From Network to Spectrum: A Software-Defined Networking (SDN)-based decision-making system for H-CRAN

Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Computer Science

Advisor: Prof. Dr. Juergen Rochol

Porto Alegre
January 2019

128 f.: il.

1. Heterogeneous cloud radio access networks. 2. Decision making system. 3. Software-defined networking. I. Rochol, Juergen. II. Título.
“The truth isn’t always beauty,
but the hunger for it is.”

— Ms. Nadine Gordimer
ACKNOWLEDGMENTS

I would like to express my gratitude to my mother Maria Aparecida Sousa Gay Marotta and also my sister Samantha Marotta. They are my life examples, my idols, and my reasons to go further. In addition, I would like to thank my stepfather, nephew, and niece, Antonio Donizete Silva Santos, Yago Marotta Diniz, and Maria Paula Marotta Diniz, for all the love and joy shared with me.

I am grateful to my fiancée, Renata Sayuri Muranaka, who spent the last decade by my side. She always listened carefully to my problems and tried her best to help me. My best friend, my love, and my happiness.

I would like to express my gratitude to those that I cannot say it in person, my father Antonio Ernesto Marotta, my grandmother Maria da Penha Sousa Gay, and my grandfather Sebastião Milton Gay. They are not among us anymore, however, they are still alive in my heart, dreams, and thoughts. I am also grateful to my family, which always took care of me with love and joy.

I would like to express my gratitude to my advisor, prof. Juergen Rochol for all the encouragement and guidance to become a better researcher. In addition, I would like to give a special thanks to my professor Cristiano Bonato Both for his good advices and time, always giving his best effort and being present during my whole Ph.D pushing me to become a better version of myself everyday. Also, I am thankful to my external advisor professor Luiz DaSilva, who received me during my internship in Dublin and never left me ever since, participating in the whole development of this work and of myself.

I am grateful to all of my friends, mainly, Matias Schmuneck, Iulislois Zacarias, Gustavo Araujo, Juliano A. Wickboldt, Leonardo R. Faganello, Lucas Bondan, Luiz Otávio V. B. Oliveira, Anderson Silva, Maicon Kist, Henrique Resende, Ian Schilling, Pedro Isolani, and Wanderson P. de Jesus. All of them were always present making this slice of my life enjoyable and happy.

I would like to thank also the rest of my colleagues, friends, professors, and staff of the Informatics Institute from UFRGS, by their good work and assistance. Mainly, Luís Otavio and Carlos Alberto (Cabeto), by their support during the accomplishment of this work.

Finally, I would like to express my gratitude to those people that influenced me directly or indirectly during my Ph.D and also my life. Thank you all.
ABSTRACT

Heterogeneous Cloud Radio Access Networks (H-CRAN) incorporate Heterogeneous Networks (HetNet) and Cloud Radio Access Networks (C-RAN) concepts for next-generation cellular networks. H-CRAN exploits the heterogeneity of macro and small cells from HetNet, enabling cellular networks to achieve a higher spectral efficiency. Meanwhile, concepts from C-RAN involving baseband units and remote radio heads enable H-CRAN to insert a centralized point of processing for cellular networks, reducing capital and operational expenditures. Although H-CRAN brings several opportunities to cellular networks, it is not free from challenges. Among the different challenges existent, we highlight the most relevant ones, (a) high intercell interference; (b) critical latency constraints in long-distance wireless signal processing; and (c) poor allocation of processing resources.

To address these challenges, we propose a Software-Defined Networking (SDN)-based decision-making system able to be programmatically changed to make decisions that can decrease interference, meet delay constraints, and mitigate processing underusage for long-term operation of an H-CRAN. By adding concepts of SDN with a simplified object-oriented API, it is possible to logically centralize the control of H-CRAN considering a pool of physically distributed equipment. The methodology employed to show the feasibility of the proposed approach is based on the development of a prototype that supports a wide range of decision algorithms. This prototype was evaluated in three case studies conducted on a simulated environment based on 3GPP specification for simulators. In the first case study, we evaluate the network overload implied by adding an SDN-based decision-making system to H-CRAN. Afterwards, a decision algorithm is executed to exploit resource sharing deciding which elements of an H-CRAN can be used by two operators interchangeably to reduce interference and increase spectrum efficiency at the spectrum level. The third case study shows that the distance between cloud and remote radio heads must be considered in processing power allocation decisions and also when assigning a virtual baseband unit to the cloud. Evaluating the case studies becomes clear the need of an SDN-based decision-making system in H-CRAN to address the inherent challenges of these networks.

Keywords: Heterogeneous cloud radio access networks. decision making system. software-defined networking.
Da Rede para o Espectro: um sistema de tomada de decisão baseado em SDN para H-CRAN

RESUMO

As redes de acesso a rádio heterogêneas baseadas em conceito de nuvem (H-CRAN) incorporam conceitos de redes heterogêneas (HetNet) e redes de acesso de rádio em nuvem (C-RAN) para serem utilizadas nas redes de celulares da próxima geração. H-CRAN explora a heterogeneidade das macro e pequenas células das HetNets, permitindo que as redes de celulares alcancem uma maior eficiência espectral. Já, os conceitos de C-RAN envolvendo unidades de banda base e cabeças de rádio remotas permitem que a H-CRAN insira um ponto de processamento centralizado nas redes de celulares, reduzindo os gastos de capital e operacionais. Embora H-CRAN traga várias oportunidades para as redes de celulares, sua adoção não é livre de desafios. Entre os diferentes desafios existentes, destacamos os mais relevantes, (a) alta interferência intercelular; (b) restrições de latência críticas no processamento de sinal sem fio de longa distância; e (c) má alocação de recursos de processamento. Para enfrentar esses desafios, propomos um sistema de decisão baseado em software-determinado por rede (SDN) capaz de ser modificado para criar decisões que possam diminuir a interferência, atender às restrições de atraso e mitigar a subutilização de processamento para o funcionamento a longo prazo de uma H-CRAN. Ao adicionar conceitos de SDN e uma API orientada a recursos (ROA) simplificada, é possível centralizar logicamente o controle de H-CRAN considerando um conjunto de equipamentos distribuídos fisicamente. A metodologia empregada para mostrar a viabilidade da abordagem proposta baseia-se no desenvolvimento de um protótipo que suporta uma ampla gama de algoritmos de decisão. Este protótipo foi avaliado em três estudos de caso realizados em um ambiente simulado com base na especificação 3GPP para simuladores. No primeiro estudo de caso, avaliámos a sobrecarga de rede implícita ao adicionar um sistema de decisão baseado em SDN para H-CRAN. Posteriormente, um algoritmo de decisão é executado para explorar o compartilhamento de recursos, decidindo quais elementos de uma H-CRAN podem ser utilizados por duas operadoras de forma intercambiável para reduzir a interferência e aumentar a eficiência espectral. O terceiro estudo de caso mostra que a distância entre nuvem e cabeças de rádio remotas deve ser considerada nas decisões de alocação de processamento. Ao avaliar cada um dos estudos de caso, fica evidente a necessidade de um sistema de decisão baseado em SDN em H-CRAN para
atacar os desafios inerentes dessas redes.

Palavras-chave: Redes de acesso a rádio heterogêneas baseadas em conceito de nuvem; Sistema de tomada de decisão; Redes definidas por software.
ACRONYM

3GPP Third Generation Partnership Project
ABS Almost Blank Subframes
API Application Program Interface
AWGN Additive White Gaussian Noise
BBU Base-Band Unit
BER Bit Error Rate
BILP Binary Integer Linear Programming
BS Base Station
C-RAN Cloud Radio Access Networks
CAPEX Capital Expenditure
CA Carrier Aggregation
CC-CSON Cloud-Computing based Cooperative Self Organization Networking
CC-CoMP Cloud-Computing-based Coordinated Multi Point
CP Central Processor
CRRM Cooperative Radio Resource Management
CSI Channel State Information
CSON Cooperative Self-Organizing Network
CoMP Coordinated Multipoint Transmission and Reception
D2D Device-to-Device communication
DPoA Destination Point-of-Access
DSA Dynamic Spectrum Access
Eb/No Energy per bit to noise power spectral density ratio
F-RAN Fog Radio Access Networks
FBMC Filter Bank MultiCarrier
FEC Forward Error Correction
FFT Fast Fourier Transform
GPP General Purpose Processor
H-CRAN Heterogeneous Cloud Radio Access Networks

HARQ Hybrid Automatic Repeat reQuest

HSPA High Speed Packet Access

HetNet Heterogeneous Networks

Hz hertz

JT Joint Transmission

KPI Key Performance Indicator

LSA Licensed Shared Spectrum Access

LTE-A Long Term Evolution Advanced

LTE Long Term Evolution

MAC Media Access Layer

MDC Micro Data Centers

MIMO Multiple-Input Multiple-Output

MME Mobility Management Entity

NFV Network Function Virtualization

OFDMA Orthogonal Frequency-Division Multiple Access

OFDM Orthogonal Frequency Division Multiplexing

ONF Open Networking Foundation

OPEX Operational Expenditure

PER Packet Error Rate

PHY Physical Layer

PoA Point-of-Access

QAM Quadrature Amplitude Modulation

QSI Queue State Information

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RAT Radio Access Technologies

RF Radio Frequency

RRH Remote Radio Head

RSSI Received Signal Strength Indication
SDN Software-Defined Networking

SDR Software-Defined Radio

SDWN Software-Defined Wireless Networking

SINR Signal-to-Interference-plus-Noise Ratio

SNR Signal-to-Noise ratio

UE Users Equipment

WCDMA Wideband Code Division Multiple Access

WiFi Wireless Fidelity

eICIC enhanced Inter-Cell Interference Control

eNB E-UTRAN Node B

km Kilometer

ms Millisecond

vBBU Virtual Baseband Unit

VNF Virtual Network Function
LIST OF FIGURES

Figure 2.1 H-CRAN: Resource levels...31
Figure 2.2 Optimum number of antennas and spectrum per user34
Figure 2.3 H-CRAN: Spectrum level...35
Figure 2.4 H-CRAN: Infrastructure level ...37
Figure 2.5 H-CRAN: Network level ...40

Figure 4.1 H-CRAN system..59
Figure 4.2 Round-trip delay components in a Cloud Radio Access Networks (C-RAN).61

Figure 5.1 Centralized decision making system architecture based on SDN concepts. .72

Figure 6.1 H-CRAN with SDWN deployment ..90

Figure 7.1 Average throughput experienced by mobile subscribers93
Figure 7.2 Percentage of communications performed relative to the number of interferers ...94
Figure 7.3 Average energy consumption per RRH ..95
Figure 7.4 Total of control messages in each scenario96
Figure 7.5 SDWN control messages frequency and bandwidth consumption97
Figure 7.6 Small cells without resource sharing ..98
Figure 7.7 Saturation of small cells ...99
Figure 7.8 Small cells resource sharing ...100
Figure 7.9 Maximum distance between an RRH and the MDC responsible for processing its signals, as a function of available processing capabilities available at the MDC and the SNR experienced on the wireless channel.103
Figure 7.10 Maximum distance between an Remote Radio Head (RRH) and the Micro Data Centers (MDC) responsible for processing its signals, as a function of the target Bit Error Rate (BER) and the Signal-to-Noise ratio (SNR) experienced on the wireless channel. ...104
Figure 7.11 Processing consumption according to different values of α105
Figure 7.12 Average number of active MDCs per second for the biased decisions influenced by α ...106
Figure 7.13 Tradeoff between processing power consumption and consolidation in the Heterogeneous Cloud Radio Access Networks (H-CRAN).107
LIST OF TABLES

Table 2.1 H-CRAN trending technologies ...42
Table 4.1 Notation ..58
Table 5.1 SDWN controller responsibilities ..75
Table 6.1 SDWN southbound interface ...88
Table 7.1 Validation parameters ..101
Table 8.1 List of research activities conducted in 2014 ..111
Table 8.2 List of research activities conducted in 2015 ..112
Table 8.3 List of research activities conducted in 2016 ..112
Table 8.4 List of research activities conducted in 2017 ..113
Table 8.5 List of research activities conducted in 2018 ..113
CONTENTS

1 INTRODUCTION
1.1 Fundamental Question, Hypothesis & Research Questions ... 21
1.2 Main Contributions ... 24
1.3 Organization ... 25

2 SOFTWARE-DEFINED NETWORKING AND HETEROGENEOUS CLOUD RADIO ACCESS NETWORK OVERVIEW ... 29
2.1 Revisiting SDN Concepts.. 29
2.2 H-CRAN characterization... 30
 2.2.1 Spectrum Level ... 32
 2.2.2 Infrastructure Level ... 35
 2.2.3 Network level ... 39
 2.2.4 Trending technologies .. 41

3 RELATED WORK .. 45
3.1 Related Work of an SDN-based decision-making system ... 45
3.2 H-CRAN Challenges... 48
 3.2.1 High Intecell Interference ... 48
 3.2.2 Critical delay constraints in long distance wireless signal processing 51
 3.2.3 Poor processing power allocation .. 53
 3.2.4 Identified gaps .. 55

4 SYSTEM MODEL ... 57
4.1 Modeling an H-CRAN ... 57
4.2 Modeling H-CRAN Challenges.. 62
 4.2.1 Interference Reduction with Resource Sharing in H-CRAN 63
 4.2.2 Maximum Distance Between MDC and RRH under Delay Considerations 65
 4.2.3 Processing Power Underusage in H-CRAN .. 66

5 AN SDN-BASED DECISION-MAKING SYSTEM IN H-CRAN .. 71
5.1 Architecture .. 71
 5.1.1 Software-Defined Wireless Networking (SDWN) Controller Responsibilities 74
5.2 Decision algorithms ... 79
 5.2.1 Minimal Interference with Maximum Throughput though a Resource Sharing Decision Algorithm .. 79
 5.2.2 Maximizing Distance Between MDC and RRH Algorithms 80
5.3 Minimizing Processing Power Underusage Algorithm .. 82

6 PROTOTYPE AND INTERFACE DEFINITION .. 87
6.1 Controller Interface ... 87
6.2 H-CRAN and decision making system prototype .. 89
 6.2.1 H-CRAN prototype ... 89
 6.2.2 Decision Making System Prototype ... 90

7 RESULTS ... 93
7.1 Architecture Benefits and Communication Cost ... 93
 7.1.1 Throughput and Energy benefits of SDWN in H-CRAN ... 93
 7.1.2 Control message cost of SDWN in H-CRAN ... 95
7.2 Decision algorithms case study and results .. 97
 7.2.1 Throughput Maximization using Resource Sharing in H-CRAN 97
 7.2.2 Analyzing the Distance between MDC and RRH in an H-CRAN 101
7.3 Minimizing processing power underusage in H-CRAN ... 104

8 CONCLUSIONS ... 109
8.1 Research Agenda & Development ... 111
REFERENCES...115
APPENDIX A — PUBLISHED ARTICLES..123
APPENDIX B — CORRELATED PUBLISHED ARTICLES..125
APPENDIX C — CO-AUTHORED PUBLISHED ARTICLES ..127
1 INTRODUCTION

Data traffic in cellular networks has increased significantly over the past few years. Arguably, the current architecture of cellular networks, largely based on the deployment of macrocells, will not be able to accommodate the ever-growing traffic and the number of connected Users Equipment (UE) (AGYAPONG et al., 2014). To cope with this increase in traffic and number of connections, industry, and academia have been designing and gradually deploying the fifth generation (5G) cellular infrastructure. This infrastructure envisages denser and heterogeneous deployments in the Radio Access Network (RAN) through a massive number of small cells (e.g., femtocells and picocells) to cover specific geographical areas, overlapping with existing macrocells. The high density of 5G RAN increases its cost dramatically, turning it unsustainable for operators to cope with its deployment considering current business models. This scenario motivated the introduction of a new candidate architecture for 5G, called H-CRAN (PENG et al., 2014).

H-CRAN is an advanced radio access network architecture that takes the full advantages of both Heterogeneous Networks (HetNet) and C-RAN concepts to address the future growth of data traffic, and Quality of Service (QoS) demand of 5G (OSSEIRAN et al., 2014). In particular, from HetNets, a massive number of small cells of different Radio Access Technologies (RAT), e.g., Long Term Evolution (LTE) and Wireless Fidelity (WiFi), are spread along dense areas with high traffic demand to increase the overall network capacity (DAMNJANOVIC et al., 2011). The C-RAN, in turn, introduces the cloud computing paradigm in the cellular network architecture, where a set of low-power nodes, also referred to as RRH, connect to a Virtual Baseband Unit (vBBU) in the cloud to have their signal cooperatively processed (China Mobile Research Institute, 2011). H-CRAN architecture enables the deployment of dense HetNets with centralized cloud-based processing, enhancing the spectrum and the energy efficiencies.

The processing centralization provided in H-CRAN reduces significantly the cost for operators to deploy a sustainable infrastructure to 5G (PENG et al., 2014). Cheaper than a Base Station (BS), an RRH is composed of an array of antennas with their front-end connected to an optical interface to offload their workload, which comprises a set of in-phase and quadrature sample constituents (CPRI, Common Public Radio Interface, 2015). This workload potentially traverses multiple hops within an optical infrastructure, i.e., fronthaul, until arriving in the cloud where it will be processed. This cloud, in turn, comprises several General Purpose Processor (GPP) with plenty of processing capacity.
Within the cloud, processing resources regarding GPPs and memory are allocated for vBBU that computes the arrived workload (I et al., 2014)(QIAN et al., 2015). A controller within the cloud determines the processing resources allocated for each vBBU according to the arrived workload, which is directly influenced by the density of RRHs and UEs connected, their demand in the RAN, and their channel conditions, e.g., SNR (CHECKO et al., 2015)(SCHIMUNECK et al., 2017).

The H-CRAN presents several resources, e.g., channels, RRHs, and processors, that are spread along the RAN, fronthaul, and cloud. To classify these resources, we organized H-CRAN in three levels: (i) spectrum; (ii) infrastructure; and (iii) network (MAROTTA et al., 2015). In the first level, the operator’s licensed and unlicensed portion of the radio spectrum is characterized according to four domains i.e., time, frequency, space, and power. In the second, each active element, e.g., RRH and optical links, as well as passive element, e.g., buildings and masts, that composes the H-CRAN are considered resources that belong to the infrastructure level. In the third, spectrum and infrastructure are abstracted in sharing entities that are described according to high-level metrics, such as throughput, latency, and processing capacity. New requirements and challenges emerge from each resource level that must be addressed and managed to maintain H-CRAN operant. Instead of raising all requirements and challenges from H-CRAN, we prefer to focus on the main problems of each level that have a clear link between them (CHECKO et al., 2015):

1. High intercell interference: The dense deployment of small cells in the RAN generates interference that can cause signal intermittent and compromise the RAN spectral efficiency at spectrum level (ROST; BERNARDOS, 2014).

2. Critical latency constraints in long-distance wireless signal processing: the remote processing adds additional delay that prevent RRHs to be placed farther than few tens of Kilometers (kms) from the Base-Band Unit (BBU) hindering the centralization at infrastructure level (PENG et al., 2016).

3. Poor allocation of processing resources: as during the day different UEs may join and leave the RAN at any time with unpredictable channel conditions, processing resources in the BBU may naturally become unused or overloaded due to the dynamicity in the RAN characterizing underuse of these resources at the network level (CHECKO et al., 2015).

Recent research effort suggests that the inter-cell interference in H-CRAN can be miti-
gated through decisions involving power and spectrum resources taken by sophisticated enhanced Inter-Cell Interference Control (eICIC) mechanisms using Coordinated Multi-point Transmission and Reception (CoMP) and beamforming communication processed in the cloud as a single and centralized physical processing entity (PENG et al., 2015) (GERASIMENKO et al., 2015). In this case to account not just for radio but as well as for processing, a power-efficient cross-layer framework can be used to make decisions, e.g., which processors will be allocated to process an RRH, to perform optimal allocation of resources (BHAUMIK et al., 2012) (TANG; TAY; QUEK, 2015). This framework is based on the assumption of a fully centralized H-CRAN architecture to optimize the allocation of resources, which was proven to be infeasible due to the limitation of the maximum distance between BBU and RRH to meet delay constraints (China Mobile Research Institute, 2011) (AGYAPONG et al., 2014).

Since delay constraints prevent the full centralization of H-CRAN, the remote processing must be put physically closer to RRHs and spread along the RAN. In this case, MDCs are distributed within the RAN becoming part of a distributed cloud (PENG et al., 2016). In this distributed cloud, the decision to place a vBBUs within an MDC determines the number of RRHs that can reuse the processing resources available. Therefore, the decision where to place a vBBU determines how efficient processing resources are used by allocating the exact number of physical equipment required, also referred to as consolidation (MATINMIKKO et al., 2014)(MUSUMECI et al., 2016). Usually, the decisions are taken using snapshots of the status of the H-CRAN resource levels being computed by algorithms to avoid inter-cell interference, meet delay constraints, and mitigate the underusage of processing resources (BHAUMIK et al., 2012)(MUSUMECI et al., 2016)(CARAPELLESE; TORNATORE; PATTAVINA, 2014)(CARAPELLESE et al., 2013)(TANG; TAY; QUEK, 2015)(SCHIMUNECK et al., 2017). However, the heterogeneity and dynamicity of the RAN inserts fluctuations in the usage of radio and processing resources during runtime compromising consolidation within the pool for long time operation. As the vast majority of solutions focus on the optimization of a static version of H-CRAN resources from which all the status are quantized and captured as a snapshot, they are unable to address the dynamicity of H-CRAN during runtime. In this case, it is required a decision-making system able to manage wireless, fronthaul, and cloud making decision to decrease interference, meeting delay constraints, and to mitigate processing underusage for long-term operation, leading to the following fundamental question.
1.1 Fundamental Question, Hypothesis & Research Questions

Fundamental Question: How to design a decision-making system able to address the challenges inherent of H-CRAN?

This thesis presents the following hypothesis to overcome the presented limitation in the context of H-CRAN.

Hypothesis: The decisions in an H-CRAN can be taken by an SDN-based system able to address different challenges considering delay constraints.

The following research questions (RQ) associated with the hypothesis are defined and presented to guide the investigations conducted in this thesis.

- What relevant information and technology are required to make decisions within an H-CRAN considering RAN, fronthaul, and cloud?
- What are the main decisions to be taken in an H-CRAN considering different limitations when adjusting the RAN, fronthaul, and cloud?
- How can an SDN-based system make decisions to reallocated resources to enhance their usage for long-term operations considering the limitations inherent of H-CRAN?

In this thesis, we propose an architecture that host decision algorithms able to manage wireless, fronthaul, and cloud aiming to decrease inter-cell interference, meeting delay constraints, and enhancing processing power allocation in H-CRAN. By adding concepts of SDN to H-CRAN with a simplified object-oriented Application Program Interface (API), it is possible to logically centralize the control of H-CRAN considering a pool of physically distributed equipment. As an additional feature, SDN enables programmability at the control level enabling operators to write and run personalized decision algorithms considering wireless, fronthaul, and cloud to achieve enhanced usage of resources and consolidation. The proposed API allows for more integrated resource management by offering high-level abstractions and operations to handle different sorts of resources (*i.e.*, computing, optical, and wireless links). Further, administrators can use the API to collect information from H-CRAN to use this information when deploying or optimizing algorithms.

It is worthy mentioning that just applying SDN concepts in H-CRAN is not novel
by itself. Most of current solutions rely on the well known OpenFlow\(^1\) protocol \(\) (YANG et al., 2016) (PENG et al., 2014). These solutions usually propose changes to the OpenFlow API to support wireless and fronthaul related functions. However, this type of changes have two drawbacks: (i) wireless and fronthaul information must be captured and adapted to met the OpenFlow API; and (ii) change the real purpose of OpenFlow from control network flows to control H-CRAN substratum. Opposite to that, we do a step further by rethinking the whole application of SDN to H-CRAN from scratch to control and manage the H-CRAN substratum without changing the already well established protocols but also using them combined with the new proposed API.

The methodology employed to show the feasibility of the proposed architecture and API is based on the development of a prototype that supports a wide range of decision algorithms. This prototype was evaluated in four case studies conducted on a simulated environment based on 3GPP specification for simulators (3rd Generation Partnership Project (3GPP), 2010, Annex A). In the first case study, we evaluate the network overload implied by adding a centralized SDN-based decision-making system in H-CRAN. Afterwards, in the second case study, a decision algorithm is executed to exploit resource sharing deciding which elements of an H-CRAN can be used by two operators interchangeably to reduce interference and increase spectrum efficiency at the spectrum level. The third case study shows that the distance between MDC and RRH must be considered in processing power allocation decisions and also when assigning a vBBU to an MDC. Finally, in the fourth case study, we deploy a decision algorithm for long-term operation of an H-CRAN to optimize processing resources allocated during runtime exploiting the tradeoff between processing consumption and consolidation regarding average number of MDCs active during execution.

1.2 Main Contributions

Throughout the development of this study, many contributions are expected regarding conceptual advancements in the state-of-the-art of decision-making systems in the context of H-CRAN. Some of these contributions are listed as follows:

1. Rethinking design principles of SDN to control H-CRAN influencing its decision-making process;

\(^1\)OpenFlow - https://www.opennetworking.org/ja/sdn-resources-ja/onf-specifications/openflow
2. Adding more flexibility in resource management through an SDN-based decision-making system to enhance performance in RAN, fronthaul, and processing pool;
3. Adding support for decision algorithms guaranteeing that delay budgets are not violated;
4. Creating a programmability environment based on a resource-oriented API, which allows high-level abstractions for manageable resources;

1.3 Organization

The remainder of this thesis is organized as follows.

In Chapter 2, a brief overview of the evolution of H-CRAN is presented focusing on the characterization of the different resource levels. Afterwards, discussions are presented about SDN and its role in the different levels of H-CRAN, interfaces and standardization efforts, that are fundamental to design an SDN-based decision-making system.

In Chapter 3, the most relevant state-of-the-art for SDN and decision-making systems are investigated according to main challenges identified at the spectrum, infrastructure, and network levels of an H-CRAN. Within this chapter, we also map the most important decisions to be made according to the literature to tackle the different challenges presented in H-CRAN. Finally, we highlight the gaps presented in the literature that serve as motivation to this work.

In Chapter 4, an H-CRAN environment is modeled and presented. Afterward, we present a problem definition for each of the main challenges covered in this thesis: (i) eICIC considering resource sharing; (ii) maximum distance between MDC and RRH considering delay constraints; and (iii) enhanced processing power consumption for long-term operation H-CRAN.

In Chapter 5, the key concepts that drive this research are presented. These concepts are organized in the form of a conceptual architecture which includes the main components of an SDN platform proposed to enable more flexible and integrated resource management in the context of wireless, fronthaul, and cloud. Afterward, we present three decisions algorithms to be host by the proposed architecture for H-CRAN that can address the problems modeled in Chapter 4.

In Chapter 6, the prototype of our architecture is presented. First, we present the resource-
oriented API necessary to create the decision algorithms. Afterward, we delve into
details of how the prototype and the decision algorithms were deployed consider-
ing the architecture definitions. Finally, the prototype of our simulated scenario is
presented according to the definitions of the (3rd Generation Partnership Project
(3GPP), 2010, Annex A).

In Chapter 7, four case studies are presented to show the feasibility and benefits of em-
ploying an SDN-based decision-making system in H-CRAN. We start by presenting
a case study to measure the cost of deploying an SDN-based decision-making sys-
tem in H-CRAN and showing the potential benefits when employing it. Afterward,
we evaluated our proposed decision algorithms in the other three case studies. In the
second case study, we show the employment of a software controller in H-CRAN
to achieve enhanced eICIC and resource sharing among operators. The third case
study focuses on decisions taken that influence the tradeoff between distance of
MDC and RRH and processing power when considering delay limitations. Finally,
in the fourth case study, we evaluate the tradeoff of reducing the consumption of
processing resources against achieve better consolidation regarding MDCs active.

In Chapter 8, some final remarks and conclusions are presented. Also, answers to the
fundamental questions proposed are discussed and justified. Finally, an overview of
the development path of this thesis regarding accomplished activities is presented.
2 SOFTWARE-DEFINED NETWORKING AND HETEROGENEOUS CLOUD RADIO ACCESS NETWORK OVERVIEW

The main objective of this chapter is to characterize SDN concepts, introducing decision-making system, and highlight the main contributions that an SDN-based decision-making system can bring to H-CRAN. In this case, in Section 2.1, we start by briefly revisiting SDN concepts defining a decision-making system. Afterward, we present an overview of H-CRAN, exploiting its architecture considering different concepts and technical details highlighting the potential of employing an SDN-based decision-making system.

2.1 Revisiting SDN Concepts

Because of the evidenced benefits of SDN in wired networks, such as network programmability and flexible operation, it is natural to consider this paradigm as a framework to deliver the same benefits to wireless networks (PENTIKOUSIS; WANG; HU, 2013). Before discussing the realization of SDN in H-CRAN, we do a brief review on current SDN concepts. SDN is conceptually organized in four planes. (i) Application plane, (ii) Control plane, (iii) Forwarding plane, and (iv) Management plane (WICKBOLDT et al., 2015). Decision algorithms sitting on the Application plane are designed and implemented by service providers that serve their own subscribers. Decision algorithms have routines to eventually issue requests for network resources, which are interpreted and translated into fine-grain configurations by network controllers at the Control plane. Besides handling requests coming from services, controllers also react upon receiving events generated by devices from the Forwarding plane (e.g., to recover from failure or performance degradation). Finally, the Management plane manages the components of an SDN architecture (e.g., applications, controllers, and devices) by monitoring and tuning the health of the whole network across planes to meet high-level policies and agreements.

SDN also assumes three main Application Programming Interfaces (APIs): (i) Northbound API, (ii) Southbound API, and (iii) Management API. The Control plane provides the Northbound API for service providers to create their network applications. Controllers, in turn, make use of the Southbound API to interact with devices in the Forwarding plane, i.e., by issuing low-level instructions and collecting information. The
Management API enables the Management plane to handle devices and services in all other planes, through legacy management protocols, such as SNMP, or new ones, such as OF-Config.

A network system built based on SDN concepts enable service providers to determine the behavior of the network according to decisions taken. These decisions definition depends directly on the context that they are inserted, e.g., a wired or wireless network, and the decision-maker objectives, e.g., enhance throughput or prevent interference. For instance, assuming the native usage of SDN in wired networks through OpenFlow implementations, a decision algorithm can determine the route that a data flow will be sent through specific devices of the forwarding plane and with a determined configuration, e.g., QoS class and channel bandwidth. It is worth mentioning that the granularity of a decision depends on the interfaces, the system implementation, and decision algorithm objectives. For instance, a decision algorithm can simply be built to decide which devices will prioritize some data flow, whereas others can specify the packet priority at the level of link buffers if the system allows to. Although an SDN-based decision-making system is easily determined and exemplified in a wired network context, for a wireless network, such as H-CRAN, its potential benefits, design, and implementation still needs to be determined. In this case, next, we characterize H-CRAN inferring the potential benefits of employing SDN-based decision-making system before following to its proposal.

2.2 H-CRAN characterization

To present an overview of H-CRAN, we divided it in three levels of resources, depicted in Figure 2.1. For each of these different levels, we present a deeper insight organized in three Sections, characterizing, highlighting challenges, and presenting potential benefits of employing SDN-based decision-making system to alleviate and address these challenges. At the end we present main technologies identified that have a clear relationship with the proposal of an SDN-based decision-making system.

- **Spectrum level** - The radio frequency spectrum is a costly and finite resource bounded by licenses and agreements. Therefore, manage the spectrum becomes mandatory to extend the pool of available resources (MATINMIKKO et al., 2014). The spectrum can be managed through different allocation units, e.g., channels used...
Figure 2.1: H-CRAN: Resource levels

- Infrastructure level - With the increasing traffic from mobile devices, operators have to constantly upgrade their radio access and backhaul infrastructure, incurring in additional Capital Expenditure (CAPEX) and Operational Expenditure (OPEX) (COSTA-PéREZ et al., 2013). Manage and control the infrastructure is fundamental to reduce costs. Nowadays, a key factor for manage and control the infrastructure is the virtualization of physical entities by decoupling their functionality from the hardware, through a standardized software programmable layer (LIANG; YU, 2014). Through virtualization in H-CRAN, concepts from HetNet and C-RAN begin to blur, because femtocells and picocells are created by RRHs instead of low power base stations and access points. This means that the infrastructure workload is computed at an MDC, where resource availability as well as overloading of physical entities becomes easier to assess. Determining the infrastructure elements and potential bottlenecks among (intra) and within (inter) its elements enables an SDN-based decision-making system to pro/reactively make decisions in order to enhance on IEEE 802.11.* and Resource Blocks from LTE frames. In addition, unused portions of the spectrum, called white spaces, can be also used as allocation units through Dynamic Spectrum Access (DSA). Each allocation unit can be expressed as power, frequency, time, space, and code, being shared and computed at a vBBU. These allocation unit are cornerstone to determine what a SDN-based decision-making system can influence at spectrum level.
H-CRAN performance.

- **Network level** - Resources of spectrum and infrastructure can be abstracted into vBBU, network slices, and logical links. A vBBU represents a set of available resources, *e.g.*, a base station, a set of interconnected base stations, or part of a base station, such as antennas. Network slices, in turn, are the arrangement of available resources among two or more vBBU. Furthermore, logical links are virtual entities of link type that connect vBBUs. Given this abstraction, the network level focuses on managing available resources, regardless of their physical representations, *e.g.*, spectrum and infrastructure. At this level, a vBBU can be responsible for processing the entire network configuration, orchestration, signal processing, and accounting for policies/QoS requirements. In this level, the abstraction provided enables an SDN-based decision-making system to determine the best allocation of processing and data-flow coordination for an entire H-CRAN.

Following, for each presented resource level, a Section containing a deeper overview is presented.

2.2.1 Spectrum Level

In H-CRAN combining the centralized computation of C-RANs with the multi-tiered architecture of HetNets presents several opportunities for management and control the spectrum. Firstly, this combination simplifies the interference and orchestration processing problems encountered by both approaches (PENG et al., 2014). Secondly, secondary use of spectrum – in a Licensed Shared Spectrum Access (LSA) mode – becomes feasible with the capabilities of H-CRAN. Each of these opportunities is described bellow.

HetNets are already regarded as an effective method for achieving higher spectral efficiency, as evidenced by Third Generation Partnership Project (3GPP) Releases 10 and 11 (and beyond) (3rd Generation Partnership Project (3GPP), 2015). The main reason for this endorsement is the opportunity for reuse of spectrum at several different network tiers. However, eICIC is necessary to deal with interference among network tiers sharing the same spectrum. eICIC reduces interference in the frequency domain by employing Carrier Aggregation (CA), in the time domain with Almost Blank Subframes (ABS), or by using power control (LOPEZ-PEREZ et al., 2011). Enabling advanced frequency and time domain techniques in traditional network architectures requires a high degree of base
station connectivity in the form of a direct X2 interface between pico and macro cells.

H-CRAN, different from HetNet, directly enables the application of advanced CA and ABS techniques because processing for both pico and macro cells is orchestrated from the same cloud. Moreover, the central processing aspects of C-RAN, combined with the multi-tier architecture of HetNet, enable new methods to handle inter-tier interference (PENG et al., 2014). Such an application of interference cancellation, based on the differing power levels among tiers, is discussed in a non-cooperative sense by Learned et al. (LEARNED; JOHNSTON; KAMINSKI, 2013). The centralized nature of an H-CRAN architecture furthers this approach by easing the identification of suitable channels for co-channel inter-tier operation.

The centralized processing provided by the integration of HetNets with C-RANs enables the application of new methods for efficient spectrum use. Eliminating the processing constraint of backhaul by computing base stations workloads with zero delay at vBBUs paves the way for ideal-backhaul interference coordination. The assumption of zero delay is proven to be infeasible which will be better discussed later in Chapter 3. Cloud-Computing-based Coordinated Multi Point (CC-CoMP) provides an example of such coordinated transmission and reception. A CC-CoMP-enabled H-CRAN resembles a large distributed Multiple-Input Multiple-Output (MIMO) system where femto, pico, and macro cells are simply RRHs connected to a centralized baseband processing center in which signals are jointly processed. By eliminating the strict backhaul and synchronization requirements among distributed cells, joint processing becomes practical and economically viable in H-CRAN.

When using CC-CoMP, user rate increases with the number of picocells or antennas involved, even in the case of single-antenna UE. This improvement suggests a trade-off between the number of cooperating cells and spectrum (GOMEZ-MIGUELEZ et al., 2014). The impact of the increasing number of picocells and antennas is clearer when considering a virtual network operator, which obtains antennas and spectrum from a pool, and configures the network on-the-fly. The pool of antennas is a feature of H-CRAN, whereas the spectrum pool may come from LSA, for example. The network operator becomes free to use spectral and infrastructure resources, according to leasing cost of each and required performance. In Figure 2.2, the trade-off is depicted through the optimal number of antennas and spectrum (MHz) required to satisfy a minimum rate constraint of 60 MBps and SINR of 10 dB, as a function of the ratio of the antenna to spectrum costs. The study in Gomez-Miguelez et al. (GOMEZ-MIGUELEZ et al., 2014) outlines
Figure 2.2: Optimum number of antennas and spectrum per user

scenarios for which more infrastructure and less bandwidth use is better and vice-versa. The inherent flexibility enabled by H-CRAN supports the dynamic tradeoff between infrastructure and spectrum.

The flexibility of the H-CRAN also enables future infrastructure services that go beyond “Infrastructure As A Service”. H-CRANs allow the spectrum to be shared with a much finer granularity than alternative approaches. In LTE, for example, sharing can occur in a resource block or in a subframe, whereas the joint processing enabled by H-CRAN allows sharing at the level of symbols. Finer granularity of sharing enables better adaptation to different operator demands and network heterogeneities, resulting in improved resource utilization. Furthermore, we can also consider spatially multiplexed streams belonging to different operators and sharing the same spectrum, i.e., confining the signals from different operators to different physical locations whilst using the same spectrum. In this scenario, H-CRAN performs signal processing to convert the different streams into a single real signal that will be transmitted through the air, such as shown in Figure 2.3. These operations may be similar to today’s Orthogonal Frequency Division Multiplexing (OFDM) or Filter Bank MultiCarrier (FBMC) modulation and spatial precoding. Each operator’s stream of complex samples is modulated and encoded differently, offering vendor variety or service/market/client adaptation, but operating in the same spectrum.
bands.

Finally, H-CRAN architectures enable the application of cognitive radio techniques for spectrum (PENG et al., 2015b). H-CRAN can be viewed as a large scale, highly capable cognitive radio, where several distributed radios are connected to a central processing element. The H-CRAN processing unit has a clear picture of spectrum use from its numerous distributed sensor elements, allowing for high confidence when selecting channels. The integration of such a volume of sensing data directly enables the realization of LSA style use of spectrum by providing sufficiently reliable information to respect spectrum rights of a primary user.

At MDCs, an SDN-based decision-making system can be employed, with access to a wealth of information, requiring less complex techniques for the determination of intelligent actions. Since these techniques are centrally administrated, regulation of autonomous radio action is simplified, i.e., regulators need only to monitor the decisions of SDN-based decision-making system, rather than several distributed ones. More than any other aspect, easing the requirements on effective regulation makes H-CRAN architectures boosted with an SDN-based decision-making system an enabling technology for the use of cognitive radio methods for spectrum sharing.

2.2.2 Infrastructure Level

According to 3GPP, the infrastructure of an operator is classified in two categories: (i) passive resources and (ii) active resources (3GPP- Technical Specification Group Ser-
vices and System Aspects, 2014). In the former, passive resources are classified as not computational related, such as sites, building premises, and masts (LIANG; YU, 2014). These passive resources can be sub-leased among operators characterizing passive sharing. For example, in some Brazilian cities, the deployment of new towers in some areas is only granted when all towers in these areas have their capacity exhausted. Therefore, in this case, the passive sharing among operators is mandatory to provide capacity without the need for new towers. Active resources, in turn, encompasses entities that are directly bound to the network processing, e.g., base stations, access points, backhaul, routers, and switches. Mechanisms that abstract these entities can be used to make them accessible from software, easing their remote management through the network (COSTA-PéREZ et al., 2013). Such an abstraction can be performed, for example, through the use of virtualization and SDN paradigms. Taking advantage of such paradigms, enables an SDN-based decision-making system to be employed determine the best configurations to enhance H-CRAN performance, solving bottlenecks and easing the sharing. Since passive resource sharing is well exploited and is already provided by third parties (COSTA-PéREZ et al., 2013) with almost no benefits from employing an SDN-based decision-making system, in this section we focus on active resources, which management and control enable massive reduction of CAPEX and OPEX.

In H-CRAN different from HetNets and C-RAN, RRHs replace base stations and access points, among other RAN devices, as depicted in Figure 2.4. Through a high capacity backhaul based on millimeter waves and/or optical links, RRHs upload their workload (e.g., modulation and MIMO precoding) to be computed at an MDC. Different from a C-RAN environment that focus on macro cell workloads, in H-CRAN the huge amount of processing workload coming from macro and small cells will eventually turn the sharing of MDCs a need, creating MDC pools. Operator resources from macro and small cells can be efficiently shared by having their workload optimally processed at shared pools through Cloud-Computing-based Cooperative Radio Resource Management (CC-CRRRM) (PENG et al., 2014). For example, by centralizing the workload processing, the pool can easily identify a macro cell as overloaded, directing users to handover to a shared underutilized small cell from another operator (e.g., using IEEE 802.21) without the need for additional steps to process the inter-operator handover. In this case, an SDN-based decision-making system can be employed to determine whether a handover must be triggered and whether a shared infrastructure can be exploited.

In a recent 3GPP technical report (3GPP- Technical Specification Group Services
Figure 2.4: H-CRAN: Infrastructure level

In the first scenario, the core of an operator is shared with other operators to handle two or more RANs. In H-CRAN, the sharing of an operator core can be represented by the MDC processing capacity being shared among different RANs. In this case, the important decision to which MDC the workload will be sent is fundamental, which can be determined by an SDN-based decision-making system. For instance, in Figure 2.4, let’s suppose that MDC-B becomes overloaded by processing heterogeneous cells workloads from RAN-B. Therefore, MDC-B can forward its workload to be processed on the idle MDC-A. In this scenario, a major challenge is how to share the processing capacity among BBUs by distributing the workload without inserting more complexity. The decision of workload distribution can be modeled as an optimal problem MDCs similar to, for example, a bin packing problem (QIAN et al., 2015) considering frequency, time, and
space, and the container as a vBBU to be placed within an MDC that can be solved within an SDN-based decision-making system. It means that the workload distribution is an optimization problem that must be processed without compromising the MDCs to meet strict performance requirements. For example, according to a white paper from China Mobile Institute Research (China Mobile Research Institute, 2011), MDCs have a time restriction for processing workloads of 3 ms in LTE/Long Term Evolution Advanced (LTE-A). According to the strict performance requirements, heuristic solutions must be explored to solve the problem of workload distribution. As a matter of fact, such strict performance requirements must be met to turn feasible the employment of an SDN-based decision-making system in H-CRAN.

In the second scenario, a RAN from an operator is shared with other operators without mixing spectrum resources. In H-CRAN, the same scenario would be represented by vBBUs processing workloads from a RAN without mixing their spectrum resource pool. vBBUs may exploit Cloud-Computing based Cooperative Self Organization Networking (CC-CSON) techniques to orchestrate all the RAN connected to the pool. Using CC-CSON, the MDCs exchange information to allow subscribers from different operators to use the same RRHs and gain access to the network. However, the isolation of spectrum resources of each operator is kept, i.e., frequencies of both operators are not shared. In Figure 2.4, RAN-A could have its workload divided between Operator-A and Operator-B to be forwarded and processed by their respectively MDCs. This forwarding can be performed directly, between MDC-A and MDC-B, or indirectly, through a Cloud provider. In this scenario, the main open challenge is how to provide the workload exchange among MDCs with different vBBUs. The workload exchange requires the definition of a new interface and stack of protocols among vBBUs, whereas there already exist interface definitions for communication between vBBUs and RRHs, such as the Common Public Radio Interface (CPRI) and the Open BBU-RRH Interface (OBRI) (China Mobile Research Institute, 2011). Such interface can be modeled within an SDN-based decision-making system easing the integration and workload exchanging among MDCs.

The third and fourth scenarios refer to the sharing of coverage area among operators, being performed partially and fully respectively. Partial sharing means that RANs from different operators can be shared within a small geographic area. Full sharing, in turn, combines RANs from different operators completely to enlarge their coverage in a country. vBBUs within MDCs could accept access from subscribers of different operators inside their own infrastructure to expand the coverage area. In addition, vBBUs can share
their workload, as well as their RANs, with other operator’s vBBUs, considering all the entities shown in Figure 2.4. In this scenario, a partially shared H-CRAN has the challenge to provide a policy mechanism to grant permission to or restrain operators from using other RANs. For fully shared H-CRANs, scalability becomes a major challenge because there are physical limitations to move workloads among a huge number of vBBUs within different MDCs as well as managing them. In this case, an SDN-based decision-making system can determine where to move a workload by employing algorithms that solve the shortest path or minimum spanning tree problem, where MDCs represent nodes connected by optical links that present the edges. The weight of each edge can be measured in terms of a weighted sum that considers the quantity, the delay, and the processing time needed to process the workload being exchanged. Different solutions can be explored, for example, Dijkstra’s algorithm for shortest path or Bernard Chazelle soft heap for spanning tree problem.

2.2.3 Network level

Integrating spectrum and infrastructure also considering that they may belong to different operators using H-CRAN requires the careful orchestration of resources to preserve bilateral agreements among operators. To this end, the state-of-the-art indicates solutions based on the abstraction of heterogeneous physical layer to an overlay (LIANG; YU, 2014) (COSTA-PéREZ et al., 2013) (DEMESTICHAS et al., 2013), which in this document is called the network layer, depicted in Figure 2.5. At the network layer, physical entities are abstracted according to high level network metrics, e.g., throughput and processing. To achieve such abstraction, we highlight four fundamental key enabling technologies: (i) Software-Defined Radio (SDR) for Radio Frequency (RF) processing decoupling in a software layer (China Mobile Research Institute, 2011); (ii) virtualization for physical layer complexity abstraction and isolation (LIANG; YU, 2014); (iii) Network Function Virtualization (NFV) for scalability and network functionalities isolation (COSTA-PéREZ et al., 2013); and (iv) SDN for centralization and improved orchestration of network control and management (BERNARDOS et al., 2014) accomplishing an SDN-based decision-making system. Below, for each of these technologies, we provide a brief description as well as a discussion of their employment in H-CRAN and major open challenges.

SDR refers to technologies where the baseband processing is performed by soft-
Figure 2.5: H-CRAN: Network level

Figure 2.5: H-CRAN: Network level

In H-CRAN, the use of software modules enables the baseband processing by a software layer in vBBUs containers placed within MDCs. As a consequence, operations, such as coding, modulation, signal processing, and radio parameter configurations, can be easily computed by the processing pool. Currently, an open challenge for SDR in H-CRAN is to provide an optimal solution to split radio functionalities between RRH and vBBUs to avoid performance degradation in terms of latency aggregation and higher energy consumption (WUBBEN et al., 2014). Although the technology to split radio functionalities is still an open research subject, their orchestration and control are likely to be solved within an SDN-based decision-making system (BARTELT et al., 2015).

Virtualization enables network entities to have their heterogeneous physical complexity abstracted to a homogeneous vBBU. Also, this technology avoids mixing workloads from different operators, isolating resources from the physical network in self-contained virtual machines or containers (DEMESTICHAS et al., 2013). In H-CRAN, BBUs and RRHs can be virtualized in vBBUs having their physical resources (e.g., frequencies and backhaul capacity) homogenized in higher network metrics. vBBUs can be linked, creating an overlay network, also called network layer, as depicted in Figure 2.5. Within a network layer, UEs that generate traffic can be represented by demand points. Network slices can then be created to combine resources from vBBUs to meet the requirements of demand points. However, the dynamicity of wireless environments imposes challenges for virtualization in H-CRAN. It means that virtualization must be performed over a dynamic resource pool that must be frequently recalculated to guarantee the correct operation of vBBUs (LIANG; YU, 2014). Virtualization is one of the main technologies re-
quired to the accomplishment of an SDN-based decision-making system within H-CRAN and, as such, could not be left without proper mapping.

NFV encapsulates network functionalities into software packages that can be distributed through the network to be performed in an homogeneous environment, for example, a virtualized network (BERNARDOS et al., 2014). In H-CRAN, NFV provides scalability for the sharing among operators that involves a huge number of vBBUs and RRHs, creating large network domains (China Mobile Research Institute, 2011). NFV also provides isolation of network functionalities by creating packages, or simply Virtual Network Functions (VNFs), that have their execution life cycle completely independent from others. The definition of a standard platform to manage the life cycles of VNFs is an open challenge for the realization of NFV in H-CRAN. Although it is not the focus of this work, in an SDN-based decision-making system, the management and chaining of VNFs can be remapped as decisions to be made for the entire H-CRAN.

SDN has been proposed as a solution for improved orchestration of networks (BERNARDOS et al., 2014). This orchestration is achieved through centralized controllers that provide a clear separation between control and data planes. In H-CRAN, the controller is a component of an SDN-based decision-making system hosted in an MDC processing pools. Data flows are established as rules to be deployed among or in vBBUs, providing rescaling of available resources without compromising the network (DEMES-TICHAS et al., 2013). A major challenge to realize SDN in H-CRAN is the creation of an interface that supports wireless network operations, e.g., controlling handover and managing mobility across heterogeneous RANs, which is one of the contributions of this work in the accomplishment of SDN-based decision-making system.

2.2.4 Trending technologies

Considering each of the different resource levels of H-CRAN, we highlight some trending technologies that will be indispensable for the conceiving of SDN-based decision-making system. In Table 2.1, we classified each technology according to the H-CRAN level and its application. In addition, different shareable resources are also presented as well as the Pros and Cons for each technology.

Considering Table 2.1, we can related each technology of different levels in the conceiving of resource management and sharing in an H-CRAN that are cornerstone to the design and implementation of an SDN-based decision-making system. One of the
<table>
<thead>
<tr>
<th>Trending Technology</th>
<th>Level</th>
<th>Resource Sharing</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD, LTE-FDD</td>
<td>Spectrum level</td>
<td>Frequency bands</td>
<td>• Symmetric data traffic • Free from interference</td>
<td>• Asymmetric data traffic • No reconfigurable link capacity • High cost • Need of guard band</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, LTE-TDD</td>
<td>Spectrum level</td>
<td>Time slot</td>
<td>• Asymmetric data traffic • No need of paired spectrum • Reuse of frequencies • Reconfigurable capacity</td>
<td>• Symmetric traffic • Inter-tier interference • Complex processing • Synchronization with UEs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biding</td>
<td>Spectrum level</td>
<td>Time slot</td>
<td>• Priority insertion</td>
<td>• Need of an auction system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency bands</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resource blocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Spectrum Access</td>
<td>Spectrum level</td>
<td>White space</td>
<td>• Unused frequency bands • Cognition • Sharing functionality</td>
<td>• Complex radio functions • Intermittent use • Restrict bands</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Licensed Shared Access</td>
<td>Spectrum level</td>
<td>Frequency bands</td>
<td>• Sub-leasing • Unused frequency</td>
<td>• Secondary use • Primary UE priority • Spectrum Broker</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC-CRRM</td>
<td>Spectrum level</td>
<td>Frequency bands</td>
<td>• Cooperatively management • Interference estimations • Radio resources recalculation • Optimal objectives</td>
<td>• Insertion of delays • Higher complexity used/shared • Need of BBU pool</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time slot</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Space</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC-CSON</td>
<td>Infrastructure level</td>
<td>BBU</td>
<td>• Self-configuration • Self-healing • Self-control • Autonomic management</td>
<td>• Insertion of delays • High complexity • Need of BBU pool • Need of handover technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RRH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtualization</td>
<td>Infrastructure level</td>
<td>BBU</td>
<td>• Abstracted level • High level network metrics • Resource flexibility</td>
<td>• Insertion of delays • Hard to guarantee QoS • High complexity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RRH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Function Virtualization</td>
<td>Network level</td>
<td>Network Function-</td>
<td>• Software bundle • Scalability • Interchangeability of network service</td>
<td>• Need of Orchestrator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software-Defined Networking</td>
<td>Network level</td>
<td>Network Flows</td>
<td>• Control/Data flow separation • Centralized flow control • Reconfigurable network • Ease the network management</td>
<td>• No support wireless substrate • No accounting for wireless conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
major features of SDN-based decision-making system resides in its capability to reconfigure H-CRAN at each different level. Through CC-CRRM, SDN-based decision-making system has the potential to exploit the shared pool of spectrum, using different regimes and techniques, i.e., FDD, TDD, and biding, deciding whether one of them must be employed. In addition, combining CC-CRRM and SDR can enable SDN-based decision-making system to change H-CRAN spectrum access exploiting, for instance, shared frequencies bands, i.e., DSA or LSA, adapting itself to different operators policy of spectrum access. Moreover, using CC-CSON within an SDN-based decision-making system, the infrastructure of H-CRAN can become self-managed, which combined to virtualization enable the integration of multi-operator infrastructures under an abstracted vBBU. For each vBBU, NFV technology can quick distribute network services and functionalities to be executed and supply different operators subscribers. Finally, SDN-based decision-making system can also help in the network flows orchestration using traditional SDN concepts to improve the performance of vBBUs intercommunication achieving QoS and improved users experience.
3 RELATED WORK

In this chapter, we present the state-of-the-art of SDN-based decision-making system and the H-CRAN challenges that serve as guidelines for its design. In Section 3.1, we review different work from the literature that exploit the concept of SDN in H-CRAN for decision-making process. Afterwards, in Section 3.2, we identify main challenges of H-CRAN that will guide the design of a SDN-based decision-making system.

3.1 Related Work of an SDN-based decision-making system

H-CRAN become a promising scenario to accommodate high-performance services. The interaction between RRHs and vBBUs scheduling resources among MDCs in cloud has become more frequent and complex due to the development of scalable system considering different user requirements translated in different QoS metrics, such as high throughput and short delays. The heavy-duty interaction can promote the networking demand among RRHs and MDCs, and forces to form elastic optical fiber switching and optical networking according to the characteristics of high bandwidth, low cost, and transparent multi-rate traffic transmission. In such a network, the different resource levels of H-CRAN have to interactively be readjust through network decisions, such that a traditional architecture cannot efficiently implement the resource optimization and scheduling for the high-level QoS guarantee. In this case, several solutions from the literature have been proposed to exploit SDN concepts changing the decisions made within H-CRAN, enabling programmability and centralization within its infrastructure. However, these solutions present limitations and drawbacks in several aspects, such as the lack of delay tolerance restriction and lack of proper APIs to handle H-CRAN resource levels, such as reviewed next.

In the work of Yang et al. (YANG et al., 2016), the authors propose an architecture for an SDN-based decision-making system for H-CRAN named Cloud-Radio over Fiber Networking (C-RoFN). The authors claimed that their architecture can globally optimize radio frequency, optical spectrum, and MDC processing resources effectively to maximize radio coverage and meet UEs QoS requirement. The functional modules of C-RoFN architecture include the core elements of radio, optical, and MDC controllers. The cooperation procedures in multi-layer vertical integration and cross-level of resources merging models are investigated. The overall feasibility and efficiency of the proposed architecture
are also experimentally demonstrated on an SDN-enabled testbed with OpenFlow-enabled elastic optical nodes, and compared to cross-stratum optimization strategy in terms of resource allocation and path provisioning latency. Although the closest work to this thesis, the authors proposed C-RoFN without considering that H-CRAN is delay intolerant. It means that the decision making procedure is taken without considering the delay budgets mainly inherited from wireless network processing that can compromise the operation of an H-CRAN. For instance, the authors did not consider the delay budget imposed by the Hybrid Automatic Repeat reQuest (HARQ) mechanism that can easily compromise the allocation of processing resources and migration within the cloud. Also, their solution only considers the decisions taken for a snapshot of the H-CRAN status, being unable to have its performance measured during runtime. Different than that, our work address the issue of delay intolerance and support operations of H-CRAN during runtime.

In the work of Liang et al. (LIANG et al., 2017), an integrated architecture based on SDN is proposed to decouple the control plane from the data plane to provide network programmability, and virtualization such that network and radio resources can be shared among several applications. The authors also considered the potential of distributed MDCs as fog computing to offload services from the cloud to the edge of networks, offering real-time data services to nearby data terminals. The authors design an architecture of an SDN-based decision-making system considering concepts of software as a service called OpenPipe, which enables network level virtualization. To integrate SDN and network virtualization with fog computing, the authors adopt a hybrid control model with two hierarchical control levels, where an SDN controller forms the higher level and local controllers comprise the lower level. These two hierarchical levels differentiate the controllers responsibilities, e.g., radio resource management and resource sharing, as an architecture decision. Instead, the decisions of where and which responsibilities should be placed and executed within an H-CRAN should be taken by a network administrator, engineer or operator, programmatically at SDN’s application level to meet their infrastructure requirements leaving the control plane homogenized such as proposed in this work.

In the work of Yuan Zhang, Ying Wang, and Bo Fan (ZHANG; WANG; FAN, 2017), the authors investigate an energy efficient resource allocation scheme for uplink H-CRAN considering an SDN-based decision-making system. The authors analyze the information from the data plane of an RAN, and execute the resource allocation process in the control plane. In the control plane, a relay region decision algorithm is designed and
placed on top of an SDN controller to reduce the computational complexity after another algorithm perform UEs classification. Afterward, an optimal power allocation decision algorithm perform relay and network selection decisions considering the total power constraint, quality of service requirements, and radio resource constraints aiming to maximize spectral efficiency. Although the work sheds light on interdependency among decision algorithms for a SDN-based decision-making system, the authors did not consider delay constraints that can easily hinder signal processing preventing the decisions to be taken without compromising the H-CRAN performance.

In the work of Selim et al. (SELIM et al., 2016), the authors propose an SDN-based decision-making system to handle the self-healing procedures of an H-CRAN. A novel cell outage compensation approach using SDN added to each cell site in the H-CRAN to detect network failure of any RRH or compromised optical link at fronthaul. The authors advocate that node failure means the loss of hundreds of gigabits, or even terabits for an H-CRAN. The authors also introduces a high-level simulation study that is carried out to assess the proposed approach resulting in gains expressed in degree of recovery from node failures. In this work, delay constraints are not considered. Also, during the self-healing execution it is not clear how a distributed cloud containing MDCs spread along the pool are reconfigured when stricken by node failure.

Considering each of the aforementioned work it becomes clear that although the proposal of an SDN-based decision-making system is not novelty by itself, its design is still vague for an H-CRAN. Delay constraints can easily prejudice the decisions taken by an SDN-based decision-making system since MDC can have their signal processing compromised for delay intolerable wireless mechanisms, such as HARQ. Despite delay constraints, in H-CRAN, the cloud, fronthaul, and RAN are infrastructures that require different decisions to be taken in a homogenized control plane. The homogenized control plane enable controller to quickly adapt to the different infrastructures under control. In this case, we investigate different research question which are raised based on the literature. For instance, What challenges can an SDN-based decision-making system solve in H-CRAN? What responsibilities can an SDN-based decision-making system assume in H-CRAN? Can SDN-based decision-making system be used considering delay constraints? How an SDN-based decision-making system will perform during H-CRAN operation? To solve these different research questions, we start by identifying main challenges of an H-CRAN that will serve as motivation and guidelines for the design of an SDN-based decision-making system, such as provided next.
3.2 H-CRAN Challenges

Considering the resource levels of an H-CRAN, we selected three of the main challenges identified: (i) high intercell interference at spectrum level; (ii) critical delay constraints in long-distance wireless signal processing at infrastructure level; and (iii) poor processing power allocation at network level. In the first, a high number of UEs are connected to several RRHs at the RAN to consume applications and services with high QoS requirements in terms of small delays, high throughput, and transparent mobility, that cannot afford capacity loss due to interference requiring sharing (MAROTTA et al., 2015). In the second, the fronthaul that interconnects the RAN and the pool must be able to forward the workload from RRHs to the MDC within stringent delay budgets (MAROTTA et al., 2018a). In the third, the cloud, in turn, is composed of MDC with several GPP that must be allocated to avoid processing power underusage for long term operation. Considering the H-CRAN levels and its main parts divided in RAN, fronthaul, and cloud different requirements emerge that must be met according to decisions that must be taken. In this regard, we present the literature for highlighting the decisions that must be taken in H-CRAN targeting the aforementioned challenges that will serve as guidelines for the design of an SDN-based decision-making system.

3.2.1 High Intecell Interference

In the RAN, UEs and RRHs are connected through licensed portion of the spectrum of an operator. Given that the licensed spectrum is a finite and expensive resource, algorithms must manage all the radio resource to improve spectrum usage. Managing radio resources comprises all the allocation, coordination, and maintenance of the resources used inside a RAN that are related to the creation of radio links. In this case, different decision algorithm are proposed in the literature to enhance the spectrum usage in H-CRAN.

In the work of Peng et al. (PENG et al., 2015b), a decision algorithm is proposed based on contract game theory to reduce interference. The authors proposed an algorithm to execute decision of spectrum allocation sitting on top of a centralized cloud used in a simulated H-CRAN scenario. In this scenario, spectrum frequencies that are shared among all cells considering RRHs spread along an LTE E-UTRAN Node B (eNB) macro-cell coverage area. For each interaction in the system, a contract proposal is created per association of UE and RRH regarding the spectrum frequencies to be used and how much
interference the transmission will create for other communications. The authors claim that contracts are accepted or not by a centralized decision system that identifies the best proposals with the smaller interference and best spectrum efficiency for the whole H-CRAN converging to an equilibrium. In this case, all the decisions are based on the SNR sensed by the RRH of a snapshot of the network focused on spectrum efficiency and interference minimization disregarding other requirements such as users mobility or QoS guarantees.

In the work of Lee, Loo, and Chuah (LEE; LOO; CHUAH, 2016), the sharing of resources is introduced as a solution for interference coordination involving different network operators. The authors modeled a decision algorithm able to optimize the interference cancellation of an H-CRAN with a centralized cloud considering sharing of resources. Although the algorithm shed lights on the usage of sharing in H-CRAN, the only resource considered is the spectrum disregarding the infrastructure and its requirements. Whereas, Panchal et al. (PANCHAL; YATES; BUDDHIKOT, 2013) stated that resource sharing can be divided in capacity, spectrum, and infrastructure. In their work, capacity is a quantitative measurement with respect to the number of subscribed and roaming UE to be served in a RAN. This measurements is classified as an inter-operator roaming relationship whereas the other resources remain with the same definition. The authors also defined three types of participants that must be considered during decisions revolving spectrum sharing: (a) operators (e.g., Verizon and AT&T), (b) third parties, i.e., infrastructure owners (not operators) or brokers of cellular resources (e.g., a TV operator), and (c) service/content providers (e.g., NetFlix) that lease resource from operators and third parties to serve users with improved QoS.

Three distinct sharing scenarios are proposed in Panchal et al. (PANCHAL; YATES; BUDDHIKOT, 2013) to each participant considering different decisions to be made such as follows: (i) inter-operator resource sharing, (ii) operators that lease resource from third parties, and (iii) resource exchange among all the participants. The authors defined an architecture to support all the different types of resource sharing relationship and the necessary decisions to be made. This architecture divides the decision process in four tasks to perform eICIC and resource sharing:

- **Configuration** that accounts for topological information stored in databases;
- **Decision & condition** a mechanism that decide which resource should be shared/allocated according to a Key Performance Indicator (KPI) (e.g., SNR, spectral usage, traffic loading, or co-channel interference) and the sharing agreements established in terms of time, space, spectrum, service, interference, and cost;
• **Coordination, negotiation & management** through a shared database, sharing partners are identified according to the matched resource needed establishing a relationship of one-to-one, one-to-many, or many-to-many; and

• **Activation, deactivation, & reactivation** related to the execution of the established relationship from the previous tasks, all the RAN shall reconfigure themselves to fulfill their duties according to the sharing agreements defined.

As in Panchal *et al.* (PANCHAL; YATES; BUDDHIKOT, 2013), Kibilda *et al.* (KIBILDA *et al.*, 2015) conducted an investigation determining the need to integrate resources sharing and coordination from infrastructure to spectrum to solve the problem of eICIC and resource allocation. Lin *et al.* (LIN *et al.*, 2010) advocates that compared to infrastructure-based cooperation, spectrum-based cooperation avoids the overhead of tight inter-operation among sharing operators involved, which is a resource sharing model inside dynamic spectrum management. Their spectrum-based sharing proposal defines service provisioning associated with cooperation among operators in the form of spectrum resource exchange decisions: while each operator has its own deployed infrastructure (including multiple base stations) and operating spectrum, they can cooperate with each other to share their spectrum in the form of time portions to cancel interference.

Luoto *et al.* (LUOTO *et al.*, 2015) proposed sharing of resource blocks among base stations from different operators to solve eICIC at infrastructure level, where different eNB must be assigned to synchronize their operations to cooperate. The authors also defined different approaches for sharing resource blocks, defined according to different decisions based on statistics metrics, using adaptation to channel conditions (*i.e.*, SNR), clustering, and connection availability. In the first, the decision system tries to reach a business model assuming biased random variables for defining the cost of the information used. In the second, given the proposed business model, the system must assure that every node respect the decisions taken equally. In the third, a neighborhood of eNBs is created, balancing the resource shared among them, aiming for resource optimization inside the evaluated area. Finally, a distributed decision algorithm is used to consider any connection among BSs according to their control plan being linked, exchanging information and sharing their spectrum.

Gerasimenko *et al.* (GERASIMENKO *et al.*, 2015), in turn, propose a cross-cell radio resource allocation decision algorithm for eICIC in H-CRAN. Instead, in the work of Peng *et al.* (PENG *et al.*, 2014), the authors identify timescale subproblems that must be solved in different periods, *i.e.*, (i) long timescale subproblem and (ii) short timescale...
subproblem. In the first, routing, UE scheduling, and association are examples of long timescale problems that can be solved within a larger time window considering the Queue State Information (QSI) statistics. Whereas, in the second, power and rate allocation as well as MIMO beamforming and antenna selection are short time scale subproblem to be solved within H-CRAN that must rely on the instantaneous Channel State Information (CSI) and gathered SNR measurement.

In the aforementioned work, the authors claim that their systems and algorithms are able to determine the best decisions to improve UEs and RRHs capacity through resource sharing achieving eICIC for different timescale subproblem. As a drawback, the presented work assumes perfect dimensioning of the fronthaul and processing resource allocation in the cloud incurring no delays or processing outage. In practice, this assumption is not realistic due to extra delay incurred by remote processing in H-CRAN, which is better characterized next. Another important detail identified is that the most used information during the decision process at the spectrum level is the channel condition expressed in SNR.

3.2.2 Critical delay constraints in long distance wireless signal processing

In an H-CRAN, remote processing is performed between MDC and RRH requiring the workload to traverse either wireless (e.g., millimeter wave fronthaul (DAT et al., 2014)) or optical infrastructures (BARTELT et al., 2015) incurring delays. The delay occurring at the fronthaul is later summed to the workload processing time at the MDC composing the round-trip delay. According to a white paper of China Mobile (China Mobile Research Institute, 2011), the round-trip delay cannot surpass a threshold of fewer milliseconds to perform remote processing of the radio protocol. For instance, LTE present a round-trip delay budget around 3 ms. Considering this limitation, the distance between MDC and RRH becomes limited to fewer tens of kilometers, more specifically, around 20 km.

In another study, Bhaumik et al. (BHAUMIK et al., 2012) proposed a framework based on a trace of measurements gathered from an operational Wideband Code Division Multiple Access (WCDMA) telecommunication network to analyze the round-trip delay and how it influences remote processing. In this work both downlink and uplink of a WCDMA were evaluated. For downlink, the encoding, modulation, and scrambling functions’ execution time were measured allowing the authors to conclude that the time
involved to process the whole radio protocol increases according to the processing time of the encoder in use. Whereas for the uplink, the decoding, the Fast Fourier Transform (FFT) algorithm, and the demodulation were measured in terms of execution time. For the uplink processing, the authors concluded that the decoding execution time excels all other functions, influencing the whole radio protocol execution’s performance. When considering both, downlink and uplink, the execution time increases accordingly to the uplink decoder function complexity. Based on this conclusions, we also investigate the Forward Error Correction (FEC) giving higher attention to the decoding function when determining the decisions to be taken in our work.

Further, Liu et al. (LIU et al., 2015) proposed a graph-based framework for splitting the radio protocol function, e.g., decoding, FFT, and modulation, among MDC. This work sheds light on the need to account for delay when distributing the processing of the radio protocol within a pool of many MDCs. The resulting graph considers the computational cost of each function as nodes biased according to delay results obtained from (BHAUMIK et al., 2012). Their proposed model focused on the tradeoff between processing delay and fronthaul costs without a detailed analysis of each radio function nor the MDC pool and RAN performance improvements. Instead, the authors focused their research into deciding the best division of functions within a set of MDCs.

Alyafawi et al. (ALYAFAWI et al., 2015), in turn, propose the implementation of a remote processing environment to support the virtualization of eNB from LTE (3rd Generation Partnership Project (3GPP), 2015). In this environment, the authors suggested through the calculation of the total latency of an eNB that process channel coding and decoding are major responsible for processing outage and delay violation. Both functionalities hinder the virtualization of the LTE radio protocol due to the processing delay imposed by both. The authors suggest good manners to decrease the latency by using real time virtualization, they also presented an analysis of the hypervisors gains when used in different situations. In addition, the authors proposed a upper bound equation for defining the cycle capacity needed for C-RAN processor to cope with the worst case scenarios of LTE in a remote processing scenario, such as H-CRAN. The authors, however, considered a fully centralized scenario with almost zero latency fronthaul, which is not physically possible.

In the work of Musumeci et al. (MUSUMECI et al., 2016), an assignment problem is modeled for a distributed MDC scenario, where decisions are made to determine the best match between MDC and RRHs such that energy gains can be enhanced. The as-
The assignment problem considered optical links with constrained capacity that transport limited number of workloads from RRHs to MDCs having to distribute it without compromising the fronthaul considering a limited distance between MDC and RRH regarding delay constraints. In this case, the authors focused their work in the high bit-rate fronthaul traffic also considering that the RRHs workload must be transported over the existing aggregation network, i.e., it shall be multiplexed and/or routed and integrated to the conventional backhaul traffic.

Delay constraints dictate the assignment between MDC and RRH within the pool to distribute processing, which impacts directly in the maximum distance afforded between MDC and RRHs. The major drawback of the presented literature lies in the assumption that delay is fixed as it is purely technology dependent, which, in fact, is not completely true, since the decoding function has to adapt the number of recursions according to channel conditions varying the processing delay occurring (BREJZA et al., 2016). Taking advantages of the fluctuation of the processing delay enables to create a new tradeoff involving distance between MDC and RRH and processing power changing the assignment decision. This tradeoff is not exploited in the literature characterizing a gap in the investigations so far. Considering the aforementioned, the delay budget of the technology in use and also the distance between an MDC and RRH are crucial to perform assignment decisions in H-CRAN.

3.2.3 Poor processing power allocation

The usage of processing resources brings a clear gain in terms of scalability and energy consumption reduction (TANG; TAY; QUEK, 2015). In this case, MDCs must be allocated and reused by several RRHs until exhaustion of their processing resources preventing overload or underusage.

In Tang et al. (TANG et al., 2017), a joint vBBU activation and sparse beamforming problem is modeled to minimize the system cost. This cost is based on a vBBU cost (w.r.t. the energy spent with the number of active vBBU) in the MDC pool and the RRH cost (w.r.t. the beamformer vectors). In this work, the minimization problem is split in two subproblems, namely: fronthaul capacity optimization subproblem and a minimization of active vBBUs. In the first, the authors proposed a price adjusting decision algorithm to avoid overload in the limited fronthaul capacity of an H-CRAN. In the second, the optimal number of vBBUs is found through two different algorithms, an integer search and a
joint optimization. Both subproblems were solved through simulations, in which the proposed decision algorithms presented better performance and lower system cost than the benchmark from (DAI; YU, 2014). The work of Tang et al. (TANG et al., 2017) presents a clear allocation of processing resources within a distributed pool. The major drawback identified on this work is the lack of a mechanism to continually allocate each vBBU in use being unable to be used for long term operation of an H-CRAN.

In the work of Bhaumik et al. (BHAUMIK et al., 2012), the processing power is distributed according to the availability of processors until all RRHs workloads are processed. Consuming processors require a very narrow time scale decision. In this regard it is not scalable for very large geographically distributed clouds.

Instead in Carapellese et al. (CARAPELLESE; TORNATORE; PATTAVINA, 2014), the authors considered that the geographical positioning of vBBUs are different. In this case the processing power allocation becomes a placement problem within H-CRAN. Under the network and topology perspective, the processing power allocation decision can be analyzed as a tradeoff between the most powerful MDC and the most fitted optical connectivity to be used, deciding the number of wavelength in use, their capacity, and number of hops, such as presented in the work of Musumeci et al. (MUSUMECI et al., 2016). Both work make decisions of processing power allocation for a snapshot of the network without considering the continuous usage of it.

It is also worthy mentioning that solutions from context of cloud computing consider migrations to enhance elasticity between datacenters to balance their usage and achieve energy gains to decrease costs (RIGHI et al., 2016). Similarly, in an H-CRAN assignment problem, the usage of migration has the objective to enhance reuse within the pool decreasing the total processing power in use. However, the different stimuli from the RAN summed to strict delay budgets imposed by wireless mechanisms change completely the migration execution within an H-CRAN compromising the usage of already well established solutions from cloud computing without redesigning.

To the best of our knowledge, all the current viewpoints of the vBBU allocation and reuse problem consider that an RRH workload can change its destiny among MDCs within the pool every time a new assignment is performed without considering the cost in delays to perform such migration. In fact, this migration changes the delay occurring, which if not carefully accounted may hazard the connectivity between RRH and UE causing unexpected signal intermittent and disconnections (WANG et al., 2013).
3.2.4 Identified gaps

Although different problems in H-CRAN are investigated in the work of (BHAUMIK et al., 2012), (CARAPELLESE et al., 2013), (WANG et al., 2013), (CARAPELLESE; TORNATORE; PATTAVINA, 2014), (TANG; TAY; QUEK, 2015), (MUSUMECI et al., 2016), and (TANG et al., 2017), we focus our attention to the following gaps identified in the literature:

- RAN resources must be reused to enhance spectral efficiency increasing interference. In this case, spectrum and infrastructure sharing with other operators become fundamental to reduce interference bring spectrum efficiency benefits for all the involved operators. However, current models are still not adapted to be used in H-CRAN without a proper architecture to host decision algorithms to reduce interference and share resources.

- Different factors can influence the delay occurring in H-CRAN that may change completely the usage of resources in different levels. A proper classification and characterization of each of these factors is missing as well as a quantization of this tradeoff for decision process enhancement.

- The H-CRAN assignment problem is usually solved for off-line instances of the network, where snapshots of the status of the cloud, fronthaul, and RAN are used to calculate the optimal allocation of processing resources. However, the dynamicy of the RAN can easily outdate the decision made leading to unnecessary consumption of resources.

Joining these gaps enable to identify the need of a decision system sufficiently generic to be deployed in H-CRAN able to address these gaps altogether. However, how to design a decision-making system able to address the different gaps identified in H-CRAN?

To answer this question, we propose the design of an SDN-based decision-making system able to minimize interference and decrease processing power consumption considering delay constraints. This system inherits SDN concepts able to host decision algorithms and interact with different resource levels to address the presented gaps. For this purpose, in the next chapter, we first model an H-CRAN identifying and characterizing cornerstone factors that must be taken in consideration to later propose such a system.
4 SYSTEM MODEL

In this chapter, before introducing our SDN-based decision-making system, we must formalize H-CRAN meaningful information that will be key to solve the challenges identified in the previous chapter using decision algorithms. For each of the identified challenges, we modeled a subsection, such as follows: interference reduction with resource sharing in H-CRAN in Subsection 4.2.1; maximum distance between MDC and RRH under delay considerations in Subsection 4.2.2; and processing power underusage in H-CRAN in Subsection 4.2.3.

To ease the reading of this chapter, we present all notation used in Table 4.1. We use calligraphy letters to represent sets, boldface lower case letters to denote vectors and boldface uppercase letters to denote matrices. The notation $\| \cdot \|_2$ stands for the Euclidean norm, while $(\cdot)^T$ and $(\cdot)^H$ are the transpose and the conjugate transpose, respectively. We use \mathbb{N}, \mathbb{C} and \mathbb{R} to represent the natural numbers, complex numbers, and real numbers, respectively. The notation $A \setminus B$ denotes the set A with its subset B removed. $\lfloor x \rfloor$ stands for the largest integer smaller than or equals x and $\lceil x \rceil$ stands for the smallest integer larger than or equals x. We use $\mathcal{R}(\cdot)$ and $\mathcal{I}(\cdot)$ as functions to extract the real and imaginary part of a complex number, respectively.

4.1 Modeling an H-CRAN

In H-CRAN, BSs are replaced by RRHs: signal samples are digitized, transmitted through an optical infrastructure, and remotely processed in cloud MDCs, which house vBBUs (PENG et al., 2015a), such as depicted in Figure 4.1. Remote processing enables H-CRANs to exploit the processing capacity available in the cloud, as well as to achieve load balancing and reuse of processing resources (MUSUMECI et al., 2016).

An H-CRAN is composed of $s \in \mathcal{S} = \{1, 2, \cdots, S\}$ MDCs responsible for the remote processing of the workload of $m \in \mathcal{M} = \{1, 2, \cdots, M\}$ RRHs that are serving $n \in \mathcal{N} = \{1, 2, \cdots, N\}$ UEs. We consider that UEs communicate using MIMO with $\{Tx \in \mathbb{N} \mid Tx \geq 1\}$ transmit antennas to an RRH that has $\{Rx \in \mathbb{N} \mid Rx \geq 1\}$ receiving antennas. Each UE n performs a request r_n that comprises a finite horizon with transmission start time t_n^0 and end time t_n^f to transmit a certain quantity of bits l_n considering that a target BER q_n must be guaranteed. Thus, for the n^{th} UE, its request is presented as the quadruple $r_n = \{t_n^0, t_n^f, l_n, q_n\}$. All requests $r_n \in \mathcal{R} = \{r_1, r_2, \cdots, r_N\}$ of the C-RAN must be served.
Table 4.1: Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{N}</td>
<td>Set of UEs</td>
</tr>
<tr>
<td>\mathcal{M}</td>
<td>Set of RRHs</td>
</tr>
<tr>
<td>\mathcal{S}</td>
<td>Set of MDCs</td>
</tr>
<tr>
<td>\mathcal{T}</td>
<td>Finite horizon of operation</td>
</tr>
<tr>
<td>\mathcal{R}</td>
<td>Set of all requests</td>
</tr>
<tr>
<td>t_0^n</td>
<td>Transmission start time</td>
</tr>
<tr>
<td>t_f^n</td>
<td>Transmission stop time</td>
</tr>
<tr>
<td>q_n</td>
<td>Target BER per user</td>
</tr>
<tr>
<td>l_n</td>
<td>Total demand per user in bits</td>
</tr>
<tr>
<td>Rx</td>
<td>Number of receiving antennas</td>
</tr>
<tr>
<td>Tx</td>
<td>Number of transmit antennas</td>
</tr>
<tr>
<td>z</td>
<td>Noise vector</td>
</tr>
<tr>
<td>σ</td>
<td>Noise variance</td>
</tr>
<tr>
<td>w</td>
<td>Transmit beam former vector</td>
</tr>
<tr>
<td>h</td>
<td>Channel component vector</td>
</tr>
<tr>
<td>X</td>
<td>Maximum modulation order supported</td>
</tr>
<tr>
<td>g_s</td>
<td>Number of processors per MDC</td>
</tr>
<tr>
<td>f_s</td>
<td>Total processor frequency in hertz (Hz)</td>
</tr>
<tr>
<td>v_s</td>
<td>Processor efficiency in Operations/cycle</td>
</tr>
<tr>
<td>u</td>
<td>Maximum code block size in bits</td>
</tr>
<tr>
<td>o_{sm}</td>
<td>Number of intermediate hops between MDC and RRH</td>
</tr>
<tr>
<td>d_{sm}</td>
<td>Link distance between MDC and RRH</td>
</tr>
<tr>
<td>j</td>
<td>Fronthaul links capacity</td>
</tr>
<tr>
<td>Φ</td>
<td>Delay budget according to the technology in use</td>
</tr>
<tr>
<td>W</td>
<td>Maximum transmit power</td>
</tr>
<tr>
<td>B</td>
<td>Channel bandwidth</td>
</tr>
<tr>
<td>I</td>
<td>Time window per slot t</td>
</tr>
<tr>
<td>A_{mn}</td>
<td>Angle between antennas of elements n and m</td>
</tr>
<tr>
<td>SINR_{mn}</td>
<td>SINR of a given UE n to an RRH m</td>
</tr>
<tr>
<td>$\xi_{mn}(t)$</td>
<td>Signal spreading power</td>
</tr>
<tr>
<td>D_{ij}</td>
<td>Beamforming signal delay between elements i and i'</td>
</tr>
<tr>
<td>M_{max}^m</td>
<td>Maximum number of UE supported by an RRH for a given horizon T</td>
</tr>
<tr>
<td>χ</td>
<td>The percentage of resource shared</td>
</tr>
<tr>
<td>$C_{ss'}$</td>
<td>The migration time required to move a vBBU between MDC s to s'</td>
</tr>
<tr>
<td>α</td>
<td>The weight to balance processing consumption and consolidation</td>
</tr>
<tr>
<td>a_{smn}</td>
<td>Assignment variable among MDC, RRH, and UE</td>
</tr>
<tr>
<td>κ_{mn}</td>
<td>Assignment variable between RRH and UE</td>
</tr>
</tbody>
</table>

within a defined horizon $\mathcal{T} = \{1, 2, \cdots, T\}$.

Based on beamforming transmissions, for the m^{th} RRH, the useful signal received at a time slot t is (TANG et al., 2017):

$$Y_{mn}(t) = h_{mn}(t)w_{mn}(t) + z_{mn}(t). \quad (4.1)$$
Let the block fading channel component be a matrix of complex numbers $h_{mn}(t) \in \mathbb{C}^{Rx \times Tx}$ from a transmitting UE to the RRH m. The transmit beam former $w_{mn}(t)$ stands for a vector of complex numbers $w \in \mathbb{C}^{Tx \times 1}$. Let $z_{mn}(t)$ denote the Additive White Gaussian Noise (AWGN) component as a vector of cyclic complex normal random gaussian variables $z \in \mathbb{CN}^{Rx \times 1}$ with 0 mean and σ variance at the antenna m for the time slot t. Thus, the theoretical SNR observed can be expressed as:

$$\Gamma_{mn}(t) = \frac{|h_{mn}(t)w_{mn}(t)|^2}{\sigma_{mn}(t)}.$$ \hspace{1cm} (4.2)

Given the SNR, the total data received Υ at a time slot t is approximated as a function of the SNR between the receiving RRH and the UE as:

$$\Upsilon_{mn}(t) = BI \log_2(1 + \Gamma_{mn}(t)).$$ \hspace{1cm} (4.3)

The uplink channel is shared between all UEs, and its bandwidth is given by a scalar B. The time window I represents the slice of time of a slot t in seconds. Since the noise changes according to time and space, a large time window will incur in high uncertain in the SNR. A UE transmitting to an RRH has its signal sampled, digitized, and forwarded comprising a workload for further processing by a vBBU within an MDC.

Remote processing incurs round-trip delay between MDC and RRH, which comprises the sum of (i) transmission, (ii) queuing, (iii) processing, and (iv) propagation delay.
components. Transmission delay at each intermediate node between MDC and RRH can be expressed as the ratio of the number of bits sent to the capacity of the outgoing link. Queuing delay is due to buffering the data at intermediate nodes. The vBBU within an MDC performs processing for signal demodulation, radio resource demapping, and precoding: the largest component of the processing delay is due to FEC (BHAUMIK et al., 2012). Finally, propagation delay is given by the ratio of the distance between BBU and RRH to the speed of the signal transmitted in the link.

The round-trip delay components are depicted in the sequence diagram in Figure 4.2.

In the vBBU, the decoding function of the FEC dominates the processing delay (BHAUMIK et al., 2012) characterizing the processing workload, such as:

\[\Psi_{mn}(t) = \omega \Upsilon_{mn}(t). \]

(4.4)

Given that most FEC algorithms for telecommunications have linear complexity (HOLMA; TOSKALA, 2009), \(\omega \) stands for a scalar value in operations/bit. The FEC is processed for the total of data received of all RRHs associated to the UE \(n \) processed at the MDC \(s \). As an H-CRAN inherits C-RAN concepts of cloud systems, MDCs must be able to process the communication from the RRHs to serve all UEs. In this case, a vBBU is created per UE that must be allocated within an MDC \(s \in \mathcal{S} = \{1, 2, \ldots, S\} \) composed of several GPP \(g_s \) with ceiling processing power \(f_s \) Hz and efficiency \(v_s \) operations/cycle. These vBBUs are allocated to process wireless workloads (\(\Psi \)) from UEs (\(n \in \mathcal{N} \)) connected.

The workload, comprising a set of in-phase and quadrature sample components, potentially traverses multiple hops between the RRH and the MDC. At each hop, transmission and queuing delay may be incurred to forward the sampled signal across the network. Afterward, the vBBU sends a reply back to the UE. On the way from RRH to MDC, the workload traverses optical links, incurring propagation delay. The propagation delay for a fiber optic link is equal to:

\[\gamma_{sm} = \frac{3d_{sm}}{2c}; \]

(4.5)

where \(d_{sm} \) stands for the total distance in meters between MDC and RRH, and \(c \) represents the speed of light.

Further delay is added when an intermediate node has to transmit/receive and en-
queue the radio workload towards the MDC or RRH. We considered the best case scenario for the H-CRAN connectivity, namely that the fronthaul consists only of dedicated fiber links to interconnect MDC and RRH, with no buffering required at intermediate nodes. Those only act as signal regenerators that must be inserted after a certain distance threshold to avoid optical signal degradation, e.g., G.652 fiber requires a new regenerator after each 50 km. The ratio between the distance d_{sm} over a threshold α, in km, indicates the number of intermediate nodes (signal regenerators) that must be inserted according to the optical technology in use thus expressing the fronthaul delay as:

$$\varepsilon_{sm} = \sigma \left\lceil \frac{d_{sm}}{\alpha} \right\rceil.$$ \hfill (4.6)

The sum of the transmission and queuing delay that a node adds may be averaged as σ due to the exclusive usage of fiber links for downlink and another for uplink as well as the constant bit-rate traffic generated by the digitized radio over fiber technology employed, e.g., Common Public Radio Interface (CPRI) (CPRI, Common Public Radio Interface, 2015). The processing delay is the time consumed to process the radio signal, e.g., the demodulation, coding, and radio resource demapping. In this processing, the FEC decoding is the most time-consuming function (BHAUMIK et al., 2012). The decoding computation has its performance directly related to the number of recursions performed.
by the FEC, and the processing delay can be expressed as:

$$\vartheta_{sn} = \frac{\omega i_{smn} u_n}{p_n v_s}. \quad (4.7)$$

The vBBU executes i_{smn} recursions of the FEC algorithm per code block received of a UE m. u_n stands for the n^{th} UE code block length in bits, which can vary according to, e.g., the technology in use, the coding rate, and the puncturing rate adjustment algorithm (BREJZA et al., 2016). Each bit of the code block is usually processed through two identical constituent decoders of combined complexity ω, expressed in operations per bit. The clock rate of the processor allocated to the processing of the code block sent is denoted as p_n (in Hz). The allocated processor has a processor efficiency v_n in operations per cycle.

Combining all the delay components discussed above, the round-trip delay between the MDC and the RRH can therefore be expressed as:

$$\Lambda_{smn} = 2 \left(\frac{3d_{sm}}{2c} + \frac{d_{sm}}{\alpha} \right) + \frac{\omega i_{smn} u_n}{p_n v_s}. \quad (4.8)$$

Among the factors we can control through design, we highlight the distance d_{sm} in the first term: we can assign the workload of an RRH to an MDC that is nearby, in the fog, or farther away, in the cloud (KU et al., 2017). We also explore i_{smn} and p_n in the second term: the former can be adapted according to current channel conditions and target BER, and the latter reflects the processing power assigned in the cloud to an RRH. Given a round-trip delay budget Φ, to increase d_{sm}, i_{smn} must be decreased or p_n must be increased.

4.2 Modeling H-CRAN Challenges

Considering the proposed system model, we can model the main challenges identified in H-CRAN. For each of the identified challenges, we present a description of it as well as a problem model that must be solved by decisions taken within H-CRAN, such as follows.
4.2.1 Interference Reduction with Resource Sharing in H-CRAN

Low channel capacity due to interference among cells summed to high leasing prices and spectrum scarcity lead operators to exploit spectrum sharing to improve their resource pool and budgeting (DOYLE et al., 2014). To take advantage of spectrum sharing, different techniques can be used, e.g., DSA and LSA in combination with cognitive radio and auction systems. With the control centralization in H-CRAN, operators can control the access technique used to explore shared frequencies through decision making systems. In this sense, decision making systems become responsible for providing information sharing among operators, enabling better control of shared frequencies, and assuring that operators’ policies are correctly applied.

In an LSA environment, the spectrum pool must be shared considering at least a donor and a leaser operator. The RAN must be able to identify users from different donors such as \(n_{donor} \) and \(n_{leaser} \). Considering the shared nature of the spectrum in use, which generates interference to other UEs when used at same time, we reduce interference in time sharing considering the available slots within a finite horizon \(T \). In this case, we first introduce the notion of wireless signal spreading by calculating the delay \(D_{nj} \) for a beamforming transmission, such as:

\[
D_{nm} = \frac{d_{nm} \sin A_{nm}}{c}. \tag{4.9}
\]

In (4.9), we introduce the matrix of angles between elements as \(A_{nm} \) that refers to the angle between the transmitting antenna of the UE \(n \) to RRH \(m \). Considering the wireless delay, we can calculate the signal spreading between UEs and RRH \(m \), considering their spreading as follows (IEEE, 2012):

\[
\xi_{mnj}(t) = \sqrt{\text{Re}\{h_{mj}(t)w_{mj}(t)\} \cos(2\pi D_{nj}f_c)^2 + \text{Im}\{h_{mj}(t)w_{mj}(t)\} \sin(2\pi D_{nj}f_c)^2}. \tag{4.10}
\]

The real (\(\text{Re}(\cdot) \)) and imaginary (\(\text{Im}(\cdot) \)) parts of a signal power \(w_{mj}(t) \) and channel component \(h_{mj}(t) \) of a transmission performed from UE \(j \) to RRH \(m \) is extracted and normalized to synthesize the signal spreading resulting in the interference power to the UE \(n \). Also, the carrier frequency \(f_c \) and \(D_{nj} \) are combined resulting in the signal angle component of phase and quadrature to calculate the signal spreading. Considering the
signal spreading formula, the Signal-to-Interference-plus-Noise Ratio (SINR) function can be created among the connected UEs, such as follows:

$$\text{SINR}_{mn}(t) = \frac{|h_{mn}(t)w_{mn}(t)|^2}{\sigma_{mn}(t) + \sum_{j \in N, j \neq n}^{N} \kappa_{mj}(t)\xi_{mn}(t)}.$$ (4.11)

In (4.11), we introduce an association binary variable $\kappa_{mn}(t)$, such that:

$$\kappa_{mn}(t) = \begin{cases} 1 & \text{if UE } n \text{ is transmitting to RRH } m \text{ at slot } t \\ 0 & \text{otherwise.} \end{cases}$$

Associating each UE to a shared RRH enables the system to decrease interference until achieve resource depletion. Such depletion is characterized per RRH as the maximum number of UEs supported M_{m}^{max} during a horizon T. As such, to achieve minimum interference, we can model the following optimization problem per RRH:

$$\max_{\forall m} \sum_{t}^{T} \left(\chi \sum_{n}^{N \setminus N_{\text{donnor}}} \kappa_{mn}(t)\text{SINR}_{mn}(t) + (1 - \chi) \sum_{n}^{N \setminus N_{\text{leaser}}} \kappa_{mn}(t)\text{SINR}_{mn}(t) \right)$$

$$\text{s.t.} \sum_{n}^{N} \kappa_{mn}(t) \leq M_{m}^{\text{max}} \quad \forall m \in M; \forall t \in T.$$ (4.12)

In this optimization, we seek the maximization of the overall SINR per RRH in (4.12). As the system must respect sharing policies, we consider that infrastructure and spectrum are shared partially represented by the parameter χ, where \{\chi \in \mathbb{R} \mid 0 \leq \chi \leq 1\}. The SINR is maximized for the finite horizon T as long as the constraint (4.13) of the maximum number of UE supported M_{m}^{max} holds. The variables $\kappa_{mn}(t)$ represent the association decided for the given horizon. This association changes the overall interference with the system. The proposed model is not linear, presenting division of variables, and cannot be solved by linear programming solvers, such as Matlab or CPLEX, requiring a different and non-optimal approach to be solved.
4.2.2 Maximum Distance Between MDC and RRH under Delay Considerations

The round-trip delay within H-CRAN must meet stringent latency requirements imposed by wireless communications mechanisms such as the HARQ adopted in LTE. In HARQ, the round-trip delay cannot surpass a fixed delay budget, regardless of whether local or remote processing is used. In the case of LTE, this delay budget is around 3 ms (ALYAFAWI et al., 2015). Delay constraints, in practice, dictate the maximum distance between an RRH and the MDC that processes its signals, limiting the area that an MDC can serve (MUSUMECI et al., 2016). This distance is commonly considered to range between 20 and 40 km (China Mobile Research Institute, 2011), the underlying assumption being that processing requirements and computing power (and, thus, processing delay) are fixed (CARAPELLESE; TORNATORE; PATTA VINA, 2014). In fact, processing requirements change all the time according to the FEC processing that is most suitable for current channel conditions.

We characterize the relationship between channel conditions and the maximum distance between MDC and RRH, which has implications on processing load balancing and architectural decisions regarding the placement of the data centers that house the vBBUs given delay constraints.

Considering that the decoding of a single code block is recursively computed without parallelism, we can characterize the relationship between the round-trip delay, the distance between the MDC and the RRH, and the processing power allocated in the fog or cloud through the number of decoder recursions performed by the FEC algorithm. In equation 4.14, we isolate i_{smn} as a function of the round-trip delay budget Φ, the processing power p_{sn} allocated in the cloud, and the distance d_{sm} between MDC and RRH:

$$i_{smn} = \left\lfloor \frac{p_{smn}v_s(\Phi - 3d_{sm}/c - 2\sigma[d_{sm}/\alpha])}{u_n\omega} \right\rfloor.$$

(4.14)

The decoder performance, in terms of BER, for the code block can then be expressed as a function of the number of recursions of the FEC scheme and the SNR, expressed as $(\frac{E_{b_{mn}}}{N_o})$, experienced during the transmission of the code block:

$$ber\left(\left\lfloor \frac{p_{smn}v_s(\Phi - 3d_{sm}/c - 2\sigma[d_{sm}/\alpha])}{u_n\omega} \right\rfloor, \frac{E_{b_{mn}}}{N_o}\right).$$

(4.15)

The $ber(\ast)$ function can be empirically obtained from experiments or simulations with the desired recursive decoder. For a given target decoding performance and available
processing power p_{smn}, the round-trip delay Λ_{smn} can be set equal to the delay budget Φ to obtain the maximum distance d_{sm} between MDC and RRH in the following optimization problem:

$$\max_{d_{sm}} d_{sm} \quad \text{(4.16)}$$

s.t.

$$ber\left(\left[\frac{p_{smn}v_s(\Phi - 3d_{sm}/c - 2\sigma[d_{sm}/\alpha])}{u_n\omega}\right], \frac{E_{bms}}{N\sigma}\right) \leq q_n \quad \text{(4.17)}$$

$$d_{sm} \leq \frac{c\alpha(\Phi p_{smn}v_s - u_n\omega)}{p_{smn}v_s(3\alpha + 2\sigma c)} \quad \text{(4.18)}$$

$$d_{sm} \geq 0. \quad \text{(4.19)}$$

In (4.16), we seek to maximize the distance d between BBU and RRH, subject to three constraints. The first constraint (4.17) sets the maximum acceptable BER b. Constraint (4.18) sets an upper bound for d, corresponding to a single recursion of the FEC algorithm. The final constraint (4.19) guarantees that d is non-negative. The optimization problem is non-linear, due to the non-linearity of the function $ber(\ast)$ (BREJZA et al., 2016). To solve this problem, a decision algorithm able to select the best tradeoff between distance and processing power is required.

4.2.3 Processing Power Underusage in H-CRAN

Load balancing in a H-CRAN can be performed by allocating a vBBU’s processing power within an MDC at runtime according to demand, taking advantage of what is sometimes referred to as vertical elasticity (RIGHI et al., 2016). Allocating the processing power at runtime enables to evaluate the impact of different processing power allocations at a BBU to process workloads of RRHs that are farther away with different channel conditions. Considering the dynamicity of H-CRAN, with UEs joining and leaving the network at any time, with different requirements and channel conditions leading MDCs to face processing power underusage.

Decisions regarding the allocation of processing power in the MDCs can be taken to reduce its consumption and address processing power underusage. Let us assume that $a_{smn}(t)$ stands for a binary variable that determines whether an MDC s is processing
the workload of the RRH m assigned to the UE n at time slot t ($a_{s_{mn}}(t) = 1$) or not ($a_{s_{mn}}(t) = 0$). Also let us assume that $b_s(t)$ is a binary variable that determines whether an MDC s is active ($b_s(t) = 1$) or not ($b_s(t) = 0$) for a determined period of time t. It is natural that both variables are related. This relationship can be mapped through the following constraint.

\[a_{s_{mn}}(t) - b_s(t) \leq 0 \quad \forall s \in \mathcal{S}, \forall m \in \mathcal{M}, \forall n \in \mathcal{N}, \forall t \in \mathcal{T}. \]
(4.20)

The constraint above guarantee that a UE n connected to an RRH m can only be assigned to an MDC s at a slot of time t only if it is active ($b_s(t) = 1$). Furthermore, given the SNR and the total data received, each UE n has to be served within a finite horizon for a certain demand l_n in bits, such as:

\[\sum_{t=t_0}^{t_f} \sum_{s=1}^{S} \sum_{m=1}^{M} a_{s_{mn}}(t) \Upsilon_{mn}(t) \geq l_n \quad \forall n \in \mathcal{N}. \]
(4.21)

The previous assumption only holds for the case where each UE is able to sustain connectivity. Therefore, the UE transmission power cannot surpass the maximum transmission power W assumed per equipment, such as below:

\[\sum_{s=1}^{S} \sum_{m=1}^{M} a_{s_{mn}}(t) w_{mn}(t) H_{wn}(t) \leq W \quad \forall n \in \mathcal{N}, \forall t \in \mathcal{T}. \]
(4.22)

Moreover, the performance of the FEC must meet the target BER of each UE per RRH, such as:

\[a_{s_{mn}}(t) e_{mn}(t) \leq q_n \quad \forall s \in \mathcal{S}, \forall m \in \mathcal{M}, \forall n \in \mathcal{N}, \forall t \in \mathcal{T}. \]
(4.23)

Considering the constraint in (4.23), the association between UEs and RRHs is only possible for the case that the SNR is larger enough to sustain the target BER with the achieved FEC performance.

The allocation of vBBU within an MDC must be lesser or equal to the total quantity of processing power available that can be consumed in parallel regarding the number
of available GPP and processing, exploiting the concept of horizontal elasticity in cloud (RIGHI et al., 2016), we have:

\[
\sum_{m=1}^{M} \sum_{n=1}^{N} a_{smn}(t)\Psi_{mn}(t) - b_s(t)g_s f_s \leq 0, \quad \forall s \in S; \forall t \in T. \tag{4.24}
\]

In the left term of the inequality (4.24) the workload to be processed is presented by summation of all binary assignment variables \(a_{smn}(t)\) and the processing power consumed \(\Psi_{mn}(t)\). In the right term, the binary variable \(b_s(t)\) represent that the \(s^{th}\) MDC is active at time slot \(t\) and ready to process the workloads arrived with its processing capacity \((g_s f_s)\). As the processing of a code block is the smallest and non-parallelizable processing unit to be calculated, the processing delay is estimated per MDC for the largest code block \(u\) in bits supported by the technology in use, for instance, LTE has maximum code block of 6144 bits (3rd Generation Partnership Project (3GPP), 2015). The delay generated impacts directly in the capability of an MDC to be associated with a UEs that is far away in the RAN to sustain delay budget, expressed by the following vertical processing allocation constraint:

\[
a_{smn}(t) (\theta_s + \Xi_{sm}) + a_{s'mn}(t-1)(C_{ss'}) \leq \Phi
\]

\[
\forall s \in S, \forall m \in M, \forall n \in N, \forall t \in T, \forall s' \in S | s' \neq s. \tag{4.25}
\]

In (4.25), the inequality presents in its first term the round-trip delay occurrence for the decision binary variable \(a_{smn}(t)\). In the second term, we introduce the migration cost, which is represented by all the past binary variable \(a_{s'mn}(t)\) that represent a previous assignment occurrence among the UE \(n\) to the RRH \(m\) but for all MDCs \(s'\) that are different than \(s\). These variables are latter multiplied by a cost matrix \(C_{ss'}\) with the time consumed to perform a migration among MDCs in milliseconds. Further, we assume that a UE can at most be served by one MDC per time slot \(t\) resulting in the constraint below.

\[
\sum_{s} a_{smn}(t) \leq 1 \quad \forall m \in M, \forall n \in N, \forall t \in T. \tag{4.26}
\]

Finally, we follow with the lower and upper bounds constraints for each binary variable.
\[0 \leq a_{smn}(t) \leq 1 \quad a_{smn}(t) \in \mathbb{Z}, \forall s \in \mathcal{S}, \forall m \in \mathcal{M}, \forall n \in \mathcal{N}, \forall t \in \mathcal{T}. \]
\hfill (4.27)

\[0 \leq b_s(t) \leq 1 \quad b_s(t) \in \mathbb{Z}, \forall s \in \mathcal{S}, \forall t \in \mathcal{T}. \]
\hfill (4.28)

Considering each of the aforementioned constraints enable to model the following optimization problem:

\[
\begin{align*}
\min (\alpha) & \sum_{t=1}^{T} \sum_{s=1}^{S} \sum_{m=1}^{M} \sum_{n=1}^{N} a_{smn}(t) \frac{\psi_{mn}(t)}{g_s f_s v_s} + (1 - \alpha) \sum_{t=1}^{T} \sum_{s=1}^{S} \frac{b_s(t)}{ST} \\
\end{align*}
\]
\hfill (4.29)

In 4.29, a weighted multi-objective multi-variable binary linear minimization of the overall processing power and consolidation can be achieved by assuming the best allocation decisions for a finite horizon T presented by the binary matrix of variables \(a_{smn}(t)\) and the minimum number of active MDCs shown through the variables \(b_s(t)\). These decisions will be computed considering the weight \(\alpha\) that will balance the results. For a larger \(\alpha\), reducing the processing power consumption is prioritized. Whereas, for a small \(\alpha\) the reuse of MDCs is prioritized over reducing the processing power consumption. The multi-objective function will present results as long as the restrictions (4.20) (4.21) (4.22) (4.23) (4.24) (4.25) (4.26) (4.27) (4.28) are met. A typical solver based on Binary Integer Linear Programming (BILP), such as CPLEX or Matlab, can be used to solve the problem due to its linearity. As the problem is BILP it is NP-COMPLETE and presents \((SMNT + ST)\) variables.

Since the the optimization in 4.29 requires complete knowledge of all the states of a finite horizon, it becomes limited to solve off-line scenarios of H-CRAN. In this case, this solution is not feasible to be used during runtime requiring an on-line decision algorithm. Therefore, to execute on-line decision algorithms, a decision making system is required to accommodate them being able to target the challenges identified in the context of H-CRAN, such as proposed next.
5 AN SDN-BASED DECISION-MAKING SYSTEM IN H-CRAN

In this chapter, the architecture conceptual building blocks that compose our vision of an SDN-based decision-making system for H-CRAN is presented. Afterward, the main responsibilities that our architecture must assume are presented. Finally, three decision algorithm that sit on top of our architecture are proposed to solve the challenges modeled in the previous chapter.

5.1 Architecture

Our vision of a decision making system inherits many concepts from SDN, henceforth simply referred to as SDWN, being depicted in Figure 5.1. The main additions we envision to the original SDN architecture are the new conceptual entities placed at the Forwarding plane (i.e., devices supporting wireless connectivity, such as eNodeB, RRHs, relay nodes, and access points) and Control plane (i.e., specific controllers for wireless functions, called SDWN controllers). Since wired SDN switches and other network boxes were required to comply with ONF’s specifications of a Southbound API, we anticipate that the same will happen to H-CRAN devices. MDCs, BBUs and eNBs are responsible for processing all the wireless stack (e.g., signaling, media access control, radio resource allocation), which must also be adapted to comply with a new Southbound API for SDWN. RANs require handling a multitude of wireless functions, e.g., frequency assignment, handover, and interference control, which by design are not supported by the most accepted Southbound API definition OpenFlow. In this case, a new Southbound API is required. Also, high-level decisions related to wireless functions must be made by algorithms siting on top of SDWN controllers, while the implementation of these decisions to lower levels must be performed through the appropriate API calls and programming abstractions. For example, a handover function requires an API definition to exchange messages containing relevant information, such as SINR, Packet Error Rate (PER), and Destination Point-of-Access (DPoA) indicator, to be properly coordinated.

A common strategy in current SDN setups is to place controllers at the core of the network, far from the edge where RANs are located. That is likely to lead to harmful delay of signaling traffic originating at the network edges. In addition, although SDN controllers are expected to handle ultra high speed data flows in wired networks (THYAGATURU et al., 2016), their placement at the network’s core is unlikely to allow cen-
Centralized SDWN controllers to scale with the extra control traffic coming from RANs. As such, an important design consideration of SDWN is that the **SDWN controller** needs to be positioned closer to the edge of the network. This entity adds scalability to the **Control plane** by directly handling wireless specific functions. Although the **SDWN controller** is a logically centralized entity, its implementation could be distributed across the edge of H-CRAN, which brings about the discussion on the definition of horizontal inter-controller APIs (**e.g.**, Westbound and Eastbound) (JARSCHEL et al., 2014). Therefore, **SDWN controllers** can still be distributed and also perform centralized logical functions, such as global topology mapping, neighbor wireless resource information retrieving, link discovery, and radio monitoring. Although these functions can be carried out in large time scales, for others, such as radio resource management and spectrum sharing, the distance of the radio device and the controller shortens due to delay constraints. We prefer to leave the control plane homogeneous and leave the placement of the controllers as a topological decision to be taken by the infrastructure owner or operators. It is also worth mentioning that some of the current SDWN proposals are distributed and present hierarchical organization of controllers that provides partial control centralization (FIORANI et al., 2015)(YANG et al., 2016). Such distribution enable controllers to decrease management complexity keeping part of the centralization benefits (YANG et al., 2016). There is also the possibility to pool resources, such as radio frequencies and processing power under the control of SDWN controllers in H-CRAN (GUAN et al., 2014)(AMIN; MARTIN, 2016).

In cellular networks, centralized solutions turn feasible to achieve optimized de-
cisions because of the availability of the overall state of the network (AMIN; MARTIN, 2016); however, they are impracticable to be implemented on the current distributed architecture of the RAN, regarding complexity and delay constraints (ZHANG et al., 2015). In contrast, H-CRAN already envisions a topologically centralized architecture based on resource pools to perform signal processing of the distributed RAN. Therefore, SDWN can exploit this concept to tackle complexity and latency constraint by using these pools and the existing optical backhaul (YANG et al., 2016). In this case, SDWN controllers can take part as an enabling technology to perform centralized processing, becoming responsible for different wireless functions coordination (WANG et al., 2016) (ABOLHASAN et al., 2015). For example, SDWN controllers can be reprogrammed to analyze, allocate, and redistribute radio resources, in addition to controlling the handover, interference, energy, and radio resource sharing (AKHTAR; WANG; HANZO, 2016). Also, SDWN controllers can serve as a framework to design novel solutions, for example, based on artificial intelligence to predict user handover mobility in a more harmonized manner, avoiding the need of specialized protocols and network middle-boxes, such as IEEE 802.21 and LTE’s Mobility Management Entity (MME). Although, H-CRAN can benefit from SDWN to reach, for example, optimized solution for each different supported wireless function, the definition of which wireless functions an SDWN controller must control and how, remains undefined.

As in SDN, an SDWN controller can be tuned and reprogrammed by decision algorithms at the Application plane through the Northbound API. The main difference from a typical SDN setup is that SDWN allows algorithms to reconfigure wireless functions, such as handover, inter-cell interference, and association control. The Northbound API allows operators to dynamically redefine their entire RAN configuration, readjusting the modus operandi of SDWN controllers.

Although SDWN enables endless possibilities, it is not a plug-and-play solution to all problems and despite the different architectures proposed, there is still the lack of a proper definition of what are the controller responsibilities to the realization of SDWN in H-CRAN. As a consequence, the Southbound API is weakly defined without proper specification and standardization. In this sense, we take a step further by defining the responsibilities that an SDWN controller must assume in H-CRAN and propose a new Southbound API definition. It is important mentioning that we are not extending Openflow, we are rather creating a different API specific for wireless functions. In the next section, we introduce the responsibilities that an SDWN controller can assume to control
wireless functions followed by the API design and definition in Chapter 6.

5.1.1 SDWN Controller Responsibilities

The main benefit of using SDWN in H-CRAN is the creation of a flexible and programmable decision making system required to transform the current control plane into a more dynamic one that accommodates future wireless functions while still supporting current functions. Within this system, SDWN controllers must assume responsibilities about wireless functions that nowadays are enclosed in closed-source or technology specific solutions. We selected six wireless functions to delve into details regarding the SDWN controller’s responsibilities, such as presented in Table 5.1. The selected functions are not necessarily all the possible wireless functions, but the most representatives for addressing the three H-CRAN challenges raised in the previous chapters. Each row from this table presents: (i) a wireless function, (ii) responsibilities that shall be taken by SDWN controllers to cope with each function, and (iii) enabling technologies that can help controllers to fulfill their responsibility. A detailed discussion organized in subsections follows.

Handover control

The high density of H-CRAN associated with user mobility may end up in throughput degradation issues due to, for example, frequent UE handover and infrastructure unbalancing. To avoid such degradation, different technologies were proposed for mobility support and handover control of UEs in current cellular networks, such as IETF’s Mobile Internet Protocol version 6 (MIPv6) and IEEE’s 802.21 standards, as well as the addition of the Mobility Management Entity (MME) a particular purpose element in 3GPP’ LTE architecture. To guarantee the correct operation of an H-CRAN, the decision making system must also provide support to these technologies before implementing more sophisticated mechanisms. Therefore, these technologies can be combined with SDWN to design optimal or semi-optimal handover control solutions, which can leverage SDWN’s centralization of network status as input. Also, in a posterior moment, SDWN controllers can serve as a framework to design novel handover solutions, for example, based on artificial intelligence to predict user mobility in a more harmonized manner, avoiding the
Table 5.1: SDWN controller responsibilities

<table>
<thead>
<tr>
<th>Wireless function</th>
<th>Controller responsibility</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handover control</td>
<td>• Mobility accounting
• Mobility prediction
• Data flow orchestration
• Transparency</td>
<td>• IEEE 802.21
• Mobile IPv6 (MIPv6)</td>
</tr>
<tr>
<td>Interference control</td>
<td>• Intra-cell interference cognition
• Inter-cell interference cognition
• Interference avoidance orchestration
• Control channel pollution minimization</td>
<td>• Enhanced Inter-Cell Interference Coordination (eICIC)
• Coordinated Multi-Point (CoMP)
• Almost Blank Subframe (ABS)</td>
</tr>
<tr>
<td>Radio resource allocation</td>
<td>• Calculate radio resource allocation
• UEs associated per RRH and BS</td>
<td>• eICIC
• CoMP
• Software-Defined Radio (SDR)
• Cooperative radio resource control
• Cooperative self-organized networking</td>
</tr>
<tr>
<td>Sharing control</td>
<td>• Frequency bands division
• Access granting
• Accounting
• Policy assurance</td>
<td>• Biding and Auction House
• Licensed Shared Access (LSA)
• Dynamic Spectrum Access (DSA)</td>
</tr>
<tr>
<td>Network orchestration</td>
<td>• Data-flow management
• Data-flow redundancy
• Cell association control
• Admission Control</td>
<td>• Control And Provisioning of Wireless Access Points (CAPWAP)
• OpenFlow
• LTE-Self Organized Network</td>
</tr>
<tr>
<td>Energy control</td>
<td>• Configure maximum transmission power
• Switch On/Off devices
• Co-channel maximum transmission power</td>
<td>• Remote energy control mechanism
• Wake up mechanism
• Transmission power control through SDR</td>
</tr>
</tbody>
</table>

need of specialized protocols, such as IEEE 802.21. As a proof of such statement and contribution of this thesis, we investigate the use of SDWN for handover decisions in the article of Tartarini et al. (TARTARINI et al., 2018). Also, we use the handover control to associate UEs and RRHs throughout the three case studies presented in this thesis.

Interference control

As soon as macro and small cells start to intersect with each other in H-CRAN, the improved data rate provided by these cell deployments degrades due to intra and inter-cell interference (ZHANG et al., 2015). As a consequence, different technologies have been exploited to alleviate interference at RANs, such as beamforming transmissions using multi-user MIMO antennas, Almost Blank Subframes (ABS), and Enhanced Inter-Cell Interference coordination (eICIC) mechanism. These technologies can have their performance improved by the use of centralized solutions for inter/intra-cell interference coordination to reach near zero interference. As opposed to distributed solutions, largely based on local signal strength indicators, centralized interference coordination has
the whole network state and frequency allocation, facilitating interference management. In this sense, the processing centralization provided by H-CRAN combined to the SDWN controller enables the coordination of the inter/intra-cell interference, allowing operators to design algorithms for interference coordination that best fit their network needs (Zhang et al., 2015)(Wang et al., 2016). Since SDWN controllers centralize interference coordination, parameters, such as interference at receiver and frequency assigned for each cell, can be used as input for optimized interference avoidance in H-CRAN. Although the interference coordination can be improved, the number of signaling messages increases, radio cells need to support sensing mechanisms, and event-based systems (e.g., traps) are required to send messages in case of interference detection. We investigate the potential of SDWN as a decision making system for interference control and signaling cost in the article of Marotta et al. (Marotta et al., 2017). Also, interference control is performed in the first case study investigated in this thesis.

Processing and Radio resource allocation

Channels, resource blocks, and spectrum are typical examples of radio resources that can be allocated in five domains, i.e., time, frequency, space, power, and coding. For instance, frequency might be dynamically assigned to each small and macro cell in H-CRAN to avoid interference and improve spectrum efficiency by exploiting spectrum reuse (Agyapong et al., 2014). Additionally, advanced radio virtualization techniques allow the allocation and sharing of radio resources among multiple (Virtual) mobile network operators (Yang et al., 2015), the exploitation of dynamic access techniques (Kang; Zhang; Motani, 2012), and even different access techniques, such as Machine-to-Machine (M2M) (Kan Zheng et al., 2012), to allocate resources in a cellular network. Technologies such as SDR provide the programmability required to adapt the radio resource allocation in real time at the price of higher processing power requirements. This programmability also allows the utilization of advanced CoMP and eICIC mechanisms to increase the spectral efficiency of radio communications as long as delay constraints and processing power resources can be sustained.

SDWN can improve processing and radio resource allocation by centralizing the knowledge of the wireless network exposing the programmability of networking devices to high-level decision algorithms. However, the main constraints of using SDWN controllers for processing power and radio resource allocation are related to delay constraints,
the increase of signaling messages, the integration of low-level radio baseband processing with the conventional network protocol stack and hardware, and complexity to design centralized resource algorithms that react to the local and fast paced changes of wireless channel conditions (WANG et al., 2016). The processing and radio resource allocation decisions in SDWN can change the processing power and the current channel bandwidth improving their usage, such as investigated in the work of Marotta et al. (MAROTTA et al., 2017). Also, the tradeoff between processing power allocation and channel conditions under delay constraints is studied in the work of Marotta et al. (MAROTTA et al., 2018a).

Sharing control

High leasing prices and spectrum scarcity lead operators to exploit spectrum sharing to improve their resource pool and budgeting (DOYLE et al., 2014). To take advantage of spectrum sharing, different techniques can be used, e.g., Dynamic Spectrum Access (DSA) and Licensed Shared Access (LSA) in combination with cognitive radio and auction systems. With SDWN, operators can control the access technique used to explore shared frequencies. In this sense, SDWN controllers become responsible for providing information sharing among operators, enabling better control of shared frequencies, and assuring that operators’ policies are correctly applied. Nevertheless, depending on spectrum access technique taken, the SDWN controller role changes. For example, in LSA the SDWN controller becomes limited to coordinate spectrum sharing only if a spectrum broker is present in the coordinated area. The usage of spectrum and infrastructure sharing within a centralized decision-making system is studied in Marotta et al. (MAROTTA et al., 2015) and Marotta et al. (MAROTTA et al., 2018b). Next, in the first case study, we exploit the sharing control responsibility of wireless controllers to reduce interference in an H-CRAN.

Network orchestration

H-CRAN infrastructure includes many heterogeneous elements, such as BSs, BBUs, RRHs, and APs, operating under a variety of protocols to forward data and to interact with one another. Achieving, for example, optimal traffic routing in this context is infeasible without some sort of lingua franca among technologies. SDWN can improve this
scenario with network orchestration, by centralizing information from different sources and communicating with elements of interest all over the network. While requiring trap systems for event detection and possibly increasing signaling traffic, SDWN controllers become a bridge for integrating well-known protocols, such as OpenFlow and CAPWAP, to coordinate other elements (including other SDN Controllers) performing cross technology operations. The usage of decision algorithms with SDWN considering network orchestration is investigated in the work of Tartarini et al. (TARTARINI et al., 2018).

Energy control

Energy consumption in a cellular network can be divided into two perspectives from (i) operators and (ii) UEs. In the former, operators are concerned with infrastructure equipment energy consumption, for example, RRHs and BBUs. In the latter, UEs must preserve their energy to maximize battery life by minimizing transmission power and retransmissions. There is a tradeoff between both perspectives, where infrastructure equipment consumes more energy to reduce UEs consumptions (China Mobile Research Institute, 2011). SDWN can be used to turn the energy control programmable. SDWN controllers must control the energy tradeoff by configuring the maximum allowed co-channel interference and transmission power, allowing operators to balance the tradeoff as they see fit. Also, the SDWN controller shall be able to switch off/on wireless equipment that is not in use, for example, an RRH without UEs in its vicinity. Thus saving energy, but increasing node unavailability in case a cell is erroneously turned off while in use. Access to such a command must be protected against unauthorized use. Decision algorithms revolving energy control in H-CRAN are studied in the work of Marotta et al. (MAROTTA et al., 2017) and D’Oro et al. (D’ORO et al., 2018).

It is important to notice that the aforementioned wireless functions are not novel by themselves. In fact, there are purpose specific controllers already in place for some of them, *e.g.*, the MME controls intra-LTE handover events. However, these controllers were not designed for dynamic reprogramming, hindering the deployment of network applications and the fast evolution of cellular networks and H-CRAN. Moreover, SDWN can be used in H-CRAN to achieve outstanding benefits, which include optimal interference avoidance and frequency assignment, as well as improved energy control and spectrum shar-
ing. On top of the proposed architecture, different H-CRAN challenges can be addressed according to decision algorithms. In this case, next, we propose three decision algorithm to sit on top of the proposed architecture being able to address the challenges of H-CRAN described in the previous Chapter.

5.2 Decision algorithms

In this section, two decision algorithms are proposed to run on top of the proposed SDWN architecture. In the first, interference and resource sharing decisions are made considering an algorithm that can update, distribute, and control the power of shared RRHs in H-CRAN. In the second, delay constraints dictates the tradeoff of processing power allocation and maximum distance between MDC and RRH in H-CRAN observed in two decision algorithm with slightly different objectives, changing according to the inputs provided.

5.2.1 Minimal Interference with Maximum Throughput through a Resource Sharing Decision Algorithm

Considering the problem modeled in (4.12), the solution can only be found for a determined horizon T. In practice, T is not known during runtime of an H-CRAN. In this case, we designed a decision algorithm executed per slot of time t that sits on top on an SDWN controller that (i) reconfigures the channel bandwidth to best fit the UE demands according to the LTE configurations, i.e., [1.4, 3, 4, 5, 10, 15, 20] MHz, (ii) reduce the overall interference by assigning the channel with the lowest SINR, i.e., the channel least used in the RRH neighborhood, and (iii) switch the operation mode of RRHs based based on the number of UE’s in the RRH vicinity, i.e., idle if no UEs are in the RRH vicinity and active otherwise.

Algorithm 1 presents a pseudo code that contains the main operations performed by the application plane. The power control and channel bandwidth reconfiguration are executed only when the SDWN controller receives the BW update message (line 1), which is better explained in the following chapter. As the first step, the power control routine is triggered for a given RRH (line 16). In this routine, the SDWN controller estimates the potential set of UEs to associate or migrate to an RRH m due to their positioning and
interference (line 17). Afterward, the application determines if an RRH being analyzed \((m)\) will accept a UE that is migrating from other RRH \((m')\) determining: (a) if \(m\) is current number of UEs connected is larger than the population of connected UEs from \(m'\); (b) if \(m'\) is saturated or cannot afford the capacity required by the UE (line 19); and (c) if \(n\) is a donor subscriber and \(m'\) has more UEs from leasers than the policy established \(\chi M_m^{\text{max}}\) (line 22), they are dropped to serve the donor subscribers to meet the objective function from (4.12). Otherwise, the RRH rejects the UE access (line 26). This way RRHs are shared until achieving saturation before activating a new RRH, such as constraint (4.13) dictates.

Further, the algorithm uses the controller available information to estimate the necessary channel bandwidth considering the UEs modulation and coding scheme, SINR, and PER for each connected UE (line 3). Afterward, the RRH is configured with the channel bandwidth that satisfies all UEs and that corresponds to a valid LTE configuration (line 4) and updates the channel distribution (line 5). Starting the update, the SDWN controller estimates the channel with best SINR (line 8) and assigns it to RRH (line 9). Because the decision of changing the channel of one RRH modifies the interference conditions of all adjacent antennas calculated by using the formula from (4.11), the ChannelDistributionUpdate is performed per RRH (lines 10 – 12). Moreover, as clusters of small cells will hardly interfere with each other due to small coverage area of RRHs, it is not likely that the ChannelDistributionUpdate will be executed for all RRHs in the H-CRAN. The algorithm complexity is \(O(M^4 + M^2 * N)\).

5.2.2 Maximizing Distance Between MDC and RRH Algorithms

The optimization problem (4.16) is non-linear and the function \(\text{ber}(*)\) does not present a closed form, requiring the problem to be discretized (BREJZA et al., 2016). We exploit the nearest integer solution presented in (HASTAD et al., 1989). Considering \(d\) as a discrete integer variable, with \(d \geq 0\), and noticing that the maximum value of \(d\) can be achieved when processing delay becomes zero, we can determine a finite integer range that contains all possible \(d\). We designed a heuristic exhaustive search decision algorithm that scales \(d\) within the finite range, with a precision of meters, until all proposed constraints are met for a given processing power \(p_n\) and target BER \(b\) to achieve the nearest integer optimal solution.

In algorithm 2, the round-trip delay budget \(\Phi\), the threshold \(\alpha\), the set of distances...
Algorithm 1 Bandwidth update, channel distribution, and power control applications

Ensure: RRH_n is the RRH that a UE n is currently connected
Ensure: UEL_m is the list of UEs connected to RRH m
Ensure: UEL^{donor}_m is the list of subscribed UEs
Ensure: UEL^{donor}_m is the list of subscribed UEs connected to RRH m
Ensure: UEL^{leaser}_m is the list of leasing UEs connected to RRH m
Ensure: INT_m is the list of RRHs interfering with RRH m

1: procedure RECEIVEDBWUPDATEMESSAGE(RRH_m)
2: trigger PowerControl(RRH_m)
3: $reqBW ← Sum(\text{BW required by UEs in } UEL_m)$
4: Configure RRH m channel to satisfy $reqBW$
5: trigger ChannelDistributionUpdate(RRH_m)
6: end procedure

7: procedure CHANNELDISTRIBUTIONUPDATE(RRH_m)
8: Estimate the channel with greater SINR for RRH m
9: Configure RRH m to use channel with best SINR
10: if RRH_m channel changed then
11: for all RRH_i in INT_r do
12: trigger ChannelDistributionUpdate(i)
13: end for
14: end if
15: end procedure

16: procedure POWERCONTROL(RRH_m)
17: Estimate the set of UEs interested in migrate to m
18: for all $UE\ n$ in UEs do
19: if sizeof (UEL_m) smaller than sizeof(UEL_{RRH_n}) and m' is unable to sustain n then
20: UE n has access granted to RRH m
21: else
22: if $n \in UEL^{donor}$ and sizeof (UEL^{leaser}_m) larger than χM^{max}_m and m' is unable to sustain n then
23: Disconnect a UE from (UEL^{leaser}_m) and add it to the list of UE to be served
24: UE n has access granted to RRH m
25: else
26: UE n has the access denied to RRH m
27: end if
28: end if
29: end for
30: end procedure

D, the maximum number of recursions K, a target BER q, and the processing power allocated p_{smn} is known for a given MDC s, RRH m, and UE n from information gathered at the SDWN controller. For each code block evaluated we used a function $minK(\frac{E_{bm}}{N_0}, q)$ to minimize the number of recursions k iterating until achieve the maximum K or a minimum target BER q through the function $ber(k, \frac{E_{bm}}{N_0})$.
Algorithm 2 Maximum distance for a given processing power

1: Φ, p_{snn}, S, d, K, and q are known
2: $k \leftarrow \min K\left(\frac{E_{bm}}{N_0}, q\right)$
3: for $d \leftarrow D$ do
4: $h \leftarrow \left\lceil \frac{d}{S} \right\rceil$
5: $p \leftarrow \frac{kL_m F}{\phi - \left[3d/c + 2Ah\right]}$
6: if $p \leq p_{snn}$ then
7: $\text{Maxd} = d$
8: else
9: return Maxd
10: end if
11: end for
12: procedure MINK\left(\frac{E_{bm}}{N_0}, q\right)$
13: for $k \leftarrow [1..K]$ do
14: if $\text{ber}(k, \frac{E_{bm}}{N_0}) \leq q$ then return k
15: end if
16: end for
17: end procedure

Given k, we loop the distances d in D determining the number of hops h per iteration. Afterward, for each new d and h we solve the equality (4.8) for a given round-trip delay budget Φ and isolating p. Afterwards, p is compared to the allocated processing power p_{snn} to decide what is the maximum distance supported to sustain H-CRAN operator. The algorithm presented has complexity of $O(K+D)$ for a given p_{snn}.

5.3 Minimizing Processing Power Underusage Algorithm

To solve the processing power underusage problem in H-CRAN, the optimization proposed in 4.29 requires knowing every slot of time of a finite horizon to be calculated. In this sense the optimization is running on top of an offline version of H-CRAN, where every state and possibility is known by the system. This optimization cannot be used for real deployments of H-CRAN, where information can only be obtained for past slots of time and the future is unknown. Moreover, MBILP optimizations are combinatorial search algorithms that scales very fast for small growing in the scenario. Therefore, we propose an online greedy algorithm in 3 capable of exploit the tradeoff of reducing processing power consumption and increase consolidation through MDC reuse achieving near optimal solution for the processing power underusage problem in H-CRAN.

In algorithm 3, the weight α, the current time slot slot, the delay budget Φ, the sets of UEs \mathcal{N}, RRHs \mathcal{M}, MDCs \mathcal{S}, total time considered T, the aggregated function
value from the previous time slot $fval(t - 1)$, the binary variables a and b filled until time slot t and the UEs total transmitted data achieved in previous time slots ([1..$t-1$]) \textit{total_transmitted} are known. We start by creating two auxiliary parameters, \textit{maxproc} which is the total processing available in the while H-CRAN; and \textit{t_processing} which is a vector containing the available processing per MDC s. Afterwards, we create a procedure to calculate the users transmission priority for the current time slot. In this case, in line 26, we create the procedure \textsc{Priority()} to bias each UE considering the connected RRH and associated MDC. In line 27, we instantiate a matrix of priorities with zeros for all possible UEs, RRHs, and MDCs assignment. Afterwards, we iterate over all possible assignments such that the matrix pp is populated with the results from the equation in line 32.

The equation in line 32 is the same equation from 4.29 except from the first term that add the concept of the transmission deadline. Since the greedy algorithm does not hold information from all future slots, we must guarantee that UEs with closer deadlines have priority over those with larger time window to transmit. It is important to keep in mind that even with this modification the system may not guarantee that all UEs will be able to successfully attend to the initial request, which is part of the why this solution is suboptimal. The equation is calculated for every possible assignment of UEs, RRHs, and MDCs populating the matrix pp. Finally, at the end of the procedure, pp is sorted in descending creating the matrix of priorities.

The matrix of priorities has its indexes extracted in terms of s, n, and m, which are looped sequentially in line 7 of the Algorithm 3. Afterwards, each of the conditions inherited from the problem 4.29 are checked. In line 8, we check whether the UEs n still needs to transmit or not by comparing the \textit{total_transmitted} vector against the initial demand l_n. Further, in line 9, we check if the current slot of time t is within the transmission window of the UE. Next, in line 10, we check if the target BER q_n is met. In line 11, we check the horizontal allocation constraint to guarantee that an MDC s has processing power enough to accommodate the workload $\Psi_{mn}(t)$ being assigned. Whereas, in line 12, the vertical allocation constraint is verified for the case that the round-trip delay $\Lambda_{smn}(t)$ is lesser or equal then the delay budget Φ. Finally, in line 13, we guarantee that the UE being checked was not already served by iteratively testing all the previous assignments generated during the loop which is necessary for the greedy algorithm to converge.

Since all the constraints were met until line 14 of Algorithm 3, we can proceed with the assignment. The assignment in the algorithm will instantiate all necessary binary
Algorithm 3 Greedy processing power underusage minimization

1: \(\alpha, t, \Phi, \mathcal{N}, \mathcal{M}, \mathcal{I}, T, fval, a, b \) and total_transmitted are known
2: \(\text{maxproc} \leftarrow 0 \)
3: for \(s' \leftarrow [1..S] \) do \(\text{maxproc} \leftarrow \text{maxproc} + v_{s'} + f_{s'} + g_{s'} \)
4: end for
5: for \(s' \leftarrow [1..S] \) do \(t_\text{processing}_{s'} \leftarrow v_{s'} + f_{s'} + g_{s'} \)
6: end for
7: for \(s, m, n \leftarrow \text{PRIORITY}(\alpha, t, \mathcal{N}, \mathcal{M}, \mathcal{I}, T, \text{maxproc}) \) do
8: if total_transmitted\((n) \geq l_{n} \) then
9: if \(t \geq t_{n}^{0} \) and \(t \leq t_{f}^{n} \) then
10: if \(\text{ber}(\mathcal{X}, \Gamma_{smn}) \leq q_{n} \) then
11: if \(\Psi_{mn}(t) \leq t_\text{processing}(s)_{s} \) then
12: if \(\Lambda_{mn}(t) \leq \Phi \) then
13: if not already_served\((\mathcal{S}, n, t) \) then
14: \(a_{smn}(t) \leftarrow 1 \)
15: \(b_{s}(t) \leftarrow 1 \)
16: \(\text{t_processing}(s) = t_\text{processing}(s) - \Psi_{mn}(t) \)
17: \(\text{total_transmitted}(n) = \text{total_transmitted}(n) + \Upsilon_{mn}(t) \)
18: \(f\text{val} = f\text{val} + \alpha \frac{\Psi_{mn}(t)}{\text{maxproc}} - (1 - \alpha) \frac{1}{S \times T} \)
19: end if
20: end if
21: end if
22: end if
23: end if
24: end if
25: end for
26: procedure \(\text{PRIORITY}(\alpha, t, \mathcal{N}, \mathcal{M}, \mathcal{I}, T, b) \)
27: \(pp_{smn} \leftarrow 0; \forall s \in \mathcal{I}, \forall m \in \mathcal{M}, \forall n \in \mathcal{N} \)
28: for \(n \leftarrow [1..N] \) do
29: if \(t \leq t_{b}^{n} \) and \(t \geq t_{0}^{n} \) then
30: for \(s \leftarrow [1..S] \) do
31: for \(m \leftarrow [1..M] \) do
32: if \(t > 1 \) then
33: \(pp_{smn} \leftarrow \frac{1}{t_{b}^{n}+1-t} - \alpha \frac{\Psi_{mn}(t)}{\text{maxproc}} - (1 - \alpha) \frac{b_{s}(t-1)}{S \times T} \)
34: else
35: \(pp_{smn} \leftarrow \frac{1}{t_{b}^{n}+1-t} - \alpha \frac{\Psi_{mn}(t)}{\text{maxproc}} \)
36: end if
37: end for
38: end for
39: end if
40: end for
41: \(pp \leftarrow \text{SORT}(pp, \text{’descending’}) \)
42: return INDEXOF\((pp) \)
43: end procedure
variable of $a_{smn}(t)$ and $b_{st}(t)$ to the value of 1 in lines 14 and 15. Also, it will decrease the total processing power available $t_{-processing_s}$ for the s^{th} MDC assigned. The total transmitted $total_{transmitted_n}$ of the n^{th} UE is increased. Finally, the function value of the system f_{val} is summed considering the same equation from problem 4.29 to be latter compared. This algorithm presents a complexity of $2^*(S*M*N)$ which is executed once per time slot.

In the next chapter, we prototype the proposed SDN-based decision-making system that will host the algorithms designed.
6 PROTOTYPE AND INTERFACE DEFINITION

We developed a prototype of a centralized decision making system, where a controller exchange messages with H-CRAN networked nodes, e.g., MDCs and RRHs. First, we determine the southbound interface required to implement our proposed system based on SDWN controllers considering RESTful concepts. Afterward, we delve in detail regarding the prototype of our controller.

6.1 Controller Interface

For each wireless function, our southbound interface presents a set of RESTful resources that can be changed according to the methods: Create; Read; Update; and Delete (CRUD) (FIELDING; TAYLOR, 2002). These resources were designed to enable control and forwarding plane entities to interact, such as summarized in Table 6.1.

To perform radio resource allocation, the southbound resource channel can be instantiated by a controller using the create method determining which PoA (node) of a BBU will receive a determined frequency (c_frequency) with a certain bandwidth (c_bandwidth). Also, the resource can start to be used at a certain period (start_time) and send a notification to check whether the current configuration is still valid after a certain period (time_to_keep). The same resource can be used to get the current status of the channel in use of a node, receiving a list of radio parameters (radio_parameters), e.g., average RSSI and the number of UE currently connected consuming the channel. Other methods, such as update and delete, can be used to change the current configuration or destroy it. Considering the same logics, we detail each of the other resources, briefly.

The dmimo resource can be used to enable, check, change, or stop the execution of MIMO between RRHs (node_a and node_b). To perform handover control, the handover resource can be used to start, get status, change or stop a UE (ue) migration from an origin (poa) to a destination PoA (dpoa) considering different radio parameters (radio_parameters). Whereas, the handoff resource cannot be instantiated by the controller directly, but can be used by a BBU or eNB to notify the controller about a UE (ue) departure from one of its RRHs (poa) containing radio parameters (radio_parameters) when necessary.

The rssi_event, in turn, is a resource instantiated by BBUs and eNBs to inform that an RRH (node) is facing bad channel (c_frequency and c_bandwidth) quality (ra-
Table 6.1: SDWN southbound interface

<table>
<thead>
<tr>
<th>Wireless function</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio resource allocation</td>
<td>• channel(node, start_time, time_to_keep, c_frequency, c_bandwidth, radio_params)</td>
</tr>
<tr>
<td></td>
<td>• dmimo(nodes, nodes, ue_id, c_frequency, c_bandwidth, c_rssi)</td>
</tr>
<tr>
<td>Handover control</td>
<td>• handover(ue, poa, dpoa, radio_parameters)</td>
</tr>
<tr>
<td></td>
<td>• handoff(ue, poa, radio_parameters)</td>
</tr>
<tr>
<td>Interference control</td>
<td>• rssi_event(node, c_frequency, c_bandwidth, radio_parameters)</td>
</tr>
<tr>
<td></td>
<td>• interference_check(node, c_frequency, c_bandwidth)</td>
</tr>
<tr>
<td>Sharing control</td>
<td>• dsa(node_set, c_frequency, c_bandwidth, radio_parameters)</td>
</tr>
<tr>
<td></td>
<td>• lsa(node_set, c_frequency, c_bandwidth, start_time, time_to_keep)</td>
</tr>
<tr>
<td>Networking orchestration</td>
<td>• openflow(*)</td>
</tr>
<tr>
<td></td>
<td>• connection(ue, poa, radio_parameters)</td>
</tr>
<tr>
<td></td>
<td>• disconnection(dpoa)</td>
</tr>
<tr>
<td>Power control</td>
<td>• wakeup(poa)</td>
</tr>
<tr>
<td></td>
<td>• standby(poa, start_time, time_to_keep)</td>
</tr>
<tr>
<td></td>
<td>• maximum_power(poa, power, radio_parameters)</td>
</tr>
</tbody>
</table>

dio_parameters) that must be investigated. The interference_check resource enables BBU and eNBs to request the SDWN controller to check whether there are other RRHs from different RANs using the same channel frequencies (c_frequency and c_bandwidth). To perform sharing control, the dsa and lsa resources can be used to determine the current frequency sharing regime in use, in this case, DSA or LSA, respectively. In both cases, a set of RRHs (node_set) must be determined considering different inputs, i.e., frequencies in use (c_frequency and c_bandwidth), radio parameters (radio_parameters), start period (start_time) and time to request update (time_to_keep).

In terms of network control, the openflow interfaces (openflow(*)) must be considered to perform data flow management and control. Whereas, the association and disconnection control of UEs can be performed through the use of connection and disconnection resources, using messages containing e.g., the UE id ue and radio parameters, such as PER and Received Signal Strength Indication (RSSI). Finally, power control can be performed by the usage of wakeup, standby, and maximum_power resources, which enable to activate or deactivate an RRH, put it in standby mode (the RRH is on but do not perform transmissions or receptions), and set the maximum transmission power of an RRH. Considering the proposed interfaces, we developed our SDWN prototype.
6.2 H-CRAN and decision making system prototype

The proposed interface must be deployed within a decision making system to be evaluated in H-CRAN. In this case, first, we describe the prototype of nine setups of H-CRAN to serve as simulation scenarios to perform our evaluation. Afterward, the system prototype is presented and briefly described.

6.2.1 H-CRAN prototype

Our decision making system was developed to operate on top of H-CRAN scenarios. Our scenarios consist of different configurations of an H-CRAN with low, medium and high density of UEs ([100, 500, 1000] UEs/Km^2 respectively). Each UE density is combined with a scarce, medium or dense number of RRHs ([5, 15, 30] $RRHs/Km^2$, respectively). This results in nine different scenarios, varying from low-density-UEs-low-density-RRHs to high-density-UEs-high-density-RRHs (MAROTTA et al., 2015). Each of the nine scenarios were simulated in a custom-made simulation tool designed specifically for H-CRAN scenarios that have its source code published in GitHub\(^1\).

We modeled H-CRAN based on (3rd Generation Partnership Project (3GPP), 2010, Annex A), considering the communication between UEs and RRHs through free space path loss, with a thermal noise of \sim90 dBm, Orthogonal Frequency-Division Multiple Access (OFDMA), and modulation code scheme. RRHs were configured with a maximum transmission power of 23 dBm, antenna gain of 0 dBi, and connected to the closest BBU pool. The energy being consumed by the RRH varies according to its operation mode, 4.3 W when idle (sleeping) and 6.8 W when active (AUER et al., 2011).

A macrocell is placed in the center of the grid and configured with maximum transmission power of 46 dBm and antenna gain of 0 dBi. UEs move along the grid according to a random waypoint mobility model with a pause interval of 10s and with a speed ranging from 1 to 40 m/s (BAI; HELMY, 2004). Each UE is modeled with a Constant Bitrate (CBR) traffic demand of 5 Mbps. Thus, the total traffic demand increases with the number of UEs as follows: 0.5 $Gbps/km^2$ for 100 UEs, 2.5 $Gbps/km^2$ for 500 UEs, and 5 $Gbps/km^2$ for 1000 UEs.

In each scenario, we deployed our decision making system as an SDWN controller responsible for managing radio resource allocation and the operation mode of all RRHs,

\(^1\)Source code: https://github.com/ComputerNetworks-UFRGS/hcran-simulator
such as described next.

6.2.2 Decision Making System Prototype

The decision making system was developed as an SDWN controller that receives control messages from the wireless substrate, similar to OpenFlow messages in wired networks and also considering the RESTful interface proposed.

As a proof-of-concept, we initially considered only five types of messages regarding different resources: (i) connection (connection create), (ii) disconnection (disconnection create), (iii) connection + BBU change (handover CRUD), (iv) bandwidth (BW) update (channel update), and (v) RRH status (channel read). In Figure 6.1, we exemplify the connection message, which accommodates meaningful information for handover execution, such as SINR, PER, and DPOA. This information is received and used to populate the Handover and Channel tables within the SDWN controller.

The connection and disconnection messages are received by the SDWN controller when a UE performs a handover, e.g., disconnects from one RRH and connects to another one. The connection + BBU change is a message sent when a UE connects to an RRH managed by a different BBU, e.g., handover from RRH 3 to RRH 4 in Figure 6.1. This message is similar to connection, but with additional information about the RRH in which the UE is connecting. The BW update is sent when the RRH requires additional radio resources.

2OpenFlow - https://www.opennetworking.org/ja/sdn-resources-ja/onf-specifications/openflow
Further, the RRH status message is a power control messages exchanged between BBU and SDWN controller, which can change the RRH operation mode to idle or active. This set of messages can be generated in the following cases: (i) when a UE connects to an RRH, (ii) when a user disconnects from an RRH, or (iii) when the UE mobility turns the current modulation and coding scheme utilized by the RRH inappropriate, e.g., when the user moves far away from the connected RRH, and (iv) when a UE connects or disconnects from an RRH.

To serve as base for the the SDWN controller operation, we considered the proposed Algorithm (1) as the default operation that (i) reconfigures the channel bandwidth to best fit the UE demands according to the LTE configurations, i.e., [1.4, 3, 4, 5, 10, 15, 20] MHz, (ii) reduce the overall interference by assigning the channel with the lowest SINR, i.e., the channel least used in the RRH neighborhood, and (iii) switch the operation mode of RRHs based based on the number of UE’s in the RRH vicinity, i.e., idle if no UE’s are in the RRH vicinity and active otherwise. The decision of whether sharing control will be considered depends on the H-CRAN challenge we investigate. All the simulated scenarios and SDN-based decision-making system prototype were developed and executed in Matlab.

As a baseline to compare our prototype, we used a traditional network planning scheme based on 4G networks to organize H-CRAN, in which RRHs receive the channel with the best SINR and with a fixed bandwidth during the network bootstrap. Finally, we measured the overall throughput and energy consumption enhancement as well as the control cost imposed by SDWN in H-CRAN against the non-SDWN baseline.

Although it is not the focus of this thesis, to avoid only simulated scenarios, we investigate SDWN handover decisions in the work of Tartarini et al. (TARTARINI et al., 2018), where our SDN-based decision-making system was prototyped on top of an infrastructure composed of OpenFlow switches that are connected to an SDN controller. Also, MDCs and by convention, all RRHs were assigned to an adapted Floodlight SDWN controller (PROJECT... , 2017). Therefore, network-related statistics can be gathered by the control plane for both wired and wireless links. The scenario was deployed in OpenNet (OPENNET, 2017), a simulator built on top of Mininet and NS-3 for Software-Defined Wireless Local Area Network (SDWLAN). Furthermore, the data traffic was generated through iPerf (IPERF, 2017) for generic traffic and VLC (VLC’S... , 2017) for streaming, while throughput measurements were collected with bwm-ng tool (BANDWIDTH... ,

In the next section, we present case studies to quantify some of the benefits of SDN-based decision-making system, when interference, sharing, processing allocation are coordinated by SDWN controllers in an H-CRAN scenario.
7 RESULTS

In this chapter, first, we present a study comprising throughput and energy benefits as a tradeoff for communication cost imposed to H-CRAN when our decision making system is deployed. Afterward, for each of the H-CRAN challenges a decision algorithm is evaluated and results are presented.

7.1 Architecture Benefits and Communication Cost

We demonstrate the use of SDN-based decision-making system for future deployments of H-CRAN in a case study, such as depicted in Figure 6.1. In this case study, we show the system gains in terms of overall throughput, interference, and energy consumption in comparison to an H-CRAN without SDWN controllers using 4G frequency planning, as well as the overhead added by control messages used by our proposal.

7.1.1 Throughput and Energy benefits of SDWN in H-CRAN

We show the benefits of employing SDWN as a decision making system comparing the overall throughput achieved by all UEs with the traditional H-CRAN network,
which uses a fixed channel bandwidth. Moreover, we compared our system’s power control gains considering Algorithm 1 execution against a baseline where RRHs are always active.

Figure 7.1 shows the average throughput of UEs for each of the nine evaluated scenarios presented in Subsection 6.2.1. In all scenarios, employing SDWN to monitor UEs handover and perform frequency assignment increased the average throughput by approximately 40% when compared with the 3G/4G baseline. This gain occurs because SDWN reduces the inter-tier interference by managing the channel distribution during runtime, which in turn increases the average SINR and enables better modulation and coding schemes. However, for a fixed number of RRHs, increasing the number of UEs decreases the average throughput. This occurs because the limited available radio resources are divided among a larger number of UEs. For the same reason, the average throughput increases with the number of RRHs, i.e., the average number of UEs connected to an RRH is lower, facilitating the reuse of radio resources.

Figure 7.2: Percentage of communications performed relative to the number of interferers

To better understand the benefits of the channel bandwidth and distribution application, we show the percentage of UEs transmission as a function of the number of RRHs interfering with their communication in Figure 7.2(b). Approximately 70% of the transmissions were performed without interference, i.e., the channel had an interference in terms of energy lesser than -90 dB, with the H-CRAN standard channel distribution algorithm, whereas with the use of SDWN this number goes up to roughly 96%.
The power control application achieved energy gains maintaining RRHs in idle as long as others are not saturated, as can be seen in Figure 7.3. For scenarios with small densities, such as 100 UEs/km2, this application achieved 20% of energy reduction for high number of RRHs, a significant mark for large networks. Whereas, for scenarios with high densities, such as 1000 UEs/km2, the SDWN gains decrease achieving 6% at best for 30 RRHs. It is important to notice the tradeoff between increasing the number of RRHs and the energy gains achieved. In this case, the results in this work can serve as guidelines for operators to identify which is the best number of RRHs to be deployed in an H-CRAN comparing energy gains and the total capacity achieved.

![Figure 7.3: Average energy consumption per RRH](image)

7.1.2 Control message cost of SDWN in H-CRAN

The main drawback of employing an SDWN Controller is the additional overhead incurred by control messages. Figure 7.4 shows the number of control messages of each type for all evaluated scenarios. As expected, increasing the number of UEs or RRHs leads to a direct increase in the number of control messages exchanged. In the case of RRHs, this increase occurs because UEs have more handover opportunities. We also highlight that the total number of control messages exchanged per operation depends only on the number of UEs and RRH and not on external mobility factors, such as the speed in
which the UE is moving or its distance to the RRH.

Figure 7.4: Total of control messages in each scenario

Figure 7.5(a) shows the average frequency of each message type for all scenarios without significant loss of generality. Connection related operations, *i.e.*, connection and disconnection, account for 86% of all messages exchanged. The higher number of connections messages, as compared to disconnection, is due to users attempting to migrate between RRHs and having their handover denied by the power control application. Moreover, the number of BBU change, BW updates, and RRH status (*i.e.*, Enter normal mode and Enter idle mode) is below 13%. This result indicates that the channel bandwidth distribution and power control operations are rarely executed, although these operations significantly increase the overall UE throughput.

Figure 7.5(b) shows the traffic overhead of each message type considering its size and frequency. We defined the average packet size for each control message following the summation of their content with the OpenFlow standard headers needed by each control action, resulting in: 512 bytes for connection, 288 bytes for disconnection, 800 bytes for connection + BBU change, 384 bytes for BW update, 288 bytes for Enter normal mode and 274 bytes for Enter idle mode. Results show that the connection message is responsible for 65% of the traffic overhead. The connection + BBU change message represents 6% of the overhead, although it accounts for only 3% of the messages exchanged. Moreover, the BW update summed to the RRH status message accounts for less than 10% of the traffic overhead. The low overhead of BW update and RRH status, allied with its low frequency, reinforces the advantages of moving such a mechanism to a centralized SDWN
controller. It is worth highlighting that the average control overhead represents less than 3% of the overall network traffic, \textit{i.e.}, UE and control traffic.

7.2 Decision algorithms case study and results

In this section, different decision making algorithms are evaluated. Each of these algorithms were executed within our decision making system with its results gathered and described below.

7.2.1 Throughput Maximization using Resource Sharing in H-CRAN

We claim that resource sharing is fundamental for achieving higher spectral efficiency in H-CRAN environments. Instead of the nine scenarios we presented earlier, to quantify the resulting efficiency gains (in b/s/Hz), we designed two H-CRAN scenarios. For both scenarios, we placed a macro cell on the middle of a 1 km2 area, representing one sector of a cellular network. UEs are spread randomly in this area. In addition, inside the same area, small cells are randomly placed varying in number [50, 100, 250, 500]. For the macro cell \((m)\), we calculated the mean spectral efficiency \((M)\) according to distances of the UE to the RRH \((d)\). This calculation was done based on a Single-input and Single-output operational mode of a base station from 3GPP LTE-Advanced.
For the small cell (s) the calculation was based on the draft of IEEE802.11 ac 3.0. Each small cell was designed to support 20 UEs and the macro cell has no support limit.

\[
\begin{align*}
&D_m < 300 m & M_m = 3.75 b/s/Hz \\
&300 m \leq D_m \leq 600 m & M_m = 1.875 b/s/Hz \\
&600 m < D_m < 1000 m & M_m = 0.9375 b/s/Hz
\end{align*}
\]

We also considered that UEs will always try to connect to the RRH with the best received signal strength indicator (usually the closest one). It is important to notice that Algorithm 1 is hosted by our SDN-based decision-making system considering a single MDC for the whole scenario. The results were generated with more than 1000 repetitions of Monte Carlo simulations.

Figure 7.6: Small cells without resource sharing

In the first H-CRAN scenario, we investigated the maximum spectral efficiency reached by deploying small cells without resource sharing, being depicted in Figure 7.6. As a baseline, we measured the average spectral efficiency reached by a solo macro cell of 2.134 b/s/Hz, which remains constant because we did not limit the macro cell capacity. By deploying 50 small cells, the average spectral efficiency grows reaching 5.235 b/s/Hz on
average; nevertheless, as soon as the number of UEs per km\(^2\) exceeds 1000 the efficiency degrades significantly, down to 2.423 b/s/Hz. With the deployment of 250 to 500 small cells, the average spectral efficiency almost reaches the maximum of 9.75 b/s/Hz, but both efficiencies degrade in the presence of 1000 UEs or more.

Figure 7.7: Saturation of small cells

In the same scenario, to better understand why the spectral efficiency degrades for densities larger than 1000 UEs per km\(^2\), we measured the percentage of saturated small cells, i.e., small cells that cannot provide communication to any additional UEs, shown in Figure 7.7. The number of saturated small cells grows quickly between UE densities of 10 and 1000 per km\(^2\). The average spectral efficiency decreases in proportion to the number of saturated small cells. Therefore, a massive number of small cells is required to reach better average spectral efficiency in some densely populated areas. In this case, exploiting the sharing of small cells becomes inevitable.

The second scenario was created to assess the benefits of resource sharing in an H-CRAN environment. From the first scenario, let us assume a density of 10000 UEs/km\(^2\) with 50 small cells deployed, and average spectrum efficiency of 2.434 b/s/Hz, which notionally represents the infrastructure of an operator that lease infrastructure (leaser) from another (donor). According to an LSA methodology (GOMEZ-MIGUELEZ et al., 2014), shared cells must prioritize the communications of UEs that belong to the donor, i.e., primary UEs, rather than UEs from the leaser. In addition, we must consider that the
donor leased both spectrum and infrastructure resources, allowing its MDCs to exchange and process the leaser workload freely through CC-CRRM and CC-CSON (PENG et al., 2014). Finally, we measured the spectral efficiency gain of the leaser operator according to the number of shared small cells in use, such as depicted in Figure 7.8.

By exploiting 100 shared small cells, the leaser may reach the spectral efficiency of 3.87 b/s/Hz for its 10000 UEs with a low primary UE density (less than 1000 UE/km²). When the leaser uses 250 shared small cells, its 10000 UEs reach 5.845 b/s/Hz, more than double of the spectral efficiency without sharing. For the use of 500 shared small cells, the leaser’s UEs can achieve 7.9 b/s/Hz, more than triple of the spectral efficiency without sharing. However, when the density of primary UEs exceeds 1000, the leaser’s UEs spectral efficiency gradually degrades for all the considered deployments of small cells. It means that the leaser can improve its spectral efficiency by taking advantage of shared resources in areas where primary UEs are not fully dominant. Finally, by taking advantage of resource sharing in H-CRAN, leasers can duplicate or triplicate their spectral efficiency by leasing small cells.

We now proceed to quantify the relationship between channel conditions, processing capabilities in the cloud, and the allowable distance between the RRH and the MDC.
7.2.2 Analyzing the Distance between MDC and RRH in an H-CRAN

First of all, we validated equation (4.8) by comparing its outcome against experimental work reported in (BHAUMIK et al., 2012). We consider the same scenario of (BHAUMIK et al., 2012), where a vBBU within an MDC has to decode a code block from an RRH and, setting the round-trip delay Λ equal to a delay budget Φ, we find the maximum distance d_{sm} between MDC and RRH.

<table>
<thead>
<tr>
<th>Validation parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_n</td>
<td>6144 bits (3rd Generation Partnership Project (3GPP), 2015)</td>
</tr>
<tr>
<td>ω</td>
<td>200 op./bit (HOLMA; TOSKALA, 2009)</td>
</tr>
<tr>
<td>v_s</td>
<td>1 op./cycle (nominal set)</td>
</tr>
<tr>
<td>c</td>
<td>300 m/µs</td>
</tr>
<tr>
<td>α</td>
<td>50 km</td>
</tr>
<tr>
<td>σ</td>
<td>20 µs (MUSUMECI et al., 2016)</td>
</tr>
<tr>
<td>Φ</td>
<td>2.7 ms (BHAUMIK et al., 2012)</td>
</tr>
<tr>
<td>i_n</td>
<td>7 recursions (BHAUMIK et al., 2012)</td>
</tr>
<tr>
<td>p_{sn}</td>
<td>3.47 GHz (BHAUMIK et al., 2012)</td>
</tr>
</tbody>
</table>

The validation scenario parameters are presented in Table 7.1 and described as follows: A UE’s code block to be decoded presents $u_n = 6144$ bits, the maximum code block size for LTE (3rd Generation Partnership Project (3GPP), 2015). The decoder has a complexity of $\omega = 200$ operations per bit (HOLMA; TOSKALA, 2009). Considering a single core processor, we set $\omega = 1$ operation per cycle, providing a direct relation between the processor clock rate p_{smn} and the total number of operations required to decode the code block. Based on a typical Brand A – G.652 fiber as the optical medium, we set $\alpha = 50$ km as the maximum distance that can be covered without a regenerator. We consider an average node delay of $\sigma = 20$ µs, as in (MUSUMECI et al., 2016). As in (BHAUMIK et al., 2012), we set $i_{smn} = 7$ recursions (fixed) and $p_{sn} = 3.47$ GHz. Finally, we adopt a delay budget of $\Phi = 2.7$ ms, accounting for code block reply encoding and processing for the upper layers in the protocol stack (China Mobile Research Institute, 2011; BHAUMIK et al., 2012). The result we obtain from equation 4.8 indicates a maximum distance $d_{sm} = 20.86$ km between MDC and RRH, within 5% of the distance of 20 km considered in (BHAUMIK et al., 2012). Also, Φ was reduced of 0.3 ms to represent the code block.
reply encoding and upper layers processing according to (BHAUMIK et al., 2012).

We solved the optimization problem in (4.16), characterizing the effects of the SNR and the available processing power on the maximum distance between MDC and RRH. We considered the same parameter set up described in the previous section, with small changes described as follows. A MDC decodes M code blocks, where each block m experiences different channel conditions, expressed in E_{bn}/N_0 in the range $\{0.125, 0.25, 0.5, 1, 2, 4\}$ dB. Furthermore, we relied on the results of (BREJZA et al., 2016), which characterizes the FEC decoding performance in terms of BER achieved for a given E_{bn}/N_0 and k recursions. In particular, we performed a linear interpolation on the graph in (BREJZA et al., 2016, Fig 10), yielding the function $ber(*)$. The interpolation considers the target BER b in the range of $[10^{-5}, 10^{0}]$ and sets the maximum number of recursions to 14, as in (BREJZA et al., 2016). Finally, we used an exhaustive search algorithm to solve the maximization problem considering that d can vary in the set $D = \{1, \ldots, 250\}$ km.

The results are depicted in Figure 7.9 for a target BER $b = 10^{-3}$. In the x-axis, p_m is presented in Hz, whereas the y-axis represents d in km. The curves correspond to different levels of SNR in dB. The available processing power p_m has a significant effect on the maximum distance, for an RRH experiencing low SNR ($E_{bn}/N_0 \leq 0.5$ dB). In this case, either significant resources must be dedicated to processing the signal or the MDC must be located nearer the RRH, in the fog rather than in the cloud. For high SNR ($E_{bn}/N_0 > 0.5$ dB), few iterations of the FEC algorithm suffice to achieve the target BER, and the effect of the processing power p_m is less significant. In both cases, the maximum distance eventually reaches a plateau, and the total latency is dominated by propagation delay.

It is also important to note that, in practice, the amount of resources that a MDC can allocate to processing signals coming from a given RRH may vary. For instance, a MDC can choose to decrease the processing allocated to RRHs experiencing high SNR, or located at shorter distances, in favor of those farther away, and/or experiencing low SNR. This decision can be made dynamically, fully exploiting the available processing power at the MDC.

We performed a second analysis considering different values for the target BER b and its influence when characterizing the relationship among the distance between MDC and RRH, the processing power p_m, and round-trip delay budget Φ. In this case, we considered the same set up of the previous analysis, except that the allocated processing power is fixed $p_m = 5$ GHz. The distance d is maximized for a target BER b in the range
of $[10^{-5}, 10^0]$. The results of this analysis are depicted in Figure 7.10. The y-axis shows the maximum distance d between MDC and RRH, and the x-axis presents the target BER b. From left to right, the curves in Figure 7.10 correspond to decreasing SNR observed at the RRH. As the target BER b increases (i.e., the error performance degrades), each step in the curves represents a decrease in the number of FEC recursions k_m required to process a code block m. The distance between MDC and RRH can reach approximately 92 km, in the case of high SNR ($\frac{E_b}{N_0} \geq 0.5 \text{ dB}$), even for a relatively ambitious target BER $b \leq 10^{-5}$, whereas an RRH facing low SNR ($\frac{E_b}{N_0} < 0.5 \text{ dB}$) cannot meet a challenging BER target ($b \leq 10^{-2.9}$).

The optimization problem we describe can be used to enhance the planning and allocation of processing resources in a H-CRAN. During the planning of a H-CRAN, the maximum distance between MDC and RRH and the required processing power can be determined together, considering a delay budget and target BER. These results can inform the dynamic allocation of processing resources in the network, and to determine which MDC, either in the fog or the cloud, is eligible to process the workload of different RRHs. These decisions can also account for load balancing considerations.

Figure 7.9: Maximum distance between an RRH and the MDC responsible for processing its signals, as a function of available processing capabilities available at the MDC and the SNR experienced on the wireless channel.
7.3 Minimizing processing power underusage in H-CRAN

The processing power underusage problem modeled in (4.29) tracks the tradeoff between processing power consumption reduction and consolidation within the pool of an H-CRAN. In this case, increasing the weight $0 \leq \alpha \leq 1$ represents prioritizing processing power reduction, whereas decreasing it leads to better consolidation, which can simply be represented in terms of the average number of MDCs active during H-CRAN operation. Considering this reasoning, we assess both: an optimal offline algorithm derived from the BILP model described in (4.29) and compare to our online solution which is a greedy decision algorithm shown in Algorithm (3).

Because a BILP is solved through a full combinatorial search algorithm, such as Simplex, it presents exponential complexity. In this case, to turn the scenario computable, we created a different scenario with fewer elements. Based on the smallest of the nine scenarios covered in this thesis, we captured a slice of H-CRAN composed of four MDCs $S = 4$ connected to nine RRHs $M = 9$ that can provide access to nine UEs $N = 9$ considering four seconds $T = 4$ of operation. All the request are randomly created, as well as the position of the elements. It is important to mention that all the other definitions from the system model hold for this experiment. Each of the results gathered is measured
as averages from the execution of 60 rounds per experiment. The results also present a confidence interval of 90%. Considering the proposed scenario, first we evaluate the total processing power consumed in an H-CRAN for the different weights of \(\alpha \), such as shown in Figure 7.11.

In Figure 7.11, the processing power consumed is depicted through the y-axis, whereas the \(\alpha \) values are presented in the x-axis. Also, the solid dark line represents the BILP baseline optimization results meanwhile the dashed gray line represents the greedy decision algorithm. The results are obtained according to the workload assignment decisions represented by the binary variables \(a_{s_{mn}} \) that associate an MDC \(s \) to process the workload arrived from a UE \(n \) to an RRH \(m \) at the time slot \(t \).

The minimum average consumption of processing power can be achieved for \(\alpha = 1 \), with the value of 30 Giga Operations (GOPS) to sustain four seconds of an H-CRAN operation such as shown by the optimization curve. In opposite, the greedy algorithm decisions lead to a minimum consumption of 50 GOPS of processing power on average. Also, the results can be compared since none of the error bars touch each other from both curves. It is also worth mentioning that the greedy algorithm decisions for a small alpha of \(\alpha = 0 \), lead to a reduction in the processing power consumed. This behavior may be related to the fact that with lesser MDCs actives, the greedy algorithm decisions lead to reuse and spare processing without triggering migrations that will intro-
duce larger consumption of processing power. In this case, to continue our comparison, we evaluate the average number of active MDCs such as presented in Figure 7.12.

Figure 7.12: Average number of active MDCs per second for the biased decisions influenced by α.

As can be seen in Figure 7.12, the x-axis represents the values of α, whereas the y-axis represents the average number of MDCs that were active during the four seconds of execution of an H-CRAN. For an $\alpha = 0$, the decisions of the baseline lead to an average of 0.43 MDCs active per second. It means that an H-CRAN can reuse a single MDC making it active for fewer seconds than the maximum time window to meet all the UEs requests. Whereas, the decisions are taken by the greedy algorithm lead to an average of 1.15 at best, which means that sometimes two MDCs must be active in the same second to meet all requests of the scenario.

Further, for higher values of α in Figure 7.12, the baseline decisions lead to results that behave as a platoon staying almost always in the values of 0.74 MDCs active per second. The greedy algorithm, in turn, presents decisions that lead to results with higher variance than the baseline escalating until arriving the value of full usage of MDCs equals to 4 MDCs active per second for an $\alpha = 1$. To better represent the tradeoff between consolidation and reduced usage of processing power consumption through better distribution, we correlate the results of both solutions being presented in Figure 7.13.

As can be seen in Figure 7.13, in the x-axis the average number of MDCs active are shown. In the y-axis, the total processing power consumed in GOPT is presented.
Figure 7.13: Tradeoff between processing power consumption and consolidation in the H-CRAN.

Also, we paired the results that have the same value of \(\alpha\) for both approaches with the same color.

The decisions taken by the BILP optimization show that it is possible to keep a consolidation of 0.43 MDCs active per second by increasing the total processing consumed from approximately 30 GOPT to 43 GOPT. Whereas, the same is achieved by the greedy algorithm that can perform at best a consolidation of 1.15 MDCs active per second required to increase from 60 GOPT to 82 GOPT.

Because operators can either have their infrastructure or lease it from others in H-CRAN, it is fundamental the understanding of the tradeoff presented to address the underusage of processing power. For operators with their infrastructure, consolidation brings several benefits regarding reduced OPEX and energy consumption decreasing through reuse. In this case, the operator should address processing power underusage by setting \(\alpha\) to lower values near zero. On the other hand, for an operator that leases infrastructure in a pay-as-you-go business model, it is essential to decrease the total processing power in use to reduce the costs with leasing. Therefore, operators leasing infrastructure must increase the value of alpha when addressing the problem of underusage processing in H-CRAN. Next, we present our final remarks and conclusions.
8 CONCLUSIONS

In this thesis, we discussed the benefits of deploying H-CRAN and the different challenges that arises from its employment, *i.e.*, (*i*) high intercell interference in the RAN; (*ii*) critical delay constraints at the fronthaul; and (*iii*) poor processing power allocation in the cloud. To address these challenges a decision making system able to interact across RAN, fronthaul, and cloud is required. In this case, an architecture is introduced by re-thinking design principles of SDN to control H-CRAN to influence its decision making process. Along with this architecture, an API is also introduced standardizing the communication of controllers with wireless equipments turning feasible their control. On top of such controllers, different decision algorithms are created to solve the different H-CRAN challenges.

Given the challenges identified and the proposal of an architecture to logically centralize the decision making within an H-CRAN based on SDN principles, extensive research, development, and experimentation have been conducted aiming to verify the following hypothesis.

Hypothesis: The decisions in an H-CRAN must be taken by an SDN-based system able to address different challenges considering delay constraints.

The proposed hypothesis is tested through four different case studies. The first case study has demonstrated the cost introduced by deploying a logically centralize decision making system based on SDN. This case study presented the deployment of a simulated H-CRAN scenario based on 3GPP definitions, including different UE and RRHs densities. The number of messages exchanged and the network overload is calculated based on the different functions available at the proposed API. We also measured the capacity and average energy used per RRH to identify the benefits brought by such a system even by employing a simple decision algorithm. In the second case study, a decision algorithm was implemented such that interference is reduced by exploiting infrastructure spectrum sharing techniques. In the third use case, delay constraints were considered changing decisions revolving the processing power allocated and the distance between MDCs and RRHs. Finally, in the fourth case study, the tradeoff of processing power consumption and consolidation regarding active MDCs per second in H-CRAN is exploited to address underusage of resources in the pool.

The case studies to support the created hypothesis also were fundamental to address the three research questions presented in this thesis. The answers to each question
RQ 1 - What relevant information and technology are required to make decisions within an H-CRAN considering RAN, fronthaul, and cloud?

We determined the most relevant information that are required to make decisions within an H-CRAN by exploiting the main challenges identified and creating a API that can exchange messages containing information from different parts of an H-CRAN. Whereas, for the technology required to implement an SDN-based decision-making system, we presented a table that relate each technology, such as SDR and CoMP, to a responsibility that a controller from an SDN-based decision-making system must assume.

RQ 2 - What are the main decisions to be taken in an H-CRAN considering different limitations when adjusting the RAN, fronthaul, and cloud?

The decisions that an SDN-based decision-making system must assume are directly related to the responsibilities it will have to handle. In this case, considering the challenges presented in this work, three decisions where deeply investigated. In the first, an decision algorithm is designed to determine which association of UEs must occur and with which priority according to the sharing policy in use. In the second, the processing power allocation is decided by a decision algorithm that considers delay requirements and distance between MDC and RRH in an H-CRAN. In the third, a decision algorithm is created to assign the workload from RRHs to a distributed pool of MDCs to enhance processing power usage and consolidation.

RQ 3 - Considering the gathered information can resource be reallocated to enhance their use for long-term operations considering the limitations inherent of H-CRAN?

As already studied in this thesis, channel, processing power, and RRH usage can be changed at runtime to solve issues, such as delay constraints and interference. However, the underusage of processing power require that workload of RRHs be reallocated frequently. In this case, a greedy algorithm to assign the workloads within H-CRAN is proposed to execute decisions during runtime. Also, we shed light on the tradeoff between consolidation and processing power consumption within the pool being able to address the problem of processing power underusage considering the different interests of an operator in H-CRAN.

Based on the studies conducted so far it is possible to identify a few open issues in the investigated topic, which can be subject of future work. For example, interdependency of different decision algorithm can be cornerstone for improving performance when dif-
different responsibilities are assumed by the same controller. The proposed API could also be enhanced by the inclusion of other type of resources that can simplify and optimize the exchange of information from the wireless devices at forwarding plane and controllers at control plane. Another potential are to investigate is the creation of decision algorithms for fault tolerant scenarios, where RRHs, MDCs, and optical links can present failures.

8.1 Research Agenda & Development

This chapter provides an overview of the main research activities carried out during the period of the Ph.D. The next five tables present yearly lists of activities including, attending courses and conferences, exams, and paper submissions.

<table>
<thead>
<tr>
<th>Activities</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Preparing/Submitting the article for IEEE/IFIP WD2014</td>
<td>2014/1</td>
</tr>
<tr>
<td>Title: Evaluating Management Architectures for Internet of Things Devices</td>
<td></td>
</tr>
<tr>
<td>- Organizing conference: CNSM 2014</td>
<td></td>
</tr>
<tr>
<td>- Participating as TPC: ERRC 2014</td>
<td></td>
</tr>
<tr>
<td>- Attending Conference/Workshop: SBRC/WRNP 2014</td>
<td></td>
</tr>
<tr>
<td>- Preliminary studies of H-CRAN</td>
<td></td>
</tr>
<tr>
<td>- Individual Study: Management of Telecommunication systems</td>
<td></td>
</tr>
<tr>
<td>- Attending course: Wireless systems</td>
<td></td>
</tr>
<tr>
<td>- Qualifying Exam: Wireless Networks and Cognitive Radio Management</td>
<td></td>
</tr>
<tr>
<td>- Attending Conference: IEEE/IFIP WD2014</td>
<td>2014/2</td>
</tr>
<tr>
<td>- Attending/Organizing conference: IEEE CNSM2014</td>
<td></td>
</tr>
<tr>
<td>- Writing/submitting IEEE Wireless Communications Magazine</td>
<td></td>
</tr>
<tr>
<td>Title: Resource sharing in heterogeneous cloud radio access networks</td>
<td></td>
</tr>
<tr>
<td>- Teaching practice II: Data communication</td>
<td></td>
</tr>
</tbody>
</table>
Table 8.2: List of research activities conducted in 2015

<table>
<thead>
<tr>
<th>Activities</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Writing/submitting Elsevier Computer Networks</td>
<td>2015/1</td>
</tr>
<tr>
<td>Title: Managing Mobile Cloud Computing Considering Objective and Subjective Perspectives</td>
<td></td>
</tr>
<tr>
<td>- Writing project for “Sandwich” internship</td>
<td></td>
</tr>
<tr>
<td>- Attending Conference/Workshop: SBRC/WRNP 2015</td>
<td></td>
</tr>
<tr>
<td>- Participating as TPC: ERRC 2015</td>
<td></td>
</tr>
<tr>
<td>- Start of “Sandwich” internship</td>
<td>2015/2</td>
</tr>
<tr>
<td>- Investigating challenges inherent of H-CRAN</td>
<td></td>
</tr>
<tr>
<td>- Writing Article</td>
<td></td>
</tr>
<tr>
<td>Title: Design Considerations for Software-Defined Wireless Networking in Heterogeneous Cloud Radio Access Networks</td>
<td></td>
</tr>
</tbody>
</table>

Table 8.3: List of research activities conducted in 2016

<table>
<thead>
<tr>
<th>Activities</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Investigating delay aspects of an H-CRAN</td>
<td>2016/1</td>
</tr>
<tr>
<td>- Writing Article</td>
<td></td>
</tr>
<tr>
<td>Title: Characterizing the Relation between Processing Power and Distance between BBU and RRH in a Cloud RAN</td>
<td></td>
</tr>
<tr>
<td>- Implementing H-CRAN scenarios</td>
<td></td>
</tr>
<tr>
<td>- End of “Sandwich” internship</td>
<td>2016/2</td>
</tr>
<tr>
<td>- Investigating Forward ErrorCorrection</td>
<td></td>
</tr>
<tr>
<td>- Implementing the simulator considering the deployed scenarios</td>
<td></td>
</tr>
</tbody>
</table>
Table 8.4: List of research activities conducted in 2017

<table>
<thead>
<tr>
<th>Activities</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Writing/submitting mini-course to SBRC2017</td>
<td></td>
</tr>
<tr>
<td>- Writing article</td>
<td></td>
</tr>
<tr>
<td>Title: Integrating Dynamic Spectrum Access and Device-to-Device via</td>
<td>2017/1</td>
</tr>
<tr>
<td>Cloud Radio Access Networks and Cognitive Radio</td>
<td></td>
</tr>
<tr>
<td>- Investigating processing power allocation in H-CRAN</td>
<td></td>
</tr>
<tr>
<td>- Writing/submitting IEEE WCL</td>
<td></td>
</tr>
<tr>
<td>Title: Characterizing the Relation between Processing Power and Distance</td>
<td></td>
</tr>
<tr>
<td>between BBU and RRH in a Cloud RAN</td>
<td></td>
</tr>
<tr>
<td>- Writing/submitting Springer JISA</td>
<td></td>
</tr>
<tr>
<td>Title: Design Considerations for Software-Defined Wireless Networking</td>
<td>2017/2</td>
</tr>
<tr>
<td>in Heterogeneous Cloud Radio Access Networks</td>
<td></td>
</tr>
<tr>
<td>- Writing/submitting Wiley IJCS</td>
<td></td>
</tr>
<tr>
<td>Title: Integrating Dynamic Spectrum Access and Device-to-Device via</td>
<td></td>
</tr>
<tr>
<td>Cloud Radio Access Networks and Cognitive Radio</td>
<td></td>
</tr>
<tr>
<td>- Writing proposal</td>
<td></td>
</tr>
</tbody>
</table>

Table 8.5: List of research activities conducted in 2018

<table>
<thead>
<tr>
<th>Activities</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Writing IEEE Transactions on Wireless Communications</td>
<td></td>
</tr>
<tr>
<td>Title: A Workload Migration Algorithm for Enhanced Processing</td>
<td>2018/1</td>
</tr>
<tr>
<td>Power Exploitation in H-CRAN</td>
<td></td>
</tr>
<tr>
<td>- Writing IEEE Transactions on Wireless Communications</td>
<td></td>
</tr>
<tr>
<td>Title: A Workload Migration Algorithm for Enhanced Processing</td>
<td>2018/2</td>
</tr>
<tr>
<td>Power Exploitation in H-CRAN</td>
<td></td>
</tr>
<tr>
<td>- Writing final thesis version</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

IPERF. 2017. [Last access: 27/03/2017]. Available from Internet: <https://iperf.fr/>.

APPENDIX A — PUBLISHED ARTICLES

This appendix presents the articles published since the beginning of the doctorate. These articles are papers resulted from the investigations about H-CRAN and the SDN-based decision-making system. These papers also present the proposed architecture that was shown in details in this thesis. Finally, these articles also present the performance evaluation of an SDN-based decision-making system in H-CRAN when compared to traditional cellular networks.

- **Title:** Resource sharing in heterogeneous cloud radio access networks.
 - **Authors:** MAROTTA, M. A.; KAMINSKI, N.; GRANVILLE, L. Z.; ROCHOL, J.; DASILVA, L.; BOTH, C. B.
 - **Journal:** IEEE Wireless Communications.
 - **DOI/URL:** https://doi.org/10.1109/MWC.2015.7143329.
 - **Date:** July, 2015.

- **Title:** Design Considerations for Software-Defined Wireless Networking in Heterogeneous Cloud Radio Access Networks.
 - **Authors:** MAROTTA, M. A., KIST, M.; WICKBOLDT, J. A.; GRANVILLE, L. Z.; ROCHOL, J.; BOTH, C. B.
 - **Journal:** Springer Journal of Internet Services and Applications (JISA).
 - **DOI/URL:** https://doi.org/10.1186/S13174-017-0068-X.
 - **Date:** November, 2017.

- **Title:** Characterizing the Relation between Processing Power and Distance between BBU and RRH in a Cloud RAN.
 - **Authors:** MAROTTA, M. A., AHMADI, H.; ROCHOL, J.; DASILVA, L.; BOTH, C. B.
 - **Journal:** IEEE Wireless Communications Letters (WCL).
 - **DOI/URL:** http://dx.doi.org/10.1109/LWC.2017.2786226
 - **Date:** December, 2017.

- **Title:** Integrating Dynamic Spectrum Access and Device-to-Device Communication via Cloud Radio Access Networks and Cognitive Radio.
 - **Authors:** MAROTTA, M. A., FAGANÉLO, L. R., KIST, M.; BONDAN, L.

- DOI/URL: https://doi.org/10.1002/dac.3698.
- Date: march, 2018
APPENDIX B — CORRELATED PUBLISHED ARTICLES

This appendix presents articles that were written during the doctorate. Although these articles are not directly related to the theme of this thesis, they are still part of the doctorate and represent marginal results of other activities.

- **Title:** Evaluating Management Architectures for Internet of Things Devices.
 - **Authors:** MAROTTA, M. A., BOTH, C. B., ROCHOL, J., GRANVILLE, L. Z., Tarouco, L. M. R.
 - **Conference:** IFIP/IEEE Wireless Days.
 - **DOI/URL:** https://doi.org/10.1109/WD.2014.7020811.
 - **Date:** November 12-14, 2014.
 - **Location:** Rio de Janeiro, Brazil.

- **Title:** Managing Mobile Cloud Computing Considering Objective and Subjective Perspectives.
 - **Authors:** MAROTTA, M. A.; FAGANELLO, L. R.; SCHIMUNECK, M. A. K.; GRANVILLE, L. Z.; ROCHOL, J.; BOTH, C. B.
 - **Journal:** Elsevier Computer Networks (COMNET).
 - **DOI/URL:** https://doi.org/10.1016/j.comnet.2015.09.040.
 - **Date:** September, 2015.
APPENDIX C — CO-AUTHORED PUBLISHED ARTICLES

This appendix presents articles that were co-authored during the doctorate. These articles could be divided into (i) articles related to this thesis and (ii) marginal results from cooperation with other researchers. This division is shown next.

Co-authored articles related to this thesis

- Title: Impact of Fog and Cloud Computing on an IoT Service Running over an Optical/Wireless Network Testbed.
 - DOI/URL: https://doi.org/10.1109/INFCOMW.2017.8116434.
 - Date: 1-4 May 2017.
 - Location: Atlanta, USA.

- Title: Caracterizando Estratégias de Domínio Espacial para Gerenciamento de Regras em Redes Definidas por Software (in Portuguese).
 - Authors: DE ARAÚJO, G., MAROTTA, M. A., WICKBOLDT, J., BOTH, C., GASPARLY, L., ROCHOL, J. AND GRANVILLE, L.
 - Date: 15-19 May 2017.
 - Location: Belém, Brazil.

- Title: Software-Defined Handover Decision Engine for Heterogeneous Cloud Radio Access Networks.
 - DOI/URL: https://doi.org/10.1016/j.comcom.2017.10.018.
 - Date: January, 2018.
Co-authored articles not directly related to this thesis

- **Title:** *Adaptive Threshold Architecture for Spectrum Sensing in Public Safety Radio Channels.*
 - **Authors:** BONDAN, L., MAROTTA, M. A., KIST, M., FAGANELLO, L. R., BOTH, C. B., ROCHOL, J., GRANVILLE, L. Z.
 - **Conference:** IEEE Wireless Communications and Networking Conference (WCNC).
 - **DOI/URL:** https://doi.org/10.1109/WCNC.2015.7127484.
 - **Date:** May 2014.
 - **Location:** New Orleans, LA, USA.

- **Title:** *ChiMaS: A Spectrum Sensing-based Channels Classification System for Cognitive Radio Networks.*
 - **Authors:** BONDAN, L., MAROTTA, M.A., FAGANELLO, L.R., ROCHOL, J. AND GRANVILLE, L.Z.
 - **Conference:** IEEE Wireless Communications and Networking Conference (WCNC).
 - **DOI/URL:** https://doi.org/10.1109/WCNC.2016.7564911.
 - **Date:** April, 2016.
 - **Location:** Doha, Qatar.