e fitragem) foi utilizado com sucesso para a remoção de compostos sulfurados, nitrogenados e HCs aromáticos dos LIs.
3.5. Acompanhamento do Deslocamento Químico de Misturas de Líquidos Iônicos com Benzeno, Piridina ou DBT.

A técnica de Ressonância Magnética Nuclear é uma ferramenta importante para estudos de interação quando o composto encontra-se em solução. Entre os vários núcleos estudados podemos destacar hidrogênio \(^1H\), carbono-13 \(^{13}C\), nitrogênio-15 \(^{15}N\), fósforo-31 \(^{31}P\) e flúor-19 \(^{19}F\), entre outros.

Inúmeros estudos têm sido feitos com líquidos iônicos através da técnica de Espectrometria de RMN, que evidenciam as possíveis interações existentes nestes sistemas. As ligações de hidrogênio do tipo CH—X\(^{50,72,73}\) e CH—π\(^{74}\) são alguns dos exemplos de interações intermoleculares existentes nestes sistemas quando em solução.

O deslocamento químico dos hidrogênios do anel imidazólio do líquido iônico pode sofrer uma pequena variação pela influência de inúmeros efeitos, como o tipo de ânion constituente do LI\(^{75}\), o qual leva em consideração o tamanho do ânion e a força de interação com os hidrogênios do câtion imidazólio, o tamanho da cadeia alquólica lateral ligada ao átomo de nitrogênio\(^{76}\) e o solvente no qual o LI foi diluído\(^{77,78}\). Na Tabela 8 podemos observar a influência dos deslocamentos químicos com a natureza do solvente.

Em geral para os hidrogênios do anel imidazólio, o efeito sofrido pelo H2 é na maioria das vezes mais intenso que quando comparado aos H4 e H5, os quais apresentam valores de deslocamento químico geralmente muito próximos entre si.

A concentração do soluto irá influenciar a concentração da solução, quando consideramos uma solução muito diluída, baixa concentração, podemos considerar o composto como completamente dissociado em câtons e ânions\(^{48}\) (Equação 1).

\[
(\text{RR'I}^+\cdots\text{A}^-)_\text{solv} \rightleftharpoons (\text{RR'I})^+_\text{solv} + (\text{A}^-)_\text{solv} \quad (1)
\]

O efeito da concentração pode estar relacionado a dois fatores, os quais afetam o deslocamento químico: a ligação de hidrogênio do tipo CH—X que conduz a uma variação de deslocamento maior (campo magnético baixo, mais desblindado), isto é efeito do campo elétrico e a anisotropia magnética causada pelo par de elétrons do átomo aceptor de hidrogênio. A interação do tipo CH—π conduz a uma variação de deslocamento menor (campo alto, mais blindado), isto é resultado da anisotropia diamagnética dos elétrons π do sistema aromático.
Tabela 8. Valores de deslocamentos químicos para os hidrogênios do cátion BMI para o líquido iônico BMI.BF$_4$ em diferentes solventes deuterados a 298 K.

<table>
<thead>
<tr>
<th>Solvente-d</th>
<th>BMI.BF$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H2</td>
</tr>
<tr>
<td>Água</td>
<td>8,54</td>
</tr>
<tr>
<td>DMSO</td>
<td>9,07</td>
</tr>
<tr>
<td>Etanol</td>
<td>8,77</td>
</tr>
<tr>
<td>Acetona</td>
<td>8,89</td>
</tr>
</tbody>
</table>

Concentração das soluções 0,45 mol/L

Além do efeito do ânion e do efeito da concentração, outros fatores podem influenciar a variação do deslocamento químico, como o efeito do campo eletrostático e o efeito da corrente do anel (por exemplo, a interação π-π).

Neste trabalho realizamos estudos de Espectrometria de 1H RMN a temperatura ambiente para investigação das interações do BMI.(NTf)$_2$ com, respectivamente, benzeno, piridina e DBT, selecionados como compostos modelo de HCs aromáticos, nitrogenados e sulfurados, através da análise dos deslocamentos químicos dos hidrogênios (1H), pelos quais é possível investigar os tipos de interações que ocorrem dentro do líquido iônico puro ou desse com outros solventes de natureza variada em diferentes diluições.

Nas Figura 23, 25 e 26 podem ser observados os espectros de 1H RMN e visualizadas as interações entre as moléculas de benzeno, piridina e DBT, respectivamente, com o BMI.N(Tf)$_2$ em várias relações molares.

Foram observadas variações nos deslocamentos químicos dos hidrogênios do anel imidazólio em todos os experimentos, bem como variações nos deslocamentos químicos para os hidrogênios do benzeno, piridina e DBT conforme aumentou se a concentração dos mesmos no referido LIs.

A Figura 23 representa a variação dos deslocamentos químicos para a mistura benzeno/BMI.N(Tf)$_2$ em diversas concentrações, em destaque a região de 6,8 a 8,6 ppm. Pode-se observar que os deslocamentos químicos dos hidrogênios do benzeno puro
estão em campo mais alto comparado aos deslocamentos do LI puro. Isso indica que a média da densidade eletrônica de cada carbono do anel benzênico puro é maior que para os carbonos do LI BMI.N(Tf)$_2$ puro.

Figura 23. Espectro de 1H RMN (300 MHz, 25 °C) com capilar de D$_2$O como referência e expansão entre 6,8 e 8,6 ppm e os sinais dos hidrogênios do anel imidazólio e do benzeno em diferentes concentrações de benzeno em BMI.N(Tf)$_2$. Átomos de hidrogênio do anel imidazólio H2, H4 e H5.

À medida que a concentração de benzeno aumenta os átomos de hidrogênio do anel imidazólio (H2, H4 e H5) sofrem um deslocamento para campo alto, o que evidencia a interação CH—π que ocorre entre esses hidrogênios e o anel benzênico.

Os hidrogênios encontram-se no plano do anel e sofrem o efeito da anisotropia diamagnética, e são assim desblindados e deslocados para campo alto. Entretanto, os hidrogênios do anel benzênico sofrem um desvio para campo baixo quando a concentração de BMI.N(Tf)$_2$ aumenta.

O efeito da anisotropia diamagnética diminui com a distância, o que também pode ser evidenciado pelo efeito da diluição do LI, o que facilita a aproximação das moléculas de benzeno e LI e é observado na maior variação nos valores dos deslocamentos químico como na Figura 24.
Figura 24. Anisotropia diamagnética no benzeno causada pela presença de elétrons-π no anel.

Na Tabela 9 podem ser observados todos os hidrogênicos do anel imidazólio, além dos hidrogênicos do anel benzênico. Enquanto os hidrogênicos do anel imidazólio sofrem um deslocamento para campo alto, quando a concentração de benzeno aumenta, com influência maior para os hidrogênicos na sequência $H_2=H_3=H_4>H_1>H_5>H_6>H_7>H_8$. Ao mesmo tempo os hidrogênicos do anel benzênico deslocam para campo baixo, porém esse efeito é bem menos pronunciado que para os hidrogênicos do anel imidazólio, ou seja, esta variação ocorre em proporções bem menores quando a concentração de LI aumenta. Pode ser observado que, para os deslocamentos dos hidrogênicos do anel benzênico, o efeito da concentração não é muito pronunciado.

<table>
<thead>
<tr>
<th>Benzeno/LI</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>H1</th>
<th>H5</th>
<th>H6</th>
<th>H7</th>
<th>H8</th>
<th>H9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:0</td>
<td>8,40</td>
<td>7,31</td>
<td>7,23</td>
<td>3,73</td>
<td>4,00</td>
<td>1,68</td>
<td>1,16</td>
<td>0,72</td>
<td>–</td>
</tr>
<tr>
<td>1:0,05</td>
<td>8,39</td>
<td>7,29</td>
<td>7,21</td>
<td>3,72</td>
<td>3,99</td>
<td>1,67</td>
<td>1,16</td>
<td>0,72</td>
<td>7,13</td>
</tr>
<tr>
<td>1:0,15</td>
<td>8,34</td>
<td>7,25</td>
<td>7,17</td>
<td>3,69</td>
<td>3,96</td>
<td>1,65</td>
<td>1,15</td>
<td>0,72</td>
<td>7,13</td>
</tr>
<tr>
<td>1:0,25</td>
<td>8,30</td>
<td>7,21</td>
<td>–</td>
<td>3,65</td>
<td>3,93</td>
<td>1,63</td>
<td>1,13</td>
<td>0,72</td>
<td>7,13</td>
</tr>
<tr>
<td>1:0,50</td>
<td>8,20</td>
<td>7,11</td>
<td>7,04</td>
<td>3,58</td>
<td>3,85</td>
<td>1,58</td>
<td>1,11</td>
<td>0,71</td>
<td>7,13</td>
</tr>
<tr>
<td>1:1</td>
<td>8,04</td>
<td>6,95</td>
<td>6,87</td>
<td>3,44</td>
<td>3,73</td>
<td>1,49</td>
<td>1,06</td>
<td>0,70</td>
<td>7,12</td>
</tr>
<tr>
<td>0:1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>7,01</td>
</tr>
</tbody>
</table>

A Figura 25 mostra que os H2, H4 e H5 do cátion imidazólio no BMI.N(Tf)$_2$ sofrem um deslocamento para campo baixo quando adicionamos piridina em concentrações crescentes.
Figura 25. Espectro de 1H RMN (300 MHz, 25 ºC) com capilar de D$_2$O e expansão entre 6,8 e 9,0 ppm e os sinais dos hidrogênios do anel imidazólio e piridina em diferentes concentrações de piridina em BMI.N(Tf)$_2$. Átomos de hidrogênio do anel imidazólio H2, H4 e H5.

Esse resultado sugere que a interação de ligação de hidrogênio do tipo CH—N entre os hidrogênios do cátion imidazólio e o nitrogênio da molécula de piridina torna esses hidrogênios mais ácidos, o que resulta nesta direção de deslocamento. O efeito é muito mais pronunciado para o H2 em concordância com a maior acidez apresentada por esse hidrogênio. Aqui o tipo de efeito é oposto ao observado com o benzeno.

Na Figura 26, a interação do DBT com os hidrogênios do núcleo imidazólio, evidenciada pelos deslocamentos químicos desses, é de natureza semelhante às interações que ocorrem com as moléculas de benzeno dentro do líquido iônico. À medida que se aumentou a concentração de DBT ocorreu um leve deslocamento dos hidrogênios do anel imidazólio para campo alto.

Novamente relatamos a forte influência da interação do sistema CH do anel imidazólio com o sistema π do DBT e não com o átomo de enxofre.
Figura 26. Espectro de 1H RMN (300 MHz, 25 ºC) com capilar de D$_2$O e expansão entre 6,8 e 9,0 ppm e os sinais dos hidrogêni nos do anel imidazólio e DBT em diferentes concentrações de DBT em LI. Átomos de hidrogênio do anel imidazólio H2, H4 e H5.

Uma vez que a interação nos sistemas benzeno/BMI.N(Tf)$_2$ e DBT/BMI.N(Tf)$_2$ é de mesma natureza, quando comparamos os dois sistemas na mesma concentração, podemos verificar que variação nos deslocamentos químicos é maior para o sistema DBT/BMI.N(Tf)$_2$ em relação ao sistema benzeno/BMI.N(Tf)$_2$ e isso pode estar relacionado com a percentagem de composto extraído e que considera que DBT tem uma interação mais forte com o LI em comparação ao benzeno.

Tabela 10. Variação do deslocamento químico na concentração de 0,15 benz:LI nas associações com benzeno ou DBT.

<table>
<thead>
<tr>
<th></th>
<th>δ_{LI} puro</th>
<th>$\delta_{[0,15]benz/LI}$</th>
<th>$\Delta\delta_{benz/LI}$</th>
<th>δ_{LI} puro</th>
<th>$\delta_{[0,15]DBT/LI}$</th>
<th>$\Delta\delta_{DBT/LI}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>8,399</td>
<td>8,341</td>
<td>−0,058</td>
<td>8,402</td>
<td>8,224</td>
<td>−0,178</td>
</tr>
<tr>
<td>H4</td>
<td>7,304</td>
<td>7,251</td>
<td>−0,053</td>
<td>7,31</td>
<td>7,115</td>
<td>−0,195</td>
</tr>
<tr>
<td>H5</td>
<td>7,226</td>
<td>7,173</td>
<td>−0,053</td>
<td>7,232</td>
<td>7,056</td>
<td>−0,176</td>
</tr>
</tbody>
</table>

Pelos deslocamentos químicos das misturas benzeno/BMI.N(Tf)$_2$, piridina/BMI.N(Tf)$_2$ e DBT/BMI.N(Tf)$_2$, pode-se observar que os deslocamentos químicos dos hidrogênios na piridina apresentam comportamento oposto em relação aos
hidrogênios no sistema benzeno e DBT, quando misturada com o BMI.N(Tf)\textsubscript{2}, enquanto benzeno e DBT apresentam comportamentos similares. Isso demonstra que as interações dentro da mistura piridina/BMI.N(Tf)\textsubscript{2} são de natureza diferente das interações dentro das misturas de benzeno/BMI.N(Tf)\textsubscript{2} e DBT/BMI.N(Tf)\textsubscript{2}.

Na Figura 27 estão representadas as possíveis estruturas formadas quando da interação das moléculas de BMI.N(Tf)\textsubscript{2} com benzeno, piridina ou DBT, as quais representam respectivamente, moléculas modelo de HC aromático, compostos nitrogenado e sulfurado.

![Figura 27. Em destaque os hidrogênios do cátion imidazólio e as possíveis interações com as moléculas de benzeno, piridina e DBT.](image)

As Figura 28, 29 e 30 apresentam a variação dos deslocamentos químicos em destaque para os hidrogênios H2, H4 e H5 do núcleo imidazólio quando as concentrações de benzeno, piridina e DBT foram variadas, respectivamente.

A Figura 28 evidencia que o efeito da molécula de benzeno sobre cada um dos hidrogênios do núcleo imidazólio (H2, H4 e H5) é similar, não ocorre grande variação entre as diferenças dos deslocamentos químicos dos três hidrogênios. Isto pode ser um indício de que a interação CH—\(\pi\), neste caso, entre os hidrogênios do anel imidazólio e a molécula de benzeno é determinante, uma vez que os três hidrogênios sofrem o mesmo efeito de variação de deslocamento. Os hidrogênios do anel imidazólio sofrem um deslocamento para campo alto (delta negativo) à medida que a concentração de benzeno aumenta.
Figura 28. Acompanhamento do deslocamento dos H2 (■), H4 (●) e H5 (▲) do cátion BMI nas diferentes concentrações de Benzeno/BML.N(Tf)$_2$.

Na Figura 29 pode-se observar que os deslocamentos químicos dos hidrogênios H2, H4 e H5 do núcleo imidazólio para as diferentes concentrações de piridina estão deslocados para campo baixo (delta positivo). A maior variação na diferença no
deslocamento químico do H2 é indicativo de sua maior habilidade de interagir através de ligação de hidrogênio, diretamente com o nitrogênio da molécula de piridina e não com o anel aromático, comparado com os H4 e H5, diferentemente do observado para o benzeno e DBT.

A Figura 30 refere-se ao sistema DBT/BML.N(Tf)₂, em que os deslocamentos dos hidrogênios do anel imidazólio apresentam a mesma tendência de deslocamento quando comparados aos do sistema com benzeno/BML.N(Tf)₂, o que indica que a interação predominante nesse caso é a interação CH—π, e não com o enxofre, uma vez que a variação sentida pelos três hidrogênio é de mesma grandeza.

Figura 30. Acompanhamento do deslocamento dos H2 (■), H4 (●) e H5 (▲) do cátion BMI nas diferentes concentrações de DBT/BML.N(Tf)₂.
4. Conclusões

A metodologia de síntese desenvolvida neste trabalho demonstrou ser um processo simples e rápido para a preparação de líquidos iônicos derivados do cátion imidazólio livres de haleto. Além disso, a pureza desses líquidos iônicos pode ser facilmente verificada através de simples experimentos de 1H NMR.

O poder de extração dos líquidos iônicos para compostos aromáticos para a temperatura de 25 °C depende no caso dos derivados do cátion 1,3-dialquil-imidazólio, do tamanho da cadeia lateral do núcleo imidazólio, o qual pode contribuir para o aumento dos canais formados pela estrutura e responsáveis pela absorção do analito. O poder de extração aumenta de C_2 até C_{10} atingindo 33 % em massa, para uma relação hidrocarboneto aromático/LI de 10/1.

A capacidade de extração dos LIs aumenta com o aumento dos volumes de van der Waals para ânions perfluorados, $BF_4^->PF_6^->N(Tf)_2^->PF_3(CF_2CF_3)_3^-$. A capacidade de extração dos LIS para compostos aromáticos varia com o poder de coordenação dos ânions com o respectivo cátion 1-n-butil-3-metil-imidazólio, ânions com menor poder de coordenação como $N(Tf)_2^-$ e $PF_3(CF_2CF_3)_3^-$ são mais efetivos do que os associados a ânions mais coordenantes como o BF_4^- e $CF_3SO_3^-$. A capacidade de extração de compostos aromáticos decresce com o aumento da força de ligação entre os ânions e o cátion que segue a seguinte ordem $BF_4^->CF_3SO_3^->PF_6^->N(Tf)_2^->PF_3(CF_2CF_3)_3^-$. uma vez que estes hidrogênios correspondem aos sítios de interação do LI com os compostos orgânicos extraídos.

A capacidade de extração dos líquidos iônicos também varia com a natureza dos HCs aromáticos extraídos: o aumento do substituinte no anel benzênico (Me, Et, iPr, tBu) diminui o percentual de aromáticos extraídos e indica claramente o efeito estéreo que dificulta a entrada desses analitos na estrutura de canais formadas nesses sistemas no processo de extração.

O processo depende fortemente da natureza do composto aromático: os compostos nitrogenados apresentam uma maior interação com os líquidos iônicos, seguidos pelos compostos sulfurados e, finalmente, pelos HCs aromáticos.

Os sítios de extração para HCs aromáticos e compostos sulfurados são de mesma natureza e de natureza diferente para compostos nitrogenados. No processo de extração competitiva entre os três compostos ocorre como se os três estivessem em sistemas
isolados, a quantidade extraída se mantem constante quando comparado ao sistemas
isolados, uma vez que as quantidades de saturação para compostos sulfurados não foi
alcçãada.

Os dados de Espectrometria de \(^1\)H RMN indicam as interações e as variações
que ocorrem dentro do líquido iônico após a adição das moléculas de benzeno, piridina
ou DBT, em comparação com o líquido iônico puro. Os dados sugerem que as
interações que ocorrem dentro desses sistemas dependem da natureza dos compostos
aromáticos, e são provavelmente interações do tipo \(\text{CH}–\pi\), no caso do benzeno e do
DBT e do tipo ligações de hidrogênio, no caso da piridina.
5. Parte Experimental

5.1. Reagentes e Solventes

Os reagentes (Acros ou Aldrich) apresentam grau de pureza (PA) e foram utilizados sem purificação adicional.

O metil-imidazol obtido comercialmente foi destilado e utilizado imediatamente após o processo de destilação, enquanto o n-butil-imidazol e o n-dodecil-imidazol foram sintetizados conforme a literatura, com algumas variações.80

5.2. Técnicas de Análise

Os espectros de 1H RMN e 13C RMN foram realizados em um espectrômetro Varian XL-300 MHz ou Bruker ARX-500 MHz. Nas análises das interações de benzeno, piridina e DBT com LI foi utilizado um capilar de água deuterada (D$_2$O) como referência.

Na caracterização dos LIs por Espectrometria de 1H RMN e 13C RMN foram utilizados diferentes solventes deuterados conforme a solubilidade dos LIs nos referidos solventes, entre os solventes utilizados encontram-se acetona-d$_6$, DMSO-d$_6$, CDCl$_3$ e D$_2$O.

As análises elementares foram realizadas pela Central Analítica do IQ-USP, com a utilização de um equipamento Perkin Elmer CHN 2004.

As transições de fase e os pontos de fusão dos sais fundidos foram determinados em um calorímetro do tipo 12000 PL-DSC, com uma taxa de aquecimento de 10 ºC/min e variantes conforme necessidade.

A técnica de cromatografia gasosa foi escolhida para cálculos de percentagem de extração e a utilização de um cromatógrafo Agilent 6820, com detector tipo FID, equipado com uma coluna capilar HP5 (polidifenildimetilsilano) de 30 m de comprimento e 0,32 milímetros de diâmetro e nitrogênio utilizado como o gás de arraste, com pressão na cabeça da coluna de 10 psi e seguindo o programa de aquecimento em que $T_{injeto}= 250 \, ^{\circ}C$, $T_{detector}= 250 \, ^{\circ}C$, $T_{inicial}= 60^{\circ}C$, $t_{inicial}= 7 \, minutos$, taxa de aquecimento $= 15^{\circ}C/min.$, $T_{final}= 250^{\circ}C$, $t_{final}= 2 \, minutos$.

45
5.3. Síntese dos Líquidos Iônicos

Os líquidos iônicos derivados do cátion 1,3-dialquil-imidazólio, 1,2,3-trialquil-imidazólio e N-alquil-piridínio utilizados nesse trabalho foram sintetizados seguindo os procedimentos descritos na literatura \(^{65,81}\) e foram conservados sob atmosfera inerte.

5.3.1 1-n-Butil-imidazol\(^{82,83}\)

Uma solução que contém imidazol (22,44 g; 330 mmol) e cloreto de n-butila (20,4 g; 220 mmol) foi misturada a uma solução de hidróxido de pótassio (36,96 g; 660 mmol) em água (50 mL) e posteriormente adicionou-se cloreto de benziltrietilamônio (TEBAC) (3,52 g; 8 mmol). A mistura reacional foi aquecida a 60 ºC por 24 horas. As fases foram separadas e a fase orgânica foi seca com sulfato de magnésio anidro e filtrada. O líquido foi destilado e seu ponto de fusão foi de 75-77 ºC/4 mmHg , rendeu 63,3 g (88 %) de um líquido incolor.

5.3.2 1-n-Dodecil-imidazol\(^{82}\)

Uma solução de imidazol (10,0 g; 147 mmol) e cloreto de n-dodecila (20,4 g; 99,7 mmol) foi misturada a uma solução de hidróxido de potássio (16,8 g; 300 mmol) em água (20 mL) e posteriormente adicionou-se cloreto de benziltrietilamônio (TEBAC) (1,6 g; 7 mmol). A mistura reacional foi aquecida a 100 ºC por 24 horas. As fases foram separadas e a fase orgânica foi seca com sulfato de magnésio anidro e filtrada. Obteve-se um líquido acastanhado (21,54g; 91 % de rendimento), suficientemente puro para emprego em sínteses posteriores. \(^1\)H RMN (CDCl\(_3\)) \(\delta\) (ppm): 7,56 (s, 1H, CH imidazólico); 7,07 (s, 1H, CH imidazólico); 6,92 (s, 1H, CH imidazólico); 3,94 (t, 2H, \(J = 7,1 \text{ Hz}, \text{NCH}_2\)); 1,85 (quinteto, 2H, \(J = 7,1 \text{ Hz}, \text{CH}_2\)); 1,40-1,20 (m, 18H, CH\(_2\)(CH\(_2\))\(_7\)CH\(_2\)); 0,88 (t, 3H, \(J = 6,6 \text{ Hz}, \text{CH}_3\)).

5.3.3 Metano-sulfonato de n-Butila

Cloro de metano-sulfonila (MeSO\(_2\)Cl) (183,2 g; 1,60 mol) foi adicionado (durante 45 minutos), com rigorosa agitação, a uma solução de n-butanol
(118,4 g; 1,60 mol) e trietilamina (161,6 g; 1,60 mol) em diclorometano (1,5 L). Um banho de gelo foi utilizado para controlar a temperatura entre 10-20 ºC. Após a adição, a agitação foi mantida por mais duas horas a temperatura ambiente. A mistura reacional foi então lavada com três porções de 100 mL de água e as fases foram separadas, a fase orgânica foi seca com sulfato de magnésio anidro e o solvente foi removido em rotavapor e um líquido levemente amarelado foi obtido. Esse foi, posteriormente, destilado sob vácuo e resultou no metano-sulfonato de n-butila como um líquido incolor (227,0 g; 93 % de rendimento, ponto de ebulição: 81-83 ºC/4 mmHg).

5.3.4 Metano-sulfonato de 1-n-Butil-3-metil-imidazólio

Metano-sulfonato de n-butila (241,9 g; 1,59 mol) foi misturado com 1-metil-imidazol (130,5 g; 1,59 mol) e a mistura reacional foi mantida em repouso a temperatura ambiente e foi obtido um sólido cristalino após 72 horas. Findo esse período de tempo, dissolveu-se a massa cristalina bruta em acetona (350 mL; a temperatura de refluxo) e um cristal de metano-sulfonato de 1-n-butil-3-metil-imidazólio, destinado a induzir a cristalização do produto, foi adicionado e a mistura foi mantida em geladeira por uma noite. A solução amarelada sobrenadante foi decantada dos cristais quase incolores e o processo de cristalização foi repetido novamente. Após secagem sob vácuo, obtiveram-se cristais incolor e higroscópicos de metano-sulfonato de 1-n-butil-3-metil-imidazólio (357,1 g; 96 % de rendimento; ponto de fusão: 77,1 ºC), Análise Elementar: calculado para C_{9}H_{18}N_{2}O_{3}S (234,31 g/mol). Requeridos: C, 46,13; H, 7,74; N, 11,96. Encontrados: C, 45,98; H, 7,80; N, 11,90. 1H RMN (CDCl₃) δ: 9,67 (1H, s, C-H imidazólico); 7,47 (1H, t, J = 1,8 Hz, C-H imidazólico); 7,36 (1H, t, J = 1,8 Hz, C-H imidazólico); 4,11 (2H, t, J = 7,2 Hz, NCH₂); 3,89 (3H, s, NCH₃); 2,59 (3H, s, CH₃SO₃); 1,72 (2H, quinteto, J = 7,2 Hz, CH₂); 1,20 (2H, sexteto, J = 7,2 Hz, CH₂); 0,79 (3H, t, J = 7,2 Hz, CH₃). 13C RMN (CDCl₃, APT) δ: 137,4; 123,5 e 121,8 (C-H imidazólico); 49,2 (NCH₂); 39,4 (CH₃SO₃); 35,9 (NCH₃); 31,7 e 19,0 (CH₂); 13,0 (CH₃).

5.3.5 Etano-sulfonato de 1-n-Butil-3-metil-imidazólio

Etano-sulfonato de n-butila (10,46 g; 63,0 mmol) foi misturado com 1-metil-imidazol (5,17 g; 63,0 mmol) e a mistura reacional foi mantida a temperatura ambiente
por 96 horas. O sólido resultante foi lavado duas vezes com acetato de etila (2x20 mL) e após, seco sob vácuo. Foram obtidos cristais incolores e higroscópicos de etano-sulfonato de 1-n-butil-3-metil-imidazólio (7,68 g; 78 % de rendimento; ponto de fusão: 57,0 ºC). Análise Elementar: calculado para C₁₀H₂₀N₂O₃S (248,34 g/mol). Requeridos: C, 48,37; H, 8,12; N, 11,28. Encontrados: C, 48,17; H, 8,30; N, 11,15.

1H RMN (CDCl₃) δ: 9,96 (1H, s, C-H imidazólico); 7,42 (1H, s, C-H imidazólico); 7,30 (1H, s, C-H imidazólico); 4,24 (2H, t, J = 7,4 Hz, NCH₂); 4,03 (3H, s, NCH₃); 2,83 (2H, q, J = 7,4 Hz, CH₃CH₂SO₃); 1,84 (2H, quinteto, J = 7,4 Hz, CH₂); 1,35 (2H, sexteto, J = 7,4 Hz, CH₂); 1,32 (3H, t, J = 7,4 Hz, CH₃CH₂SO₃); 0,92 (3H, t, J = 7,4 Hz, CH₃).

13C RMN (CDCl₃, APT) δ: 137,3; 123,5 e 121,8 (C-H imidazólico); 49,1 (NCH₂); 45,4 (CH₃CH₂SO₃); 35,8 (NCH₃); 31,7 e 19,0 (CH₂); 13,0 (CH₃); 9,5 (CH₃CH₂SO₃).

5.3.6 sec-Butano-sulfonato de 1-n-Butil-3-metil-imidazólio

sec-Butano-sulfonato de n-butila (29,10 g; 150 mmol) foi misturado com 1-metil-imidazol (12,30 g; 150 mmol) e a mistura reacional foi mantida a temperatura ambiente por 72 horas. O sólido resultante foi lavado três vezes com acetato de etila (20 mL) e após seco sob vácuo. Cristais incolores e higroscópicos de sec-butano-sulfonato de 1-n-butil-3-metil-imidazólio foram obtidos (33,10 g; 80 % de rendimento; ponto de fusão: 76,1 ºC). Análise Elementar: calculado para C₁₂H₂₄N₂O₃S (276,39 g/mol). Requeridos: C, 52,15; H, 8,75; N, 10,14. Encontrados: C, 51,95; H, 8,80; N, 10,03. 1H RMN (CDCl₃) δ: 9,80 (1H, s, C-H imidazólico); 7,53 (1H, t, J = 1,5 Hz, C-H imidazólico); 3,92 (3H, s, NCH₃); 2,72 – 2,60 (1H, m, CH₃CH₂CH(CH₃)SO₃); 2,20 – 2,05 (1H, m, CH₃CH₂CH(CH₃)SO₃ e CH₂); 1,87 (2H, quinteto, J = 7,5 Hz, CH₂); 1,54 – 1,30 (3H, m, CH₃CH₂CH(CH₃)SO₃ e CH₂); 1,32 (3H, d, J = 6,8 Hz, CH₃CH₂CH(CH₃)SO₃); 0,99 (3H, t, J = 7,5 Hz, CH₃CH₂CH(CH₃)SO₃); 0,94 (3H, t, J = 7,5 Hz, CH₃). 13C RMN (CDCl₃, APT) δ: 137,6; 123,6 e 121,8 (C-H imidazólico); 56,7 (CH₃CH₂CH(CH₃)SO₃); 49,2 (NCH₂); 36,0 (NCH₃); 31,8; 24,6 e 19,0 (CH₂); 14,5; 13,1 e 11,5 (CH₃).

5.3.7 n-Butano-sulfonato de 1-n-Butil-3-metil-imidazólio

n-Butano-sulfonato de n-butila (6,51 g; 33,5 mmol) foi misturado com 1-metil-imidazol (2,75 g; 33,5 mmol) e a mistura reacional foi mantida a temperatura ambiente
por 72 horas. O sólido resultante foi lavado três vezes com acetato de etila (3x20 mL) e após seco sob vácuo. Cristais incolores e higroscópicos de n-butano-sulfonato de 1-n-butil-3-metil-imidazólio foram obtidos (7,68 g; 83 % de rendimento; ponto de fusão: 63,0 °C). Análise Elementar: calculado para C_{12}H_{24}N_{2}O_{3}S (276,39 g/mol). Requeridos: C, 52,15; H, 8,75; N, 10,14. Encontrados: C, 51,88; H, 8,84; N, 9,99.

^{1}H RMN (CDCl_{3}) δ: 9,95 (1H, s, C-H imidazólico); 7,53 (1H, t, J = 1,7 Hz, C-H imidazólico); 7,41 (1H, t, J = 1,7 Hz, C-H imidazólico); 4,22 (2H, t, J = 7,3 Hz, NCH_{2}); 4,05 (3H, s, NCH_{3}); 2,90 - 2,85 (2H, m, CH_{3}CH_{2}CH_{2}CH_{2}SO_{3}); 1,95 - 1,75 (4H, m, CH_{2}); 1,55 - 1,40 (4H, m, CH_{2}); 0,96 (3H, t, J = 7,2 Hz, CH_{3}); 0,92 (3H, t, J = 7,2 Hz, CH_{3}). ^{13}C RMN (CDCl_{3}, APT) δ: 138,8; 123,5 e 121,8 (C-H imidazólico); 51,8 (CH_{3}CH_{2}CH_{2}CH_{2}SO_{3}); 49,6 (NCH_{2}); 36,3 (NCH_{3}); 32,1; 27,4; 22,0 e 19,4 (CH_{2}); 13,8 e 13,3 (CH_{3}).

5.3.8 Metano-sulfonato de 1,2-Di-metil-3-n-butil-imidazólio

A mistura de 1,2-di-metil-imidazol (164,2 g; 1,71 mol) e metano-sulfonato de n-butila (260,0 g, 1,71 mol) foi mantida a temperatura ambiente por 96 horas. O sólido resultante foi recristalizado duas vezes com acetona (2x1 L) e rendeu cristais incolores e higroscópicos de metano-sulfonato de 1,2-di-metil-3-n-butil-imidazólio (399,0 g; 94 % de rendimento; ponto de fusão: 109,0 °C). Análise Elementar: calculado para C_{10}H_{20}N_{2}O_{3}S (248,34 g/mol). Requeridos: C, 48,37; H, 8,12; N, 11,28. Encontrados: C, 48,35; H, 8,17; N, 11,20. ^{1}H RMN (CDCl_{3}) δ: 7,65 (1H, d, J = 1,8 Hz, C-H imidazólico); 7,45 (1H, d, J = 2,1 Hz, C-H imidazólico); 4,18 (2H, t, J = 7,4 Hz, NCH_{2}); 3,95 (3H, s, NCH_{3}); 2,74 (3H, s, CH_{3}); 2,66 (3H, s, CH_{3}SO_{3}); 1,80 (2H, quinteto, J = 7,4 Hz, CH_{2}); 1,39 (2H, sexteto, J = 7,4 Hz, CH_{2}); 0,97 (3H, t, J = 7,4 Hz, CH_{3}). ^{13}C RMN (CDCl_{3}) δ: 143,5(C imidazólico); 122,6 e 120,9 (C-H imidazólico); 48,2 (NCH_{2}); 39,3 (CH_{3}SO_{3}); 35,3 (NCH_{3}); 31,5 e 19,3 (CH_{2}); 13,2 e 9,7 (CH_{3}).

5.3.9 Metano-sulfonato de 1,3-Di-metil-imidazólio

Metano-sulfonato de metila (5,50 g; 50 mmol) foi misturado com 1-metil-imidazol (4,10 g; 50 mmol) e a mistura reacional foi mantida em repouso a temperatura ambiente por 60 horas. Após esse tempo, a mistura reacional amarelada solidificou-se. A massa cristalina foi triturada, lavada três vezes com acetato de etila e
seca sob vácuo, o que forneceu cristais incolor de metano-sulfonato de 1,3-di-metil-imidazólio (8,16 g; 85 % de rendimento; ponto de fusão: 93,1 ºC). Análise Elementar: C₆H₁₂N₂O₃S (192,23 g/mol). Requeridos: C, 37,49; H, 6,29; N, 14,57. Encontrados: C, 37,18; H, 6,35; N, 14,40.

1H RMN (DMSO-d₆) δ: 9,81 (1H, s, C-H imidazólico); 7,43 (2H, s, C-H imidazólico); 4,02 (6H, s, NCH₃); 2,79 (3H, s, CH₃SO₃).

13C RMN (DMSO-d₆, APT) δ: 138,5 e 123,3 (C-H imidazólico); 39,4 (CH₃SO₃); 36,3 (NCH₃).

5.3.10 n-Butano-sulfonato de 1,3-Dimetil-imidazólio

n-Butano-sulfonato de metila (7,10 g; 50,0 mmol) foi misturado com 1-metil-imidazol (4,10 g; 50,0 mmol) e a mistura reacional foi mantida a temperatura ambiente por 96 horas. O sólido resultante foi lavado duas vezes com acetato de etila (2x10 mL) e após seco sob vácuo. Foram obtidos cristais incolor e muito higroscópicos de n-butano-sulfonato de 1,3-dimetil-imidazólio (8,40 g; 75 % de rendimento; ponto de fusão: 52,0 ºC). Análise Elementar: calculado para C₉H₁₈N₂O₃S (234,31 g/mol). Requeridos: C, 46,13; H, 7,74; N, 11,96. Encontrados: C, 46,08; H, 7,90; N, 11,80.

1H RMN (CDCl₃) δ: 9,79 (1H, s, C-H imidazólico); 7,40 (2H, s, C-H imidazólico); 4,03 (6H, s, NCH₃); 2,95 - 2,75 (2H, m, CH₃CH₂CH₂CH₂SO₃); 1,82 (2H, quinteto, J = 7,2 Hz, CH₃CH₂CH₂CH₂SO₃); 1,43 (2H, sexteto, J = 7,2 Hz, CH₃CH₂CH₂CH₂SO₃); 0,92 (3H, t, J = 7,2 Hz, CH₃).

13C RMN (CDCl₃, APT) δ: 137,9 e 123,4 (C-H imidazólico); 51,6 (CH₃CH₂CH₂CH₂SO₃); 36,3 (NCH₃); 27,1 e 21,8 (CH₂); 13,6 (CH₃).

5.3.11 Metano-sulfonato de 1,3-Dibutil-imidazólio

Metano-sulfonato de n-butila (8,58 g; 56,5 mmol) foi misturado com 1-n-butil-imidazol (7,00 g; 56,5 mmol) e a mistura reacional foi mantida a temperatura ambiente por 96 horas. O líquido resultante foi lavado duas vezes com acetato de etila (2x10 mL) e após seco sob vácuo. Foi obtido um líquido de cor levemente amarelada e higroscópico de metano-sulfonato de 1,3-di-n-butil-imidazólio (12,77 g; 82 % de rendimento; ponto de fusão: −56,0 ºC).

1H RMN (CDCl₃) δ: 9,98 (1H, s, C-H imidazólico); 7,45 (2H, s, C-H imidazólico); 4,31 (4H, t, J = 7,2 Hz, NCH₂); 2,78 (3H, s, CH₃SO₃); 1,89 (4H, quinteto, J = 7,2 Hz, CH₂); 1,37 (4H, sexteto, J = 7,2 Hz, CH₂);
0,96 (6H, t, J = 7,2 Hz, CH₃). ¹³C RMN (CDCl₃, APT) δ: 137,5 e 121,9 (C-H imidazólico); 49,5 (NCH₂); 39,5 (CH₃SO₃); 32,0 e 19,3 (CH₂); 13,3 (CH₃).

5.3.12 Etano-sulfonato de 1,3-Di-n-butil-imidazólio

Etano-sulfonato de n-butila (11,53 g; mmol) foi misturado com 1-n-butil-imidazol (8,70 g; 69,5 mmol) e a mistura reacional foi mantida a temperatura ambiente por 96 horas. O líquido resultante foi lavado três vezes com acetato de etila (15 mL) e após seco sob vácuo. Etano-sulfonato de 1,3-di-n-butil-imidazólio foi obtido como um líquido colorido levemente amarelado e higrosópico (15,42 g; 76 % de rendimento; ponto de fusão: −68,0 ºC). ¹H RMN (CDCl₃) δ: 9,98 (1H, s, C-H imidazólico); 7,49 (2H, s, C-H imidazólico); 4,31 (4H, t, J = 7,5 Hz, NCH₂); 2,85 (2H, q, J = 7,5 Hz, CH₃CH₂SO₃); 1,81 (4H, quinteto, J = 7,5 Hz, CH₂); 1,36 (4H, sexteto, J = 7,5 Hz, CH₃); 1,35 (3H, t, J = 7,5 Hz, CH₃CH₂SO₃); 0,95 (6H, t, J = 7,5 Hz, CH₃). ¹³C RMN (CDCl₃, APT) δ: 137,5 e 122,0 (C-H imidazólico); 49,4 (NCH₂); 45,7 (CH₃CH₂SO₃); 32,0 e 19,3 (CH₂); 13,3 (CH₃); 9,8 (CH₃CH₂SO₃).

5.3.13 Etano-sulfonato de 1-(2-Metoxietil)-3-metil-imidazólio

2-Metoxietil etano-sulfonato (5,38 g; 32,0 mmol) foi misturado com 1-metil-imidazol (2,62 g; 32,0 mmol) e a mistura reacional foi mantida a 60 ºC for 30 h. O líquido resultante foi lavado três vezes com acetato de etila (3x5 mL) e seco sob vácuo. Etano-sulfonato de 1-(2-metoxietil)-3-metil-imidazólio foi obtido como um líquida incolor e higrosópico (7,28 g; 91 % de rendimento; Tg: 86,1 ºC). ¹H RMN (CDCl₃) δ: 9,76 (1H, s, C-H imidazólico); 7,51 (1H, t, J = 1,8 Hz, C-H imidazólico); 7,47 (1H, t, J = 1,8 Hz, C-H imidazólico); 4,50 (2H, t, J = 4,8 Hz, NCH₂); 4,03 (3H, s, NCH₃); 3,75 (2H, t, J = 4,8 Hz, OCH₂); 3,35 (3H, s, OCH₃); 2,84 (2H, q, J = 7,4 Hz, CH₃CH₂SO₃); 1,33 (3H, t, J = 7,4 Hz, CH₃CH₂SO₃). ¹³C RMN (CDCl₃, APT) δ: 137,3; 123,0 e 122,6 (C-H imidazólico); 69,8 (OCH₃); 58,4 (OCH₂); 49,0 (NCH₂); 45,3 (CH₃CH₂SO₃); 35,8 (NCH₃); 9,40 (CH₃CH₂SO₃).
5.3.14 Tetrafluoroborato de 1-n-Butil-3-metil-imidazólio45

Uma solução de 82,0 g (350 mmol) de BMI.MeSO\textsubscript{3} em 15 mL de água destilada foi misturada a uma solução de 42,5 g (387 mmol) de tetrafluoroborato de sódio (NaBF\textsubscript{4}) em 60 mL de água destilada. Esse sistema foi agitado por 30 minutos e o líquido iônico formado foi expulso da fase aquosa por efeito \textit{salting-out}, esse ainda foi extraído com duas alíquotas de 200 mL de CH\textsubscript{2}Cl\textsubscript{2}. A fase orgânica foi secada com carbonato de sódio (Na\textsubscript{2}CO\textsubscript{3}) e filtrada através de uma coluna com alumina básica (3 cm). O solvente foi removido sob vácuo e aquecimento (120 ºC), assim como traços de umidade e o produto foi obtido com 79 % (61,3 g) de rendimento.

5.3.15 Hexafluorofosfato de 1-n-Butil-3-metil-imidazólio45

A mistura de 109,9 g (470 mmol) de BMI.MeSO\textsubscript{3} e 90,7 g (493 mmol) hexafluorofosfato de potássio (KPF\textsubscript{6}) e água destilada (250 mL) foi vigorosamente agitada por 30 minutos. O líquido iônico formado foi expulso da fase aquosa devido à insolubilidade desse em água, foi solubilizado em 250 mL de CH\textsubscript{2}Cl\textsubscript{2}, seco com Na\textsubscript{2}CO\textsubscript{3} e filtrado através de uma coluna com alumina básica (3 cm). O solvente foi removido sob vácuo e aquecimento (120 ºC), e resultou em um líquido incolor com rendimento de 95 % (126,9 g).

5.3.16 Bis(trifluorometano-sulfonil)imidato de 1-n-Butil-3-metil-imidazólio33

\textit{N}-trifluorometano-sulfonimidato de lítio (50,0 g; 174 mmol) foi dissolvido em água (25 mL) e metano-sulfonato de 1-n-butil-3-metil-imidazólio (38,6 g; 165 mmol) foi também dissolvido em água (65 mL). Ambas as soluções foram misturadas e vigorosamente agitadas por 45 minutos. A mistura resultante, composta de duas fases, o líquido iônico formado foi expulso da fase aquosa devido à insolubilidade desse em água, foi extraído com diclorometano (200 mL). A fase orgânica foi separada, lavada com água (30 mL) e seca com carbonato de sódio. O solvente foi evaporado sob vácuo e o LI bis(trifluorometano-sulfonil)imidato de 1-n-butil-3-metil-imidazólio foi obtido como um líquido incolor (67,6 g; 98 % rendimento). 1H RMN (acetona-d\textsubscript{6}) δ: 9,02 (1H, s, C-H imidazólico); 7,76 (1H, s, C-H imidazólico; 7,71 (1H, s, C-H imidazólico); 4,36 (2H, t, J = 7,4 Hz, NCH\textsubscript{2}); 4,06 (3H, s, NCH\textsubscript{3}); 1,93 (2H, quinteto, J = 7,4 Hz, CH\textsubscript{2}); 1,38 (2H, sexteto, J = 7,4 Hz, CH\textsubscript{2}); 0,94 (3H, t, J = 7,4 Hz, CH\textsubscript{3}).

52
5.3.17 Tris(pentafluoroetil)trifluorofosfato de 1-n-Butil-3-metil-imidazólio

Metano-sulfonato de 1-n-butil-3-metil-imidazólio (39,5 g; 169 mmol) foi dissolvido em água (50 mL) e com agitação e controle da temperatura (10°C<T<20°C), ácido tris(pentafluoroetil)trifluorofosfórico (99,0 g; 177,5 mmol) foi adicionado. A agitação foi mantida por 30 minutos. A fase aquosa superior foi removida e o líquido remanescente foi lavado com água (5x10 mL). Diclorometano (250 mL) foi adicionado e a solução foi seca com carbonato de sódio. A evaporação do solvente sob vácuo rendeu líquido tris(pentafluoroetil)trifluorofosfato de 1-n-butil-3-metil-imidazólio, com uma cor páldio ambar (96,80 g; 98 % de rendimento). 1H RMN (acetona-d$_6$) δ: 9,09 (1H, s, CH imidazólico); 7,80 (1H, t, $J = 1,6$ Hz, C-H imidazólico); 7,75 (1H, t, $J = 1,6$ Hz, C-H imidazólico); 4,39 (2H, t, $J = 7,2$ Hz, NCH$_2$); 4,09 (3H, s, NCH$_3$); 1,94 (2H, quinteto, $J = 7,2$ Hz, CH$_2$); 1,39 (2H, sexteto, $J = 7,2$ Hz, CH$_2$); 0,94 (3H, t, $J = 7,2$ Hz, CH$_3$). 13C RMN (acetona-d$_6$) δ: 138,1; 125,5, e 124,2 (C-H imidazólico); 51,0 (NCH$_2$); 37,4 (NCH$_3$); 33,4 e 20,6 (CH$_2$); 14,3 (CH$_3$).

5.3.18 Di(metano-sulfonato) de Etileno

Cloreto de metano-sulfonila (22,9 g; 100 mmol) foi adicionado, com vigorosa agitação a uma solução de etilenoglicol (6,2 g; 200 mmol) e trietilamina (20,2 g; 200 mmol) em diclorometano (150 mL). Um banho de gelo foi usado para controle da temperatura reacional entre 10-20 °C. Após a adição, a solução permaneceu em agitação por 1 hora a temperatura ambiente. Água (50 mL) foi adicionada, a fase aquosa dissolve o cloreto de trietilamônio que é subproduto da reação e esta fase foi separada; a fase orgânica foi lavada com água (50 mL) e seca com sulfato de magnésio. A evaporação do solvente foi realizada por destilação a pressão reduzida e resultou no produto desejado, como um sólido branco; rendimento de 19,47 g (90 %); ponto de fusão: 41,4 °C. 1H RMN (CDCl$_3$) δ(ppm): 4,49 (s, 4H, OCH$_2$CH$_2$O); 3,10 (s, 6H, CH$_3$SO$_3$).

5.3.19 Di(metano-sulfonato) de 1,2-bis(3-metil-imidazólio-1-il)etano

Di(metano-sulfonato) de etileno (3,8 g; 17,2 mmol) foi misturado com 1-metilimidazol (2,8 g; 34,4 mmol) e a mistura reacional foi mantida a 60 °C em agitação por
48 h. O produto foi lavado com acetona e filtrado até resultar em um sólido branco, a evaporação do solvente foi realizada por pressão reduzida. Obteve-se um sólido branco com ponto de fusão de 173,7 °C (5,89 g; 88 % de rendimento). 1H RMN (DMSO-d6) δ(ppm): 9,13 (s, 2H, CH imidazólico); 7,72 (t, 2H, $J = 1,8$ CH imidazólico); 7,14 (t, 2H, $J = 1,7$ CH imidazólico); 4,71 (s, 4H, NCH$_2$CH$_2$N); 2,36 (s, 6H, NCH$_3$) e 3,85 (s, 6H, CH$_3$SO$_3$). 13C RMN (DMSO-d6) δ(ppm): 137,4; 123,9 e 122,4 (CH imidazólico); 48,4 NCH$_2$CH$_2$N, 37,6 (NCH$_3$) e 35,9 (CH$_3$SO$_3$).

5.3.20 Di(metano-sulfonato) de 1,2-bis(3-n-butil-imidazólio-1-il)etano

Di(metano-sulfonato) de etileno (3,8 g; 17,2 mmol) foi misturado com 1-butil-imidazol (4,3 g; 34,4 mmol) e a mistura reacional foi mantida a 60 °C em agitação por 48 h. O produto foi lavado com acetona e filtrado até resultar em um sólido branco, a evaporação do solvente foi realizada por pressão reduzida. Obteve-se um sólido branco com ponto de fusão de 186,9 °C (7,00 g; 87 % de rendimento). Análise Elementar: calculado para C$_{18}$H$_{26}$N$_4$O$_6$S$_2$ (466,61 g/mol). Requeridos: C: 46,33; H: 7,34; N: 12,01. Encontrado: C: 46,30; H: 7,30; N: 12,05. 1H RMN (CDCl$_3$) δ(ppm): 10,00 (s, 2H, CH imidazólico); 8,51 (s, 2H, CH imidazólico); 7,14 (s, 2H, CH imidazólico); 5,04 (s, 4H, NCH$_2$CH$_2$N); 4,15 (t, 4H, $J = 7,5$ Hz, NCH$_2$); 2,84 (s, 6H, CH$_3$SO$_3$); 1,85 (quinteto, 4H, $J = 7,5$ Hz, CH$_2$); 1,36 (sexteto, 4H, $J = 7,5$ Hz, CH$_2$); 0,96 (t, 6H, $J = 7,5$ Hz, CH$_3$). 13C RMN (CDCl$_3$) δ(ppm): 137,7; 125,0 e 121,2 (CH imidazólico); 50,0 e 47,8 (NCH$_2$); 39,6 (CH$_3$SO$_3$); 31,7 e 19,4 (CH$_2$); 13,3 (CH$_3$).

5.3.21 Di[bis(trifluorometano-sulfonil)imidato] de 1,2-bis(3-n-butil-imidazólio-1-il)etano

N-trifluorometanosulfonimidato de lítio (7,37 g; 25,70 mmol) foi dissolvido em água (40 mL) e di(metano-sulfonato) de 1,2-bis(3-n-butil-imidazólio-1-il)etano (11,4 g; 24,46 mmol) foi também dissolvido em água (50 mL). Ambas as soluções foram misturadas, vigorosamente agitadas por 1 hora e diclorometano (100 mL) foi adicionado. A fase orgânica foi separada, lavada com água (2x45 mL) e seco com sulfato de magnésio. Após a evaporação do solvente foi obtido o produto como um sólido levemente amarelado, de ponto de fusão de 60,8 °C (19,0 g; 93 % de rendimento). Análise Elementar: calculado para C$_{20}$H$_{38}$F$_{12}$N$_6$O$_6$S$_4$ (836,70 g/mol).

1H RMN (acetona d_6) δ(ppm): 9,12 (s largo, 2H, CH imidazólico); 7,88 (t, 2H, $J = 1,9$ Hz, CH imidazólico); 7,78 (t, 2H, $J = 1,9$ Hz, CH imidazólico); 5,08 (s, 4H, NCH$_2$CH$_2$N); 4,36 (t, 4H, $J = 7,4$ Hz, NCH$_2$); 1,91 (quinteto, 4H, $J = 7,4$ Hz, CH$_2$); 1,36 (sexteto, 4H, $J = 7,4$ Hz, CH$_2$); 0,92 (t, 6H, $J = 7,4$ Hz, CH$_3$).

13C RMN (DMSO d_6) δ(ppm): 138,1; 125,1 e 124,5 (CH imidazólico); 121,6 (q, $J_{CF} = 320$ Hz, CF$_3$); 51,2 e 50,7 (NCH$_2$); 33,2 e 20,6 (CH$_2$); 14,3 (CH$_3$).

5.3.22 Di(metano-sulfonato) de 1,2-bis(3-n-dodecil-imidazólio-1-il)etano

Dimetano-sulfonato de etileno (6,2 g; 28,4 mmol) foi misturado com 1-dodecil-imidazol (13,4 g; 56,9 mmol) e a mistura reacional foi mantida a 60 ºC sob agitação por 48 horas. O produto foi lavado com acetona e filtrado até resultar em um sólido branco, e o solvente foi evaporado por pressão reduzida. Obteve-se um sólido branco com ponto de fusão de 190,9 ºC (15,2 g; 78 % de rendimento). Análise Elementar: calculado para C$_{34}$H$_{66}$N$_4$O$_6$S$_2$ (691,04 g/mol); C: 59,10; H: 9,63; N: 8,11. Encontrado; C: 58,67; H: 9,14; N: 8,26. 1H RMN (CDCl$_3$) δ(ppm): 9,98 (s, 2H, CH imidazólico); 8,49 (s, 2H, CH imidazólico); 7,21 (s, 2H, CH imidazólico); 5,04 (s, 4H, NCH$_2$CH$_2$N); 4,17 (t, 4H, $J = 7,4$ Hz, NCH$_2$); 2,82 (s, 6H, CH$_3$SO$_3$); 1,95-1,85 (m, 4H, CH$_2$); 1,50-1,10 (m, 36H, CH$_2$); 0,88 (t, 6H, $J = 6,6$ Hz, CH$_3$). 13C RMN (CDCl$_3$, APT) δ(ppm): 137,5; 124,7 e 124,1 (CH imidazólico); 50,2 e 47,8 (NCH$_2$); 39,5 (CH$_3$SO$_3$); 31,8; 29,8; 29,5; 29,4; 29,2; 28,8; 26,1 e 22,6 (CH$_2$(CH$_2$)$_7$ CH$_2$); 14,0 (CH$_3$).

5.3.23 Di[bis(trifluorometano-sulfonil)imidato] de 1,2-bis(3-n-dodecil-imidazólio-1-il)etano

N-trifluorometano-sulfonilimidato de lítio (7,8 g; 27,1 mmol) foi dissolvido em água (50 mL) e di(metano-sulfonato) de 1,2-bis(3-n-dodecil-imidazólio-1-il)etano (7,8 g; 13,5 mmol) foi também dissolvido em água (150 mL). Ambas as soluções foram vigorosamente misturadas, por 1 hora e clorometano (200 mL) foi adicionado. A fase orgânica foi separada, lavada com água (150 mL) e seca com sulfato de magnésio. A evaporação do solvente resultou no produto desejado como um sólido levemente amarelado, de ponto de fusão de 37,0 ºC (11,5 g; 96 % de rendimento). Análise
elementar; calculado para $C_{36}H_{60}F_{12}N_{6}O_{8}S_{4}$ (1061,13 g/mol); C: 40,75; H: 5,70; N: 7,92. Encontrado; C: 41,02; H: 5,49; N: 7,99. 1H RMN (CDCl$_3$) δ(ppm): 9,13 (s largo, 2H, CH imidazólico); 7,90 (s, 2H, $J = 1,9$ Hz; CH imidazólico); 7,79 (s, 2H, $J = 1,9$ Hz; CH imidazólico); 5,09 (s, 4H, NCH$_2$CH$_2$N); 4,37 (t, 4H, $J = 7,1$ Hz, NCH$_2$); 1,95 (quinteto, 4H, $J = 7,1$ Hz, CH$_2$); 1,45-1,20 (m, 36H, CH$_2$(CH$_2$)$_7$CH$_2$); 0,88 (t, 6H, $J = 6,6$ Hz, CH$_3$). 13C RMN (acetona d$_6$) δ(ppm): 138,1; 125,1 e 124,5 (CH imidazólico); 122,0 (q, $^1J_{CF} = 320$ Hz, CF$_3$); 51,5 e 50,7 (NCH$_2$); 33,2; 31,3 a 29,7; 27,4 e 23,9 (10 CH$_2$); 15,0 (CH$_3$).

5.4. Testes de Extração

Os testes de extração foram feitos em reatores tipo Schlenk, que contém uma barra magnética, sob atmosfera inerte de argônio, como mostrado na Figura 31.

![Figura 31. Representação do sistema de extração com líquido iônico, fase extrato (fase inferior) combustível modelo, fase rafinado (fase superior)](image)

Os experimentos foram realizados pela dissolução de HCs aromáticos, compostos sulfurados e/ou nitrogenados em quantidades conhecidas de n-octano, para frações mássicas de 10 %, 1 % e 1 %, respectivamente. A relação molar de LI/benzeno foi de 1:1 (mol:mol). Por exemplo, a dissolução de 0,32 g (4 mmol) de benzeno em 3,19 g de n-octano misturados a 1,7 g (4 mmol) de BMI.N(Tf)$_2$. Esses valores foram escolhidos seguindo alguns dados da literatura em que um combustível comercial que contém 1,2 % peso de compostos de enxofre e 7,9 % de aromáticos foram utilizados.\(^1\)

Os valores obtidos nas extrações foram determinados com a utilização de n-octano como padrão interno e levado em consideração que a quantidade de n-octano
extraído pelo LI é desprezível perante os valores de extração do benzeno. Porém algumas destas extrações foram repetidas com a pesagem da fase rafinado e constatado que os valores de n-octano extraído pelos diferentes LIs são inferiores a 3 % em massa.

O tempo de contato sob agitação foi previamente determinado através do acompanhamento do equilíbrio de extração por 60 minutos com alíquotas de 5 em 5 minutos, em que se pode determinar que o tempo de 20 minutos de contato sob agitação entre o combustível modelo e o LI sob agitação foi suficiente para que esse equilíbrio seja alcançado.

5.5. Diagrama Ternário

A técnica utilizada para a obtenção dos dados do diagrama ternário a temperatura de 25 ºC de BMI.N(Tf)_2, n-octano e benzeno, esta baseada em um método gravimétrico, em que, massas conhecidas dos três componentes foram misturadas e mantidas em contato sob agitação até a estabilização de ambas as fases, após a solução foi decantada e as fases foram separadas. A fase extrato foi pesada, enquanto que a fase rafinado foi analisada por cromatografia gasosa (CG) e sua composição determinada. Um banho de água termostatizado foi utilizado para o controle da temperatura em 25 ºC.

Na Tabela 11 são apresentados os dados das medidas experimentais de massa de BMI.N(Tf)_2 m_1, n-octano m_2 e benzeno m_3, no sistema e a massa do rafinado m_r. A partir desses dados foi possível calcular a composição z_i (i = 1,2,3) do sistema (Equação 2), e a massa do extrato m_e (Equação 3).

\[z_i = \frac{m_i}{m_1 + m_2 + m_3} \] \hspace{1cm} (2)

\[m_e = m_1 + m_2 + m_3 - m_r \] \hspace{1cm} (3)

Em um sistema ternário bifásico as composições se relacionam duas a duas por três funções: uma função relaciona as composições de dois componentes do rafinado, uma função relaciona as composições de dois componentes do extrato, e uma função relaciona as composições de um componente no rafinado e no extrato. Como o rafinado foi considerado isento do líquido iônico, a relação funcional (i) é trivial (Equações 4 e 5).

\[y_2 = 1 - y_1 \] \hspace{1cm} (4)
\[y_3 = 0 \] (5)

A Figura 32 apresenta um diagrama ternário semelhante ao construído nesse trabalho que mostra apenas dados fictícios comparado ao sistema real.

O gráfico da direita em formato de triângulo retângulo apresenta os dados para a composição do rafinado e do extrato, esse gráfico mostra também as regiões com uma ou duas fases. A linha que representa a composição do extrato representa uma fase onde há apenas os componentes indicados nos eixos, ou seja, é uma fase isenta do terceiro componente, no caso o LI. A união dos pontos representativos de soluções conjugadas presentes no equilíbrio, de diferentes composições do extrato e do rafinado, através das linhas de amarração podem ser utilizados para determinar a composição global do sistema.

O gráfico da esquerda serve de apoio e apresenta uma curva que relaciona as composições do extrato e do rafinado em equilíbrio termodinâmico. A diagonal indicada nesse gráfico serve apenas como uma auxiliar para aquele que maneja o gráfico. Esse gráfico é em alguns casos preterido por linhas traçadas sobre o gráfico da direita, que unem as composições em equilíbrio no extrato e no rafinado, usualmente conhecidas como “linhas de amarração”.

Figura 32. Exemplo fictício de diagrama de fases de um sistema ternário com a fase rafinado isenta do terceiro componente.

Apesar de esta ser uma forma mais “elegante” de apresentar o diagrama ternário, existem outras formas que podem ou não ser de mais fácil entendimento. Diversos trabalhos citados na literatura apresentam esses diagramas de diferentes maneiras. 29,85,86
Os dados experimentais obtidos para a construção do diagrama ternário a temperatura de 25 °C são apresentados na Tabela 11.

A Equação 6 é a representação da equação da curva que determina a relação de benzeno e \(n \)-octano no extrato, enquanto que a Equação 7, representa a relação entre a fração mássica de benzeno no extrato e no rafinado.

\[
y_i = c_2 x_i \\
x_2(x_1) = c_1 + c_2 x_1 + c_3 x_1^2
\]

5.6. Cálculos Teóricos

Os volumes molares e iônicos foram estimados pela aproximação esférica e consideraram o raio como a maior distância de um átomo para o centro de massa mais seu raio covalente. A geometria de todas as espécies foi obtida pela completa otimização sem nenhuma restrição ao nível HF da teoria. Os cálculos foram realizadas com a Programa Gaussian 98, e usou para espécies neutras, um conjunto base 6-31G (d,p) o qual foi complementado com a função difusa adicional nas espécies aniónicas.
Tabela 11. Dados experimentais utilizados para a construção do diagrama de fases da mistura ternária BMI.N(Tf)$_2$ + benzeno + n-octano a temperatura de 25 ºC.

<table>
<thead>
<tr>
<th>m_1^a (g)</th>
<th>m_2^b (g)</th>
<th>m_3^c (g)</th>
<th>m_r^d (g)</th>
<th>b_t^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,181</td>
<td>0,258</td>
<td>2,552</td>
<td>1,412</td>
<td>0,868</td>
</tr>
<tr>
<td>2,223</td>
<td>0,48</td>
<td>2,427</td>
<td>1,753</td>
<td>0,759</td>
</tr>
<tr>
<td>2,225</td>
<td>0,653</td>
<td>2,14</td>
<td>1,748</td>
<td>0,666</td>
</tr>
<tr>
<td>2,362</td>
<td>0</td>
<td>2,519</td>
<td>0,499</td>
<td>1</td>
</tr>
<tr>
<td>2,342</td>
<td>0,835</td>
<td>0</td>
<td>0,79</td>
<td>0</td>
</tr>
<tr>
<td>2,189</td>
<td>0,812</td>
<td>2,039</td>
<td>1,784</td>
<td>0,616</td>
</tr>
<tr>
<td>2,156</td>
<td>0,958</td>
<td>1,917</td>
<td>2,058</td>
<td>0,560</td>
</tr>
<tr>
<td>2,158</td>
<td>1,054</td>
<td>1,78</td>
<td>2,077</td>
<td>0,520</td>
</tr>
<tr>
<td>2,127</td>
<td>1,166</td>
<td>1,682</td>
<td>2,179</td>
<td>0,483</td>
</tr>
<tr>
<td>2,16</td>
<td>1,265</td>
<td>1,58</td>
<td>2,191</td>
<td>0,450</td>
</tr>
<tr>
<td>2,191</td>
<td>1,331</td>
<td>1,471</td>
<td>2,172</td>
<td>0,430</td>
</tr>
<tr>
<td>2,176</td>
<td>1,318</td>
<td>1,082</td>
<td>1,892</td>
<td>0,341</td>
</tr>
<tr>
<td>2,178</td>
<td>1,517</td>
<td>0,921</td>
<td>2,036</td>
<td>0,287</td>
</tr>
<tr>
<td>2,311</td>
<td>1,434</td>
<td>0,649</td>
<td>1,737</td>
<td>0,210</td>
</tr>
<tr>
<td>2,318</td>
<td>1,43</td>
<td>0,421</td>
<td>1,605</td>
<td>0,151</td>
</tr>
<tr>
<td>2,311</td>
<td>1,538</td>
<td>0,329</td>
<td>1,643</td>
<td>0,111</td>
</tr>
<tr>
<td>2,268</td>
<td>1,568</td>
<td>0,196</td>
<td>1,599</td>
<td>0,098</td>
</tr>
<tr>
<td>2,262</td>
<td>1,623</td>
<td>0,115</td>
<td>1,599</td>
<td>0,041</td>
</tr>
<tr>
<td>2,287</td>
<td>0,157</td>
<td>1,603</td>
<td>0,416</td>
<td>0,803</td>
</tr>
<tr>
<td>2,314</td>
<td>0,108</td>
<td>2,189</td>
<td>0,658</td>
<td>0,906</td>
</tr>
</tbody>
</table>

*aMassa total BMI.N(Tf)$_2$, *bMassa total n-octano, *cMassa total benzeno, *dMassa rafinado, *eFração molar de benzeno no rafinado.
6. Espectros de 1H RMN e 13C RMN

Figura 33. Espectro de 1H RMN (300MHz, 25 °C) de BMI.MeSO$_3$ em CDCl$_3$.

Figura 34. Espectro de 13C RMN, APT (300 MHz, 25 °C) de BMI.MeSO$_3$ em CDCl$_3$.
Figura 35. Espectro de 1H RMN (300 MHz, 25 °C) de BMI.EtSO$_3^-$ em CDCl$_3$.

Figura 36. Espectro de 13C RMN, APT (300 MHz, 25 °C) de BMI.EtSO$_3^-$ em CDCl$_3$.
Figura 37. Espectro de 1H RMN (300 MHz, 25 ºC) de BMI-nBuSO$_3$ em CDCl$_3$.

Figura 38. Espectro de 13C RMN, APT (300 MHz, 25 ºC) de BMI-nBuSO$_3$ em CDCl$_3$.
Figura 39. Espectro de 1H RMN (300 MHz, 25 ºC) de BMI.2BuSO$_3$ em CDCl$_3$.

Figura 40. Espectro de 13C RMN, APT (300 MHz, 25 ºC) de BMI.2BuSO$_3$ em CDCl$_3$.
Figura 41. Espectro de 1H RMN (300 MHz, 25 ºC) de BMMI.MeSO$_3$ em CDCl$_3$.

Figura 42. Espectro de 13C RMN (300 MHz, 25 ºC) de BMMI.MeSO$_3$ em CDCl$_3$.
Figura 43. Espectro de 1H RMN (300 MHz, 25 ºC) de MMI.MeSO$_3$ em CDCl$_3$.

Figura 44. Espectro de 13C RMN, APT (300 MHz, 25 ºC) de MMI.MeSO$_3$ em CDCl$_3$.
Figura 45. Espectro de 1H RMN (300 MHz, 25 ºC) de MMI.nBuSO$_3$ em CDCl$_3$.

Figura 46. Espectro de 13C RMN, APT (300 MHz, 25 ºC) de MMI.nBuSO$_3$ em CDCl$_3$.
Figura 47. Espectro de 1H RMN (300 MHz, 25 ºC) de BBI.MeSO$_3$ em CDCl$_3$.

Figura 48. Espectro de 13C RMN, APT (300 MHz, 25 ºC) de BBI.MeSO$_3$ em CDCl$_3$.
Figura 49. Espectro de 1H RMN (300 MHz, 25 ºC) de BBI.EtSO$_3$ em CDCl$_3$.

Figura 50. Espectro de 13C RMN, APT (300 MHz, 25 ºC) de BBI.EtSO$_3$ em CDCl$_3$.
Figura 51. Espectro de 1H RMN (300 MHz, 25 °C) de DdI(CH$_2$)$_2$IDd.MeSO$_3$ em CDCl$_3$.

Figura 52. Espectro de 13C RMN, APT (300 MHz, 25 °C) de DdI(CH$_2$)$_2$IDd.MeSO$_3$ em CDCl$_3$.
Figura 53. Espectro de 1H RMN (300 MHz, 25 °C) de Bl(CH$_2$)$_2$IB.MeSO$_3$ em CDCl$_3$.
7. Referências

